Abstract

Ti:sapphire presents unequaled tuning properties. However, because of a short lifetime, the energy cannot be stored in Ti3+ upper level, which makes this gain medium difficult to pump. Hence, the size, price, and complexity of femtosecond laser chains are partially driven by their pump source. We present a novel concept to pump Ti:sapphire, based on light-emitting diodes (LEDs), that gathers ruggedness, compactness, simplicity, and low price. By combining LEDs and a Ce:LuAG luminescent concentrator, we report the first LED-pumped Ti:sapphire laser, to the best of our knowledge. With 2240 blue LEDs (at 450 nm) in pulsed regime (10 Hz, 15 μs), the pump module has a maximum emission at 530 nm and delivers up to 20.9 mJ with an irradiance of 9.9kW/cm2. This low-cost and compact pump system, among the brightest incoherent sources ever developed, enables laser emission in Ti:sapphire (32 μJ at 790 nm). The tunability of the laser is demonstrated between 755 and 845 nm. The double-pass small signal gain in the cavity is numerically simulated and measured to reach 1.066.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Titanium-doped sapphire (Ti:Al2O3) lasers are at the center of femtosecond science with unequaled emission bandwidth (>300nm centered at 780 nm) allowing many applications in fundamental science, medicine, and industry. The 130 nm wide absorption spectrum of this gain medium is centered on 490 nm and explains the great variety of light sources used to pump Ti:sapphire. In 1982, Moulton performed the first demonstration of a Ti:sapphire laser pumped with a 503 nm Coumarin 504 dye laser [1]. This first performance was quickly followed by other pump sources: flashlamps [2], 514 nm argon-ion lasers [3], 532 nm frequency doubled Nd:YAG lasers [3,4] or Yb-doped fiber lasers [5], and 511 nm copper vapor lasers [4]. Recently, research efforts were oriented to simpler pump sources with semiconductors: frequency doubled laser diodes [6], optically pumped semiconductor lasers [7], direct 455 nm laser diode pumping [810], and direct 518 nm laser diode pumping [11].

The main issue for high energy femtosecond laser chains with Ti:sapphire is related to the pump energy for the amplifiers. Indeed, the very short lifetime of Ti3+ ions in sapphire (3 μs at room temperature) strongly limits potential energy storage by the gain medium. This means that the energy has to be stored in the pump systems, and the pump light needs to be pulsed with energy ranging millijoule–joule with maximum pulse duration in the microsecond scale, close to the Ti:sapphire lifetime. Among the plethora of pump sources used for Ti:sapphire, only a few may address these requirements. The first ones, direct flashlamps, have been largely investigated in the past for high energy amplifiers [12]. However, the emission of few microsecond pulses requires the flashlamps to operate at very high current (kA) and very high voltage (kV), strongly reducing the lifetime operation and the repetition rate. Moreover, flashlamps emit a large spectrum with a significant part in the UV, inducing Ti:sapphire degradation (colored centers) and a poor spectral overlap with the absorption band of Ti:sapphire. This explains why flashlamps have rarely been used in Ti:sapphire commercial products.

The second pump sources addressing Ti:sapphire requirements are related to Nd:doped lasers. In case of flashlamp-pumped Nd:doped lasers, the energy storage is shared between electrical devices for the flashlamps and the upper level of the laser medium, Nd3+ ions having a lifetime of several hundreds of microseconds. In Q-switched operation and after frequency doubling, these sources deliver nanosecond pulses at the joule level at 532 nm (Nd:YAG) at low repetition rate (namely, 10 Hz). Thanks to the development of high power laser diodes at 800 nm, driven by manufacturing applications, flashlamps have been progressively replaced by laser diodes for the pumping of low energy and high repetition systems. Despite the cost and complexity of these sources, frequency doubled neodymium-doped lasers (Nd:YAG and Nd:YLF) have been the main pump sources for industrial Ti:sapphire systems for 25 years. This kind of pump source drove the size and price of Ti:sapphire systems and clearly limited their diffusion.

With the impressive development of GaN blue semiconductor sources, close to the absorption band of Ti:sapphire, a revisiting of the pump systems is relevant. However, high power blue and green laser diodes have not known the same development as their counterpart in the near-infrared: systems remain at the watt level even if the promising market of laser-diode-based projectors may drive their development in the future. Consequently, blue laser diodes are perfect for Ti:sapphire oscillators but they cannot afford Ti:sapphire pulse amplifiers with enough energy except with prohibitive cost and very complex systems.

The situation is completely different for blue light-emitting diodes (LEDs). Driven by massive research efforts for the lighting market, the performance of blue LEDs has experienced tremendous improvement with impressive cost reduction. In addition, LEDs are more rugged, simpler, and much less sensitive to the external environment than conventional laser diodes. With such inexpensive devices, energy storage can be considered with a massive collection of extremely simple components, each LED being driven at low current (A) and low voltage (V). To give an order of magnitude, it requires 10,000 LEDs emitting 1 W over 10 μs to produce 100 mJ of blue light. Consequently, a pump module relying on a large number of LEDs shows an exceptional ruggedness as the damage of one LED will not significantly change the performance off the whole system.

However, LEDs are incoherent sources with limited irradiance: typically of the order of 100W/cm2. This is enough to demonstrate the LED pumping of Nd:doped lasers [1317] but not for Ti:sapphire. Indeed, as a transition-metal-doped gain medium, Ti:sapphire exhibits a very low σ·τ product (namely, emission cross section σ by lifetime τ), typically 2 orders of magnitude below Nd:doped materials. Hence, the irradiance of an LED is an order of magnitude below the requirements to reach the laser threshold of Ti:sapphire. A solution to overcome this problem is to combine LEDs with a luminescent concentrator (LC). This device has the property to circumvent the brightness conservation rule with a process of absorption/emission in a high index medium. Moreover, the slab geometry of an LED-pumped concentrator enables massive beam collection of elementary LEDs [18].

The first LED-pumped concentrator was reported with Ce:YAG [18], quickly followed by demonstrations for digital projection [1922] and light sources in the yellowish [23]. They have been used to pump Nd:doped lasers [18,24] and an alexandrite laser [25]. In this Letter, we reported what we believe to be the first LED-pumped Ti:sapphire laser using Ce:LuAG concentrators, chosen for the spectral matching with the absorption band of Ti:sapphire (Fig. 1).

 figure: Fig. 1.

Fig. 1. Ce:LuAG (red), Ti:sapphire (black) absorption coefficients. Emission spectra of Ce:LuAG (green) and LED (blue) in the pulsed regime (15 μs, 7 A, 10 Hz, room temperature).

Download Full Size | PPT Slide | PDF

To match the absorption band of Ce:LuAG, blue LEDs with an emission spectrum centered on 450 nm are used (LUXEON Z Royal Blue from Lumileds). This type of LED was chosen for its compactness: one LED package being 1.70mm×1.30mm for an emitting surface of 1mm×1mm. At a maximum continuous current of 1 A, an LED emits 900 mW, corresponding to an irradiance of 90W/cm2. In the pulsed regime, this performance can be significantly improved: at 7 A during 15 μs (close to Ti:sapphire lifetime), the peak LED irradiance increases to 425W/cm2. The LEDs’ printed circuit board is mounted on a water-cooled heat sink. The 450 nm light from the LEDs is absorbed by Ce3+ ions and then reemitted within the concentrator (see the spectra in Fig. 1). The green light emitted in the concentrator is guided toward the edges of the concentrator via total internal reflection [1825].

The key parameter to characterize an LED-pumped LC is the concentration factor introduced by Barbet et al. [18] and defined by the ratio of the LC output radiance to a single pumping LED radiance. As LC are Lambertian sources, this is equivalent to the ratio of the LC irradiance to a single LED irradiance. The concentration factor depends on three parameters, which are the optical conversion efficiency, the aspect ratio of the luminescent concentrator (also called geometrical factor), and the LEDs’ filling factor of the pump facet. Our luminescent concentrator are slabs (14mm×1mm×100mm in our case) proposing a large aspect ratio between the pump surface (14mm×100mm) and the emitting surface (1mm×14mm), corresponding to a geometrical factor of 200. The thickness of the concentrator has been set to 1 mm so that all blue light from LEDs is absorbed. 1120 LEDs are used to pump one luminescent concentrator (560 LEDs on each 14mm×100mm facets). In this configuration, the filling factor reaches 41% (meaning that 41% of the pump facets are filled with an LED emitting surface).

When pulsing the LEDs at 10 Hz with a duration of 15 μs and a current up to 7 A, the measured output peak irradiance at the LC surface (1mm×14mm) is 2.6kW/cm2 in air and 6.6kW/cm2 using an index-matching optical adhesive to couple the light in the Ti:sapphire crystal (Norland Product, Inc. NOA170 with a refractive index of 1.7). The optical conversion efficiencies of the concentrators are then, respectively 7.8% and 19%, corresponding to concentration factors of 6.4 and 15. This means that the LC has a radiance higher than an LED by a factor of 15. Hence, with the beam collection of 1120 LEDs, the LC is able to provide green flashes with an energy of 13.9 mJ over 15 μs (see Table 1).

Tables Icon

Table 1. Properties and Performance of the Ce:LuAG Luminescent Concentrators Studied in this Work

The energy scaling of this pumping system is performed by bonding a second luminescent concentrator to the first one with an index-matching UV curing optical adhesive. Thus, 2240 LEDs are used to pump a 200 mm composite luminescent concentrator exhibiting a geometrical factor of 400. In the same mode of operation as described previously, the output irradiance measured at the 200 mm long LC surface is 3.9kW/cm2 in air and 9.9kW/cm2 using an index-matching optical adhesive. Thus, adding a second LC module to the first one increases by only 50% the pump irradiance, mainly due to the interface between the two LCs. The optical conversion efficiencies of the concentrators are then 5.8% and 14% for concentration factors of 9.5 and 23, respectively. The radiance reaches 1240W/cm2/sr in air and 3150W/cm2/sr in the Ti:sapphire crystal, in the same order of magnitude as the radiance of flashlamps. This corresponds to an energy of 20.9 mJ that can be delivered to the Ti:sapphire crystal.

The 200-mm-long composite LED-pumped luminescent concentrator is now used to pump a Ti:sapphire crystal. The gain medium is 1mm×1mm×14mm, matching with the luminescent concentrator output facet (Fig. 2), and directly bonded to the luminescent concentrator with a UV curing optical adhesive. The laser gain medium is 0.25 at. % Ti-doped and oriented such that the pump arrives on a Ti:sapphire surface parallel to the c axis in order to maximize absorption. One of the laser crystal longitudinal surfaces is high-reflectivity coated over 780–820 nm, the opposite surface being anti-reflection coated for the same wavelength range. A plano-concave, 54-mm-long laser cavity is designed with 300 mm radius-of-curvature output couplers having different transmissions: 1.0%, 2.0%, and 2.8% at the lasing wavelength.

 figure: Fig. 2.

Fig. 2. Setup of the experiment.

Download Full Size | PPT Slide | PDF

LEDs are pulsed at 10 Hz with a current of 7 A for 15 μs. In this mode of operation, Ti3+ ion lifetime is measured to reach 2.6 μs, corresponding to a temperature of 53°C [3]. 43% of the injected pump energy is absorbed by a single pass in the 1 mm Ti:sapphire crystal. To increase the absorption, two mirrors (metallic 80% reflectivity) were placed behind the laser crystal and at the unused facet of the luminescent concentrator (Fig. 2). With this setup, the unabsorbed pump energy is re-injected into the gain medium and is reflected between the two metallic mirrors until it is either absorbed by the gain medium or lost (mirror absorption or Ce:LuAG reabsorption). The pump absorption improvement is measured by investigating the fluorescence of Ti:sapphire, which is linearly correlated to the absorbed energy. It has been measured that the pump recycling improves by 60% the absorption. This means that 14.4 mJ are absorbed by the gain media over the 20.9 mJ delivered by the pump module.

The laser output energy as a function of the pump energy delivered by the luminescent concentrator is plotted on Fig. 3(a) for a 1.0%, 2.0%, and 2.8% output couplers. Maximum laser energy of 32 μJ at 790 nm [Fig. 3(a) inset] has been reached with the 2.0% transmission output coupler. The beam quality was measured to be Mx2=6.5 in the horizontal direction and My2=3 in the vertical direction [Fig. 3(b) inset]. The laser operates during 10.8 μs with a buildup time of 4.2 μs [Fig. 3(b)]. For a pump energy of 20.9 mJ from the LC, the optical efficiency is then 0.15%. The total energy emitted by the 2240 LEDs is 143 mJ, which corresponds to a global efficiency of 0.023%.

 figure: Fig. 3.

Fig. 3. (a) Laser output energy at 790 nm versus the pump energy delivered by the luminescent concentrator for 1.0%, 2.0%, and 2.8% transmission output couplers. Inset: laser spectrum in free running operation. (b) Laser and fluorescence temporal profiles in multimode operation. The LED pump pulse is represented by the gray curve. Insets: spatial profile of the laser overlaid with the fluorecsence of the 1 mm×1 mm emitting facet of the Ti:sapphire crystal. (c) Temporal and spatial profiles of the TEM00 mode.

Download Full Size | PPT Slide | PDF

After careful alignment of the cavity, we achieved TEM00 operation; the highest laser output energy reached 18 μJ with a 2% transmission output coupler.

The tunability of the laser is investigated by inserting an SF10 prism in an extended cavity (125 mm long). The laser output power versus the laser wavelength is plotted on Fig. 4. The tunability of the laser is performed between 755 and 845 nm with a maximum emission at 800 nm limited by the coating of the two couplers of the cavity. As the laser cavity must be extended to insert the prism, it results in lower output energies: a consequence of the smaller laser mode in the gain medium, since the radius of curvature of the output coupler is no longer optimized for this cavity size.

 figure: Fig. 4.

Fig. 4. Laser output power versus laser wavelength. Performed with an SF10 prism in a 125-mm-long cavity.

Download Full Size | PPT Slide | PDF

The small signal gain per double pass is measured by investigating at the laser threshold as a function of intracavity calibrated Fresnel losses [26]. The losses are controlled by an intracavity 8-mm-thick N-BK7 flat window with a variable incidence angle around the Brewster angle. The measurements are performed with a 120-mm-long cavity and a 2% output coupler. The round-trip passive losses measured with the Findlay–Clay method reaches 9.4% [27], attributed to reabsorption losses in the near-infrared and the anti-reflective coating of the Ti:sapphire.

For a pump energy of 20.9 mJ, a double-pass small signal gain of 1.066 is measured (Fig. 5). The small signal gain per double pass is numerically simulated using a local estimation of the pump density in the gain medium and properties of Ti:sapphire directly measured on the sample used in this study (absorption of Ti:sapphire and Ti3+ ion lifetime). The estimation of the pump density is performed with a ray tracing software based on the Monte Carlo algorithm (LightTools).

 figure: Fig. 5.

Fig. 5. Small signal gain per double pass versus the pump energy: numerically simulated (dashed line) and measured with a 1% output coupler (dots).

Download Full Size | PPT Slide | PDF

In conclusion, we demonstrated a new pump source for Ti:sapphire that relies on blue LEDs and Ce:LuAG luminescent concentrators. It has a radiance higher by a factor 23 compared to an LED, which is the highest concentration value reached to date. This easily power-scalable pump source, emitting at 530 nm, delivers radiance of up to 9.9kW/cm2. To our best knowledge, this Ce:LuAG concentrator is among the brightest incoherent sources ever developed. It is a very promising light source in the visible, as its emission spectrum corresponds to the semiconductor’s green gap and opens the way for many applications in vision and fluorescent microscopy.

Laser operation with Ti:sapphire is clearly demonstrated and understood with significant output energy (32 μJ), gain (1,066), and tunability (755–845 nm). Even if the efficiency remains modest, this work brings the proof of concept of the suitability of LED pumped LCs for Ti:sapphire.

A major asset of LED-pumped LCs is energy scaling (related to LC width scaling) and massive collective operation assuring long lifetime, stability, and robustness. Further pump energy scaling can be imagined starting with pumping unused facets of the gain medium (potentially designing a polygonal Ti:sapphire), considering new luminescent crystals having a better spectral matching between the LC and the gain medium, and using the advantage of side pumping with a longer gain medium.

LED-pumped LCs may open the way to a more compact, rugged, simpler, and less expensive generation of amplifiers in Ti:sapphire femtosecond laser chains that will benefit all scientific, industrial, and medical applications. This work represents only the first step toward this target.

Funding

Agence Nationale de la Recherche (ANR) (ANR-17-ASTR-0021); Direction Générale de l’Armement (DGA).

REFERENCES

1. P. F. Moulton, Opt. News 8(6), 9 (1982). [CrossRef]  

2. L. Esterowitz, R. Allen, and C. P. Khattak, Tunable Solid-State Lasers, Springer Series in Optical Sciences (1985), Vol. 47, p. 73.

3. P. F. Moulton, J. Opt. Soc. Am. B 3, 125 (1986). [CrossRef]  

4. K. Takehisa and A. Miki, Appl. Opt. 31, 2734 (1992). [CrossRef]  

5. G. K. Samanta, S. Chaitanya Kumar, K. Devi, and M. Ebrahim-Zadeh, Opt. Lasers Eng. 50, 215 (2012). [CrossRef]  

6. A. Müller, O. Jensen, A. Unterhuber, T. Le, A. Stingl, K. Hasler, B. Sumpf, G. Erbert, P. Andersen, and P. Petersen, Opt. Express 19, 12156 (2011). [CrossRef]  

7. B. Resan, E. Coadou, S. Petersen, A. Thomas, P. Walther, R. Viselga, J.-M. Heritier, J. Chilla, W. Tulloch, and A. Fry, Proc. SPIE 6871, 687116 (2008). [CrossRef]  

8. P. Roth, A. Maclean, D. Burns, and A. Kemp, Opt. Lett. 34, 3334 (2009). [CrossRef]  

9. C. G. Durfee, T. Storz, J. Garlick, S. Hill, J. A. Squier, M. Kirchner, G. Taft, K. Shea, H. Kapteyn, M. Murnane, and S. Backus, Opt. Express 20, 13677 (2012). [CrossRef]  

10. S. Backus, M. Kirchner, R. Lemons, D. Schmidt, C. Durfee, M. Murnane, and H. Kapteyn, Opt. Express 25, 3666 (2017). [CrossRef]  

11. S. Sawai, A. Hosaka, H. Kawauchi, K. Hirosawa, and F. Kannari, Appl. Phys. Express 7, 022702 (2014). [CrossRef]  

12. A. Hoffstadt, IEEE J. Quantum Electron. 33, 1850 (1997). [CrossRef]  

13. A. Barbet, F. Balembois, A. Paul, J.-P. Blanchot, A.-L. Viotti, J. Sabater, F. Druon, and P. Georges, Opt. Lett. 39, 6731 (2014). [CrossRef]  

14. B. Villars, E. Hill, and C. Durfee, Opt. Lett. 40, 3049 (2015). [CrossRef]  

15. K.-Y. Huang, C.-K. Su, M.-W. Lin, Y.-C. Chiu, and Y.-C. Huang, Opt. Express 24, 12043 (2016). [CrossRef]  

16. C.-Y. Cho, C.-C. Pu, K.-W. Su, and Y.-F. Chen, Opt. Lett. 42, 2394 (2017). [CrossRef]  

17. S. J. Herr, K. Buse, and I. Breunig, Photon. Res. 5, B34 (2017). [CrossRef]  

18. A. Barbet, A. Paul, T. Gallinelli, F. Balembois, J.-P. Blanchot, S. Forget, S. Chénais, F. Druon, and P. Georges, Optica 3, 465 (2016). [CrossRef]  

19. S. Roelandt, Y. Meuret, D. de Boer, D. Bruls, P. Van de Voorde, and H. Thienpont, Opt. Eng. 54, 055101 (2015). [CrossRef]  

20. D. de Boer, D. Bruls, and H. Jagt, Opt. Express 24, A1069 (2016). [CrossRef]  

21. D. de Boer, D. Bruls, C. Hoelen, and H. Jagt, Proc SPIE 10378, 103780M (2017). [CrossRef]  

22. C. Hoelen, P. Antonis, D. de Boer, R. Koole, S. Kadijk, Y. Li, V. Vanbroekhoven, and P. Van de Voorde, Proc. SPIE 10378, 103780N (2017). [CrossRef]  

23. J. Sathian, J. Breeze, B. Richards, N. M. Alford, and M. Oxborrow, Opt. Express 25, 13714 (2017). [CrossRef]  

24. P. Pichon, A. Barbet, P. Legavre, T. Gallinelli, F. Balembois, J.-P. Blanchot, S. Forget, S. Chénais, F. Druon, and P. Georges, Opt. Laser Technol. 96, 7 (2017). [CrossRef]  

25. P. Pichon, A. Barbet, F. Druon, J.-P. Blanchot, F. Balembois, and P. Georges, Opt. Lett. 42, 4191 (2017). [CrossRef]  

26. F. Balembois, F. Falcoz, F. Kerboull, F. Druon, P. Georges, and A. Brun, IEEE J. Quantum Electron. 33, 1614 (1997). [CrossRef]  

27. D. Findlay and R. Clay, Phys. Lett. 20, 277 (1966). [CrossRef]  

References

  • View by:

  1. P. F. Moulton, Opt. News 8(6), 9 (1982).
    [Crossref]
  2. L. Esterowitz, R. Allen, and C. P. Khattak, Tunable Solid-State Lasers, Springer Series in Optical Sciences (1985), Vol. 47, p. 73.
  3. P. F. Moulton, J. Opt. Soc. Am. B 3, 125 (1986).
    [Crossref]
  4. K. Takehisa and A. Miki, Appl. Opt. 31, 2734 (1992).
    [Crossref]
  5. G. K. Samanta, S. Chaitanya Kumar, K. Devi, and M. Ebrahim-Zadeh, Opt. Lasers Eng. 50, 215 (2012).
    [Crossref]
  6. A. Müller, O. Jensen, A. Unterhuber, T. Le, A. Stingl, K. Hasler, B. Sumpf, G. Erbert, P. Andersen, and P. Petersen, Opt. Express 19, 12156 (2011).
    [Crossref]
  7. B. Resan, E. Coadou, S. Petersen, A. Thomas, P. Walther, R. Viselga, J.-M. Heritier, J. Chilla, W. Tulloch, and A. Fry, Proc. SPIE 6871, 687116 (2008).
    [Crossref]
  8. P. Roth, A. Maclean, D. Burns, and A. Kemp, Opt. Lett. 34, 3334 (2009).
    [Crossref]
  9. C. G. Durfee, T. Storz, J. Garlick, S. Hill, J. A. Squier, M. Kirchner, G. Taft, K. Shea, H. Kapteyn, M. Murnane, and S. Backus, Opt. Express 20, 13677 (2012).
    [Crossref]
  10. S. Backus, M. Kirchner, R. Lemons, D. Schmidt, C. Durfee, M. Murnane, and H. Kapteyn, Opt. Express 25, 3666 (2017).
    [Crossref]
  11. S. Sawai, A. Hosaka, H. Kawauchi, K. Hirosawa, and F. Kannari, Appl. Phys. Express 7, 022702 (2014).
    [Crossref]
  12. A. Hoffstadt, IEEE J. Quantum Electron. 33, 1850 (1997).
    [Crossref]
  13. A. Barbet, F. Balembois, A. Paul, J.-P. Blanchot, A.-L. Viotti, J. Sabater, F. Druon, and P. Georges, Opt. Lett. 39, 6731 (2014).
    [Crossref]
  14. B. Villars, E. Hill, and C. Durfee, Opt. Lett. 40, 3049 (2015).
    [Crossref]
  15. K.-Y. Huang, C.-K. Su, M.-W. Lin, Y.-C. Chiu, and Y.-C. Huang, Opt. Express 24, 12043 (2016).
    [Crossref]
  16. C.-Y. Cho, C.-C. Pu, K.-W. Su, and Y.-F. Chen, Opt. Lett. 42, 2394 (2017).
    [Crossref]
  17. S. J. Herr, K. Buse, and I. Breunig, Photon. Res. 5, B34 (2017).
    [Crossref]
  18. A. Barbet, A. Paul, T. Gallinelli, F. Balembois, J.-P. Blanchot, S. Forget, S. Chénais, F. Druon, and P. Georges, Optica 3, 465 (2016).
    [Crossref]
  19. S. Roelandt, Y. Meuret, D. de Boer, D. Bruls, P. Van de Voorde, and H. Thienpont, Opt. Eng. 54, 055101 (2015).
    [Crossref]
  20. D. de Boer, D. Bruls, and H. Jagt, Opt. Express 24, A1069 (2016).
    [Crossref]
  21. D. de Boer, D. Bruls, C. Hoelen, and H. Jagt, Proc SPIE 10378, 103780M (2017).
    [Crossref]
  22. C. Hoelen, P. Antonis, D. de Boer, R. Koole, S. Kadijk, Y. Li, V. Vanbroekhoven, and P. Van de Voorde, Proc. SPIE 10378, 103780N (2017).
    [Crossref]
  23. J. Sathian, J. Breeze, B. Richards, N. M. Alford, and M. Oxborrow, Opt. Express 25, 13714 (2017).
    [Crossref]
  24. P. Pichon, A. Barbet, P. Legavre, T. Gallinelli, F. Balembois, J.-P. Blanchot, S. Forget, S. Chénais, F. Druon, and P. Georges, Opt. Laser Technol. 96, 7 (2017).
    [Crossref]
  25. P. Pichon, A. Barbet, F. Druon, J.-P. Blanchot, F. Balembois, and P. Georges, Opt. Lett. 42, 4191 (2017).
    [Crossref]
  26. F. Balembois, F. Falcoz, F. Kerboull, F. Druon, P. Georges, and A. Brun, IEEE J. Quantum Electron. 33, 1614 (1997).
    [Crossref]
  27. D. Findlay and R. Clay, Phys. Lett. 20, 277 (1966).
    [Crossref]

2017 (8)

S. Backus, M. Kirchner, R. Lemons, D. Schmidt, C. Durfee, M. Murnane, and H. Kapteyn, Opt. Express 25, 3666 (2017).
[Crossref]

C.-Y. Cho, C.-C. Pu, K.-W. Su, and Y.-F. Chen, Opt. Lett. 42, 2394 (2017).
[Crossref]

S. J. Herr, K. Buse, and I. Breunig, Photon. Res. 5, B34 (2017).
[Crossref]

D. de Boer, D. Bruls, C. Hoelen, and H. Jagt, Proc SPIE 10378, 103780M (2017).
[Crossref]

C. Hoelen, P. Antonis, D. de Boer, R. Koole, S. Kadijk, Y. Li, V. Vanbroekhoven, and P. Van de Voorde, Proc. SPIE 10378, 103780N (2017).
[Crossref]

J. Sathian, J. Breeze, B. Richards, N. M. Alford, and M. Oxborrow, Opt. Express 25, 13714 (2017).
[Crossref]

P. Pichon, A. Barbet, P. Legavre, T. Gallinelli, F. Balembois, J.-P. Blanchot, S. Forget, S. Chénais, F. Druon, and P. Georges, Opt. Laser Technol. 96, 7 (2017).
[Crossref]

P. Pichon, A. Barbet, F. Druon, J.-P. Blanchot, F. Balembois, and P. Georges, Opt. Lett. 42, 4191 (2017).
[Crossref]

2016 (3)

2015 (2)

B. Villars, E. Hill, and C. Durfee, Opt. Lett. 40, 3049 (2015).
[Crossref]

S. Roelandt, Y. Meuret, D. de Boer, D. Bruls, P. Van de Voorde, and H. Thienpont, Opt. Eng. 54, 055101 (2015).
[Crossref]

2014 (2)

A. Barbet, F. Balembois, A. Paul, J.-P. Blanchot, A.-L. Viotti, J. Sabater, F. Druon, and P. Georges, Opt. Lett. 39, 6731 (2014).
[Crossref]

S. Sawai, A. Hosaka, H. Kawauchi, K. Hirosawa, and F. Kannari, Appl. Phys. Express 7, 022702 (2014).
[Crossref]

2012 (2)

2011 (1)

2009 (1)

2008 (1)

B. Resan, E. Coadou, S. Petersen, A. Thomas, P. Walther, R. Viselga, J.-M. Heritier, J. Chilla, W. Tulloch, and A. Fry, Proc. SPIE 6871, 687116 (2008).
[Crossref]

1997 (2)

A. Hoffstadt, IEEE J. Quantum Electron. 33, 1850 (1997).
[Crossref]

F. Balembois, F. Falcoz, F. Kerboull, F. Druon, P. Georges, and A. Brun, IEEE J. Quantum Electron. 33, 1614 (1997).
[Crossref]

1992 (1)

1986 (1)

1982 (1)

P. F. Moulton, Opt. News 8(6), 9 (1982).
[Crossref]

1966 (1)

D. Findlay and R. Clay, Phys. Lett. 20, 277 (1966).
[Crossref]

Alford, N. M.

Allen, R.

L. Esterowitz, R. Allen, and C. P. Khattak, Tunable Solid-State Lasers, Springer Series in Optical Sciences (1985), Vol. 47, p. 73.

Andersen, P.

Antonis, P.

C. Hoelen, P. Antonis, D. de Boer, R. Koole, S. Kadijk, Y. Li, V. Vanbroekhoven, and P. Van de Voorde, Proc. SPIE 10378, 103780N (2017).
[Crossref]

Backus, S.

Balembois, F.

Barbet, A.

Blanchot, J.-P.

Breeze, J.

Breunig, I.

Bruls, D.

D. de Boer, D. Bruls, C. Hoelen, and H. Jagt, Proc SPIE 10378, 103780M (2017).
[Crossref]

D. de Boer, D. Bruls, and H. Jagt, Opt. Express 24, A1069 (2016).
[Crossref]

S. Roelandt, Y. Meuret, D. de Boer, D. Bruls, P. Van de Voorde, and H. Thienpont, Opt. Eng. 54, 055101 (2015).
[Crossref]

Brun, A.

F. Balembois, F. Falcoz, F. Kerboull, F. Druon, P. Georges, and A. Brun, IEEE J. Quantum Electron. 33, 1614 (1997).
[Crossref]

Burns, D.

Buse, K.

Chaitanya Kumar, S.

G. K. Samanta, S. Chaitanya Kumar, K. Devi, and M. Ebrahim-Zadeh, Opt. Lasers Eng. 50, 215 (2012).
[Crossref]

Chen, Y.-F.

Chénais, S.

P. Pichon, A. Barbet, P. Legavre, T. Gallinelli, F. Balembois, J.-P. Blanchot, S. Forget, S. Chénais, F. Druon, and P. Georges, Opt. Laser Technol. 96, 7 (2017).
[Crossref]

A. Barbet, A. Paul, T. Gallinelli, F. Balembois, J.-P. Blanchot, S. Forget, S. Chénais, F. Druon, and P. Georges, Optica 3, 465 (2016).
[Crossref]

Chilla, J.

B. Resan, E. Coadou, S. Petersen, A. Thomas, P. Walther, R. Viselga, J.-M. Heritier, J. Chilla, W. Tulloch, and A. Fry, Proc. SPIE 6871, 687116 (2008).
[Crossref]

Chiu, Y.-C.

Cho, C.-Y.

Clay, R.

D. Findlay and R. Clay, Phys. Lett. 20, 277 (1966).
[Crossref]

Coadou, E.

B. Resan, E. Coadou, S. Petersen, A. Thomas, P. Walther, R. Viselga, J.-M. Heritier, J. Chilla, W. Tulloch, and A. Fry, Proc. SPIE 6871, 687116 (2008).
[Crossref]

de Boer, D.

C. Hoelen, P. Antonis, D. de Boer, R. Koole, S. Kadijk, Y. Li, V. Vanbroekhoven, and P. Van de Voorde, Proc. SPIE 10378, 103780N (2017).
[Crossref]

D. de Boer, D. Bruls, C. Hoelen, and H. Jagt, Proc SPIE 10378, 103780M (2017).
[Crossref]

D. de Boer, D. Bruls, and H. Jagt, Opt. Express 24, A1069 (2016).
[Crossref]

S. Roelandt, Y. Meuret, D. de Boer, D. Bruls, P. Van de Voorde, and H. Thienpont, Opt. Eng. 54, 055101 (2015).
[Crossref]

Devi, K.

G. K. Samanta, S. Chaitanya Kumar, K. Devi, and M. Ebrahim-Zadeh, Opt. Lasers Eng. 50, 215 (2012).
[Crossref]

Druon, F.

Durfee, C.

Durfee, C. G.

Ebrahim-Zadeh, M.

G. K. Samanta, S. Chaitanya Kumar, K. Devi, and M. Ebrahim-Zadeh, Opt. Lasers Eng. 50, 215 (2012).
[Crossref]

Erbert, G.

Esterowitz, L.

L. Esterowitz, R. Allen, and C. P. Khattak, Tunable Solid-State Lasers, Springer Series in Optical Sciences (1985), Vol. 47, p. 73.

Falcoz, F.

F. Balembois, F. Falcoz, F. Kerboull, F. Druon, P. Georges, and A. Brun, IEEE J. Quantum Electron. 33, 1614 (1997).
[Crossref]

Findlay, D.

D. Findlay and R. Clay, Phys. Lett. 20, 277 (1966).
[Crossref]

Forget, S.

P. Pichon, A. Barbet, P. Legavre, T. Gallinelli, F. Balembois, J.-P. Blanchot, S. Forget, S. Chénais, F. Druon, and P. Georges, Opt. Laser Technol. 96, 7 (2017).
[Crossref]

A. Barbet, A. Paul, T. Gallinelli, F. Balembois, J.-P. Blanchot, S. Forget, S. Chénais, F. Druon, and P. Georges, Optica 3, 465 (2016).
[Crossref]

Fry, A.

B. Resan, E. Coadou, S. Petersen, A. Thomas, P. Walther, R. Viselga, J.-M. Heritier, J. Chilla, W. Tulloch, and A. Fry, Proc. SPIE 6871, 687116 (2008).
[Crossref]

Gallinelli, T.

P. Pichon, A. Barbet, P. Legavre, T. Gallinelli, F. Balembois, J.-P. Blanchot, S. Forget, S. Chénais, F. Druon, and P. Georges, Opt. Laser Technol. 96, 7 (2017).
[Crossref]

A. Barbet, A. Paul, T. Gallinelli, F. Balembois, J.-P. Blanchot, S. Forget, S. Chénais, F. Druon, and P. Georges, Optica 3, 465 (2016).
[Crossref]

Garlick, J.

Georges, P.

Hasler, K.

Heritier, J.-M.

B. Resan, E. Coadou, S. Petersen, A. Thomas, P. Walther, R. Viselga, J.-M. Heritier, J. Chilla, W. Tulloch, and A. Fry, Proc. SPIE 6871, 687116 (2008).
[Crossref]

Herr, S. J.

Hill, E.

Hill, S.

Hirosawa, K.

S. Sawai, A. Hosaka, H. Kawauchi, K. Hirosawa, and F. Kannari, Appl. Phys. Express 7, 022702 (2014).
[Crossref]

Hoelen, C.

D. de Boer, D. Bruls, C. Hoelen, and H. Jagt, Proc SPIE 10378, 103780M (2017).
[Crossref]

C. Hoelen, P. Antonis, D. de Boer, R. Koole, S. Kadijk, Y. Li, V. Vanbroekhoven, and P. Van de Voorde, Proc. SPIE 10378, 103780N (2017).
[Crossref]

Hoffstadt, A.

A. Hoffstadt, IEEE J. Quantum Electron. 33, 1850 (1997).
[Crossref]

Hosaka, A.

S. Sawai, A. Hosaka, H. Kawauchi, K. Hirosawa, and F. Kannari, Appl. Phys. Express 7, 022702 (2014).
[Crossref]

Huang, K.-Y.

Huang, Y.-C.

Jagt, H.

D. de Boer, D. Bruls, C. Hoelen, and H. Jagt, Proc SPIE 10378, 103780M (2017).
[Crossref]

D. de Boer, D. Bruls, and H. Jagt, Opt. Express 24, A1069 (2016).
[Crossref]

Jensen, O.

Kadijk, S.

C. Hoelen, P. Antonis, D. de Boer, R. Koole, S. Kadijk, Y. Li, V. Vanbroekhoven, and P. Van de Voorde, Proc. SPIE 10378, 103780N (2017).
[Crossref]

Kannari, F.

S. Sawai, A. Hosaka, H. Kawauchi, K. Hirosawa, and F. Kannari, Appl. Phys. Express 7, 022702 (2014).
[Crossref]

Kapteyn, H.

Kawauchi, H.

S. Sawai, A. Hosaka, H. Kawauchi, K. Hirosawa, and F. Kannari, Appl. Phys. Express 7, 022702 (2014).
[Crossref]

Kemp, A.

Kerboull, F.

F. Balembois, F. Falcoz, F. Kerboull, F. Druon, P. Georges, and A. Brun, IEEE J. Quantum Electron. 33, 1614 (1997).
[Crossref]

Khattak, C. P.

L. Esterowitz, R. Allen, and C. P. Khattak, Tunable Solid-State Lasers, Springer Series in Optical Sciences (1985), Vol. 47, p. 73.

Kirchner, M.

Koole, R.

C. Hoelen, P. Antonis, D. de Boer, R. Koole, S. Kadijk, Y. Li, V. Vanbroekhoven, and P. Van de Voorde, Proc. SPIE 10378, 103780N (2017).
[Crossref]

Le, T.

Legavre, P.

P. Pichon, A. Barbet, P. Legavre, T. Gallinelli, F. Balembois, J.-P. Blanchot, S. Forget, S. Chénais, F. Druon, and P. Georges, Opt. Laser Technol. 96, 7 (2017).
[Crossref]

Lemons, R.

Li, Y.

C. Hoelen, P. Antonis, D. de Boer, R. Koole, S. Kadijk, Y. Li, V. Vanbroekhoven, and P. Van de Voorde, Proc. SPIE 10378, 103780N (2017).
[Crossref]

Lin, M.-W.

Maclean, A.

Meuret, Y.

S. Roelandt, Y. Meuret, D. de Boer, D. Bruls, P. Van de Voorde, and H. Thienpont, Opt. Eng. 54, 055101 (2015).
[Crossref]

Miki, A.

Moulton, P. F.

Müller, A.

Murnane, M.

Oxborrow, M.

Paul, A.

Petersen, P.

Petersen, S.

B. Resan, E. Coadou, S. Petersen, A. Thomas, P. Walther, R. Viselga, J.-M. Heritier, J. Chilla, W. Tulloch, and A. Fry, Proc. SPIE 6871, 687116 (2008).
[Crossref]

Pichon, P.

P. Pichon, A. Barbet, P. Legavre, T. Gallinelli, F. Balembois, J.-P. Blanchot, S. Forget, S. Chénais, F. Druon, and P. Georges, Opt. Laser Technol. 96, 7 (2017).
[Crossref]

P. Pichon, A. Barbet, F. Druon, J.-P. Blanchot, F. Balembois, and P. Georges, Opt. Lett. 42, 4191 (2017).
[Crossref]

Pu, C.-C.

Resan, B.

B. Resan, E. Coadou, S. Petersen, A. Thomas, P. Walther, R. Viselga, J.-M. Heritier, J. Chilla, W. Tulloch, and A. Fry, Proc. SPIE 6871, 687116 (2008).
[Crossref]

Richards, B.

Roelandt, S.

S. Roelandt, Y. Meuret, D. de Boer, D. Bruls, P. Van de Voorde, and H. Thienpont, Opt. Eng. 54, 055101 (2015).
[Crossref]

Roth, P.

Sabater, J.

Samanta, G. K.

G. K. Samanta, S. Chaitanya Kumar, K. Devi, and M. Ebrahim-Zadeh, Opt. Lasers Eng. 50, 215 (2012).
[Crossref]

Sathian, J.

Sawai, S.

S. Sawai, A. Hosaka, H. Kawauchi, K. Hirosawa, and F. Kannari, Appl. Phys. Express 7, 022702 (2014).
[Crossref]

Schmidt, D.

Shea, K.

Squier, J. A.

Stingl, A.

Storz, T.

Su, C.-K.

Su, K.-W.

Sumpf, B.

Taft, G.

Takehisa, K.

Thienpont, H.

S. Roelandt, Y. Meuret, D. de Boer, D. Bruls, P. Van de Voorde, and H. Thienpont, Opt. Eng. 54, 055101 (2015).
[Crossref]

Thomas, A.

B. Resan, E. Coadou, S. Petersen, A. Thomas, P. Walther, R. Viselga, J.-M. Heritier, J. Chilla, W. Tulloch, and A. Fry, Proc. SPIE 6871, 687116 (2008).
[Crossref]

Tulloch, W.

B. Resan, E. Coadou, S. Petersen, A. Thomas, P. Walther, R. Viselga, J.-M. Heritier, J. Chilla, W. Tulloch, and A. Fry, Proc. SPIE 6871, 687116 (2008).
[Crossref]

Unterhuber, A.

Van de Voorde, P.

C. Hoelen, P. Antonis, D. de Boer, R. Koole, S. Kadijk, Y. Li, V. Vanbroekhoven, and P. Van de Voorde, Proc. SPIE 10378, 103780N (2017).
[Crossref]

S. Roelandt, Y. Meuret, D. de Boer, D. Bruls, P. Van de Voorde, and H. Thienpont, Opt. Eng. 54, 055101 (2015).
[Crossref]

Vanbroekhoven, V.

C. Hoelen, P. Antonis, D. de Boer, R. Koole, S. Kadijk, Y. Li, V. Vanbroekhoven, and P. Van de Voorde, Proc. SPIE 10378, 103780N (2017).
[Crossref]

Villars, B.

Viotti, A.-L.

Viselga, R.

B. Resan, E. Coadou, S. Petersen, A. Thomas, P. Walther, R. Viselga, J.-M. Heritier, J. Chilla, W. Tulloch, and A. Fry, Proc. SPIE 6871, 687116 (2008).
[Crossref]

Walther, P.

B. Resan, E. Coadou, S. Petersen, A. Thomas, P. Walther, R. Viselga, J.-M. Heritier, J. Chilla, W. Tulloch, and A. Fry, Proc. SPIE 6871, 687116 (2008).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Express (1)

S. Sawai, A. Hosaka, H. Kawauchi, K. Hirosawa, and F. Kannari, Appl. Phys. Express 7, 022702 (2014).
[Crossref]

IEEE J. Quantum Electron. (2)

A. Hoffstadt, IEEE J. Quantum Electron. 33, 1850 (1997).
[Crossref]

F. Balembois, F. Falcoz, F. Kerboull, F. Druon, P. Georges, and A. Brun, IEEE J. Quantum Electron. 33, 1614 (1997).
[Crossref]

J. Opt. Soc. Am. B (1)

Opt. Eng. (1)

S. Roelandt, Y. Meuret, D. de Boer, D. Bruls, P. Van de Voorde, and H. Thienpont, Opt. Eng. 54, 055101 (2015).
[Crossref]

Opt. Express (6)

Opt. Laser Technol. (1)

P. Pichon, A. Barbet, P. Legavre, T. Gallinelli, F. Balembois, J.-P. Blanchot, S. Forget, S. Chénais, F. Druon, and P. Georges, Opt. Laser Technol. 96, 7 (2017).
[Crossref]

Opt. Lasers Eng. (1)

G. K. Samanta, S. Chaitanya Kumar, K. Devi, and M. Ebrahim-Zadeh, Opt. Lasers Eng. 50, 215 (2012).
[Crossref]

Opt. Lett. (5)

Opt. News (1)

P. F. Moulton, Opt. News 8(6), 9 (1982).
[Crossref]

Optica (1)

Photon. Res. (1)

Phys. Lett. (1)

D. Findlay and R. Clay, Phys. Lett. 20, 277 (1966).
[Crossref]

Proc SPIE (1)

D. de Boer, D. Bruls, C. Hoelen, and H. Jagt, Proc SPIE 10378, 103780M (2017).
[Crossref]

Proc. SPIE (2)

C. Hoelen, P. Antonis, D. de Boer, R. Koole, S. Kadijk, Y. Li, V. Vanbroekhoven, and P. Van de Voorde, Proc. SPIE 10378, 103780N (2017).
[Crossref]

B. Resan, E. Coadou, S. Petersen, A. Thomas, P. Walther, R. Viselga, J.-M. Heritier, J. Chilla, W. Tulloch, and A. Fry, Proc. SPIE 6871, 687116 (2008).
[Crossref]

Other (1)

L. Esterowitz, R. Allen, and C. P. Khattak, Tunable Solid-State Lasers, Springer Series in Optical Sciences (1985), Vol. 47, p. 73.

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Ce:LuAG (red), Ti:sapphire (black) absorption coefficients. Emission spectra of Ce:LuAG (green) and LED (blue) in the pulsed regime (15 μs, 7 A, 10 Hz, room temperature).
Fig. 2.
Fig. 2. Setup of the experiment.
Fig. 3.
Fig. 3. (a) Laser output energy at 790 nm versus the pump energy delivered by the luminescent concentrator for 1.0%, 2.0%, and 2.8% transmission output couplers. Inset: laser spectrum in free running operation. (b) Laser and fluorescence temporal profiles in multimode operation. The LED pump pulse is represented by the gray curve. Insets: spatial profile of the laser overlaid with the fluorecsence of the 1 mm×1 mm emitting facet of the Ti:sapphire crystal. (c) Temporal and spatial profiles of the TEM00 mode.
Fig. 4.
Fig. 4. Laser output power versus laser wavelength. Performed with an SF10 prism in a 125-mm-long cavity.
Fig. 5.
Fig. 5. Small signal gain per double pass versus the pump energy: numerically simulated (dashed line) and measured with a 1% output coupler (dots).

Tables (1)

Tables Icon

Table 1. Properties and Performance of the Ce:LuAG Luminescent Concentrators Studied in this Work

Metrics