Abstract

Free-space light can be coupled into propagating surface waves at a metal–dielectric interface, known as surface plasmons (SPs). This process has traditionally faced challenges in preserving the incident polarization information and controlling the directionality of the excited SPs. The recently reported polarization-controlled asymmetric excitation of SPs in metasurfaces has attracted much attention for its promise in developing innovative plasmonic devices. However, the unit elements in these works were purposely designed in certain orthogonal polarizations, i.e., linear or circular polarizations, resulting in limited two-level polarization controllability. Here, we introduce a coupled-mode theory to overcome this limit. We demonstrated theoretically and experimentally that, by utilizing the coupling effect between a pair of split-ring-shaped slit resonators, exotic asymmetric excitation of SPs can be obtained under the x-, y-, left-handed circular, and right-handed circular polarization incidences, while the polarization information of the incident light can be preserved in the excited SPs. The versatility of the presented design scheme would offer opportunities for polarization sensing and polarization-controlled plasmonic devices.

© 2017 Optical Society of America

1. INTRODUCTION

Surface plasmons (SPs) are electromagnetic excitations propagating along the interface between a metal and a dielectric [1]. The remarkable features of subwavelength field confinement and strong field enhancement of SPs have led optics to the subwavelength scale, opening up a range of new opportunities in photonics research, including miniaturized optoelectronic circuitry [2,3], light–matter interactions [4,5], high-resolution imaging [6,7], and ultrasensitive biochemical sensing [8]. One of the most important steps toward practical applications is coupling of free-space light to SPs, which is traditionally accomplished by using prisms or gratings [9,10]. The ever-increasing demand for functional plasmonic devices has driven the exploration of new coupling methods, especially for the asymmetric excitation of SPs. In early studies, asymmetric excitation was generally achieved using obliquely illuminated apertures [1113] or geometrically tailored metallic gratings [1418]. These works have played an important role in exploring on-demand excitations of SPs, but the design flexibility still remains insufficient.

Recently, metasurfaces have emerged as a robust approach to manipulate either free-space light or SPs through the design of suitable subwavelength meta-atoms and the prescribed arrangement of their spatial distributions to control local light–matter interactions [1921]. As the most simple unit element, subwavelength slit resonators made from thin metal film are commonly used in designing metasurfaces for SP manipulation [2227]. It was shown that asymmetric excitation of SPs can be achieved by manipulating the interference of the excited SPs through two slits with different lengths [28]. More importantly, additional design flexibility could be engineered by incorporating the polarization responses of the slit resonators to achieve polarization-controlled asymmetric excitation. For instance, the phase of two orthogonally oriented resonators can be tailored by changing the handedness of the incident circular polarization [29] or the direction of the incident linear polarization [30], and then the interference-induced asymmetric excitation can be controlled. Alternatively, since the slits are particularly suitable for geometric phase design through careful arrangement of the resonator orientations [2527,29], a polarization-controlled asymmetric excitation can also be achieved by applying the concept of interfacial phase discontinuity under the circularly polarized incidences [31]. Apart from the normal slit resonator, the optical responses of L- and V-shaped slits were also studied for the polarization-controlled excitation of SPs [3234]. However, we emphasize here that the polarization-controlled excitation strategies examined thus far, as mentioned above, depend either on x-polarized and y-polarized incidences, or on left-handed circularly polarized (LCP) and right-handed circularly polarized (RCP) incidences [2934]. These are referred to as two-level polarization control.

In this paper, we theoretically and experimentally demonstrate a strategy of fully polarization-controlled excitation of SPs, in which asymmetric excitation of SPs can be simultaneously controlled by both linearly and circularly orthogonal polarizations, and we refer to this as four-level polarization control with respect to the aforementioned two-level control. In fact, it is quite challenging to achieve a four-level control since any linear polarization can be treated as a superposition of two circular polarizations, and vice versa. If a unit element could achieve controllable asymmetric excitation of SPs under a linearly (circularly) polarized incidence, when being illuminated by a circular (linear) polarization, the excited SPs from the two linear (circular) polarization components would inevitably interfere with each other. To achieve a four-level asymmetric excitation, the results of such interference must further exactly satisfy asymmetric excitation conditions. However, the simple geometric or spatial design of the individual slit resonator cannot easily realize such a complicated SP response, and alternative smart designs are thus required. It is worth noting that the recently reported asymmetric excitation of SPs based on dark mode coupling paved a new way to solve this problem [35]. The coupled resonators can acquire more exotic SP responses than the uncoupled resonator, and more important, such SP response can be modified by changing not only the structural parameters of each resonator component, but also the coupling strength through varying the relative position of the two resonators, which provides an extra design freedom. Based on this, we suggest a type of four-level polarization-controlled asymmetric excitation of SPs. The essence of the proposed metasurface here lies in a critical coupling effect between two resonators, which leads to different asymmetric excitations under the x-polarized, y-polarized, LCP, and RCP incidences.

2. SAMPLE DESIGN AND NEAR-FIELD SIMULATION

A proof-of-concept metasurface for the four-level polarization-controlled asymmetric excitation of SPs is designed in the terahertz regime. The metasurface comprises a 2D array of subwavelength meta-molecules, with each meta-molecule consisting of two split-ring-shaped slit resonators (SSRs) oriented along the perpendicular directions and positioned in a mirror symmetric configuration, as shown in Fig. 1(a). The metasurface is a 200-nm-thick aluminum structure patterned on a quartz substrate. Figure 1(b) illustrates a meta-molecule, the so-called SSR-pair, where a=b=44μm, w=g=10μm, and d=5μm. The distance d between the SSRs is far smaller than the wavelength, which ensures near-field coupling. The working frequency of the structure is around 0.75 THz. To enhance the directionality and overall SP field at the designed frequency and extrude the SP response of the individual unit cell at the same time, an 8×8 array setup is adopted (see Supplement 1, Section 1). Since metals almost behave like perfect conductors in the terahertz regime, the SP dispersion relation is very close to that of the free-space wave. In this case, the SPs cannot be confined as well at the metal surfaces as in the visible regime. However, the excitation and propagation behaviors are similar to those at visible frequencies. To quantitatively describe this confinement, we calculated the SP decay length, which is defined as the distance for the SP field to decay by a factor of 1/e from the metal surface to the free space [36]. The value is 83.4 mm at 0.75 THz. To increase the confinement, a thin coating of dielectric film on top of the metal surface can be utilized [37]. Here, the period of the array was set to be 400 μm along both the x- and y-directions so that the excited SPs from each SSR-pair on the air side could constructively interfere with each other at 0.75 THz.

 figure: Fig. 1.

Fig. 1. Sample design and near-field simulations. (a), (b) Schematics of the proposed metasurface and the SSR-pair unit cell, respectively. (c)–(f) Simulated Ez-field-amplitude distributions at 0.75 THz of the SSR-pair array under the x-polarized, y-polarized, LCP, and RCP incidences, respectively. The inset arrow in the bottom-left corner of each picture represents the corresponding incident polarization state, and the inset in the top-left corner represents the corresponding unit element, similarly hereinafter.

Download Full Size | PPT Slide | PDF

To illustrate the SP excitation behavior of the proposed design, we ran computer simulations of the spectral responses and the electric field distributions using the commercial software CST Microwave Studio. A broadband plane wave normally illuminates on the metasurface from the substrate side to excite SPs. The whole simulation area was 8mm×8mm, and the SP spectra were extracted by setting the field probes, while the field distributions of the SPs were mapped by defining the electric field monitors for Ez. The simulated results were obtained at 50 μm above the metasurface on the air side. Figures 1(c)1(f) illustrate the simulated Ez-field-amplitude distributions at 0.75 THz of the SSR-pair array under the x-polarized, y-polarized, LCP, and RCP incidences. It can be seen that there is always a propagation direction to be suppressed. Meanwhile, the launched SPs are obviously different from each other depending on the polarization state of the incident light, as can be gathered from the presented field distributions, where a four-level control is obtained.

3. SP RESPONSE OF A SINGLE SSR

To explore the underlying physical mechanism of the SSR-pair system, we first analyze the SP response of a single SSR. As a complementary structure to the well-known metamaterial unit, i.e., the split-ring resonator, the optical response of an SSR has been studied according to Babinet’s principle [38,39]. The fundamental resonance of an SSR can be excited by a magnetic field applied perpendicular to the gap or by an electric field passing through the ring [39]. Consider the SSR depicted in Fig. 2(a), its fundamental resonance can be excited by an x-polarized incidence. By carefully tailoring the geometric parameters of the SSR, the fundamental resonance frequency can be tuned to around 0.75 THz, where the SPs can be excited most efficiently. Figure 2(b) illustrates the corresponding transmission spectrum, where a resonance peak can be clearly seen around 0.75 THz.

 figure: Fig. 2.

Fig. 2. SP response of a single SSR. (a), (e) Schematics of the excitation situations when the SSR’s gap is along the +x and y directions, respectively. Inset: “+” and “−” indicate the charge distributions. (b), (f) Corresponding simulated transmission spectra of the single isolated SSRs in the situations of (a) and (e), respectively. (c), (g) Corresponding simulated real-part Ez-field distributions at 0.75 THz, respectively. (d), (h) Corresponding simulated Ez-field-amplitude distributions at 0.75 THz of the SSR arrays, respectively. The maximum value of the color bar in (h) is one-fifth of that in (d).

Download Full Size | PPT Slide | PDF

Figure 2(c) illustrates the simulated real-part Ez-field distribution of a single SSR excited under the x-polarized incidence. Since the SPs propagating along the +y and y directions (the arm directions) have the same excitation situation, as shown in Fig. 2(a), they have the same initial amplitude and phase. In contrast, the SPs propagating along the +x and the x directions have a similar initial amplitude but a different initial phase, as can be seen in Fig. 2(c). This is attributed to the fact that the SSR does not have symmetry along the x direction. Such SP response is quite different from the case of a conventional slit, which functions as an in-plane dipole, giving rise to SPs that propagate only radially away from both sides with an initial phase difference equal to π [2429]. In order to quantitatively describe the SP response of the SSR at its fundamental resonance frequency, the SPs propagating along the +x direction (the gap direction) are defined as Af, the SPs along the ±y directions are described as k1Af, and the SPs along the x direction are described as k2Af, as shown in Fig. 2(c). Here, k1 and k2 are complex coefficients representing the amplitude and phase difference with respect to the SPs propagating along the +x direction. Therefore, the SP response of the SSR at its fundamental resonance can be simply described by k1 and k2. More importantly, k1 and k2 can be manipulated by changing the geometric parameters of the SSR, which provides a possibility to achieve the desired SP responses of a single SSR and an SSR-pair. Figure 2(d) illustrates the simulated Ez-field-amplitude distribution in such an SSR array under the x-polarized incidence. It can be seen that the features of the SP response of a single SSR at the four directions are maintained. For instance, the excited SPs propagate along mainly the ±x directions, and only small partial SPs propagate along the ±y directions.

If the SSR’s gap is rotated to the y direction, as illustrated in Fig. 2(e), under the same x-polarized incidence, its fundamental resonance cannot be excited, but its second-order resonance can be excited, whose resonance frequency is higher than the fundamental resonance frequency [39]. Figure 2(f) illustrates the corresponding transmission spectrum, where a broadband resonance peak around 1.8 THz is observed. Since the second-order resonance has a low quality factor, its resonance behavior can be extended toward 0.75 THz, but the resonance strength largely decreases. This SP response acts as an in-plane dipole, as clearly shown by the simulated real-part Ez-field distribution in Fig. 2(g), in which the excited SPs along the ±x directions have the same amplitude but a π phase difference. Figure 2(h) illustrates the corresponding simulated Ez-field-amplitude distribution in such an SSR array at 0.75 THz. It can be seen that the amplitude of the excited SPs is weak but still non-ignorable comparing to that in Fig. 2(d). The frequencies of other higher order resonances are far above 0.75 THz, so their SP excitations at 0.75 THz are weak enough to be ignored. In the following analysis, only the SPs excited by the fundamental and the second-order resonances are considered.

4. THEORETICAL ANALYSIS OF THE SSR-PAIR SYSTEM

Taking advantage of the electromagnetically induced transparency (EIT) effect in metamaterials [40,41], coupled resonant slit-pairs that can asymmetrically excite SPs were recently demonstrated [35]. The essence is introducing a dark mode coupling mechanism, where the basic unit is composed of two artificial resonant elements, a radiative bright one that couples strongly with the incidence and a dark one that couples weakly with the incidence, and then the unit possesses EIT-like resonances due to near-field Fano-type coupling between the bright and dark elements [42,43]. Considering the SSR-pair depicted in Fig. 3(a), under x-polarized incidence, the fundamental resonance of the top-right SSR (SSR1) can be directly excited and acts as a bright mode qb1; meanwhile, although the bottom-left SSR (SSR2) cannot be directly excited at its fundamental resonance, it can couple with SSR1, giving rise to a resonance and acting as a dark mode qd2. The corresponding transmission spectra of such a single SSR-pair are illustrated in Supplement 1, Section 2, where the cross-polarization resonance peak around 0.75 THz confirms the near-field coupling effect. On the contrary, under the y-polarized incidence, the above mode roles exchange, with SSR2 acting as the bright mode qb2 and SSR1 acting as the dark mode qd1. In addition, the second-order resonances of SSR1 and SSR2 can be respectively excited by the y- and x-polarized incidences, providing minor contributions to the SP excitations at 0.75 THz, which are represented as qa1 and qa2, respectively. In this configuration, for an arbitrary incident polarization Ein=(x,y), the SSR-pair system can be theoretically described by applying the coupled-mode equations [40,4446]:

[δb1iκ0000iκδd2000000δa2000000δb2iκ0000iκδd1000000δa1][qb1qd2qa2qb2qd1qa1]=[xγbs0xγasyγbs0yγas].
Here, x and y are complex numbers; δum=ifuifγusγud is the response of the resonance mode qum(u{b,d,a},m{1,2}). fu, γus, and γud are the resonance frequency, radiative scattering loss rate, and dissipation loss rate of the resonance mode qu, respectively; κ is the near-field coupling coefficient between qb and qd; all these parameters are real. Since the two SSRs have identical geometry, fu, γus, γud, and κ are related only to the resonance mode u but not related to the SSR number m. Note that qb and qd are both fundamental resonance, thus fb=fd, γbs=γds, and γbd=γdd.

 figure: Fig. 3.

Fig. 3. Theoretical analysis of the SSR-pair system, and SP excitation spectra under an x-polarized incidence. (a) Schematic of the SP response from an SSR-pair. (b) Schematic of the calculation based on the 2D Huygens–Fresnel principle. (c)–(j) Simulated (solid lines), theoretical (dashed lines), and experimental (circles) (c)–(f) amplitude and (g)–(j) phase spectra of the SP fields toward the +x, x, +y, and y directions, in the case of x-polarized incidence. Here, the theoretically fitted parameters are fb=fd=0.748THz, γbs=γds=0.0135THz, γbd=γdd=0.0001THz, κ=0.0085THz, fa=1.8THz, γas=0.37THz, γad=0.001THz, η=182+i251, k1=0.28i0.29, and k2=0.089i1.021.

Download Full Size | PPT Slide | PDF

According to Eq. (1), every resonance mode qum can be solved, where we have

{[qb1qd1qa1]=[xqbyqdyqa][qb2qd2qa2]=[yqbxqdxqa].

Actually, the modes qu here are the calculated result when x=1 or y=1. To analyze the SP excitations, for qb and qd, we define the SP fields that propagate along the gap direction as Ab=ηqb and Ad=ηqd, respectively, where η is the fitting coefficient to normalize the SP excitations from the resonance modes qu; then the SP fields along the other directions can be described by k1 and k2, as discussed previously. Similarly, for qa, the SP field that propagates along one arm direction can be defined as Aa=ηqa, and then the SP field along the opposite direction will be Aa due to the π phase difference. Based on this, Fig. 3(a) schematically illustrates the overall SP response of an SSR-pair under an arbitrary polarization incidence, where the SP fields from different resonance modes at the four directions are synthetically considered in the unit of the SSR-pair. The subscript and superscript of the inset A represent the SP propagating direction and SSR number, respectively. The corresponding expressions can be found in Supplement 1, Section 3.

Next, we consider the SSR-pair array depicted in Fig. 3(b). At the point of observation, M, which is located on the +x side of the SSR-pair array, the SP field EM can be calculated as a superposition result of the excited SPs from each SSR-pair by using the 2D Huygens–Fresnel principle [2327,29,47]:

EM=n(A+x1eik|l1|×cosθ1)/|l1|+n(A+x2eik|l2|×cosθ2)/|l2|,
where k is the SP wave number; l1 and l2 are vectors from the nth SSR1 and SSR2 to point P, respectively; and θ1 and θ2 are the angles between the x axis and vectors l1 and l2, respectively. To analyze the +x-direction SP excitation of the SSR-pair array, the SP fields along line x=3mm [see the light green line in Fig. 1(c)] are integrated as E+x. Similarly, the SP fields at lines x=3mm, y=3mm, and y=3mm are integrated as Ex, E+y, and Ey, respectively. Therefore, SP excitations under an arbitrary polarization incidence can be obtained, Ep=[E+xpExpE+ypEyp]T, with p representing the incident polarization state.

Based on the above discussion, SP excitations of the SSR-pair array under the x-polarized, y-polarized, LCP, and RCP incidences are mainly studied. According to the derivations from Eq. (1), we found that SP excitations can be well described solely by Ex=[E+xxExxE+yxEyx]T. The corresponding SP excitations under y polarization, LCP, and RCP can be simply expressed as Ey=SEx=[EyxE+yxExxE+xx]T, ELCP=2/2(1+iS)Ex, and ERCP=2/2(1iS)Ex, respectively, where S is a matrix that represents to the mirror operation (see the Supplement 1, Section 4):

S=[0001001001001000].
Thus, ELCP can be represented as
ELCP=22[E+xx+iEyxExx+iE+yxE+yx+iExxEyx+iE+xx]T,
and ERCP can be represented as
ERCP=22[E+xxiEyxExxiE+yxE+yxiExxEyxiE+xx]T.
It can be observed from these SP excitations that the SPs toward the +x and y directions depend only on E+xx and Eyx, while the SPs toward the x and +y directions depend only on Exx and E+yx. This provides the possibility to respectively design the SP excitation under the linearly and circularly polarized incidences. For example, if Eyx is weak enough, the SPs toward the y and +x directions will be suppressed under x- and y-polarized incidence, respectively; meanwhile if Exx and E+yx have similar amplitudes but a phase difference equal to π/2, the SPs toward the +y and x directions will be suppressed under the LCP and RCP incidence, respectively, due to destructive interference. Four-level polarization-controlled asymmetric SP excitation can thus be achieved. This can be accomplished by a careful design of the SSR-pair, since the resonance mode qu and the coupling coefficient κ can be manipulated by altering the structural parameters of the SSR and the distance d, respectively.

Based on this, we appropriately select the unit elements by simulation. With the overall performance taken into consideration, eventually, the corresponding simulated amplitude spectra of Ex are illustrated as solid lines in Figs. 3(c)3(f). It can be seen that Eyx is strongly suppressed at resonance frequency, and E+xx is the strongest, while Exx and E+yx have similar amplitude. Meanwhile, the simulated phase spectra of Ex are illustrated as the solid lines in Figs. 3(g)3(j). The phase difference between Exx and E+yx at resonance frequency is 0.513π. Both the amplitude and phase results satisfy the prescribed requirements well. The corresponding theoretical fitted amplitude and phase spectra using Eqs. (1) and (3) agree well with the simulations, as represented by the dashed lines in Figs. 3(c)3(j), which shows good effectiveness of the coupled-mode theory. Furthermore, the simulated and theoretical amplitude spectra in the case of the LCP incidence are illustrated by the solid and dashed lines, respectively, in Figs. 4(a)4(d). It can be seen that the amplitude of E+yLCP is strongly suppressed around 0.75 THz, whereas the amplitude of ExLCP becomes the largest, corresponding to destructive and constructive interference as defined by Eq. (5), respectively. Similarly consistent results can also be obtained in the case of the RCP incidence, as shown in Figs. 4(e)4(h), where the ExRCP and E+yRCP correspond to the interferences defined by Eq. (6). Both the simulated and theoretical results verify the viability of our design strategy.

 figure: Fig. 4.

Fig. 4. (a)–(d) Simulated (solid lines), theoretical (dashed lines), and experimental (circles) amplitude spectra of the SP fields toward the +x, x, +y, and y-directions, in the case of an LCP incidence. (e)–(h) Simulated (solid lines), theoretical (dashed lines), and experimental (circles) amplitude spectra of the SP fields toward the +x, x, +y, and y-directions, in the case of RCP incidence.

Download Full Size | PPT Slide | PDF

5. EXPERIMENTAL VERIFICATION

To further experimentally verify our proposed design, we fabricated the metasurface using conventional photolithography and metallization processing. Figure 5(a) illustrates a scanning electron micrograph image of one fabricated SSR-pair unit, which is made from a 200-nm-thick aluminum film patterned on a 2-mm-thick quartz substrate. A scanning near-field terahertz microscope system was applied to characterize the sample [48]. The working principle is the same as that of the traditional terahertz time-domain spectroscopy. The main difference is that the terahertz detector here was replaced with a near-field photoconductive-antenna-based probe. The detection beam of the system was coupled into a 2-m-long optical fiber to enable a movable probe. Before coupling into the fiber, a pre-dispersion compensation grating pair was employed to suppress the pulse stretching effect in the fiber.

 figure: Fig. 5.

Fig. 5. Sample images and experimental measurements. (a) Scanning electron micrograph image of a fabricated SSR-pair unit. (b) Schematic of the measurement setup. (c)–(f) Measured Ez-field-amplitude distributions at 0.75 THz in the case of the x-polarized, y-polarized, LCP, and RCP incidences.

Download Full Size | PPT Slide | PDF

Figure 5(b) illustrates a simple schematic of the measurement. The incident terahertz beam was collimated with a spot size of 5 mm diameter, which was large enough to cover the whole excitation area. The linear polarization was achieved using a metallic grid polarizer. The measured amplitude and phase spectra of Ex are illustrated by circles in Figs. 3(c)3(j), agreeing well with the corresponding simulated and theoretical results in the frequency range of interest. The circular polarizations were achieved using the combination of a grid polarizer and a quarter-wave plate. The measured amplitude spectra of ELCP and ERCP are illustrated by the circles in Fig. 4, which also agree well with the corresponding simulated and theoretical results. To more clearly show the asymmetric excitation performance, the SP-field distributions were scanned under the x-polarized, y-polarized, LCP, and RCP incidences, respectively. During the scan, the probe was placed approximately 50 μm above the sample surface, and the scanning range was 8mm×8mm, the same as that in the simulation. The measured Ez-field-amplitude distributions at 0.75 THz are illustrated in Figs. 5(c)5(f), and it can be found that the excited SPs toward each direction agree well with the corresponding simulations. The presented experimental results clearly confirm the proposed four-level polarization-controlled asymmetric excitation of SPs.

6. SP EXCITATION UNDER ARBITRARY INCIDENT POLARIZATION

To take an insight into the proposed metasurface, we perform simulation studies of the SP excitation under arbitrary incidences. It can be found from Eqs. (1) and (3) that the polarization information of the incidence can be fully encoded in the amplitudes and relative phases of the excited SPs. Figures 6(a)6(d) illustrate the SP amplitudes of the excited SPs toward the +x, x, +y, and y directions at 0.75 THz as a function of polarization parameters ψ and δ. Here, the incident polarization state Ein is expressed as [29]

eiδtanψ=yx.

 figure: Fig. 6.

Fig. 6. Excitation of SPs under arbitrary incident polarization. (a)–(d) Ez-field-amplitude of the SPs toward the +x, x, +y, and y directions as a function of the incident polarization states according to Eq. (7). The incident polarization states are expressed in complex number notation in terms of the angles ψ and δ, and additionally shown as a black overlay.

Download Full Size | PPT Slide | PDF

It can be seen in Figs. 6(a)6(d) that the SP excitations are different from each other, and interestingly, the SP excitation toward the +x and x directions has an opposite trend with that of the y and +y directions, respectively, which can be attributed to the mirror-symmetric configuration of our design. The x-polarization, y-polarization, LCP, and RCP are the special polarization states, in that each can suppress the SP excitation of a specific direction, as we demonstrated above. Apart from these, continuous tuning of the excitation can be achieved by changing the incident polarization state. For example, if one rotates the angle of the incident linear polarization (see the excitation when δ=0 or δ=±π), the SP excitations toward the x and +y directions are nearly constant, while the SP excitations toward the +x and y directions can be flexibly tuned. In contrast, it can be seen from the SP excitations marked by the white squares that the SP excitations toward the +x and y directions are nearly constant, while the SP excitations toward the +x and y directions can be flexibly tuned. Such versatile tunability is particularly attractive in designing polarization-controlled plasmonic devices or polarization sensing devices.

7. CONCLUSION

We show that the excitations of SPs by a metasurface consisting of a coupled SSR-pair system completely depend on the polarization states of the incident light. The proposed design would therefore achieve four-level polarization-controlled asymmetric SP excitation. The flexibility from encoding the polarization information into the SPs, in conjunction with dynamic polarization modulation techniques, may open a gateway toward integrated plasmonic circuitry with electrically reconfigurable functionalities. Furthermore, based on the universal coupled-mode theory, the proposed design scheme is applicable to the broad electromagnetic spectrum.

Funding

National Key Basic Research Program of China (2014CB339800); National Natural Science Foundation of China (NSFC) (61420106006, 61422509, 61427814, 61605143); Program for Changjiang Scholars and Innovative Research Team in University (PCSIRT) (IRT13033); National Science Foundation (NSF) (ECCS-1232081).

Acknowledgment

We thank Veronic E. Tremblay for her advice on optimizing the writing.

 

See Supplement 1 for supporting content.

REFERENCES

1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).

2. V. J. Sorger, R. F. Oulton, R.-M. Ma, and X. Zhang, “Toward integrated plasmonic circuits,” MRS Bull. 37(8), 728–738 (2012). [CrossRef]  

3. Y. Fang and M. Sun, “Nanoplasmonic waveguides: towards applications in integrated nanophotonic circuits,” Light Sci. Appl. 4, e294 (2015).

4. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010).

5. A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329, 930–933 (2010).

6. S. Kawata, Y. Inouye, and P. Verma, “Plasmonics for near-field nano-imaging and superlensing,” Nat. Photonics 3, 388–394 (2009).

7. F. Wei, D. Lu, H. Shen, W. Wan, J. L. Ponsetto, E. Huang, and Z. Liu, “Wide field super-resolution surface imaging through plasmonic structured illumination microscopy,” Nano Lett. 14, 4634–4639 (2014).

8. J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev. 108, 462–493 (2008).

9. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

10. I. P. Radko, S. I. Bozhevolnyi, G. Brucoli, L. Martín-Moreno, F. J. García-Vidal, and A. Boltasseva, “Efficiency of local surface plasmon polariton excitation on ridges,” Phys. Rev. B 78, 115115 (2008). [CrossRef]  

11. H. Kim and B. Lee, “Unidirectional surface plasmon polariton excitation on single slit with oblique backside illumination,” Plasmonics 4, 153–159 (2009). [CrossRef]  

12. X. Li, Q. Tan, B. Bai, and G. Jin, “Experimental demonstration of tunable directional excitation of surface plasmon polaritons with a subwavelength metallic double slit,” Appl. Phys. Lett. 98, 251109 (2011). [CrossRef]  

13. F. J. Rodríguez-Fortuño, G. Marino, P. Ginzburg, D. O’Connor, A. Martínez, G. A. Wurtz, and A. V. Zayats, “Near-field interference for the unidirectional excitation of electromagnetic guided modes,” Science 340, 328–330 (2013). [CrossRef]  

14. F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. González, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys. 3, 324–328 (2007). [CrossRef]  

15. A. Baron, E. Devaux, J.-C. Rodier, J.-P. Hugonin, E. Rousseau, C. Genet, T. W. Ebbesen, and P. Lalanne, “Compact antenna for efficient and unidirectional launching and decoupling of surface plasmons,” Nano Lett. 11, 4207–4212 (2011). [CrossRef]  

16. L. Wang, T. Li, L. Li, W. Xia, X. G. Xu, and S. N. Zhu, “Electrically generated unidirectional surface plasmon source,” Opt. Express 20, 8710–8717 (2012). [CrossRef]  

17. H. Liao, Z. Li, J. Chen, X. Zhang, S. Yue, and Q. Gong, “A submicron broadband surface-plasmon-polariton unidirectional coupler,” Sci. Rep. 3, 1918 (2013). [CrossRef]  

18. X. Huang and M. L. Brongersma, “Compact aperiodic metallic groove arrays for unidirectional launching of surface plasmons,” Nano Lett. 13, 5420–5424 (2013). [CrossRef]  

19. P. Genevet, F. Capasso, F. Aieta, M. Khorasaninejad, and R. Devlin, “Recent advances in planar optics: from plasmonic to dielectric metasurfaces,” Optica 4, 139–152 (2017). [CrossRef]  

20. S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater. 11, 426–431 (2012). [CrossRef]  

21. A. Pors, M. G. Nielsen, T. Bernardin, J.-C. Weeber, and S. I. Bozhevolnyi, “Efficient unidirectional polarization-controlled excitation of surface plasmon polaritons,” Light Sci. Appl. 3, e197 (2014). [CrossRef]  

22. S.-Y. Lee, K. Kim, S.-J. Kim, H. Park, K.-Y. Kim, and B. Lee, “Plasmonic meta-slit: shaping and controlling near-field focus,” Optica 2, 6–13 (2015). [CrossRef]  

23. T. Tanemura, K. C. Balram, D.-S. Ly-Gagnon, P. Wahl, J. S. White, M. L. Brongersma, and D. A. B. Miller, “Multiple-wavelength focusing of surface plasmons with a nonperiodic nanoslit coupler,” Nano Lett. 11, 2693–2698 (2011). [CrossRef]  

24. E.-Y. Song, S.-Y. Lee, J. Hong, K. Lee, Y. Lee, G.-Y. Lee, H. Kim, and B. Lee, “A double-lined metasurface for plasmonic complex-field generation,” Laser Photon. Rev. 10, 299–306 (2016). [CrossRef]  

25. S. Xiao, F. Zhong, H. Liu, S. Zhu, and J. Li, “Flexible coherent control of plasmonic spin-Hall effect,” Nat. Commun. 6, 8360 (2015). [CrossRef]  

26. X. Zhang, Y. Xu, W. Yue, Z. Tian, J. Gu, Y. Li, R. Singh, S. Zhang, J. Han, and W. Zhang, “Anomalous surface wave launching by handedness phase control,” Adv. Mater. 27, 7123–7129 (2015). [CrossRef]  

27. Q. Xu, X. Zhang, Y. Xu, C. Ouyang, Z. Tian, J. Gu, J. Li, S. Zhang, J. Han, and W. Zhang, “Polarization-controlled surface plasmon holography,” Laser Photon. Rev. 11, 1600212 (2017). [CrossRef]  

28. J. Yang, X. Xiao, C. Hu, W. Zhang, S. Zhou, and J. Zhang, “Broadband surface plasmon polariton directional coupling via asymmetric optical slot nanoantenna pair,” Nano Lett. 14, 704–709 (2014). [CrossRef]  

29. J. Lin, J. P. B. Mueller, Q. Wang, G. Yuan, N. Antoniou, X.-C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340, 331–334 (2013). [CrossRef]  

30. B. Chen, J. Yang, C. Hu, S. Wang, Q. Wen, and J. Zhang, “Plasmonic polarization nano-splitter based on asymmetric optical slot antenna pairs,” Opt. Lett. 41, 4931–4934 (2016). [CrossRef]  

31. L. Huang, X. Chen, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Helicity dependent directional surface plasmon polariton excitation using a metasurface with interfacial phase discontinuity,” Light Sci. Appl. 2, e70 (2013). [CrossRef]  

32. J. Yang, S. Zhou, C. Hu, W. Zhang, X. Xiao, and J. Zhang, “Broadband spin-controlled surface plasmon polariton launching and radiation via L-shaped optical slot nanoantennas,” Laser Photon. Rev. 8, 590–595 (2014). [CrossRef]  

33. F. Huang, X. Jiang, H. Yang, S. Li, and X. Sun, “Tunable directional coupling of surface plasmon polaritons with linearly polarized light,” Appl. Phys. B 122, 16 (2016). [CrossRef]  

34. D. Wintz, A. Ambrosio, A. Y. Zhu, P. Genevet, and F. Capasso, “Anisotropic surface plasmon polariton generation using bimodal V-antenna based metastructures,” ACS Photon. 4, 22–27 (2017). [CrossRef]  

35. X. Zhang, Q. Xu, Q. Li, Y. Xu, J. Gu, Z. Tian, C. Ouyang, Y. Liu, S. Zhang, X. Zhang, J. Han, and W. Zhang, “Asymmetric excitation of surface plasmons by dark mode coupling,” Sci. Adv. 2, e1501142 (2016). [CrossRef]  

36. M. Nazarov and J.-L. Coutaz, “Terahertz surface waves propagating on metals with sub-wavelength structure and grating reliefs,” J. Infrared Millim. Terahertz Waves 32, 1054–1073 (2011). [CrossRef]  

37. M. Gong, T.-I. Jeon, and D. Grischkowsky, “THz surface wave collapse on coated metal surfaces,” Opt. Express 17, 17088–17101 (2009). [CrossRef]  

38. T. Zentgraf, T. P. Meyrath, A. Seidel, S. Kaiser, H. Giessen, C. Rockstuhl, and F. Lederer, “Babinet’s principle for optical frequency metamaterials and nanoantennas,” Phys. Rev. B 76, 033407 (2007). [CrossRef]  

39. A. Bitzer, A. Ortner, H. Merbold, T. Feurer, and M. Walther, “Terahertz near-field microscopy of complementary planar metamaterials: Babinet’s principle,” Opt. Express 19, 2537–2545 (2011). [CrossRef]  

40. S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101, 047401 (2008). [CrossRef]  

41. J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012). [CrossRef]  

42. U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 124, 1866–1878 (1961). [CrossRef]  

43. B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010). [CrossRef]  

44. N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8, 758–762 (2009). [CrossRef]  

45. M. Kang and Y. D. Chong, “Coherent optical control of polarization with a critical metasurface,” Phys. Rev. A 92, 043826 (2015). [CrossRef]  

46. H. Zhang, M. Kang, X. Zhang, W. Guo, C. Lv, Y. Li, W. Zhang, and J. Han, “Coherent control of optical spin-to-orbital angular momentum conversion in metasurface,” Adv. Mater. 29, 1604252 (2017). [CrossRef]  

47. T. V. Teperik, A. Archambault, F. Marquier, and J. J. Greffet, “Huygens-Fresnel principle for surface plasmons,” Opt. Express 17, 17483–17490 (2009). [CrossRef]  

48. Y. Xu, X. Zhang, Z. Tian, J. Gu, C. Ouyang, Y. Li, J. Han, and W. Zhang, “Mapping the near-field propagation of surface plasmons on terahertz metasurfaces,” Appl. Phys. Lett. 107, 021105 (2015). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
  2. V. J. Sorger, R. F. Oulton, R.-M. Ma, and X. Zhang, “Toward integrated plasmonic circuits,” MRS Bull. 37(8), 728–738 (2012).
    [Crossref]
  3. Y. Fang and M. Sun, “Nanoplasmonic waveguides: towards applications in integrated nanophotonic circuits,” Light Sci. Appl. 4, e294 (2015).
  4. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010).
  5. A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329, 930–933 (2010).
  6. S. Kawata, Y. Inouye, and P. Verma, “Plasmonics for near-field nano-imaging and superlensing,” Nat. Photonics 3, 388–394 (2009).
  7. F. Wei, D. Lu, H. Shen, W. Wan, J. L. Ponsetto, E. Huang, and Z. Liu, “Wide field super-resolution surface imaging through plasmonic structured illumination microscopy,” Nano Lett. 14, 4634–4639 (2014).
  8. J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev. 108, 462–493 (2008).
  9. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  10. I. P. Radko, S. I. Bozhevolnyi, G. Brucoli, L. Martín-Moreno, F. J. García-Vidal, and A. Boltasseva, “Efficiency of local surface plasmon polariton excitation on ridges,” Phys. Rev. B 78, 115115 (2008).
    [Crossref]
  11. H. Kim and B. Lee, “Unidirectional surface plasmon polariton excitation on single slit with oblique backside illumination,” Plasmonics 4, 153–159 (2009).
    [Crossref]
  12. X. Li, Q. Tan, B. Bai, and G. Jin, “Experimental demonstration of tunable directional excitation of surface plasmon polaritons with a subwavelength metallic double slit,” Appl. Phys. Lett. 98, 251109 (2011).
    [Crossref]
  13. F. J. Rodríguez-Fortuño, G. Marino, P. Ginzburg, D. O’Connor, A. Martínez, G. A. Wurtz, and A. V. Zayats, “Near-field interference for the unidirectional excitation of electromagnetic guided modes,” Science 340, 328–330 (2013).
    [Crossref]
  14. F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. González, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys. 3, 324–328 (2007).
    [Crossref]
  15. A. Baron, E. Devaux, J.-C. Rodier, J.-P. Hugonin, E. Rousseau, C. Genet, T. W. Ebbesen, and P. Lalanne, “Compact antenna for efficient and unidirectional launching and decoupling of surface plasmons,” Nano Lett. 11, 4207–4212 (2011).
    [Crossref]
  16. L. Wang, T. Li, L. Li, W. Xia, X. G. Xu, and S. N. Zhu, “Electrically generated unidirectional surface plasmon source,” Opt. Express 20, 8710–8717 (2012).
    [Crossref]
  17. H. Liao, Z. Li, J. Chen, X. Zhang, S. Yue, and Q. Gong, “A submicron broadband surface-plasmon-polariton unidirectional coupler,” Sci. Rep. 3, 1918 (2013).
    [Crossref]
  18. X. Huang and M. L. Brongersma, “Compact aperiodic metallic groove arrays for unidirectional launching of surface plasmons,” Nano Lett. 13, 5420–5424 (2013).
    [Crossref]
  19. P. Genevet, F. Capasso, F. Aieta, M. Khorasaninejad, and R. Devlin, “Recent advances in planar optics: from plasmonic to dielectric metasurfaces,” Optica 4, 139–152 (2017).
    [Crossref]
  20. S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater. 11, 426–431 (2012).
    [Crossref]
  21. A. Pors, M. G. Nielsen, T. Bernardin, J.-C. Weeber, and S. I. Bozhevolnyi, “Efficient unidirectional polarization-controlled excitation of surface plasmon polaritons,” Light Sci. Appl. 3, e197 (2014).
    [Crossref]
  22. S.-Y. Lee, K. Kim, S.-J. Kim, H. Park, K.-Y. Kim, and B. Lee, “Plasmonic meta-slit: shaping and controlling near-field focus,” Optica 2, 6–13 (2015).
    [Crossref]
  23. T. Tanemura, K. C. Balram, D.-S. Ly-Gagnon, P. Wahl, J. S. White, M. L. Brongersma, and D. A. B. Miller, “Multiple-wavelength focusing of surface plasmons with a nonperiodic nanoslit coupler,” Nano Lett. 11, 2693–2698 (2011).
    [Crossref]
  24. E.-Y. Song, S.-Y. Lee, J. Hong, K. Lee, Y. Lee, G.-Y. Lee, H. Kim, and B. Lee, “A double-lined metasurface for plasmonic complex-field generation,” Laser Photon. Rev. 10, 299–306 (2016).
    [Crossref]
  25. S. Xiao, F. Zhong, H. Liu, S. Zhu, and J. Li, “Flexible coherent control of plasmonic spin-Hall effect,” Nat. Commun. 6, 8360 (2015).
    [Crossref]
  26. X. Zhang, Y. Xu, W. Yue, Z. Tian, J. Gu, Y. Li, R. Singh, S. Zhang, J. Han, and W. Zhang, “Anomalous surface wave launching by handedness phase control,” Adv. Mater. 27, 7123–7129 (2015).
    [Crossref]
  27. Q. Xu, X. Zhang, Y. Xu, C. Ouyang, Z. Tian, J. Gu, J. Li, S. Zhang, J. Han, and W. Zhang, “Polarization-controlled surface plasmon holography,” Laser Photon. Rev. 11, 1600212 (2017).
    [Crossref]
  28. J. Yang, X. Xiao, C. Hu, W. Zhang, S. Zhou, and J. Zhang, “Broadband surface plasmon polariton directional coupling via asymmetric optical slot nanoantenna pair,” Nano Lett. 14, 704–709 (2014).
    [Crossref]
  29. J. Lin, J. P. B. Mueller, Q. Wang, G. Yuan, N. Antoniou, X.-C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340, 331–334 (2013).
    [Crossref]
  30. B. Chen, J. Yang, C. Hu, S. Wang, Q. Wen, and J. Zhang, “Plasmonic polarization nano-splitter based on asymmetric optical slot antenna pairs,” Opt. Lett. 41, 4931–4934 (2016).
    [Crossref]
  31. L. Huang, X. Chen, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Helicity dependent directional surface plasmon polariton excitation using a metasurface with interfacial phase discontinuity,” Light Sci. Appl. 2, e70 (2013).
    [Crossref]
  32. J. Yang, S. Zhou, C. Hu, W. Zhang, X. Xiao, and J. Zhang, “Broadband spin-controlled surface plasmon polariton launching and radiation via L-shaped optical slot nanoantennas,” Laser Photon. Rev. 8, 590–595 (2014).
    [Crossref]
  33. F. Huang, X. Jiang, H. Yang, S. Li, and X. Sun, “Tunable directional coupling of surface plasmon polaritons with linearly polarized light,” Appl. Phys. B 122, 16 (2016).
    [Crossref]
  34. D. Wintz, A. Ambrosio, A. Y. Zhu, P. Genevet, and F. Capasso, “Anisotropic surface plasmon polariton generation using bimodal V-antenna based metastructures,” ACS Photon. 4, 22–27 (2017).
    [Crossref]
  35. X. Zhang, Q. Xu, Q. Li, Y. Xu, J. Gu, Z. Tian, C. Ouyang, Y. Liu, S. Zhang, X. Zhang, J. Han, and W. Zhang, “Asymmetric excitation of surface plasmons by dark mode coupling,” Sci. Adv. 2, e1501142 (2016).
    [Crossref]
  36. M. Nazarov and J.-L. Coutaz, “Terahertz surface waves propagating on metals with sub-wavelength structure and grating reliefs,” J. Infrared Millim. Terahertz Waves 32, 1054–1073 (2011).
    [Crossref]
  37. M. Gong, T.-I. Jeon, and D. Grischkowsky, “THz surface wave collapse on coated metal surfaces,” Opt. Express 17, 17088–17101 (2009).
    [Crossref]
  38. T. Zentgraf, T. P. Meyrath, A. Seidel, S. Kaiser, H. Giessen, C. Rockstuhl, and F. Lederer, “Babinet’s principle for optical frequency metamaterials and nanoantennas,” Phys. Rev. B 76, 033407 (2007).
    [Crossref]
  39. A. Bitzer, A. Ortner, H. Merbold, T. Feurer, and M. Walther, “Terahertz near-field microscopy of complementary planar metamaterials: Babinet’s principle,” Opt. Express 19, 2537–2545 (2011).
    [Crossref]
  40. S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101, 047401 (2008).
    [Crossref]
  41. J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
    [Crossref]
  42. U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 124, 1866–1878 (1961).
    [Crossref]
  43. B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010).
    [Crossref]
  44. N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8, 758–762 (2009).
    [Crossref]
  45. M. Kang and Y. D. Chong, “Coherent optical control of polarization with a critical metasurface,” Phys. Rev. A 92, 043826 (2015).
    [Crossref]
  46. H. Zhang, M. Kang, X. Zhang, W. Guo, C. Lv, Y. Li, W. Zhang, and J. Han, “Coherent control of optical spin-to-orbital angular momentum conversion in metasurface,” Adv. Mater. 29, 1604252 (2017).
    [Crossref]
  47. T. V. Teperik, A. Archambault, F. Marquier, and J. J. Greffet, “Huygens-Fresnel principle for surface plasmons,” Opt. Express 17, 17483–17490 (2009).
    [Crossref]
  48. Y. Xu, X. Zhang, Z. Tian, J. Gu, C. Ouyang, Y. Li, J. Han, and W. Zhang, “Mapping the near-field propagation of surface plasmons on terahertz metasurfaces,” Appl. Phys. Lett. 107, 021105 (2015).
    [Crossref]

2017 (4)

P. Genevet, F. Capasso, F. Aieta, M. Khorasaninejad, and R. Devlin, “Recent advances in planar optics: from plasmonic to dielectric metasurfaces,” Optica 4, 139–152 (2017).
[Crossref]

Q. Xu, X. Zhang, Y. Xu, C. Ouyang, Z. Tian, J. Gu, J. Li, S. Zhang, J. Han, and W. Zhang, “Polarization-controlled surface plasmon holography,” Laser Photon. Rev. 11, 1600212 (2017).
[Crossref]

D. Wintz, A. Ambrosio, A. Y. Zhu, P. Genevet, and F. Capasso, “Anisotropic surface plasmon polariton generation using bimodal V-antenna based metastructures,” ACS Photon. 4, 22–27 (2017).
[Crossref]

H. Zhang, M. Kang, X. Zhang, W. Guo, C. Lv, Y. Li, W. Zhang, and J. Han, “Coherent control of optical spin-to-orbital angular momentum conversion in metasurface,” Adv. Mater. 29, 1604252 (2017).
[Crossref]

2016 (4)

F. Huang, X. Jiang, H. Yang, S. Li, and X. Sun, “Tunable directional coupling of surface plasmon polaritons with linearly polarized light,” Appl. Phys. B 122, 16 (2016).
[Crossref]

X. Zhang, Q. Xu, Q. Li, Y. Xu, J. Gu, Z. Tian, C. Ouyang, Y. Liu, S. Zhang, X. Zhang, J. Han, and W. Zhang, “Asymmetric excitation of surface plasmons by dark mode coupling,” Sci. Adv. 2, e1501142 (2016).
[Crossref]

B. Chen, J. Yang, C. Hu, S. Wang, Q. Wen, and J. Zhang, “Plasmonic polarization nano-splitter based on asymmetric optical slot antenna pairs,” Opt. Lett. 41, 4931–4934 (2016).
[Crossref]

E.-Y. Song, S.-Y. Lee, J. Hong, K. Lee, Y. Lee, G.-Y. Lee, H. Kim, and B. Lee, “A double-lined metasurface for plasmonic complex-field generation,” Laser Photon. Rev. 10, 299–306 (2016).
[Crossref]

2015 (6)

S. Xiao, F. Zhong, H. Liu, S. Zhu, and J. Li, “Flexible coherent control of plasmonic spin-Hall effect,” Nat. Commun. 6, 8360 (2015).
[Crossref]

X. Zhang, Y. Xu, W. Yue, Z. Tian, J. Gu, Y. Li, R. Singh, S. Zhang, J. Han, and W. Zhang, “Anomalous surface wave launching by handedness phase control,” Adv. Mater. 27, 7123–7129 (2015).
[Crossref]

S.-Y. Lee, K. Kim, S.-J. Kim, H. Park, K.-Y. Kim, and B. Lee, “Plasmonic meta-slit: shaping and controlling near-field focus,” Optica 2, 6–13 (2015).
[Crossref]

Y. Fang and M. Sun, “Nanoplasmonic waveguides: towards applications in integrated nanophotonic circuits,” Light Sci. Appl. 4, e294 (2015).

M. Kang and Y. D. Chong, “Coherent optical control of polarization with a critical metasurface,” Phys. Rev. A 92, 043826 (2015).
[Crossref]

Y. Xu, X. Zhang, Z. Tian, J. Gu, C. Ouyang, Y. Li, J. Han, and W. Zhang, “Mapping the near-field propagation of surface plasmons on terahertz metasurfaces,” Appl. Phys. Lett. 107, 021105 (2015).
[Crossref]

2014 (4)

F. Wei, D. Lu, H. Shen, W. Wan, J. L. Ponsetto, E. Huang, and Z. Liu, “Wide field super-resolution surface imaging through plasmonic structured illumination microscopy,” Nano Lett. 14, 4634–4639 (2014).

J. Yang, X. Xiao, C. Hu, W. Zhang, S. Zhou, and J. Zhang, “Broadband surface plasmon polariton directional coupling via asymmetric optical slot nanoantenna pair,” Nano Lett. 14, 704–709 (2014).
[Crossref]

A. Pors, M. G. Nielsen, T. Bernardin, J.-C. Weeber, and S. I. Bozhevolnyi, “Efficient unidirectional polarization-controlled excitation of surface plasmon polaritons,” Light Sci. Appl. 3, e197 (2014).
[Crossref]

J. Yang, S. Zhou, C. Hu, W. Zhang, X. Xiao, and J. Zhang, “Broadband spin-controlled surface plasmon polariton launching and radiation via L-shaped optical slot nanoantennas,” Laser Photon. Rev. 8, 590–595 (2014).
[Crossref]

2013 (5)

L. Huang, X. Chen, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Helicity dependent directional surface plasmon polariton excitation using a metasurface with interfacial phase discontinuity,” Light Sci. Appl. 2, e70 (2013).
[Crossref]

J. Lin, J. P. B. Mueller, Q. Wang, G. Yuan, N. Antoniou, X.-C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340, 331–334 (2013).
[Crossref]

F. J. Rodríguez-Fortuño, G. Marino, P. Ginzburg, D. O’Connor, A. Martínez, G. A. Wurtz, and A. V. Zayats, “Near-field interference for the unidirectional excitation of electromagnetic guided modes,” Science 340, 328–330 (2013).
[Crossref]

H. Liao, Z. Li, J. Chen, X. Zhang, S. Yue, and Q. Gong, “A submicron broadband surface-plasmon-polariton unidirectional coupler,” Sci. Rep. 3, 1918 (2013).
[Crossref]

X. Huang and M. L. Brongersma, “Compact aperiodic metallic groove arrays for unidirectional launching of surface plasmons,” Nano Lett. 13, 5420–5424 (2013).
[Crossref]

2012 (4)

L. Wang, T. Li, L. Li, W. Xia, X. G. Xu, and S. N. Zhu, “Electrically generated unidirectional surface plasmon source,” Opt. Express 20, 8710–8717 (2012).
[Crossref]

V. J. Sorger, R. F. Oulton, R.-M. Ma, and X. Zhang, “Toward integrated plasmonic circuits,” MRS Bull. 37(8), 728–738 (2012).
[Crossref]

S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater. 11, 426–431 (2012).
[Crossref]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref]

2011 (5)

A. Bitzer, A. Ortner, H. Merbold, T. Feurer, and M. Walther, “Terahertz near-field microscopy of complementary planar metamaterials: Babinet’s principle,” Opt. Express 19, 2537–2545 (2011).
[Crossref]

T. Tanemura, K. C. Balram, D.-S. Ly-Gagnon, P. Wahl, J. S. White, M. L. Brongersma, and D. A. B. Miller, “Multiple-wavelength focusing of surface plasmons with a nonperiodic nanoslit coupler,” Nano Lett. 11, 2693–2698 (2011).
[Crossref]

M. Nazarov and J.-L. Coutaz, “Terahertz surface waves propagating on metals with sub-wavelength structure and grating reliefs,” J. Infrared Millim. Terahertz Waves 32, 1054–1073 (2011).
[Crossref]

A. Baron, E. Devaux, J.-C. Rodier, J.-P. Hugonin, E. Rousseau, C. Genet, T. W. Ebbesen, and P. Lalanne, “Compact antenna for efficient and unidirectional launching and decoupling of surface plasmons,” Nano Lett. 11, 4207–4212 (2011).
[Crossref]

X. Li, Q. Tan, B. Bai, and G. Jin, “Experimental demonstration of tunable directional excitation of surface plasmon polaritons with a subwavelength metallic double slit,” Appl. Phys. Lett. 98, 251109 (2011).
[Crossref]

2010 (3)

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010).

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329, 930–933 (2010).

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010).
[Crossref]

2009 (5)

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8, 758–762 (2009).
[Crossref]

T. V. Teperik, A. Archambault, F. Marquier, and J. J. Greffet, “Huygens-Fresnel principle for surface plasmons,” Opt. Express 17, 17483–17490 (2009).
[Crossref]

S. Kawata, Y. Inouye, and P. Verma, “Plasmonics for near-field nano-imaging and superlensing,” Nat. Photonics 3, 388–394 (2009).

H. Kim and B. Lee, “Unidirectional surface plasmon polariton excitation on single slit with oblique backside illumination,” Plasmonics 4, 153–159 (2009).
[Crossref]

M. Gong, T.-I. Jeon, and D. Grischkowsky, “THz surface wave collapse on coated metal surfaces,” Opt. Express 17, 17088–17101 (2009).
[Crossref]

2008 (3)

J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev. 108, 462–493 (2008).

I. P. Radko, S. I. Bozhevolnyi, G. Brucoli, L. Martín-Moreno, F. J. García-Vidal, and A. Boltasseva, “Efficiency of local surface plasmon polariton excitation on ridges,” Phys. Rev. B 78, 115115 (2008).
[Crossref]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101, 047401 (2008).
[Crossref]

2007 (2)

F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. González, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys. 3, 324–328 (2007).
[Crossref]

T. Zentgraf, T. P. Meyrath, A. Seidel, S. Kaiser, H. Giessen, C. Rockstuhl, and F. Lederer, “Babinet’s principle for optical frequency metamaterials and nanoantennas,” Phys. Rev. B 76, 033407 (2007).
[Crossref]

2003 (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).

1961 (1)

U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 124, 1866–1878 (1961).
[Crossref]

Aieta, F.

Ambrosio, A.

D. Wintz, A. Ambrosio, A. Y. Zhu, P. Genevet, and F. Capasso, “Anisotropic surface plasmon polariton generation using bimodal V-antenna based metastructures,” ACS Photon. 4, 22–27 (2017).
[Crossref]

Antoniou, N.

J. Lin, J. P. B. Mueller, Q. Wang, G. Yuan, N. Antoniou, X.-C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340, 331–334 (2013).
[Crossref]

Archambault, A.

Atwater, H. A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010).

Azad, A. K.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref]

Bai, B.

L. Huang, X. Chen, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Helicity dependent directional surface plasmon polariton excitation using a metasurface with interfacial phase discontinuity,” Light Sci. Appl. 2, e70 (2013).
[Crossref]

X. Li, Q. Tan, B. Bai, and G. Jin, “Experimental demonstration of tunable directional excitation of surface plasmon polaritons with a subwavelength metallic double slit,” Appl. Phys. Lett. 98, 251109 (2011).
[Crossref]

Balram, K. C.

T. Tanemura, K. C. Balram, D.-S. Ly-Gagnon, P. Wahl, J. S. White, M. L. Brongersma, and D. A. B. Miller, “Multiple-wavelength focusing of surface plasmons with a nonperiodic nanoslit coupler,” Nano Lett. 11, 2693–2698 (2011).
[Crossref]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).

Baron, A.

A. Baron, E. Devaux, J.-C. Rodier, J.-P. Hugonin, E. Rousseau, C. Genet, T. W. Ebbesen, and P. Lalanne, “Compact antenna for efficient and unidirectional launching and decoupling of surface plasmons,” Nano Lett. 11, 4207–4212 (2011).
[Crossref]

Bernardin, T.

A. Pors, M. G. Nielsen, T. Bernardin, J.-C. Weeber, and S. I. Bozhevolnyi, “Efficient unidirectional polarization-controlled excitation of surface plasmon polaritons,” Light Sci. Appl. 3, e197 (2014).
[Crossref]

Bitzer, A.

Boltasseva, A.

I. P. Radko, S. I. Bozhevolnyi, G. Brucoli, L. Martín-Moreno, F. J. García-Vidal, and A. Boltasseva, “Efficiency of local surface plasmon polariton excitation on ridges,” Phys. Rev. B 78, 115115 (2008).
[Crossref]

Bozhevolnyi, S. I.

A. Pors, M. G. Nielsen, T. Bernardin, J.-C. Weeber, and S. I. Bozhevolnyi, “Efficient unidirectional polarization-controlled excitation of surface plasmon polaritons,” Light Sci. Appl. 3, e197 (2014).
[Crossref]

I. P. Radko, S. I. Bozhevolnyi, G. Brucoli, L. Martín-Moreno, F. J. García-Vidal, and A. Boltasseva, “Efficiency of local surface plasmon polariton excitation on ridges,” Phys. Rev. B 78, 115115 (2008).
[Crossref]

F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. González, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys. 3, 324–328 (2007).
[Crossref]

Brongersma, M. L.

X. Huang and M. L. Brongersma, “Compact aperiodic metallic groove arrays for unidirectional launching of surface plasmons,” Nano Lett. 13, 5420–5424 (2013).
[Crossref]

T. Tanemura, K. C. Balram, D.-S. Ly-Gagnon, P. Wahl, J. S. White, M. L. Brongersma, and D. A. B. Miller, “Multiple-wavelength focusing of surface plasmons with a nonperiodic nanoslit coupler,” Nano Lett. 11, 2693–2698 (2011).
[Crossref]

Brucoli, G.

I. P. Radko, S. I. Bozhevolnyi, G. Brucoli, L. Martín-Moreno, F. J. García-Vidal, and A. Boltasseva, “Efficiency of local surface plasmon polariton excitation on ridges,” Phys. Rev. B 78, 115115 (2008).
[Crossref]

Capasso, F.

P. Genevet, F. Capasso, F. Aieta, M. Khorasaninejad, and R. Devlin, “Recent advances in planar optics: from plasmonic to dielectric metasurfaces,” Optica 4, 139–152 (2017).
[Crossref]

D. Wintz, A. Ambrosio, A. Y. Zhu, P. Genevet, and F. Capasso, “Anisotropic surface plasmon polariton generation using bimodal V-antenna based metastructures,” ACS Photon. 4, 22–27 (2017).
[Crossref]

J. Lin, J. P. B. Mueller, Q. Wang, G. Yuan, N. Antoniou, X.-C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340, 331–334 (2013).
[Crossref]

Chen, B.

Chen, H.-T.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref]

Chen, J.

H. Liao, Z. Li, J. Chen, X. Zhang, S. Yue, and Q. Gong, “A submicron broadband surface-plasmon-polariton unidirectional coupler,” Sci. Rep. 3, 1918 (2013).
[Crossref]

Chen, X.

L. Huang, X. Chen, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Helicity dependent directional surface plasmon polariton excitation using a metasurface with interfacial phase discontinuity,” Light Sci. Appl. 2, e70 (2013).
[Crossref]

Chong, C. T.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010).
[Crossref]

Chong, Y. D.

M. Kang and Y. D. Chong, “Coherent optical control of polarization with a critical metasurface,” Phys. Rev. A 92, 043826 (2015).
[Crossref]

Coutaz, J.-L.

M. Nazarov and J.-L. Coutaz, “Terahertz surface waves propagating on metals with sub-wavelength structure and grating reliefs,” J. Infrared Millim. Terahertz Waves 32, 1054–1073 (2011).
[Crossref]

Curto, A. G.

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329, 930–933 (2010).

Dereux, A.

F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. González, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys. 3, 324–328 (2007).
[Crossref]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).

Devaux, E.

A. Baron, E. Devaux, J.-C. Rodier, J.-P. Hugonin, E. Rousseau, C. Genet, T. W. Ebbesen, and P. Lalanne, “Compact antenna for efficient and unidirectional launching and decoupling of surface plasmons,” Nano Lett. 11, 4207–4212 (2011).
[Crossref]

F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. González, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys. 3, 324–328 (2007).
[Crossref]

Devlin, R.

Ebbesen, T. W.

A. Baron, E. Devaux, J.-C. Rodier, J.-P. Hugonin, E. Rousseau, C. Genet, T. W. Ebbesen, and P. Lalanne, “Compact antenna for efficient and unidirectional launching and decoupling of surface plasmons,” Nano Lett. 11, 4207–4212 (2011).
[Crossref]

F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. González, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys. 3, 324–328 (2007).
[Crossref]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).

Fang, Y.

Y. Fang and M. Sun, “Nanoplasmonic waveguides: towards applications in integrated nanophotonic circuits,” Light Sci. Appl. 4, e294 (2015).

Fano, U.

U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 124, 1866–1878 (1961).
[Crossref]

Feurer, T.

Fleischhauer, M.

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8, 758–762 (2009).
[Crossref]

García-Vidal, F. J.

I. P. Radko, S. I. Bozhevolnyi, G. Brucoli, L. Martín-Moreno, F. J. García-Vidal, and A. Boltasseva, “Efficiency of local surface plasmon polariton excitation on ridges,” Phys. Rev. B 78, 115115 (2008).
[Crossref]

F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. González, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys. 3, 324–328 (2007).
[Crossref]

Genet, C.

A. Baron, E. Devaux, J.-C. Rodier, J.-P. Hugonin, E. Rousseau, C. Genet, T. W. Ebbesen, and P. Lalanne, “Compact antenna for efficient and unidirectional launching and decoupling of surface plasmons,” Nano Lett. 11, 4207–4212 (2011).
[Crossref]

Genevet, P.

P. Genevet, F. Capasso, F. Aieta, M. Khorasaninejad, and R. Devlin, “Recent advances in planar optics: from plasmonic to dielectric metasurfaces,” Optica 4, 139–152 (2017).
[Crossref]

D. Wintz, A. Ambrosio, A. Y. Zhu, P. Genevet, and F. Capasso, “Anisotropic surface plasmon polariton generation using bimodal V-antenna based metastructures,” ACS Photon. 4, 22–27 (2017).
[Crossref]

Genov, D. A.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101, 047401 (2008).
[Crossref]

Giessen, H.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010).
[Crossref]

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8, 758–762 (2009).
[Crossref]

T. Zentgraf, T. P. Meyrath, A. Seidel, S. Kaiser, H. Giessen, C. Rockstuhl, and F. Lederer, “Babinet’s principle for optical frequency metamaterials and nanoantennas,” Phys. Rev. B 76, 033407 (2007).
[Crossref]

Ginzburg, P.

F. J. Rodríguez-Fortuño, G. Marino, P. Ginzburg, D. O’Connor, A. Martínez, G. A. Wurtz, and A. V. Zayats, “Near-field interference for the unidirectional excitation of electromagnetic guided modes,” Science 340, 328–330 (2013).
[Crossref]

Gong, M.

Gong, Q.

H. Liao, Z. Li, J. Chen, X. Zhang, S. Yue, and Q. Gong, “A submicron broadband surface-plasmon-polariton unidirectional coupler,” Sci. Rep. 3, 1918 (2013).
[Crossref]

González, M. U.

F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. González, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys. 3, 324–328 (2007).
[Crossref]

Greffet, J. J.

Grischkowsky, D.

Gu, J.

Q. Xu, X. Zhang, Y. Xu, C. Ouyang, Z. Tian, J. Gu, J. Li, S. Zhang, J. Han, and W. Zhang, “Polarization-controlled surface plasmon holography,” Laser Photon. Rev. 11, 1600212 (2017).
[Crossref]

X. Zhang, Q. Xu, Q. Li, Y. Xu, J. Gu, Z. Tian, C. Ouyang, Y. Liu, S. Zhang, X. Zhang, J. Han, and W. Zhang, “Asymmetric excitation of surface plasmons by dark mode coupling,” Sci. Adv. 2, e1501142 (2016).
[Crossref]

Y. Xu, X. Zhang, Z. Tian, J. Gu, C. Ouyang, Y. Li, J. Han, and W. Zhang, “Mapping the near-field propagation of surface plasmons on terahertz metasurfaces,” Appl. Phys. Lett. 107, 021105 (2015).
[Crossref]

X. Zhang, Y. Xu, W. Yue, Z. Tian, J. Gu, Y. Li, R. Singh, S. Zhang, J. Han, and W. Zhang, “Anomalous surface wave launching by handedness phase control,” Adv. Mater. 27, 7123–7129 (2015).
[Crossref]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref]

Guo, W.

H. Zhang, M. Kang, X. Zhang, W. Guo, C. Lv, Y. Li, W. Zhang, and J. Han, “Coherent control of optical spin-to-orbital angular momentum conversion in metasurface,” Adv. Mater. 29, 1604252 (2017).
[Crossref]

Halas, N. J.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010).
[Crossref]

Han, J.

H. Zhang, M. Kang, X. Zhang, W. Guo, C. Lv, Y. Li, W. Zhang, and J. Han, “Coherent control of optical spin-to-orbital angular momentum conversion in metasurface,” Adv. Mater. 29, 1604252 (2017).
[Crossref]

Q. Xu, X. Zhang, Y. Xu, C. Ouyang, Z. Tian, J. Gu, J. Li, S. Zhang, J. Han, and W. Zhang, “Polarization-controlled surface plasmon holography,” Laser Photon. Rev. 11, 1600212 (2017).
[Crossref]

X. Zhang, Q. Xu, Q. Li, Y. Xu, J. Gu, Z. Tian, C. Ouyang, Y. Liu, S. Zhang, X. Zhang, J. Han, and W. Zhang, “Asymmetric excitation of surface plasmons by dark mode coupling,” Sci. Adv. 2, e1501142 (2016).
[Crossref]

Y. Xu, X. Zhang, Z. Tian, J. Gu, C. Ouyang, Y. Li, J. Han, and W. Zhang, “Mapping the near-field propagation of surface plasmons on terahertz metasurfaces,” Appl. Phys. Lett. 107, 021105 (2015).
[Crossref]

X. Zhang, Y. Xu, W. Yue, Z. Tian, J. Gu, Y. Li, R. Singh, S. Zhang, J. Han, and W. Zhang, “Anomalous surface wave launching by handedness phase control,” Adv. Mater. 27, 7123–7129 (2015).
[Crossref]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref]

He, Q.

S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater. 11, 426–431 (2012).
[Crossref]

Homola, J.

J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev. 108, 462–493 (2008).

Hong, J.

E.-Y. Song, S.-Y. Lee, J. Hong, K. Lee, Y. Lee, G.-Y. Lee, H. Kim, and B. Lee, “A double-lined metasurface for plasmonic complex-field generation,” Laser Photon. Rev. 10, 299–306 (2016).
[Crossref]

Hu, C.

B. Chen, J. Yang, C. Hu, S. Wang, Q. Wen, and J. Zhang, “Plasmonic polarization nano-splitter based on asymmetric optical slot antenna pairs,” Opt. Lett. 41, 4931–4934 (2016).
[Crossref]

J. Yang, X. Xiao, C. Hu, W. Zhang, S. Zhou, and J. Zhang, “Broadband surface plasmon polariton directional coupling via asymmetric optical slot nanoantenna pair,” Nano Lett. 14, 704–709 (2014).
[Crossref]

J. Yang, S. Zhou, C. Hu, W. Zhang, X. Xiao, and J. Zhang, “Broadband spin-controlled surface plasmon polariton launching and radiation via L-shaped optical slot nanoantennas,” Laser Photon. Rev. 8, 590–595 (2014).
[Crossref]

Huang, E.

F. Wei, D. Lu, H. Shen, W. Wan, J. L. Ponsetto, E. Huang, and Z. Liu, “Wide field super-resolution surface imaging through plasmonic structured illumination microscopy,” Nano Lett. 14, 4634–4639 (2014).

Huang, F.

F. Huang, X. Jiang, H. Yang, S. Li, and X. Sun, “Tunable directional coupling of surface plasmon polaritons with linearly polarized light,” Appl. Phys. B 122, 16 (2016).
[Crossref]

Huang, L.

L. Huang, X. Chen, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Helicity dependent directional surface plasmon polariton excitation using a metasurface with interfacial phase discontinuity,” Light Sci. Appl. 2, e70 (2013).
[Crossref]

Huang, X.

X. Huang and M. L. Brongersma, “Compact aperiodic metallic groove arrays for unidirectional launching of surface plasmons,” Nano Lett. 13, 5420–5424 (2013).
[Crossref]

Hugonin, J.-P.

A. Baron, E. Devaux, J.-C. Rodier, J.-P. Hugonin, E. Rousseau, C. Genet, T. W. Ebbesen, and P. Lalanne, “Compact antenna for efficient and unidirectional launching and decoupling of surface plasmons,” Nano Lett. 11, 4207–4212 (2011).
[Crossref]

Inouye, Y.

S. Kawata, Y. Inouye, and P. Verma, “Plasmonics for near-field nano-imaging and superlensing,” Nat. Photonics 3, 388–394 (2009).

Jeon, T.-I.

Jiang, X.

F. Huang, X. Jiang, H. Yang, S. Li, and X. Sun, “Tunable directional coupling of surface plasmon polaritons with linearly polarized light,” Appl. Phys. B 122, 16 (2016).
[Crossref]

Jin, G.

L. Huang, X. Chen, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Helicity dependent directional surface plasmon polariton excitation using a metasurface with interfacial phase discontinuity,” Light Sci. Appl. 2, e70 (2013).
[Crossref]

X. Li, Q. Tan, B. Bai, and G. Jin, “Experimental demonstration of tunable directional excitation of surface plasmon polaritons with a subwavelength metallic double slit,” Appl. Phys. Lett. 98, 251109 (2011).
[Crossref]

Kaiser, S.

T. Zentgraf, T. P. Meyrath, A. Seidel, S. Kaiser, H. Giessen, C. Rockstuhl, and F. Lederer, “Babinet’s principle for optical frequency metamaterials and nanoantennas,” Phys. Rev. B 76, 033407 (2007).
[Crossref]

Kang, M.

H. Zhang, M. Kang, X. Zhang, W. Guo, C. Lv, Y. Li, W. Zhang, and J. Han, “Coherent control of optical spin-to-orbital angular momentum conversion in metasurface,” Adv. Mater. 29, 1604252 (2017).
[Crossref]

M. Kang and Y. D. Chong, “Coherent optical control of polarization with a critical metasurface,” Phys. Rev. A 92, 043826 (2015).
[Crossref]

Kästel, J.

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8, 758–762 (2009).
[Crossref]

Kawata, S.

S. Kawata, Y. Inouye, and P. Verma, “Plasmonics for near-field nano-imaging and superlensing,” Nat. Photonics 3, 388–394 (2009).

Khorasaninejad, M.

Kim, H.

E.-Y. Song, S.-Y. Lee, J. Hong, K. Lee, Y. Lee, G.-Y. Lee, H. Kim, and B. Lee, “A double-lined metasurface for plasmonic complex-field generation,” Laser Photon. Rev. 10, 299–306 (2016).
[Crossref]

H. Kim and B. Lee, “Unidirectional surface plasmon polariton excitation on single slit with oblique backside illumination,” Plasmonics 4, 153–159 (2009).
[Crossref]

Kim, K.

Kim, K.-Y.

Kim, S.-J.

Krenn, J. R.

F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. González, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys. 3, 324–328 (2007).
[Crossref]

Kreuzer, M. P.

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329, 930–933 (2010).

Lalanne, P.

A. Baron, E. Devaux, J.-C. Rodier, J.-P. Hugonin, E. Rousseau, C. Genet, T. W. Ebbesen, and P. Lalanne, “Compact antenna for efficient and unidirectional launching and decoupling of surface plasmons,” Nano Lett. 11, 4207–4212 (2011).
[Crossref]

Langguth, L.

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8, 758–762 (2009).
[Crossref]

Lederer, F.

T. Zentgraf, T. P. Meyrath, A. Seidel, S. Kaiser, H. Giessen, C. Rockstuhl, and F. Lederer, “Babinet’s principle for optical frequency metamaterials and nanoantennas,” Phys. Rev. B 76, 033407 (2007).
[Crossref]

Lee, B.

E.-Y. Song, S.-Y. Lee, J. Hong, K. Lee, Y. Lee, G.-Y. Lee, H. Kim, and B. Lee, “A double-lined metasurface for plasmonic complex-field generation,” Laser Photon. Rev. 10, 299–306 (2016).
[Crossref]

S.-Y. Lee, K. Kim, S.-J. Kim, H. Park, K.-Y. Kim, and B. Lee, “Plasmonic meta-slit: shaping and controlling near-field focus,” Optica 2, 6–13 (2015).
[Crossref]

H. Kim and B. Lee, “Unidirectional surface plasmon polariton excitation on single slit with oblique backside illumination,” Plasmonics 4, 153–159 (2009).
[Crossref]

Lee, G.-Y.

E.-Y. Song, S.-Y. Lee, J. Hong, K. Lee, Y. Lee, G.-Y. Lee, H. Kim, and B. Lee, “A double-lined metasurface for plasmonic complex-field generation,” Laser Photon. Rev. 10, 299–306 (2016).
[Crossref]

Lee, K.

E.-Y. Song, S.-Y. Lee, J. Hong, K. Lee, Y. Lee, G.-Y. Lee, H. Kim, and B. Lee, “A double-lined metasurface for plasmonic complex-field generation,” Laser Photon. Rev. 10, 299–306 (2016).
[Crossref]

Lee, S.-Y.

E.-Y. Song, S.-Y. Lee, J. Hong, K. Lee, Y. Lee, G.-Y. Lee, H. Kim, and B. Lee, “A double-lined metasurface for plasmonic complex-field generation,” Laser Photon. Rev. 10, 299–306 (2016).
[Crossref]

S.-Y. Lee, K. Kim, S.-J. Kim, H. Park, K.-Y. Kim, and B. Lee, “Plasmonic meta-slit: shaping and controlling near-field focus,” Optica 2, 6–13 (2015).
[Crossref]

Lee, Y.

E.-Y. Song, S.-Y. Lee, J. Hong, K. Lee, Y. Lee, G.-Y. Lee, H. Kim, and B. Lee, “A double-lined metasurface for plasmonic complex-field generation,” Laser Photon. Rev. 10, 299–306 (2016).
[Crossref]

Li, J.

Q. Xu, X. Zhang, Y. Xu, C. Ouyang, Z. Tian, J. Gu, J. Li, S. Zhang, J. Han, and W. Zhang, “Polarization-controlled surface plasmon holography,” Laser Photon. Rev. 11, 1600212 (2017).
[Crossref]

S. Xiao, F. Zhong, H. Liu, S. Zhu, and J. Li, “Flexible coherent control of plasmonic spin-Hall effect,” Nat. Commun. 6, 8360 (2015).
[Crossref]

Li, L.

Li, Q.

X. Zhang, Q. Xu, Q. Li, Y. Xu, J. Gu, Z. Tian, C. Ouyang, Y. Liu, S. Zhang, X. Zhang, J. Han, and W. Zhang, “Asymmetric excitation of surface plasmons by dark mode coupling,” Sci. Adv. 2, e1501142 (2016).
[Crossref]

Li, S.

F. Huang, X. Jiang, H. Yang, S. Li, and X. Sun, “Tunable directional coupling of surface plasmon polaritons with linearly polarized light,” Appl. Phys. B 122, 16 (2016).
[Crossref]

Li, T.

Li, X.

S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater. 11, 426–431 (2012).
[Crossref]

X. Li, Q. Tan, B. Bai, and G. Jin, “Experimental demonstration of tunable directional excitation of surface plasmon polaritons with a subwavelength metallic double slit,” Appl. Phys. Lett. 98, 251109 (2011).
[Crossref]

Li, Y.

H. Zhang, M. Kang, X. Zhang, W. Guo, C. Lv, Y. Li, W. Zhang, and J. Han, “Coherent control of optical spin-to-orbital angular momentum conversion in metasurface,” Adv. Mater. 29, 1604252 (2017).
[Crossref]

Y. Xu, X. Zhang, Z. Tian, J. Gu, C. Ouyang, Y. Li, J. Han, and W. Zhang, “Mapping the near-field propagation of surface plasmons on terahertz metasurfaces,” Appl. Phys. Lett. 107, 021105 (2015).
[Crossref]

X. Zhang, Y. Xu, W. Yue, Z. Tian, J. Gu, Y. Li, R. Singh, S. Zhang, J. Han, and W. Zhang, “Anomalous surface wave launching by handedness phase control,” Adv. Mater. 27, 7123–7129 (2015).
[Crossref]

Li, Z.

H. Liao, Z. Li, J. Chen, X. Zhang, S. Yue, and Q. Gong, “A submicron broadband surface-plasmon-polariton unidirectional coupler,” Sci. Rep. 3, 1918 (2013).
[Crossref]

Liao, H.

H. Liao, Z. Li, J. Chen, X. Zhang, S. Yue, and Q. Gong, “A submicron broadband surface-plasmon-polariton unidirectional coupler,” Sci. Rep. 3, 1918 (2013).
[Crossref]

Lin, J.

J. Lin, J. P. B. Mueller, Q. Wang, G. Yuan, N. Antoniou, X.-C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340, 331–334 (2013).
[Crossref]

Liu, H.

S. Xiao, F. Zhong, H. Liu, S. Zhu, and J. Li, “Flexible coherent control of plasmonic spin-Hall effect,” Nat. Commun. 6, 8360 (2015).
[Crossref]

Liu, M.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101, 047401 (2008).
[Crossref]

Liu, N.

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8, 758–762 (2009).
[Crossref]

Liu, X.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref]

Liu, Y.

X. Zhang, Q. Xu, Q. Li, Y. Xu, J. Gu, Z. Tian, C. Ouyang, Y. Liu, S. Zhang, X. Zhang, J. Han, and W. Zhang, “Asymmetric excitation of surface plasmons by dark mode coupling,” Sci. Adv. 2, e1501142 (2016).
[Crossref]

Liu, Z.

F. Wei, D. Lu, H. Shen, W. Wan, J. L. Ponsetto, E. Huang, and Z. Liu, “Wide field super-resolution surface imaging through plasmonic structured illumination microscopy,” Nano Lett. 14, 4634–4639 (2014).

López-Tejeira, F.

F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. González, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys. 3, 324–328 (2007).
[Crossref]

Lu, D.

F. Wei, D. Lu, H. Shen, W. Wan, J. L. Ponsetto, E. Huang, and Z. Liu, “Wide field super-resolution surface imaging through plasmonic structured illumination microscopy,” Nano Lett. 14, 4634–4639 (2014).

Luk’yanchuk, B.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010).
[Crossref]

Lv, C.

H. Zhang, M. Kang, X. Zhang, W. Guo, C. Lv, Y. Li, W. Zhang, and J. Han, “Coherent control of optical spin-to-orbital angular momentum conversion in metasurface,” Adv. Mater. 29, 1604252 (2017).
[Crossref]

Ly-Gagnon, D.-S.

T. Tanemura, K. C. Balram, D.-S. Ly-Gagnon, P. Wahl, J. S. White, M. L. Brongersma, and D. A. B. Miller, “Multiple-wavelength focusing of surface plasmons with a nonperiodic nanoslit coupler,” Nano Lett. 11, 2693–2698 (2011).
[Crossref]

Ma, R.-M.

V. J. Sorger, R. F. Oulton, R.-M. Ma, and X. Zhang, “Toward integrated plasmonic circuits,” MRS Bull. 37(8), 728–738 (2012).
[Crossref]

Ma, Y.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref]

Maier, S. A.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref]

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010).
[Crossref]

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

Marino, G.

F. J. Rodríguez-Fortuño, G. Marino, P. Ginzburg, D. O’Connor, A. Martínez, G. A. Wurtz, and A. V. Zayats, “Near-field interference for the unidirectional excitation of electromagnetic guided modes,” Science 340, 328–330 (2013).
[Crossref]

Marquier, F.

Martínez, A.

F. J. Rodríguez-Fortuño, G. Marino, P. Ginzburg, D. O’Connor, A. Martínez, G. A. Wurtz, and A. V. Zayats, “Near-field interference for the unidirectional excitation of electromagnetic guided modes,” Science 340, 328–330 (2013).
[Crossref]

Martín-Moreno, L.

I. P. Radko, S. I. Bozhevolnyi, G. Brucoli, L. Martín-Moreno, F. J. García-Vidal, and A. Boltasseva, “Efficiency of local surface plasmon polariton excitation on ridges,” Phys. Rev. B 78, 115115 (2008).
[Crossref]

F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. González, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys. 3, 324–328 (2007).
[Crossref]

Merbold, H.

Meyrath, T. P.

T. Zentgraf, T. P. Meyrath, A. Seidel, S. Kaiser, H. Giessen, C. Rockstuhl, and F. Lederer, “Babinet’s principle for optical frequency metamaterials and nanoantennas,” Phys. Rev. B 76, 033407 (2007).
[Crossref]

Miller, D. A. B.

T. Tanemura, K. C. Balram, D.-S. Ly-Gagnon, P. Wahl, J. S. White, M. L. Brongersma, and D. A. B. Miller, “Multiple-wavelength focusing of surface plasmons with a nonperiodic nanoslit coupler,” Nano Lett. 11, 2693–2698 (2011).
[Crossref]

Mueller, J. P. B.

J. Lin, J. P. B. Mueller, Q. Wang, G. Yuan, N. Antoniou, X.-C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340, 331–334 (2013).
[Crossref]

Nazarov, M.

M. Nazarov and J.-L. Coutaz, “Terahertz surface waves propagating on metals with sub-wavelength structure and grating reliefs,” J. Infrared Millim. Terahertz Waves 32, 1054–1073 (2011).
[Crossref]

Nielsen, M. G.

A. Pors, M. G. Nielsen, T. Bernardin, J.-C. Weeber, and S. I. Bozhevolnyi, “Efficient unidirectional polarization-controlled excitation of surface plasmon polaritons,” Light Sci. Appl. 3, e197 (2014).
[Crossref]

Nordlander, P.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010).
[Crossref]

O’Connor, D.

F. J. Rodríguez-Fortuño, G. Marino, P. Ginzburg, D. O’Connor, A. Martínez, G. A. Wurtz, and A. V. Zayats, “Near-field interference for the unidirectional excitation of electromagnetic guided modes,” Science 340, 328–330 (2013).
[Crossref]

Ortner, A.

Oulton, R. F.

V. J. Sorger, R. F. Oulton, R.-M. Ma, and X. Zhang, “Toward integrated plasmonic circuits,” MRS Bull. 37(8), 728–738 (2012).
[Crossref]

Ouyang, C.

Q. Xu, X. Zhang, Y. Xu, C. Ouyang, Z. Tian, J. Gu, J. Li, S. Zhang, J. Han, and W. Zhang, “Polarization-controlled surface plasmon holography,” Laser Photon. Rev. 11, 1600212 (2017).
[Crossref]

X. Zhang, Q. Xu, Q. Li, Y. Xu, J. Gu, Z. Tian, C. Ouyang, Y. Liu, S. Zhang, X. Zhang, J. Han, and W. Zhang, “Asymmetric excitation of surface plasmons by dark mode coupling,” Sci. Adv. 2, e1501142 (2016).
[Crossref]

Y. Xu, X. Zhang, Z. Tian, J. Gu, C. Ouyang, Y. Li, J. Han, and W. Zhang, “Mapping the near-field propagation of surface plasmons on terahertz metasurfaces,” Appl. Phys. Lett. 107, 021105 (2015).
[Crossref]

Park, H.

Pfau, T.

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8, 758–762 (2009).
[Crossref]

Polman, A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010).

Ponsetto, J. L.

F. Wei, D. Lu, H. Shen, W. Wan, J. L. Ponsetto, E. Huang, and Z. Liu, “Wide field super-resolution surface imaging through plasmonic structured illumination microscopy,” Nano Lett. 14, 4634–4639 (2014).

Pors, A.

A. Pors, M. G. Nielsen, T. Bernardin, J.-C. Weeber, and S. I. Bozhevolnyi, “Efficient unidirectional polarization-controlled excitation of surface plasmon polaritons,” Light Sci. Appl. 3, e197 (2014).
[Crossref]

Quidant, R.

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329, 930–933 (2010).

Radko, I. P.

I. P. Radko, S. I. Bozhevolnyi, G. Brucoli, L. Martín-Moreno, F. J. García-Vidal, and A. Boltasseva, “Efficiency of local surface plasmon polariton excitation on ridges,” Phys. Rev. B 78, 115115 (2008).
[Crossref]

F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. González, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys. 3, 324–328 (2007).
[Crossref]

Rockstuhl, C.

T. Zentgraf, T. P. Meyrath, A. Seidel, S. Kaiser, H. Giessen, C. Rockstuhl, and F. Lederer, “Babinet’s principle for optical frequency metamaterials and nanoantennas,” Phys. Rev. B 76, 033407 (2007).
[Crossref]

Rodier, J.-C.

A. Baron, E. Devaux, J.-C. Rodier, J.-P. Hugonin, E. Rousseau, C. Genet, T. W. Ebbesen, and P. Lalanne, “Compact antenna for efficient and unidirectional launching and decoupling of surface plasmons,” Nano Lett. 11, 4207–4212 (2011).
[Crossref]

Rodrigo, S. G.

F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. González, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys. 3, 324–328 (2007).
[Crossref]

Rodríguez-Fortuño, F. J.

F. J. Rodríguez-Fortuño, G. Marino, P. Ginzburg, D. O’Connor, A. Martínez, G. A. Wurtz, and A. V. Zayats, “Near-field interference for the unidirectional excitation of electromagnetic guided modes,” Science 340, 328–330 (2013).
[Crossref]

Rousseau, E.

A. Baron, E. Devaux, J.-C. Rodier, J.-P. Hugonin, E. Rousseau, C. Genet, T. W. Ebbesen, and P. Lalanne, “Compact antenna for efficient and unidirectional launching and decoupling of surface plasmons,” Nano Lett. 11, 4207–4212 (2011).
[Crossref]

Seidel, A.

T. Zentgraf, T. P. Meyrath, A. Seidel, S. Kaiser, H. Giessen, C. Rockstuhl, and F. Lederer, “Babinet’s principle for optical frequency metamaterials and nanoantennas,” Phys. Rev. B 76, 033407 (2007).
[Crossref]

Shen, H.

F. Wei, D. Lu, H. Shen, W. Wan, J. L. Ponsetto, E. Huang, and Z. Liu, “Wide field super-resolution surface imaging through plasmonic structured illumination microscopy,” Nano Lett. 14, 4634–4639 (2014).

Singh, R.

X. Zhang, Y. Xu, W. Yue, Z. Tian, J. Gu, Y. Li, R. Singh, S. Zhang, J. Han, and W. Zhang, “Anomalous surface wave launching by handedness phase control,” Adv. Mater. 27, 7123–7129 (2015).
[Crossref]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref]

Song, E.-Y.

E.-Y. Song, S.-Y. Lee, J. Hong, K. Lee, Y. Lee, G.-Y. Lee, H. Kim, and B. Lee, “A double-lined metasurface for plasmonic complex-field generation,” Laser Photon. Rev. 10, 299–306 (2016).
[Crossref]

Sorger, V. J.

V. J. Sorger, R. F. Oulton, R.-M. Ma, and X. Zhang, “Toward integrated plasmonic circuits,” MRS Bull. 37(8), 728–738 (2012).
[Crossref]

Sun, M.

Y. Fang and M. Sun, “Nanoplasmonic waveguides: towards applications in integrated nanophotonic circuits,” Light Sci. Appl. 4, e294 (2015).

Sun, S.

S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater. 11, 426–431 (2012).
[Crossref]

Sun, X.

F. Huang, X. Jiang, H. Yang, S. Li, and X. Sun, “Tunable directional coupling of surface plasmon polaritons with linearly polarized light,” Appl. Phys. B 122, 16 (2016).
[Crossref]

Taminiau, T. H.

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329, 930–933 (2010).

Tan, Q.

L. Huang, X. Chen, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Helicity dependent directional surface plasmon polariton excitation using a metasurface with interfacial phase discontinuity,” Light Sci. Appl. 2, e70 (2013).
[Crossref]

X. Li, Q. Tan, B. Bai, and G. Jin, “Experimental demonstration of tunable directional excitation of surface plasmon polaritons with a subwavelength metallic double slit,” Appl. Phys. Lett. 98, 251109 (2011).
[Crossref]

Tanemura, T.

T. Tanemura, K. C. Balram, D.-S. Ly-Gagnon, P. Wahl, J. S. White, M. L. Brongersma, and D. A. B. Miller, “Multiple-wavelength focusing of surface plasmons with a nonperiodic nanoslit coupler,” Nano Lett. 11, 2693–2698 (2011).
[Crossref]

Taylor, A. J.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref]

Teperik, T. V.

Tian, Z.

Q. Xu, X. Zhang, Y. Xu, C. Ouyang, Z. Tian, J. Gu, J. Li, S. Zhang, J. Han, and W. Zhang, “Polarization-controlled surface plasmon holography,” Laser Photon. Rev. 11, 1600212 (2017).
[Crossref]

X. Zhang, Q. Xu, Q. Li, Y. Xu, J. Gu, Z. Tian, C. Ouyang, Y. Liu, S. Zhang, X. Zhang, J. Han, and W. Zhang, “Asymmetric excitation of surface plasmons by dark mode coupling,” Sci. Adv. 2, e1501142 (2016).
[Crossref]

Y. Xu, X. Zhang, Z. Tian, J. Gu, C. Ouyang, Y. Li, J. Han, and W. Zhang, “Mapping the near-field propagation of surface plasmons on terahertz metasurfaces,” Appl. Phys. Lett. 107, 021105 (2015).
[Crossref]

X. Zhang, Y. Xu, W. Yue, Z. Tian, J. Gu, Y. Li, R. Singh, S. Zhang, J. Han, and W. Zhang, “Anomalous surface wave launching by handedness phase control,” Adv. Mater. 27, 7123–7129 (2015).
[Crossref]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref]

van Hulst, N. F.

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329, 930–933 (2010).

Verma, P.

S. Kawata, Y. Inouye, and P. Verma, “Plasmonics for near-field nano-imaging and superlensing,” Nat. Photonics 3, 388–394 (2009).

Volpe, G.

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329, 930–933 (2010).

Wahl, P.

T. Tanemura, K. C. Balram, D.-S. Ly-Gagnon, P. Wahl, J. S. White, M. L. Brongersma, and D. A. B. Miller, “Multiple-wavelength focusing of surface plasmons with a nonperiodic nanoslit coupler,” Nano Lett. 11, 2693–2698 (2011).
[Crossref]

Walther, M.

Wan, W.

F. Wei, D. Lu, H. Shen, W. Wan, J. L. Ponsetto, E. Huang, and Z. Liu, “Wide field super-resolution surface imaging through plasmonic structured illumination microscopy,” Nano Lett. 14, 4634–4639 (2014).

Wang, L.

Wang, Q.

J. Lin, J. P. B. Mueller, Q. Wang, G. Yuan, N. Antoniou, X.-C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340, 331–334 (2013).
[Crossref]

Wang, S.

Wang, Y.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101, 047401 (2008).
[Crossref]

Weeber, J. C.

F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. González, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys. 3, 324–328 (2007).
[Crossref]

Weeber, J.-C.

A. Pors, M. G. Nielsen, T. Bernardin, J.-C. Weeber, and S. I. Bozhevolnyi, “Efficient unidirectional polarization-controlled excitation of surface plasmon polaritons,” Light Sci. Appl. 3, e197 (2014).
[Crossref]

Wei, F.

F. Wei, D. Lu, H. Shen, W. Wan, J. L. Ponsetto, E. Huang, and Z. Liu, “Wide field super-resolution surface imaging through plasmonic structured illumination microscopy,” Nano Lett. 14, 4634–4639 (2014).

Weiss, T.

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8, 758–762 (2009).
[Crossref]

Wen, Q.

White, J. S.

T. Tanemura, K. C. Balram, D.-S. Ly-Gagnon, P. Wahl, J. S. White, M. L. Brongersma, and D. A. B. Miller, “Multiple-wavelength focusing of surface plasmons with a nonperiodic nanoslit coupler,” Nano Lett. 11, 2693–2698 (2011).
[Crossref]

Wintz, D.

D. Wintz, A. Ambrosio, A. Y. Zhu, P. Genevet, and F. Capasso, “Anisotropic surface plasmon polariton generation using bimodal V-antenna based metastructures,” ACS Photon. 4, 22–27 (2017).
[Crossref]

Wurtz, G. A.

F. J. Rodríguez-Fortuño, G. Marino, P. Ginzburg, D. O’Connor, A. Martínez, G. A. Wurtz, and A. V. Zayats, “Near-field interference for the unidirectional excitation of electromagnetic guided modes,” Science 340, 328–330 (2013).
[Crossref]

Xia, W.

Xiao, S.

S. Xiao, F. Zhong, H. Liu, S. Zhu, and J. Li, “Flexible coherent control of plasmonic spin-Hall effect,” Nat. Commun. 6, 8360 (2015).
[Crossref]

S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater. 11, 426–431 (2012).
[Crossref]

Xiao, X.

J. Yang, S. Zhou, C. Hu, W. Zhang, X. Xiao, and J. Zhang, “Broadband spin-controlled surface plasmon polariton launching and radiation via L-shaped optical slot nanoantennas,” Laser Photon. Rev. 8, 590–595 (2014).
[Crossref]

J. Yang, X. Xiao, C. Hu, W. Zhang, S. Zhou, and J. Zhang, “Broadband surface plasmon polariton directional coupling via asymmetric optical slot nanoantenna pair,” Nano Lett. 14, 704–709 (2014).
[Crossref]

Xu, Q.

Q. Xu, X. Zhang, Y. Xu, C. Ouyang, Z. Tian, J. Gu, J. Li, S. Zhang, J. Han, and W. Zhang, “Polarization-controlled surface plasmon holography,” Laser Photon. Rev. 11, 1600212 (2017).
[Crossref]

X. Zhang, Q. Xu, Q. Li, Y. Xu, J. Gu, Z. Tian, C. Ouyang, Y. Liu, S. Zhang, X. Zhang, J. Han, and W. Zhang, “Asymmetric excitation of surface plasmons by dark mode coupling,” Sci. Adv. 2, e1501142 (2016).
[Crossref]

S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater. 11, 426–431 (2012).
[Crossref]

Xu, X. G.

Xu, Y.

Q. Xu, X. Zhang, Y. Xu, C. Ouyang, Z. Tian, J. Gu, J. Li, S. Zhang, J. Han, and W. Zhang, “Polarization-controlled surface plasmon holography,” Laser Photon. Rev. 11, 1600212 (2017).
[Crossref]

X. Zhang, Q. Xu, Q. Li, Y. Xu, J. Gu, Z. Tian, C. Ouyang, Y. Liu, S. Zhang, X. Zhang, J. Han, and W. Zhang, “Asymmetric excitation of surface plasmons by dark mode coupling,” Sci. Adv. 2, e1501142 (2016).
[Crossref]

Y. Xu, X. Zhang, Z. Tian, J. Gu, C. Ouyang, Y. Li, J. Han, and W. Zhang, “Mapping the near-field propagation of surface plasmons on terahertz metasurfaces,” Appl. Phys. Lett. 107, 021105 (2015).
[Crossref]

X. Zhang, Y. Xu, W. Yue, Z. Tian, J. Gu, Y. Li, R. Singh, S. Zhang, J. Han, and W. Zhang, “Anomalous surface wave launching by handedness phase control,” Adv. Mater. 27, 7123–7129 (2015).
[Crossref]

Yang, H.

F. Huang, X. Jiang, H. Yang, S. Li, and X. Sun, “Tunable directional coupling of surface plasmon polaritons with linearly polarized light,” Appl. Phys. B 122, 16 (2016).
[Crossref]

Yang, J.

B. Chen, J. Yang, C. Hu, S. Wang, Q. Wen, and J. Zhang, “Plasmonic polarization nano-splitter based on asymmetric optical slot antenna pairs,” Opt. Lett. 41, 4931–4934 (2016).
[Crossref]

J. Yang, S. Zhou, C. Hu, W. Zhang, X. Xiao, and J. Zhang, “Broadband spin-controlled surface plasmon polariton launching and radiation via L-shaped optical slot nanoantennas,” Laser Photon. Rev. 8, 590–595 (2014).
[Crossref]

J. Yang, X. Xiao, C. Hu, W. Zhang, S. Zhou, and J. Zhang, “Broadband surface plasmon polariton directional coupling via asymmetric optical slot nanoantenna pair,” Nano Lett. 14, 704–709 (2014).
[Crossref]

Yuan, G.

J. Lin, J. P. B. Mueller, Q. Wang, G. Yuan, N. Antoniou, X.-C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340, 331–334 (2013).
[Crossref]

Yuan, X.-C.

J. Lin, J. P. B. Mueller, Q. Wang, G. Yuan, N. Antoniou, X.-C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340, 331–334 (2013).
[Crossref]

Yue, S.

H. Liao, Z. Li, J. Chen, X. Zhang, S. Yue, and Q. Gong, “A submicron broadband surface-plasmon-polariton unidirectional coupler,” Sci. Rep. 3, 1918 (2013).
[Crossref]

Yue, W.

X. Zhang, Y. Xu, W. Yue, Z. Tian, J. Gu, Y. Li, R. Singh, S. Zhang, J. Han, and W. Zhang, “Anomalous surface wave launching by handedness phase control,” Adv. Mater. 27, 7123–7129 (2015).
[Crossref]

Zayats, A. V.

F. J. Rodríguez-Fortuño, G. Marino, P. Ginzburg, D. O’Connor, A. Martínez, G. A. Wurtz, and A. V. Zayats, “Near-field interference for the unidirectional excitation of electromagnetic guided modes,” Science 340, 328–330 (2013).
[Crossref]

Zentgraf, T.

L. Huang, X. Chen, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Helicity dependent directional surface plasmon polariton excitation using a metasurface with interfacial phase discontinuity,” Light Sci. Appl. 2, e70 (2013).
[Crossref]

T. Zentgraf, T. P. Meyrath, A. Seidel, S. Kaiser, H. Giessen, C. Rockstuhl, and F. Lederer, “Babinet’s principle for optical frequency metamaterials and nanoantennas,” Phys. Rev. B 76, 033407 (2007).
[Crossref]

Zhang, H.

H. Zhang, M. Kang, X. Zhang, W. Guo, C. Lv, Y. Li, W. Zhang, and J. Han, “Coherent control of optical spin-to-orbital angular momentum conversion in metasurface,” Adv. Mater. 29, 1604252 (2017).
[Crossref]

Zhang, J.

B. Chen, J. Yang, C. Hu, S. Wang, Q. Wen, and J. Zhang, “Plasmonic polarization nano-splitter based on asymmetric optical slot antenna pairs,” Opt. Lett. 41, 4931–4934 (2016).
[Crossref]

J. Yang, X. Xiao, C. Hu, W. Zhang, S. Zhou, and J. Zhang, “Broadband surface plasmon polariton directional coupling via asymmetric optical slot nanoantenna pair,” Nano Lett. 14, 704–709 (2014).
[Crossref]

J. Yang, S. Zhou, C. Hu, W. Zhang, X. Xiao, and J. Zhang, “Broadband spin-controlled surface plasmon polariton launching and radiation via L-shaped optical slot nanoantennas,” Laser Photon. Rev. 8, 590–595 (2014).
[Crossref]

Zhang, S.

Q. Xu, X. Zhang, Y. Xu, C. Ouyang, Z. Tian, J. Gu, J. Li, S. Zhang, J. Han, and W. Zhang, “Polarization-controlled surface plasmon holography,” Laser Photon. Rev. 11, 1600212 (2017).
[Crossref]

X. Zhang, Q. Xu, Q. Li, Y. Xu, J. Gu, Z. Tian, C. Ouyang, Y. Liu, S. Zhang, X. Zhang, J. Han, and W. Zhang, “Asymmetric excitation of surface plasmons by dark mode coupling,” Sci. Adv. 2, e1501142 (2016).
[Crossref]

X. Zhang, Y. Xu, W. Yue, Z. Tian, J. Gu, Y. Li, R. Singh, S. Zhang, J. Han, and W. Zhang, “Anomalous surface wave launching by handedness phase control,” Adv. Mater. 27, 7123–7129 (2015).
[Crossref]

L. Huang, X. Chen, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Helicity dependent directional surface plasmon polariton excitation using a metasurface with interfacial phase discontinuity,” Light Sci. Appl. 2, e70 (2013).
[Crossref]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101, 047401 (2008).
[Crossref]

Zhang, W.

H. Zhang, M. Kang, X. Zhang, W. Guo, C. Lv, Y. Li, W. Zhang, and J. Han, “Coherent control of optical spin-to-orbital angular momentum conversion in metasurface,” Adv. Mater. 29, 1604252 (2017).
[Crossref]

Q. Xu, X. Zhang, Y. Xu, C. Ouyang, Z. Tian, J. Gu, J. Li, S. Zhang, J. Han, and W. Zhang, “Polarization-controlled surface plasmon holography,” Laser Photon. Rev. 11, 1600212 (2017).
[Crossref]

X. Zhang, Q. Xu, Q. Li, Y. Xu, J. Gu, Z. Tian, C. Ouyang, Y. Liu, S. Zhang, X. Zhang, J. Han, and W. Zhang, “Asymmetric excitation of surface plasmons by dark mode coupling,” Sci. Adv. 2, e1501142 (2016).
[Crossref]

Y. Xu, X. Zhang, Z. Tian, J. Gu, C. Ouyang, Y. Li, J. Han, and W. Zhang, “Mapping the near-field propagation of surface plasmons on terahertz metasurfaces,” Appl. Phys. Lett. 107, 021105 (2015).
[Crossref]

X. Zhang, Y. Xu, W. Yue, Z. Tian, J. Gu, Y. Li, R. Singh, S. Zhang, J. Han, and W. Zhang, “Anomalous surface wave launching by handedness phase control,” Adv. Mater. 27, 7123–7129 (2015).
[Crossref]

J. Yang, S. Zhou, C. Hu, W. Zhang, X. Xiao, and J. Zhang, “Broadband spin-controlled surface plasmon polariton launching and radiation via L-shaped optical slot nanoantennas,” Laser Photon. Rev. 8, 590–595 (2014).
[Crossref]

J. Yang, X. Xiao, C. Hu, W. Zhang, S. Zhou, and J. Zhang, “Broadband surface plasmon polariton directional coupling via asymmetric optical slot nanoantenna pair,” Nano Lett. 14, 704–709 (2014).
[Crossref]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref]

Zhang, X.

H. Zhang, M. Kang, X. Zhang, W. Guo, C. Lv, Y. Li, W. Zhang, and J. Han, “Coherent control of optical spin-to-orbital angular momentum conversion in metasurface,” Adv. Mater. 29, 1604252 (2017).
[Crossref]

Q. Xu, X. Zhang, Y. Xu, C. Ouyang, Z. Tian, J. Gu, J. Li, S. Zhang, J. Han, and W. Zhang, “Polarization-controlled surface plasmon holography,” Laser Photon. Rev. 11, 1600212 (2017).
[Crossref]

X. Zhang, Q. Xu, Q. Li, Y. Xu, J. Gu, Z. Tian, C. Ouyang, Y. Liu, S. Zhang, X. Zhang, J. Han, and W. Zhang, “Asymmetric excitation of surface plasmons by dark mode coupling,” Sci. Adv. 2, e1501142 (2016).
[Crossref]

X. Zhang, Q. Xu, Q. Li, Y. Xu, J. Gu, Z. Tian, C. Ouyang, Y. Liu, S. Zhang, X. Zhang, J. Han, and W. Zhang, “Asymmetric excitation of surface plasmons by dark mode coupling,” Sci. Adv. 2, e1501142 (2016).
[Crossref]

Y. Xu, X. Zhang, Z. Tian, J. Gu, C. Ouyang, Y. Li, J. Han, and W. Zhang, “Mapping the near-field propagation of surface plasmons on terahertz metasurfaces,” Appl. Phys. Lett. 107, 021105 (2015).
[Crossref]

X. Zhang, Y. Xu, W. Yue, Z. Tian, J. Gu, Y. Li, R. Singh, S. Zhang, J. Han, and W. Zhang, “Anomalous surface wave launching by handedness phase control,” Adv. Mater. 27, 7123–7129 (2015).
[Crossref]

H. Liao, Z. Li, J. Chen, X. Zhang, S. Yue, and Q. Gong, “A submicron broadband surface-plasmon-polariton unidirectional coupler,” Sci. Rep. 3, 1918 (2013).
[Crossref]

V. J. Sorger, R. F. Oulton, R.-M. Ma, and X. Zhang, “Toward integrated plasmonic circuits,” MRS Bull. 37(8), 728–738 (2012).
[Crossref]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101, 047401 (2008).
[Crossref]

Zheludev, N. I.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010).
[Crossref]

Zhong, F.

S. Xiao, F. Zhong, H. Liu, S. Zhu, and J. Li, “Flexible coherent control of plasmonic spin-Hall effect,” Nat. Commun. 6, 8360 (2015).
[Crossref]

Zhou, L.

S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater. 11, 426–431 (2012).
[Crossref]

Zhou, S.

J. Yang, X. Xiao, C. Hu, W. Zhang, S. Zhou, and J. Zhang, “Broadband surface plasmon polariton directional coupling via asymmetric optical slot nanoantenna pair,” Nano Lett. 14, 704–709 (2014).
[Crossref]

J. Yang, S. Zhou, C. Hu, W. Zhang, X. Xiao, and J. Zhang, “Broadband spin-controlled surface plasmon polariton launching and radiation via L-shaped optical slot nanoantennas,” Laser Photon. Rev. 8, 590–595 (2014).
[Crossref]

Zhu, A. Y.

D. Wintz, A. Ambrosio, A. Y. Zhu, P. Genevet, and F. Capasso, “Anisotropic surface plasmon polariton generation using bimodal V-antenna based metastructures,” ACS Photon. 4, 22–27 (2017).
[Crossref]

Zhu, S.

S. Xiao, F. Zhong, H. Liu, S. Zhu, and J. Li, “Flexible coherent control of plasmonic spin-Hall effect,” Nat. Commun. 6, 8360 (2015).
[Crossref]

Zhu, S. N.

ACS Photon. (1)

D. Wintz, A. Ambrosio, A. Y. Zhu, P. Genevet, and F. Capasso, “Anisotropic surface plasmon polariton generation using bimodal V-antenna based metastructures,” ACS Photon. 4, 22–27 (2017).
[Crossref]

Adv. Mater. (2)

X. Zhang, Y. Xu, W. Yue, Z. Tian, J. Gu, Y. Li, R. Singh, S. Zhang, J. Han, and W. Zhang, “Anomalous surface wave launching by handedness phase control,” Adv. Mater. 27, 7123–7129 (2015).
[Crossref]

H. Zhang, M. Kang, X. Zhang, W. Guo, C. Lv, Y. Li, W. Zhang, and J. Han, “Coherent control of optical spin-to-orbital angular momentum conversion in metasurface,” Adv. Mater. 29, 1604252 (2017).
[Crossref]

Appl. Phys. B (1)

F. Huang, X. Jiang, H. Yang, S. Li, and X. Sun, “Tunable directional coupling of surface plasmon polaritons with linearly polarized light,” Appl. Phys. B 122, 16 (2016).
[Crossref]

Appl. Phys. Lett. (2)

Y. Xu, X. Zhang, Z. Tian, J. Gu, C. Ouyang, Y. Li, J. Han, and W. Zhang, “Mapping the near-field propagation of surface plasmons on terahertz metasurfaces,” Appl. Phys. Lett. 107, 021105 (2015).
[Crossref]

X. Li, Q. Tan, B. Bai, and G. Jin, “Experimental demonstration of tunable directional excitation of surface plasmon polaritons with a subwavelength metallic double slit,” Appl. Phys. Lett. 98, 251109 (2011).
[Crossref]

Chem. Rev. (1)

J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev. 108, 462–493 (2008).

J. Infrared Millim. Terahertz Waves (1)

M. Nazarov and J.-L. Coutaz, “Terahertz surface waves propagating on metals with sub-wavelength structure and grating reliefs,” J. Infrared Millim. Terahertz Waves 32, 1054–1073 (2011).
[Crossref]

Laser Photon. Rev. (3)

Q. Xu, X. Zhang, Y. Xu, C. Ouyang, Z. Tian, J. Gu, J. Li, S. Zhang, J. Han, and W. Zhang, “Polarization-controlled surface plasmon holography,” Laser Photon. Rev. 11, 1600212 (2017).
[Crossref]

J. Yang, S. Zhou, C. Hu, W. Zhang, X. Xiao, and J. Zhang, “Broadband spin-controlled surface plasmon polariton launching and radiation via L-shaped optical slot nanoantennas,” Laser Photon. Rev. 8, 590–595 (2014).
[Crossref]

E.-Y. Song, S.-Y. Lee, J. Hong, K. Lee, Y. Lee, G.-Y. Lee, H. Kim, and B. Lee, “A double-lined metasurface for plasmonic complex-field generation,” Laser Photon. Rev. 10, 299–306 (2016).
[Crossref]

Light Sci. Appl. (3)

L. Huang, X. Chen, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Helicity dependent directional surface plasmon polariton excitation using a metasurface with interfacial phase discontinuity,” Light Sci. Appl. 2, e70 (2013).
[Crossref]

A. Pors, M. G. Nielsen, T. Bernardin, J.-C. Weeber, and S. I. Bozhevolnyi, “Efficient unidirectional polarization-controlled excitation of surface plasmon polaritons,” Light Sci. Appl. 3, e197 (2014).
[Crossref]

Y. Fang and M. Sun, “Nanoplasmonic waveguides: towards applications in integrated nanophotonic circuits,” Light Sci. Appl. 4, e294 (2015).

MRS Bull. (1)

V. J. Sorger, R. F. Oulton, R.-M. Ma, and X. Zhang, “Toward integrated plasmonic circuits,” MRS Bull. 37(8), 728–738 (2012).
[Crossref]

Nano Lett. (5)

F. Wei, D. Lu, H. Shen, W. Wan, J. L. Ponsetto, E. Huang, and Z. Liu, “Wide field super-resolution surface imaging through plasmonic structured illumination microscopy,” Nano Lett. 14, 4634–4639 (2014).

A. Baron, E. Devaux, J.-C. Rodier, J.-P. Hugonin, E. Rousseau, C. Genet, T. W. Ebbesen, and P. Lalanne, “Compact antenna for efficient and unidirectional launching and decoupling of surface plasmons,” Nano Lett. 11, 4207–4212 (2011).
[Crossref]

X. Huang and M. L. Brongersma, “Compact aperiodic metallic groove arrays for unidirectional launching of surface plasmons,” Nano Lett. 13, 5420–5424 (2013).
[Crossref]

J. Yang, X. Xiao, C. Hu, W. Zhang, S. Zhou, and J. Zhang, “Broadband surface plasmon polariton directional coupling via asymmetric optical slot nanoantenna pair,” Nano Lett. 14, 704–709 (2014).
[Crossref]

T. Tanemura, K. C. Balram, D.-S. Ly-Gagnon, P. Wahl, J. S. White, M. L. Brongersma, and D. A. B. Miller, “Multiple-wavelength focusing of surface plasmons with a nonperiodic nanoslit coupler,” Nano Lett. 11, 2693–2698 (2011).
[Crossref]

Nat. Commun. (2)

S. Xiao, F. Zhong, H. Liu, S. Zhu, and J. Li, “Flexible coherent control of plasmonic spin-Hall effect,” Nat. Commun. 6, 8360 (2015).
[Crossref]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref]

Nat. Mater. (4)

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010).
[Crossref]

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8, 758–762 (2009).
[Crossref]

S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater. 11, 426–431 (2012).
[Crossref]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010).

Nat. Photonics (1)

S. Kawata, Y. Inouye, and P. Verma, “Plasmonics for near-field nano-imaging and superlensing,” Nat. Photonics 3, 388–394 (2009).

Nat. Phys. (1)

F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. González, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys. 3, 324–328 (2007).
[Crossref]

Nature (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).

Opt. Express (4)

Opt. Lett. (1)

Optica (2)

Phys. Rev. (1)

U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 124, 1866–1878 (1961).
[Crossref]

Phys. Rev. A (1)

M. Kang and Y. D. Chong, “Coherent optical control of polarization with a critical metasurface,” Phys. Rev. A 92, 043826 (2015).
[Crossref]

Phys. Rev. B (2)

T. Zentgraf, T. P. Meyrath, A. Seidel, S. Kaiser, H. Giessen, C. Rockstuhl, and F. Lederer, “Babinet’s principle for optical frequency metamaterials and nanoantennas,” Phys. Rev. B 76, 033407 (2007).
[Crossref]

I. P. Radko, S. I. Bozhevolnyi, G. Brucoli, L. Martín-Moreno, F. J. García-Vidal, and A. Boltasseva, “Efficiency of local surface plasmon polariton excitation on ridges,” Phys. Rev. B 78, 115115 (2008).
[Crossref]

Phys. Rev. Lett. (1)

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101, 047401 (2008).
[Crossref]

Plasmonics (1)

H. Kim and B. Lee, “Unidirectional surface plasmon polariton excitation on single slit with oblique backside illumination,” Plasmonics 4, 153–159 (2009).
[Crossref]

Sci. Adv. (1)

X. Zhang, Q. Xu, Q. Li, Y. Xu, J. Gu, Z. Tian, C. Ouyang, Y. Liu, S. Zhang, X. Zhang, J. Han, and W. Zhang, “Asymmetric excitation of surface plasmons by dark mode coupling,” Sci. Adv. 2, e1501142 (2016).
[Crossref]

Sci. Rep. (1)

H. Liao, Z. Li, J. Chen, X. Zhang, S. Yue, and Q. Gong, “A submicron broadband surface-plasmon-polariton unidirectional coupler,” Sci. Rep. 3, 1918 (2013).
[Crossref]

Science (3)

F. J. Rodríguez-Fortuño, G. Marino, P. Ginzburg, D. O’Connor, A. Martínez, G. A. Wurtz, and A. V. Zayats, “Near-field interference for the unidirectional excitation of electromagnetic guided modes,” Science 340, 328–330 (2013).
[Crossref]

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329, 930–933 (2010).

J. Lin, J. P. B. Mueller, Q. Wang, G. Yuan, N. Antoniou, X.-C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340, 331–334 (2013).
[Crossref]

Other (1)

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

Supplementary Material (1)

NameDescription
» Supplement 1       Supplement 1

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Sample design and near-field simulations. (a), (b) Schematics of the proposed metasurface and the SSR-pair unit cell, respectively. (c)–(f) Simulated E z -field-amplitude distributions at 0.75 THz of the SSR-pair array under the x -polarized, y -polarized, LCP, and RCP incidences, respectively. The inset arrow in the bottom-left corner of each picture represents the corresponding incident polarization state, and the inset in the top-left corner represents the corresponding unit element, similarly hereinafter.
Fig. 2.
Fig. 2. SP response of a single SSR. (a), (e) Schematics of the excitation situations when the SSR’s gap is along the + x and y directions, respectively. Inset: “+” and “−” indicate the charge distributions. (b), (f) Corresponding simulated transmission spectra of the single isolated SSRs in the situations of (a) and (e), respectively. (c), (g) Corresponding simulated real-part E z -field distributions at 0.75 THz, respectively. (d), (h) Corresponding simulated E z -field-amplitude distributions at 0.75 THz of the SSR arrays, respectively. The maximum value of the color bar in (h) is one-fifth of that in (d).
Fig. 3.
Fig. 3. Theoretical analysis of the SSR-pair system, and SP excitation spectra under an x -polarized incidence. (a) Schematic of the SP response from an SSR-pair. (b) Schematic of the calculation based on the 2D Huygens–Fresnel principle. (c)–(j) Simulated (solid lines), theoretical (dashed lines), and experimental (circles) (c)–(f) amplitude and (g)–(j) phase spectra of the SP fields toward the + x , x , + y , and y directions, in the case of x -polarized incidence. Here, the theoretically fitted parameters are f b = f d = 0.748 THz , γ b s = γ d s = 0.0135 THz , γ b d = γ d d = 0.0001 THz , κ = 0.0085 THz , f a = 1.8 THz , γ a s = 0.37 THz , γ a d = 0.001 THz , η = 182 + i 251 , k 1 = 0.28 i 0.29 , and k 2 = 0.089 i 1.021 .
Fig. 4.
Fig. 4. (a)–(d) Simulated (solid lines), theoretical (dashed lines), and experimental (circles) amplitude spectra of the SP fields toward the + x , x , + y , and y -directions, in the case of an LCP incidence. (e)–(h) Simulated (solid lines), theoretical (dashed lines), and experimental (circles) amplitude spectra of the SP fields toward the + x , x , + y , and y -directions, in the case of RCP incidence.
Fig. 5.
Fig. 5. Sample images and experimental measurements. (a) Scanning electron micrograph image of a fabricated SSR-pair unit. (b) Schematic of the measurement setup. (c)–(f) Measured E z -field-amplitude distributions at 0.75 THz in the case of the x -polarized, y -polarized, LCP, and RCP incidences.
Fig. 6.
Fig. 6. Excitation of SPs under arbitrary incident polarization. (a)–(d)  E z -field-amplitude of the SPs toward the + x , x , + y , and y directions as a function of the incident polarization states according to Eq. (7). The incident polarization states are expressed in complex number notation in terms of the angles ψ and δ , and additionally shown as a black overlay.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

[ δ b 1 i κ 0 0 0 0 i κ δ d 2 0 0 0 0 0 0 δ a 2 0 0 0 0 0 0 δ b 2 i κ 0 0 0 0 i κ δ d 1 0 0 0 0 0 0 δ a 1 ] [ q b 1 q d 2 q a 2 q b 2 q d 1 q a 1 ] = [ x γ b s 0 x γ a s y γ b s 0 y γ a s ] .
{ [ q b 1 q d 1 q a 1 ] = [ x q b y q d y q a ] [ q b 2 q d 2 q a 2 ] = [ y q b x q d x q a ] .
E M = n ( A + x 1 e i k | l 1 | × cos θ 1 ) / | l 1 | + n ( A + x 2 e i k | l 2 | × cos θ 2 ) / | l 2 | ,
S = [ 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 ] .
E LCP = 2 2 [ E + x x + i E y x E x x + i E + y x E + y x + i E x x E y x + i E + x x ] T ,
E RCP = 2 2 [ E + x x i E y x E x x i E + y x E + y x i E x x E y x i E + x x ] T .
e i δ tan ψ = y x .

Metrics