Abstract

On-chip optical resonators have the promise of revolutionizing numerous fields, including metrology and sensing; however, their optical losses have always lagged behind those of their larger discrete resonator counterparts based on crystalline materials and silica microtoroids. Silicon nitride (Si3N4) ring resonators open up capabilities for frequency comb generation, optical clocks, and high-precision sensing on an integrated platform. However, simultaneously achieving a high quality factor (Q) and high confinement in Si3N4 (critical for nonlinear processes, for example) remains a challenge. Here we show that addressing surface roughness enables overcoming the loss limitations and achieving high-confinement on-chip ring resonators with Q of 37 million for a ring of 2.5 μm width and 67 million for a ring of 10 μm width. We show a clear systematic path for achieving these high Qs, and these techniques can also be used to reduce losses in other material platforms independent of geometry. Furthermore, we demonstrate optical parametric oscillation using the 2.5 μm wide ring with sub-milliwatt pump powers and extract the loss limited by the material absorption in our films to be 0.13±0.05  dB/m, which corresponds to an absorption-limited Q of at least 170 million by comparing two resonators with different degrees of confinement. Our work provides a chip-scale platform for applications such as ultralow-power frequency comb generation, laser stabilization, and sideband-resolved optomechanics.

© 2017 Optical Society of America

1. INTRODUCTION

Low-propagation-loss silicon nitride (Si3N4) ring resonators are critical for a variety of photonic applications such as low-threshold frequency combs [15], optical clocks [6], and high-precision sensing [710]. High confinement is critical for tailoring the waveguide dispersion to achieve phase matching in nonlinear processes as well as for tighter bends in large-scale photonic systems. A microresonator’s quality factor (Q) is extremely sensitive to losses. To date, ultrahigh Qs have been demonstrated only in discrete resonators based on platforms such as polished calcium fluoride (CaF2) and magnesium fluoride (MgF2) or silica microresonators [1117] with typical cross-sectional mode field diameters much larger than the wavelength. Spencer et al. have recently demonstrated ring resonators with a high Q of up to 80 million using extremely thin (40 nm) Si3N4 films [18], which can be useful for narrowband filtering or building reference cavities for laser stabilization. However, they suffer from highly delocalized optical modes and millimeter-scale bending radii, making it challenging to use these thin-film ring resonators for compact photonic routing or nonlinear applications requiring dispersion engineering. High confinement combined with low propagation loss is the key for efficient nonlinear optical processes. The highest intrinsic Q in high-confinement Si3N4 ring resonators reported to date is 17 million [19]. However, as Xuan et al. mention in their conclusion, a fabrication process that can predictably achieve an intrinsic Q larger than 10 million has not been achieved [19].

2. EFFECTS OF SURFACE ROUGHNESS ON HIGH-CONFINEMENT WAVEGUIDES

In this work, we show that surface roughness, rather than absorption from the bulk material, plays a major role in the loss limitations of Si3N4, thereby enabling a path for achieving ultra-low-loss devices by addressing the surface quality. Absorption loss is mainly due to O–H bonds in SiO2, and N–H and Si–H bonds in Si3N4 [20]. Scattering loss comes primarily from the interaction of light with the roughness of all the surfaces in a high-confinement waveguide. Mode simulations show that light propagating in the waveguide significantly interacts and scatters from both the patterned sidewalls and the top and bottom surfaces [see Fig. 1(c)]. Several groups have been working on reducing losses by improving the properties of the bulk material to achieve high Q [2123]. However, to date, it has not been clear whether surface interactions or material absorption is the main source of the high loss in the integrated platform.

 

Fig. 1. Microscope images and mode simulation of the fabricated devices. (a) Top view optical microscope image of a 115 μm radius ring resonator. (b) Scanning electron microscopy image of a fabricated waveguide with smooth surfaces. (c) Mode simulation of a 730 nm tall and 2500 nm wide waveguide showing the mode is highly confined in the geometry we have chosen.

Download Full Size | PPT Slide | PDF

A. Sidewall Roughness Reduction

In order to reduce surface scattering from the sidewalls, we minimize the roughness introduced during the pattern transfer step of the processing by eliminating in situ polymer formation typical in the dry etching processes. Standard waveguide fabrication methods consist of patterning a masking layer, typically a photoresist or an electron-beam resist, and transferring this pattern into the photonic waveguide device layer using some form of plasma etching. Polymer formation is a common by-product of plasma etching [24,25]. In situ polymer deposition passivates the sidewalls and enables anisotropic etching, with vertical sidewalls desirable for fabrication of rectangular waveguides [26,27]. It also enables pattern transfer to thick waveguide device layers by enhancing the selectivity between the mask layer and the films. The polymer formed during this process, while critical for surface passivation and anisotropic etching, often leaves residue on the sidewalls, which introduces sidewall roughness. This roughness adds to the roughness introduced by the lithography itself [28,29]. Since the roughness is generally of the order of nanometers, it usually introduces negligible loss; however, it becomes significant in the high-Q regimes that we are aiming for here [20,30]. Trifluoromethane (CHF3) and oxygen (O2) gases are widely used as standard etchants in Si3N4 fabrication, and this etching chemistry is always accompanied by a polymer residue left on the sidewalls [31,32]. In order to reduce this polymer residue on sidewalls, we used a higher oxygen flow to remove in situ polymer formation, since oxygen reacts with the polymer residue to form carbon monoxide (CO) and carbon dioxide (CO2). Oxygen also reacts with the photoresist, which is generally used in standard etching as the mask to transfer patterns. As a result, higher oxygen flow decreases the etching selectivity, degrading the ability to transfer patterns. To compensate for this effect, we use a silicon dioxide hard mask instead of a photoresist to maintain the ability to transfer waveguide patterns while eliminating in situ polymer formation on the sidewalls using a higher oxygen flow. Nitrogen is also added to increase the nitride selectivity over oxide [33,34].

In contrast to standard silicon-based waveguides with losses of the order of 1  dB/cm [3537], where sidewall roughness plays the main role in inducing scattering loss, in ultra-low-loss Si3N4, top surface roughness also plays a major role. Typically, roughness on the top and/or bottom surfaces has not attracted much attention due to the facts that sidewall roughness was quite significant and many of the previous studies relied on polished wafers or oxidized wafers from silicon photonics. Here we focus on reducing scattering loss from the top surface since the Si3N4 films are deposited using low-pressure chemical vapor deposition, and are not as inherently smooth as polished single-crystal wafers or oxidized wafers. Bottom surface roughness is not addressed here since its roughness, governed by thermal oxidation, is lower than the one governed by Si3N4 deposition.

B. Top Surface Roughness Reduction

In order to reduce scattering from the top surfaces, we reduce the roughness by chemical mechanical polishing (CMP) of the Si3N4 after deposition [as shown in Fig. 2(d)]. Atomic-force microscopy (AFM) scans before and after the polishing step are shown in Fig. 2. The root-mean-squared (RMS) roughness has decreased from 0.38 nm to 0.08 nm (AFM scans of different CMP Si3N4 films are shown in Supplement 1).

 

Fig. 2. AFM measurement of the top surface of Si3N4. (a) 3D AFM scan of the top surface of Si3N4 before CMP with RMS roughness of 0.38 nm and correlation length of 29 nm. (b) 2D image of the top surface of Si3N4 before CMP and scaled to 1.4 to 1.4 nm with RMS roughness of 0.38 nm and correlation length of 29 nm. (c) 3D image of the top surface of Si3N4 after CMP with RMS roughness of 0.08 nm and correlation length of 8.76 nm. (d) 2D image of the top surface of Si3N4 after CMP and scaled to 1.4 to 1.4 nm with RMS roughness of 0.08 nm and correlation length of 8.76 nm. Note the different scale bars in (a) and (c).

Download Full Size | PPT Slide | PDF

C. Lithography-Induced Roughness Reduction

To further decrease the loss, we apply multipass lithography to reduce line edge roughness known to contribute to scattering loss [3840]. Electron-beam (e-beam) lithography, used extensively for pattering optical waveguides, creates a line edge roughness, which introduces extra roughness to the sidewalls. During e-beam lithography, any instability, such as beam current fluctuations, beam jitter, beam drift, stage position errors, and mechanical vibrations, can generate statistical errors, which result in extra line edge roughness in the patterns, which will add roughness to the sidewalls. The principle of multipass lithography [39,40] consists of exposing the same pattern multiple times at a lower current to reduce line edge roughness by averaging statistical errors.

3. OPTICAL MEASUREMENTS AND COMPARISONS

We measure an intrinsic Q of 37±6 million in high-confinement Si3N4 ring resonators using the techniques described above. Mode splitting, commonly observed in ultrahigh-Q systems such as whispering-gallery-mode microresonators [4143], is induced due to backscattering of light from fabrication imperfections or surface roughness. When Q is high and the mode is highly confined, extremely small defects or roughness can induce a visible splitting. We measured the transmission of four sets of fabricated ring resonators: (1) using the standard process we reported in Ref. [44] [Fig. 3(a)], (2) using our optimized etch process but without CMP and without multipass lithography [Fig. 3(b)], (3) using both the optimized etch recipe and CMP but without multipass lithography [Fig. 3(c)], and (4) using all the techniques, including the optimized etch recipe, surface smoothing technique, and multipass lithography [Fig. 3(d)]. All the rings have a radius of 115 μm, height of 730 nm, and width of 2500 nm, and are coupled to a waveguide of the same dimensions. The transmission spectra and linewidth of the resonator [full width at half-maximum (FWHM)] are measured using a laser scanning technique. We launch light from a tunable laser source, which is then transmitted through a fiber polarization controller and coupled into our device via an inverse nanotaper [45] using a lensed fiber. We collect the output of the ring resonator through another inverse nanotaper and an objective lens. We monitor the output on a high-speed InGaAs photodetector. The frequency of the laser is measured using a wavemeter with a precision of 0.1 pm and the laser detuning is calibrated by monitoring the fringes of a reference fiber-based Mach–Zehnder interferometer with a known free spectral range (FSR).

 

Fig. 3. Normalized transmission spectra of ring resonators fabricated using different processes. (a) Device fabricated using the standard process reported in Ref. [44] with a measured FWHM of 47 MHz. (b) Device fabricated using the optimized etch process, but without our new surface smoothing technique and multipass lithography with a measured FWHM of 12.8 MHz. (c) Device fabricated using both the optimized etch recipe and surface smoothing techniques, but without multipass lithography with a measured FWHM of 7.6 MHz. (d) Device fabricated using all the techniques including the optimized etch recipe, surface smoothing technique, and multipass lithography with a measured FWHM of 5.6 MHz.

Download Full Size | PPT Slide | PDF

Figure 3 shows the measured transmission spectra of different ring resonators. We measured the ring resonators in the undercoupled regime so that the measured Q is close to their intrinsic Q. The measured intrinsic Qs, estimated by measuring the transmission [46,47] for rings fabricated using processes (1)–(4) described above, are 5.6±0.7 million, 16.2±2.9 million, 28±4.7 million, and 37±6 million, which correspond to propagation losses of 5.2±0.6  dB/m, 1.8±0.3  dB/m, 1.1±0.2  dB/m, and 0.8±0.1  dB/m, respectively [48]. Note that these estimated propagation losses are the upper bounds on the losses in straight waveguides since in a ring the optical mode interacts more strongly with the sidewalls due to bending.

4. SUB-MILLIWATT OPTICAL PARAMETRIC OSCILLATION

In order to illustrate the importance of simultaneous high-Q and high-confinement ring resonators, we demonstrate a strong decrease in the threshold for optical parametric oscillation down to the sub-milliwatt level with decrease of optical losses. To determine the threshold for parametric oscillation, we measured the output power in the first generated four-wave-mixing sideband for different pump powers. Figure 4(a) shows the data for a device pumped at the resonance near 1557 nm with a loaded Q of 35 million. The average threshold power is 330±70  μW, comparable to the theoretically estimated threshold power of 206 μW using the expression [49,50]

Pth1.54(π2)Qc2QL·n2  Vn2λQL2,
where λ is the pump wavelength, n is the linear refractive index, n2 is the nonlinear refractive index (n2=2.4×1019  m2/W) [51], V is the resonator mode volume, and Qc and QL are, respectively, the coupling and loaded quality factors of the resonators. This, to the best of our knowledge, is the lowest and the first sub-milliwatt power threshold parametric oscillation reported in planar nonlinear platforms [5,19,5254] (Comparisons are shown in Supplement 1). In addition, this threshold power is close to the lowest threshold reported in ultrahigh-Q microresonators such as CaF2 [55] and silica microtoroids [1]. We also measure and plot the thresholds for rings with various loaded quality factors in Fig. 4(b). The threshold powers follow the theoretically predicted trend of being inversely proportional to QL2.

 

Fig. 4. Oscillation threshold decrease with decrease of losses. (a) Output power in the first generated mode as a function of pump power. In this device, parametric oscillation occurs for pump power of 330±70  μW (indicated by the solid green vertical line). Note that the first band appears more than one FSR away from the pumped resonance. (b) Measured threshold power as a function of the loaded quality factor (QL) for microresonators with different fabrication processes. Threshold powers approximately follow the theoretically predicted trend of being inversely proportional to QL2.

Download Full Size | PPT Slide | PDF

5. FUNDAMENTAL LOSS LIMIT EXTRACTION

In order to extract the fundamental limit of achievable loss in silicon nitride waveguides, we compare the losses of two different structures, which have different mode interactions with the sidewalls. We estimate the bulk absorption limitation in our Si3N4 films to be 0.13±0.05  dB/m, which corresponds to an absorption-loss-limited Q of at least 170 million. We fabricated two devices with waveguide widths of 2.5 μm and 10 μm on the same wafer to ensure that the fabrication processes are identical. Both rings have the same height of 730 nm and they are coupled to a waveguide of the same dimensions (730  nm×2500  nm). The radius of the 2.5 μm ring is 115 μm and the radius of the 10 μm ring is 369 μm [mode simulations shown in Figs. 5(a) and 5(b)]. Figures 5(c) and 5(d) show, respectively, the measured transmission spectra for the 10 μm wide ring with in TE and TM polarizations. The measured intrinsic Q is 67±7 million for the TE mode and 59±12 million for the TM mode. At these ultrahigh Qs, one is operating near the limits of Q, which can be reliably estimated by scanning a laser across a resonance. Hence, we corroborate these Q measurements by performing a cavity ring-down experiment for the TM mode [5658,15,16]. As shown in Fig. 5(e), the measured lifetime is 25.6±1.3  ns, which corresponds to an intrinsic Q of 63±3 million, consistent with our measurement of the Q, using a laser scanning technique. We estimate the fundamental loss limit given by the bulk absorption of Si3N4 in our films (αtotal_absorption) by comparing the losses for the two structures extracted from the transmission measurements (αring0.79±0.14  dB/m and αwide_ring0.43±0.046  dB/m) and considering the absorption of the rings with narrower and wider waveguides to, respectively, be

αring=αtotal_absorption+αtop_scatter+αbottom_scatter+αsidewalls_scatter,
αwide_ring=η1αtotal_absorption+η2(αtop_scatter+αbottom_scatter)+η3αsidewalls_scatter.
η1, η2, and η3 are factors that account for the interaction of the field with the waveguide core, the top and bottom surfaces, and the sidewalls, respectively, for the wider waveguides relative to the narrower waveguide [59] and are calculated using Finite element method simulations (performed with COMSOL) to be 1.010, 1.002, and 0.138, respectively. In our simulation, we have taken different bending radii into account. αtop_scatter0.007  dB/m (±0.001  dB/m) and αbottom_scatter0.24  dB/m (±0.02  dB/m) are, respectively, the losses due to scattering at the top and bottom interfaces estimated from the Payne–Lacey model [60], which relates scattering loss to the surface’s RMS (σ) roughness and correlation length (Lc), which are both extracted from the AFM measurements (AFM scans of the bottom SiO2 film are shown in Supplement 1). The scattering losses due to the sidewalls, αsidewalls_scatter, and the bulk loss are then extracted to be 0.41±0.05  dB/m and 0.13±0.05  dB/m, respectively. Note that we are assuming here that both sidewalls have the same loss as they experience the same e-beam lithography and plasma etching conditions, and the loss in the oxide cladding is negligible when compared with the loss in the Si3N4 due to the high degree of confinement.

 

Fig. 5. Mode simulation and normalized transmission spectra for ring resonators with different interaction strengths with sidewalls. (a) TE mode profiles of waveguides that are 2.5 μm and 10 μm wide and 730 nm high using Si3N4 with a refractive index of 1.996 as the core material and SiO2 with a refractive index of 1.446 as the cladding material. (The mode simulations have taken the bending radius into account). (b) Same as (a) but for TM. (c) Measured normalized TE transmission spectra of the ring resonator composed of the 2.5 μm wide waveguide (left) with a measured FWHM of 6.2 MHz and the measured spectra of the ring resonator composed of the 10 μm wide waveguide (right) with a measured FWHM of 3.3 MHz in TE polarization using the optimized fabrication process. (d) TM transmission spectra of the rings with the narrower (left) and the wider (right) waveguides with FWHMs of 6.8 MHz and 5.8 MHz, respectively. (e) Cavity ring-down measurement in TM mode. The measured lifetime extracted from the exponential fit is 25.6±1.3  ns.

Download Full Size | PPT Slide | PDF

6. CONCLUSIONS

In conclusion, we drastically and systematically reduced losses in high-confinement resonators by using methods for reducing roughness from waveguide interfaces. Moreover, we demonstrate optical parametric oscillation in an on-chip microresonator, with sub-milliwatt pump powers. We extract the absorption-limited Q of the ring resonator to be at least 170 million, which indicates that we are still limited by the scattering loss, thereby providing a path for achieving ultra-low-loss resonators simply via addressing the scattering loss. From our AFM measurements, one possible path for further decreasing these scattering losses is by addressing the roughness at the bottom cladding–core interface generated by the thermal oxidation process. Our work provides an on-chip platform for devices with performance that could be comparable to the performance achieved in discrete large devices.

Funding

Defense Advanced Research Projects Agency (DARPA) under the Microsystems Technology Office Direct On-Chip Digital Optical Synthesizer program (DODOS) (N66001-16-1-4052); Air Force Office of Scientific Research (AFOSR) (FA9550-15-1-0303); National Science Foundation (NSF) (ECCS-1542081).

Acknowledgment

The authors would like to thank Steven Miller and Aseema Mohanty and Dr. Carl B. Poitras for helpful discussions. The devices were partially fabricated at City University of New York Advanced Science Research Center and Cornell NanoScale Facility. X.J. is also grateful to the China Scholarship Council for financial support.

 

See Supplement 1 for supporting content.

REFERENCES

1. P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214–1217 (2007). [CrossRef]  

2. J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4, 37–40 (2010). [CrossRef]  

3. T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332, 555–559 (2011). [CrossRef]  

4. A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, I. Solomatine, D. Seidel, and L. Maleki, “Tunable optical frequency comb with a crystalline whispering gallery mode resonator,” Phys. Rev. Lett. 101, 093902 (2008). [CrossRef]  

5. L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics 4, 41–45 (2010). [CrossRef]  

6. S. B. Papp, K. Beha, P. Del’Haye, F. Quinlan, H. Lee, K. J. Vahala, and S. A. Diddams, “Microresonator frequency comb optical clock,” Optica 1, 10–14 (2014). [CrossRef]  

7. T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416, 233–237 (2002). [CrossRef]  

8. J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2010). [CrossRef]  

9. S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature 445, 627–630 (2007). [CrossRef]  

10. T. Taniguchi, A. Hirowatari, T. Ikeda, M. Fukuyama, Y. Amemiya, A. Kuroda, and S. Yokoyama, “Detection of antibody–antigen reaction by silicon nitride slot-ring biosensors using protein G,” Opt. Commun. 365, 16–23 (2016). [CrossRef]  

11. D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421, 925–928 (2003). [CrossRef]  

12. V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, and L. Maleki, “Nonlinear optics and crystalline whispering gallery mode cavities,” Phys. Rev. Lett. 92, 043903 (2004). [CrossRef]  

13. I. S. Grudinin and L. Maleki, “Ultralow-threshold Raman lasing with CaF2 resonators,” Opt. Lett. 32, 166–168 (2007). [CrossRef]  

14. J. Hofer, A. Schliesser, and T. J. Kippenberg, “Cavity optomechanics with ultrahigh-Q crystalline microresonators,” Phys. Rev. A 82, 031804 (2010). [CrossRef]  

15. I. S. Grudinin, V. S. Ilchenko, and L. Maleki, “Ultrahigh optical Q factors of crystalline resonators in the linear regime,” Phys. Rev. A 74, 063806 (2006). [CrossRef]  

16. A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, and L. Maleki, “Optical resonators with ten million finesse,” Opt. Express 15, 6768–6773 (2007). [CrossRef]  

17. H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photonics 6, 369–373 (2012). [CrossRef]  

18. D. T. Spencer, J. F. Bauters, M. J. R. Heck, and J. E. Bowers, “Integrated waveguide coupled Si3N4 resonators in the ultrahigh-Q regime,” Optica 1, 153–157 (2014). [CrossRef]  

19. Y. Xuan, Y. Liu, L. T. Varghese, A. J. Metcalf, X. Xue, P.-H. Wang, K. Han, J. A. Jaramillo-Villegas, A. A. Noman, C. Wang, S. Kim, M. Teng, Y. J. Lee, B. Niu, L. Fan, J. Wang, D. E. Leaird, A. M. Weiner, and M. Qi, “High-Q silicon nitride microresonators exhibiting low-power frequency comb initiation,” Optica 3, 1171–1180 (2016). [CrossRef]  

20. M. J. Shaw, J. Guo, G. A. Vawter, S. Habermehl, and C. T. Sullivan, “Fabrication techniques for low-loss silicon nitride waveguides,” Proc. SPIE 5720, 109–118 (2005). [CrossRef]  

21. W. M. A. Bik, R. N. H. Linssen, F. H. P. M. Habraken, W. F. van der Weg, and A. E. T. Kuiper, “Diffusion of hydrogen in low-pressure chemical vapor deposited silicon nitride films,” Appl. Phys. Lett. 56, 2530–2532 (1990). [CrossRef]  

22. M. H. P. Pfeiffer, A. Kordts, V. Brasch, M. Zervas, M. Geiselmann, J. D. Jost, and T. J. Kippenberg, “Photonic damascene process for integrated high-Q microresonator based nonlinear photonics,” Optica 3, 20–25 (2016). [CrossRef]  

23. Q. Li, A. A. Eftekhar, M. Sodagar, Z. Xia, A. H. Atabaki, and A. Adibi, “Vertical integration of high-Q silicon nitride microresonators into silicon-on-insulator platform,” Opt. Express 21, 18236–18248 (2013). [CrossRef]  

24. N. Zen, T. A. Puurtinen, T. J. Isotalo, S. Chaudhuri, and I. J. Maasilta, “Engineering thermal conductance using a two-dimensional phononic crystal,” Nat. Commun. 5, 3435 (2014). [CrossRef]  

25. Y. Liu, Y. Xuan, X. Xue, P.-H. Wang, S. Chen, A. J. Metcalf, J. Wang, D. E. Leaird, M. Qi, and A. M. Weiner, “Investigation of mode coupling in normal-dispersion silicon nitride microresonators for Kerr frequency comb generation,” Optica 1, 137–144 (2014). [CrossRef]  

26. J. W. Coburn and H. F. Winters, “Plasma etching—a discussion of mechanisms,” J. Vac. Sci. Technol. 16, 391–403 (1979). [CrossRef]  

27. C. J. Mogab, A. C. Adams, and D. L. Flamm, “Plasma etching of Si and SiO2—the effect of oxygen additions to CF4 plasmas,” J. Appl. Phys. 49, 3796–3803 (1978). [CrossRef]  

28. R. Pétri, P. Brault, O. Vatel, D. Henry, E. André, P. Dumas, and F. Salvan, “Silicon roughness induced by plasma etching,” J. Appl. Phys. 75, 7498–7506 (1994). [CrossRef]  

29. X. Tang, V. Bayot, N. Reckinger, D. Flandre, J. P. Raskin, E. Dubois, and B. Nysten, “A simple method for measuring Si–F in sidewall roughness by AFM,” IEEE Trans. Nanotechnol. 8, 611–616 (2009). [CrossRef]  

30. K. K. Lee, D. R. Lim, H.-C. Luan, A. Agarwal, J. Foresi, and L. C. Kimerling, “Effect of size and roughness on light transmission in a Si/SiO2 waveguide: experiments and model,” Appl. Phys. Lett. 77, 1617–1619 (2000). [CrossRef]  

31. M. Schaepkens, T. E. F. M. Standaert, N. R. Rueger, P. G. M. Sebel, G. S. Oehrlein, and J. M. Cook, “Study of the SiO2-to-Si3N4 etch selectivity mechanism in inductively coupled fluorocarbon plasmas and a comparison with the SiO2-to-Si mechanism,” J. Vac. Sci. Technol. A 17, 26–37 (1999). [CrossRef]  

32. D. Beery, K. Reinhardt, P. B. Smith, J. Kelley, and A. Sivasothy, “Post etch residue removal: novel dry clean technology using densified fluid cleaning (DFC),” in IEEE International Interconnect Technology Conference (Cat. No. 99EX247) (1999), pp. 140–142.

33. M. G. Blain, T. L. Meisenheimer, and J. E. Stevens, “Role of nitrogen in the downstream etching of silicon nitride,” J. Vac. Sci. Technol. A 14, 2151–2157 (1996). [CrossRef]  

34. Y. Wang and L. Luo, “Ultrahigh-selectivity silicon nitride etch process using an inductively coupled plasma source,” J. Vac. Sci. Technol. A 16, 1582–1587 (1998). [CrossRef]  

35. B. E. Little and S. T. Chu, “Estimating surface-roughness loss and output coupling in microdisk resonators,” Opt. Lett. 21, 1390–1392 (1996). [CrossRef]  

36. F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1, 65–71 (2007). [CrossRef]  

37. T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11, 232–240 (2005). [CrossRef]  

38. G. W. Reynolds and J. W. Taylor, “Factors contributing to sidewall roughness in a positive-tone, chemically amplified resist exposed by x-ray lithography,” J. Vac. Sci. Technol. B 17, 334–344 (1999). [CrossRef]  

39. R. J. Bojko, J. Li, L. He, T. Baehr-Jones, M. Hochberg, and Y. Aida, “Electron beam lithography writing strategies for low loss, high confinement silicon optical waveguides,” J. Vac. Sci. Technol. B 29, 06F309 (2011). [CrossRef]  

40. D. M. Tennant, R. Fullowan, H. Takemura, M. Isobe, and Y. Nakagawa, “Evaluation of a 100  kV thermal field emission electron-beam nanolithography system,” J. Vac. Sci. Technol. B 18, 3089–3094 (2000). [CrossRef]  

41. X. Yi, Y.-F. Xiao, Y.-C. Liu, B.-B. Li, Y.-L. Chen, Y. Li, and Q. Gong, “Multiple-Rayleigh-scatterer-induced mode splitting in a high-Q whispering-gallery-mode microresonator,” Phys. Rev. A 83, 023803 (2011). [CrossRef]  

42. M. L. Gorodetsky, A. D. Pryamikov, and V. S. Ilchenko, “Rayleigh scattering in high-Q microspheres,” J. Opt. Soc. Am. B 17, 1051–1057 (2000). [CrossRef]  

43. D. S. Weiss, V. Sandoghdar, J. Hare, V. Lefèvre-Seguin, J.-M. Raimond, and S. Haroche, “Splitting of high-Q Mie modes induced by light backscattering in silica microspheres,” Opt. Lett. 20, 1835–1837 (1995). [CrossRef]  

44. K. Luke, A. Dutt, C. B. Poitras, and M. Lipson, “Overcoming Si3N4 film stress limitations for high quality factor ring resonators,” Opt. Express 21, 22829–22833 (2013). [CrossRef]  

45. V. R. Almeida, R. R. Panepucci, and M. Lipson, “Nanotaper for compact mode conversion,” Opt. Lett. 28, 1302–1304 (2003). [CrossRef]  

46. L.-W. Luo, G. S. Wiederhecker, J. Cardenas, C. Poitras, and M. Lipson, “High quality factor etchless silicon photonic ring resonators,” Opt. Express 19, 6284–6289 (2011). [CrossRef]  

47. P. E. Barclay, K. Srinivasan, and O. Painter, “Nonlinear response of silicon photonic crystal microresonators excited via an integrated waveguide and fiber taper,” Opt. Express 13, 801–820 (2005). [CrossRef]  

48. P. Rabiei, W. H. Steier, C. Zhang, and L. R. Dalton, “Polymer micro-ring filters and modulators,” J. Lightwave Technol. 20, 1968–1975 (2002). [CrossRef]  

49. T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Kerr-nonlinearity optical parametric oscillation in an ultrahigh-q toroid microcavity,” Phys. Rev. Lett. 93, 083904 (2004). [CrossRef]  

50. A. Matsko, A. Savchenkov, D. Strekalov, V. Ilchenko, and L. Maleki, “Optical hyperparametric oscillations in a whispering-gallery-mode resonator: threshold and phase diffusion,” Phys. Rev. A 71, 033804 (2005). [CrossRef]  

51. K. Ikeda, R. E. Saperstein, N. Alic, and Y. Fainman, “Thermal and Kerr nonlinear properties of plasma-deposited silicon nitride/silicon dioxide waveguides,” Opt. Express 16, 12987–12994 (2008). [CrossRef]  

52. H. Jung, C. Xiong, K. Y. Fong, X. Zhang, and H. X. Tang, “Optical frequency comb generation from aluminum nitride microring resonator,” Opt. Lett. 38, 2810–2813 (2013). [CrossRef]  

53. B. J. M. Hausmann, I. Bulu, V. Venkataraman, P. Deotare, and M. Lončar, “Diamond nonlinear photonics,” Nat. Photonics 8, 369–374 (2014). [CrossRef]  

54. M. Pu, L. Ottaviano, E. Semenova, and K. Yvind, “Efficient frequency comb generation in AlGaAs-on-insulator,” Optica 3, 823–826 (2016). [CrossRef]  

55. A. A. Savchenkov, A. B. Matsko, D. Strekalov, M. Mohageg, V. S. Ilchenko, and L. Maleki, “Low threshold optical oscillations in a whispering gallery mode CaF2 resonator,” Phys. Rev. Lett. 93, 243905 (2004). [CrossRef]  

56. A. O’Keefe and D. A. G. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 59, 2544–2551 (1988). [CrossRef]  

57. D. Romanini, A. A. Kachanov, N. Sadeghi, and F. Stoeckel, “CW cavity ring down spectroscopy,” Chem. Phys. Lett. 264, 316–322 (1997). [CrossRef]  

58. G. Berden, R. Peeters, and G. Meijer, “Cavity ring-down spectroscopy: experimental schemes and applications,” Int. Rev. Phys. Chem. 19, 565–607 (2000). [CrossRef]  

59. T. Barwicz and H. A. Haus, “Three-dimensional analysis of scattering losses due to sidewall roughness in microphotonic waveguides,” J. Lightwave Technol. 23, 2719–2732 (2005). [CrossRef]  

60. F. P. Payne and J. P. R. Lacey, “A theoretical analysis of scattering loss from planar optical waveguides,” Opt. Quantum Electron. 26, 977–986 (1994). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214–1217 (2007).
    [Crossref]
  2. J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4, 37–40 (2010).
    [Crossref]
  3. T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332, 555–559 (2011).
    [Crossref]
  4. A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, I. Solomatine, D. Seidel, and L. Maleki, “Tunable optical frequency comb with a crystalline whispering gallery mode resonator,” Phys. Rev. Lett. 101, 093902 (2008).
    [Crossref]
  5. L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics 4, 41–45 (2010).
    [Crossref]
  6. S. B. Papp, K. Beha, P. Del’Haye, F. Quinlan, H. Lee, K. J. Vahala, and S. A. Diddams, “Microresonator frequency comb optical clock,” Optica 1, 10–14 (2014).
    [Crossref]
  7. T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416, 233–237 (2002).
    [Crossref]
  8. J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2010).
    [Crossref]
  9. S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature 445, 627–630 (2007).
    [Crossref]
  10. T. Taniguchi, A. Hirowatari, T. Ikeda, M. Fukuyama, Y. Amemiya, A. Kuroda, and S. Yokoyama, “Detection of antibody–antigen reaction by silicon nitride slot-ring biosensors using protein G,” Opt. Commun. 365, 16–23 (2016).
    [Crossref]
  11. D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421, 925–928 (2003).
    [Crossref]
  12. V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, and L. Maleki, “Nonlinear optics and crystalline whispering gallery mode cavities,” Phys. Rev. Lett. 92, 043903 (2004).
    [Crossref]
  13. I. S. Grudinin and L. Maleki, “Ultralow-threshold Raman lasing with CaF2 resonators,” Opt. Lett. 32, 166–168 (2007).
    [Crossref]
  14. J. Hofer, A. Schliesser, and T. J. Kippenberg, “Cavity optomechanics with ultrahigh-Q crystalline microresonators,” Phys. Rev. A 82, 031804 (2010).
    [Crossref]
  15. I. S. Grudinin, V. S. Ilchenko, and L. Maleki, “Ultrahigh optical Q factors of crystalline resonators in the linear regime,” Phys. Rev. A 74, 063806 (2006).
    [Crossref]
  16. A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, and L. Maleki, “Optical resonators with ten million finesse,” Opt. Express 15, 6768–6773 (2007).
    [Crossref]
  17. H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photonics 6, 369–373 (2012).
    [Crossref]
  18. D. T. Spencer, J. F. Bauters, M. J. R. Heck, and J. E. Bowers, “Integrated waveguide coupled Si3N4 resonators in the ultrahigh-Q regime,” Optica 1, 153–157 (2014).
    [Crossref]
  19. Y. Xuan, Y. Liu, L. T. Varghese, A. J. Metcalf, X. Xue, P.-H. Wang, K. Han, J. A. Jaramillo-Villegas, A. A. Noman, C. Wang, S. Kim, M. Teng, Y. J. Lee, B. Niu, L. Fan, J. Wang, D. E. Leaird, A. M. Weiner, and M. Qi, “High-Q silicon nitride microresonators exhibiting low-power frequency comb initiation,” Optica 3, 1171–1180 (2016).
    [Crossref]
  20. M. J. Shaw, J. Guo, G. A. Vawter, S. Habermehl, and C. T. Sullivan, “Fabrication techniques for low-loss silicon nitride waveguides,” Proc. SPIE 5720, 109–118 (2005).
    [Crossref]
  21. W. M. A. Bik, R. N. H. Linssen, F. H. P. M. Habraken, W. F. van der Weg, and A. E. T. Kuiper, “Diffusion of hydrogen in low-pressure chemical vapor deposited silicon nitride films,” Appl. Phys. Lett. 56, 2530–2532 (1990).
    [Crossref]
  22. M. H. P. Pfeiffer, A. Kordts, V. Brasch, M. Zervas, M. Geiselmann, J. D. Jost, and T. J. Kippenberg, “Photonic damascene process for integrated high-Q microresonator based nonlinear photonics,” Optica 3, 20–25 (2016).
    [Crossref]
  23. Q. Li, A. A. Eftekhar, M. Sodagar, Z. Xia, A. H. Atabaki, and A. Adibi, “Vertical integration of high-Q silicon nitride microresonators into silicon-on-insulator platform,” Opt. Express 21, 18236–18248 (2013).
    [Crossref]
  24. N. Zen, T. A. Puurtinen, T. J. Isotalo, S. Chaudhuri, and I. J. Maasilta, “Engineering thermal conductance using a two-dimensional phononic crystal,” Nat. Commun. 5, 3435 (2014).
    [Crossref]
  25. Y. Liu, Y. Xuan, X. Xue, P.-H. Wang, S. Chen, A. J. Metcalf, J. Wang, D. E. Leaird, M. Qi, and A. M. Weiner, “Investigation of mode coupling in normal-dispersion silicon nitride microresonators for Kerr frequency comb generation,” Optica 1, 137–144 (2014).
    [Crossref]
  26. J. W. Coburn and H. F. Winters, “Plasma etching—a discussion of mechanisms,” J. Vac. Sci. Technol. 16, 391–403 (1979).
    [Crossref]
  27. C. J. Mogab, A. C. Adams, and D. L. Flamm, “Plasma etching of Si and SiO2—the effect of oxygen additions to CF4 plasmas,” J. Appl. Phys. 49, 3796–3803 (1978).
    [Crossref]
  28. R. Pétri, P. Brault, O. Vatel, D. Henry, E. André, P. Dumas, and F. Salvan, “Silicon roughness induced by plasma etching,” J. Appl. Phys. 75, 7498–7506 (1994).
    [Crossref]
  29. X. Tang, V. Bayot, N. Reckinger, D. Flandre, J. P. Raskin, E. Dubois, and B. Nysten, “A simple method for measuring Si–F in sidewall roughness by AFM,” IEEE Trans. Nanotechnol. 8, 611–616 (2009).
    [Crossref]
  30. K. K. Lee, D. R. Lim, H.-C. Luan, A. Agarwal, J. Foresi, and L. C. Kimerling, “Effect of size and roughness on light transmission in a Si/SiO2 waveguide: experiments and model,” Appl. Phys. Lett. 77, 1617–1619 (2000).
    [Crossref]
  31. M. Schaepkens, T. E. F. M. Standaert, N. R. Rueger, P. G. M. Sebel, G. S. Oehrlein, and J. M. Cook, “Study of the SiO2-to-Si3N4 etch selectivity mechanism in inductively coupled fluorocarbon plasmas and a comparison with the SiO2-to-Si mechanism,” J. Vac. Sci. Technol. A 17, 26–37 (1999).
    [Crossref]
  32. D. Beery, K. Reinhardt, P. B. Smith, J. Kelley, and A. Sivasothy, “Post etch residue removal: novel dry clean technology using densified fluid cleaning (DFC),” in IEEE International Interconnect Technology Conference (Cat. No. 99EX247) (1999), pp. 140–142.
  33. M. G. Blain, T. L. Meisenheimer, and J. E. Stevens, “Role of nitrogen in the downstream etching of silicon nitride,” J. Vac. Sci. Technol. A 14, 2151–2157 (1996).
    [Crossref]
  34. Y. Wang and L. Luo, “Ultrahigh-selectivity silicon nitride etch process using an inductively coupled plasma source,” J. Vac. Sci. Technol. A 16, 1582–1587 (1998).
    [Crossref]
  35. B. E. Little and S. T. Chu, “Estimating surface-roughness loss and output coupling in microdisk resonators,” Opt. Lett. 21, 1390–1392 (1996).
    [Crossref]
  36. F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1, 65–71 (2007).
    [Crossref]
  37. T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11, 232–240 (2005).
    [Crossref]
  38. G. W. Reynolds and J. W. Taylor, “Factors contributing to sidewall roughness in a positive-tone, chemically amplified resist exposed by x-ray lithography,” J. Vac. Sci. Technol. B 17, 334–344 (1999).
    [Crossref]
  39. R. J. Bojko, J. Li, L. He, T. Baehr-Jones, M. Hochberg, and Y. Aida, “Electron beam lithography writing strategies for low loss, high confinement silicon optical waveguides,” J. Vac. Sci. Technol. B 29, 06F309 (2011).
    [Crossref]
  40. D. M. Tennant, R. Fullowan, H. Takemura, M. Isobe, and Y. Nakagawa, “Evaluation of a 100  kV thermal field emission electron-beam nanolithography system,” J. Vac. Sci. Technol. B 18, 3089–3094 (2000).
    [Crossref]
  41. X. Yi, Y.-F. Xiao, Y.-C. Liu, B.-B. Li, Y.-L. Chen, Y. Li, and Q. Gong, “Multiple-Rayleigh-scatterer-induced mode splitting in a high-Q whispering-gallery-mode microresonator,” Phys. Rev. A 83, 023803 (2011).
    [Crossref]
  42. M. L. Gorodetsky, A. D. Pryamikov, and V. S. Ilchenko, “Rayleigh scattering in high-Q microspheres,” J. Opt. Soc. Am. B 17, 1051–1057 (2000).
    [Crossref]
  43. D. S. Weiss, V. Sandoghdar, J. Hare, V. Lefèvre-Seguin, J.-M. Raimond, and S. Haroche, “Splitting of high-Q Mie modes induced by light backscattering in silica microspheres,” Opt. Lett. 20, 1835–1837 (1995).
    [Crossref]
  44. K. Luke, A. Dutt, C. B. Poitras, and M. Lipson, “Overcoming Si3N4 film stress limitations for high quality factor ring resonators,” Opt. Express 21, 22829–22833 (2013).
    [Crossref]
  45. V. R. Almeida, R. R. Panepucci, and M. Lipson, “Nanotaper for compact mode conversion,” Opt. Lett. 28, 1302–1304 (2003).
    [Crossref]
  46. L.-W. Luo, G. S. Wiederhecker, J. Cardenas, C. Poitras, and M. Lipson, “High quality factor etchless silicon photonic ring resonators,” Opt. Express 19, 6284–6289 (2011).
    [Crossref]
  47. P. E. Barclay, K. Srinivasan, and O. Painter, “Nonlinear response of silicon photonic crystal microresonators excited via an integrated waveguide and fiber taper,” Opt. Express 13, 801–820 (2005).
    [Crossref]
  48. P. Rabiei, W. H. Steier, C. Zhang, and L. R. Dalton, “Polymer micro-ring filters and modulators,” J. Lightwave Technol. 20, 1968–1975 (2002).
    [Crossref]
  49. T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Kerr-nonlinearity optical parametric oscillation in an ultrahigh-q toroid microcavity,” Phys. Rev. Lett. 93, 083904 (2004).
    [Crossref]
  50. A. Matsko, A. Savchenkov, D. Strekalov, V. Ilchenko, and L. Maleki, “Optical hyperparametric oscillations in a whispering-gallery-mode resonator: threshold and phase diffusion,” Phys. Rev. A 71, 033804 (2005).
    [Crossref]
  51. K. Ikeda, R. E. Saperstein, N. Alic, and Y. Fainman, “Thermal and Kerr nonlinear properties of plasma-deposited silicon nitride/silicon dioxide waveguides,” Opt. Express 16, 12987–12994 (2008).
    [Crossref]
  52. H. Jung, C. Xiong, K. Y. Fong, X. Zhang, and H. X. Tang, “Optical frequency comb generation from aluminum nitride microring resonator,” Opt. Lett. 38, 2810–2813 (2013).
    [Crossref]
  53. B. J. M. Hausmann, I. Bulu, V. Venkataraman, P. Deotare, and M. Lončar, “Diamond nonlinear photonics,” Nat. Photonics 8, 369–374 (2014).
    [Crossref]
  54. M. Pu, L. Ottaviano, E. Semenova, and K. Yvind, “Efficient frequency comb generation in AlGaAs-on-insulator,” Optica 3, 823–826 (2016).
    [Crossref]
  55. A. A. Savchenkov, A. B. Matsko, D. Strekalov, M. Mohageg, V. S. Ilchenko, and L. Maleki, “Low threshold optical oscillations in a whispering gallery mode CaF2 resonator,” Phys. Rev. Lett. 93, 243905 (2004).
    [Crossref]
  56. A. O’Keefe and D. A. G. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 59, 2544–2551 (1988).
    [Crossref]
  57. D. Romanini, A. A. Kachanov, N. Sadeghi, and F. Stoeckel, “CW cavity ring down spectroscopy,” Chem. Phys. Lett. 264, 316–322 (1997).
    [Crossref]
  58. G. Berden, R. Peeters, and G. Meijer, “Cavity ring-down spectroscopy: experimental schemes and applications,” Int. Rev. Phys. Chem. 19, 565–607 (2000).
    [Crossref]
  59. T. Barwicz and H. A. Haus, “Three-dimensional analysis of scattering losses due to sidewall roughness in microphotonic waveguides,” J. Lightwave Technol. 23, 2719–2732 (2005).
    [Crossref]
  60. F. P. Payne and J. P. R. Lacey, “A theoretical analysis of scattering loss from planar optical waveguides,” Opt. Quantum Electron. 26, 977–986 (1994).
    [Crossref]

2016 (4)

2014 (5)

2013 (3)

2012 (1)

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photonics 6, 369–373 (2012).
[Crossref]

2011 (4)

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332, 555–559 (2011).
[Crossref]

X. Yi, Y.-F. Xiao, Y.-C. Liu, B.-B. Li, Y.-L. Chen, Y. Li, and Q. Gong, “Multiple-Rayleigh-scatterer-induced mode splitting in a high-Q whispering-gallery-mode microresonator,” Phys. Rev. A 83, 023803 (2011).
[Crossref]

R. J. Bojko, J. Li, L. He, T. Baehr-Jones, M. Hochberg, and Y. Aida, “Electron beam lithography writing strategies for low loss, high confinement silicon optical waveguides,” J. Vac. Sci. Technol. B 29, 06F309 (2011).
[Crossref]

L.-W. Luo, G. S. Wiederhecker, J. Cardenas, C. Poitras, and M. Lipson, “High quality factor etchless silicon photonic ring resonators,” Opt. Express 19, 6284–6289 (2011).
[Crossref]

2010 (4)

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4, 37–40 (2010).
[Crossref]

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2010).
[Crossref]

L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics 4, 41–45 (2010).
[Crossref]

J. Hofer, A. Schliesser, and T. J. Kippenberg, “Cavity optomechanics with ultrahigh-Q crystalline microresonators,” Phys. Rev. A 82, 031804 (2010).
[Crossref]

2009 (1)

X. Tang, V. Bayot, N. Reckinger, D. Flandre, J. P. Raskin, E. Dubois, and B. Nysten, “A simple method for measuring Si–F in sidewall roughness by AFM,” IEEE Trans. Nanotechnol. 8, 611–616 (2009).
[Crossref]

2008 (2)

A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, I. Solomatine, D. Seidel, and L. Maleki, “Tunable optical frequency comb with a crystalline whispering gallery mode resonator,” Phys. Rev. Lett. 101, 093902 (2008).
[Crossref]

K. Ikeda, R. E. Saperstein, N. Alic, and Y. Fainman, “Thermal and Kerr nonlinear properties of plasma-deposited silicon nitride/silicon dioxide waveguides,” Opt. Express 16, 12987–12994 (2008).
[Crossref]

2007 (5)

F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1, 65–71 (2007).
[Crossref]

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214–1217 (2007).
[Crossref]

S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature 445, 627–630 (2007).
[Crossref]

I. S. Grudinin and L. Maleki, “Ultralow-threshold Raman lasing with CaF2 resonators,” Opt. Lett. 32, 166–168 (2007).
[Crossref]

A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, and L. Maleki, “Optical resonators with ten million finesse,” Opt. Express 15, 6768–6773 (2007).
[Crossref]

2006 (1)

I. S. Grudinin, V. S. Ilchenko, and L. Maleki, “Ultrahigh optical Q factors of crystalline resonators in the linear regime,” Phys. Rev. A 74, 063806 (2006).
[Crossref]

2005 (5)

M. J. Shaw, J. Guo, G. A. Vawter, S. Habermehl, and C. T. Sullivan, “Fabrication techniques for low-loss silicon nitride waveguides,” Proc. SPIE 5720, 109–118 (2005).
[Crossref]

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11, 232–240 (2005).
[Crossref]

A. Matsko, A. Savchenkov, D. Strekalov, V. Ilchenko, and L. Maleki, “Optical hyperparametric oscillations in a whispering-gallery-mode resonator: threshold and phase diffusion,” Phys. Rev. A 71, 033804 (2005).
[Crossref]

P. E. Barclay, K. Srinivasan, and O. Painter, “Nonlinear response of silicon photonic crystal microresonators excited via an integrated waveguide and fiber taper,” Opt. Express 13, 801–820 (2005).
[Crossref]

T. Barwicz and H. A. Haus, “Three-dimensional analysis of scattering losses due to sidewall roughness in microphotonic waveguides,” J. Lightwave Technol. 23, 2719–2732 (2005).
[Crossref]

2004 (3)

A. A. Savchenkov, A. B. Matsko, D. Strekalov, M. Mohageg, V. S. Ilchenko, and L. Maleki, “Low threshold optical oscillations in a whispering gallery mode CaF2 resonator,” Phys. Rev. Lett. 93, 243905 (2004).
[Crossref]

T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Kerr-nonlinearity optical parametric oscillation in an ultrahigh-q toroid microcavity,” Phys. Rev. Lett. 93, 083904 (2004).
[Crossref]

V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, and L. Maleki, “Nonlinear optics and crystalline whispering gallery mode cavities,” Phys. Rev. Lett. 92, 043903 (2004).
[Crossref]

2003 (2)

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421, 925–928 (2003).
[Crossref]

V. R. Almeida, R. R. Panepucci, and M. Lipson, “Nanotaper for compact mode conversion,” Opt. Lett. 28, 1302–1304 (2003).
[Crossref]

2002 (2)

2000 (4)

K. K. Lee, D. R. Lim, H.-C. Luan, A. Agarwal, J. Foresi, and L. C. Kimerling, “Effect of size and roughness on light transmission in a Si/SiO2 waveguide: experiments and model,” Appl. Phys. Lett. 77, 1617–1619 (2000).
[Crossref]

M. L. Gorodetsky, A. D. Pryamikov, and V. S. Ilchenko, “Rayleigh scattering in high-Q microspheres,” J. Opt. Soc. Am. B 17, 1051–1057 (2000).
[Crossref]

D. M. Tennant, R. Fullowan, H. Takemura, M. Isobe, and Y. Nakagawa, “Evaluation of a 100  kV thermal field emission electron-beam nanolithography system,” J. Vac. Sci. Technol. B 18, 3089–3094 (2000).
[Crossref]

G. Berden, R. Peeters, and G. Meijer, “Cavity ring-down spectroscopy: experimental schemes and applications,” Int. Rev. Phys. Chem. 19, 565–607 (2000).
[Crossref]

1999 (2)

G. W. Reynolds and J. W. Taylor, “Factors contributing to sidewall roughness in a positive-tone, chemically amplified resist exposed by x-ray lithography,” J. Vac. Sci. Technol. B 17, 334–344 (1999).
[Crossref]

M. Schaepkens, T. E. F. M. Standaert, N. R. Rueger, P. G. M. Sebel, G. S. Oehrlein, and J. M. Cook, “Study of the SiO2-to-Si3N4 etch selectivity mechanism in inductively coupled fluorocarbon plasmas and a comparison with the SiO2-to-Si mechanism,” J. Vac. Sci. Technol. A 17, 26–37 (1999).
[Crossref]

1998 (1)

Y. Wang and L. Luo, “Ultrahigh-selectivity silicon nitride etch process using an inductively coupled plasma source,” J. Vac. Sci. Technol. A 16, 1582–1587 (1998).
[Crossref]

1997 (1)

D. Romanini, A. A. Kachanov, N. Sadeghi, and F. Stoeckel, “CW cavity ring down spectroscopy,” Chem. Phys. Lett. 264, 316–322 (1997).
[Crossref]

1996 (2)

B. E. Little and S. T. Chu, “Estimating surface-roughness loss and output coupling in microdisk resonators,” Opt. Lett. 21, 1390–1392 (1996).
[Crossref]

M. G. Blain, T. L. Meisenheimer, and J. E. Stevens, “Role of nitrogen in the downstream etching of silicon nitride,” J. Vac. Sci. Technol. A 14, 2151–2157 (1996).
[Crossref]

1995 (1)

1994 (2)

R. Pétri, P. Brault, O. Vatel, D. Henry, E. André, P. Dumas, and F. Salvan, “Silicon roughness induced by plasma etching,” J. Appl. Phys. 75, 7498–7506 (1994).
[Crossref]

F. P. Payne and J. P. R. Lacey, “A theoretical analysis of scattering loss from planar optical waveguides,” Opt. Quantum Electron. 26, 977–986 (1994).
[Crossref]

1990 (1)

W. M. A. Bik, R. N. H. Linssen, F. H. P. M. Habraken, W. F. van der Weg, and A. E. T. Kuiper, “Diffusion of hydrogen in low-pressure chemical vapor deposited silicon nitride films,” Appl. Phys. Lett. 56, 2530–2532 (1990).
[Crossref]

1988 (1)

A. O’Keefe and D. A. G. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 59, 2544–2551 (1988).
[Crossref]

1979 (1)

J. W. Coburn and H. F. Winters, “Plasma etching—a discussion of mechanisms,” J. Vac. Sci. Technol. 16, 391–403 (1979).
[Crossref]

1978 (1)

C. J. Mogab, A. C. Adams, and D. L. Flamm, “Plasma etching of Si and SiO2—the effect of oxygen additions to CF4 plasmas,” J. Appl. Phys. 49, 3796–3803 (1978).
[Crossref]

Adams, A. C.

C. J. Mogab, A. C. Adams, and D. L. Flamm, “Plasma etching of Si and SiO2—the effect of oxygen additions to CF4 plasmas,” J. Appl. Phys. 49, 3796–3803 (1978).
[Crossref]

Adibi, A.

Agarwal, A.

K. K. Lee, D. R. Lim, H.-C. Luan, A. Agarwal, J. Foresi, and L. C. Kimerling, “Effect of size and roughness on light transmission in a Si/SiO2 waveguide: experiments and model,” Appl. Phys. Lett. 77, 1617–1619 (2000).
[Crossref]

Aida, Y.

R. J. Bojko, J. Li, L. He, T. Baehr-Jones, M. Hochberg, and Y. Aida, “Electron beam lithography writing strategies for low loss, high confinement silicon optical waveguides,” J. Vac. Sci. Technol. B 29, 06F309 (2011).
[Crossref]

Alic, N.

Almeida, V. R.

Amemiya, Y.

T. Taniguchi, A. Hirowatari, T. Ikeda, M. Fukuyama, Y. Amemiya, A. Kuroda, and S. Yokoyama, “Detection of antibody–antigen reaction by silicon nitride slot-ring biosensors using protein G,” Opt. Commun. 365, 16–23 (2016).
[Crossref]

André, E.

R. Pétri, P. Brault, O. Vatel, D. Henry, E. André, P. Dumas, and F. Salvan, “Silicon roughness induced by plasma etching,” J. Appl. Phys. 75, 7498–7506 (1994).
[Crossref]

Arcizet, O.

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214–1217 (2007).
[Crossref]

Armani, D. K.

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421, 925–928 (2003).
[Crossref]

Atabaki, A. H.

Baehr-Jones, T.

R. J. Bojko, J. Li, L. He, T. Baehr-Jones, M. Hochberg, and Y. Aida, “Electron beam lithography writing strategies for low loss, high confinement silicon optical waveguides,” J. Vac. Sci. Technol. B 29, 06F309 (2011).
[Crossref]

Barclay, P. E.

Barwicz, T.

Bauters, J. F.

Bayot, V.

X. Tang, V. Bayot, N. Reckinger, D. Flandre, J. P. Raskin, E. Dubois, and B. Nysten, “A simple method for measuring Si–F in sidewall roughness by AFM,” IEEE Trans. Nanotechnol. 8, 611–616 (2009).
[Crossref]

Beery, D.

D. Beery, K. Reinhardt, P. B. Smith, J. Kelley, and A. Sivasothy, “Post etch residue removal: novel dry clean technology using densified fluid cleaning (DFC),” in IEEE International Interconnect Technology Conference (Cat. No. 99EX247) (1999), pp. 140–142.

Beha, K.

Berden, G.

G. Berden, R. Peeters, and G. Meijer, “Cavity ring-down spectroscopy: experimental schemes and applications,” Int. Rev. Phys. Chem. 19, 565–607 (2000).
[Crossref]

Bik, W. M. A.

W. M. A. Bik, R. N. H. Linssen, F. H. P. M. Habraken, W. F. van der Weg, and A. E. T. Kuiper, “Diffusion of hydrogen in low-pressure chemical vapor deposited silicon nitride films,” Appl. Phys. Lett. 56, 2530–2532 (1990).
[Crossref]

Blain, M. G.

M. G. Blain, T. L. Meisenheimer, and J. E. Stevens, “Role of nitrogen in the downstream etching of silicon nitride,” J. Vac. Sci. Technol. A 14, 2151–2157 (1996).
[Crossref]

Bojko, R. J.

R. J. Bojko, J. Li, L. He, T. Baehr-Jones, M. Hochberg, and Y. Aida, “Electron beam lithography writing strategies for low loss, high confinement silicon optical waveguides,” J. Vac. Sci. Technol. B 29, 06F309 (2011).
[Crossref]

Bowers, J. E.

Brasch, V.

Brault, P.

R. Pétri, P. Brault, O. Vatel, D. Henry, E. André, P. Dumas, and F. Salvan, “Silicon roughness induced by plasma etching,” J. Appl. Phys. 75, 7498–7506 (1994).
[Crossref]

Bulu, I.

B. J. M. Hausmann, I. Bulu, V. Venkataraman, P. Deotare, and M. Lončar, “Diamond nonlinear photonics,” Nat. Photonics 8, 369–374 (2014).
[Crossref]

Cardenas, J.

Chaudhuri, S.

N. Zen, T. A. Puurtinen, T. J. Isotalo, S. Chaudhuri, and I. J. Maasilta, “Engineering thermal conductance using a two-dimensional phononic crystal,” Nat. Commun. 5, 3435 (2014).
[Crossref]

Chen, D.-R.

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2010).
[Crossref]

Chen, S.

Chen, T.

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photonics 6, 369–373 (2012).
[Crossref]

Chen, Y.-L.

X. Yi, Y.-F. Xiao, Y.-C. Liu, B.-B. Li, Y.-L. Chen, Y. Li, and Q. Gong, “Multiple-Rayleigh-scatterer-induced mode splitting in a high-Q whispering-gallery-mode microresonator,” Phys. Rev. A 83, 023803 (2011).
[Crossref]

Chu, S.

L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics 4, 41–45 (2010).
[Crossref]

Chu, S. T.

Coburn, J. W.

J. W. Coburn and H. F. Winters, “Plasma etching—a discussion of mechanisms,” J. Vac. Sci. Technol. 16, 391–403 (1979).
[Crossref]

Cook, J. M.

M. Schaepkens, T. E. F. M. Standaert, N. R. Rueger, P. G. M. Sebel, G. S. Oehrlein, and J. M. Cook, “Study of the SiO2-to-Si3N4 etch selectivity mechanism in inductively coupled fluorocarbon plasmas and a comparison with the SiO2-to-Si mechanism,” J. Vac. Sci. Technol. A 17, 26–37 (1999).
[Crossref]

Dalton, L. R.

Deacon, D. A. G.

A. O’Keefe and D. A. G. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 59, 2544–2551 (1988).
[Crossref]

Del’Haye, P.

S. B. Papp, K. Beha, P. Del’Haye, F. Quinlan, H. Lee, K. J. Vahala, and S. A. Diddams, “Microresonator frequency comb optical clock,” Optica 1, 10–14 (2014).
[Crossref]

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214–1217 (2007).
[Crossref]

Deotare, P.

B. J. M. Hausmann, I. Bulu, V. Venkataraman, P. Deotare, and M. Lončar, “Diamond nonlinear photonics,” Nat. Photonics 8, 369–374 (2014).
[Crossref]

Diddams, S. A.

S. B. Papp, K. Beha, P. Del’Haye, F. Quinlan, H. Lee, K. J. Vahala, and S. A. Diddams, “Microresonator frequency comb optical clock,” Optica 1, 10–14 (2014).
[Crossref]

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332, 555–559 (2011).
[Crossref]

S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature 445, 627–630 (2007).
[Crossref]

Dubois, E.

X. Tang, V. Bayot, N. Reckinger, D. Flandre, J. P. Raskin, E. Dubois, and B. Nysten, “A simple method for measuring Si–F in sidewall roughness by AFM,” IEEE Trans. Nanotechnol. 8, 611–616 (2009).
[Crossref]

Duchesne, D.

L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics 4, 41–45 (2010).
[Crossref]

Dumas, P.

R. Pétri, P. Brault, O. Vatel, D. Henry, E. André, P. Dumas, and F. Salvan, “Silicon roughness induced by plasma etching,” J. Appl. Phys. 75, 7498–7506 (1994).
[Crossref]

Dutt, A.

Eftekhar, A. A.

Fainman, Y.

Fan, L.

Ferrera, M.

L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics 4, 41–45 (2010).
[Crossref]

Flamm, D. L.

C. J. Mogab, A. C. Adams, and D. L. Flamm, “Plasma etching of Si and SiO2—the effect of oxygen additions to CF4 plasmas,” J. Appl. Phys. 49, 3796–3803 (1978).
[Crossref]

Flandre, D.

X. Tang, V. Bayot, N. Reckinger, D. Flandre, J. P. Raskin, E. Dubois, and B. Nysten, “A simple method for measuring Si–F in sidewall roughness by AFM,” IEEE Trans. Nanotechnol. 8, 611–616 (2009).
[Crossref]

Fong, K. Y.

Foresi, J.

K. K. Lee, D. R. Lim, H.-C. Luan, A. Agarwal, J. Foresi, and L. C. Kimerling, “Effect of size and roughness on light transmission in a Si/SiO2 waveguide: experiments and model,” Appl. Phys. Lett. 77, 1617–1619 (2000).
[Crossref]

Foster, M. A.

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4, 37–40 (2010).
[Crossref]

Fukuda, H.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11, 232–240 (2005).
[Crossref]

Fukuyama, M.

T. Taniguchi, A. Hirowatari, T. Ikeda, M. Fukuyama, Y. Amemiya, A. Kuroda, and S. Yokoyama, “Detection of antibody–antigen reaction by silicon nitride slot-ring biosensors using protein G,” Opt. Commun. 365, 16–23 (2016).
[Crossref]

Fullowan, R.

D. M. Tennant, R. Fullowan, H. Takemura, M. Isobe, and Y. Nakagawa, “Evaluation of a 100  kV thermal field emission electron-beam nanolithography system,” J. Vac. Sci. Technol. B 18, 3089–3094 (2000).
[Crossref]

Gaeta, A. L.

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4, 37–40 (2010).
[Crossref]

Geiselmann, M.

Gondarenko, A.

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4, 37–40 (2010).
[Crossref]

Gong, Q.

X. Yi, Y.-F. Xiao, Y.-C. Liu, B.-B. Li, Y.-L. Chen, Y. Li, and Q. Gong, “Multiple-Rayleigh-scatterer-induced mode splitting in a high-Q whispering-gallery-mode microresonator,” Phys. Rev. A 83, 023803 (2011).
[Crossref]

Gorodetsky, M. L.

Grudinin, I. S.

I. S. Grudinin and L. Maleki, “Ultralow-threshold Raman lasing with CaF2 resonators,” Opt. Lett. 32, 166–168 (2007).
[Crossref]

I. S. Grudinin, V. S. Ilchenko, and L. Maleki, “Ultrahigh optical Q factors of crystalline resonators in the linear regime,” Phys. Rev. A 74, 063806 (2006).
[Crossref]

Guo, J.

M. J. Shaw, J. Guo, G. A. Vawter, S. Habermehl, and C. T. Sullivan, “Fabrication techniques for low-loss silicon nitride waveguides,” Proc. SPIE 5720, 109–118 (2005).
[Crossref]

Habermehl, S.

M. J. Shaw, J. Guo, G. A. Vawter, S. Habermehl, and C. T. Sullivan, “Fabrication techniques for low-loss silicon nitride waveguides,” Proc. SPIE 5720, 109–118 (2005).
[Crossref]

Habraken, F. H. P. M.

W. M. A. Bik, R. N. H. Linssen, F. H. P. M. Habraken, W. F. van der Weg, and A. E. T. Kuiper, “Diffusion of hydrogen in low-pressure chemical vapor deposited silicon nitride films,” Appl. Phys. Lett. 56, 2530–2532 (1990).
[Crossref]

Han, K.

Hänsch, T. W.

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416, 233–237 (2002).
[Crossref]

Hare, J.

Haroche, S.

Haus, H. A.

Hausmann, B. J. M.

B. J. M. Hausmann, I. Bulu, V. Venkataraman, P. Deotare, and M. Lončar, “Diamond nonlinear photonics,” Nat. Photonics 8, 369–374 (2014).
[Crossref]

He, L.

R. J. Bojko, J. Li, L. He, T. Baehr-Jones, M. Hochberg, and Y. Aida, “Electron beam lithography writing strategies for low loss, high confinement silicon optical waveguides,” J. Vac. Sci. Technol. B 29, 06F309 (2011).
[Crossref]

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2010).
[Crossref]

Heck, M. J. R.

Henry, D.

R. Pétri, P. Brault, O. Vatel, D. Henry, E. André, P. Dumas, and F. Salvan, “Silicon roughness induced by plasma etching,” J. Appl. Phys. 75, 7498–7506 (1994).
[Crossref]

Hirowatari, A.

T. Taniguchi, A. Hirowatari, T. Ikeda, M. Fukuyama, Y. Amemiya, A. Kuroda, and S. Yokoyama, “Detection of antibody–antigen reaction by silicon nitride slot-ring biosensors using protein G,” Opt. Commun. 365, 16–23 (2016).
[Crossref]

Hochberg, M.

R. J. Bojko, J. Li, L. He, T. Baehr-Jones, M. Hochberg, and Y. Aida, “Electron beam lithography writing strategies for low loss, high confinement silicon optical waveguides,” J. Vac. Sci. Technol. B 29, 06F309 (2011).
[Crossref]

Hofer, J.

J. Hofer, A. Schliesser, and T. J. Kippenberg, “Cavity optomechanics with ultrahigh-Q crystalline microresonators,” Phys. Rev. A 82, 031804 (2010).
[Crossref]

Hollberg, L.

S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature 445, 627–630 (2007).
[Crossref]

Holzwarth, R.

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332, 555–559 (2011).
[Crossref]

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214–1217 (2007).
[Crossref]

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416, 233–237 (2002).
[Crossref]

Ikeda, K.

Ikeda, T.

T. Taniguchi, A. Hirowatari, T. Ikeda, M. Fukuyama, Y. Amemiya, A. Kuroda, and S. Yokoyama, “Detection of antibody–antigen reaction by silicon nitride slot-ring biosensors using protein G,” Opt. Commun. 365, 16–23 (2016).
[Crossref]

Ilchenko, V.

A. Matsko, A. Savchenkov, D. Strekalov, V. Ilchenko, and L. Maleki, “Optical hyperparametric oscillations in a whispering-gallery-mode resonator: threshold and phase diffusion,” Phys. Rev. A 71, 033804 (2005).
[Crossref]

Ilchenko, V. S.

A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, I. Solomatine, D. Seidel, and L. Maleki, “Tunable optical frequency comb with a crystalline whispering gallery mode resonator,” Phys. Rev. Lett. 101, 093902 (2008).
[Crossref]

A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, and L. Maleki, “Optical resonators with ten million finesse,” Opt. Express 15, 6768–6773 (2007).
[Crossref]

I. S. Grudinin, V. S. Ilchenko, and L. Maleki, “Ultrahigh optical Q factors of crystalline resonators in the linear regime,” Phys. Rev. A 74, 063806 (2006).
[Crossref]

V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, and L. Maleki, “Nonlinear optics and crystalline whispering gallery mode cavities,” Phys. Rev. Lett. 92, 043903 (2004).
[Crossref]

A. A. Savchenkov, A. B. Matsko, D. Strekalov, M. Mohageg, V. S. Ilchenko, and L. Maleki, “Low threshold optical oscillations in a whispering gallery mode CaF2 resonator,” Phys. Rev. Lett. 93, 243905 (2004).
[Crossref]

M. L. Gorodetsky, A. D. Pryamikov, and V. S. Ilchenko, “Rayleigh scattering in high-Q microspheres,” J. Opt. Soc. Am. B 17, 1051–1057 (2000).
[Crossref]

Isobe, M.

D. M. Tennant, R. Fullowan, H. Takemura, M. Isobe, and Y. Nakagawa, “Evaluation of a 100  kV thermal field emission electron-beam nanolithography system,” J. Vac. Sci. Technol. B 18, 3089–3094 (2000).
[Crossref]

Isotalo, T. J.

N. Zen, T. A. Puurtinen, T. J. Isotalo, S. Chaudhuri, and I. J. Maasilta, “Engineering thermal conductance using a two-dimensional phononic crystal,” Nat. Commun. 5, 3435 (2014).
[Crossref]

Itabashi, S.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11, 232–240 (2005).
[Crossref]

Jaramillo-Villegas, J. A.

Jeon, S.

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photonics 6, 369–373 (2012).
[Crossref]

Jost, J. D.

Jung, H.

Kachanov, A. A.

D. Romanini, A. A. Kachanov, N. Sadeghi, and F. Stoeckel, “CW cavity ring down spectroscopy,” Chem. Phys. Lett. 264, 316–322 (1997).
[Crossref]

Kelley, J.

D. Beery, K. Reinhardt, P. B. Smith, J. Kelley, and A. Sivasothy, “Post etch residue removal: novel dry clean technology using densified fluid cleaning (DFC),” in IEEE International Interconnect Technology Conference (Cat. No. 99EX247) (1999), pp. 140–142.

Kim, S.

Kimerling, L. C.

K. K. Lee, D. R. Lim, H.-C. Luan, A. Agarwal, J. Foresi, and L. C. Kimerling, “Effect of size and roughness on light transmission in a Si/SiO2 waveguide: experiments and model,” Appl. Phys. Lett. 77, 1617–1619 (2000).
[Crossref]

Kippenberg, T. J.

M. H. P. Pfeiffer, A. Kordts, V. Brasch, M. Zervas, M. Geiselmann, J. D. Jost, and T. J. Kippenberg, “Photonic damascene process for integrated high-Q microresonator based nonlinear photonics,” Optica 3, 20–25 (2016).
[Crossref]

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332, 555–559 (2011).
[Crossref]

J. Hofer, A. Schliesser, and T. J. Kippenberg, “Cavity optomechanics with ultrahigh-Q crystalline microresonators,” Phys. Rev. A 82, 031804 (2010).
[Crossref]

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214–1217 (2007).
[Crossref]

T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Kerr-nonlinearity optical parametric oscillation in an ultrahigh-q toroid microcavity,” Phys. Rev. Lett. 93, 083904 (2004).
[Crossref]

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421, 925–928 (2003).
[Crossref]

Kordts, A.

Kuiper, A. E. T.

W. M. A. Bik, R. N. H. Linssen, F. H. P. M. Habraken, W. F. van der Weg, and A. E. T. Kuiper, “Diffusion of hydrogen in low-pressure chemical vapor deposited silicon nitride films,” Appl. Phys. Lett. 56, 2530–2532 (1990).
[Crossref]

Kuroda, A.

T. Taniguchi, A. Hirowatari, T. Ikeda, M. Fukuyama, Y. Amemiya, A. Kuroda, and S. Yokoyama, “Detection of antibody–antigen reaction by silicon nitride slot-ring biosensors using protein G,” Opt. Commun. 365, 16–23 (2016).
[Crossref]

Lacey, J. P. R.

F. P. Payne and J. P. R. Lacey, “A theoretical analysis of scattering loss from planar optical waveguides,” Opt. Quantum Electron. 26, 977–986 (1994).
[Crossref]

Leaird, D. E.

Lee, H.

S. B. Papp, K. Beha, P. Del’Haye, F. Quinlan, H. Lee, K. J. Vahala, and S. A. Diddams, “Microresonator frequency comb optical clock,” Optica 1, 10–14 (2014).
[Crossref]

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photonics 6, 369–373 (2012).
[Crossref]

Lee, K. K.

K. K. Lee, D. R. Lim, H.-C. Luan, A. Agarwal, J. Foresi, and L. C. Kimerling, “Effect of size and roughness on light transmission in a Si/SiO2 waveguide: experiments and model,” Appl. Phys. Lett. 77, 1617–1619 (2000).
[Crossref]

Lee, Y. J.

Lefèvre-Seguin, V.

Levy, J. S.

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4, 37–40 (2010).
[Crossref]

Li, B.-B.

X. Yi, Y.-F. Xiao, Y.-C. Liu, B.-B. Li, Y.-L. Chen, Y. Li, and Q. Gong, “Multiple-Rayleigh-scatterer-induced mode splitting in a high-Q whispering-gallery-mode microresonator,” Phys. Rev. A 83, 023803 (2011).
[Crossref]

Li, J.

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photonics 6, 369–373 (2012).
[Crossref]

R. J. Bojko, J. Li, L. He, T. Baehr-Jones, M. Hochberg, and Y. Aida, “Electron beam lithography writing strategies for low loss, high confinement silicon optical waveguides,” J. Vac. Sci. Technol. B 29, 06F309 (2011).
[Crossref]

Li, L.

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2010).
[Crossref]

Li, Q.

Li, Y.

X. Yi, Y.-F. Xiao, Y.-C. Liu, B.-B. Li, Y.-L. Chen, Y. Li, and Q. Gong, “Multiple-Rayleigh-scatterer-induced mode splitting in a high-Q whispering-gallery-mode microresonator,” Phys. Rev. A 83, 023803 (2011).
[Crossref]

Lim, D. R.

K. K. Lee, D. R. Lim, H.-C. Luan, A. Agarwal, J. Foresi, and L. C. Kimerling, “Effect of size and roughness on light transmission in a Si/SiO2 waveguide: experiments and model,” Appl. Phys. Lett. 77, 1617–1619 (2000).
[Crossref]

Linssen, R. N. H.

W. M. A. Bik, R. N. H. Linssen, F. H. P. M. Habraken, W. F. van der Weg, and A. E. T. Kuiper, “Diffusion of hydrogen in low-pressure chemical vapor deposited silicon nitride films,” Appl. Phys. Lett. 56, 2530–2532 (1990).
[Crossref]

Lipson, M.

Little, B. E.

L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics 4, 41–45 (2010).
[Crossref]

B. E. Little and S. T. Chu, “Estimating surface-roughness loss and output coupling in microdisk resonators,” Opt. Lett. 21, 1390–1392 (1996).
[Crossref]

Liu, Y.

Liu, Y.-C.

X. Yi, Y.-F. Xiao, Y.-C. Liu, B.-B. Li, Y.-L. Chen, Y. Li, and Q. Gong, “Multiple-Rayleigh-scatterer-induced mode splitting in a high-Q whispering-gallery-mode microresonator,” Phys. Rev. A 83, 023803 (2011).
[Crossref]

Loncar, M.

B. J. M. Hausmann, I. Bulu, V. Venkataraman, P. Deotare, and M. Lončar, “Diamond nonlinear photonics,” Nat. Photonics 8, 369–374 (2014).
[Crossref]

Luan, H.-C.

K. K. Lee, D. R. Lim, H.-C. Luan, A. Agarwal, J. Foresi, and L. C. Kimerling, “Effect of size and roughness on light transmission in a Si/SiO2 waveguide: experiments and model,” Appl. Phys. Lett. 77, 1617–1619 (2000).
[Crossref]

Luke, K.

Luo, L.

Y. Wang and L. Luo, “Ultrahigh-selectivity silicon nitride etch process using an inductively coupled plasma source,” J. Vac. Sci. Technol. A 16, 1582–1587 (1998).
[Crossref]

Luo, L.-W.

Maasilta, I. J.

N. Zen, T. A. Puurtinen, T. J. Isotalo, S. Chaudhuri, and I. J. Maasilta, “Engineering thermal conductance using a two-dimensional phononic crystal,” Nat. Commun. 5, 3435 (2014).
[Crossref]

Maleki, L.

A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, I. Solomatine, D. Seidel, and L. Maleki, “Tunable optical frequency comb with a crystalline whispering gallery mode resonator,” Phys. Rev. Lett. 101, 093902 (2008).
[Crossref]

I. S. Grudinin and L. Maleki, “Ultralow-threshold Raman lasing with CaF2 resonators,” Opt. Lett. 32, 166–168 (2007).
[Crossref]

A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, and L. Maleki, “Optical resonators with ten million finesse,” Opt. Express 15, 6768–6773 (2007).
[Crossref]

I. S. Grudinin, V. S. Ilchenko, and L. Maleki, “Ultrahigh optical Q factors of crystalline resonators in the linear regime,” Phys. Rev. A 74, 063806 (2006).
[Crossref]

A. Matsko, A. Savchenkov, D. Strekalov, V. Ilchenko, and L. Maleki, “Optical hyperparametric oscillations in a whispering-gallery-mode resonator: threshold and phase diffusion,” Phys. Rev. A 71, 033804 (2005).
[Crossref]

V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, and L. Maleki, “Nonlinear optics and crystalline whispering gallery mode cavities,” Phys. Rev. Lett. 92, 043903 (2004).
[Crossref]

A. A. Savchenkov, A. B. Matsko, D. Strekalov, M. Mohageg, V. S. Ilchenko, and L. Maleki, “Low threshold optical oscillations in a whispering gallery mode CaF2 resonator,” Phys. Rev. Lett. 93, 243905 (2004).
[Crossref]

Matsko, A.

A. Matsko, A. Savchenkov, D. Strekalov, V. Ilchenko, and L. Maleki, “Optical hyperparametric oscillations in a whispering-gallery-mode resonator: threshold and phase diffusion,” Phys. Rev. A 71, 033804 (2005).
[Crossref]

Matsko, A. B.

A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, I. Solomatine, D. Seidel, and L. Maleki, “Tunable optical frequency comb with a crystalline whispering gallery mode resonator,” Phys. Rev. Lett. 101, 093902 (2008).
[Crossref]

A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, and L. Maleki, “Optical resonators with ten million finesse,” Opt. Express 15, 6768–6773 (2007).
[Crossref]

V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, and L. Maleki, “Nonlinear optics and crystalline whispering gallery mode cavities,” Phys. Rev. Lett. 92, 043903 (2004).
[Crossref]

A. A. Savchenkov, A. B. Matsko, D. Strekalov, M. Mohageg, V. S. Ilchenko, and L. Maleki, “Low threshold optical oscillations in a whispering gallery mode CaF2 resonator,” Phys. Rev. Lett. 93, 243905 (2004).
[Crossref]

Mbele, V.

S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature 445, 627–630 (2007).
[Crossref]

Meijer, G.

G. Berden, R. Peeters, and G. Meijer, “Cavity ring-down spectroscopy: experimental schemes and applications,” Int. Rev. Phys. Chem. 19, 565–607 (2000).
[Crossref]

Meisenheimer, T. L.

M. G. Blain, T. L. Meisenheimer, and J. E. Stevens, “Role of nitrogen in the downstream etching of silicon nitride,” J. Vac. Sci. Technol. A 14, 2151–2157 (1996).
[Crossref]

Metcalf, A. J.

Mogab, C. J.

C. J. Mogab, A. C. Adams, and D. L. Flamm, “Plasma etching of Si and SiO2—the effect of oxygen additions to CF4 plasmas,” J. Appl. Phys. 49, 3796–3803 (1978).
[Crossref]

Mohageg, M.

A. A. Savchenkov, A. B. Matsko, D. Strekalov, M. Mohageg, V. S. Ilchenko, and L. Maleki, “Low threshold optical oscillations in a whispering gallery mode CaF2 resonator,” Phys. Rev. Lett. 93, 243905 (2004).
[Crossref]

Morandotti, R.

L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics 4, 41–45 (2010).
[Crossref]

Morita, H.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11, 232–240 (2005).
[Crossref]

Moss, D. J.

L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics 4, 41–45 (2010).
[Crossref]

Nakagawa, Y.

D. M. Tennant, R. Fullowan, H. Takemura, M. Isobe, and Y. Nakagawa, “Evaluation of a 100  kV thermal field emission electron-beam nanolithography system,” J. Vac. Sci. Technol. B 18, 3089–3094 (2000).
[Crossref]

Niu, B.

Noman, A. A.

Nysten, B.

X. Tang, V. Bayot, N. Reckinger, D. Flandre, J. P. Raskin, E. Dubois, and B. Nysten, “A simple method for measuring Si–F in sidewall roughness by AFM,” IEEE Trans. Nanotechnol. 8, 611–616 (2009).
[Crossref]

O’Keefe, A.

A. O’Keefe and D. A. G. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 59, 2544–2551 (1988).
[Crossref]

Oehrlein, G. S.

M. Schaepkens, T. E. F. M. Standaert, N. R. Rueger, P. G. M. Sebel, G. S. Oehrlein, and J. M. Cook, “Study of the SiO2-to-Si3N4 etch selectivity mechanism in inductively coupled fluorocarbon plasmas and a comparison with the SiO2-to-Si mechanism,” J. Vac. Sci. Technol. A 17, 26–37 (1999).
[Crossref]

Ottaviano, L.

Ozdemir, S. K.

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2010).
[Crossref]

Painter, O.

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photonics 6, 369–373 (2012).
[Crossref]

P. E. Barclay, K. Srinivasan, and O. Painter, “Nonlinear response of silicon photonic crystal microresonators excited via an integrated waveguide and fiber taper,” Opt. Express 13, 801–820 (2005).
[Crossref]

Panepucci, R. R.

Papp, S. B.

Payne, F. P.

F. P. Payne and J. P. R. Lacey, “A theoretical analysis of scattering loss from planar optical waveguides,” Opt. Quantum Electron. 26, 977–986 (1994).
[Crossref]

Peeters, R.

G. Berden, R. Peeters, and G. Meijer, “Cavity ring-down spectroscopy: experimental schemes and applications,” Int. Rev. Phys. Chem. 19, 565–607 (2000).
[Crossref]

Pétri, R.

R. Pétri, P. Brault, O. Vatel, D. Henry, E. André, P. Dumas, and F. Salvan, “Silicon roughness induced by plasma etching,” J. Appl. Phys. 75, 7498–7506 (1994).
[Crossref]

Pfeiffer, M. H. P.

Poitras, C.

Poitras, C. B.

Pryamikov, A. D.

Pu, M.

Puurtinen, T. A.

N. Zen, T. A. Puurtinen, T. J. Isotalo, S. Chaudhuri, and I. J. Maasilta, “Engineering thermal conductance using a two-dimensional phononic crystal,” Nat. Commun. 5, 3435 (2014).
[Crossref]

Qi, M.

Quinlan, F.

Rabiei, P.

Raimond, J.-M.

Raskin, J. P.

X. Tang, V. Bayot, N. Reckinger, D. Flandre, J. P. Raskin, E. Dubois, and B. Nysten, “A simple method for measuring Si–F in sidewall roughness by AFM,” IEEE Trans. Nanotechnol. 8, 611–616 (2009).
[Crossref]

Razzari, L.

L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics 4, 41–45 (2010).
[Crossref]

Reckinger, N.

X. Tang, V. Bayot, N. Reckinger, D. Flandre, J. P. Raskin, E. Dubois, and B. Nysten, “A simple method for measuring Si–F in sidewall roughness by AFM,” IEEE Trans. Nanotechnol. 8, 611–616 (2009).
[Crossref]

Reinhardt, K.

D. Beery, K. Reinhardt, P. B. Smith, J. Kelley, and A. Sivasothy, “Post etch residue removal: novel dry clean technology using densified fluid cleaning (DFC),” in IEEE International Interconnect Technology Conference (Cat. No. 99EX247) (1999), pp. 140–142.

Reynolds, G. W.

G. W. Reynolds and J. W. Taylor, “Factors contributing to sidewall roughness in a positive-tone, chemically amplified resist exposed by x-ray lithography,” J. Vac. Sci. Technol. B 17, 334–344 (1999).
[Crossref]

Romanini, D.

D. Romanini, A. A. Kachanov, N. Sadeghi, and F. Stoeckel, “CW cavity ring down spectroscopy,” Chem. Phys. Lett. 264, 316–322 (1997).
[Crossref]

Rueger, N. R.

M. Schaepkens, T. E. F. M. Standaert, N. R. Rueger, P. G. M. Sebel, G. S. Oehrlein, and J. M. Cook, “Study of the SiO2-to-Si3N4 etch selectivity mechanism in inductively coupled fluorocarbon plasmas and a comparison with the SiO2-to-Si mechanism,” J. Vac. Sci. Technol. A 17, 26–37 (1999).
[Crossref]

Sadeghi, N.

D. Romanini, A. A. Kachanov, N. Sadeghi, and F. Stoeckel, “CW cavity ring down spectroscopy,” Chem. Phys. Lett. 264, 316–322 (1997).
[Crossref]

Salvan, F.

R. Pétri, P. Brault, O. Vatel, D. Henry, E. André, P. Dumas, and F. Salvan, “Silicon roughness induced by plasma etching,” J. Appl. Phys. 75, 7498–7506 (1994).
[Crossref]

Sandoghdar, V.

Saperstein, R. E.

Savchenkov, A.

A. Matsko, A. Savchenkov, D. Strekalov, V. Ilchenko, and L. Maleki, “Optical hyperparametric oscillations in a whispering-gallery-mode resonator: threshold and phase diffusion,” Phys. Rev. A 71, 033804 (2005).
[Crossref]

Savchenkov, A. A.

A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, I. Solomatine, D. Seidel, and L. Maleki, “Tunable optical frequency comb with a crystalline whispering gallery mode resonator,” Phys. Rev. Lett. 101, 093902 (2008).
[Crossref]

A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, and L. Maleki, “Optical resonators with ten million finesse,” Opt. Express 15, 6768–6773 (2007).
[Crossref]

V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, and L. Maleki, “Nonlinear optics and crystalline whispering gallery mode cavities,” Phys. Rev. Lett. 92, 043903 (2004).
[Crossref]

A. A. Savchenkov, A. B. Matsko, D. Strekalov, M. Mohageg, V. S. Ilchenko, and L. Maleki, “Low threshold optical oscillations in a whispering gallery mode CaF2 resonator,” Phys. Rev. Lett. 93, 243905 (2004).
[Crossref]

Schaepkens, M.

M. Schaepkens, T. E. F. M. Standaert, N. R. Rueger, P. G. M. Sebel, G. S. Oehrlein, and J. M. Cook, “Study of the SiO2-to-Si3N4 etch selectivity mechanism in inductively coupled fluorocarbon plasmas and a comparison with the SiO2-to-Si mechanism,” J. Vac. Sci. Technol. A 17, 26–37 (1999).
[Crossref]

Schliesser, A.

J. Hofer, A. Schliesser, and T. J. Kippenberg, “Cavity optomechanics with ultrahigh-Q crystalline microresonators,” Phys. Rev. A 82, 031804 (2010).
[Crossref]

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214–1217 (2007).
[Crossref]

Sebel, P. G. M.

M. Schaepkens, T. E. F. M. Standaert, N. R. Rueger, P. G. M. Sebel, G. S. Oehrlein, and J. M. Cook, “Study of the SiO2-to-Si3N4 etch selectivity mechanism in inductively coupled fluorocarbon plasmas and a comparison with the SiO2-to-Si mechanism,” J. Vac. Sci. Technol. A 17, 26–37 (1999).
[Crossref]

Seidel, D.

A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, I. Solomatine, D. Seidel, and L. Maleki, “Tunable optical frequency comb with a crystalline whispering gallery mode resonator,” Phys. Rev. Lett. 101, 093902 (2008).
[Crossref]

Sekaric, L.

F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1, 65–71 (2007).
[Crossref]

Semenova, E.

Shaw, M. J.

M. J. Shaw, J. Guo, G. A. Vawter, S. Habermehl, and C. T. Sullivan, “Fabrication techniques for low-loss silicon nitride waveguides,” Proc. SPIE 5720, 109–118 (2005).
[Crossref]

Shoji, T.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11, 232–240 (2005).
[Crossref]

Sivasothy, A.

D. Beery, K. Reinhardt, P. B. Smith, J. Kelley, and A. Sivasothy, “Post etch residue removal: novel dry clean technology using densified fluid cleaning (DFC),” in IEEE International Interconnect Technology Conference (Cat. No. 99EX247) (1999), pp. 140–142.

Smith, P. B.

D. Beery, K. Reinhardt, P. B. Smith, J. Kelley, and A. Sivasothy, “Post etch residue removal: novel dry clean technology using densified fluid cleaning (DFC),” in IEEE International Interconnect Technology Conference (Cat. No. 99EX247) (1999), pp. 140–142.

Sodagar, M.

Solomatine, I.

A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, I. Solomatine, D. Seidel, and L. Maleki, “Tunable optical frequency comb with a crystalline whispering gallery mode resonator,” Phys. Rev. Lett. 101, 093902 (2008).
[Crossref]

Spencer, D. T.

Spillane, S. M.

T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Kerr-nonlinearity optical parametric oscillation in an ultrahigh-q toroid microcavity,” Phys. Rev. Lett. 93, 083904 (2004).
[Crossref]

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421, 925–928 (2003).
[Crossref]

Srinivasan, K.

Standaert, T. E. F. M.

M. Schaepkens, T. E. F. M. Standaert, N. R. Rueger, P. G. M. Sebel, G. S. Oehrlein, and J. M. Cook, “Study of the SiO2-to-Si3N4 etch selectivity mechanism in inductively coupled fluorocarbon plasmas and a comparison with the SiO2-to-Si mechanism,” J. Vac. Sci. Technol. A 17, 26–37 (1999).
[Crossref]

Steier, W. H.

Stevens, J. E.

M. G. Blain, T. L. Meisenheimer, and J. E. Stevens, “Role of nitrogen in the downstream etching of silicon nitride,” J. Vac. Sci. Technol. A 14, 2151–2157 (1996).
[Crossref]

Stoeckel, F.

D. Romanini, A. A. Kachanov, N. Sadeghi, and F. Stoeckel, “CW cavity ring down spectroscopy,” Chem. Phys. Lett. 264, 316–322 (1997).
[Crossref]

Strekalov, D.

A. Matsko, A. Savchenkov, D. Strekalov, V. Ilchenko, and L. Maleki, “Optical hyperparametric oscillations in a whispering-gallery-mode resonator: threshold and phase diffusion,” Phys. Rev. A 71, 033804 (2005).
[Crossref]

A. A. Savchenkov, A. B. Matsko, D. Strekalov, M. Mohageg, V. S. Ilchenko, and L. Maleki, “Low threshold optical oscillations in a whispering gallery mode CaF2 resonator,” Phys. Rev. Lett. 93, 243905 (2004).
[Crossref]

Sullivan, C. T.

M. J. Shaw, J. Guo, G. A. Vawter, S. Habermehl, and C. T. Sullivan, “Fabrication techniques for low-loss silicon nitride waveguides,” Proc. SPIE 5720, 109–118 (2005).
[Crossref]

Takahashi, J.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11, 232–240 (2005).
[Crossref]

Takahashi, M.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11, 232–240 (2005).
[Crossref]

Takemura, H.

D. M. Tennant, R. Fullowan, H. Takemura, M. Isobe, and Y. Nakagawa, “Evaluation of a 100  kV thermal field emission electron-beam nanolithography system,” J. Vac. Sci. Technol. B 18, 3089–3094 (2000).
[Crossref]

Tamechika, E.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11, 232–240 (2005).
[Crossref]

Tang, H. X.

Tang, X.

X. Tang, V. Bayot, N. Reckinger, D. Flandre, J. P. Raskin, E. Dubois, and B. Nysten, “A simple method for measuring Si–F in sidewall roughness by AFM,” IEEE Trans. Nanotechnol. 8, 611–616 (2009).
[Crossref]

Taniguchi, T.

T. Taniguchi, A. Hirowatari, T. Ikeda, M. Fukuyama, Y. Amemiya, A. Kuroda, and S. Yokoyama, “Detection of antibody–antigen reaction by silicon nitride slot-ring biosensors using protein G,” Opt. Commun. 365, 16–23 (2016).
[Crossref]

Taylor, J. W.

G. W. Reynolds and J. W. Taylor, “Factors contributing to sidewall roughness in a positive-tone, chemically amplified resist exposed by x-ray lithography,” J. Vac. Sci. Technol. B 17, 334–344 (1999).
[Crossref]

Teng, M.

Tennant, D. M.

D. M. Tennant, R. Fullowan, H. Takemura, M. Isobe, and Y. Nakagawa, “Evaluation of a 100  kV thermal field emission electron-beam nanolithography system,” J. Vac. Sci. Technol. B 18, 3089–3094 (2000).
[Crossref]

Tsuchizawa, T.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11, 232–240 (2005).
[Crossref]

Turner-Foster, A. C.

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4, 37–40 (2010).
[Crossref]

Udem, T.

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416, 233–237 (2002).
[Crossref]

Vahala, K. J.

S. B. Papp, K. Beha, P. Del’Haye, F. Quinlan, H. Lee, K. J. Vahala, and S. A. Diddams, “Microresonator frequency comb optical clock,” Optica 1, 10–14 (2014).
[Crossref]

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photonics 6, 369–373 (2012).
[Crossref]

T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Kerr-nonlinearity optical parametric oscillation in an ultrahigh-q toroid microcavity,” Phys. Rev. Lett. 93, 083904 (2004).
[Crossref]

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421, 925–928 (2003).
[Crossref]

van der Weg, W. F.

W. M. A. Bik, R. N. H. Linssen, F. H. P. M. Habraken, W. F. van der Weg, and A. E. T. Kuiper, “Diffusion of hydrogen in low-pressure chemical vapor deposited silicon nitride films,” Appl. Phys. Lett. 56, 2530–2532 (1990).
[Crossref]

Varghese, L. T.

Vatel, O.

R. Pétri, P. Brault, O. Vatel, D. Henry, E. André, P. Dumas, and F. Salvan, “Silicon roughness induced by plasma etching,” J. Appl. Phys. 75, 7498–7506 (1994).
[Crossref]

Vawter, G. A.

M. J. Shaw, J. Guo, G. A. Vawter, S. Habermehl, and C. T. Sullivan, “Fabrication techniques for low-loss silicon nitride waveguides,” Proc. SPIE 5720, 109–118 (2005).
[Crossref]

Venkataraman, V.

B. J. M. Hausmann, I. Bulu, V. Venkataraman, P. Deotare, and M. Lončar, “Diamond nonlinear photonics,” Nat. Photonics 8, 369–374 (2014).
[Crossref]

Vlasov, Y.

F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1, 65–71 (2007).
[Crossref]

Wang, C.

Wang, J.

Wang, P.-H.

Wang, Y.

Y. Wang and L. Luo, “Ultrahigh-selectivity silicon nitride etch process using an inductively coupled plasma source,” J. Vac. Sci. Technol. A 16, 1582–1587 (1998).
[Crossref]

Watanabe, T.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11, 232–240 (2005).
[Crossref]

Weiner, A. M.

Weiss, D. S.

Wiederhecker, G. S.

Wilken, T.

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214–1217 (2007).
[Crossref]

Winters, H. F.

J. W. Coburn and H. F. Winters, “Plasma etching—a discussion of mechanisms,” J. Vac. Sci. Technol. 16, 391–403 (1979).
[Crossref]

Xia, F.

F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1, 65–71 (2007).
[Crossref]

Xia, Z.

Xiao, Y.-F.

X. Yi, Y.-F. Xiao, Y.-C. Liu, B.-B. Li, Y.-L. Chen, Y. Li, and Q. Gong, “Multiple-Rayleigh-scatterer-induced mode splitting in a high-Q whispering-gallery-mode microresonator,” Phys. Rev. A 83, 023803 (2011).
[Crossref]

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2010).
[Crossref]

Xiong, C.

Xuan, Y.

Xue, X.

Yamada, K.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11, 232–240 (2005).
[Crossref]

Yang, K. Y.

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photonics 6, 369–373 (2012).
[Crossref]

Yang, L.

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2010).
[Crossref]

Yi, X.

X. Yi, Y.-F. Xiao, Y.-C. Liu, B.-B. Li, Y.-L. Chen, Y. Li, and Q. Gong, “Multiple-Rayleigh-scatterer-induced mode splitting in a high-Q whispering-gallery-mode microresonator,” Phys. Rev. A 83, 023803 (2011).
[Crossref]

Yokoyama, S.

T. Taniguchi, A. Hirowatari, T. Ikeda, M. Fukuyama, Y. Amemiya, A. Kuroda, and S. Yokoyama, “Detection of antibody–antigen reaction by silicon nitride slot-ring biosensors using protein G,” Opt. Commun. 365, 16–23 (2016).
[Crossref]

Yvind, K.

Zen, N.

N. Zen, T. A. Puurtinen, T. J. Isotalo, S. Chaudhuri, and I. J. Maasilta, “Engineering thermal conductance using a two-dimensional phononic crystal,” Nat. Commun. 5, 3435 (2014).
[Crossref]

Zervas, M.

Zhang, C.

Zhang, X.

Zhu, J.

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2010).
[Crossref]

Appl. Phys. Lett. (2)

W. M. A. Bik, R. N. H. Linssen, F. H. P. M. Habraken, W. F. van der Weg, and A. E. T. Kuiper, “Diffusion of hydrogen in low-pressure chemical vapor deposited silicon nitride films,” Appl. Phys. Lett. 56, 2530–2532 (1990).
[Crossref]

K. K. Lee, D. R. Lim, H.-C. Luan, A. Agarwal, J. Foresi, and L. C. Kimerling, “Effect of size and roughness on light transmission in a Si/SiO2 waveguide: experiments and model,” Appl. Phys. Lett. 77, 1617–1619 (2000).
[Crossref]

Chem. Phys. Lett. (1)

D. Romanini, A. A. Kachanov, N. Sadeghi, and F. Stoeckel, “CW cavity ring down spectroscopy,” Chem. Phys. Lett. 264, 316–322 (1997).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11, 232–240 (2005).
[Crossref]

IEEE Trans. Nanotechnol. (1)

X. Tang, V. Bayot, N. Reckinger, D. Flandre, J. P. Raskin, E. Dubois, and B. Nysten, “A simple method for measuring Si–F in sidewall roughness by AFM,” IEEE Trans. Nanotechnol. 8, 611–616 (2009).
[Crossref]

Int. Rev. Phys. Chem. (1)

G. Berden, R. Peeters, and G. Meijer, “Cavity ring-down spectroscopy: experimental schemes and applications,” Int. Rev. Phys. Chem. 19, 565–607 (2000).
[Crossref]

J. Appl. Phys. (2)

C. J. Mogab, A. C. Adams, and D. L. Flamm, “Plasma etching of Si and SiO2—the effect of oxygen additions to CF4 plasmas,” J. Appl. Phys. 49, 3796–3803 (1978).
[Crossref]

R. Pétri, P. Brault, O. Vatel, D. Henry, E. André, P. Dumas, and F. Salvan, “Silicon roughness induced by plasma etching,” J. Appl. Phys. 75, 7498–7506 (1994).
[Crossref]

J. Lightwave Technol. (2)

J. Opt. Soc. Am. B (1)

J. Vac. Sci. Technol. (1)

J. W. Coburn and H. F. Winters, “Plasma etching—a discussion of mechanisms,” J. Vac. Sci. Technol. 16, 391–403 (1979).
[Crossref]

J. Vac. Sci. Technol. A (3)

M. Schaepkens, T. E. F. M. Standaert, N. R. Rueger, P. G. M. Sebel, G. S. Oehrlein, and J. M. Cook, “Study of the SiO2-to-Si3N4 etch selectivity mechanism in inductively coupled fluorocarbon plasmas and a comparison with the SiO2-to-Si mechanism,” J. Vac. Sci. Technol. A 17, 26–37 (1999).
[Crossref]

M. G. Blain, T. L. Meisenheimer, and J. E. Stevens, “Role of nitrogen in the downstream etching of silicon nitride,” J. Vac. Sci. Technol. A 14, 2151–2157 (1996).
[Crossref]

Y. Wang and L. Luo, “Ultrahigh-selectivity silicon nitride etch process using an inductively coupled plasma source,” J. Vac. Sci. Technol. A 16, 1582–1587 (1998).
[Crossref]

J. Vac. Sci. Technol. B (3)

G. W. Reynolds and J. W. Taylor, “Factors contributing to sidewall roughness in a positive-tone, chemically amplified resist exposed by x-ray lithography,” J. Vac. Sci. Technol. B 17, 334–344 (1999).
[Crossref]

R. J. Bojko, J. Li, L. He, T. Baehr-Jones, M. Hochberg, and Y. Aida, “Electron beam lithography writing strategies for low loss, high confinement silicon optical waveguides,” J. Vac. Sci. Technol. B 29, 06F309 (2011).
[Crossref]

D. M. Tennant, R. Fullowan, H. Takemura, M. Isobe, and Y. Nakagawa, “Evaluation of a 100  kV thermal field emission electron-beam nanolithography system,” J. Vac. Sci. Technol. B 18, 3089–3094 (2000).
[Crossref]

Nat. Commun. (1)

N. Zen, T. A. Puurtinen, T. J. Isotalo, S. Chaudhuri, and I. J. Maasilta, “Engineering thermal conductance using a two-dimensional phononic crystal,” Nat. Commun. 5, 3435 (2014).
[Crossref]

Nat. Photonics (6)

F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1, 65–71 (2007).
[Crossref]

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4, 37–40 (2010).
[Crossref]

L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics 4, 41–45 (2010).
[Crossref]

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2010).
[Crossref]

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photonics 6, 369–373 (2012).
[Crossref]

B. J. M. Hausmann, I. Bulu, V. Venkataraman, P. Deotare, and M. Lončar, “Diamond nonlinear photonics,” Nat. Photonics 8, 369–374 (2014).
[Crossref]

Nature (4)

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421, 925–928 (2003).
[Crossref]

S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature 445, 627–630 (2007).
[Crossref]

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214–1217 (2007).
[Crossref]

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416, 233–237 (2002).
[Crossref]

Opt. Commun. (1)

T. Taniguchi, A. Hirowatari, T. Ikeda, M. Fukuyama, Y. Amemiya, A. Kuroda, and S. Yokoyama, “Detection of antibody–antigen reaction by silicon nitride slot-ring biosensors using protein G,” Opt. Commun. 365, 16–23 (2016).
[Crossref]

Opt. Express (6)

Opt. Lett. (5)

Opt. Quantum Electron. (1)

F. P. Payne and J. P. R. Lacey, “A theoretical analysis of scattering loss from planar optical waveguides,” Opt. Quantum Electron. 26, 977–986 (1994).
[Crossref]

Optica (6)

Phys. Rev. A (4)

J. Hofer, A. Schliesser, and T. J. Kippenberg, “Cavity optomechanics with ultrahigh-Q crystalline microresonators,” Phys. Rev. A 82, 031804 (2010).
[Crossref]

I. S. Grudinin, V. S. Ilchenko, and L. Maleki, “Ultrahigh optical Q factors of crystalline resonators in the linear regime,” Phys. Rev. A 74, 063806 (2006).
[Crossref]

X. Yi, Y.-F. Xiao, Y.-C. Liu, B.-B. Li, Y.-L. Chen, Y. Li, and Q. Gong, “Multiple-Rayleigh-scatterer-induced mode splitting in a high-Q whispering-gallery-mode microresonator,” Phys. Rev. A 83, 023803 (2011).
[Crossref]

A. Matsko, A. Savchenkov, D. Strekalov, V. Ilchenko, and L. Maleki, “Optical hyperparametric oscillations in a whispering-gallery-mode resonator: threshold and phase diffusion,” Phys. Rev. A 71, 033804 (2005).
[Crossref]

Phys. Rev. Lett. (4)

A. A. Savchenkov, A. B. Matsko, D. Strekalov, M. Mohageg, V. S. Ilchenko, and L. Maleki, “Low threshold optical oscillations in a whispering gallery mode CaF2 resonator,” Phys. Rev. Lett. 93, 243905 (2004).
[Crossref]

T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Kerr-nonlinearity optical parametric oscillation in an ultrahigh-q toroid microcavity,” Phys. Rev. Lett. 93, 083904 (2004).
[Crossref]

V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, and L. Maleki, “Nonlinear optics and crystalline whispering gallery mode cavities,” Phys. Rev. Lett. 92, 043903 (2004).
[Crossref]

A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, I. Solomatine, D. Seidel, and L. Maleki, “Tunable optical frequency comb with a crystalline whispering gallery mode resonator,” Phys. Rev. Lett. 101, 093902 (2008).
[Crossref]

Proc. SPIE (1)

M. J. Shaw, J. Guo, G. A. Vawter, S. Habermehl, and C. T. Sullivan, “Fabrication techniques for low-loss silicon nitride waveguides,” Proc. SPIE 5720, 109–118 (2005).
[Crossref]

Rev. Sci. Instrum. (1)

A. O’Keefe and D. A. G. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 59, 2544–2551 (1988).
[Crossref]

Science (1)

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332, 555–559 (2011).
[Crossref]

Other (1)

D. Beery, K. Reinhardt, P. B. Smith, J. Kelley, and A. Sivasothy, “Post etch residue removal: novel dry clean technology using densified fluid cleaning (DFC),” in IEEE International Interconnect Technology Conference (Cat. No. 99EX247) (1999), pp. 140–142.

Supplementary Material (1)

NameDescription
» Supplement 1: PDF (1864 KB)      AFM scan, fabrication and threshold comparsions

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Microscope images and mode simulation of the fabricated devices. (a) Top view optical microscope image of a 115 μm radius ring resonator. (b) Scanning electron microscopy image of a fabricated waveguide with smooth surfaces. (c) Mode simulation of a 730 nm tall and 2500 nm wide waveguide showing the mode is highly confined in the geometry we have chosen.
Fig. 2.
Fig. 2. AFM measurement of the top surface of Si3N4. (a) 3D AFM scan of the top surface of Si3N4 before CMP with RMS roughness of 0.38 nm and correlation length of 29 nm. (b) 2D image of the top surface of Si3N4 before CMP and scaled to 1.4 to 1.4 nm with RMS roughness of 0.38 nm and correlation length of 29 nm. (c) 3D image of the top surface of Si3N4 after CMP with RMS roughness of 0.08 nm and correlation length of 8.76 nm. (d) 2D image of the top surface of Si3N4 after CMP and scaled to 1.4 to 1.4 nm with RMS roughness of 0.08 nm and correlation length of 8.76 nm. Note the different scale bars in (a) and (c).
Fig. 3.
Fig. 3. Normalized transmission spectra of ring resonators fabricated using different processes. (a) Device fabricated using the standard process reported in Ref. [44] with a measured FWHM of 47 MHz. (b) Device fabricated using the optimized etch process, but without our new surface smoothing technique and multipass lithography with a measured FWHM of 12.8 MHz. (c) Device fabricated using both the optimized etch recipe and surface smoothing techniques, but without multipass lithography with a measured FWHM of 7.6 MHz. (d) Device fabricated using all the techniques including the optimized etch recipe, surface smoothing technique, and multipass lithography with a measured FWHM of 5.6 MHz.
Fig. 4.
Fig. 4. Oscillation threshold decrease with decrease of losses. (a) Output power in the first generated mode as a function of pump power. In this device, parametric oscillation occurs for pump power of 330±70  μW (indicated by the solid green vertical line). Note that the first band appears more than one FSR away from the pumped resonance. (b) Measured threshold power as a function of the loaded quality factor (QL) for microresonators with different fabrication processes. Threshold powers approximately follow the theoretically predicted trend of being inversely proportional to QL2.
Fig. 5.
Fig. 5. Mode simulation and normalized transmission spectra for ring resonators with different interaction strengths with sidewalls. (a) TE mode profiles of waveguides that are 2.5 μm and 10 μm wide and 730 nm high using Si3N4 with a refractive index of 1.996 as the core material and SiO2 with a refractive index of 1.446 as the cladding material. (The mode simulations have taken the bending radius into account). (b) Same as (a) but for TM. (c) Measured normalized TE transmission spectra of the ring resonator composed of the 2.5 μm wide waveguide (left) with a measured FWHM of 6.2 MHz and the measured spectra of the ring resonator composed of the 10 μm wide waveguide (right) with a measured FWHM of 3.3 MHz in TE polarization using the optimized fabrication process. (d) TM transmission spectra of the rings with the narrower (left) and the wider (right) waveguides with FWHMs of 6.8 MHz and 5.8 MHz, respectively. (e) Cavity ring-down measurement in TM mode. The measured lifetime extracted from the exponential fit is 25.6±1.3  ns.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Pth1.54(π2)Qc2QL·n2  Vn2λQL2,
αring=αtotal_absorption+αtop_scatter+αbottom_scatter+αsidewalls_scatter,
αwide_ring=η1αtotal_absorption+η2(αtop_scatter+αbottom_scatter)+η3αsidewalls_scatter.

Metrics