Abstract

Atomic monolayers represent a novel class of materials for studying localized and free excitons in two dimensions and for engineering optoelectronic devices based on their significant optical response. Here, we investigate the role of the substrate in the photoluminescence response of MoSe2 and WSe2 monolayers exfoliated either on SiO2 or epitaxially grown InGaP substrates. In the case of MoSe2, we observe a significant qualitative modification of the emission spectrum, which is widely dominated by the trion resonance on InGaP substrates. However, the effects of inhomogeneous broadening of the emission features are strongly reduced. Even more striking, in sheets of WSe2, we could routinely observe emission lines from localized excitons with linewidths down to the resolution limit of 70 μeV. This is in stark contrast to reference samples featuring WSe2 monolayers on SiO2 surfaces, where the emission spectra from localized defects are widely dominated by spectral diffusion and blinking behavior. Our experiment outlines the enormous potential of III–V monolayer hybrid architectures to obtain high quality emission signals from atomic monolayers, which are simple to integrate into nanophotonic and integrated optoelectronic devices.

© 2017 Optical Society of America

1. INTRODUCTION

Monolayers of transition metal dichalcogenides have moved into the focus of solid-state spectroscopy, since these new materials feature a variety of unique optical properties. Monolayers composed of the transition metal Mo or W and the chalcogen Se, S, or Te crystallize in a honeycomb lattice that lacks an inversion center. This yields a characteristic bandstructure where the direct bandgap transitions are located at the K and K points of the hexagonal Brillouin zone. Due to the lack of inversion symmetry, these points are inequivalent and are occupied by charges of opposite spin. This leads to the coupling of the spin and the corresponding K valley, introducing a new degree of freedom that is accessible via optical selection rules. As a result, each valley can be distinctly addressed by the polarization of an injection laser, which leads to novel spinor effects in these systems [16]. In addition, so-called valley excitons are formed, which feature an extraordinarily high binding energy exceeding 300 meV [7]. This is a consequence of reduced dimensions, reduced dielectric screening, and flat bands leading to a heavy exciton mass. In most of these materials, even up to ambient conditions, the absorption and luminescence spectrum is dominated by excitonic effects, rather than by direct interband transitions. While the general properties, such as the exciton frequency and the trion binding energy, are primarily determined by the monolayer itself, the surrounding environment still has considerable influence on the optical properties. For instance, it has been shown that excitons in monolayers of MoS2 sensibly react to absorbed molecules on the surface [8], and energy shifts resulting from capping have been reported [9]. Similarly, the choice of the substrate can have a significant effect on the luminescence properties of the free monolayer excitons, as well as the emission features from localized excitons, which were recently identified as novel sources of single-photon streams [1014]. Furthermore, these kinds of quantum emitters have been observed in monolayers lying on top of patterned arrays of nanopillars [15,16]. Here, we study the excitonic properties of exfoliated monolayers of MoSe2 and WSe2 at cryogenic temperatures, which have been transferred onto SiO2/Si as well as InGaP/GaAs heterostructures. In the case of MoSe2, we observe a strong reduction of the inhomogeneous broadening of the dominant trion feature as epitaxial substrates are utilized. In monolayers of WSe2, we focus on the emission of localized excitons. These quantum-dot-like features are strongly broadened and disturbed by their environment on the insulating glass substrates. In stark contrast, the semiconducting InGaP/GaAs substrates have a suitable band alignment with respect to MoSe2 and WSe2 (compared to GaAs) and less heavy surface oxidation (compared to AlGaAs), facilitating dramatically reduced charge fluctuations and yielding stable and robust emitters of single photons on an epitaxial platform. Furthermore, InGaP is a well-established material platform for integrated photonic devices, such that our work can easily be extended to utilize monolayer materials in more complex, integrated schemes.

2. SAMPLE STRUCTURE AND SETUP

The investigated monolayers were produced by mechanical exfoliation from a MoSe2 or a WSe2 bulk crystal with scotch tape. After their monolayer nature was confirmed via their distinct photoluminescence (PL) and the color contrast in an optical microscope, they were transferred onto the designated target substrate via the dry-stamp method [17]. Using this technique, flake sizes of around 30μm*50μm were fabricated. Two different sample types were implemented, which are shown in Fig. 1(a). The monolayers were transferred onto substrates composed of a 90 nm SiO2 layer on top of a Si substrate. The other substrate was made of a 250 nm thick In0.49Ga0.51P layer that was grown lattice-matched on a semi-insulating GaAs by means of gas-source molecular beam epitaxy.

 

Fig. 1. (a) Schematic drawing of the investigated heterostructures: 90 nm SiO2 on a Si substrate and 250 nm In0.49Ga0.51P lattice-matched to a GaAs substrate. The monolayers were transferred onto each substrate using the dry-stamp technique. (b) AFM measurements of the used samples. SiO2 has a root-mean-squared roughness of 0.15 nm, while that of In0.49Ga0.51P is 0.29 nm.

Download Full Size | PPT Slide | PDF

In order to get an impression of the samples’ surface quality, we performed atomic force microscope (AFM) measurements, which can be seen in Fig. 1(b). The root-mean-squared roughness of both samples is of the same magnitude. Specifically, the SiO2 surface is characterized by a roughness of 0.15nm, while the InGaP surface features a comparable value of 0.29 nm. Optical characterization was carried out in a standard microphotoluminescence setup. The samples were attached to the cold finger of a liquid helium flow cryostat, and the luminescence from the flake was collected by a 50× objective (NA=0.42) in a confocal microscope system. The structures were excited by a continuous-wave (cw) 532 nm laser. Photoluminescence measurements were performed using a Princeton Instruments SP2750i spectrometer equipped with a liquid nitrogen cooled CCD and a 1500linesmm grating (ΔERes70μeV) for the high-resolution images or a 300linesmm grating for overview spectra. The PL could also be collected in a fiber-coupled Hanbury Brown and Twiss (HBT) setup with a timing resolution of approximately 570 ps to measure the second-order field correlation of the emission, after passing through a pair of bandpass filters (1 nm bandwidth).

3. EXPERIMENTAL RESULTS AND DISCUSSION

First, we investigate the impact of the two aforementioned substrates on the emission characteristics of MoSe2 monolayers. Figure 2 depicts a series of PL spectra of the Si/SiO2MoSe2 structure, which were recorded sequentially under nominally the same conditions and without blanking the laser. The spectra were taken over a time span of 10 min at a constant laser power of 50 μW. We observe the common spectral signatures of MoSe2 monolayers. At 1.657 eV, the free exciton (X) is clearly visible. On the low-energy side, the negatively charged trion (X) emerges at 1.625 meV, yielding a trion binding energy of 32 meV. Notably, during the series, the initial exciton intensity decreases and the trion intensity increases until both signals converge to a constant intensity ratio IX/IX2 after roughly 5 min. This behavior can be explained by a photo-induced doping effect that introduces new free carriers into the system, enhancing the formation of trions [18,19] at the expense of free neutral excitons. At all accessible pump powers, we observe emissions from both the X and the X resonance in this case. A significantly more in-depth analysis of the interplay between excitons and trions in MoSe2 on insulating substrates can be found in Ref. [20]. Conversely, on the GaAs/InGaP-MoSe2 heterostructures, the free exciton is not visible at 50 μW laser power, and only the trion-attributed resonance can be clearly observed, with an energy of 1.632 eV. At high pump powers we see a strongly suppressed signal from the exciton at around 1.665 eV, which is about two orders of magnitude weaker in intensity than the trion. The spectral energy shift of 7meV compared to the SiO2MoSe2 stack occurs reproducibly in different flakes, and is most likely a consequence of the modified dielectric environment. Remarkably, the overall intensity of this trion resonance does not change with time, indicating that the system inherently has access to a great amount of free carriers. We note that both monolayers originate from the same bulk crystal, and therefore we can rule out inherent doping of the flake itself as a reason for this behavior. In Fig. 3 we depict the results of a power series from both samples. The nonresonant excitation power was ramped up from 50 μW up to 6 mW, and we plot the trions’ integrated intensity and linewidth. By taking into account realistic parameters (absorption coefficient 4.0*105 [21], lifetime 1ps [22]), we estimate an upper bound of the exciton density on the order of 2*109cm2 in this experiment. With increasing power, the intensity of the observed resonances rises approximately linearly, as shown in Fig. 3(a). Fitting the data (red lines) to a straight line gives a slope of 0.96 for SiO2 and 0.92 for InGaP, in good agreement with the expected slope of 1 for charged excitons. At higher output powers (>1mW), the emissions start to show a saturation behavior independent of the substrate used, caused by exciton annihilation [23]. Another important parameter is the corresponding full width at half-maximum (FWHM) of the signal studied, which is plotted in Fig. 3(b). On the glass substrate the linewidth of the trion reaches a value of around 13 meV for a low laser power. Increasing the power yields a progressive broadening of the emission line, reaching approximately 16 meV at 6 mW pump power. We assume that this power-induced broadening of the trion resonance is a consequence of local heating from the pump laser, but it could be also induced by additional charges that accumulate in the monolayer and at random positions at the heterointerface [19]. This charge puddling effect is known to occur on SiO2 surfaces [24], which induce a randomly varying inhomogeneity in the PL response. Conversely, the linewidth on the InGaP sample is as small as 6.5 meV, surpassing its SiO2 counterpart by a factor of 2. Even more remarkable, the linewidth stays nearly constant with increasing power and reaches just 7 meV at 6 mW laser output. This is due to the higher thermal conductivity of InGaP compared to SiO2 [25], leading to lower local heating at the laser spot. This is also supported by an overall reduced spectral shift of InGaP during the power series. Overall, these results already outline the reduction of charge-induced fluctuations in monolayer InGaP devices, and illustrate the impact the right substrate can have on the excitonic properties of MoSe2. While monolayers of MoSe2 are specifically suitable for studying the effects of free excitons and trions, the observation of single-photon emissions from localized excitons have brought monolayers of WSe2 into the center of solid-state quantum photonics. Figure 4 shows a typical PL spectrum from such a localized exciton in a WSe2 monolayer on top of a SiO2/Si substrate, which was excited by a cw 532 nm laser at an excitation power of 30 μW and a nominal sample temperature of 4.2 K. The PL spectrum consists of several sharp peaks with linewidths of 2 meV, centered at 1.52 eV. Such a spectral feature, which is redshifted 180 meV from the WSe2 free valley exciton (1.7 eV), is comparable to previously reported localized emission signals in WSe2 monolayers [26]. Compared to the weak, broad PL spectrum from the localized exciton in the WSe2 monolayer exfoliated on the SiO2/Si substrate, several bright, spectral-resolution-limited (70 μeV) PL peaks were observed from WSe2 sheets transferred onto the InGaP/GaAs substrate (temperature of 4.5 K). Here, the PL excitation power in Fig. 4(b) is around 70 nW, which is almost 3 orders of magnitude smaller than the nominal 30 μW in Fig. 4(a). Additionally, the inset in Fig. 4(b) shows the cw-pumped autocorrelation histogram for the marked peak in Fig. 4(b). The emission is spectrally filtered by a pair of bandpass filters and then coupled into a fiber-based HBT setup to measure the second-order autocorrelation. Clear antibunching is observed around τ0ns that drops well below 0.5 and therefore proves single-photon emission. In order to account for the finite time resolution of our setup, we fit the measured data with a two-sided exponential decay convolved with a Gaussian distribution fDet according to

gsource(2)(τ)=1((1g(2)(0))*e|ττC|),
gmeasured(2)(τ)=(gsource(2)*fDet)(τ).

 

Fig. 2. Monolayer photoluminescence at 50 μW, recorded over 10 min. For MoSe2 on SiO2, the exciton intensity diminishes over time while the trion grows in intensity. For the MoSe2–InGaP heterostructure, the trion dominates the spectrum by a large margin.

Download Full Size | PPT Slide | PDF

 

Fig. 3. (a) Input–output characteristics of the trion intensity for MoSe2 on SiO2 and MoSe2 on InGaP samples with an almost linear slope of 1. Dashed red lines are fitting curves. (b) Corresponding FWHM of the trion. On SiO2, it starts at 13 meV, increasing at higher powers up to 16 meV. On InGaP, the linewidth is 6.5 meV, which stays almost constant with regard to laser output.

Download Full Size | PPT Slide | PDF

 

Fig. 4. (a) Typical PL spectrum of the localized exciton in the monolayer WSe2 exfoliated onto a SiO2/Si substrate, measured at a nominal sample temperature of 4.5 K, (b) PL spectrum of the localized exciton in the monolayer WSe2 with the InGaP/GaAs substrate under 4.5 K. The peak energies range from 1.5 to 1.73 eV. The inset is the autocorrelation measurement of the marked peak under a 70 nW cw laser excitation at 532 nm. The blue line in the inset is the fit with the multiexcitonic model convolved with the response function. The red line is the deconvoluted curve, which shows g(2)(0)=0.261±0.117.

Download Full Size | PPT Slide | PDF

Following this, we extract a deconvoluted g(2)(0) value of gcw(2)=0.261±0.117.

To assess the influence of the spectral wandering on the macroscopic time scale on the emission features depicted in Figs. 4(a) and 4(b), we record various spectra every second and combine them in the contour graph in Figs. 5(a) and 5(b). In Fig. 5(a), clear spectral wandering and jumps on a time scale of seconds are observed. Each frame is then fitted with a Lorentzian function, and the statistics of the peak energies are plotted in Fig. 5(c). We find a direct contribution as large as (957±58)μeV from the long-term spectral diffusion. This characteristic slow spectral jitter of such large magnitude is commonly observed for self-assembled quantum emitters close to surfaces or interfaces that yield the capability of trapping and releasing charges. Thus, and in agreement in principle with the studies presented in Fig. 3 for the MoSe2 case, we conclude that the spectral jumps are induced by carriers trapped via dangling bonds on the SiO2 surface. Compared to the WSe2 monolayer on SiO2 substrate, no obvious spectral wandering is observed in Fig. 5(b), where the WSe2 monolayer is transferred onto the InGaP substrate. The corresponding statistics of the spectral wandering in Fig. 5(d) yield a value around 5.5 μeV, which is within the linewidth fitting uncertainty. The narrowing could be attributed to fewer charge fluctuations in a semiconducting environment, which allows the transfer of trapped charges, leading to a suppression of the long scale spectral jitter. Additionally, it has been shown that InP surfaces can be effectively passivated by S or Se, saturating many dangling bonds of the substrate [27,28]. In this scenario, one would expect to observe a more stable photon emission from the InGaP hybrid structure.

 

Fig. 5. (a) Spectral wandering of the localized exciton in layered WSe2 on the SiO2/Si substrate, (b) emission time trace of the localized exciton in layered WSe2 on the InGaP/GaAs substrate. Here, no obvious spectral wandering could be observed. (c, d) Statistics of the localized excitons at 1.529 eV in (a) and at 1.721 eV in (b) as a function of time. The extracted FWHMs of the wandering are (957±58)μeV and (5.583±0.582)μeV, respectively.

Download Full Size | PPT Slide | PDF

Last, we perform a statistical study of the influence of the different substrates on the spectral linewidth of the localized excitons in the WSe2 monolayers. A statistical histogram for 37 randomly localized emitters from 10 different monolayers on SiO2/Si substrate is presented in Fig. 6(a). The extracted linewidths randomly fluctuate between 147 μeV and 3.3 meV. Similarly, the statistical histogram for 251 randomly localized emitters from 10 different monolayers on InGaP/GaAs is depicted in Fig. 6(b). Although linewidths of 100 μeV sharp peaks could be measured, they are not necessarily representative. Here the median linewidth of WSe2 on InGaP (120 μeV) is close to the spectrometer resolution limit (70 μeV), which is about 10 times smaller compared to the SiO2 structure (1150 μeV). Therefore, the resolution-limited, jitter-free PL strongly indicates that the InGaP substrate could greatly enhance the emission properties of the localized excitons in the WSe2 monolayer.

 

Fig. 6. (a) Statistic of the linewidth distribution for the 37 localized excitons in the WSe2 monolayer on the SiO2/Si substrate. The extracted minimum linewidth is 125 μeV. (b) Statistics of the linewidth distribution for the localized excitons in the WSe2 monolayer on the InGaP/GaAs substrate. For the 72 narrowest emission lines (first bin), the average linewidth of (74.8±12.2)μeV is restricted by the resolution of our spectrometer (70 μeV).

Download Full Size | PPT Slide | PDF

4. SUMMARY

In conclusion, we have studied the influence of the substrate on the emission properties of monolayers of MoSe2 and WSe2 at cryogenic temperatures. On our reference SiO2 substrate, the luminescence of the free exciton and trion in MoSe2 is notably inhomogeneously broadened, and is sensitive to power broadening. The investigated localized defects occurring in WSe2 monolayers are subject to a long-term spectral diffusion induced by a slowly varying charge environment. In stark contrast, InGaP substrates show a notable effect on the charge environment, which directly leads to a reduced broadening of the trionic emission in MoSe2 and in many cases eliminates the slow spectral diffusion acting on localized emission centers in WSe2. Together with the highly developed photonic processing technology of InGaP/GaAs structures, this makes WSe2–InGaP heterostacks very interesting for novel nanophotonic and integrated monolayer-based quantum photonic architectures. Furthermore, we have observed a significantly enhanced formation of free trions in MoSe2 monolayers on InGaP, which makes such a platform highly suitable for studying interactions of monolayer excitations with electron gases, and likely represents a new, simpler approach to trion polaritons without the necessity of electrostatic gating.

Funding

State of Bavaria; H2020 European Research Council (ERC) (Project Unlimit-2D).

REFERENCES

1. X. Xu, W. Yao, D. Xiao, and T. F. Heinz, “Spin and pseudospins in layered transition metal dichalcogenides,” Nat. Phys. 10, 343–350 (2014). [CrossRef]  

2. A. M. Jones, H. Yu, N. J. Ghimire, S. Wu, G. Aivazian, J. S. Ross, B. Zhao, J. Yan, D. G. Mandrus, D. Xiao, W. Yao, and X. Xu, “Optical generation of excitonic valley coherence in monolayer WSe2,” Nat. Nanotechnol. 8, 634–638 (2013). [CrossRef]  

3. D. Xiao, G. B. Liu, W. Feng, X. Xu, and W. Yao, “Coupled spin and valley physics in monolayers of MoS2 and other Group-VI dichalcogenides,” Phys. Rev. Lett. 108, 196802 (2012). [CrossRef]  

4. K. F. Mak, K. He, J. Shan, and T. F. Heinz, “Control of valley polarization in monolayer MoS2 by optical helicity,” Nat. Nanotechnol. 7, 494–498 (2012). [CrossRef]  

5. T. Cao, G. Wang, W. Han, H. Ye, C. Zhu, J. Shi, Q. Niu, P. Tan, E. Wang, B. Liu, and J. Feng, “Valley-selective circular dichroism of monolayer molybdenum disulphide,” Nat. Commun. 3, 887 (2012). [CrossRef]  

6. H. Zeng, J. Dai, W. Yao, D. Xiao, and X. Cui, “Valley polarization in MoS2 monolayers by optical pumping,” Nat. Nanotechnol. 7, 490–493 (2012). [CrossRef]  

7. A. Ramasubramaniam, “Large excitonic effects in monolayers of molybdenum and tungsten dichalcogenides,” Phys. Rev. B 86, 115409 (2012). [CrossRef]  

8. J. He, K. Wu, R. Sa, Q. Li, and Y. Wei, “Magnetic properties of nonmetal atoms absorbed MoS2 monolayers,” Appl. Phys. Lett. 96, 082504 (2010). [CrossRef]  

9. D. Sercombe, S. Schwarz, O. Del Pozo-Zamudio, F. Liu, B. J. Robinson, E. Chekhovich, and I. Tartakovskii, “Optical investigation of the natural electron doping in thin MoS2 films deposited on dielectric substrates,” Sci. Rep. 3, 3489 (2013). [CrossRef]  

10. Y.-M. He, G. Clark, J. R. Schaibley, Y. He, M.-C. Chen, Y.-J. Wei, X. Ding, Q. Zhang, W. Yao, X. Xu, C.-Y. Lu, and J.-W. Pan, “Single quantum emitters in monolayer semiconductors,” Nat. Nanotechnol. 10, 497–502 (2015). [CrossRef]  

11. M. Koperski, K. Nogajewski, A. Arora, V. Cherkez, P. Mallet, J.-Y. Veuillen, J. Marcus, P. Kossacki, and M. Potemski, “Single photon emitters in exfoliated WSe2 structures,” Nat. Nanotechnol. 10, 503–506 (2015). [CrossRef]  

12. C. Chakraborty, L. Kinnischtzke, K. M. Goodfellow, R. Beams, and A. N. Vamivakas, “Voltage-controlled quantum light from an atomically thin semiconductor,” Nat. Nanotechnol. 10, 507–511 (2015). [CrossRef]  

13. A. Srivastava, M. Sidler, A. V. Allain, D. S. Lembke, A. Kis, and A. Imamoğlu, “Optically active quantum dots in monolayer WSe2,” Nat. Nanotechnol. 10, 491–496 (2015). [CrossRef]  

14. P. Tonndorf, R. Schmidt, R. Schneider, J. Kern, M. Buscema, G. A. Steele, A. Castellanos-Gomez, H. S. J. van der Zant, S. M. de Vasconcellos, and R. Bratschitsch, “Single-photon emission from localized excitons in an atomically thin semiconductor,” Optica 2, 347–352 (2015). [CrossRef]  

15. A. Branny, S. Kumar, R. Proux, and B. D. Gerardot, “Deterministic strain-induced arrays of quantum emitters in a two-dimensional semiconductor,” arXiv:1610.01406 (2016).

16. C. Palacios-Berraquero, D. M. Kara, A. R.-P. Montblanch, M. Barbone, P. Latawiec, D. Yoon, A. K. Ott, M. Loncar, A. C. Ferrari, and M. Atature, “Large-scale quantum-emitter arrays in atomically thin semiconductors,” arXiv:1609.04427 (2016).

17. A. Castellanos-Gomez, M. Buscema, R. Molenaar, V. Singh, L. Janssen, J. S. J. van der Zant, and G. Steele, “Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping,” 2D Mater. 1, 11002 (2014).

18. G. V. Astakhov, D. R. Yakovlev, V. P. Kochereshko, W. Ossau, W. Faschinger, J. Puls, and A. Waag, “Binding energy of charged excitons in ZnSe-based quantum wells,” Phys. Rev. B 65, 165335 (2002). [CrossRef]  

19. F. Cadiz, C. Robert, G. Wang, W. Kong, X. Fan, M. Blei, D. Lagarde, M. Gay, M. Manca, T. Taniguchi, K. Watanabe, T. Amand, X. Marie, P. Renucci, S. Tongay, and B. Urbaszek, “Ultralow power threshold for laser induced changes in optical properties of 2D molybdenum dichalcogenides,” 2D Mater. 3, 045008 (2016).

20. N. Lundt, E. Cherotchenko, O. Iff, X. Fan, Y. Shen, P. Bigenwald, A. Kavokin, S. Höfling, and C. Schneider, “The interplay between excitons and trions in a monolayer of MoSe2,” arXiv:1702.04231 (2017).

21. Y. V. Morozov and M. Kuno, “Optical constants and dynamic conductivities of single layer MoS2, MoSe2, and WSe2,” Appl. Phys. Lett. 107, 083103 (2015). [CrossRef]  

22. C. Robert, D. Lagarde, F. Cadiz, G. Wang, B. Lassagne, T. Amand, A. Balocchi, P. Renucci, S. Tongay, B. Urbaszek, and X. Marie, “Exciton radiative lifetime in transition metal dichalcogenide monolayers,” Phys. Rev. B 93, 205423 (2016). [CrossRef]  

23. N. Kumar, Q. Cui, F. Ceballos, D. He, Y. Wang, and H. Zhao, “Exciton-exciton annihilation in MoSe2 monolayers,” Phys. Rev. B 89, 125427 (2014). [CrossRef]  

24. Z. M. Ao, W. T. Zheng, and Q. Jiang, “The effects of electronic field on the atomic structure of the graphene/α-SiO2 interface,” Nanotechnology 19, 275710 (2008). [CrossRef]  

25. Y. K. Koh and D. G. Cahill, “Frequency dependence of the thermal conductivity of semiconductor alloys,” Phys. Rev. B 76, 075207 (2007). [CrossRef]  

26. Y.-M. He, S. Höfling, and C. Schneider, “Phonon induced line broadening and population of the dark exciton in a deeply trapped localized emitter in monolayer WSe2,” Opt. Express 24, 8066–8073 (2016). [CrossRef]  

27. S. Tian, Z. Wei, Y. Li, H. Zhao, X. Fang, J. Tang, D. Fang, L. Sun, G. Liu, B. Yao, and X. Ma, “Surface state and optical property of sulfur passivated InP,” Mater. Sci. Semicond. Process. 17, 33–37 (2014). [CrossRef]  

28. C. E. J. Mitchell, I. G. Hill, A. B. McLean, and Z. H. Lu, “Sulfur passivated InP(100): surface gaps and electron counting,” Appl. Surf. Sci. 104–105, 434–440 (1996). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. X. Xu, W. Yao, D. Xiao, and T. F. Heinz, “Spin and pseudospins in layered transition metal dichalcogenides,” Nat. Phys. 10, 343–350 (2014).
    [Crossref]
  2. A. M. Jones, H. Yu, N. J. Ghimire, S. Wu, G. Aivazian, J. S. Ross, B. Zhao, J. Yan, D. G. Mandrus, D. Xiao, W. Yao, and X. Xu, “Optical generation of excitonic valley coherence in monolayer WSe2,” Nat. Nanotechnol. 8, 634–638 (2013).
    [Crossref]
  3. D. Xiao, G. B. Liu, W. Feng, X. Xu, and W. Yao, “Coupled spin and valley physics in monolayers of MoS2 and other Group-VI dichalcogenides,” Phys. Rev. Lett. 108, 196802 (2012).
    [Crossref]
  4. K. F. Mak, K. He, J. Shan, and T. F. Heinz, “Control of valley polarization in monolayer MoS2 by optical helicity,” Nat. Nanotechnol. 7, 494–498 (2012).
    [Crossref]
  5. T. Cao, G. Wang, W. Han, H. Ye, C. Zhu, J. Shi, Q. Niu, P. Tan, E. Wang, B. Liu, and J. Feng, “Valley-selective circular dichroism of monolayer molybdenum disulphide,” Nat. Commun. 3, 887 (2012).
    [Crossref]
  6. H. Zeng, J. Dai, W. Yao, D. Xiao, and X. Cui, “Valley polarization in MoS2 monolayers by optical pumping,” Nat. Nanotechnol. 7, 490–493 (2012).
    [Crossref]
  7. A. Ramasubramaniam, “Large excitonic effects in monolayers of molybdenum and tungsten dichalcogenides,” Phys. Rev. B 86, 115409 (2012).
    [Crossref]
  8. J. He, K. Wu, R. Sa, Q. Li, and Y. Wei, “Magnetic properties of nonmetal atoms absorbed MoS2 monolayers,” Appl. Phys. Lett. 96, 082504 (2010).
    [Crossref]
  9. D. Sercombe, S. Schwarz, O. Del Pozo-Zamudio, F. Liu, B. J. Robinson, E. Chekhovich, and I. Tartakovskii, “Optical investigation of the natural electron doping in thin MoS2 films deposited on dielectric substrates,” Sci. Rep. 3, 3489 (2013).
    [Crossref]
  10. Y.-M. He, G. Clark, J. R. Schaibley, Y. He, M.-C. Chen, Y.-J. Wei, X. Ding, Q. Zhang, W. Yao, X. Xu, C.-Y. Lu, and J.-W. Pan, “Single quantum emitters in monolayer semiconductors,” Nat. Nanotechnol. 10, 497–502 (2015).
    [Crossref]
  11. M. Koperski, K. Nogajewski, A. Arora, V. Cherkez, P. Mallet, J.-Y. Veuillen, J. Marcus, P. Kossacki, and M. Potemski, “Single photon emitters in exfoliated WSe2 structures,” Nat. Nanotechnol. 10, 503–506 (2015).
    [Crossref]
  12. C. Chakraborty, L. Kinnischtzke, K. M. Goodfellow, R. Beams, and A. N. Vamivakas, “Voltage-controlled quantum light from an atomically thin semiconductor,” Nat. Nanotechnol. 10, 507–511 (2015).
    [Crossref]
  13. A. Srivastava, M. Sidler, A. V. Allain, D. S. Lembke, A. Kis, and A. Imamoğlu, “Optically active quantum dots in monolayer WSe2,” Nat. Nanotechnol. 10, 491–496 (2015).
    [Crossref]
  14. P. Tonndorf, R. Schmidt, R. Schneider, J. Kern, M. Buscema, G. A. Steele, A. Castellanos-Gomez, H. S. J. van der Zant, S. M. de Vasconcellos, and R. Bratschitsch, “Single-photon emission from localized excitons in an atomically thin semiconductor,” Optica 2, 347–352 (2015).
    [Crossref]
  15. A. Branny, S. Kumar, R. Proux, and B. D. Gerardot, “Deterministic strain-induced arrays of quantum emitters in a two-dimensional semiconductor,” arXiv:1610.01406 (2016).
  16. C. Palacios-Berraquero, D. M. Kara, A. R.-P. Montblanch, M. Barbone, P. Latawiec, D. Yoon, A. K. Ott, M. Loncar, A. C. Ferrari, and M. Atature, “Large-scale quantum-emitter arrays in atomically thin semiconductors,” arXiv:1609.04427 (2016).
  17. A. Castellanos-Gomez, M. Buscema, R. Molenaar, V. Singh, L. Janssen, J. S. J. van der Zant, and G. Steele, “Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping,” 2D Mater. 1, 11002 (2014).
  18. G. V. Astakhov, D. R. Yakovlev, V. P. Kochereshko, W. Ossau, W. Faschinger, J. Puls, and A. Waag, “Binding energy of charged excitons in ZnSe-based quantum wells,” Phys. Rev. B 65, 165335 (2002).
    [Crossref]
  19. F. Cadiz, C. Robert, G. Wang, W. Kong, X. Fan, M. Blei, D. Lagarde, M. Gay, M. Manca, T. Taniguchi, K. Watanabe, T. Amand, X. Marie, P. Renucci, S. Tongay, and B. Urbaszek, “Ultralow power threshold for laser induced changes in optical properties of 2D molybdenum dichalcogenides,” 2D Mater. 3, 045008 (2016).
  20. N. Lundt, E. Cherotchenko, O. Iff, X. Fan, Y. Shen, P. Bigenwald, A. Kavokin, S. Höfling, and C. Schneider, “The interplay between excitons and trions in a monolayer of MoSe2,” arXiv:1702.04231 (2017).
  21. Y. V. Morozov and M. Kuno, “Optical constants and dynamic conductivities of single layer MoS2, MoSe2, and WSe2,” Appl. Phys. Lett. 107, 083103 (2015).
    [Crossref]
  22. C. Robert, D. Lagarde, F. Cadiz, G. Wang, B. Lassagne, T. Amand, A. Balocchi, P. Renucci, S. Tongay, B. Urbaszek, and X. Marie, “Exciton radiative lifetime in transition metal dichalcogenide monolayers,” Phys. Rev. B 93, 205423 (2016).
    [Crossref]
  23. N. Kumar, Q. Cui, F. Ceballos, D. He, Y. Wang, and H. Zhao, “Exciton-exciton annihilation in MoSe2 monolayers,” Phys. Rev. B 89, 125427 (2014).
    [Crossref]
  24. Z. M. Ao, W. T. Zheng, and Q. Jiang, “The effects of electronic field on the atomic structure of the graphene/α-SiO2 interface,” Nanotechnology 19, 275710 (2008).
    [Crossref]
  25. Y. K. Koh and D. G. Cahill, “Frequency dependence of the thermal conductivity of semiconductor alloys,” Phys. Rev. B 76, 075207 (2007).
    [Crossref]
  26. Y.-M. He, S. Höfling, and C. Schneider, “Phonon induced line broadening and population of the dark exciton in a deeply trapped localized emitter in monolayer WSe2,” Opt. Express 24, 8066–8073 (2016).
    [Crossref]
  27. S. Tian, Z. Wei, Y. Li, H. Zhao, X. Fang, J. Tang, D. Fang, L. Sun, G. Liu, B. Yao, and X. Ma, “Surface state and optical property of sulfur passivated InP,” Mater. Sci. Semicond. Process. 17, 33–37 (2014).
    [Crossref]
  28. C. E. J. Mitchell, I. G. Hill, A. B. McLean, and Z. H. Lu, “Sulfur passivated InP(100): surface gaps and electron counting,” Appl. Surf. Sci. 104–105, 434–440 (1996).
    [Crossref]

2016 (3)

C. Robert, D. Lagarde, F. Cadiz, G. Wang, B. Lassagne, T. Amand, A. Balocchi, P. Renucci, S. Tongay, B. Urbaszek, and X. Marie, “Exciton radiative lifetime in transition metal dichalcogenide monolayers,” Phys. Rev. B 93, 205423 (2016).
[Crossref]

F. Cadiz, C. Robert, G. Wang, W. Kong, X. Fan, M. Blei, D. Lagarde, M. Gay, M. Manca, T. Taniguchi, K. Watanabe, T. Amand, X. Marie, P. Renucci, S. Tongay, and B. Urbaszek, “Ultralow power threshold for laser induced changes in optical properties of 2D molybdenum dichalcogenides,” 2D Mater. 3, 045008 (2016).

Y.-M. He, S. Höfling, and C. Schneider, “Phonon induced line broadening and population of the dark exciton in a deeply trapped localized emitter in monolayer WSe2,” Opt. Express 24, 8066–8073 (2016).
[Crossref]

2015 (6)

Y. V. Morozov and M. Kuno, “Optical constants and dynamic conductivities of single layer MoS2, MoSe2, and WSe2,” Appl. Phys. Lett. 107, 083103 (2015).
[Crossref]

Y.-M. He, G. Clark, J. R. Schaibley, Y. He, M.-C. Chen, Y.-J. Wei, X. Ding, Q. Zhang, W. Yao, X. Xu, C.-Y. Lu, and J.-W. Pan, “Single quantum emitters in monolayer semiconductors,” Nat. Nanotechnol. 10, 497–502 (2015).
[Crossref]

M. Koperski, K. Nogajewski, A. Arora, V. Cherkez, P. Mallet, J.-Y. Veuillen, J. Marcus, P. Kossacki, and M. Potemski, “Single photon emitters in exfoliated WSe2 structures,” Nat. Nanotechnol. 10, 503–506 (2015).
[Crossref]

C. Chakraborty, L. Kinnischtzke, K. M. Goodfellow, R. Beams, and A. N. Vamivakas, “Voltage-controlled quantum light from an atomically thin semiconductor,” Nat. Nanotechnol. 10, 507–511 (2015).
[Crossref]

A. Srivastava, M. Sidler, A. V. Allain, D. S. Lembke, A. Kis, and A. Imamoğlu, “Optically active quantum dots in monolayer WSe2,” Nat. Nanotechnol. 10, 491–496 (2015).
[Crossref]

P. Tonndorf, R. Schmidt, R. Schneider, J. Kern, M. Buscema, G. A. Steele, A. Castellanos-Gomez, H. S. J. van der Zant, S. M. de Vasconcellos, and R. Bratschitsch, “Single-photon emission from localized excitons in an atomically thin semiconductor,” Optica 2, 347–352 (2015).
[Crossref]

2014 (4)

A. Castellanos-Gomez, M. Buscema, R. Molenaar, V. Singh, L. Janssen, J. S. J. van der Zant, and G. Steele, “Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping,” 2D Mater. 1, 11002 (2014).

N. Kumar, Q. Cui, F. Ceballos, D. He, Y. Wang, and H. Zhao, “Exciton-exciton annihilation in MoSe2 monolayers,” Phys. Rev. B 89, 125427 (2014).
[Crossref]

X. Xu, W. Yao, D. Xiao, and T. F. Heinz, “Spin and pseudospins in layered transition metal dichalcogenides,” Nat. Phys. 10, 343–350 (2014).
[Crossref]

S. Tian, Z. Wei, Y. Li, H. Zhao, X. Fang, J. Tang, D. Fang, L. Sun, G. Liu, B. Yao, and X. Ma, “Surface state and optical property of sulfur passivated InP,” Mater. Sci. Semicond. Process. 17, 33–37 (2014).
[Crossref]

2013 (2)

D. Sercombe, S. Schwarz, O. Del Pozo-Zamudio, F. Liu, B. J. Robinson, E. Chekhovich, and I. Tartakovskii, “Optical investigation of the natural electron doping in thin MoS2 films deposited on dielectric substrates,” Sci. Rep. 3, 3489 (2013).
[Crossref]

A. M. Jones, H. Yu, N. J. Ghimire, S. Wu, G. Aivazian, J. S. Ross, B. Zhao, J. Yan, D. G. Mandrus, D. Xiao, W. Yao, and X. Xu, “Optical generation of excitonic valley coherence in monolayer WSe2,” Nat. Nanotechnol. 8, 634–638 (2013).
[Crossref]

2012 (5)

D. Xiao, G. B. Liu, W. Feng, X. Xu, and W. Yao, “Coupled spin and valley physics in monolayers of MoS2 and other Group-VI dichalcogenides,” Phys. Rev. Lett. 108, 196802 (2012).
[Crossref]

K. F. Mak, K. He, J. Shan, and T. F. Heinz, “Control of valley polarization in monolayer MoS2 by optical helicity,” Nat. Nanotechnol. 7, 494–498 (2012).
[Crossref]

T. Cao, G. Wang, W. Han, H. Ye, C. Zhu, J. Shi, Q. Niu, P. Tan, E. Wang, B. Liu, and J. Feng, “Valley-selective circular dichroism of monolayer molybdenum disulphide,” Nat. Commun. 3, 887 (2012).
[Crossref]

H. Zeng, J. Dai, W. Yao, D. Xiao, and X. Cui, “Valley polarization in MoS2 monolayers by optical pumping,” Nat. Nanotechnol. 7, 490–493 (2012).
[Crossref]

A. Ramasubramaniam, “Large excitonic effects in monolayers of molybdenum and tungsten dichalcogenides,” Phys. Rev. B 86, 115409 (2012).
[Crossref]

2010 (1)

J. He, K. Wu, R. Sa, Q. Li, and Y. Wei, “Magnetic properties of nonmetal atoms absorbed MoS2 monolayers,” Appl. Phys. Lett. 96, 082504 (2010).
[Crossref]

2008 (1)

Z. M. Ao, W. T. Zheng, and Q. Jiang, “The effects of electronic field on the atomic structure of the graphene/α-SiO2 interface,” Nanotechnology 19, 275710 (2008).
[Crossref]

2007 (1)

Y. K. Koh and D. G. Cahill, “Frequency dependence of the thermal conductivity of semiconductor alloys,” Phys. Rev. B 76, 075207 (2007).
[Crossref]

2002 (1)

G. V. Astakhov, D. R. Yakovlev, V. P. Kochereshko, W. Ossau, W. Faschinger, J. Puls, and A. Waag, “Binding energy of charged excitons in ZnSe-based quantum wells,” Phys. Rev. B 65, 165335 (2002).
[Crossref]

1996 (1)

C. E. J. Mitchell, I. G. Hill, A. B. McLean, and Z. H. Lu, “Sulfur passivated InP(100): surface gaps and electron counting,” Appl. Surf. Sci. 104–105, 434–440 (1996).
[Crossref]

Aivazian, G.

A. M. Jones, H. Yu, N. J. Ghimire, S. Wu, G. Aivazian, J. S. Ross, B. Zhao, J. Yan, D. G. Mandrus, D. Xiao, W. Yao, and X. Xu, “Optical generation of excitonic valley coherence in monolayer WSe2,” Nat. Nanotechnol. 8, 634–638 (2013).
[Crossref]

Allain, A. V.

A. Srivastava, M. Sidler, A. V. Allain, D. S. Lembke, A. Kis, and A. Imamoğlu, “Optically active quantum dots in monolayer WSe2,” Nat. Nanotechnol. 10, 491–496 (2015).
[Crossref]

Amand, T.

F. Cadiz, C. Robert, G. Wang, W. Kong, X. Fan, M. Blei, D. Lagarde, M. Gay, M. Manca, T. Taniguchi, K. Watanabe, T. Amand, X. Marie, P. Renucci, S. Tongay, and B. Urbaszek, “Ultralow power threshold for laser induced changes in optical properties of 2D molybdenum dichalcogenides,” 2D Mater. 3, 045008 (2016).

C. Robert, D. Lagarde, F. Cadiz, G. Wang, B. Lassagne, T. Amand, A. Balocchi, P. Renucci, S. Tongay, B. Urbaszek, and X. Marie, “Exciton radiative lifetime in transition metal dichalcogenide monolayers,” Phys. Rev. B 93, 205423 (2016).
[Crossref]

Ao, Z. M.

Z. M. Ao, W. T. Zheng, and Q. Jiang, “The effects of electronic field on the atomic structure of the graphene/α-SiO2 interface,” Nanotechnology 19, 275710 (2008).
[Crossref]

Arora, A.

M. Koperski, K. Nogajewski, A. Arora, V. Cherkez, P. Mallet, J.-Y. Veuillen, J. Marcus, P. Kossacki, and M. Potemski, “Single photon emitters in exfoliated WSe2 structures,” Nat. Nanotechnol. 10, 503–506 (2015).
[Crossref]

Astakhov, G. V.

G. V. Astakhov, D. R. Yakovlev, V. P. Kochereshko, W. Ossau, W. Faschinger, J. Puls, and A. Waag, “Binding energy of charged excitons in ZnSe-based quantum wells,” Phys. Rev. B 65, 165335 (2002).
[Crossref]

Atature, M.

C. Palacios-Berraquero, D. M. Kara, A. R.-P. Montblanch, M. Barbone, P. Latawiec, D. Yoon, A. K. Ott, M. Loncar, A. C. Ferrari, and M. Atature, “Large-scale quantum-emitter arrays in atomically thin semiconductors,” arXiv:1609.04427 (2016).

Balocchi, A.

C. Robert, D. Lagarde, F. Cadiz, G. Wang, B. Lassagne, T. Amand, A. Balocchi, P. Renucci, S. Tongay, B. Urbaszek, and X. Marie, “Exciton radiative lifetime in transition metal dichalcogenide monolayers,” Phys. Rev. B 93, 205423 (2016).
[Crossref]

Barbone, M.

C. Palacios-Berraquero, D. M. Kara, A. R.-P. Montblanch, M. Barbone, P. Latawiec, D. Yoon, A. K. Ott, M. Loncar, A. C. Ferrari, and M. Atature, “Large-scale quantum-emitter arrays in atomically thin semiconductors,” arXiv:1609.04427 (2016).

Beams, R.

C. Chakraborty, L. Kinnischtzke, K. M. Goodfellow, R. Beams, and A. N. Vamivakas, “Voltage-controlled quantum light from an atomically thin semiconductor,” Nat. Nanotechnol. 10, 507–511 (2015).
[Crossref]

Bigenwald, P.

N. Lundt, E. Cherotchenko, O. Iff, X. Fan, Y. Shen, P. Bigenwald, A. Kavokin, S. Höfling, and C. Schneider, “The interplay between excitons and trions in a monolayer of MoSe2,” arXiv:1702.04231 (2017).

Blei, M.

F. Cadiz, C. Robert, G. Wang, W. Kong, X. Fan, M. Blei, D. Lagarde, M. Gay, M. Manca, T. Taniguchi, K. Watanabe, T. Amand, X. Marie, P. Renucci, S. Tongay, and B. Urbaszek, “Ultralow power threshold for laser induced changes in optical properties of 2D molybdenum dichalcogenides,” 2D Mater. 3, 045008 (2016).

Branny, A.

A. Branny, S. Kumar, R. Proux, and B. D. Gerardot, “Deterministic strain-induced arrays of quantum emitters in a two-dimensional semiconductor,” arXiv:1610.01406 (2016).

Bratschitsch, R.

Buscema, M.

P. Tonndorf, R. Schmidt, R. Schneider, J. Kern, M. Buscema, G. A. Steele, A. Castellanos-Gomez, H. S. J. van der Zant, S. M. de Vasconcellos, and R. Bratschitsch, “Single-photon emission from localized excitons in an atomically thin semiconductor,” Optica 2, 347–352 (2015).
[Crossref]

A. Castellanos-Gomez, M. Buscema, R. Molenaar, V. Singh, L. Janssen, J. S. J. van der Zant, and G. Steele, “Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping,” 2D Mater. 1, 11002 (2014).

Cadiz, F.

F. Cadiz, C. Robert, G. Wang, W. Kong, X. Fan, M. Blei, D. Lagarde, M. Gay, M. Manca, T. Taniguchi, K. Watanabe, T. Amand, X. Marie, P. Renucci, S. Tongay, and B. Urbaszek, “Ultralow power threshold for laser induced changes in optical properties of 2D molybdenum dichalcogenides,” 2D Mater. 3, 045008 (2016).

C. Robert, D. Lagarde, F. Cadiz, G. Wang, B. Lassagne, T. Amand, A. Balocchi, P. Renucci, S. Tongay, B. Urbaszek, and X. Marie, “Exciton radiative lifetime in transition metal dichalcogenide monolayers,” Phys. Rev. B 93, 205423 (2016).
[Crossref]

Cahill, D. G.

Y. K. Koh and D. G. Cahill, “Frequency dependence of the thermal conductivity of semiconductor alloys,” Phys. Rev. B 76, 075207 (2007).
[Crossref]

Cao, T.

T. Cao, G. Wang, W. Han, H. Ye, C. Zhu, J. Shi, Q. Niu, P. Tan, E. Wang, B. Liu, and J. Feng, “Valley-selective circular dichroism of monolayer molybdenum disulphide,” Nat. Commun. 3, 887 (2012).
[Crossref]

Castellanos-Gomez, A.

P. Tonndorf, R. Schmidt, R. Schneider, J. Kern, M. Buscema, G. A. Steele, A. Castellanos-Gomez, H. S. J. van der Zant, S. M. de Vasconcellos, and R. Bratschitsch, “Single-photon emission from localized excitons in an atomically thin semiconductor,” Optica 2, 347–352 (2015).
[Crossref]

A. Castellanos-Gomez, M. Buscema, R. Molenaar, V. Singh, L. Janssen, J. S. J. van der Zant, and G. Steele, “Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping,” 2D Mater. 1, 11002 (2014).

Ceballos, F.

N. Kumar, Q. Cui, F. Ceballos, D. He, Y. Wang, and H. Zhao, “Exciton-exciton annihilation in MoSe2 monolayers,” Phys. Rev. B 89, 125427 (2014).
[Crossref]

Chakraborty, C.

C. Chakraborty, L. Kinnischtzke, K. M. Goodfellow, R. Beams, and A. N. Vamivakas, “Voltage-controlled quantum light from an atomically thin semiconductor,” Nat. Nanotechnol. 10, 507–511 (2015).
[Crossref]

Chekhovich, E.

D. Sercombe, S. Schwarz, O. Del Pozo-Zamudio, F. Liu, B. J. Robinson, E. Chekhovich, and I. Tartakovskii, “Optical investigation of the natural electron doping in thin MoS2 films deposited on dielectric substrates,” Sci. Rep. 3, 3489 (2013).
[Crossref]

Chen, M.-C.

Y.-M. He, G. Clark, J. R. Schaibley, Y. He, M.-C. Chen, Y.-J. Wei, X. Ding, Q. Zhang, W. Yao, X. Xu, C.-Y. Lu, and J.-W. Pan, “Single quantum emitters in monolayer semiconductors,” Nat. Nanotechnol. 10, 497–502 (2015).
[Crossref]

Cherkez, V.

M. Koperski, K. Nogajewski, A. Arora, V. Cherkez, P. Mallet, J.-Y. Veuillen, J. Marcus, P. Kossacki, and M. Potemski, “Single photon emitters in exfoliated WSe2 structures,” Nat. Nanotechnol. 10, 503–506 (2015).
[Crossref]

Cherotchenko, E.

N. Lundt, E. Cherotchenko, O. Iff, X. Fan, Y. Shen, P. Bigenwald, A. Kavokin, S. Höfling, and C. Schneider, “The interplay between excitons and trions in a monolayer of MoSe2,” arXiv:1702.04231 (2017).

Clark, G.

Y.-M. He, G. Clark, J. R. Schaibley, Y. He, M.-C. Chen, Y.-J. Wei, X. Ding, Q. Zhang, W. Yao, X. Xu, C.-Y. Lu, and J.-W. Pan, “Single quantum emitters in monolayer semiconductors,” Nat. Nanotechnol. 10, 497–502 (2015).
[Crossref]

Cui, Q.

N. Kumar, Q. Cui, F. Ceballos, D. He, Y. Wang, and H. Zhao, “Exciton-exciton annihilation in MoSe2 monolayers,” Phys. Rev. B 89, 125427 (2014).
[Crossref]

Cui, X.

H. Zeng, J. Dai, W. Yao, D. Xiao, and X. Cui, “Valley polarization in MoS2 monolayers by optical pumping,” Nat. Nanotechnol. 7, 490–493 (2012).
[Crossref]

Dai, J.

H. Zeng, J. Dai, W. Yao, D. Xiao, and X. Cui, “Valley polarization in MoS2 monolayers by optical pumping,” Nat. Nanotechnol. 7, 490–493 (2012).
[Crossref]

de Vasconcellos, S. M.

Del Pozo-Zamudio, O.

D. Sercombe, S. Schwarz, O. Del Pozo-Zamudio, F. Liu, B. J. Robinson, E. Chekhovich, and I. Tartakovskii, “Optical investigation of the natural electron doping in thin MoS2 films deposited on dielectric substrates,” Sci. Rep. 3, 3489 (2013).
[Crossref]

Ding, X.

Y.-M. He, G. Clark, J. R. Schaibley, Y. He, M.-C. Chen, Y.-J. Wei, X. Ding, Q. Zhang, W. Yao, X. Xu, C.-Y. Lu, and J.-W. Pan, “Single quantum emitters in monolayer semiconductors,” Nat. Nanotechnol. 10, 497–502 (2015).
[Crossref]

Fan, X.

F. Cadiz, C. Robert, G. Wang, W. Kong, X. Fan, M. Blei, D. Lagarde, M. Gay, M. Manca, T. Taniguchi, K. Watanabe, T. Amand, X. Marie, P. Renucci, S. Tongay, and B. Urbaszek, “Ultralow power threshold for laser induced changes in optical properties of 2D molybdenum dichalcogenides,” 2D Mater. 3, 045008 (2016).

N. Lundt, E. Cherotchenko, O. Iff, X. Fan, Y. Shen, P. Bigenwald, A. Kavokin, S. Höfling, and C. Schneider, “The interplay between excitons and trions in a monolayer of MoSe2,” arXiv:1702.04231 (2017).

Fang, D.

S. Tian, Z. Wei, Y. Li, H. Zhao, X. Fang, J. Tang, D. Fang, L. Sun, G. Liu, B. Yao, and X. Ma, “Surface state and optical property of sulfur passivated InP,” Mater. Sci. Semicond. Process. 17, 33–37 (2014).
[Crossref]

Fang, X.

S. Tian, Z. Wei, Y. Li, H. Zhao, X. Fang, J. Tang, D. Fang, L. Sun, G. Liu, B. Yao, and X. Ma, “Surface state and optical property of sulfur passivated InP,” Mater. Sci. Semicond. Process. 17, 33–37 (2014).
[Crossref]

Faschinger, W.

G. V. Astakhov, D. R. Yakovlev, V. P. Kochereshko, W. Ossau, W. Faschinger, J. Puls, and A. Waag, “Binding energy of charged excitons in ZnSe-based quantum wells,” Phys. Rev. B 65, 165335 (2002).
[Crossref]

Feng, J.

T. Cao, G. Wang, W. Han, H. Ye, C. Zhu, J. Shi, Q. Niu, P. Tan, E. Wang, B. Liu, and J. Feng, “Valley-selective circular dichroism of monolayer molybdenum disulphide,” Nat. Commun. 3, 887 (2012).
[Crossref]

Feng, W.

D. Xiao, G. B. Liu, W. Feng, X. Xu, and W. Yao, “Coupled spin and valley physics in monolayers of MoS2 and other Group-VI dichalcogenides,” Phys. Rev. Lett. 108, 196802 (2012).
[Crossref]

Ferrari, A. C.

C. Palacios-Berraquero, D. M. Kara, A. R.-P. Montblanch, M. Barbone, P. Latawiec, D. Yoon, A. K. Ott, M. Loncar, A. C. Ferrari, and M. Atature, “Large-scale quantum-emitter arrays in atomically thin semiconductors,” arXiv:1609.04427 (2016).

Gay, M.

F. Cadiz, C. Robert, G. Wang, W. Kong, X. Fan, M. Blei, D. Lagarde, M. Gay, M. Manca, T. Taniguchi, K. Watanabe, T. Amand, X. Marie, P. Renucci, S. Tongay, and B. Urbaszek, “Ultralow power threshold for laser induced changes in optical properties of 2D molybdenum dichalcogenides,” 2D Mater. 3, 045008 (2016).

Gerardot, B. D.

A. Branny, S. Kumar, R. Proux, and B. D. Gerardot, “Deterministic strain-induced arrays of quantum emitters in a two-dimensional semiconductor,” arXiv:1610.01406 (2016).

Ghimire, N. J.

A. M. Jones, H. Yu, N. J. Ghimire, S. Wu, G. Aivazian, J. S. Ross, B. Zhao, J. Yan, D. G. Mandrus, D. Xiao, W. Yao, and X. Xu, “Optical generation of excitonic valley coherence in monolayer WSe2,” Nat. Nanotechnol. 8, 634–638 (2013).
[Crossref]

Goodfellow, K. M.

C. Chakraborty, L. Kinnischtzke, K. M. Goodfellow, R. Beams, and A. N. Vamivakas, “Voltage-controlled quantum light from an atomically thin semiconductor,” Nat. Nanotechnol. 10, 507–511 (2015).
[Crossref]

Han, W.

T. Cao, G. Wang, W. Han, H. Ye, C. Zhu, J. Shi, Q. Niu, P. Tan, E. Wang, B. Liu, and J. Feng, “Valley-selective circular dichroism of monolayer molybdenum disulphide,” Nat. Commun. 3, 887 (2012).
[Crossref]

He, D.

N. Kumar, Q. Cui, F. Ceballos, D. He, Y. Wang, and H. Zhao, “Exciton-exciton annihilation in MoSe2 monolayers,” Phys. Rev. B 89, 125427 (2014).
[Crossref]

He, J.

J. He, K. Wu, R. Sa, Q. Li, and Y. Wei, “Magnetic properties of nonmetal atoms absorbed MoS2 monolayers,” Appl. Phys. Lett. 96, 082504 (2010).
[Crossref]

He, K.

K. F. Mak, K. He, J. Shan, and T. F. Heinz, “Control of valley polarization in monolayer MoS2 by optical helicity,” Nat. Nanotechnol. 7, 494–498 (2012).
[Crossref]

He, Y.

Y.-M. He, G. Clark, J. R. Schaibley, Y. He, M.-C. Chen, Y.-J. Wei, X. Ding, Q. Zhang, W. Yao, X. Xu, C.-Y. Lu, and J.-W. Pan, “Single quantum emitters in monolayer semiconductors,” Nat. Nanotechnol. 10, 497–502 (2015).
[Crossref]

He, Y.-M.

Y.-M. He, S. Höfling, and C. Schneider, “Phonon induced line broadening and population of the dark exciton in a deeply trapped localized emitter in monolayer WSe2,” Opt. Express 24, 8066–8073 (2016).
[Crossref]

Y.-M. He, G. Clark, J. R. Schaibley, Y. He, M.-C. Chen, Y.-J. Wei, X. Ding, Q. Zhang, W. Yao, X. Xu, C.-Y. Lu, and J.-W. Pan, “Single quantum emitters in monolayer semiconductors,” Nat. Nanotechnol. 10, 497–502 (2015).
[Crossref]

Heinz, T. F.

X. Xu, W. Yao, D. Xiao, and T. F. Heinz, “Spin and pseudospins in layered transition metal dichalcogenides,” Nat. Phys. 10, 343–350 (2014).
[Crossref]

K. F. Mak, K. He, J. Shan, and T. F. Heinz, “Control of valley polarization in monolayer MoS2 by optical helicity,” Nat. Nanotechnol. 7, 494–498 (2012).
[Crossref]

Hill, I. G.

C. E. J. Mitchell, I. G. Hill, A. B. McLean, and Z. H. Lu, “Sulfur passivated InP(100): surface gaps and electron counting,” Appl. Surf. Sci. 104–105, 434–440 (1996).
[Crossref]

Höfling, S.

Y.-M. He, S. Höfling, and C. Schneider, “Phonon induced line broadening and population of the dark exciton in a deeply trapped localized emitter in monolayer WSe2,” Opt. Express 24, 8066–8073 (2016).
[Crossref]

N. Lundt, E. Cherotchenko, O. Iff, X. Fan, Y. Shen, P. Bigenwald, A. Kavokin, S. Höfling, and C. Schneider, “The interplay between excitons and trions in a monolayer of MoSe2,” arXiv:1702.04231 (2017).

Iff, O.

N. Lundt, E. Cherotchenko, O. Iff, X. Fan, Y. Shen, P. Bigenwald, A. Kavokin, S. Höfling, and C. Schneider, “The interplay between excitons and trions in a monolayer of MoSe2,” arXiv:1702.04231 (2017).

Imamoglu, A.

A. Srivastava, M. Sidler, A. V. Allain, D. S. Lembke, A. Kis, and A. Imamoğlu, “Optically active quantum dots in monolayer WSe2,” Nat. Nanotechnol. 10, 491–496 (2015).
[Crossref]

Janssen, L.

A. Castellanos-Gomez, M. Buscema, R. Molenaar, V. Singh, L. Janssen, J. S. J. van der Zant, and G. Steele, “Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping,” 2D Mater. 1, 11002 (2014).

Jiang, Q.

Z. M. Ao, W. T. Zheng, and Q. Jiang, “The effects of electronic field on the atomic structure of the graphene/α-SiO2 interface,” Nanotechnology 19, 275710 (2008).
[Crossref]

Jones, A. M.

A. M. Jones, H. Yu, N. J. Ghimire, S. Wu, G. Aivazian, J. S. Ross, B. Zhao, J. Yan, D. G. Mandrus, D. Xiao, W. Yao, and X. Xu, “Optical generation of excitonic valley coherence in monolayer WSe2,” Nat. Nanotechnol. 8, 634–638 (2013).
[Crossref]

Kara, D. M.

C. Palacios-Berraquero, D. M. Kara, A. R.-P. Montblanch, M. Barbone, P. Latawiec, D. Yoon, A. K. Ott, M. Loncar, A. C. Ferrari, and M. Atature, “Large-scale quantum-emitter arrays in atomically thin semiconductors,” arXiv:1609.04427 (2016).

Kavokin, A.

N. Lundt, E. Cherotchenko, O. Iff, X. Fan, Y. Shen, P. Bigenwald, A. Kavokin, S. Höfling, and C. Schneider, “The interplay between excitons and trions in a monolayer of MoSe2,” arXiv:1702.04231 (2017).

Kern, J.

Kinnischtzke, L.

C. Chakraborty, L. Kinnischtzke, K. M. Goodfellow, R. Beams, and A. N. Vamivakas, “Voltage-controlled quantum light from an atomically thin semiconductor,” Nat. Nanotechnol. 10, 507–511 (2015).
[Crossref]

Kis, A.

A. Srivastava, M. Sidler, A. V. Allain, D. S. Lembke, A. Kis, and A. Imamoğlu, “Optically active quantum dots in monolayer WSe2,” Nat. Nanotechnol. 10, 491–496 (2015).
[Crossref]

Kochereshko, V. P.

G. V. Astakhov, D. R. Yakovlev, V. P. Kochereshko, W. Ossau, W. Faschinger, J. Puls, and A. Waag, “Binding energy of charged excitons in ZnSe-based quantum wells,” Phys. Rev. B 65, 165335 (2002).
[Crossref]

Koh, Y. K.

Y. K. Koh and D. G. Cahill, “Frequency dependence of the thermal conductivity of semiconductor alloys,” Phys. Rev. B 76, 075207 (2007).
[Crossref]

Kong, W.

F. Cadiz, C. Robert, G. Wang, W. Kong, X. Fan, M. Blei, D. Lagarde, M. Gay, M. Manca, T. Taniguchi, K. Watanabe, T. Amand, X. Marie, P. Renucci, S. Tongay, and B. Urbaszek, “Ultralow power threshold for laser induced changes in optical properties of 2D molybdenum dichalcogenides,” 2D Mater. 3, 045008 (2016).

Koperski, M.

M. Koperski, K. Nogajewski, A. Arora, V. Cherkez, P. Mallet, J.-Y. Veuillen, J. Marcus, P. Kossacki, and M. Potemski, “Single photon emitters in exfoliated WSe2 structures,” Nat. Nanotechnol. 10, 503–506 (2015).
[Crossref]

Kossacki, P.

M. Koperski, K. Nogajewski, A. Arora, V. Cherkez, P. Mallet, J.-Y. Veuillen, J. Marcus, P. Kossacki, and M. Potemski, “Single photon emitters in exfoliated WSe2 structures,” Nat. Nanotechnol. 10, 503–506 (2015).
[Crossref]

Kumar, N.

N. Kumar, Q. Cui, F. Ceballos, D. He, Y. Wang, and H. Zhao, “Exciton-exciton annihilation in MoSe2 monolayers,” Phys. Rev. B 89, 125427 (2014).
[Crossref]

Kumar, S.

A. Branny, S. Kumar, R. Proux, and B. D. Gerardot, “Deterministic strain-induced arrays of quantum emitters in a two-dimensional semiconductor,” arXiv:1610.01406 (2016).

Kuno, M.

Y. V. Morozov and M. Kuno, “Optical constants and dynamic conductivities of single layer MoS2, MoSe2, and WSe2,” Appl. Phys. Lett. 107, 083103 (2015).
[Crossref]

Lagarde, D.

C. Robert, D. Lagarde, F. Cadiz, G. Wang, B. Lassagne, T. Amand, A. Balocchi, P. Renucci, S. Tongay, B. Urbaszek, and X. Marie, “Exciton radiative lifetime in transition metal dichalcogenide monolayers,” Phys. Rev. B 93, 205423 (2016).
[Crossref]

F. Cadiz, C. Robert, G. Wang, W. Kong, X. Fan, M. Blei, D. Lagarde, M. Gay, M. Manca, T. Taniguchi, K. Watanabe, T. Amand, X. Marie, P. Renucci, S. Tongay, and B. Urbaszek, “Ultralow power threshold for laser induced changes in optical properties of 2D molybdenum dichalcogenides,” 2D Mater. 3, 045008 (2016).

Lassagne, B.

C. Robert, D. Lagarde, F. Cadiz, G. Wang, B. Lassagne, T. Amand, A. Balocchi, P. Renucci, S. Tongay, B. Urbaszek, and X. Marie, “Exciton radiative lifetime in transition metal dichalcogenide monolayers,” Phys. Rev. B 93, 205423 (2016).
[Crossref]

Latawiec, P.

C. Palacios-Berraquero, D. M. Kara, A. R.-P. Montblanch, M. Barbone, P. Latawiec, D. Yoon, A. K. Ott, M. Loncar, A. C. Ferrari, and M. Atature, “Large-scale quantum-emitter arrays in atomically thin semiconductors,” arXiv:1609.04427 (2016).

Lembke, D. S.

A. Srivastava, M. Sidler, A. V. Allain, D. S. Lembke, A. Kis, and A. Imamoğlu, “Optically active quantum dots in monolayer WSe2,” Nat. Nanotechnol. 10, 491–496 (2015).
[Crossref]

Li, Q.

J. He, K. Wu, R. Sa, Q. Li, and Y. Wei, “Magnetic properties of nonmetal atoms absorbed MoS2 monolayers,” Appl. Phys. Lett. 96, 082504 (2010).
[Crossref]

Li, Y.

S. Tian, Z. Wei, Y. Li, H. Zhao, X. Fang, J. Tang, D. Fang, L. Sun, G. Liu, B. Yao, and X. Ma, “Surface state and optical property of sulfur passivated InP,” Mater. Sci. Semicond. Process. 17, 33–37 (2014).
[Crossref]

Liu, B.

T. Cao, G. Wang, W. Han, H. Ye, C. Zhu, J. Shi, Q. Niu, P. Tan, E. Wang, B. Liu, and J. Feng, “Valley-selective circular dichroism of monolayer molybdenum disulphide,” Nat. Commun. 3, 887 (2012).
[Crossref]

Liu, F.

D. Sercombe, S. Schwarz, O. Del Pozo-Zamudio, F. Liu, B. J. Robinson, E. Chekhovich, and I. Tartakovskii, “Optical investigation of the natural electron doping in thin MoS2 films deposited on dielectric substrates,” Sci. Rep. 3, 3489 (2013).
[Crossref]

Liu, G.

S. Tian, Z. Wei, Y. Li, H. Zhao, X. Fang, J. Tang, D. Fang, L. Sun, G. Liu, B. Yao, and X. Ma, “Surface state and optical property of sulfur passivated InP,” Mater. Sci. Semicond. Process. 17, 33–37 (2014).
[Crossref]

Liu, G. B.

D. Xiao, G. B. Liu, W. Feng, X. Xu, and W. Yao, “Coupled spin and valley physics in monolayers of MoS2 and other Group-VI dichalcogenides,” Phys. Rev. Lett. 108, 196802 (2012).
[Crossref]

Loncar, M.

C. Palacios-Berraquero, D. M. Kara, A. R.-P. Montblanch, M. Barbone, P. Latawiec, D. Yoon, A. K. Ott, M. Loncar, A. C. Ferrari, and M. Atature, “Large-scale quantum-emitter arrays in atomically thin semiconductors,” arXiv:1609.04427 (2016).

Lu, C.-Y.

Y.-M. He, G. Clark, J. R. Schaibley, Y. He, M.-C. Chen, Y.-J. Wei, X. Ding, Q. Zhang, W. Yao, X. Xu, C.-Y. Lu, and J.-W. Pan, “Single quantum emitters in monolayer semiconductors,” Nat. Nanotechnol. 10, 497–502 (2015).
[Crossref]

Lu, Z. H.

C. E. J. Mitchell, I. G. Hill, A. B. McLean, and Z. H. Lu, “Sulfur passivated InP(100): surface gaps and electron counting,” Appl. Surf. Sci. 104–105, 434–440 (1996).
[Crossref]

Lundt, N.

N. Lundt, E. Cherotchenko, O. Iff, X. Fan, Y. Shen, P. Bigenwald, A. Kavokin, S. Höfling, and C. Schneider, “The interplay between excitons and trions in a monolayer of MoSe2,” arXiv:1702.04231 (2017).

Ma, X.

S. Tian, Z. Wei, Y. Li, H. Zhao, X. Fang, J. Tang, D. Fang, L. Sun, G. Liu, B. Yao, and X. Ma, “Surface state and optical property of sulfur passivated InP,” Mater. Sci. Semicond. Process. 17, 33–37 (2014).
[Crossref]

Mak, K. F.

K. F. Mak, K. He, J. Shan, and T. F. Heinz, “Control of valley polarization in monolayer MoS2 by optical helicity,” Nat. Nanotechnol. 7, 494–498 (2012).
[Crossref]

Mallet, P.

M. Koperski, K. Nogajewski, A. Arora, V. Cherkez, P. Mallet, J.-Y. Veuillen, J. Marcus, P. Kossacki, and M. Potemski, “Single photon emitters in exfoliated WSe2 structures,” Nat. Nanotechnol. 10, 503–506 (2015).
[Crossref]

Manca, M.

F. Cadiz, C. Robert, G. Wang, W. Kong, X. Fan, M. Blei, D. Lagarde, M. Gay, M. Manca, T. Taniguchi, K. Watanabe, T. Amand, X. Marie, P. Renucci, S. Tongay, and B. Urbaszek, “Ultralow power threshold for laser induced changes in optical properties of 2D molybdenum dichalcogenides,” 2D Mater. 3, 045008 (2016).

Mandrus, D. G.

A. M. Jones, H. Yu, N. J. Ghimire, S. Wu, G. Aivazian, J. S. Ross, B. Zhao, J. Yan, D. G. Mandrus, D. Xiao, W. Yao, and X. Xu, “Optical generation of excitonic valley coherence in monolayer WSe2,” Nat. Nanotechnol. 8, 634–638 (2013).
[Crossref]

Marcus, J.

M. Koperski, K. Nogajewski, A. Arora, V. Cherkez, P. Mallet, J.-Y. Veuillen, J. Marcus, P. Kossacki, and M. Potemski, “Single photon emitters in exfoliated WSe2 structures,” Nat. Nanotechnol. 10, 503–506 (2015).
[Crossref]

Marie, X.

F. Cadiz, C. Robert, G. Wang, W. Kong, X. Fan, M. Blei, D. Lagarde, M. Gay, M. Manca, T. Taniguchi, K. Watanabe, T. Amand, X. Marie, P. Renucci, S. Tongay, and B. Urbaszek, “Ultralow power threshold for laser induced changes in optical properties of 2D molybdenum dichalcogenides,” 2D Mater. 3, 045008 (2016).

C. Robert, D. Lagarde, F. Cadiz, G. Wang, B. Lassagne, T. Amand, A. Balocchi, P. Renucci, S. Tongay, B. Urbaszek, and X. Marie, “Exciton radiative lifetime in transition metal dichalcogenide monolayers,” Phys. Rev. B 93, 205423 (2016).
[Crossref]

McLean, A. B.

C. E. J. Mitchell, I. G. Hill, A. B. McLean, and Z. H. Lu, “Sulfur passivated InP(100): surface gaps and electron counting,” Appl. Surf. Sci. 104–105, 434–440 (1996).
[Crossref]

Mitchell, C. E. J.

C. E. J. Mitchell, I. G. Hill, A. B. McLean, and Z. H. Lu, “Sulfur passivated InP(100): surface gaps and electron counting,” Appl. Surf. Sci. 104–105, 434–440 (1996).
[Crossref]

Molenaar, R.

A. Castellanos-Gomez, M. Buscema, R. Molenaar, V. Singh, L. Janssen, J. S. J. van der Zant, and G. Steele, “Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping,” 2D Mater. 1, 11002 (2014).

Montblanch, A. R.-P.

C. Palacios-Berraquero, D. M. Kara, A. R.-P. Montblanch, M. Barbone, P. Latawiec, D. Yoon, A. K. Ott, M. Loncar, A. C. Ferrari, and M. Atature, “Large-scale quantum-emitter arrays in atomically thin semiconductors,” arXiv:1609.04427 (2016).

Morozov, Y. V.

Y. V. Morozov and M. Kuno, “Optical constants and dynamic conductivities of single layer MoS2, MoSe2, and WSe2,” Appl. Phys. Lett. 107, 083103 (2015).
[Crossref]

Niu, Q.

T. Cao, G. Wang, W. Han, H. Ye, C. Zhu, J. Shi, Q. Niu, P. Tan, E. Wang, B. Liu, and J. Feng, “Valley-selective circular dichroism of monolayer molybdenum disulphide,” Nat. Commun. 3, 887 (2012).
[Crossref]

Nogajewski, K.

M. Koperski, K. Nogajewski, A. Arora, V. Cherkez, P. Mallet, J.-Y. Veuillen, J. Marcus, P. Kossacki, and M. Potemski, “Single photon emitters in exfoliated WSe2 structures,” Nat. Nanotechnol. 10, 503–506 (2015).
[Crossref]

Ossau, W.

G. V. Astakhov, D. R. Yakovlev, V. P. Kochereshko, W. Ossau, W. Faschinger, J. Puls, and A. Waag, “Binding energy of charged excitons in ZnSe-based quantum wells,” Phys. Rev. B 65, 165335 (2002).
[Crossref]

Ott, A. K.

C. Palacios-Berraquero, D. M. Kara, A. R.-P. Montblanch, M. Barbone, P. Latawiec, D. Yoon, A. K. Ott, M. Loncar, A. C. Ferrari, and M. Atature, “Large-scale quantum-emitter arrays in atomically thin semiconductors,” arXiv:1609.04427 (2016).

Palacios-Berraquero, C.

C. Palacios-Berraquero, D. M. Kara, A. R.-P. Montblanch, M. Barbone, P. Latawiec, D. Yoon, A. K. Ott, M. Loncar, A. C. Ferrari, and M. Atature, “Large-scale quantum-emitter arrays in atomically thin semiconductors,” arXiv:1609.04427 (2016).

Pan, J.-W.

Y.-M. He, G. Clark, J. R. Schaibley, Y. He, M.-C. Chen, Y.-J. Wei, X. Ding, Q. Zhang, W. Yao, X. Xu, C.-Y. Lu, and J.-W. Pan, “Single quantum emitters in monolayer semiconductors,” Nat. Nanotechnol. 10, 497–502 (2015).
[Crossref]

Potemski, M.

M. Koperski, K. Nogajewski, A. Arora, V. Cherkez, P. Mallet, J.-Y. Veuillen, J. Marcus, P. Kossacki, and M. Potemski, “Single photon emitters in exfoliated WSe2 structures,” Nat. Nanotechnol. 10, 503–506 (2015).
[Crossref]

Proux, R.

A. Branny, S. Kumar, R. Proux, and B. D. Gerardot, “Deterministic strain-induced arrays of quantum emitters in a two-dimensional semiconductor,” arXiv:1610.01406 (2016).

Puls, J.

G. V. Astakhov, D. R. Yakovlev, V. P. Kochereshko, W. Ossau, W. Faschinger, J. Puls, and A. Waag, “Binding energy of charged excitons in ZnSe-based quantum wells,” Phys. Rev. B 65, 165335 (2002).
[Crossref]

Ramasubramaniam, A.

A. Ramasubramaniam, “Large excitonic effects in monolayers of molybdenum and tungsten dichalcogenides,” Phys. Rev. B 86, 115409 (2012).
[Crossref]

Renucci, P.

F. Cadiz, C. Robert, G. Wang, W. Kong, X. Fan, M. Blei, D. Lagarde, M. Gay, M. Manca, T. Taniguchi, K. Watanabe, T. Amand, X. Marie, P. Renucci, S. Tongay, and B. Urbaszek, “Ultralow power threshold for laser induced changes in optical properties of 2D molybdenum dichalcogenides,” 2D Mater. 3, 045008 (2016).

C. Robert, D. Lagarde, F. Cadiz, G. Wang, B. Lassagne, T. Amand, A. Balocchi, P. Renucci, S. Tongay, B. Urbaszek, and X. Marie, “Exciton radiative lifetime in transition metal dichalcogenide monolayers,” Phys. Rev. B 93, 205423 (2016).
[Crossref]

Robert, C.

C. Robert, D. Lagarde, F. Cadiz, G. Wang, B. Lassagne, T. Amand, A. Balocchi, P. Renucci, S. Tongay, B. Urbaszek, and X. Marie, “Exciton radiative lifetime in transition metal dichalcogenide monolayers,” Phys. Rev. B 93, 205423 (2016).
[Crossref]

F. Cadiz, C. Robert, G. Wang, W. Kong, X. Fan, M. Blei, D. Lagarde, M. Gay, M. Manca, T. Taniguchi, K. Watanabe, T. Amand, X. Marie, P. Renucci, S. Tongay, and B. Urbaszek, “Ultralow power threshold for laser induced changes in optical properties of 2D molybdenum dichalcogenides,” 2D Mater. 3, 045008 (2016).

Robinson, B. J.

D. Sercombe, S. Schwarz, O. Del Pozo-Zamudio, F. Liu, B. J. Robinson, E. Chekhovich, and I. Tartakovskii, “Optical investigation of the natural electron doping in thin MoS2 films deposited on dielectric substrates,” Sci. Rep. 3, 3489 (2013).
[Crossref]

Ross, J. S.

A. M. Jones, H. Yu, N. J. Ghimire, S. Wu, G. Aivazian, J. S. Ross, B. Zhao, J. Yan, D. G. Mandrus, D. Xiao, W. Yao, and X. Xu, “Optical generation of excitonic valley coherence in monolayer WSe2,” Nat. Nanotechnol. 8, 634–638 (2013).
[Crossref]

Sa, R.

J. He, K. Wu, R. Sa, Q. Li, and Y. Wei, “Magnetic properties of nonmetal atoms absorbed MoS2 monolayers,” Appl. Phys. Lett. 96, 082504 (2010).
[Crossref]

Schaibley, J. R.

Y.-M. He, G. Clark, J. R. Schaibley, Y. He, M.-C. Chen, Y.-J. Wei, X. Ding, Q. Zhang, W. Yao, X. Xu, C.-Y. Lu, and J.-W. Pan, “Single quantum emitters in monolayer semiconductors,” Nat. Nanotechnol. 10, 497–502 (2015).
[Crossref]

Schmidt, R.

Schneider, C.

Y.-M. He, S. Höfling, and C. Schneider, “Phonon induced line broadening and population of the dark exciton in a deeply trapped localized emitter in monolayer WSe2,” Opt. Express 24, 8066–8073 (2016).
[Crossref]

N. Lundt, E. Cherotchenko, O. Iff, X. Fan, Y. Shen, P. Bigenwald, A. Kavokin, S. Höfling, and C. Schneider, “The interplay between excitons and trions in a monolayer of MoSe2,” arXiv:1702.04231 (2017).

Schneider, R.

Schwarz, S.

D. Sercombe, S. Schwarz, O. Del Pozo-Zamudio, F. Liu, B. J. Robinson, E. Chekhovich, and I. Tartakovskii, “Optical investigation of the natural electron doping in thin MoS2 films deposited on dielectric substrates,” Sci. Rep. 3, 3489 (2013).
[Crossref]

Sercombe, D.

D. Sercombe, S. Schwarz, O. Del Pozo-Zamudio, F. Liu, B. J. Robinson, E. Chekhovich, and I. Tartakovskii, “Optical investigation of the natural electron doping in thin MoS2 films deposited on dielectric substrates,” Sci. Rep. 3, 3489 (2013).
[Crossref]

Shan, J.

K. F. Mak, K. He, J. Shan, and T. F. Heinz, “Control of valley polarization in monolayer MoS2 by optical helicity,” Nat. Nanotechnol. 7, 494–498 (2012).
[Crossref]

Shen, Y.

N. Lundt, E. Cherotchenko, O. Iff, X. Fan, Y. Shen, P. Bigenwald, A. Kavokin, S. Höfling, and C. Schneider, “The interplay between excitons and trions in a monolayer of MoSe2,” arXiv:1702.04231 (2017).

Shi, J.

T. Cao, G. Wang, W. Han, H. Ye, C. Zhu, J. Shi, Q. Niu, P. Tan, E. Wang, B. Liu, and J. Feng, “Valley-selective circular dichroism of monolayer molybdenum disulphide,” Nat. Commun. 3, 887 (2012).
[Crossref]

Sidler, M.

A. Srivastava, M. Sidler, A. V. Allain, D. S. Lembke, A. Kis, and A. Imamoğlu, “Optically active quantum dots in monolayer WSe2,” Nat. Nanotechnol. 10, 491–496 (2015).
[Crossref]

Singh, V.

A. Castellanos-Gomez, M. Buscema, R. Molenaar, V. Singh, L. Janssen, J. S. J. van der Zant, and G. Steele, “Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping,” 2D Mater. 1, 11002 (2014).

Srivastava, A.

A. Srivastava, M. Sidler, A. V. Allain, D. S. Lembke, A. Kis, and A. Imamoğlu, “Optically active quantum dots in monolayer WSe2,” Nat. Nanotechnol. 10, 491–496 (2015).
[Crossref]

Steele, G.

A. Castellanos-Gomez, M. Buscema, R. Molenaar, V. Singh, L. Janssen, J. S. J. van der Zant, and G. Steele, “Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping,” 2D Mater. 1, 11002 (2014).

Steele, G. A.

Sun, L.

S. Tian, Z. Wei, Y. Li, H. Zhao, X. Fang, J. Tang, D. Fang, L. Sun, G. Liu, B. Yao, and X. Ma, “Surface state and optical property of sulfur passivated InP,” Mater. Sci. Semicond. Process. 17, 33–37 (2014).
[Crossref]

Tan, P.

T. Cao, G. Wang, W. Han, H. Ye, C. Zhu, J. Shi, Q. Niu, P. Tan, E. Wang, B. Liu, and J. Feng, “Valley-selective circular dichroism of monolayer molybdenum disulphide,” Nat. Commun. 3, 887 (2012).
[Crossref]

Tang, J.

S. Tian, Z. Wei, Y. Li, H. Zhao, X. Fang, J. Tang, D. Fang, L. Sun, G. Liu, B. Yao, and X. Ma, “Surface state and optical property of sulfur passivated InP,” Mater. Sci. Semicond. Process. 17, 33–37 (2014).
[Crossref]

Taniguchi, T.

F. Cadiz, C. Robert, G. Wang, W. Kong, X. Fan, M. Blei, D. Lagarde, M. Gay, M. Manca, T. Taniguchi, K. Watanabe, T. Amand, X. Marie, P. Renucci, S. Tongay, and B. Urbaszek, “Ultralow power threshold for laser induced changes in optical properties of 2D molybdenum dichalcogenides,” 2D Mater. 3, 045008 (2016).

Tartakovskii, I.

D. Sercombe, S. Schwarz, O. Del Pozo-Zamudio, F. Liu, B. J. Robinson, E. Chekhovich, and I. Tartakovskii, “Optical investigation of the natural electron doping in thin MoS2 films deposited on dielectric substrates,” Sci. Rep. 3, 3489 (2013).
[Crossref]

Tian, S.

S. Tian, Z. Wei, Y. Li, H. Zhao, X. Fang, J. Tang, D. Fang, L. Sun, G. Liu, B. Yao, and X. Ma, “Surface state and optical property of sulfur passivated InP,” Mater. Sci. Semicond. Process. 17, 33–37 (2014).
[Crossref]

Tongay, S.

C. Robert, D. Lagarde, F. Cadiz, G. Wang, B. Lassagne, T. Amand, A. Balocchi, P. Renucci, S. Tongay, B. Urbaszek, and X. Marie, “Exciton radiative lifetime in transition metal dichalcogenide monolayers,” Phys. Rev. B 93, 205423 (2016).
[Crossref]

F. Cadiz, C. Robert, G. Wang, W. Kong, X. Fan, M. Blei, D. Lagarde, M. Gay, M. Manca, T. Taniguchi, K. Watanabe, T. Amand, X. Marie, P. Renucci, S. Tongay, and B. Urbaszek, “Ultralow power threshold for laser induced changes in optical properties of 2D molybdenum dichalcogenides,” 2D Mater. 3, 045008 (2016).

Tonndorf, P.

Urbaszek, B.

F. Cadiz, C. Robert, G. Wang, W. Kong, X. Fan, M. Blei, D. Lagarde, M. Gay, M. Manca, T. Taniguchi, K. Watanabe, T. Amand, X. Marie, P. Renucci, S. Tongay, and B. Urbaszek, “Ultralow power threshold for laser induced changes in optical properties of 2D molybdenum dichalcogenides,” 2D Mater. 3, 045008 (2016).

C. Robert, D. Lagarde, F. Cadiz, G. Wang, B. Lassagne, T. Amand, A. Balocchi, P. Renucci, S. Tongay, B. Urbaszek, and X. Marie, “Exciton radiative lifetime in transition metal dichalcogenide monolayers,” Phys. Rev. B 93, 205423 (2016).
[Crossref]

Vamivakas, A. N.

C. Chakraborty, L. Kinnischtzke, K. M. Goodfellow, R. Beams, and A. N. Vamivakas, “Voltage-controlled quantum light from an atomically thin semiconductor,” Nat. Nanotechnol. 10, 507–511 (2015).
[Crossref]

van der Zant, H. S. J.

van der Zant, J. S. J.

A. Castellanos-Gomez, M. Buscema, R. Molenaar, V. Singh, L. Janssen, J. S. J. van der Zant, and G. Steele, “Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping,” 2D Mater. 1, 11002 (2014).

Veuillen, J.-Y.

M. Koperski, K. Nogajewski, A. Arora, V. Cherkez, P. Mallet, J.-Y. Veuillen, J. Marcus, P. Kossacki, and M. Potemski, “Single photon emitters in exfoliated WSe2 structures,” Nat. Nanotechnol. 10, 503–506 (2015).
[Crossref]

Waag, A.

G. V. Astakhov, D. R. Yakovlev, V. P. Kochereshko, W. Ossau, W. Faschinger, J. Puls, and A. Waag, “Binding energy of charged excitons in ZnSe-based quantum wells,” Phys. Rev. B 65, 165335 (2002).
[Crossref]

Wang, E.

T. Cao, G. Wang, W. Han, H. Ye, C. Zhu, J. Shi, Q. Niu, P. Tan, E. Wang, B. Liu, and J. Feng, “Valley-selective circular dichroism of monolayer molybdenum disulphide,” Nat. Commun. 3, 887 (2012).
[Crossref]

Wang, G.

F. Cadiz, C. Robert, G. Wang, W. Kong, X. Fan, M. Blei, D. Lagarde, M. Gay, M. Manca, T. Taniguchi, K. Watanabe, T. Amand, X. Marie, P. Renucci, S. Tongay, and B. Urbaszek, “Ultralow power threshold for laser induced changes in optical properties of 2D molybdenum dichalcogenides,” 2D Mater. 3, 045008 (2016).

C. Robert, D. Lagarde, F. Cadiz, G. Wang, B. Lassagne, T. Amand, A. Balocchi, P. Renucci, S. Tongay, B. Urbaszek, and X. Marie, “Exciton radiative lifetime in transition metal dichalcogenide monolayers,” Phys. Rev. B 93, 205423 (2016).
[Crossref]

T. Cao, G. Wang, W. Han, H. Ye, C. Zhu, J. Shi, Q. Niu, P. Tan, E. Wang, B. Liu, and J. Feng, “Valley-selective circular dichroism of monolayer molybdenum disulphide,” Nat. Commun. 3, 887 (2012).
[Crossref]

Wang, Y.

N. Kumar, Q. Cui, F. Ceballos, D. He, Y. Wang, and H. Zhao, “Exciton-exciton annihilation in MoSe2 monolayers,” Phys. Rev. B 89, 125427 (2014).
[Crossref]

Watanabe, K.

F. Cadiz, C. Robert, G. Wang, W. Kong, X. Fan, M. Blei, D. Lagarde, M. Gay, M. Manca, T. Taniguchi, K. Watanabe, T. Amand, X. Marie, P. Renucci, S. Tongay, and B. Urbaszek, “Ultralow power threshold for laser induced changes in optical properties of 2D molybdenum dichalcogenides,” 2D Mater. 3, 045008 (2016).

Wei, Y.

J. He, K. Wu, R. Sa, Q. Li, and Y. Wei, “Magnetic properties of nonmetal atoms absorbed MoS2 monolayers,” Appl. Phys. Lett. 96, 082504 (2010).
[Crossref]

Wei, Y.-J.

Y.-M. He, G. Clark, J. R. Schaibley, Y. He, M.-C. Chen, Y.-J. Wei, X. Ding, Q. Zhang, W. Yao, X. Xu, C.-Y. Lu, and J.-W. Pan, “Single quantum emitters in monolayer semiconductors,” Nat. Nanotechnol. 10, 497–502 (2015).
[Crossref]

Wei, Z.

S. Tian, Z. Wei, Y. Li, H. Zhao, X. Fang, J. Tang, D. Fang, L. Sun, G. Liu, B. Yao, and X. Ma, “Surface state and optical property of sulfur passivated InP,” Mater. Sci. Semicond. Process. 17, 33–37 (2014).
[Crossref]

Wu, K.

J. He, K. Wu, R. Sa, Q. Li, and Y. Wei, “Magnetic properties of nonmetal atoms absorbed MoS2 monolayers,” Appl. Phys. Lett. 96, 082504 (2010).
[Crossref]

Wu, S.

A. M. Jones, H. Yu, N. J. Ghimire, S. Wu, G. Aivazian, J. S. Ross, B. Zhao, J. Yan, D. G. Mandrus, D. Xiao, W. Yao, and X. Xu, “Optical generation of excitonic valley coherence in monolayer WSe2,” Nat. Nanotechnol. 8, 634–638 (2013).
[Crossref]

Xiao, D.

X. Xu, W. Yao, D. Xiao, and T. F. Heinz, “Spin and pseudospins in layered transition metal dichalcogenides,” Nat. Phys. 10, 343–350 (2014).
[Crossref]

A. M. Jones, H. Yu, N. J. Ghimire, S. Wu, G. Aivazian, J. S. Ross, B. Zhao, J. Yan, D. G. Mandrus, D. Xiao, W. Yao, and X. Xu, “Optical generation of excitonic valley coherence in monolayer WSe2,” Nat. Nanotechnol. 8, 634–638 (2013).
[Crossref]

D. Xiao, G. B. Liu, W. Feng, X. Xu, and W. Yao, “Coupled spin and valley physics in monolayers of MoS2 and other Group-VI dichalcogenides,” Phys. Rev. Lett. 108, 196802 (2012).
[Crossref]

H. Zeng, J. Dai, W. Yao, D. Xiao, and X. Cui, “Valley polarization in MoS2 monolayers by optical pumping,” Nat. Nanotechnol. 7, 490–493 (2012).
[Crossref]

Xu, X.

Y.-M. He, G. Clark, J. R. Schaibley, Y. He, M.-C. Chen, Y.-J. Wei, X. Ding, Q. Zhang, W. Yao, X. Xu, C.-Y. Lu, and J.-W. Pan, “Single quantum emitters in monolayer semiconductors,” Nat. Nanotechnol. 10, 497–502 (2015).
[Crossref]

X. Xu, W. Yao, D. Xiao, and T. F. Heinz, “Spin and pseudospins in layered transition metal dichalcogenides,” Nat. Phys. 10, 343–350 (2014).
[Crossref]

A. M. Jones, H. Yu, N. J. Ghimire, S. Wu, G. Aivazian, J. S. Ross, B. Zhao, J. Yan, D. G. Mandrus, D. Xiao, W. Yao, and X. Xu, “Optical generation of excitonic valley coherence in monolayer WSe2,” Nat. Nanotechnol. 8, 634–638 (2013).
[Crossref]

D. Xiao, G. B. Liu, W. Feng, X. Xu, and W. Yao, “Coupled spin and valley physics in monolayers of MoS2 and other Group-VI dichalcogenides,” Phys. Rev. Lett. 108, 196802 (2012).
[Crossref]

Yakovlev, D. R.

G. V. Astakhov, D. R. Yakovlev, V. P. Kochereshko, W. Ossau, W. Faschinger, J. Puls, and A. Waag, “Binding energy of charged excitons in ZnSe-based quantum wells,” Phys. Rev. B 65, 165335 (2002).
[Crossref]

Yan, J.

A. M. Jones, H. Yu, N. J. Ghimire, S. Wu, G. Aivazian, J. S. Ross, B. Zhao, J. Yan, D. G. Mandrus, D. Xiao, W. Yao, and X. Xu, “Optical generation of excitonic valley coherence in monolayer WSe2,” Nat. Nanotechnol. 8, 634–638 (2013).
[Crossref]

Yao, B.

S. Tian, Z. Wei, Y. Li, H. Zhao, X. Fang, J. Tang, D. Fang, L. Sun, G. Liu, B. Yao, and X. Ma, “Surface state and optical property of sulfur passivated InP,” Mater. Sci. Semicond. Process. 17, 33–37 (2014).
[Crossref]

Yao, W.

Y.-M. He, G. Clark, J. R. Schaibley, Y. He, M.-C. Chen, Y.-J. Wei, X. Ding, Q. Zhang, W. Yao, X. Xu, C.-Y. Lu, and J.-W. Pan, “Single quantum emitters in monolayer semiconductors,” Nat. Nanotechnol. 10, 497–502 (2015).
[Crossref]

X. Xu, W. Yao, D. Xiao, and T. F. Heinz, “Spin and pseudospins in layered transition metal dichalcogenides,” Nat. Phys. 10, 343–350 (2014).
[Crossref]

A. M. Jones, H. Yu, N. J. Ghimire, S. Wu, G. Aivazian, J. S. Ross, B. Zhao, J. Yan, D. G. Mandrus, D. Xiao, W. Yao, and X. Xu, “Optical generation of excitonic valley coherence in monolayer WSe2,” Nat. Nanotechnol. 8, 634–638 (2013).
[Crossref]

D. Xiao, G. B. Liu, W. Feng, X. Xu, and W. Yao, “Coupled spin and valley physics in monolayers of MoS2 and other Group-VI dichalcogenides,” Phys. Rev. Lett. 108, 196802 (2012).
[Crossref]

H. Zeng, J. Dai, W. Yao, D. Xiao, and X. Cui, “Valley polarization in MoS2 monolayers by optical pumping,” Nat. Nanotechnol. 7, 490–493 (2012).
[Crossref]

Ye, H.

T. Cao, G. Wang, W. Han, H. Ye, C. Zhu, J. Shi, Q. Niu, P. Tan, E. Wang, B. Liu, and J. Feng, “Valley-selective circular dichroism of monolayer molybdenum disulphide,” Nat. Commun. 3, 887 (2012).
[Crossref]

Yoon, D.

C. Palacios-Berraquero, D. M. Kara, A. R.-P. Montblanch, M. Barbone, P. Latawiec, D. Yoon, A. K. Ott, M. Loncar, A. C. Ferrari, and M. Atature, “Large-scale quantum-emitter arrays in atomically thin semiconductors,” arXiv:1609.04427 (2016).

Yu, H.

A. M. Jones, H. Yu, N. J. Ghimire, S. Wu, G. Aivazian, J. S. Ross, B. Zhao, J. Yan, D. G. Mandrus, D. Xiao, W. Yao, and X. Xu, “Optical generation of excitonic valley coherence in monolayer WSe2,” Nat. Nanotechnol. 8, 634–638 (2013).
[Crossref]

Zeng, H.

H. Zeng, J. Dai, W. Yao, D. Xiao, and X. Cui, “Valley polarization in MoS2 monolayers by optical pumping,” Nat. Nanotechnol. 7, 490–493 (2012).
[Crossref]

Zhang, Q.

Y.-M. He, G. Clark, J. R. Schaibley, Y. He, M.-C. Chen, Y.-J. Wei, X. Ding, Q. Zhang, W. Yao, X. Xu, C.-Y. Lu, and J.-W. Pan, “Single quantum emitters in monolayer semiconductors,” Nat. Nanotechnol. 10, 497–502 (2015).
[Crossref]

Zhao, B.

A. M. Jones, H. Yu, N. J. Ghimire, S. Wu, G. Aivazian, J. S. Ross, B. Zhao, J. Yan, D. G. Mandrus, D. Xiao, W. Yao, and X. Xu, “Optical generation of excitonic valley coherence in monolayer WSe2,” Nat. Nanotechnol. 8, 634–638 (2013).
[Crossref]

Zhao, H.

S. Tian, Z. Wei, Y. Li, H. Zhao, X. Fang, J. Tang, D. Fang, L. Sun, G. Liu, B. Yao, and X. Ma, “Surface state and optical property of sulfur passivated InP,” Mater. Sci. Semicond. Process. 17, 33–37 (2014).
[Crossref]

N. Kumar, Q. Cui, F. Ceballos, D. He, Y. Wang, and H. Zhao, “Exciton-exciton annihilation in MoSe2 monolayers,” Phys. Rev. B 89, 125427 (2014).
[Crossref]

Zheng, W. T.

Z. M. Ao, W. T. Zheng, and Q. Jiang, “The effects of electronic field on the atomic structure of the graphene/α-SiO2 interface,” Nanotechnology 19, 275710 (2008).
[Crossref]

Zhu, C.

T. Cao, G. Wang, W. Han, H. Ye, C. Zhu, J. Shi, Q. Niu, P. Tan, E. Wang, B. Liu, and J. Feng, “Valley-selective circular dichroism of monolayer molybdenum disulphide,” Nat. Commun. 3, 887 (2012).
[Crossref]

2D Mater. (2)

A. Castellanos-Gomez, M. Buscema, R. Molenaar, V. Singh, L. Janssen, J. S. J. van der Zant, and G. Steele, “Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping,” 2D Mater. 1, 11002 (2014).

F. Cadiz, C. Robert, G. Wang, W. Kong, X. Fan, M. Blei, D. Lagarde, M. Gay, M. Manca, T. Taniguchi, K. Watanabe, T. Amand, X. Marie, P. Renucci, S. Tongay, and B. Urbaszek, “Ultralow power threshold for laser induced changes in optical properties of 2D molybdenum dichalcogenides,” 2D Mater. 3, 045008 (2016).

Appl. Phys. Lett. (2)

J. He, K. Wu, R. Sa, Q. Li, and Y. Wei, “Magnetic properties of nonmetal atoms absorbed MoS2 monolayers,” Appl. Phys. Lett. 96, 082504 (2010).
[Crossref]

Y. V. Morozov and M. Kuno, “Optical constants and dynamic conductivities of single layer MoS2, MoSe2, and WSe2,” Appl. Phys. Lett. 107, 083103 (2015).
[Crossref]

Appl. Surf. Sci. (1)

C. E. J. Mitchell, I. G. Hill, A. B. McLean, and Z. H. Lu, “Sulfur passivated InP(100): surface gaps and electron counting,” Appl. Surf. Sci. 104–105, 434–440 (1996).
[Crossref]

Mater. Sci. Semicond. Process. (1)

S. Tian, Z. Wei, Y. Li, H. Zhao, X. Fang, J. Tang, D. Fang, L. Sun, G. Liu, B. Yao, and X. Ma, “Surface state and optical property of sulfur passivated InP,” Mater. Sci. Semicond. Process. 17, 33–37 (2014).
[Crossref]

Nanotechnology (1)

Z. M. Ao, W. T. Zheng, and Q. Jiang, “The effects of electronic field on the atomic structure of the graphene/α-SiO2 interface,” Nanotechnology 19, 275710 (2008).
[Crossref]

Nat. Commun. (1)

T. Cao, G. Wang, W. Han, H. Ye, C. Zhu, J. Shi, Q. Niu, P. Tan, E. Wang, B. Liu, and J. Feng, “Valley-selective circular dichroism of monolayer molybdenum disulphide,” Nat. Commun. 3, 887 (2012).
[Crossref]

Nat. Nanotechnol. (7)

H. Zeng, J. Dai, W. Yao, D. Xiao, and X. Cui, “Valley polarization in MoS2 monolayers by optical pumping,” Nat. Nanotechnol. 7, 490–493 (2012).
[Crossref]

A. M. Jones, H. Yu, N. J. Ghimire, S. Wu, G. Aivazian, J. S. Ross, B. Zhao, J. Yan, D. G. Mandrus, D. Xiao, W. Yao, and X. Xu, “Optical generation of excitonic valley coherence in monolayer WSe2,” Nat. Nanotechnol. 8, 634–638 (2013).
[Crossref]

K. F. Mak, K. He, J. Shan, and T. F. Heinz, “Control of valley polarization in monolayer MoS2 by optical helicity,” Nat. Nanotechnol. 7, 494–498 (2012).
[Crossref]

Y.-M. He, G. Clark, J. R. Schaibley, Y. He, M.-C. Chen, Y.-J. Wei, X. Ding, Q. Zhang, W. Yao, X. Xu, C.-Y. Lu, and J.-W. Pan, “Single quantum emitters in monolayer semiconductors,” Nat. Nanotechnol. 10, 497–502 (2015).
[Crossref]

M. Koperski, K. Nogajewski, A. Arora, V. Cherkez, P. Mallet, J.-Y. Veuillen, J. Marcus, P. Kossacki, and M. Potemski, “Single photon emitters in exfoliated WSe2 structures,” Nat. Nanotechnol. 10, 503–506 (2015).
[Crossref]

C. Chakraborty, L. Kinnischtzke, K. M. Goodfellow, R. Beams, and A. N. Vamivakas, “Voltage-controlled quantum light from an atomically thin semiconductor,” Nat. Nanotechnol. 10, 507–511 (2015).
[Crossref]

A. Srivastava, M. Sidler, A. V. Allain, D. S. Lembke, A. Kis, and A. Imamoğlu, “Optically active quantum dots in monolayer WSe2,” Nat. Nanotechnol. 10, 491–496 (2015).
[Crossref]

Nat. Phys. (1)

X. Xu, W. Yao, D. Xiao, and T. F. Heinz, “Spin and pseudospins in layered transition metal dichalcogenides,” Nat. Phys. 10, 343–350 (2014).
[Crossref]

Opt. Express (1)

Optica (1)

Phys. Rev. B (5)

G. V. Astakhov, D. R. Yakovlev, V. P. Kochereshko, W. Ossau, W. Faschinger, J. Puls, and A. Waag, “Binding energy of charged excitons in ZnSe-based quantum wells,” Phys. Rev. B 65, 165335 (2002).
[Crossref]

A. Ramasubramaniam, “Large excitonic effects in monolayers of molybdenum and tungsten dichalcogenides,” Phys. Rev. B 86, 115409 (2012).
[Crossref]

Y. K. Koh and D. G. Cahill, “Frequency dependence of the thermal conductivity of semiconductor alloys,” Phys. Rev. B 76, 075207 (2007).
[Crossref]

C. Robert, D. Lagarde, F. Cadiz, G. Wang, B. Lassagne, T. Amand, A. Balocchi, P. Renucci, S. Tongay, B. Urbaszek, and X. Marie, “Exciton radiative lifetime in transition metal dichalcogenide monolayers,” Phys. Rev. B 93, 205423 (2016).
[Crossref]

N. Kumar, Q. Cui, F. Ceballos, D. He, Y. Wang, and H. Zhao, “Exciton-exciton annihilation in MoSe2 monolayers,” Phys. Rev. B 89, 125427 (2014).
[Crossref]

Phys. Rev. Lett. (1)

D. Xiao, G. B. Liu, W. Feng, X. Xu, and W. Yao, “Coupled spin and valley physics in monolayers of MoS2 and other Group-VI dichalcogenides,” Phys. Rev. Lett. 108, 196802 (2012).
[Crossref]

Sci. Rep. (1)

D. Sercombe, S. Schwarz, O. Del Pozo-Zamudio, F. Liu, B. J. Robinson, E. Chekhovich, and I. Tartakovskii, “Optical investigation of the natural electron doping in thin MoS2 films deposited on dielectric substrates,” Sci. Rep. 3, 3489 (2013).
[Crossref]

Other (3)

N. Lundt, E. Cherotchenko, O. Iff, X. Fan, Y. Shen, P. Bigenwald, A. Kavokin, S. Höfling, and C. Schneider, “The interplay between excitons and trions in a monolayer of MoSe2,” arXiv:1702.04231 (2017).

A. Branny, S. Kumar, R. Proux, and B. D. Gerardot, “Deterministic strain-induced arrays of quantum emitters in a two-dimensional semiconductor,” arXiv:1610.01406 (2016).

C. Palacios-Berraquero, D. M. Kara, A. R.-P. Montblanch, M. Barbone, P. Latawiec, D. Yoon, A. K. Ott, M. Loncar, A. C. Ferrari, and M. Atature, “Large-scale quantum-emitter arrays in atomically thin semiconductors,” arXiv:1609.04427 (2016).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. (a) Schematic drawing of the investigated heterostructures: 90 nm SiO2 on a Si substrate and 250 nm In0.49Ga0.51P lattice-matched to a GaAs substrate. The monolayers were transferred onto each substrate using the dry-stamp technique. (b) AFM measurements of the used samples. SiO2 has a root-mean-squared roughness of 0.15 nm, while that of In0.49Ga0.51P is 0.29 nm.
Fig. 2.
Fig. 2. Monolayer photoluminescence at 50 μW, recorded over 10 min. For MoSe2 on SiO2, the exciton intensity diminishes over time while the trion grows in intensity. For the MoSe2–InGaP heterostructure, the trion dominates the spectrum by a large margin.
Fig. 3.
Fig. 3. (a) Input–output characteristics of the trion intensity for MoSe2 on SiO2 and MoSe2 on InGaP samples with an almost linear slope of 1. Dashed red lines are fitting curves. (b) Corresponding FWHM of the trion. On SiO2, it starts at 13 meV, increasing at higher powers up to 16 meV. On InGaP, the linewidth is 6.5 meV, which stays almost constant with regard to laser output.
Fig. 4.
Fig. 4. (a) Typical PL spectrum of the localized exciton in the monolayer WSe2 exfoliated onto a SiO2/Si substrate, measured at a nominal sample temperature of 4.5 K, (b) PL spectrum of the localized exciton in the monolayer WSe2 with the InGaP/GaAs substrate under 4.5 K. The peak energies range from 1.5 to 1.73 eV. The inset is the autocorrelation measurement of the marked peak under a 70 nW cw laser excitation at 532 nm. The blue line in the inset is the fit with the multiexcitonic model convolved with the response function. The red line is the deconvoluted curve, which shows g(2)(0)=0.261±0.117.
Fig. 5.
Fig. 5. (a) Spectral wandering of the localized exciton in layered WSe2 on the SiO2/Si substrate, (b) emission time trace of the localized exciton in layered WSe2 on the InGaP/GaAs substrate. Here, no obvious spectral wandering could be observed. (c, d) Statistics of the localized excitons at 1.529 eV in (a) and at 1.721 eV in (b) as a function of time. The extracted FWHMs of the wandering are (957±58)μeV and (5.583±0.582)μeV, respectively.
Fig. 6.
Fig. 6. (a) Statistic of the linewidth distribution for the 37 localized excitons in the WSe2 monolayer on the SiO2/Si substrate. The extracted minimum linewidth is 125 μeV. (b) Statistics of the linewidth distribution for the localized excitons in the WSe2 monolayer on the InGaP/GaAs substrate. For the 72 narrowest emission lines (first bin), the average linewidth of (74.8±12.2)μeV is restricted by the resolution of our spectrometer (70 μeV).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

gsource(2)(τ)=1((1g(2)(0))*e|ττC|),
gmeasured(2)(τ)=(gsource(2)*fDet)(τ).

Metrics