Abstract

Mitigation of optical losses is of prime importance for the performance of integrated micro-photonic devices. In this paper, we demonstrate strip-loaded guiding optical components realized on a 27 nm ultra-thin silicon-on-insulator (SOI) platform. The absence of physically etched boundaries within the guiding core majorly suppresses the scattering loss, as shown by us previously for a silicon nitride (Si3N4) platform. Unexpectedly, the freshly fabricated Si devices showed large losses of 5.1 dB/cm originating from absorption by free carriers, accumulated under the positively charged Si3N4 loading layer. We show how ultraviolet (UV, 254 nm) light exposure can progressively and permanently neutralize Si3N4’s bulk charge, associated with diamagnetic K+ defects. Consequently, the net decrease of electron concentration in the SOI layer reduces the propagation loss down to 0.9 dB/cm. Accurate cavity linewidth measurements demonstrate how the intrinsic cavity’s Q boosts from 70,000 up to 500,000 after UV illumination. Our results may open routes towards engineering of new functionalities in photonic devices employing UV modification of space-charge-associated local electric fields, unveil the origin of induced optical nonlinearities in Si3N4/Si micro-photonic systems, as well as envisage possible integration of these with both standard and ultra-thin SOI electronics.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. INTRODUCTION

Light confinement by resonant circulation of electromagnetic radiation in mirrorless microresonators makes them a key building block for planar integrated photonics [1,2]. The amount of optical power that is lost per round trip of circulation manifests in the spectral width of the resonances: the smaller the loss, the narrower the resonances become. In general, the possible channels of intrinsic losses αi in a cavity are the material absorption αm, the scattering due to boundary imperfections αsc, and the out-radiation αrad, due to the curved geometry. The overall intrinsic loss of a high-finesse cavity, combined with the extrinsic loss αe due to coupling to an external waveguide, thus defines the spectral width of a Lorentzian-shaped resonance peaked at a frequency of ω0 via

f(ω)αe(αi+αe)/2ι(ωω0)ng/c0,
where ng is the group index of the optical mode around ω0 and c0 is the vacuum speed of light.

A reduced intrinsic loss is essential for a number of applications such as passive filtering in optical communication networks [35], quantum optics [610], space [11,12], or sensing [1315]. Suppressing the intrinsic loss to only that of the material itself is challenging because it can push the device characteristics to an ultimate limit [16]. Minute contributions from radiative loss can be achieved via a strong modal confinement within the guiding components (high-index contrast) and/or by using large radii of curvature [1620]. Scattering loss can be suppressed by realization of smooth device boundaries during fabrication by either shallow etching or by completely excluding physically etched sidewalls [1619,2123]. In addition to the improvement of intrinsic losses αi, careful tailoring of the modal coupling to integrated waveguides must be performed to avoid excessive extrinsic losses αe. Single-mode operation, on one hand, can allow for omitting parasitic coupling to higher-order modes, while engineering of adiabatic couplers by weakly tapering the gap can reduce the modal mismatch in the coupler arms and lower the excess coupling loss [17].

In an optical device, the material loss αm is largely dependent on the choice of the operation frequency. In particular, most silicon micro-photonic devices operate at telecom frequencies, where the photon energy is below silicon’s electronic band gap [24,25]. The interband absorption, thus, is negligible, and the associated loss can be as low as 0.005 dB/cm for a typical p-type Si of 15Ω·cm resistivity. On the other hand, a non-negligible intraband two-photon absorption (TPA) and excited-carrier absorption (ECA) can increase the loss by up to 3 orders of magnitude [2628]. This last can be still mitigated by integrating p-n junction devices to operate under reverse-bias conditions, thus depleteing silicon from the electrical charge carriers in the guiding region [25].

Silicon nitride is widely used in integrated circuit technology [29], flat-panel displays [30], and solar cells [31]. For the last decade, silicon nitride has attracted interest among the photonics community for CMOS-compatibile integrated photonics. It is a key dielectric material for linear micro-optical guiding circuits, transparent from visible to mid-infrared (MIR) wavelengths [4,32,33], as well as for applications in nonlinear frequency conversion schemes either due to its intrinsic nonlinearities [3436] or induced nonlinearities when a silicon nitride film is applied to crystalline silicon [3740]. Recent developments in the field of nonlinear optics have extended the potential of silicon nitride to be used in combination with lithium niobate within an integration-compatible process [41].

Here we report on the design, fabrication, and characterization of high-Q micro-optical components on an ultra-thin, 27 nm thick SOI platform, where light guiding is enabled by a patterned layer of strip-loading stoichiometric Si3N4. The use of such a thin Si layer avoids the presence of guided slab modes where the loading nitride strip is absent. The absence of physically etched device boundaries in the SOI layer is expected to provide ultimately low losses, limiting them to that of the intrinsic absorption of the lightly doped p-type silicon device layer. Such an approach was successfully implemented in our earlier study, where Qs of 4×106 were achieved on a 80 nm thick Si3N4 platform [18]. Surprisingly, the freshly fabricated silicon devices showed unexpectedly high propagation losses of up to 5.1 dB/cm. We related the origin of these losses to the absorption of free carriers within the Si layer, which are generated due to the presence of fixed positive charges in the deposited silicon nitride. Next, we successfully and permanently neutralized the charge in Si3N4 by exposing the devices to 254 nm wavelength UV light. This led to an improvement of losses down to 0.9 dB/cm, allowing us to boost the quality factors of the ring-resonator devices from an initial 70,000 up to 500,000.

Our results open the door to the implementation of UV-induced charge modification for the design and study of new photonic devices in which the space-charge-related static electric fields can be engineered to modulate the linear and nonlinear refractive indices of materials, for example, with patterned UV exposure. Moreover, our findings are general and may be implemented also in other geometries of guiding devices and material systems where silicon nitride is present, most notably standard SOI waveguides. We also envisage the possibility of compact integration of micro-photonic components with ultra-thin SOI electronics in the future.

2. MATERIALS AND METHODS

A. Device Fabrication

The samples were realized starting from 6” SOI wafers with a 3 μm thick buried oxide (BOX) and a 250 nm (100)-Si device layer (Soitec). The latter is lightly doped with boron and has a nominal resistivity of 15Ω·cm. First, the device layer thickness was reduced by thermally oxidizing the Si and removing the grown oxide in a buffered hydrofluoric acid solution. A fine tuning of the final thickness, 27.4±1.5nm, was achieved by means of standard RCA cleaning steps [42]. Next, a 145 nm thick low-pressure chemical vapor deposition Si3N4 film was deposited at 780°C and patterned lithographically using an i-line Nikon stepper. The pattern was then transferred to Si3N4 using an inductively coupled plasma etch, terminating with a wet etching step for the last 10 nm to guarantee a smooth top surface of the underlying Si layer. Finally, the fabricated chips were diced using a polishing-grade saw to define the waveguides’ input-output facets. The cross-sectional view of a generic device and the distribution of the simulated electric field intensity of a transverse electric (TE)-polarized mode are shown in Fig. 1(a). Optical micrographs of a typical ring resonator and a spiral waveguide are shown in Fig. 1(b) and Fig. 1(c), respectively.

 figure: Fig. 1.

Fig. 1. (a) Top: cross-sectional schematics of the nitride-loaded ultra-thin SOI device. Bottom: numerical FEM calculation of fundamental TE-mode intensity profile at a wavelength of 1550 nm. (b) Top-view optical micrograph of a ring-resonator device. A blow-up of the image on right shows the optical coupling region. (c) Optical micrograph of a spiral waveguide used for propagation loss measurements. The waveguide width is 1.3 μm, and the shown spiral has a total length of 3 cm.

Download Full Size | PPT Slide | PDF

B. Optical Characterization

The devices were tested in waveguide transmission experiments in a 100 nm range around 1550 nm of wavelength. A tunable laser (Yenista Tunics T100S HP) was butt-coupled to the waveguides using a lensed fiber (total insertion loss of 3.8±0.2dB/cm). The signal polarization was controlled at the waveguide input, while the transmitted signal was collected with a second fiber at the waveguide output. The signal was then sent to an InGaAs photodiode and analyzed using a high-resolution oscilloscope (PicoScope 4224).

C. MOS Capacitance Measurements

Quasi-static capacitance-voltage (C-V) measurements were conducted at 10 kHz using an MDC 802-150 Mercury Probe (spot diameter 787 μm) and acquired with an Agilent 4156C Parameter Analyzer. Different samples, cut from the same wafer, were exposed to 254 nm UV light from a Hg bulb lamp (254 nm, 19mW/cm2). The exposure times were varied from 1 min up to 32 h. As a reference, we also measured an as-deposited sample with no UV exposure. In order to acquire enough statistics per sample, the C-V measurements were repeated on at least five different points on each sample.

Based on the results from C-V experiments, several chips containing micro-photonic components such as centimeter-long spirals and ring resonators were exposed to UV light in order to directly study the variation of optical characteristics of these devices due to electrical charge neutralization.

3. RESULTS AND DISCUSSION

A. Diamagnetic and Paramagnetic Centers in Silicon Nitride

Silicon nitride, both in its stoichiometric (Si3N4) and N-rich form (αSiNx:H), is known to host charge trapping centers via silicon dangling bond defects. Such defects are typically present and homogeneously distributed in the film, either in a neutrally charged paramagnetic state, known as the K0-centers (·SiN3), or in a charged diamagnetic state [43]. These last can be positively (K+, Si+N3) or negatively charged (K,SiN3) [4347]. Interestingly, exposing films to UV radiation with energies greater than 3.5 eV (<350nm) can induce a change in the spin and charge state of diamagnetic states [48], increasing the concentration of neutral K0-centers and, therefore, leading to a partial or complete compensation of space charge in the film [43]. The initial spin/charge state may vary depending on film composition and growth technique, and the exact mechanism of charge neutralization is not fully understood yet. However, it has been proved unambiguously that the UV radiation generally causes a modification of initial charging conditions [4348]. From the point of view of device functionality, UV-induced charge reduction can largely modify the electrical characteristics, for example, via a redistribution of space charge in the semiconductor material in contact with the film.

Capacitance measurements of a dielectric film in a two-terminal metal-oxide-semiconductor (MOS) configuration offer a wealth of information on the fabrication process, in particular, the nature, sign, and amount of electrical charge in the bulk of the dielectric film and at the interface with the semiconductor substrate [Fig. 2(a)]. In order to reveal and quantify possible charges within the silicon nitride, we have deposited a 145 nm thick Si3N4 film on top of Si substrates and performed C-V measurements in a MOS configuration. For this, boron-doped p-type substrates with 15Ω·cm resistivity, matching with that of the device layer of our SOI wafers, were chosen. In addition, prior to Si3N4 deposition, a thin 5 nm SiOx layer was grown during a standard RCA cleaning step. Thus, the test wafers exactly replicate the strip-loaded SOI devices.

 figure: Fig. 2.

Fig. 2. (a) Cross-sectional schematics of the MOS device for C-V measurements. A 145 nm Si3N4 layer was deposited on top of a p-type silicon substrate with a resistivity of 15Ω·cm. A thin 5 nm SiOx layer, grown during the RCA clean, is present between the Si3N4 film and the substrate. The gate contact is formed by a Hg droplet of 787 μm diameter. (b) Selected low-frequency (10 kHz, quasi-static) C-V curves, measured after UV exposures of different duration. The C-V response of the reference (UV-untreated) device indicates the presence of a net positive charge and is in the conditions of strong inversion at 0 V bias. (c) The extracted flat-band voltage as a function of UV exposure time shows a monotonic shift towards lower voltages, which is an indication of significant charge neutralization. The shift of Vfb saturates, approaching the metal-semiconductor work function potential at ϕi0.52V. (d) The corresponding charge density variation shows a 3-orders-of-magnitude decrease with respect to the initial situation. The solid line is a linear fit to σ(Vfb) with an absolute slope value of 2.5×1011cm2V1.

Download Full Size | PPT Slide | PDF

We found that the as-deposited Si3N4 layer contains a large amount of net positive electrical charge, as already reported for SiNx films deposited using other techniques [39,40]. The typical C-V curve for this reference sample [Fig. 2(b), circles] passes from an “accumulation” to a “depletion” state at negative gate voltages, with a characteristic flat-band voltage value of Vfb7.8V. This last is estimated graphically once the flat-band capacitance Cfb is calculated, following

Cfb=Cmaxεsε0A/LDCmax+εsε0A/LD,
where Cmax=195pF is the measured average film capacitance in the accumulation regime, εs=11.68 and ε0 are the substrate and the vacuum permittivities, respectively, A is the area of the Hg droplet contact, and LD180nm is the extrinsic Debye length in the Si substrate. Below Vg6V the capacitance grows again, indicating an “inversion” of the conductivity type at the surface of the substrate from p- to n-type. The areal density of the corresponding net positive charge amounts to σ=1.7(±0.1)×1012cm2, which is in agreement with previous estimations [39].

Capacitance measurements on UV-exposed samples show a gradual shift of the C-V curves towards positive voltages as a function of exposure time. Repeated measurements at a distance of a couple of weeks showed that this shift is permanent. Selected examples of C-V curves are shown in Fig. 2(b), while in Fig. 2(c) we show the dependence of the extracted flat-band voltage Vfb on UV illumination time. We notice that Vfb decreases exponentially within the first couple of hours of exposure. For the next 30 h of exposure, Vfb continues to shift monotonically at a much slower rate (almost linearly) towards the asymptotic value of metal-semiconductor work function ϕi, which for our Hg/p-type Si system amounts to 0.52V.

The corresponding variation of charge areal density σ against Vfb is shown in Fig. 2(d). The UV illumination decreases the positive charge density by 3 orders of magnitude, leading to a change of the flat-band voltage from its initial value down to ϕi for the longest exposures. The estimated residual charge density amounts to σ=3.1×109cm2, which is comparable to the density of charge traps of very-high-quality oxide/Si interfaces, which is also close to the density of dopant ions per centimeter squared (cm2) for a silicon layer of 15Ω·cm resistivity [49].

B. UV Exposure Effect on Optical Losses in Micro-Photonic Devices

Following the encouraging results obtained from MOS capacitance measurements, we studied the evolution of optical losses of Si3N4-loaded SOI devices in response to UV light illumination. For this reason, several chips containing both spiral waveguides of different length and ring resonators were characterized in optical transmission experiments prior to and after UV exposure.

1. Loss Characterization from Waveguides

The studied waveguides were composed of 27 nm thick continuous SOI slab and a 145 nm thick Si3N4 loading strip of 1300 nm width. Finite-element numerical simulations, performed in the design phase, suggest that this geometry does not guide the transverse magnetic (TM) polarization and supports one single TE mode in the 1.51.6μm wavelength range, while the Si slab alone does not guide light (see Supplement 1). The typical values for the mode effective refractive index neff, the group index ng, and the effective mode area Aeff are 1.588, 2.08, and 0.7μm2, respectively.

Figure 3 reports the results of waveguide transmission experiments. The measured waveguides had lengths of 0.61, 3.22, and 6.17 cm. After conversion to the decibel per centimeter (dB/cm) scale, the propagation losses in the as-prepared devices (red squares) amount to 3.83±0.26dB/cm according to the Beer–Lambert law [50], and, if attributed to sidewall scattering, are unexpectedly high for the considered strip-loaded configuration and the adopted processing technology [18]. As anticipated in Section A, we expect that the net positive charge in the loading Si3N4 layer recalls negative charge carriers (mirror charges) in the underlying Si core, thus increasing the free-carrier absorption within the waveguide [40]. In fact, the same devices show much improved characteristics after 21 h of UV exposure (blue diamonds), and the resulting propagation loss is decreased down to 1.55±0.28dB/cm.

 figure: Fig. 3.

Fig. 3. Attenuation of propagating optical power was measured for waveguides of different lengths prior to (red squares) and after UV exposure for 21 h (blue diamonds). The error bars represent the statistical error over similar devices. A Lambert–Beer fit (lines) to the experimental data reveals a net improvement of the propagation loss due to reduced free-carrier absorption as a result of neutralization of positive charge in Si3N4. Note that the UV treatment does not affect the insertion loss of waveguides.

Download Full Size | PPT Slide | PDF

According to Figs. 2(c) and 2(d), the areal charge density is estimated to decrease from 2×1012cm2 in the as-prepared samples down to 5×1010cm2 after 21 h of UV exposure. From total charge balance conditions, the equivalent free-electron density Ne in the Si core would be reduced from a value of 7×1017cm3 to 2.5×1016cm3. In a first-order approximation, it is possible to relate the change in Ne to the absorption loss α within a crystalline Si core by assuming that:

  • • all losses are due to free-carrier-induced absorption and no scattering losses are present,
  • • no other sources of charge are present in the vicinity of the mode (e.g., charges at the Si/BOX interface),
  • • the effective loss coefficient is reduced from its bulk value proportional to the power confinement factor Γ of the mode within the Si layer (Γ=0.29 from finite-elements method (FEM) calculations at λ=1.55μm).

We calculated the expected α(Ne) using different empirical models known from literature [5153]. Such values range from 2 to 6 dB/cm for as-prepared samples and from 0.15 to 0.25 dB/cm after 21 h of UV exposure. It is clear that while our estimation of α3.83dB/cm for the first case is well within the theoretical range, the UV-exposed case with α1.55dB/cm is larger by more than 1 dB/cm with respect to expectations.

Our conclusion at this point is that either an additional loss source is present in the studied devices, or the Beer–Lambert approach is not precise enough in the conditions where few experimental data are available and the insertion losses from one to another waveguide differ due to facet imperfections. This last is in fact reflected by the large error bars of experimental points in Fig. 3, given by the variance over three different chips. This limitation can be surpassed by extracting the loss from spectral characteristics of ring resonators [18], which are less affected by fluctuations of the waveguide facet quality.

2. Loss Characterization from Resonators

A generic circular resonator induces spectral dips in the transmission spectrum of the waveguide to which it is coupled. These dips become visible as soon as the resonator’s intrinsic loss αi and the coupling loss αe become comparable [see Eq. (1)]. In particular, for a fixed geometry, i.e., a constant αe, the lossy (αiαe) resonator’s spectral dips start to spot out from the bare waveguide’s transmission spectrum while αi lowers towards αe.

Figure 4(a) reports examples of spectra calculated by the following:

T(ω)=|FP+αe/2(ms+mc)|2,
where FP is the Fabry–Perot (FP) background of the bare waveguide transmission [54]. Here, we have introduced doublet resonances to account for formation of symmetric, ms, and anti-symmetric, mc, traveling waves within the resonator due to possible backscattering mechanisms [55]. These last are described as mc,s=αe/2(αi+αe)/2i(Δω±β/2)ng/c0, where Δω is the frequency detuning from the resonance and β is the backscattering rate (fixed in these examples). Equation (3) has been considered since this is the situation of our experiments with rings when the UV improvement results in narrower resonances, as will be discussed in the following.

 figure: Fig. 4.

Fig. 4. (a) Calculated spectral visibility of resonances of a 60 μm radius resonator with an external coupling Qe=8×106 to the waveguide. The model takes into account the background Fabry–Perot fringes due to waveguide-facet reflections. Modal splitting due to backscattering is also considered in order to evidence the effect of peak visibility change when the intrinsic loss of the resonator improves. (b) The peak visibility is near-zero in the as-deposited samples with Qe=8×106 (black dots), while a similar resonator is at critical coupling for a Qe=7×104, revealing an intrinsic loss of about 5.1 dB/cm (blue dots and red fit curve). An exposure to UV light progressively cancels the net positive charge in the nitride, which consequently decreases the free-electron concentration in the guiding Si layer. In conditions of fixed external coupling (8×106), the resulting lower loss increases peak visibility. Example spectra (dots) and their fits (red line) are shown for (c) 5 h UV, (d) 23 h UV, and (e) 23 h UV, plus sintering in forming gas at 350°C plus an additional 2 h of UV.

Download Full Size | PPT Slide | PDF

We notice that when αiαe, no resonant features can be observed out from the oscillating FP background [dashed line, Fig. 4(a)]. A resonant dip starts to appear when αi is decreased, first appearing as an “unstructured bump” and transforming progressively into a brighter and more well-defined doublet when αiαe.

Experimentally, we have realized on the same chip nominally identical ring resonators (radius of 60 μm and width of 1300 nm) coupled to the waveguides through three different gaps of g=800nm, 1620 nm, and 1800 nm. In particular, the largest gap provides an external coupling Qe8×106. This situation was considered to fulfill a critical coupling, QeQi, based on the numerical simulations for lowest possible intrinsic loss of the resonators (bend-loss limited), without accounting for other residual losses. Figure 4(b) shows examples of typical spectra for as-prepared devices at two different coupling gaps. Namely, in the case of g=1800nm, we observe a featureless spectrum of the typical waveguide transmission, which means that the resonator’s intrinsic loss is much higher than that of the coupling. In other words, we deal with the strongly undercoupled QiQe situation. In fact, for devices with g=800nm, we observe critically coupled resonances, from which we extract Qi=Qe7×104, corresponding to an intrinsic loss of about αi5.1dB/cm (see Supplement 1).

Panels (c), (d), and (e) of Fig. 4 show the evolution of the ring spectrum upon exposure to UV at various times. All the results are for a coupling gap of 1800 nm. We note that while devices with an intermediate gap (g=1620nm) provide deeper resonances, they hide important spectral features of the doublets due to larger coupling loss (Qe5×105). Therefore, we concentrate on analyzing clear doublets that manifest in devices with the highest Qe. The spectral form of the doublets and their peak transmission are more sensible to the intrinsic loss value; therefore, they permit extraction of αi with higher accuracy with respect to the Beer–Lambert method, described previously. We notice that a 5 h UV treatment improves the loss to 2.72 dB/cm [Fig. 4(c)] and, further, down to αi1.21dB/cm after 23 h [panel (d)].

Contrary to expectations from the results of capacitance measurements, we did not observe further improvements of losses upon exposing devices to UV for times longer than 21 h. Our conclusion, at this point, is that in the case of our devices we either deal with residual scattering losses due to fabrication or the SOI structure provides other charge-related losses that cannot be improved with UV exposure. These last can originate from positive charges situated at the Si/BOX interface or in the BOX oxide itself. For this, we performed additional sintering of the chips and of a UV-improved (23 h) MOS test sample at 350°C for 3 h in forming gas to improve the Si/SiO2 interface. Control MOS capacitance measurements showed that some positive charge in the Si3N4 was re-activated, which rapidly annihilated upon a post-sintering exposure to UV for 2 h. We repeated the same procedure on the device chip and measured the rings’ spectra. Figure 4(e) shows an example spectrum of resonances, where the loss has been further improved down to 0.91 dB/cm. These results may suggest that a certain amount of charge was possibly present in the SOI device and was partially neutralized after the sintering procedure. Further UV exposures did not improve the situation, from which we conclude that the main part of remaining loss has other origins, such as scattering.

At this point, it is possible to explicitly relate the variation of the intrinsic Q-factor of the ring resonators to the flat-band voltage Vfb, extracted from MOS capacitance measurements. The mirror-charge-induced absorption α can be estimated using the empirical formula α1.065×ΔP(Vfb)1.085 for p-type Si [52], where ΔP is the free carriers’ concentration. Finally, the intrinsic Q can be related to Vfb via

Qi=2πngαi(Vfb)λ=2πngλ×0.939ΔP(Vfb)1.085,
ΔP(Vfb)=|Cmax(Vfbϕi)|qdSiA,
where ng is the group index of the resonator mode, q is the elementary charge, dSi is the thickness of the SOI layer, and A is the area of the gate contact.

In Fig. 5(a) we show the calculated trend (continuous blue line) of the intrinsic Qi against the flat-band voltage calculated using Eq. (4a) assuming a constant Cmax of 195 pF. The variation of Vfb reflects the effect of UV exposure, and, thus, the gradual neutralization of the positive charge in the Si3N4 layer according to Fig. 2(c). We also plot as open circles (°) the results of Eq. (4a) using the values of Cmax and Vfb, including their corresponding experimental error bars, extracted experimentally in Section 3.A. It is worth noting that the Q-factor for the first point of these data at Vfb7.8V has been calculated considering an effectively n-type Si since the MOS experiments showed an inversion of conductivity type only for the UV-untreated samples [Fig. 2(b)]. In this case, the estimated Qi amounts to about 60,000±2,000.

 figure: Fig. 5.

Fig. 5. (a) Free-carrier-related intrinsic Q as a function of the UV-modified flat-band voltage for p-type Si (blue continuous line). Empty circles represent Q-factors, calculated by plugging into Eq. (4a) the experimental values of Cmax and Vfb, estimated from MOS capacitance measurements. The results from ring resonators are shown as diamonds, with vertical error bars indicating the statistical error over a large number of analyzed resonances. The red, dashed-dotted curve is a fit to the three rightmost data points by considering an additional residual Qad of 6×105. (b) The intrinsic loss αi, corresponding to that extracted from the rings’ Qs (diamonds), is plotted against the calculated one, considering the residual loss (dashed-dotted line).

Download Full Size | PPT Slide | PDF

The Q-factors estimated from optical measurements on ring resonators are shown as red diamonds in Fig. 5(a). Each point is the result of the analysis of at least ten different resonances. The first point of this dataset, corresponding to the UV-untreated devices, shows an average Qi70,000±6,000 in accordance with the corresponding MOS capacitance experiment. Finally, the rest of the data from the ring resonators, corresponding to long exposures to UV light, can be fit to good approximation using Eq. (4a) by including an additional residual loss with an associated Qad6×105 (red dashed-dotted curve). The corresponding loss values, based on the results from the ring resonators, and the calculated curve for p-type Si in the situation of residual loss are shown in Fig. 5(b).

These results show the advantage of the loss-estimation method from resonant features with respect to a classical Beer–Lambert approach. The estimated residual loss αad0.55dB/cm, which we attributed to scattering, perhaps may still contain a component associated with charging effects at the Si/SiO2 interface or within the bulk of the BOX oxide. At present, this aspect is uncertain and is a subject of further investigations.

4. CONCLUSIONS

We reported in this work the design, fabrication, and characterization of high-Q micro-optical components on an ultra-thin SOI platform. Waveguiding is supported by loading a 27 nm thick SOI slab layer with micrometer-wide stripes of stoichiometric Si3N4. Such a configuration omits the need to etch physical boundaries in the SOI layer and, therefore, largely suppresses the scattering loss [18].

Contrary to expectations, we revealed that the as-prepared devices were subject to significant loss of about 5.1 dB/cm. We related this to free-carrier absorption effects due to the presence of a large amount of electrical charge in the Si3N4 layer, originating from paramagnetic Si+N3 defects (dangling bonds). This hypothesis was, in a first step, confirmed by detailed MOS capacitance measurements, revealing a complete inversion of the conductivity type of the p-type Si substrate. As a result, the resistivity of the original substrate was reduced from 15Ω·cm down to 0.03Ω·cm, confirming the observed large optical losses. Next, we exposed test samples to 254 nm UV light for different times and observed gradual neutralization of the space charge in the nitride layer. Our estimations from these experiments showed that the equivalent areal electrical charge can be reduced by 3 orders of magnitude, reaching a value of σ3×109cm2, comparable to the density of charge traps of very-high-quality oxide/Si interfaces [49].

Then, UV exposure was performed on SOI devices, and the optical loss was directly measured from spiral waveguides by the Beer–Lambert approach and ring resonators from the spectral linewidth of resonances. We revealed a net improvement of losses down to 0.9 dB/cm at the longest exposures, improving the rings’ intrinsic Q-factors from 70,000 to 500,000. Finally, we explicitly related the carrier-induced optical losses to the MOS capacitance measurements of the flat-band voltage.

We foresee that these results will go far beyond the target of the current study. The permanent nature of the UV neutralization of the charges in Si3N4 can have important implications for the design of micro-photonic devices. For example, charged domains of material can be alternated to create static electrical poling on top of waveguiding components by using appropriate masking during UV illumination. The sign and the amount of bulk charges are specific to various SiNx deposited by different techniques; therefore, their modulation with UV light can be further studied in view of photonic applications. It is expected that at such charging levels of SiNx, the observed phenomena, such as the inversion of the conductivity type of the silicon layer and the large carrier-induced losses, may also affect the more conventional 220 nm thick SOI circuits. Last but not least, it appears promising to implement the UV exposure procedure in current hot topics such as the studies of the origin of dressed χ2 nonlinearities in nitride-strained silicon waveguides [38,39]. Finally, our results may open the door to future developments of compactly integrated micro-photonic components with electronics on the same ultra-thin SOI platform.

Funding

Ministero dell’Istruzione, dell’Università e della Ricerca (MIUR) (2015KEZNYM).

Acknowledgment

The authors gratefully thank Georg Pucker for support and fruitful discussions and Lorenzo Pavesi for providing access to the optical measurement facility of the NanoScience Laboratory at the University of Trento. The authors also acknowledge fabrication facility support by the Micro-Nano Fabrication Laboratory of FBK.

 

See Supplement 1 for supporting content.

REFERENCES

1. D. G. Rabus, Integrated Ring Resonators (Springer, 2007).

2. J. Heebner, R. Grover, T. Ibrahim, and T. A. Ibrahim, Optical Microresonators: Theory, Fabrication, and Applications (Springer, 2008).

3. D. Dai, J. Bauters, and J. E. Bowers, “Passive technologies for future large-scale photonic integrated circuits on silicon: polarization handling, light non-reciprocity and loss reduction,” Light Sci. Appl. 1, e1 (2012). [CrossRef]  

4. A. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photon. J. 5, 2202809 (2013). [CrossRef]  

5. L. Zhuang, D. Marpaung, M. Burla, W. Beeker, A. Leinse, and C. Roeloffzen, “Low-loss, high-index-contrast Si3N4/SiO2 optical waveguides for optical delay lines in microwave photonics signal processing,” Opt. Express 19, 23162–23170 (2011). [CrossRef]  

6. E. Engin, D. Bonneau, C. M. Natarajan, A. S. Clark, M. Tanner, R. Hadfield, S. N. Dorenbos, V. Zwiller, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, J. L. O’Brien, and M. G. Thompson, “Photon pair generation in a silicon micro-ring resonator with reverse bias enhancement,” Opt. Express 21, 27826–27834 (2013). [CrossRef]  

7. D. Grassani, S. Azzini, M. Liscidini, M. Galli, M. J. Strain, M. Sorel, J. Sipe, and D. Bajoni, “Micrometer-scale integrated silicon source of time-energy entangled photons,” Optica 2, 88–94 (2015). [CrossRef]  

8. J. W. Silverstone, R. Santagati, D. Bonneau, M. J. Strain, M. Sorel, J. L. O’Brien, and M. G. Thompson, “Qubit entanglement between ring-resonator photon-pair sources on a silicon chip,” Nat. Commun. 6, 7948 (2015). [CrossRef]  

9. J. W. Silverstone, D. Bonneau, J. L. O’Brien, and M. G. Thompson, “Silicon quantum photonics,” IEEE J. Sel. Top. Quantum Electron. 22, 390–402 (2016). [CrossRef]  

10. J. B. Christensen, J. G. Koefoed, K. Rottwitt, and C. McKinstrie, “Engineering spectrally unentangled photon pairs from nonlinear microring resonators by pump manipulation,” Opt. Lett. 43, 859–862 (2018).

11. T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332, 555–559 (2011). [CrossRef]  

12. A. Pasquazi, L. Caspani, M. Peccianti, M. Clerici, M. Ferrera, L. Razzari, D. Duchesne, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, “Self-locked optical parametric oscillation in a CMOS compatible microring resonator: a route to robust optical frequency comb generation on a chip,” Opt. Express 21, 13333–13341 (2013). [CrossRef]  

13. A. M. Armani and K. J. Vahala, “Heavy water detection using ultra-high-Q microcavities,” Opt. Lett. 31, 1896–1898 (2006). [CrossRef]  

14. J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2010). [CrossRef]  

15. A. Samusenko, D. Gandolfi, G. Pucker, T. Chalyan, R. Guider, M. Ghulinyan, and L. Pavesi, “A SION microring resonator-based platform for biosensing at 850 nm,” J. Lightwave. Technol. 34, 969–977 (2016). [CrossRef]  

16. H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photonics 6, 369–373 (2012). [CrossRef]  

17. D. T. Spencer, J. F. Bauters, M. J. Heck, and J. E. Bowers, “Integrated waveguide coupled Si3N4 resonators in the ultrahigh-Q regime,” Optica 1, 153–157 (2014). [CrossRef]  

18. L. Stefan, M. Bernard, R. Guider, G. Pucker, L. Pavesi, and M. Ghulinyan, “Ultra-high-Q thin-silicon nitride strip-loaded ring resonators,” Opt. Lett. 40, 3316–3319 (2015). [CrossRef]  

19. M. P. Nezhad, O. Bondarenko, M. Khajavikhan, A. Simic, and Y. Fainman, “Etch-free low loss silicon waveguides using hydrogen silsesquioxane oxidation masks,” Opt. Express 19, 18827–18832 (2011). [CrossRef]  

20. X. Ji, F. A. Barbosa, S. P. Roberts, A. Dutt, J. Cardenas, Y. Okawachi, A. Bryant, A. L. Gaeta, and M. Lipson, “Ultra-low-loss on-chip resonators with sub-milliwatt parametric oscillation threshold,” Optica 4, 619–624 (2017). [CrossRef]  

21. F. Ramiro-Manzano, N. Prtljaga, L. Pavesi, G. Pucker, and M. Ghulinyan, “A fully integrated high-Q whispering-gallery wedge resonator,” Opt. Express 20, 22934–22942 (2012). [CrossRef]  

22. L.-W. Luo, G. S. Wiederhecker, J. Cardenas, C. Poitras, and M. Lipson, “High quality factor etchless silicon photonic ring resonators,” Opt. Express 19, 6284–6289 (2011). [CrossRef]  

23. A. Biberman, M. J. Shaw, E. Timurdogan, J. B. Wright, and M. R. Watts, “Ultralow-loss silicon ring resonators,” Opt. Lett. 37, 4236–4238 (2012). [CrossRef]  

24. R. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12, 1678–1687 (2006). [CrossRef]  

25. L. Vivien and L. Pavesi, Handbook of Silicon Photonics (Taylor & Francis, 2016).

26. T. Liang and H. Tsang, “Role of free carriers from two-photon absorption in Raman amplification in silicon-on-insulator waveguides,” Appl. Phys. Lett. 84, 2745–2747 (2004). [CrossRef]  

27. G. Priem, P. Dumon, W. Bogaerts, D. Van Thourhout, G. Morthier, and R. Baets, “Optical bistability and pulsating behaviour in silicon-on-insulator ring resonator structures,” Opt. Express 13, 9623–9628 (2005). [CrossRef]  

28. J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photonics 4, 535–544 (2010). [CrossRef]  

29. J. Milek, Silicon Nitride for Microelectronic Applications: Part 1 Preparation and Properties (Springer, 2013).

30. J. Kanicki, Amorphous and Microcrystalline Semiconductor Devices: Materials and Device Physics (Artech House, 1992), Vol. 2.

31. R. E. Schropp and M. Zeman, Amorphous and Microcrystalline Silicon Solar Cells: Modeling, Materials and Device Technology (Springer, 1998).

32. A. Gorin, A. Jaouad, E. Grondin, V. Aimez, and P. Charette, “Fabrication of silicon nitride waveguides for visible-light using PECVD: a study of the effect of plasma frequency on optical properties,” Opt. Express 16, 13509–13516 (2008). [CrossRef]  

33. S. Romero-Garca, F. Merget, F. Zhong, H. Finkelstein, and J. Witzens, “Silicon nitride CMOS-compatible platform for integrated photonics applications at visible wavelengths,” Opt. Express 21, 14036–14046 (2013). [CrossRef]  

34. J. S. Levy, M. A. Foster, A. L. Gaeta, and M. Lipson, “Harmonic generation in silicon nitride ring resonators,” Opt. Express 19, 11415–11421 (2011). [CrossRef]  

35. Y. Okawachi, K. Saha, J. S. Levy, Y. H. Wen, M. Lipson, and A. L. Gaeta, “Octave-spanning frequency comb generation in a silicon nitride chip,” Opt. Lett. 36, 3398–3400 (2011). [CrossRef]  

36. D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and hydex for nonlinear optics,” Nat. Photonics 7, 597–607 (2013). [CrossRef]  

37. R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441, 199–202 (2006). [CrossRef]  

38. M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Véniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, and L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nat. Mater. 11, 148–154 (2012). [CrossRef]  

39. C. Schriever, F. Bianco, M. Cazzanelli, M. Ghulinyan, C. Eisenschmidt, J. de Boor, A. Schmid, J. Heitmann, L. Pavesi, and J. Schilling, “Second-order optical nonlinearity in silicon waveguides: inhomogeneous stress and interfaces,” Adv. Opt. Mater. 3, 129–136 (2015). [CrossRef]  

40. S. S. Azadeh, F. Merget, M. Nezhad, and J. Witzens, “On the measurement of the Pockels effect in strained silicon,” Opt. Lett. 40, 1877–1880 (2015). [CrossRef]  

41. L. Chang, Y. Li, N. Volet, L. Wang, J. Peters, and J. E. Bowers, “Thin film wavelength converters for photonic integrated circuits,” Optica 3, 531–535 (2016). [CrossRef]  

42. W. Kern and D. A. Puotinen, “Cleaning solutions based on hydrogen peroxide for use in silicon semiconductor technology,” RCA Rev. 31, 187–206 (1970).

43. D. Krick, P. Lenahan, and J. Kanicki, “Electrically active point defects in amorphous silicon nitride: an illumination and charge injection study,” J. Appl. Phys. 64, 3558–3563 (1988). [CrossRef]  

44. M. Kumeda, H. Yokomichi, and T. Shimizu, “Photo-induced ESR in amorphous Si1-xNx: H films,” Jpn. J. Appl. Phys. 23, L502–L504 (1984). [CrossRef]  

45. W. L. Warren, P. Lenahan, and S. E. Curry, “First observation of paramagnetic nitrogen dangling-bond centers in silicon nitride,” Phys. Rev. Lett. 65, 207–210 (1990). [CrossRef]  

46. W. Warren, P. Lenahan, and J. Kanicki, “Electrically neutral nitrogen dangling-bond defects in amorphous hydrogenated silicon nitride thin films,” J. Appl. Phys. 70, 2220–2225 (1991). [CrossRef]  

47. K. Kobayashi and K. Ishikawa, “Ultraviolet light-induced conduction current in silicon nitride films,” Jpn. J. Appl. Phys. 50, 031501 (2011). [CrossRef]  

48. W. Warren, J. Kanicki, J. Robertson, E. Poindexter, and P. McWhorter, “Electron paramagnetic resonance investigation of charge trapping centers in amorphous silicon nitride films,” J. Appl. Phys. 74, 4034–4046 (1993). [CrossRef]  

49. P. Zhang, E. Tevaarwerk, B.-N. Park, D. E. Savage, G. K. Celler, I. Knezevic, P. G. Evans, M. A. Eriksson, and M. G. Lagally, “Electronic transport in nanometre-scale silicon-on-insulator membranes,” Nature 439, 703–706 (2006). [CrossRef]  

50. A. Beer, “Determination of the absorption of red light in colored liquids,” Ann. Phys. Chem. 86, 78–88 (1852). [CrossRef]  

51. R. Soref and B. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23, 123–129 (1987). [CrossRef]  

52. J. Degallaix, R. Flaminio, D. Forest, M. Granata, C. Michel, L. Pinard, T. Bertrand, and G. Cagnoli, “Bulk optical absorption of high resistivity silicon at 1550 nm,” Opt. Lett. 38, 2047–2049 (2013). [CrossRef]  

53. M. Nedeljkovic, R. Soref, and G. Z. Mashanovich, “Free-carrier electrorefraction and electroabsorption modulation predictions for silicon over the 1–14 μm infrared wavelength range,” IEEE Photon. J. 3, 1171–1180 (2011). [CrossRef]  

54. S. Taebi, M. Khorasaninejad, and S. S. Saini, “Modified Fabry–Perot interferometric method for waveguide loss measurement,” Appl. Opt. 47, 6625–6630 (2008). [CrossRef]  

55. M. Borselli, T. J. Johnson, and O. Painter, “Beyond the Rayleigh scattering limit in high-Q silicon microdisks: theory and experiment,” Opt. Express 13, 1515–1530 (2005). [CrossRef]  

References

  • View by:

  1. D. G. Rabus, Integrated Ring Resonators (Springer, 2007).
  2. J. Heebner, R. Grover, T. Ibrahim, and T. A. Ibrahim, Optical Microresonators: Theory, Fabrication, and Applications (Springer, 2008).
  3. D. Dai, J. Bauters, and J. E. Bowers, “Passive technologies for future large-scale photonic integrated circuits on silicon: polarization handling, light non-reciprocity and loss reduction,” Light Sci. Appl. 1, e1 (2012).
    [Crossref]
  4. A. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photon. J. 5, 2202809 (2013).
    [Crossref]
  5. L. Zhuang, D. Marpaung, M. Burla, W. Beeker, A. Leinse, and C. Roeloffzen, “Low-loss, high-index-contrast Si3N4/SiO2 optical waveguides for optical delay lines in microwave photonics signal processing,” Opt. Express 19, 23162–23170 (2011).
    [Crossref]
  6. E. Engin, D. Bonneau, C. M. Natarajan, A. S. Clark, M. Tanner, R. Hadfield, S. N. Dorenbos, V. Zwiller, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, J. L. O’Brien, and M. G. Thompson, “Photon pair generation in a silicon micro-ring resonator with reverse bias enhancement,” Opt. Express 21, 27826–27834 (2013).
    [Crossref]
  7. D. Grassani, S. Azzini, M. Liscidini, M. Galli, M. J. Strain, M. Sorel, J. Sipe, and D. Bajoni, “Micrometer-scale integrated silicon source of time-energy entangled photons,” Optica 2, 88–94 (2015).
    [Crossref]
  8. J. W. Silverstone, R. Santagati, D. Bonneau, M. J. Strain, M. Sorel, J. L. O’Brien, and M. G. Thompson, “Qubit entanglement between ring-resonator photon-pair sources on a silicon chip,” Nat. Commun. 6, 7948 (2015).
    [Crossref]
  9. J. W. Silverstone, D. Bonneau, J. L. O’Brien, and M. G. Thompson, “Silicon quantum photonics,” IEEE J. Sel. Top. Quantum Electron. 22, 390–402 (2016).
    [Crossref]
  10. J. B. Christensen, J. G. Koefoed, K. Rottwitt, and C. McKinstrie, “Engineering spectrally unentangled photon pairs from nonlinear microring resonators by pump manipulation,” Opt. Lett. 43, 859–862 (2018).
  11. T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332, 555–559 (2011).
    [Crossref]
  12. A. Pasquazi, L. Caspani, M. Peccianti, M. Clerici, M. Ferrera, L. Razzari, D. Duchesne, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, “Self-locked optical parametric oscillation in a CMOS compatible microring resonator: a route to robust optical frequency comb generation on a chip,” Opt. Express 21, 13333–13341 (2013).
    [Crossref]
  13. A. M. Armani and K. J. Vahala, “Heavy water detection using ultra-high-Q microcavities,” Opt. Lett. 31, 1896–1898 (2006).
    [Crossref]
  14. J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2010).
    [Crossref]
  15. A. Samusenko, D. Gandolfi, G. Pucker, T. Chalyan, R. Guider, M. Ghulinyan, and L. Pavesi, “A SION microring resonator-based platform for biosensing at 850 nm,” J. Lightwave. Technol. 34, 969–977 (2016).
    [Crossref]
  16. H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photonics 6, 369–373 (2012).
    [Crossref]
  17. D. T. Spencer, J. F. Bauters, M. J. Heck, and J. E. Bowers, “Integrated waveguide coupled Si3N4 resonators in the ultrahigh-Q regime,” Optica 1, 153–157 (2014).
    [Crossref]
  18. L. Stefan, M. Bernard, R. Guider, G. Pucker, L. Pavesi, and M. Ghulinyan, “Ultra-high-Q thin-silicon nitride strip-loaded ring resonators,” Opt. Lett. 40, 3316–3319 (2015).
    [Crossref]
  19. M. P. Nezhad, O. Bondarenko, M. Khajavikhan, A. Simic, and Y. Fainman, “Etch-free low loss silicon waveguides using hydrogen silsesquioxane oxidation masks,” Opt. Express 19, 18827–18832 (2011).
    [Crossref]
  20. X. Ji, F. A. Barbosa, S. P. Roberts, A. Dutt, J. Cardenas, Y. Okawachi, A. Bryant, A. L. Gaeta, and M. Lipson, “Ultra-low-loss on-chip resonators with sub-milliwatt parametric oscillation threshold,” Optica 4, 619–624 (2017).
    [Crossref]
  21. F. Ramiro-Manzano, N. Prtljaga, L. Pavesi, G. Pucker, and M. Ghulinyan, “A fully integrated high-Q whispering-gallery wedge resonator,” Opt. Express 20, 22934–22942 (2012).
    [Crossref]
  22. L.-W. Luo, G. S. Wiederhecker, J. Cardenas, C. Poitras, and M. Lipson, “High quality factor etchless silicon photonic ring resonators,” Opt. Express 19, 6284–6289 (2011).
    [Crossref]
  23. A. Biberman, M. J. Shaw, E. Timurdogan, J. B. Wright, and M. R. Watts, “Ultralow-loss silicon ring resonators,” Opt. Lett. 37, 4236–4238 (2012).
    [Crossref]
  24. R. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12, 1678–1687 (2006).
    [Crossref]
  25. L. Vivien and L. Pavesi, Handbook of Silicon Photonics (Taylor & Francis, 2016).
  26. T. Liang and H. Tsang, “Role of free carriers from two-photon absorption in Raman amplification in silicon-on-insulator waveguides,” Appl. Phys. Lett. 84, 2745–2747 (2004).
    [Crossref]
  27. G. Priem, P. Dumon, W. Bogaerts, D. Van Thourhout, G. Morthier, and R. Baets, “Optical bistability and pulsating behaviour in silicon-on-insulator ring resonator structures,” Opt. Express 13, 9623–9628 (2005).
    [Crossref]
  28. J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photonics 4, 535–544 (2010).
    [Crossref]
  29. J. Milek, Silicon Nitride for Microelectronic Applications: Part 1 Preparation and Properties (Springer, 2013).
  30. J. Kanicki, Amorphous and Microcrystalline Semiconductor Devices: Materials and Device Physics (Artech House, 1992), Vol. 2.
  31. R. E. Schropp and M. Zeman, Amorphous and Microcrystalline Silicon Solar Cells: Modeling, Materials and Device Technology (Springer, 1998).
  32. A. Gorin, A. Jaouad, E. Grondin, V. Aimez, and P. Charette, “Fabrication of silicon nitride waveguides for visible-light using PECVD: a study of the effect of plasma frequency on optical properties,” Opt. Express 16, 13509–13516 (2008).
    [Crossref]
  33. S. Romero-Garca, F. Merget, F. Zhong, H. Finkelstein, and J. Witzens, “Silicon nitride CMOS-compatible platform for integrated photonics applications at visible wavelengths,” Opt. Express 21, 14036–14046 (2013).
    [Crossref]
  34. J. S. Levy, M. A. Foster, A. L. Gaeta, and M. Lipson, “Harmonic generation in silicon nitride ring resonators,” Opt. Express 19, 11415–11421 (2011).
    [Crossref]
  35. Y. Okawachi, K. Saha, J. S. Levy, Y. H. Wen, M. Lipson, and A. L. Gaeta, “Octave-spanning frequency comb generation in a silicon nitride chip,” Opt. Lett. 36, 3398–3400 (2011).
    [Crossref]
  36. D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and hydex for nonlinear optics,” Nat. Photonics 7, 597–607 (2013).
    [Crossref]
  37. R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441, 199–202 (2006).
    [Crossref]
  38. M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Véniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, and L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nat. Mater. 11, 148–154 (2012).
    [Crossref]
  39. C. Schriever, F. Bianco, M. Cazzanelli, M. Ghulinyan, C. Eisenschmidt, J. de Boor, A. Schmid, J. Heitmann, L. Pavesi, and J. Schilling, “Second-order optical nonlinearity in silicon waveguides: inhomogeneous stress and interfaces,” Adv. Opt. Mater. 3, 129–136 (2015).
    [Crossref]
  40. S. S. Azadeh, F. Merget, M. Nezhad, and J. Witzens, “On the measurement of the Pockels effect in strained silicon,” Opt. Lett. 40, 1877–1880 (2015).
    [Crossref]
  41. L. Chang, Y. Li, N. Volet, L. Wang, J. Peters, and J. E. Bowers, “Thin film wavelength converters for photonic integrated circuits,” Optica 3, 531–535 (2016).
    [Crossref]
  42. W. Kern and D. A. Puotinen, “Cleaning solutions based on hydrogen peroxide for use in silicon semiconductor technology,” RCA Rev. 31, 187–206 (1970).
  43. D. Krick, P. Lenahan, and J. Kanicki, “Electrically active point defects in amorphous silicon nitride: an illumination and charge injection study,” J. Appl. Phys. 64, 3558–3563 (1988).
    [Crossref]
  44. M. Kumeda, H. Yokomichi, and T. Shimizu, “Photo-induced ESR in amorphous Si1-xNx: H films,” Jpn. J. Appl. Phys. 23, L502–L504 (1984).
    [Crossref]
  45. W. L. Warren, P. Lenahan, and S. E. Curry, “First observation of paramagnetic nitrogen dangling-bond centers in silicon nitride,” Phys. Rev. Lett. 65, 207–210 (1990).
    [Crossref]
  46. W. Warren, P. Lenahan, and J. Kanicki, “Electrically neutral nitrogen dangling-bond defects in amorphous hydrogenated silicon nitride thin films,” J. Appl. Phys. 70, 2220–2225 (1991).
    [Crossref]
  47. K. Kobayashi and K. Ishikawa, “Ultraviolet light-induced conduction current in silicon nitride films,” Jpn. J. Appl. Phys. 50, 031501 (2011).
    [Crossref]
  48. W. Warren, J. Kanicki, J. Robertson, E. Poindexter, and P. McWhorter, “Electron paramagnetic resonance investigation of charge trapping centers in amorphous silicon nitride films,” J. Appl. Phys. 74, 4034–4046 (1993).
    [Crossref]
  49. P. Zhang, E. Tevaarwerk, B.-N. Park, D. E. Savage, G. K. Celler, I. Knezevic, P. G. Evans, M. A. Eriksson, and M. G. Lagally, “Electronic transport in nanometre-scale silicon-on-insulator membranes,” Nature 439, 703–706 (2006).
    [Crossref]
  50. A. Beer, “Determination of the absorption of red light in colored liquids,” Ann. Phys. Chem. 86, 78–88 (1852).
    [Crossref]
  51. R. Soref and B. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23, 123–129 (1987).
    [Crossref]
  52. J. Degallaix, R. Flaminio, D. Forest, M. Granata, C. Michel, L. Pinard, T. Bertrand, and G. Cagnoli, “Bulk optical absorption of high resistivity silicon at 1550  nm,” Opt. Lett. 38, 2047–2049 (2013).
    [Crossref]
  53. M. Nedeljkovic, R. Soref, and G. Z. Mashanovich, “Free-carrier electrorefraction and electroabsorption modulation predictions for silicon over the 1–14  μm infrared wavelength range,” IEEE Photon. J. 3, 1171–1180 (2011).
    [Crossref]
  54. S. Taebi, M. Khorasaninejad, and S. S. Saini, “Modified Fabry–Perot interferometric method for waveguide loss measurement,” Appl. Opt. 47, 6625–6630 (2008).
    [Crossref]
  55. M. Borselli, T. J. Johnson, and O. Painter, “Beyond the Rayleigh scattering limit in high-Q silicon microdisks: theory and experiment,” Opt. Express 13, 1515–1530 (2005).
    [Crossref]

2018 (1)

2017 (1)

2016 (3)

L. Chang, Y. Li, N. Volet, L. Wang, J. Peters, and J. E. Bowers, “Thin film wavelength converters for photonic integrated circuits,” Optica 3, 531–535 (2016).
[Crossref]

J. W. Silverstone, D. Bonneau, J. L. O’Brien, and M. G. Thompson, “Silicon quantum photonics,” IEEE J. Sel. Top. Quantum Electron. 22, 390–402 (2016).
[Crossref]

A. Samusenko, D. Gandolfi, G. Pucker, T. Chalyan, R. Guider, M. Ghulinyan, and L. Pavesi, “A SION microring resonator-based platform for biosensing at 850 nm,” J. Lightwave. Technol. 34, 969–977 (2016).
[Crossref]

2015 (5)

L. Stefan, M. Bernard, R. Guider, G. Pucker, L. Pavesi, and M. Ghulinyan, “Ultra-high-Q thin-silicon nitride strip-loaded ring resonators,” Opt. Lett. 40, 3316–3319 (2015).
[Crossref]

D. Grassani, S. Azzini, M. Liscidini, M. Galli, M. J. Strain, M. Sorel, J. Sipe, and D. Bajoni, “Micrometer-scale integrated silicon source of time-energy entangled photons,” Optica 2, 88–94 (2015).
[Crossref]

J. W. Silverstone, R. Santagati, D. Bonneau, M. J. Strain, M. Sorel, J. L. O’Brien, and M. G. Thompson, “Qubit entanglement between ring-resonator photon-pair sources on a silicon chip,” Nat. Commun. 6, 7948 (2015).
[Crossref]

C. Schriever, F. Bianco, M. Cazzanelli, M. Ghulinyan, C. Eisenschmidt, J. de Boor, A. Schmid, J. Heitmann, L. Pavesi, and J. Schilling, “Second-order optical nonlinearity in silicon waveguides: inhomogeneous stress and interfaces,” Adv. Opt. Mater. 3, 129–136 (2015).
[Crossref]

S. S. Azadeh, F. Merget, M. Nezhad, and J. Witzens, “On the measurement of the Pockels effect in strained silicon,” Opt. Lett. 40, 1877–1880 (2015).
[Crossref]

2014 (1)

2013 (6)

S. Romero-Garca, F. Merget, F. Zhong, H. Finkelstein, and J. Witzens, “Silicon nitride CMOS-compatible platform for integrated photonics applications at visible wavelengths,” Opt. Express 21, 14036–14046 (2013).
[Crossref]

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and hydex for nonlinear optics,” Nat. Photonics 7, 597–607 (2013).
[Crossref]

A. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photon. J. 5, 2202809 (2013).
[Crossref]

E. Engin, D. Bonneau, C. M. Natarajan, A. S. Clark, M. Tanner, R. Hadfield, S. N. Dorenbos, V. Zwiller, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, J. L. O’Brien, and M. G. Thompson, “Photon pair generation in a silicon micro-ring resonator with reverse bias enhancement,” Opt. Express 21, 27826–27834 (2013).
[Crossref]

A. Pasquazi, L. Caspani, M. Peccianti, M. Clerici, M. Ferrera, L. Razzari, D. Duchesne, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, “Self-locked optical parametric oscillation in a CMOS compatible microring resonator: a route to robust optical frequency comb generation on a chip,” Opt. Express 21, 13333–13341 (2013).
[Crossref]

J. Degallaix, R. Flaminio, D. Forest, M. Granata, C. Michel, L. Pinard, T. Bertrand, and G. Cagnoli, “Bulk optical absorption of high resistivity silicon at 1550  nm,” Opt. Lett. 38, 2047–2049 (2013).
[Crossref]

2012 (5)

M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Véniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, and L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nat. Mater. 11, 148–154 (2012).
[Crossref]

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photonics 6, 369–373 (2012).
[Crossref]

D. Dai, J. Bauters, and J. E. Bowers, “Passive technologies for future large-scale photonic integrated circuits on silicon: polarization handling, light non-reciprocity and loss reduction,” Light Sci. Appl. 1, e1 (2012).
[Crossref]

F. Ramiro-Manzano, N. Prtljaga, L. Pavesi, G. Pucker, and M. Ghulinyan, “A fully integrated high-Q whispering-gallery wedge resonator,” Opt. Express 20, 22934–22942 (2012).
[Crossref]

A. Biberman, M. J. Shaw, E. Timurdogan, J. B. Wright, and M. R. Watts, “Ultralow-loss silicon ring resonators,” Opt. Lett. 37, 4236–4238 (2012).
[Crossref]

2011 (8)

L.-W. Luo, G. S. Wiederhecker, J. Cardenas, C. Poitras, and M. Lipson, “High quality factor etchless silicon photonic ring resonators,” Opt. Express 19, 6284–6289 (2011).
[Crossref]

J. S. Levy, M. A. Foster, A. L. Gaeta, and M. Lipson, “Harmonic generation in silicon nitride ring resonators,” Opt. Express 19, 11415–11421 (2011).
[Crossref]

Y. Okawachi, K. Saha, J. S. Levy, Y. H. Wen, M. Lipson, and A. L. Gaeta, “Octave-spanning frequency comb generation in a silicon nitride chip,” Opt. Lett. 36, 3398–3400 (2011).
[Crossref]

L. Zhuang, D. Marpaung, M. Burla, W. Beeker, A. Leinse, and C. Roeloffzen, “Low-loss, high-index-contrast Si3N4/SiO2 optical waveguides for optical delay lines in microwave photonics signal processing,” Opt. Express 19, 23162–23170 (2011).
[Crossref]

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332, 555–559 (2011).
[Crossref]

M. P. Nezhad, O. Bondarenko, M. Khajavikhan, A. Simic, and Y. Fainman, “Etch-free low loss silicon waveguides using hydrogen silsesquioxane oxidation masks,” Opt. Express 19, 18827–18832 (2011).
[Crossref]

K. Kobayashi and K. Ishikawa, “Ultraviolet light-induced conduction current in silicon nitride films,” Jpn. J. Appl. Phys. 50, 031501 (2011).
[Crossref]

M. Nedeljkovic, R. Soref, and G. Z. Mashanovich, “Free-carrier electrorefraction and electroabsorption modulation predictions for silicon over the 1–14  μm infrared wavelength range,” IEEE Photon. J. 3, 1171–1180 (2011).
[Crossref]

2010 (2)

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2010).
[Crossref]

J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photonics 4, 535–544 (2010).
[Crossref]

2008 (2)

2006 (4)

P. Zhang, E. Tevaarwerk, B.-N. Park, D. E. Savage, G. K. Celler, I. Knezevic, P. G. Evans, M. A. Eriksson, and M. G. Lagally, “Electronic transport in nanometre-scale silicon-on-insulator membranes,” Nature 439, 703–706 (2006).
[Crossref]

R. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12, 1678–1687 (2006).
[Crossref]

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441, 199–202 (2006).
[Crossref]

A. M. Armani and K. J. Vahala, “Heavy water detection using ultra-high-Q microcavities,” Opt. Lett. 31, 1896–1898 (2006).
[Crossref]

2005 (2)

2004 (1)

T. Liang and H. Tsang, “Role of free carriers from two-photon absorption in Raman amplification in silicon-on-insulator waveguides,” Appl. Phys. Lett. 84, 2745–2747 (2004).
[Crossref]

1993 (1)

W. Warren, J. Kanicki, J. Robertson, E. Poindexter, and P. McWhorter, “Electron paramagnetic resonance investigation of charge trapping centers in amorphous silicon nitride films,” J. Appl. Phys. 74, 4034–4046 (1993).
[Crossref]

1991 (1)

W. Warren, P. Lenahan, and J. Kanicki, “Electrically neutral nitrogen dangling-bond defects in amorphous hydrogenated silicon nitride thin films,” J. Appl. Phys. 70, 2220–2225 (1991).
[Crossref]

1990 (1)

W. L. Warren, P. Lenahan, and S. E. Curry, “First observation of paramagnetic nitrogen dangling-bond centers in silicon nitride,” Phys. Rev. Lett. 65, 207–210 (1990).
[Crossref]

1988 (1)

D. Krick, P. Lenahan, and J. Kanicki, “Electrically active point defects in amorphous silicon nitride: an illumination and charge injection study,” J. Appl. Phys. 64, 3558–3563 (1988).
[Crossref]

1987 (1)

R. Soref and B. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23, 123–129 (1987).
[Crossref]

1984 (1)

M. Kumeda, H. Yokomichi, and T. Shimizu, “Photo-induced ESR in amorphous Si1-xNx: H films,” Jpn. J. Appl. Phys. 23, L502–L504 (1984).
[Crossref]

1970 (1)

W. Kern and D. A. Puotinen, “Cleaning solutions based on hydrogen peroxide for use in silicon semiconductor technology,” RCA Rev. 31, 187–206 (1970).

1852 (1)

A. Beer, “Determination of the absorption of red light in colored liquids,” Ann. Phys. Chem. 86, 78–88 (1852).
[Crossref]

Aimez, V.

Andersen, K. N.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441, 199–202 (2006).
[Crossref]

Armani, A. M.

Azadeh, S. S.

Azzini, S.

Baets, R.

A. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photon. J. 5, 2202809 (2013).
[Crossref]

G. Priem, P. Dumon, W. Bogaerts, D. Van Thourhout, G. Morthier, and R. Baets, “Optical bistability and pulsating behaviour in silicon-on-insulator ring resonator structures,” Opt. Express 13, 9623–9628 (2005).
[Crossref]

Bajoni, D.

Barbosa, F. A.

Bauters, J.

D. Dai, J. Bauters, and J. E. Bowers, “Passive technologies for future large-scale photonic integrated circuits on silicon: polarization handling, light non-reciprocity and loss reduction,” Light Sci. Appl. 1, e1 (2012).
[Crossref]

Bauters, J. F.

Beeker, W.

Beer, A.

A. Beer, “Determination of the absorption of red light in colored liquids,” Ann. Phys. Chem. 86, 78–88 (1852).
[Crossref]

Bennett, B.

R. Soref and B. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23, 123–129 (1987).
[Crossref]

Bernard, M.

Bertrand, T.

Bianco, F.

C. Schriever, F. Bianco, M. Cazzanelli, M. Ghulinyan, C. Eisenschmidt, J. de Boor, A. Schmid, J. Heitmann, L. Pavesi, and J. Schilling, “Second-order optical nonlinearity in silicon waveguides: inhomogeneous stress and interfaces,” Adv. Opt. Mater. 3, 129–136 (2015).
[Crossref]

M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Véniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, and L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nat. Mater. 11, 148–154 (2012).
[Crossref]

Biberman, A.

Bjarklev, A.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441, 199–202 (2006).
[Crossref]

Bogaerts, W.

Bondarenko, O.

Bonneau, D.

J. W. Silverstone, D. Bonneau, J. L. O’Brien, and M. G. Thompson, “Silicon quantum photonics,” IEEE J. Sel. Top. Quantum Electron. 22, 390–402 (2016).
[Crossref]

J. W. Silverstone, R. Santagati, D. Bonneau, M. J. Strain, M. Sorel, J. L. O’Brien, and M. G. Thompson, “Qubit entanglement between ring-resonator photon-pair sources on a silicon chip,” Nat. Commun. 6, 7948 (2015).
[Crossref]

E. Engin, D. Bonneau, C. M. Natarajan, A. S. Clark, M. Tanner, R. Hadfield, S. N. Dorenbos, V. Zwiller, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, J. L. O’Brien, and M. G. Thompson, “Photon pair generation in a silicon micro-ring resonator with reverse bias enhancement,” Opt. Express 21, 27826–27834 (2013).
[Crossref]

Borel, P. I.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441, 199–202 (2006).
[Crossref]

Borga, E.

M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Véniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, and L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nat. Mater. 11, 148–154 (2012).
[Crossref]

Borselli, M.

Bowers, J. E.

Bryant, A.

Burla, M.

Cagnoli, G.

Cardenas, J.

Caspani, L.

Cazzanelli, M.

C. Schriever, F. Bianco, M. Cazzanelli, M. Ghulinyan, C. Eisenschmidt, J. de Boor, A. Schmid, J. Heitmann, L. Pavesi, and J. Schilling, “Second-order optical nonlinearity in silicon waveguides: inhomogeneous stress and interfaces,” Adv. Opt. Mater. 3, 129–136 (2015).
[Crossref]

M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Véniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, and L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nat. Mater. 11, 148–154 (2012).
[Crossref]

Celler, G. K.

P. Zhang, E. Tevaarwerk, B.-N. Park, D. E. Savage, G. K. Celler, I. Knezevic, P. G. Evans, M. A. Eriksson, and M. G. Lagally, “Electronic transport in nanometre-scale silicon-on-insulator membranes,” Nature 439, 703–706 (2006).
[Crossref]

Chalyan, T.

A. Samusenko, D. Gandolfi, G. Pucker, T. Chalyan, R. Guider, M. Ghulinyan, and L. Pavesi, “A SION microring resonator-based platform for biosensing at 850 nm,” J. Lightwave. Technol. 34, 969–977 (2016).
[Crossref]

Chang, L.

Charette, P.

Chen, D.-R.

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2010).
[Crossref]

Chen, T.

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photonics 6, 369–373 (2012).
[Crossref]

Christensen, J. B.

Chu, S. T.

Claes, T.

A. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photon. J. 5, 2202809 (2013).
[Crossref]

Clark, A. S.

Clerici, M.

Curry, S. E.

W. L. Warren, P. Lenahan, and S. E. Curry, “First observation of paramagnetic nitrogen dangling-bond centers in silicon nitride,” Phys. Rev. Lett. 65, 207–210 (1990).
[Crossref]

Dai, D.

D. Dai, J. Bauters, and J. E. Bowers, “Passive technologies for future large-scale photonic integrated circuits on silicon: polarization handling, light non-reciprocity and loss reduction,” Light Sci. Appl. 1, e1 (2012).
[Crossref]

de Boor, J.

C. Schriever, F. Bianco, M. Cazzanelli, M. Ghulinyan, C. Eisenschmidt, J. de Boor, A. Schmid, J. Heitmann, L. Pavesi, and J. Schilling, “Second-order optical nonlinearity in silicon waveguides: inhomogeneous stress and interfaces,” Adv. Opt. Mater. 3, 129–136 (2015).
[Crossref]

Degallaix, J.

Degoli, E.

M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Véniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, and L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nat. Mater. 11, 148–154 (2012).
[Crossref]

Deshpande, P.

A. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photon. J. 5, 2202809 (2013).
[Crossref]

Dhakal, A.

A. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photon. J. 5, 2202809 (2013).
[Crossref]

Diddams, S. A.

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332, 555–559 (2011).
[Crossref]

Dorenbos, S. N.

Du Bois, B.

A. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photon. J. 5, 2202809 (2013).
[Crossref]

Duchesne, D.

Dumon, P.

Dutt, A.

Eisenschmidt, C.

C. Schriever, F. Bianco, M. Cazzanelli, M. Ghulinyan, C. Eisenschmidt, J. de Boor, A. Schmid, J. Heitmann, L. Pavesi, and J. Schilling, “Second-order optical nonlinearity in silicon waveguides: inhomogeneous stress and interfaces,” Adv. Opt. Mater. 3, 129–136 (2015).
[Crossref]

Engin, E.

Eriksson, M. A.

P. Zhang, E. Tevaarwerk, B.-N. Park, D. E. Savage, G. K. Celler, I. Knezevic, P. G. Evans, M. A. Eriksson, and M. G. Lagally, “Electronic transport in nanometre-scale silicon-on-insulator membranes,” Nature 439, 703–706 (2006).
[Crossref]

Evans, P. G.

P. Zhang, E. Tevaarwerk, B.-N. Park, D. E. Savage, G. K. Celler, I. Knezevic, P. G. Evans, M. A. Eriksson, and M. G. Lagally, “Electronic transport in nanometre-scale silicon-on-insulator membranes,” Nature 439, 703–706 (2006).
[Crossref]

Ezaki, M.

Fage-Pedersen, J.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441, 199–202 (2006).
[Crossref]

Fainman, Y.

Ferrera, M.

Finkelstein, H.

Flaminio, R.

Forest, D.

Foster, M. A.

Frandsen, L. H.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441, 199–202 (2006).
[Crossref]

Freude, W.

J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photonics 4, 535–544 (2010).
[Crossref]

Gaeta, A. L.

Galli, M.

Gandolfi, D.

A. Samusenko, D. Gandolfi, G. Pucker, T. Chalyan, R. Guider, M. Ghulinyan, and L. Pavesi, “A SION microring resonator-based platform for biosensing at 850 nm,” J. Lightwave. Technol. 34, 969–977 (2016).
[Crossref]

Ghulinyan, M.

A. Samusenko, D. Gandolfi, G. Pucker, T. Chalyan, R. Guider, M. Ghulinyan, and L. Pavesi, “A SION microring resonator-based platform for biosensing at 850 nm,” J. Lightwave. Technol. 34, 969–977 (2016).
[Crossref]

L. Stefan, M. Bernard, R. Guider, G. Pucker, L. Pavesi, and M. Ghulinyan, “Ultra-high-Q thin-silicon nitride strip-loaded ring resonators,” Opt. Lett. 40, 3316–3319 (2015).
[Crossref]

C. Schriever, F. Bianco, M. Cazzanelli, M. Ghulinyan, C. Eisenschmidt, J. de Boor, A. Schmid, J. Heitmann, L. Pavesi, and J. Schilling, “Second-order optical nonlinearity in silicon waveguides: inhomogeneous stress and interfaces,” Adv. Opt. Mater. 3, 129–136 (2015).
[Crossref]

M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Véniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, and L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nat. Mater. 11, 148–154 (2012).
[Crossref]

F. Ramiro-Manzano, N. Prtljaga, L. Pavesi, G. Pucker, and M. Ghulinyan, “A fully integrated high-Q whispering-gallery wedge resonator,” Opt. Express 20, 22934–22942 (2012).
[Crossref]

Gorin, A.

Granata, M.

Grassani, D.

Grondin, E.

Grover, R.

J. Heebner, R. Grover, T. Ibrahim, and T. A. Ibrahim, Optical Microresonators: Theory, Fabrication, and Applications (Springer, 2008).

Guider, R.

A. Samusenko, D. Gandolfi, G. Pucker, T. Chalyan, R. Guider, M. Ghulinyan, and L. Pavesi, “A SION microring resonator-based platform for biosensing at 850 nm,” J. Lightwave. Technol. 34, 969–977 (2016).
[Crossref]

L. Stefan, M. Bernard, R. Guider, G. Pucker, L. Pavesi, and M. Ghulinyan, “Ultra-high-Q thin-silicon nitride strip-loaded ring resonators,” Opt. Lett. 40, 3316–3319 (2015).
[Crossref]

Hadfield, R.

Hansen, O.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441, 199–202 (2006).
[Crossref]

He, L.

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2010).
[Crossref]

Heck, M. J.

Heebner, J.

J. Heebner, R. Grover, T. Ibrahim, and T. A. Ibrahim, Optical Microresonators: Theory, Fabrication, and Applications (Springer, 2008).

Heitmann, J.

C. Schriever, F. Bianco, M. Cazzanelli, M. Ghulinyan, C. Eisenschmidt, J. de Boor, A. Schmid, J. Heitmann, L. Pavesi, and J. Schilling, “Second-order optical nonlinearity in silicon waveguides: inhomogeneous stress and interfaces,” Adv. Opt. Mater. 3, 129–136 (2015).
[Crossref]

Helin, P.

A. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photon. J. 5, 2202809 (2013).
[Crossref]

Holzwarth, R.

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332, 555–559 (2011).
[Crossref]

Ibrahim, T.

J. Heebner, R. Grover, T. Ibrahim, and T. A. Ibrahim, Optical Microresonators: Theory, Fabrication, and Applications (Springer, 2008).

Ibrahim, T. A.

J. Heebner, R. Grover, T. Ibrahim, and T. A. Ibrahim, Optical Microresonators: Theory, Fabrication, and Applications (Springer, 2008).

Iizuka, N.

Ishikawa, K.

K. Kobayashi and K. Ishikawa, “Ultraviolet light-induced conduction current in silicon nitride films,” Jpn. J. Appl. Phys. 50, 031501 (2011).
[Crossref]

Jacobsen, R. S.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441, 199–202 (2006).
[Crossref]

Jansen, R.

A. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photon. J. 5, 2202809 (2013).
[Crossref]

Jaouad, A.

Jeon, S.

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photonics 6, 369–373 (2012).
[Crossref]

Ji, X.

Johnson, T. J.

Kanicki, J.

W. Warren, J. Kanicki, J. Robertson, E. Poindexter, and P. McWhorter, “Electron paramagnetic resonance investigation of charge trapping centers in amorphous silicon nitride films,” J. Appl. Phys. 74, 4034–4046 (1993).
[Crossref]

W. Warren, P. Lenahan, and J. Kanicki, “Electrically neutral nitrogen dangling-bond defects in amorphous hydrogenated silicon nitride thin films,” J. Appl. Phys. 70, 2220–2225 (1991).
[Crossref]

D. Krick, P. Lenahan, and J. Kanicki, “Electrically active point defects in amorphous silicon nitride: an illumination and charge injection study,” J. Appl. Phys. 64, 3558–3563 (1988).
[Crossref]

J. Kanicki, Amorphous and Microcrystalline Semiconductor Devices: Materials and Device Physics (Artech House, 1992), Vol. 2.

Kern, W.

W. Kern and D. A. Puotinen, “Cleaning solutions based on hydrogen peroxide for use in silicon semiconductor technology,” RCA Rev. 31, 187–206 (1970).

Khajavikhan, M.

Khorasaninejad, M.

Kippenberg, T. J.

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332, 555–559 (2011).
[Crossref]

Knezevic, I.

P. Zhang, E. Tevaarwerk, B.-N. Park, D. E. Savage, G. K. Celler, I. Knezevic, P. G. Evans, M. A. Eriksson, and M. G. Lagally, “Electronic transport in nanometre-scale silicon-on-insulator membranes,” Nature 439, 703–706 (2006).
[Crossref]

Kobayashi, K.

K. Kobayashi and K. Ishikawa, “Ultraviolet light-induced conduction current in silicon nitride films,” Jpn. J. Appl. Phys. 50, 031501 (2011).
[Crossref]

Koefoed, J. G.

Koos, C.

J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photonics 4, 535–544 (2010).
[Crossref]

Krick, D.

D. Krick, P. Lenahan, and J. Kanicki, “Electrically active point defects in amorphous silicon nitride: an illumination and charge injection study,” J. Appl. Phys. 64, 3558–3563 (1988).
[Crossref]

Kristensen, M.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441, 199–202 (2006).
[Crossref]

Kumeda, M.

M. Kumeda, H. Yokomichi, and T. Shimizu, “Photo-induced ESR in amorphous Si1-xNx: H films,” Jpn. J. Appl. Phys. 23, L502–L504 (1984).
[Crossref]

Lagally, M. G.

P. Zhang, E. Tevaarwerk, B.-N. Park, D. E. Savage, G. K. Celler, I. Knezevic, P. G. Evans, M. A. Eriksson, and M. G. Lagally, “Electronic transport in nanometre-scale silicon-on-insulator membranes,” Nature 439, 703–706 (2006).
[Crossref]

Lavrinenko, A. V.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441, 199–202 (2006).
[Crossref]

Lee, H.

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photonics 6, 369–373 (2012).
[Crossref]

Leinse, A.

Lenahan, P.

W. Warren, P. Lenahan, and J. Kanicki, “Electrically neutral nitrogen dangling-bond defects in amorphous hydrogenated silicon nitride thin films,” J. Appl. Phys. 70, 2220–2225 (1991).
[Crossref]

W. L. Warren, P. Lenahan, and S. E. Curry, “First observation of paramagnetic nitrogen dangling-bond centers in silicon nitride,” Phys. Rev. Lett. 65, 207–210 (1990).
[Crossref]

D. Krick, P. Lenahan, and J. Kanicki, “Electrically active point defects in amorphous silicon nitride: an illumination and charge injection study,” J. Appl. Phys. 64, 3558–3563 (1988).
[Crossref]

Leuthold, J.

J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photonics 4, 535–544 (2010).
[Crossref]

Levy, J. S.

Leyssens, K.

A. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photon. J. 5, 2202809 (2013).
[Crossref]

Li, J.

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photonics 6, 369–373 (2012).
[Crossref]

Li, L.

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2010).
[Crossref]

Li, Y.

Liang, T.

T. Liang and H. Tsang, “Role of free carriers from two-photon absorption in Raman amplification in silicon-on-insulator waveguides,” Appl. Phys. Lett. 84, 2745–2747 (2004).
[Crossref]

Lipson, M.

Liscidini, M.

Little, B. E.

Luo, L.-W.

Luppi, E.

M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Véniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, and L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nat. Mater. 11, 148–154 (2012).
[Crossref]

Marpaung, D.

Mashanovich, G. Z.

M. Nedeljkovic, R. Soref, and G. Z. Mashanovich, “Free-carrier electrorefraction and electroabsorption modulation predictions for silicon over the 1–14  μm infrared wavelength range,” IEEE Photon. J. 3, 1171–1180 (2011).
[Crossref]

McKinstrie, C.

McWhorter, P.

W. Warren, J. Kanicki, J. Robertson, E. Poindexter, and P. McWhorter, “Electron paramagnetic resonance investigation of charge trapping centers in amorphous silicon nitride films,” J. Appl. Phys. 74, 4034–4046 (1993).
[Crossref]

Merget, F.

Michel, C.

Milek, J.

J. Milek, Silicon Nitride for Microelectronic Applications: Part 1 Preparation and Properties (Springer, 2013).

Modotto, D.

M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Véniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, and L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nat. Mater. 11, 148–154 (2012).
[Crossref]

Morandotti, R.

Morthier, G.

Moss, D. J.

Moulin, G.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441, 199–202 (2006).
[Crossref]

Natarajan, C. M.

Nedeljkovic, M.

M. Nedeljkovic, R. Soref, and G. Z. Mashanovich, “Free-carrier electrorefraction and electroabsorption modulation predictions for silicon over the 1–14  μm infrared wavelength range,” IEEE Photon. J. 3, 1171–1180 (2011).
[Crossref]

Neutens, P.

A. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photon. J. 5, 2202809 (2013).
[Crossref]

Nezhad, M.

Nezhad, M. P.

O’Brien, J. L.

J. W. Silverstone, D. Bonneau, J. L. O’Brien, and M. G. Thompson, “Silicon quantum photonics,” IEEE J. Sel. Top. Quantum Electron. 22, 390–402 (2016).
[Crossref]

J. W. Silverstone, R. Santagati, D. Bonneau, M. J. Strain, M. Sorel, J. L. O’Brien, and M. G. Thompson, “Qubit entanglement between ring-resonator photon-pair sources on a silicon chip,” Nat. Commun. 6, 7948 (2015).
[Crossref]

E. Engin, D. Bonneau, C. M. Natarajan, A. S. Clark, M. Tanner, R. Hadfield, S. N. Dorenbos, V. Zwiller, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, J. L. O’Brien, and M. G. Thompson, “Photon pair generation in a silicon micro-ring resonator with reverse bias enhancement,” Opt. Express 21, 27826–27834 (2013).
[Crossref]

Ohira, K.

Okawachi, Y.

Ossicini, S.

M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Véniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, and L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nat. Mater. 11, 148–154 (2012).
[Crossref]

Ou, H.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441, 199–202 (2006).
[Crossref]

Ozdemir, S. K.

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2010).
[Crossref]

Painter, O.

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photonics 6, 369–373 (2012).
[Crossref]

M. Borselli, T. J. Johnson, and O. Painter, “Beyond the Rayleigh scattering limit in high-Q silicon microdisks: theory and experiment,” Opt. Express 13, 1515–1530 (2005).
[Crossref]

Park, B.-N.

P. Zhang, E. Tevaarwerk, B.-N. Park, D. E. Savage, G. K. Celler, I. Knezevic, P. G. Evans, M. A. Eriksson, and M. G. Lagally, “Electronic transport in nanometre-scale silicon-on-insulator membranes,” Nature 439, 703–706 (2006).
[Crossref]

Pasquazi, A.

Pavesi, L.

A. Samusenko, D. Gandolfi, G. Pucker, T. Chalyan, R. Guider, M. Ghulinyan, and L. Pavesi, “A SION microring resonator-based platform for biosensing at 850 nm,” J. Lightwave. Technol. 34, 969–977 (2016).
[Crossref]

L. Stefan, M. Bernard, R. Guider, G. Pucker, L. Pavesi, and M. Ghulinyan, “Ultra-high-Q thin-silicon nitride strip-loaded ring resonators,” Opt. Lett. 40, 3316–3319 (2015).
[Crossref]

C. Schriever, F. Bianco, M. Cazzanelli, M. Ghulinyan, C. Eisenschmidt, J. de Boor, A. Schmid, J. Heitmann, L. Pavesi, and J. Schilling, “Second-order optical nonlinearity in silicon waveguides: inhomogeneous stress and interfaces,” Adv. Opt. Mater. 3, 129–136 (2015).
[Crossref]

M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Véniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, and L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nat. Mater. 11, 148–154 (2012).
[Crossref]

F. Ramiro-Manzano, N. Prtljaga, L. Pavesi, G. Pucker, and M. Ghulinyan, “A fully integrated high-Q whispering-gallery wedge resonator,” Opt. Express 20, 22934–22942 (2012).
[Crossref]

L. Vivien and L. Pavesi, Handbook of Silicon Photonics (Taylor & Francis, 2016).

Peccianti, M.

Peters, J.

Peucheret, C.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441, 199–202 (2006).
[Crossref]

Peyskens, F.

A. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photon. J. 5, 2202809 (2013).
[Crossref]

Pierobon, R.

M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Véniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, and L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nat. Mater. 11, 148–154 (2012).
[Crossref]

Pinard, L.

Poindexter, E.

W. Warren, J. Kanicki, J. Robertson, E. Poindexter, and P. McWhorter, “Electron paramagnetic resonance investigation of charge trapping centers in amorphous silicon nitride films,” J. Appl. Phys. 74, 4034–4046 (1993).
[Crossref]

Poitras, C.

Priem, G.

Prtljaga, N.

Pucker, G.

A. Samusenko, D. Gandolfi, G. Pucker, T. Chalyan, R. Guider, M. Ghulinyan, and L. Pavesi, “A SION microring resonator-based platform for biosensing at 850 nm,” J. Lightwave. Technol. 34, 969–977 (2016).
[Crossref]

L. Stefan, M. Bernard, R. Guider, G. Pucker, L. Pavesi, and M. Ghulinyan, “Ultra-high-Q thin-silicon nitride strip-loaded ring resonators,” Opt. Lett. 40, 3316–3319 (2015).
[Crossref]

F. Ramiro-Manzano, N. Prtljaga, L. Pavesi, G. Pucker, and M. Ghulinyan, “A fully integrated high-Q whispering-gallery wedge resonator,” Opt. Express 20, 22934–22942 (2012).
[Crossref]

M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Véniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, and L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nat. Mater. 11, 148–154 (2012).
[Crossref]

Puotinen, D. A.

W. Kern and D. A. Puotinen, “Cleaning solutions based on hydrogen peroxide for use in silicon semiconductor technology,” RCA Rev. 31, 187–206 (1970).

Rabus, D. G.

D. G. Rabus, Integrated Ring Resonators (Springer, 2007).

Ramiro-Manzano, F.

Razzari, L.

Roberts, S. P.

Robertson, J.

W. Warren, J. Kanicki, J. Robertson, E. Poindexter, and P. McWhorter, “Electron paramagnetic resonance investigation of charge trapping centers in amorphous silicon nitride films,” J. Appl. Phys. 74, 4034–4046 (1993).
[Crossref]

Roeloffzen, C.

Romero-Garca, S.

Rottenberg, X.

A. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photon. J. 5, 2202809 (2013).
[Crossref]

Rottwitt, K.

Saha, K.

Saini, S. S.

Samusenko, A.

A. Samusenko, D. Gandolfi, G. Pucker, T. Chalyan, R. Guider, M. Ghulinyan, and L. Pavesi, “A SION microring resonator-based platform for biosensing at 850 nm,” J. Lightwave. Technol. 34, 969–977 (2016).
[Crossref]

Santagati, R.

J. W. Silverstone, R. Santagati, D. Bonneau, M. J. Strain, M. Sorel, J. L. O’Brien, and M. G. Thompson, “Qubit entanglement between ring-resonator photon-pair sources on a silicon chip,” Nat. Commun. 6, 7948 (2015).
[Crossref]

Savage, D. E.

P. Zhang, E. Tevaarwerk, B.-N. Park, D. E. Savage, G. K. Celler, I. Knezevic, P. G. Evans, M. A. Eriksson, and M. G. Lagally, “Electronic transport in nanometre-scale silicon-on-insulator membranes,” Nature 439, 703–706 (2006).
[Crossref]

Schilling, J.

C. Schriever, F. Bianco, M. Cazzanelli, M. Ghulinyan, C. Eisenschmidt, J. de Boor, A. Schmid, J. Heitmann, L. Pavesi, and J. Schilling, “Second-order optical nonlinearity in silicon waveguides: inhomogeneous stress and interfaces,” Adv. Opt. Mater. 3, 129–136 (2015).
[Crossref]

Schmid, A.

C. Schriever, F. Bianco, M. Cazzanelli, M. Ghulinyan, C. Eisenschmidt, J. de Boor, A. Schmid, J. Heitmann, L. Pavesi, and J. Schilling, “Second-order optical nonlinearity in silicon waveguides: inhomogeneous stress and interfaces,” Adv. Opt. Mater. 3, 129–136 (2015).
[Crossref]

Schriever, C.

C. Schriever, F. Bianco, M. Cazzanelli, M. Ghulinyan, C. Eisenschmidt, J. de Boor, A. Schmid, J. Heitmann, L. Pavesi, and J. Schilling, “Second-order optical nonlinearity in silicon waveguides: inhomogeneous stress and interfaces,” Adv. Opt. Mater. 3, 129–136 (2015).
[Crossref]

Schropp, R. E.

R. E. Schropp and M. Zeman, Amorphous and Microcrystalline Silicon Solar Cells: Modeling, Materials and Device Technology (Springer, 1998).

Selvaraja, S.

A. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photon. J. 5, 2202809 (2013).
[Crossref]

Severi, S.

A. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photon. J. 5, 2202809 (2013).
[Crossref]

Shaw, M. J.

Shimizu, T.

M. Kumeda, H. Yokomichi, and T. Shimizu, “Photo-induced ESR in amorphous Si1-xNx: H films,” Jpn. J. Appl. Phys. 23, L502–L504 (1984).
[Crossref]

Silverstone, J. W.

J. W. Silverstone, D. Bonneau, J. L. O’Brien, and M. G. Thompson, “Silicon quantum photonics,” IEEE J. Sel. Top. Quantum Electron. 22, 390–402 (2016).
[Crossref]

J. W. Silverstone, R. Santagati, D. Bonneau, M. J. Strain, M. Sorel, J. L. O’Brien, and M. G. Thompson, “Qubit entanglement between ring-resonator photon-pair sources on a silicon chip,” Nat. Commun. 6, 7948 (2015).
[Crossref]

Simic, A.

Sipe, J.

Soref, R.

M. Nedeljkovic, R. Soref, and G. Z. Mashanovich, “Free-carrier electrorefraction and electroabsorption modulation predictions for silicon over the 1–14  μm infrared wavelength range,” IEEE Photon. J. 3, 1171–1180 (2011).
[Crossref]

R. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12, 1678–1687 (2006).
[Crossref]

R. Soref and B. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23, 123–129 (1987).
[Crossref]

Sorel, M.

D. Grassani, S. Azzini, M. Liscidini, M. Galli, M. J. Strain, M. Sorel, J. Sipe, and D. Bajoni, “Micrometer-scale integrated silicon source of time-energy entangled photons,” Optica 2, 88–94 (2015).
[Crossref]

J. W. Silverstone, R. Santagati, D. Bonneau, M. J. Strain, M. Sorel, J. L. O’Brien, and M. G. Thompson, “Qubit entanglement between ring-resonator photon-pair sources on a silicon chip,” Nat. Commun. 6, 7948 (2015).
[Crossref]

Spencer, D. T.

Stefan, L.

Strain, M. J.

D. Grassani, S. Azzini, M. Liscidini, M. Galli, M. J. Strain, M. Sorel, J. Sipe, and D. Bajoni, “Micrometer-scale integrated silicon source of time-energy entangled photons,” Optica 2, 88–94 (2015).
[Crossref]

J. W. Silverstone, R. Santagati, D. Bonneau, M. J. Strain, M. Sorel, J. L. O’Brien, and M. G. Thompson, “Qubit entanglement between ring-resonator photon-pair sources on a silicon chip,” Nat. Commun. 6, 7948 (2015).
[Crossref]

Subramanian, A.

A. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photon. J. 5, 2202809 (2013).
[Crossref]

Suzuki, N.

Taebi, S.

Tanner, M.

Tevaarwerk, E.

P. Zhang, E. Tevaarwerk, B.-N. Park, D. E. Savage, G. K. Celler, I. Knezevic, P. G. Evans, M. A. Eriksson, and M. G. Lagally, “Electronic transport in nanometre-scale silicon-on-insulator membranes,” Nature 439, 703–706 (2006).
[Crossref]

Thompson, M. G.

J. W. Silverstone, D. Bonneau, J. L. O’Brien, and M. G. Thompson, “Silicon quantum photonics,” IEEE J. Sel. Top. Quantum Electron. 22, 390–402 (2016).
[Crossref]

J. W. Silverstone, R. Santagati, D. Bonneau, M. J. Strain, M. Sorel, J. L. O’Brien, and M. G. Thompson, “Qubit entanglement between ring-resonator photon-pair sources on a silicon chip,” Nat. Commun. 6, 7948 (2015).
[Crossref]

E. Engin, D. Bonneau, C. M. Natarajan, A. S. Clark, M. Tanner, R. Hadfield, S. N. Dorenbos, V. Zwiller, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, J. L. O’Brien, and M. G. Thompson, “Photon pair generation in a silicon micro-ring resonator with reverse bias enhancement,” Opt. Express 21, 27826–27834 (2013).
[Crossref]

Timurdogan, E.

Tsang, H.

T. Liang and H. Tsang, “Role of free carriers from two-photon absorption in Raman amplification in silicon-on-insulator waveguides,” Appl. Phys. Lett. 84, 2745–2747 (2004).
[Crossref]

Vahala, K. J.

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photonics 6, 369–373 (2012).
[Crossref]

A. M. Armani and K. J. Vahala, “Heavy water detection using ultra-high-Q microcavities,” Opt. Lett. 31, 1896–1898 (2006).
[Crossref]

Van Dorpe, P.

A. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photon. J. 5, 2202809 (2013).
[Crossref]

Van Thourhout, D.

Véniard, V.

M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Véniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, and L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nat. Mater. 11, 148–154 (2012).
[Crossref]

Vivien, L.

L. Vivien and L. Pavesi, Handbook of Silicon Photonics (Taylor & Francis, 2016).

Volet, N.

Wabnitz, S.

M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Véniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, and L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nat. Mater. 11, 148–154 (2012).
[Crossref]

Wang, L.

Warren, W.

W. Warren, J. Kanicki, J. Robertson, E. Poindexter, and P. McWhorter, “Electron paramagnetic resonance investigation of charge trapping centers in amorphous silicon nitride films,” J. Appl. Phys. 74, 4034–4046 (1993).
[Crossref]

W. Warren, P. Lenahan, and J. Kanicki, “Electrically neutral nitrogen dangling-bond defects in amorphous hydrogenated silicon nitride thin films,” J. Appl. Phys. 70, 2220–2225 (1991).
[Crossref]

Warren, W. L.

W. L. Warren, P. Lenahan, and S. E. Curry, “First observation of paramagnetic nitrogen dangling-bond centers in silicon nitride,” Phys. Rev. Lett. 65, 207–210 (1990).
[Crossref]

Watts, M. R.

Wen, Y. H.

Wiederhecker, G. S.

Witzens, J.

Wright, J. B.

Xiao, Y.-F.

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2010).
[Crossref]

Yang, K. Y.

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photonics 6, 369–373 (2012).
[Crossref]

Yang, L.

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2010).
[Crossref]

Yokomichi, H.

M. Kumeda, H. Yokomichi, and T. Shimizu, “Photo-induced ESR in amorphous Si1-xNx: H films,” Jpn. J. Appl. Phys. 23, L502–L504 (1984).
[Crossref]

Yoshida, H.

Zeman, M.

R. E. Schropp and M. Zeman, Amorphous and Microcrystalline Silicon Solar Cells: Modeling, Materials and Device Technology (Springer, 1998).

Zhang, P.

P. Zhang, E. Tevaarwerk, B.-N. Park, D. E. Savage, G. K. Celler, I. Knezevic, P. G. Evans, M. A. Eriksson, and M. G. Lagally, “Electronic transport in nanometre-scale silicon-on-insulator membranes,” Nature 439, 703–706 (2006).
[Crossref]

Zhong, F.

Zhu, J.

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2010).
[Crossref]

Zhuang, L.

Zsigri, B.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441, 199–202 (2006).
[Crossref]

Zwiller, V.

Adv. Opt. Mater. (1)

C. Schriever, F. Bianco, M. Cazzanelli, M. Ghulinyan, C. Eisenschmidt, J. de Boor, A. Schmid, J. Heitmann, L. Pavesi, and J. Schilling, “Second-order optical nonlinearity in silicon waveguides: inhomogeneous stress and interfaces,” Adv. Opt. Mater. 3, 129–136 (2015).
[Crossref]

Ann. Phys. Chem. (1)

A. Beer, “Determination of the absorption of red light in colored liquids,” Ann. Phys. Chem. 86, 78–88 (1852).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

T. Liang and H. Tsang, “Role of free carriers from two-photon absorption in Raman amplification in silicon-on-insulator waveguides,” Appl. Phys. Lett. 84, 2745–2747 (2004).
[Crossref]

IEEE J. Quantum Electron. (1)

R. Soref and B. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23, 123–129 (1987).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

R. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12, 1678–1687 (2006).
[Crossref]

J. W. Silverstone, D. Bonneau, J. L. O’Brien, and M. G. Thompson, “Silicon quantum photonics,” IEEE J. Sel. Top. Quantum Electron. 22, 390–402 (2016).
[Crossref]

IEEE Photon. J. (2)

A. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photon. J. 5, 2202809 (2013).
[Crossref]

M. Nedeljkovic, R. Soref, and G. Z. Mashanovich, “Free-carrier electrorefraction and electroabsorption modulation predictions for silicon over the 1–14  μm infrared wavelength range,” IEEE Photon. J. 3, 1171–1180 (2011).
[Crossref]

J. Appl. Phys. (3)

W. Warren, P. Lenahan, and J. Kanicki, “Electrically neutral nitrogen dangling-bond defects in amorphous hydrogenated silicon nitride thin films,” J. Appl. Phys. 70, 2220–2225 (1991).
[Crossref]

W. Warren, J. Kanicki, J. Robertson, E. Poindexter, and P. McWhorter, “Electron paramagnetic resonance investigation of charge trapping centers in amorphous silicon nitride films,” J. Appl. Phys. 74, 4034–4046 (1993).
[Crossref]

D. Krick, P. Lenahan, and J. Kanicki, “Electrically active point defects in amorphous silicon nitride: an illumination and charge injection study,” J. Appl. Phys. 64, 3558–3563 (1988).
[Crossref]

J. Lightwave. Technol. (1)

A. Samusenko, D. Gandolfi, G. Pucker, T. Chalyan, R. Guider, M. Ghulinyan, and L. Pavesi, “A SION microring resonator-based platform for biosensing at 850 nm,” J. Lightwave. Technol. 34, 969–977 (2016).
[Crossref]

Jpn. J. Appl. Phys. (2)

M. Kumeda, H. Yokomichi, and T. Shimizu, “Photo-induced ESR in amorphous Si1-xNx: H films,” Jpn. J. Appl. Phys. 23, L502–L504 (1984).
[Crossref]

K. Kobayashi and K. Ishikawa, “Ultraviolet light-induced conduction current in silicon nitride films,” Jpn. J. Appl. Phys. 50, 031501 (2011).
[Crossref]

Light Sci. Appl. (1)

D. Dai, J. Bauters, and J. E. Bowers, “Passive technologies for future large-scale photonic integrated circuits on silicon: polarization handling, light non-reciprocity and loss reduction,” Light Sci. Appl. 1, e1 (2012).
[Crossref]

Nat. Commun. (1)

J. W. Silverstone, R. Santagati, D. Bonneau, M. J. Strain, M. Sorel, J. L. O’Brien, and M. G. Thompson, “Qubit entanglement between ring-resonator photon-pair sources on a silicon chip,” Nat. Commun. 6, 7948 (2015).
[Crossref]

Nat. Mater. (1)

M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Véniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, and L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nat. Mater. 11, 148–154 (2012).
[Crossref]

Nat. Photonics (4)

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and hydex for nonlinear optics,” Nat. Photonics 7, 597–607 (2013).
[Crossref]

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photonics 6, 369–373 (2012).
[Crossref]

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2010).
[Crossref]

J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photonics 4, 535–544 (2010).
[Crossref]

Nature (2)

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441, 199–202 (2006).
[Crossref]

P. Zhang, E. Tevaarwerk, B.-N. Park, D. E. Savage, G. K. Celler, I. Knezevic, P. G. Evans, M. A. Eriksson, and M. G. Lagally, “Electronic transport in nanometre-scale silicon-on-insulator membranes,” Nature 439, 703–706 (2006).
[Crossref]

Opt. Express (11)

M. Borselli, T. J. Johnson, and O. Painter, “Beyond the Rayleigh scattering limit in high-Q silicon microdisks: theory and experiment,” Opt. Express 13, 1515–1530 (2005).
[Crossref]

A. Gorin, A. Jaouad, E. Grondin, V. Aimez, and P. Charette, “Fabrication of silicon nitride waveguides for visible-light using PECVD: a study of the effect of plasma frequency on optical properties,” Opt. Express 16, 13509–13516 (2008).
[Crossref]

S. Romero-Garca, F. Merget, F. Zhong, H. Finkelstein, and J. Witzens, “Silicon nitride CMOS-compatible platform for integrated photonics applications at visible wavelengths,” Opt. Express 21, 14036–14046 (2013).
[Crossref]

J. S. Levy, M. A. Foster, A. L. Gaeta, and M. Lipson, “Harmonic generation in silicon nitride ring resonators,” Opt. Express 19, 11415–11421 (2011).
[Crossref]

G. Priem, P. Dumon, W. Bogaerts, D. Van Thourhout, G. Morthier, and R. Baets, “Optical bistability and pulsating behaviour in silicon-on-insulator ring resonator structures,” Opt. Express 13, 9623–9628 (2005).
[Crossref]

M. P. Nezhad, O. Bondarenko, M. Khajavikhan, A. Simic, and Y. Fainman, “Etch-free low loss silicon waveguides using hydrogen silsesquioxane oxidation masks,” Opt. Express 19, 18827–18832 (2011).
[Crossref]

F. Ramiro-Manzano, N. Prtljaga, L. Pavesi, G. Pucker, and M. Ghulinyan, “A fully integrated high-Q whispering-gallery wedge resonator,” Opt. Express 20, 22934–22942 (2012).
[Crossref]

L.-W. Luo, G. S. Wiederhecker, J. Cardenas, C. Poitras, and M. Lipson, “High quality factor etchless silicon photonic ring resonators,” Opt. Express 19, 6284–6289 (2011).
[Crossref]

A. Pasquazi, L. Caspani, M. Peccianti, M. Clerici, M. Ferrera, L. Razzari, D. Duchesne, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, “Self-locked optical parametric oscillation in a CMOS compatible microring resonator: a route to robust optical frequency comb generation on a chip,” Opt. Express 21, 13333–13341 (2013).
[Crossref]

L. Zhuang, D. Marpaung, M. Burla, W. Beeker, A. Leinse, and C. Roeloffzen, “Low-loss, high-index-contrast Si3N4/SiO2 optical waveguides for optical delay lines in microwave photonics signal processing,” Opt. Express 19, 23162–23170 (2011).
[Crossref]

E. Engin, D. Bonneau, C. M. Natarajan, A. S. Clark, M. Tanner, R. Hadfield, S. N. Dorenbos, V. Zwiller, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, J. L. O’Brien, and M. G. Thompson, “Photon pair generation in a silicon micro-ring resonator with reverse bias enhancement,” Opt. Express 21, 27826–27834 (2013).
[Crossref]

Opt. Lett. (7)

Optica (4)

Phys. Rev. Lett. (1)

W. L. Warren, P. Lenahan, and S. E. Curry, “First observation of paramagnetic nitrogen dangling-bond centers in silicon nitride,” Phys. Rev. Lett. 65, 207–210 (1990).
[Crossref]

RCA Rev. (1)

W. Kern and D. A. Puotinen, “Cleaning solutions based on hydrogen peroxide for use in silicon semiconductor technology,” RCA Rev. 31, 187–206 (1970).

Science (1)

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332, 555–559 (2011).
[Crossref]

Other (6)

D. G. Rabus, Integrated Ring Resonators (Springer, 2007).

J. Heebner, R. Grover, T. Ibrahim, and T. A. Ibrahim, Optical Microresonators: Theory, Fabrication, and Applications (Springer, 2008).

L. Vivien and L. Pavesi, Handbook of Silicon Photonics (Taylor & Francis, 2016).

J. Milek, Silicon Nitride for Microelectronic Applications: Part 1 Preparation and Properties (Springer, 2013).

J. Kanicki, Amorphous and Microcrystalline Semiconductor Devices: Materials and Device Physics (Artech House, 1992), Vol. 2.

R. E. Schropp and M. Zeman, Amorphous and Microcrystalline Silicon Solar Cells: Modeling, Materials and Device Technology (Springer, 1998).

Supplementary Material (1)

NameDescription
Supplement 1       Modal characteristics of devices. Method of analysis of experimental spectra of rings.

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. (a) Top: cross-sectional schematics of the nitride-loaded ultra-thin SOI device. Bottom: numerical FEM calculation of fundamental TE-mode intensity profile at a wavelength of 1550 nm. (b) Top-view optical micrograph of a ring-resonator device. A blow-up of the image on right shows the optical coupling region. (c) Optical micrograph of a spiral waveguide used for propagation loss measurements. The waveguide width is 1.3 μm, and the shown spiral has a total length of 3 cm.
Fig. 2.
Fig. 2. (a) Cross-sectional schematics of the MOS device for C-V measurements. A 145 nm Si3N4 layer was deposited on top of a p-type silicon substrate with a resistivity of 15Ω·cm. A thin 5 nm SiOx layer, grown during the RCA clean, is present between the Si3N4 film and the substrate. The gate contact is formed by a Hg droplet of 787 μm diameter. (b) Selected low-frequency (10 kHz, quasi-static) C-V curves, measured after UV exposures of different duration. The C-V response of the reference (UV-untreated) device indicates the presence of a net positive charge and is in the conditions of strong inversion at 0 V bias. (c) The extracted flat-band voltage as a function of UV exposure time shows a monotonic shift towards lower voltages, which is an indication of significant charge neutralization. The shift of Vfb saturates, approaching the metal-semiconductor work function potential at ϕi0.52V. (d) The corresponding charge density variation shows a 3-orders-of-magnitude decrease with respect to the initial situation. The solid line is a linear fit to σ(Vfb) with an absolute slope value of 2.5×1011cm2V1.
Fig. 3.
Fig. 3. Attenuation of propagating optical power was measured for waveguides of different lengths prior to (red squares) and after UV exposure for 21 h (blue diamonds). The error bars represent the statistical error over similar devices. A Lambert–Beer fit (lines) to the experimental data reveals a net improvement of the propagation loss due to reduced free-carrier absorption as a result of neutralization of positive charge in Si3N4. Note that the UV treatment does not affect the insertion loss of waveguides.
Fig. 4.
Fig. 4. (a) Calculated spectral visibility of resonances of a 60 μm radius resonator with an external coupling Qe=8×106 to the waveguide. The model takes into account the background Fabry–Perot fringes due to waveguide-facet reflections. Modal splitting due to backscattering is also considered in order to evidence the effect of peak visibility change when the intrinsic loss of the resonator improves. (b) The peak visibility is near-zero in the as-deposited samples with Qe=8×106 (black dots), while a similar resonator is at critical coupling for a Qe=7×104, revealing an intrinsic loss of about 5.1 dB/cm (blue dots and red fit curve). An exposure to UV light progressively cancels the net positive charge in the nitride, which consequently decreases the free-electron concentration in the guiding Si layer. In conditions of fixed external coupling (8×106), the resulting lower loss increases peak visibility. Example spectra (dots) and their fits (red line) are shown for (c) 5 h UV, (d) 23 h UV, and (e) 23 h UV, plus sintering in forming gas at 350°C plus an additional 2 h of UV.
Fig. 5.
Fig. 5. (a) Free-carrier-related intrinsic Q as a function of the UV-modified flat-band voltage for p-type Si (blue continuous line). Empty circles represent Q-factors, calculated by plugging into Eq. (4a) the experimental values of Cmax and Vfb, estimated from MOS capacitance measurements. The results from ring resonators are shown as diamonds, with vertical error bars indicating the statistical error over a large number of analyzed resonances. The red, dashed-dotted curve is a fit to the three rightmost data points by considering an additional residual Qad of 6×105. (b) The intrinsic loss αi, corresponding to that extracted from the rings’ Qs (diamonds), is plotted against the calculated one, considering the residual loss (dashed-dotted line).

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

f(ω)αe(αi+αe)/2ι(ωω0)ng/c0,
Cfb=Cmaxεsε0A/LDCmax+εsε0A/LD,
T(ω)=|FP+αe/2(ms+mc)|2,
Qi=2πngαi(Vfb)λ=2πngλ×0.939ΔP(Vfb)1.085,
ΔP(Vfb)=|Cmax(Vfbϕi)|qdSiA,

Metrics