Abstract

Rapid and continuous tunability of time delay is a crucial functionality for radio frequency (RF) photonic signal processing systems. Recent developments in photonic integration have enabled realizations of integrated microwave photonic (MWP) delay lines based on optical resonant devices such as ring resonators, typically tuned by slow thermo-optic effect. Here, we introduce an optical tuning approach to controlling and switching RF time delay from integrated optical ring resonators with a fast tuning speed. We demonstrate seamless tuning between pulse delay and advancement, as well as gigahertz switch capability without modifying the properties of resonators. This scheme opens the possibility for wideband advanced time-delay manipulation of RF signals for phase-arrayed antennas and radar applications in a general and compatible approach.

© 2017 Optical Society of America

1. INTRODUCTION

Microwave photonic (MWP) delay lines are key components in signal filtering, signal synchronization, and radar target simulators in advanced defense and radio frequency (RF) communication systems [14]. In these applications, fast delay tunability is necessary to provide a fast signal-pointing speed to microwave radar phased array systems [4] and the fast reconfigurability required in dynamic cognitive RF systems [5]. To avoid suffering from large footprints, MWP delay lines are preferably implemented in compact photonic devices based on optical resonances where the dispersive properties determine the signal group delay responses [68]—for instance, fiber Bragg gratings (FBGs) [9] and stimulated Brillouin scattering (SBS) [10] in fiber. However, these schemes require long-length waveguides and high pump power.

Recent progress on photonic integrated circuits (PICs) has included an impressive demonstration of on-chip MWP delay lines [11], but they lack the required tuning speed. The fast tunability based on the complementary phase-shifted spectra technique shows the integration potential, but its on-chip implementation is constrained by the difficulty of realizing a triangular-shaped spectral filter for spectrum tailoring [12]. Compact tunable time-delay lines were achieved by employing the optical resonances of integrated silicon [1315] and silicon nitride [16,17] ring resonators, but the tuning speed is constrained by the slow thermal-optic effect. An on-chip photonic delay line was demonstrated using sub-wavelength grating waveguides in silicon-on-insulator (SOI), but it only offered discrete tuning of time delays [18]. A continuously tunable time-delay realization was reported based on SBS in an integrated photonic chip, but the intrinsic response time of the SBS process limits the tuning speed to 10  ns, governed by the lifetime of acoustic waves [19]. A controllable delay line based on a highly dispersive photonic crystal waveguide was demonstrated to be a potential candidate for a fully integrated MWP system; however, the tuning speed of several microseconds was limited by the frequency tunability of the optical source [20]. Although these efforts towards miniaturization are crucial for fully integrated MWP processors, they bring complexity to the tuning mechanism of the dispersive properties, increasing the requirements for device fabrication and power consumption. Hence, an entirely new approach to creating dynamically tunable MWP delay lines from an otherwise passive optical device is desired to facilitate the widespread implementation of this technology in real-world applications.

In this work, a principle for realizing gigahertz (GHz) tunable MWP delay lines in an integrated Si3N4 device is introduced and experimentally demonstrated. The technique relies on the interference between a data signal and a reference signal [21,22] to synthesize larger phase shifts in the microwave domain, which results in RF signal group delay enhancement. Through experiments, we demonstrate that this technique enables flexible switching between advancement and delay of RF signals and allows for fast tunability up to a GHz tuning speed solely by controlling the optical power. The results presented in this work imply the feasibility of wideband operation and compatibility with existing schemes based on dispersive photonic devices.

2. PRINCIPLE OF PHASE AMPLIFICATION

The schematic configuration of a conventional tunable MWP delay line is shown in Fig. 1(a). An RF signal is modulated onto an optical carrier via electronic-to-optical (E-O) conversion, and then processed by a photonic device which imparts dispersion-induced signal group delay, i.e., τg=φOR(ω)/ω, where φOR(ω) is the imposed phase response over the signal frequency ω. In contrast to the conventional MWP delay line, where the group delay is consistently determined by the optical dispersion of photonic devices, in the tunable delay line based on phase simplification shown in Fig. 1(b), an optically controlled unit of phase amplification is added to enhance the dispersion-induced group delay. By changing the optical power, a larger phase slope is synthesized, resulting in an enhanced group delay of the RF signal through optical-to-electronic (O-E) conversion.

 figure: Fig. 1.

Fig. 1. Basic block diagrams of (a) a conventional MWP delay line and (b) a MWP delay line with phase amplification. O-E, optical-to-electronic conversion; E-O, electronic-to-optical conversion.

Download Full Size | PPT Slide | PDF

This method that allows for the phase-response amplification is based on a vector-sum operation [22], as shown by a phasor diagram in Fig. 2(a). The vector in solid black represents a data signal A1cos(ωt+Δφ) at a frequency of ω, with an initial phase shift Δφ obtained from an optical resonance. Through a vector summation with a reference signal A2cos(ωt+π) illustrated by a vector in solid blue, a synthesized signal depicted by a vector in solid red can be obtained. It is clear to see that the phase shift φ of the synthesized signal is magnified with respect to the initial phase response Δφ of the data signal. The resultant phase shift φ can be controlled by varying the strength of the reference signal amplitude A2. This amplified phase response imparted on the synthesized RF signal results in an magnified signal group delay τg, written as τg=G·τg, where G is the amplification factor expressed by G=(1A2/A1)1 (for derivations, see Supplement 1).

 figure: Fig. 2.

Fig. 2. Schematic illustrations of the operational principle of (a) phase-amplification technique and (b) dispersion enhancement from an initial dispersion induced by an optical resonance.

Download Full Size | PPT Slide | PDF

In Fig. 2(b), the black line shows the phase response induced by an optical ring resonator operated in the under-coupled (UC) regime where the coupling losses are less than the internal losses of the resonator, with an intrinsic quality factor (Q) of 1×106, which approximates the performance of the optical resonator we used in the experiments. In the UC region, the optical resonator has dispersive phase shifts over the resonance frequency range. The phase shift depicted by the black dot is enhanced by the phase-amplification method to a larger phase denoted by the red dot. By extending this principle across the frequency range around the resonance, the dispersion will be enhanced to achieve a larger phase slope, as shown by the red curve, resulting in an improvement in the signal group delay according to τg=G·τg.

3. DISPERSION CONTROL

With this scheme, we demonstrated the activation of tuning the signal group delay by solely varying the strength of the reference signal. We implemented the technique with a dual-sideband modulation where two signals were generated for vector summing by the mixing of sidebands and the optical carrier. As shown in Fig. 3(a), an optical carrier is modulated by RF signals, generating two intrinsically out-of-phase (π difference) optical sidebands for the data signal and reference, respectively. The optical upper sideband acquires a phase shift Δφ imparted by the optical resonance over the signal spectrum, while the lower sideband serves as the reference signal with a constant π-phase offset. The amplitude of the lower sideband is tuned by an optical filter so as to implement different amplitude ratios A2/A1. After signal mixing of the optical carrier and dual-sideband-based RF interferometry via photodetection, a resultant RF signal is synthesized with an enhanced dispersion across the signal spectrum. The tuning of the amplitude ratio A2/A1 results in a tunable phase-amplification factor G.

 figure: Fig. 3.

Fig. 3. (a) Schematic implementation of dispersion control based on the phase-response amplification, using dual-sideband phase modulation. (b) Simulation results of synthesized phase response with various amplitudes of the reference signal. The phase slope flips when the amplitude ratio changes from A2/A1<1 to A2/A1>1.

Download Full Size | PPT Slide | PDF

Simulation results for investigating the feasibility of this technique are shown in Fig. 3(b). In the simulations, a cascade of three under-coupled ring resonators, representing the experiment described later in this paper, is utilized to broaden the operation bandwidth for the phase amplification. The black trace shows the initial phase response on the upper sideband induced by the optical resonance and the red and blue curves represent the enhancement of the synthesized dispersion, with operations under the condition of the amplitude ratio A2/A1<1. Importantly, when operating in the regime of A2/A1>1, the phase slope of the synthesized dispersion flips to the opposite sign, indicating the switching between negative and positive signal group delay. Note that the RF signal delay is manipulated by solely controlling the lower sideband power, without tuning the actual optical resonators.

Figure 4(a) depicts the experimental setup to demonstrate the phase-amplification technique for dispersion control. An optical carrier from a distributed feedback laser (Teraxion Pure Spectrum, λ=1550  nm) was modulated by RF signals driven by a vector network analyzer (VNA, Agilent PNA 5224A) via a phase modulator (PM). The PM is used to generate the π phase difference for dual sidebands, while the unbalanced sideband amplitudes controlled by post processing will result in the intensity modulation. The modulated light was then fed to three cascaded UC rings fabricated using low-loss TriPleX (Si3N4/SiO2) technology [23]. Each ring has a free spectral range of 26 GHz and an intrinsic Q of 1×106 (a 3 dB linewidth of 200  MHz), and exhibited a low propagation loss of 0.1  dB/cm. The chip was equipped with on-chip tapers, leading to 7.5 dB fiber-to-fiber insertion loss. The amount of coupling, and hence the Q-factor and rejection of the ring resonator, can be tailored through thermo-optic tuning implemented using on-chip chromium heaters. For the demonstration, we set the rings to the UC state around 10 GHz away from the optical carrier frequency and arranged the resonance frequencies with an equal interval of 100  MHz to broaden the 3 dB bandwidth up to 400  MHz with a rejection of 5 dB. Subsequently, the upper sideband was processed by these optical resonances. A programmable optical filter (Finisar 4000s) was utilized to control the amplitude of the lower sideband. This can also be done by utilizing an IQ modulator that enables independent control of the amplitude and the phase. The processed optical signal came out of the photonic chip, and was detected by a high-speed photodetector (u2t XPDV2120). Through mixing of the processed sidebands along with the optical carrier via photodetection, the synthesized phase response in the RF spectral domain was acquired by the VNA, as shown in Fig. 4(b). An amplification factor G of 3 was obtained with A2/A1<1, while the slope flipped to the opposite sign when A2/A1>1, as expected from the simulation results shown in Fig. 3(b). These changes in measured phase slope indicate a flexible tunability of the signal group delay, which needs to be experimentally verified with real RF signal delay.

 figure: Fig. 4.

Fig. 4. (a) Schematic of the experimental setup to confirm the working principle of the phase-amplification technique. PM, phase modulator; PD, photodetector; VNA, network analyzer. Qualitative optical spectra denoted by red points are shown above the setup diagram. (b) Experimental results of synthesized phase response with various amplitude ratios. Notably, the phase slope flips when the amplitude ratio changes from A2/A1<1 to A2/A1>1.

Download Full Size | PPT Slide | PDF

4. OPTICAL TUNING OF SIGNAL DELAY

Based on the dispersion control, here we performed a demonstration of MWP signal delay with flexible tunability, using the setup shown in Fig. 5. In the experiment, we emulate a scenario where a tunable MWP delay line works at 10 GHz within the x band (8–12 GHz), which is a frequency range for extensive microwave applications such as satellite communications, radars, and space communications. RF pulse trains (a baseband RF signal with a width of 3  ns and 20 MHz repetition rate) were generated from an RF signal source (Tabor, WS8352) and then were up-shifted to 10 GHz by mixing with an RF carrier at 10 GHz from a local oscillator via a frequency mixer. The up-converted RF signals centered at 10 GHz were modulated onto an optical carrier via a PM, generating two out-of-phase sidebands. The modulated optical signal was then processed by the optical filter and the photonic chip, as described previously in Fig. 4(a). After the photonic delay line, the detected RF signal was down-shifted from 10 GHz to the baseband and monitored on an oscilloscope. One can note that the frequency bandwidth of the 3  ns signal pulse is 340  MHz, which can fit within the bandwidth of 400  MHz provided by the cascade of three optical ring resonators. Potentially, this scheme can also operate over a wide range of RF carrier frequencies.

 figure: Fig. 5.

Fig. 5. Schematic of the experimental setup to demonstrate tunable RF signal delay based on the phase-amplification technique. PM, phase modulator; PD, photodetector; LO, local oscillator. Qualitative optical spectra denoted by red points are shown above the setup diagram.

Download Full Size | PPT Slide | PDF

When operated in the region A2/A1<1, as shown in Fig. 6(a), the RF pulse in purple trace using phase amplification shows an evident enhancement in time delay, in contrast to the delay signal in red trace with time-delay magnification. The dispersion enhancement allows for a group-delay magnification from 440 to 1110  ps with an amplification factor G of 3, as indicated by the corresponding measured phase responses. For the comparison of the group delay, an RF pulse without time delay is shown by the black trace.

 figure: Fig. 6.

Fig. 6. Experimental results of (a) pulse delay enhancement and (b) switching from negative delay to positive delay, along with corresponding spectra.

Download Full Size | PPT Slide | PDF

We achieved flexible switching between negative group delay (signal advancement) and positive group delay by changing the amplitude ratio to the region A2/A1>1. As shown in Fig. 6(b), the pulse indicated by the blue trace switches to positive group delay (+1570  ps) from signal advancement (400  ps), which results from the change in the sign of the synthesized phase slope imparted on the RF signal spectrum. From the phase response diagram in Fig. 6(b), the positive group delay can be tunable when the RF signal undergoes a different positive phase slope in yellow trace. The switching of delay can be explained by the change in the sign of amplification factor G, when the amplitude ratio varies from A2/A1<1 to A2/A1>1. We note that the symmetry of the phase responses originates from the dispersive response imparted by optical resonances, and the phase amplification is transparent to the chirp of modulated RF signals as the relative phase offset of two sidebands is fixed.

5. GHz TUNABILITY

We proceed to demonstrate that the phase-amplification technique enables rapid tunability, which is a striking performance for MWP systems, such as cognitive RF systems, where rapidly adjustable MWP components are required.

We evaluated the tuning speed by measuring the change of the synthesized phase shift at a single frequency, using the method based on a phase detector [24] that can convert the phase change into voltage signal (for details in methods and experiments, see Supplement 1). A gate signal with a duty circle of 50% and repetition rate of 100 MHz was used to achieve the switching between two discrete synthesized phase responses, leading to a time-variable voltage signal that results from the phase difference. From Fig. 7, the converted voltage signal denoted by the blue dotted line can dynamically follow the variations of the gate signal depicted by the solid red curve, which indicates that the tuning speed of the synthesized phase response is dominated by the dynamic power control via the high-speed IM. Since the rise and fall times of the gate signal are below 1 ns, the dynamic tuning speed experimentally achieved beyond 1 GHz. It is potentially expected to be as high as tens of GHz using a faster driven RF signal and high-speed IM. We compared the tuning speed of this work to other state-of-the-art tuning schemes for RF and MWP applications, as summarized in Table 1. The scheme we proposed shows a distinct advantage over other works based on electric switches [25], micro-electro-mechanical system (MEMS) devices [26], laser frequency tuning [27], thermal tuning [28], and spatial light modulators (SLMs) [29], with a much faster speed by 4–5 orders of magnitude. The tuning speed can be further improved to be comparable with the report work based on PM [3032]. For this reason, there is a potential to develop rapidly tunable MWP delay lines.

 figure: Fig. 7.

Fig. 7. Measured oscilloscope signals for demonstration of rapid tuning. The gate signal drives the phase switching that is reflected by the converted voltage indicated by the synthesized signal.

Download Full Size | PPT Slide | PDF

Tables Icon

Table 1. Tuning Speed Comparison of Reported MWP Tuning Schemes

6. DISCUSSION

Here we discuss the time-delay performance of this tunable MWP delay line based on phase amplification. From the complex plane in Fig. 2(a), the maximum amplified phase shift is constrained to ±π by the principle of vector-sum operation. This limit implies a larger group delay of half the signal pulse length according to τg=φmax/B(ω), where B(ω) is the bandwidth of a transform-limited signal, in comparison with the maximal time delay offered by a maximum phase shift of ±12π in Ref. [12].

For the tunability, the performance can be flexibly tuned through varying the amplitude ratio, achieving desirable amplification factor G. From the numerical analysis shown in Fig. 8(a), overall, the output phase responses are obviously enhanced compared with the response when A2/A1=0, which indicates no phase amplification. Small phase shifts can be significantly amplified with a good response linearity. The increase in the amplitude ratio results in a magnified phase output, while the linearity of the phase amplification begins to degrade at a ratio of 0.6. For amplitude ratio above 0.6, although the phase response shows a saturation behavior when the input phase shift increases, it keeps a good linearity with an input less than 10°. From Fig. 8(b), the smaller phase input can obtain a larger G when applying the same amplitude ratio.

 figure: Fig. 8.

Fig. 8. Simulation results for the analysis of the phase-amplification capacity based on the schematic phasor representation in Fig. 2(a). (a) Synthesized phase response as a function of the phase input under different amplitude ratios A2/A1. (b) Amplification factor as a function of the amplitude ratio A2/A1 under different phase inputs.

Download Full Size | PPT Slide | PDF

It is worth noting that this scheme also introduces inevitable signal loss for the synthesized RF signal, as partially destructive RF interference always occurs. As shown in Fig. 9, the absolute group delay increases to peak values when the amplitude ratio approaches 1, while the amplitude of the delayed RF pulse decreases to a minimum. This can be explained by considering that stronger destructive RF interference occurs when the amplitude ratio is close to 1. However, this signal cancellation can be avoided by operating in the region away from this critical point, and the reduced signal is easily compensated by using a conventional RF amplifier. Considering an attenuation of 10 dB in the peak power of the signal pulses for practical applications, the bounds of the operation region are A2/A1=0.75 for negative signal delay and A2/A1=1.25 for positive signal delay, respectively.

 figure: Fig. 9.

Fig. 9. Simulation results for analysis of the RF signal loss and synthesized group delay as a function of amplitude ratio. Parameters used in the simulation are based on those used in experiments.

Download Full Size | PPT Slide | PDF

Due to the radical functionality separation of power control from the dispersion, this phase-amplification method provides a general method to manipulate MWP signal group delay, which is compatible with other types of delay lines based on dispersive optical resonances such as integrated Bragg gratings [18] or on-chip SBS [33]. Furthermore, this scheme has the potential to achieve separate carrier tuning [34] for true time delay [35] through additional control of the phase shifts of the two optical carriers.

7. CONCLUSION

In conclusion, this simple and versatile scheme paves the way to the realization of on-chip dynamically tunable photonic delay lines and the achievement of both MWP signal delay and advancement in a passive platform. This technique is promising for enhancing conventional microwave photonic delay lines with flexibility and rapid tunability (GHz) and radically relaxing the requirements of complex designs and power consumption for integrated MWP tunable delay lines. These features are beneficial for applications in RF signal processors, multi-tap RF filters, and phased array antennas.

Funding

Air Force Office of Scientific Research (AFOSR) (FA2386-14-1-4030, FA2386-16-1-4036); Australian Research Council (ARC) (CE110001018, DE150101535, FL120100029, DE170100585).

 

See Supplement 1 for supporting content.

REFERENCES

1. A. J. Seeds and K. J. Williams, “Microwave photonics,” J. Lightwave Technol. 24, 4628–4641 (2006). [CrossRef]  

2. J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1, 319–330 (2007). [CrossRef]  

3. J. Yao, “Microwave photonics,” J. Lightwave Technol. 27, 314–335 (2009). [CrossRef]  

4. P. F. McManamon, “A review of phased array steering for narrow-band electrooptical systems,” Proc. IEEE 97, 1078–1096 (2009). [CrossRef]  

5. B. Wang and K. J. R. Liu, “Advances in cognitive radio networks: a survey,” IEEE J. Sel. Top. Signal Process. 5, 5–23 (2011). [CrossRef]  

6. J. Capmany, I. Gasulla, and S. Sales, “Microwave photonics: harnessing slow light,” Nat. Photonics 5, 731–733 (2011). [CrossRef]  

7. G. Lenz, B. J. Eggleton, C. K. Madsen, and R. E. Slusher, “Optical delay lines based on optical filters,” IEEE J. Quantum Electron. 37, 525–532 (2001). [CrossRef]  

8. M. S. Rasras, C. K. Madsen, M. A. Cappuzzo, E. Chen, L. T. Gomez, E. J. Laskowski, A. Griffin, A. Wong-Foy, A. Gasparyan, A. Kasper, J. Le Grange, and S. S. Patel, “Integrated resonance-enhanced variable optical delay lines,” IEEE Photon. Technol. Lett. 17, 834–836 (2005). [CrossRef]  

9. J. L. Corral, J. Marti, J. M. Fuster, and R. I. Laming, “True time-delay scheme for feeding optically controlled phased-array antennas using chirped-fiber gratings,” IEEE Photon. Technol. Lett. 9, 1529–1531 (1997). [CrossRef]  

10. S. Chin, L. Thévenaz, J. Sancho, S. Sales, J. Capmany, P. Berger, J. Bourderionnet, and D. Dolfi, “Broadband true time delay for microwave signal processing, using slow light based on stimulated Brillouin scattering in optical fibers,” Opt. Express 18, 22599–22613 (2010). [CrossRef]  

11. D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photon. Rev. 7, 506–538 (2013). [CrossRef]  

12. R. Bonjour, S. A. Gebrewold, D. Hillerkuss, C. Hafner, and J. Leuthold, “Continuously tunable true-time delays with ultra-low settling time,” Opt. Express 23, 6952–6964 (2015). [CrossRef]  

13. Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96, 123901 (2006). [CrossRef]  

14. M. F. Yanik, W. Suh, Z. Wang, and S. Fan, “Stopping light in a waveguide with an all-optical analog of electromagnetically induced transparency,” Phys. Rev. Lett. 93, 233903 (2004). [CrossRef]  

15. J. Cardenas, M. A. Foster, N. Sherwood-Droz, C. B. Poitras, H. L. R. Lira, B. Zhang, A. L. Gaeta, J. B. Khurgin, P. Morton, and M. Lipson, “Wide-bandwidth continuously tunable optical delay line using silicon microring resonators,” Opt. Express 18, 26525–26534 (2010). [CrossRef]  

16. L. Zhuang, D. Marpaung, M. Burla, W. Beeker, A. Leinse, and C. Roeloffzen, “Low-loss, high-index-contrast Si3N4/SiO2 optical waveguides for optical delay lines in microwave photonics signal processing,” Opt. Express 19, 23162–23170 (2011). [CrossRef]  

17. M. Burla, D. Marpaung, L. Zhuang, C. Roeloffzen, M. R. Khan, A. Leinse, M. Hoekman, and R. Heideman, “On-chip CMOS compatible reconfigurable optical delay line with separate carrier tuning for microwave photonic signal processing,” Opt. Express 19, 21475–21484 (2011). [CrossRef]  

18. J. Wang, R. Ashrafi, R. Adams, I. Glesk, I. Gasulla, J. Capmany, and L. R. Chen, “Subwavelength grating enabled on-chip ultra-compact optical true time delay line,” Sci. Rep. 6, 30235 (2016). [CrossRef]  

19. R. Pant, A. Byrnes, C. G. Poulton, E. Li, D.-Y. Choi, S. Madden, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based tunable slow and fast light via stimulated Brillouin scattering,” Opt. Lett. 37, 969–971 (2012). [CrossRef]  

20. J. Sancho, J. Bourderionnet, J. Lloret, S. Combrié, I. Gasulla, S. Xavier, S. Sales, P. Colman, G. Lehoucq, D. Dolfi, J. Capmany, and A. De Rossi, “Integrable microwave filter based on a photonic crystal delay line,” Nat. Commun. 3, 1075 (2012). [CrossRef]  

21. D. Marpaung, B. Morrison, M. Pagani, R. Pant, D.-Y. Choi, B. Luther-Davies, S. J. Madden, and B. J. Eggleton, “Low-power, chip-based stimulated Brillouin scattering microwave photonic filter with ultrahigh selectivity,” Optica 2, 76–83 (2015). [CrossRef]  

22. M. Ayun, A. Schwarzbaum, S. Rosenberg, M. Pinchas, and S. Sternklar, “Photonic radio frequency phase-shift amplification by radio frequency interferometry,” Opt. Lett. 40, 4863–4866 (2015). [CrossRef]  

23. C. G. H. Roeloffzen, L. Zhuang, C. Taddei, A. Leinse, R. G. Heideman, P. W. L. van Dijk, R. M. Oldenbeuving, D. A. I. Marpaung, M. Burla, and K. J. Boller, “Silicon nitride microwave photonic circuits,” Opt. Express 21, 22937–22961 (2013). [CrossRef]  

24. R. Madrak, D. Sun, D. Wildman, E. Cherbak, and D. Horan, “New materials and designs for high-power, fast phase shifters,” in Proceedings of LINAC (2006), p. 829.

25. S. Fathpour, “Silicon-photonics-based wideband radar beamforming: basic design,” Opt. Eng. 49, 018201 (2010). [CrossRef]  

26. G. M. Rebeiz, RF MEMS: Theory, Design, and Technology (Wiley, 2004).

27. D. Marpaung, B. Morrison, R. Pant, C. Roeloffzen, A. Leinse, M. Hoekman, R. Heideman, and B. J. Eggleton, “Si3N4 ring resonator-based microwave photonic notch filter with an ultrahigh peak rejection,” Opt. Express 21, 23286–23294 (2013). [CrossRef]  

28. P. Dong, W. Qian, H. Liang, R. Shafiiha, D. Feng, G. Li, J. E. Cunningham, A. V. Krishnamoorthy, and M. Asghari, “Thermally tunable silicon racetrack resonators with ultralow tuning power,” Opt. Express 18, 20298–20304 (2010). [CrossRef]  

29. X. Yi, L. Li, T. X. H. Huang, and R. A. Minasian, “Programmable multiple true-time-delay elements based on a Fourier-domain optical processor,” Opt. Lett. 37, 608–610 (2012). [CrossRef]  

30. H. Y. Jiang, L. S. Yan, Y. Pan, W. Pan, B. Luo, X. H. Zou, and B. J. Eggleton, “Microwave photonic comb filter with ultra-fast tunability,” Opt. Lett. 40, 4895–4898 (2015). [CrossRef]  

31. R. Bonjour, M. Burla, F. C. Abrecht, S. Welschen, C. Hoessbacher, W. Heni, S. A. Gebrewold, B. Baeuerle, A. Josten, Y. Salamin, C. Haffner, P. V. Johnston, D. L. Elder, P. Leuchtmann, D. Hillerkuss, Y. Fddoryshyn, L. R. Dalton, C. Hafner, and J. Leuthold, “Plasmonic phased array feeder enabling ultra-fast beam steering at millimeter waves,” Opt. Express 24, 25608–25618 (2016). [CrossRef]  

32. V. R. Supradeepa, C. M. Long, R. Wu, F. Ferdous, E. Hamidi, D. E. Leaird, and A. M. Weiner, “Comb-based radiofrequency photonic filters with rapid tunability and high selectivity,” Nat. Photonics 6, 186–194 (2012). [CrossRef]  

33. A. Choudhary, B. Morrison, I. Aryanfar, S. Shahnia, M. Pagani, Y. Liu, K. Vu, S. Madden, D. Marpaung, and B. J. Eggleton, “Advanced integrated microwave signal processing with giant on-chip Brillouin gain,” J. Lightwave Technol. 35, 846–854 (2017) [CrossRef]  .

34. P. A. Morton and J. B. Khurgin, “Microwave photonic delay line with separate tuning of the optical carrier,” IEEE Photon. Technol. Lett. 21, 1686–1688 (2009). [CrossRef]  

35. Y. Liu, J. Yang, and J. Yao, “Continuous true-time-delay beamforming for phased array antenna using a tunable chirped fiber grating delay line,” IEEE Photon. Technol. Lett. 14, 1172–1174 (2002). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. A. J. Seeds and K. J. Williams, “Microwave photonics,” J. Lightwave Technol. 24, 4628–4641 (2006).
    [Crossref]
  2. J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1, 319–330 (2007).
    [Crossref]
  3. J. Yao, “Microwave photonics,” J. Lightwave Technol. 27, 314–335 (2009).
    [Crossref]
  4. P. F. McManamon, “A review of phased array steering for narrow-band electrooptical systems,” Proc. IEEE 97, 1078–1096 (2009).
    [Crossref]
  5. B. Wang and K. J. R. Liu, “Advances in cognitive radio networks: a survey,” IEEE J. Sel. Top. Signal Process. 5, 5–23 (2011).
    [Crossref]
  6. J. Capmany, I. Gasulla, and S. Sales, “Microwave photonics: harnessing slow light,” Nat. Photonics 5, 731–733 (2011).
    [Crossref]
  7. G. Lenz, B. J. Eggleton, C. K. Madsen, and R. E. Slusher, “Optical delay lines based on optical filters,” IEEE J. Quantum Electron. 37, 525–532 (2001).
    [Crossref]
  8. M. S. Rasras, C. K. Madsen, M. A. Cappuzzo, E. Chen, L. T. Gomez, E. J. Laskowski, A. Griffin, A. Wong-Foy, A. Gasparyan, A. Kasper, J. Le Grange, and S. S. Patel, “Integrated resonance-enhanced variable optical delay lines,” IEEE Photon. Technol. Lett. 17, 834–836 (2005).
    [Crossref]
  9. J. L. Corral, J. Marti, J. M. Fuster, and R. I. Laming, “True time-delay scheme for feeding optically controlled phased-array antennas using chirped-fiber gratings,” IEEE Photon. Technol. Lett. 9, 1529–1531 (1997).
    [Crossref]
  10. S. Chin, L. Thévenaz, J. Sancho, S. Sales, J. Capmany, P. Berger, J. Bourderionnet, and D. Dolfi, “Broadband true time delay for microwave signal processing, using slow light based on stimulated Brillouin scattering in optical fibers,” Opt. Express 18, 22599–22613 (2010).
    [Crossref]
  11. D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photon. Rev. 7, 506–538 (2013).
    [Crossref]
  12. R. Bonjour, S. A. Gebrewold, D. Hillerkuss, C. Hafner, and J. Leuthold, “Continuously tunable true-time delays with ultra-low settling time,” Opt. Express 23, 6952–6964 (2015).
    [Crossref]
  13. Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96, 123901 (2006).
    [Crossref]
  14. M. F. Yanik, W. Suh, Z. Wang, and S. Fan, “Stopping light in a waveguide with an all-optical analog of electromagnetically induced transparency,” Phys. Rev. Lett. 93, 233903 (2004).
    [Crossref]
  15. J. Cardenas, M. A. Foster, N. Sherwood-Droz, C. B. Poitras, H. L. R. Lira, B. Zhang, A. L. Gaeta, J. B. Khurgin, P. Morton, and M. Lipson, “Wide-bandwidth continuously tunable optical delay line using silicon microring resonators,” Opt. Express 18, 26525–26534 (2010).
    [Crossref]
  16. L. Zhuang, D. Marpaung, M. Burla, W. Beeker, A. Leinse, and C. Roeloffzen, “Low-loss, high-index-contrast Si3N4/SiO2 optical waveguides for optical delay lines in microwave photonics signal processing,” Opt. Express 19, 23162–23170 (2011).
    [Crossref]
  17. M. Burla, D. Marpaung, L. Zhuang, C. Roeloffzen, M. R. Khan, A. Leinse, M. Hoekman, and R. Heideman, “On-chip CMOS compatible reconfigurable optical delay line with separate carrier tuning for microwave photonic signal processing,” Opt. Express 19, 21475–21484 (2011).
    [Crossref]
  18. J. Wang, R. Ashrafi, R. Adams, I. Glesk, I. Gasulla, J. Capmany, and L. R. Chen, “Subwavelength grating enabled on-chip ultra-compact optical true time delay line,” Sci. Rep. 6, 30235 (2016).
    [Crossref]
  19. R. Pant, A. Byrnes, C. G. Poulton, E. Li, D.-Y. Choi, S. Madden, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based tunable slow and fast light via stimulated Brillouin scattering,” Opt. Lett. 37, 969–971 (2012).
    [Crossref]
  20. J. Sancho, J. Bourderionnet, J. Lloret, S. Combrié, I. Gasulla, S. Xavier, S. Sales, P. Colman, G. Lehoucq, D. Dolfi, J. Capmany, and A. De Rossi, “Integrable microwave filter based on a photonic crystal delay line,” Nat. Commun. 3, 1075 (2012).
    [Crossref]
  21. D. Marpaung, B. Morrison, M. Pagani, R. Pant, D.-Y. Choi, B. Luther-Davies, S. J. Madden, and B. J. Eggleton, “Low-power, chip-based stimulated Brillouin scattering microwave photonic filter with ultrahigh selectivity,” Optica 2, 76–83 (2015).
    [Crossref]
  22. M. Ayun, A. Schwarzbaum, S. Rosenberg, M. Pinchas, and S. Sternklar, “Photonic radio frequency phase-shift amplification by radio frequency interferometry,” Opt. Lett. 40, 4863–4866 (2015).
    [Crossref]
  23. C. G. H. Roeloffzen, L. Zhuang, C. Taddei, A. Leinse, R. G. Heideman, P. W. L. van Dijk, R. M. Oldenbeuving, D. A. I. Marpaung, M. Burla, and K. J. Boller, “Silicon nitride microwave photonic circuits,” Opt. Express 21, 22937–22961 (2013).
    [Crossref]
  24. R. Madrak, D. Sun, D. Wildman, E. Cherbak, and D. Horan, “New materials and designs for high-power, fast phase shifters,” in Proceedings of LINAC (2006), p. 829.
  25. S. Fathpour, “Silicon-photonics-based wideband radar beamforming: basic design,” Opt. Eng. 49, 018201 (2010).
    [Crossref]
  26. G. M. Rebeiz, RF MEMS: Theory, Design, and Technology (Wiley, 2004).
  27. D. Marpaung, B. Morrison, R. Pant, C. Roeloffzen, A. Leinse, M. Hoekman, R. Heideman, and B. J. Eggleton, “Si3N4 ring resonator-based microwave photonic notch filter with an ultrahigh peak rejection,” Opt. Express 21, 23286–23294 (2013).
    [Crossref]
  28. P. Dong, W. Qian, H. Liang, R. Shafiiha, D. Feng, G. Li, J. E. Cunningham, A. V. Krishnamoorthy, and M. Asghari, “Thermally tunable silicon racetrack resonators with ultralow tuning power,” Opt. Express 18, 20298–20304 (2010).
    [Crossref]
  29. X. Yi, L. Li, T. X. H. Huang, and R. A. Minasian, “Programmable multiple true-time-delay elements based on a Fourier-domain optical processor,” Opt. Lett. 37, 608–610 (2012).
    [Crossref]
  30. H. Y. Jiang, L. S. Yan, Y. Pan, W. Pan, B. Luo, X. H. Zou, and B. J. Eggleton, “Microwave photonic comb filter with ultra-fast tunability,” Opt. Lett. 40, 4895–4898 (2015).
    [Crossref]
  31. R. Bonjour, M. Burla, F. C. Abrecht, S. Welschen, C. Hoessbacher, W. Heni, S. A. Gebrewold, B. Baeuerle, A. Josten, Y. Salamin, C. Haffner, P. V. Johnston, D. L. Elder, P. Leuchtmann, D. Hillerkuss, Y. Fddoryshyn, L. R. Dalton, C. Hafner, and J. Leuthold, “Plasmonic phased array feeder enabling ultra-fast beam steering at millimeter waves,” Opt. Express 24, 25608–25618 (2016).
    [Crossref]
  32. V. R. Supradeepa, C. M. Long, R. Wu, F. Ferdous, E. Hamidi, D. E. Leaird, and A. M. Weiner, “Comb-based radiofrequency photonic filters with rapid tunability and high selectivity,” Nat. Photonics 6, 186–194 (2012).
    [Crossref]
  33. A. Choudhary, B. Morrison, I. Aryanfar, S. Shahnia, M. Pagani, Y. Liu, K. Vu, S. Madden, D. Marpaung, and B. J. Eggleton, “Advanced integrated microwave signal processing with giant on-chip Brillouin gain,” J. Lightwave Technol. 35, 846–854 (2017).
    [Crossref]
  34. P. A. Morton and J. B. Khurgin, “Microwave photonic delay line with separate tuning of the optical carrier,” IEEE Photon. Technol. Lett. 21, 1686–1688 (2009).
    [Crossref]
  35. Y. Liu, J. Yang, and J. Yao, “Continuous true-time-delay beamforming for phased array antenna using a tunable chirped fiber grating delay line,” IEEE Photon. Technol. Lett. 14, 1172–1174 (2002).
    [Crossref]

2017 (1)

2016 (2)

2015 (4)

2013 (3)

2012 (4)

R. Pant, A. Byrnes, C. G. Poulton, E. Li, D.-Y. Choi, S. Madden, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based tunable slow and fast light via stimulated Brillouin scattering,” Opt. Lett. 37, 969–971 (2012).
[Crossref]

J. Sancho, J. Bourderionnet, J. Lloret, S. Combrié, I. Gasulla, S. Xavier, S. Sales, P. Colman, G. Lehoucq, D. Dolfi, J. Capmany, and A. De Rossi, “Integrable microwave filter based on a photonic crystal delay line,” Nat. Commun. 3, 1075 (2012).
[Crossref]

X. Yi, L. Li, T. X. H. Huang, and R. A. Minasian, “Programmable multiple true-time-delay elements based on a Fourier-domain optical processor,” Opt. Lett. 37, 608–610 (2012).
[Crossref]

V. R. Supradeepa, C. M. Long, R. Wu, F. Ferdous, E. Hamidi, D. E. Leaird, and A. M. Weiner, “Comb-based radiofrequency photonic filters with rapid tunability and high selectivity,” Nat. Photonics 6, 186–194 (2012).
[Crossref]

2011 (4)

2010 (4)

2009 (3)

P. A. Morton and J. B. Khurgin, “Microwave photonic delay line with separate tuning of the optical carrier,” IEEE Photon. Technol. Lett. 21, 1686–1688 (2009).
[Crossref]

J. Yao, “Microwave photonics,” J. Lightwave Technol. 27, 314–335 (2009).
[Crossref]

P. F. McManamon, “A review of phased array steering for narrow-band electrooptical systems,” Proc. IEEE 97, 1078–1096 (2009).
[Crossref]

2007 (1)

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1, 319–330 (2007).
[Crossref]

2006 (2)

A. J. Seeds and K. J. Williams, “Microwave photonics,” J. Lightwave Technol. 24, 4628–4641 (2006).
[Crossref]

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96, 123901 (2006).
[Crossref]

2005 (1)

M. S. Rasras, C. K. Madsen, M. A. Cappuzzo, E. Chen, L. T. Gomez, E. J. Laskowski, A. Griffin, A. Wong-Foy, A. Gasparyan, A. Kasper, J. Le Grange, and S. S. Patel, “Integrated resonance-enhanced variable optical delay lines,” IEEE Photon. Technol. Lett. 17, 834–836 (2005).
[Crossref]

2004 (1)

M. F. Yanik, W. Suh, Z. Wang, and S. Fan, “Stopping light in a waveguide with an all-optical analog of electromagnetically induced transparency,” Phys. Rev. Lett. 93, 233903 (2004).
[Crossref]

2002 (1)

Y. Liu, J. Yang, and J. Yao, “Continuous true-time-delay beamforming for phased array antenna using a tunable chirped fiber grating delay line,” IEEE Photon. Technol. Lett. 14, 1172–1174 (2002).
[Crossref]

2001 (1)

G. Lenz, B. J. Eggleton, C. K. Madsen, and R. E. Slusher, “Optical delay lines based on optical filters,” IEEE J. Quantum Electron. 37, 525–532 (2001).
[Crossref]

1997 (1)

J. L. Corral, J. Marti, J. M. Fuster, and R. I. Laming, “True time-delay scheme for feeding optically controlled phased-array antennas using chirped-fiber gratings,” IEEE Photon. Technol. Lett. 9, 1529–1531 (1997).
[Crossref]

Abrecht, F. C.

Adams, R.

J. Wang, R. Ashrafi, R. Adams, I. Glesk, I. Gasulla, J. Capmany, and L. R. Chen, “Subwavelength grating enabled on-chip ultra-compact optical true time delay line,” Sci. Rep. 6, 30235 (2016).
[Crossref]

Aryanfar, I.

Asghari, M.

Ashrafi, R.

J. Wang, R. Ashrafi, R. Adams, I. Glesk, I. Gasulla, J. Capmany, and L. R. Chen, “Subwavelength grating enabled on-chip ultra-compact optical true time delay line,” Sci. Rep. 6, 30235 (2016).
[Crossref]

Ayun, M.

Baeuerle, B.

Beeker, W.

Berger, P.

Boller, K. J.

Bonjour, R.

Bourderionnet, J.

J. Sancho, J. Bourderionnet, J. Lloret, S. Combrié, I. Gasulla, S. Xavier, S. Sales, P. Colman, G. Lehoucq, D. Dolfi, J. Capmany, and A. De Rossi, “Integrable microwave filter based on a photonic crystal delay line,” Nat. Commun. 3, 1075 (2012).
[Crossref]

S. Chin, L. Thévenaz, J. Sancho, S. Sales, J. Capmany, P. Berger, J. Bourderionnet, and D. Dolfi, “Broadband true time delay for microwave signal processing, using slow light based on stimulated Brillouin scattering in optical fibers,” Opt. Express 18, 22599–22613 (2010).
[Crossref]

Burla, M.

Byrnes, A.

Capmany, J.

J. Wang, R. Ashrafi, R. Adams, I. Glesk, I. Gasulla, J. Capmany, and L. R. Chen, “Subwavelength grating enabled on-chip ultra-compact optical true time delay line,” Sci. Rep. 6, 30235 (2016).
[Crossref]

D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photon. Rev. 7, 506–538 (2013).
[Crossref]

J. Sancho, J. Bourderionnet, J. Lloret, S. Combrié, I. Gasulla, S. Xavier, S. Sales, P. Colman, G. Lehoucq, D. Dolfi, J. Capmany, and A. De Rossi, “Integrable microwave filter based on a photonic crystal delay line,” Nat. Commun. 3, 1075 (2012).
[Crossref]

J. Capmany, I. Gasulla, and S. Sales, “Microwave photonics: harnessing slow light,” Nat. Photonics 5, 731–733 (2011).
[Crossref]

S. Chin, L. Thévenaz, J. Sancho, S. Sales, J. Capmany, P. Berger, J. Bourderionnet, and D. Dolfi, “Broadband true time delay for microwave signal processing, using slow light based on stimulated Brillouin scattering in optical fibers,” Opt. Express 18, 22599–22613 (2010).
[Crossref]

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1, 319–330 (2007).
[Crossref]

Cappuzzo, M. A.

M. S. Rasras, C. K. Madsen, M. A. Cappuzzo, E. Chen, L. T. Gomez, E. J. Laskowski, A. Griffin, A. Wong-Foy, A. Gasparyan, A. Kasper, J. Le Grange, and S. S. Patel, “Integrated resonance-enhanced variable optical delay lines,” IEEE Photon. Technol. Lett. 17, 834–836 (2005).
[Crossref]

Cardenas, J.

Chen, E.

M. S. Rasras, C. K. Madsen, M. A. Cappuzzo, E. Chen, L. T. Gomez, E. J. Laskowski, A. Griffin, A. Wong-Foy, A. Gasparyan, A. Kasper, J. Le Grange, and S. S. Patel, “Integrated resonance-enhanced variable optical delay lines,” IEEE Photon. Technol. Lett. 17, 834–836 (2005).
[Crossref]

Chen, L. R.

J. Wang, R. Ashrafi, R. Adams, I. Glesk, I. Gasulla, J. Capmany, and L. R. Chen, “Subwavelength grating enabled on-chip ultra-compact optical true time delay line,” Sci. Rep. 6, 30235 (2016).
[Crossref]

Cherbak, E.

R. Madrak, D. Sun, D. Wildman, E. Cherbak, and D. Horan, “New materials and designs for high-power, fast phase shifters,” in Proceedings of LINAC (2006), p. 829.

Chin, S.

Choi, D.-Y.

Choudhary, A.

Colman, P.

J. Sancho, J. Bourderionnet, J. Lloret, S. Combrié, I. Gasulla, S. Xavier, S. Sales, P. Colman, G. Lehoucq, D. Dolfi, J. Capmany, and A. De Rossi, “Integrable microwave filter based on a photonic crystal delay line,” Nat. Commun. 3, 1075 (2012).
[Crossref]

Combrié, S.

J. Sancho, J. Bourderionnet, J. Lloret, S. Combrié, I. Gasulla, S. Xavier, S. Sales, P. Colman, G. Lehoucq, D. Dolfi, J. Capmany, and A. De Rossi, “Integrable microwave filter based on a photonic crystal delay line,” Nat. Commun. 3, 1075 (2012).
[Crossref]

Corral, J. L.

J. L. Corral, J. Marti, J. M. Fuster, and R. I. Laming, “True time-delay scheme for feeding optically controlled phased-array antennas using chirped-fiber gratings,” IEEE Photon. Technol. Lett. 9, 1529–1531 (1997).
[Crossref]

Cunningham, J. E.

Dalton, L. R.

De Rossi, A.

J. Sancho, J. Bourderionnet, J. Lloret, S. Combrié, I. Gasulla, S. Xavier, S. Sales, P. Colman, G. Lehoucq, D. Dolfi, J. Capmany, and A. De Rossi, “Integrable microwave filter based on a photonic crystal delay line,” Nat. Commun. 3, 1075 (2012).
[Crossref]

Dolfi, D.

J. Sancho, J. Bourderionnet, J. Lloret, S. Combrié, I. Gasulla, S. Xavier, S. Sales, P. Colman, G. Lehoucq, D. Dolfi, J. Capmany, and A. De Rossi, “Integrable microwave filter based on a photonic crystal delay line,” Nat. Commun. 3, 1075 (2012).
[Crossref]

S. Chin, L. Thévenaz, J. Sancho, S. Sales, J. Capmany, P. Berger, J. Bourderionnet, and D. Dolfi, “Broadband true time delay for microwave signal processing, using slow light based on stimulated Brillouin scattering in optical fibers,” Opt. Express 18, 22599–22613 (2010).
[Crossref]

Dong, P.

Eggleton, B. J.

Elder, D. L.

Fan, S.

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96, 123901 (2006).
[Crossref]

M. F. Yanik, W. Suh, Z. Wang, and S. Fan, “Stopping light in a waveguide with an all-optical analog of electromagnetically induced transparency,” Phys. Rev. Lett. 93, 233903 (2004).
[Crossref]

Fathpour, S.

S. Fathpour, “Silicon-photonics-based wideband radar beamforming: basic design,” Opt. Eng. 49, 018201 (2010).
[Crossref]

Fddoryshyn, Y.

Feng, D.

Ferdous, F.

V. R. Supradeepa, C. M. Long, R. Wu, F. Ferdous, E. Hamidi, D. E. Leaird, and A. M. Weiner, “Comb-based radiofrequency photonic filters with rapid tunability and high selectivity,” Nat. Photonics 6, 186–194 (2012).
[Crossref]

Foster, M. A.

Fuster, J. M.

J. L. Corral, J. Marti, J. M. Fuster, and R. I. Laming, “True time-delay scheme for feeding optically controlled phased-array antennas using chirped-fiber gratings,” IEEE Photon. Technol. Lett. 9, 1529–1531 (1997).
[Crossref]

Gaeta, A. L.

Gasparyan, A.

M. S. Rasras, C. K. Madsen, M. A. Cappuzzo, E. Chen, L. T. Gomez, E. J. Laskowski, A. Griffin, A. Wong-Foy, A. Gasparyan, A. Kasper, J. Le Grange, and S. S. Patel, “Integrated resonance-enhanced variable optical delay lines,” IEEE Photon. Technol. Lett. 17, 834–836 (2005).
[Crossref]

Gasulla, I.

J. Wang, R. Ashrafi, R. Adams, I. Glesk, I. Gasulla, J. Capmany, and L. R. Chen, “Subwavelength grating enabled on-chip ultra-compact optical true time delay line,” Sci. Rep. 6, 30235 (2016).
[Crossref]

J. Sancho, J. Bourderionnet, J. Lloret, S. Combrié, I. Gasulla, S. Xavier, S. Sales, P. Colman, G. Lehoucq, D. Dolfi, J. Capmany, and A. De Rossi, “Integrable microwave filter based on a photonic crystal delay line,” Nat. Commun. 3, 1075 (2012).
[Crossref]

J. Capmany, I. Gasulla, and S. Sales, “Microwave photonics: harnessing slow light,” Nat. Photonics 5, 731–733 (2011).
[Crossref]

Gebrewold, S. A.

Glesk, I.

J. Wang, R. Ashrafi, R. Adams, I. Glesk, I. Gasulla, J. Capmany, and L. R. Chen, “Subwavelength grating enabled on-chip ultra-compact optical true time delay line,” Sci. Rep. 6, 30235 (2016).
[Crossref]

Gomez, L. T.

M. S. Rasras, C. K. Madsen, M. A. Cappuzzo, E. Chen, L. T. Gomez, E. J. Laskowski, A. Griffin, A. Wong-Foy, A. Gasparyan, A. Kasper, J. Le Grange, and S. S. Patel, “Integrated resonance-enhanced variable optical delay lines,” IEEE Photon. Technol. Lett. 17, 834–836 (2005).
[Crossref]

Griffin, A.

M. S. Rasras, C. K. Madsen, M. A. Cappuzzo, E. Chen, L. T. Gomez, E. J. Laskowski, A. Griffin, A. Wong-Foy, A. Gasparyan, A. Kasper, J. Le Grange, and S. S. Patel, “Integrated resonance-enhanced variable optical delay lines,” IEEE Photon. Technol. Lett. 17, 834–836 (2005).
[Crossref]

Haffner, C.

Hafner, C.

Hamidi, E.

V. R. Supradeepa, C. M. Long, R. Wu, F. Ferdous, E. Hamidi, D. E. Leaird, and A. M. Weiner, “Comb-based radiofrequency photonic filters with rapid tunability and high selectivity,” Nat. Photonics 6, 186–194 (2012).
[Crossref]

Heideman, R.

Heideman, R. G.

Heni, W.

Hillerkuss, D.

Hoekman, M.

Hoessbacher, C.

Horan, D.

R. Madrak, D. Sun, D. Wildman, E. Cherbak, and D. Horan, “New materials and designs for high-power, fast phase shifters,” in Proceedings of LINAC (2006), p. 829.

Huang, T. X. H.

Jiang, H. Y.

Johnston, P. V.

Josten, A.

Kasper, A.

M. S. Rasras, C. K. Madsen, M. A. Cappuzzo, E. Chen, L. T. Gomez, E. J. Laskowski, A. Griffin, A. Wong-Foy, A. Gasparyan, A. Kasper, J. Le Grange, and S. S. Patel, “Integrated resonance-enhanced variable optical delay lines,” IEEE Photon. Technol. Lett. 17, 834–836 (2005).
[Crossref]

Khan, M. R.

Khurgin, J. B.

Krishnamoorthy, A. V.

Laming, R. I.

J. L. Corral, J. Marti, J. M. Fuster, and R. I. Laming, “True time-delay scheme for feeding optically controlled phased-array antennas using chirped-fiber gratings,” IEEE Photon. Technol. Lett. 9, 1529–1531 (1997).
[Crossref]

Laskowski, E. J.

M. S. Rasras, C. K. Madsen, M. A. Cappuzzo, E. Chen, L. T. Gomez, E. J. Laskowski, A. Griffin, A. Wong-Foy, A. Gasparyan, A. Kasper, J. Le Grange, and S. S. Patel, “Integrated resonance-enhanced variable optical delay lines,” IEEE Photon. Technol. Lett. 17, 834–836 (2005).
[Crossref]

Le Grange, J.

M. S. Rasras, C. K. Madsen, M. A. Cappuzzo, E. Chen, L. T. Gomez, E. J. Laskowski, A. Griffin, A. Wong-Foy, A. Gasparyan, A. Kasper, J. Le Grange, and S. S. Patel, “Integrated resonance-enhanced variable optical delay lines,” IEEE Photon. Technol. Lett. 17, 834–836 (2005).
[Crossref]

Leaird, D. E.

V. R. Supradeepa, C. M. Long, R. Wu, F. Ferdous, E. Hamidi, D. E. Leaird, and A. M. Weiner, “Comb-based radiofrequency photonic filters with rapid tunability and high selectivity,” Nat. Photonics 6, 186–194 (2012).
[Crossref]

Lehoucq, G.

J. Sancho, J. Bourderionnet, J. Lloret, S. Combrié, I. Gasulla, S. Xavier, S. Sales, P. Colman, G. Lehoucq, D. Dolfi, J. Capmany, and A. De Rossi, “Integrable microwave filter based on a photonic crystal delay line,” Nat. Commun. 3, 1075 (2012).
[Crossref]

Leinse, A.

Lenz, G.

G. Lenz, B. J. Eggleton, C. K. Madsen, and R. E. Slusher, “Optical delay lines based on optical filters,” IEEE J. Quantum Electron. 37, 525–532 (2001).
[Crossref]

Leuchtmann, P.

Leuthold, J.

Li, E.

Li, G.

Li, L.

Liang, H.

Lipson, M.

J. Cardenas, M. A. Foster, N. Sherwood-Droz, C. B. Poitras, H. L. R. Lira, B. Zhang, A. L. Gaeta, J. B. Khurgin, P. Morton, and M. Lipson, “Wide-bandwidth continuously tunable optical delay line using silicon microring resonators,” Opt. Express 18, 26525–26534 (2010).
[Crossref]

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96, 123901 (2006).
[Crossref]

Lira, H. L. R.

Liu, K. J. R.

B. Wang and K. J. R. Liu, “Advances in cognitive radio networks: a survey,” IEEE J. Sel. Top. Signal Process. 5, 5–23 (2011).
[Crossref]

Liu, Y.

A. Choudhary, B. Morrison, I. Aryanfar, S. Shahnia, M. Pagani, Y. Liu, K. Vu, S. Madden, D. Marpaung, and B. J. Eggleton, “Advanced integrated microwave signal processing with giant on-chip Brillouin gain,” J. Lightwave Technol. 35, 846–854 (2017).
[Crossref]

Y. Liu, J. Yang, and J. Yao, “Continuous true-time-delay beamforming for phased array antenna using a tunable chirped fiber grating delay line,” IEEE Photon. Technol. Lett. 14, 1172–1174 (2002).
[Crossref]

Lloret, J.

J. Sancho, J. Bourderionnet, J. Lloret, S. Combrié, I. Gasulla, S. Xavier, S. Sales, P. Colman, G. Lehoucq, D. Dolfi, J. Capmany, and A. De Rossi, “Integrable microwave filter based on a photonic crystal delay line,” Nat. Commun. 3, 1075 (2012).
[Crossref]

Long, C. M.

V. R. Supradeepa, C. M. Long, R. Wu, F. Ferdous, E. Hamidi, D. E. Leaird, and A. M. Weiner, “Comb-based radiofrequency photonic filters with rapid tunability and high selectivity,” Nat. Photonics 6, 186–194 (2012).
[Crossref]

Luo, B.

Luther-Davies, B.

Madden, S.

Madden, S. J.

Madrak, R.

R. Madrak, D. Sun, D. Wildman, E. Cherbak, and D. Horan, “New materials and designs for high-power, fast phase shifters,” in Proceedings of LINAC (2006), p. 829.

Madsen, C. K.

M. S. Rasras, C. K. Madsen, M. A. Cappuzzo, E. Chen, L. T. Gomez, E. J. Laskowski, A. Griffin, A. Wong-Foy, A. Gasparyan, A. Kasper, J. Le Grange, and S. S. Patel, “Integrated resonance-enhanced variable optical delay lines,” IEEE Photon. Technol. Lett. 17, 834–836 (2005).
[Crossref]

G. Lenz, B. J. Eggleton, C. K. Madsen, and R. E. Slusher, “Optical delay lines based on optical filters,” IEEE J. Quantum Electron. 37, 525–532 (2001).
[Crossref]

Marpaung, D.

Marpaung, D. A. I.

Marti, J.

J. L. Corral, J. Marti, J. M. Fuster, and R. I. Laming, “True time-delay scheme for feeding optically controlled phased-array antennas using chirped-fiber gratings,” IEEE Photon. Technol. Lett. 9, 1529–1531 (1997).
[Crossref]

McManamon, P. F.

P. F. McManamon, “A review of phased array steering for narrow-band electrooptical systems,” Proc. IEEE 97, 1078–1096 (2009).
[Crossref]

Minasian, R. A.

Morrison, B.

Morton, P.

Morton, P. A.

P. A. Morton and J. B. Khurgin, “Microwave photonic delay line with separate tuning of the optical carrier,” IEEE Photon. Technol. Lett. 21, 1686–1688 (2009).
[Crossref]

Novak, D.

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1, 319–330 (2007).
[Crossref]

Oldenbeuving, R. M.

Pagani, M.

Pan, W.

Pan, Y.

Pant, R.

Patel, S. S.

M. S. Rasras, C. K. Madsen, M. A. Cappuzzo, E. Chen, L. T. Gomez, E. J. Laskowski, A. Griffin, A. Wong-Foy, A. Gasparyan, A. Kasper, J. Le Grange, and S. S. Patel, “Integrated resonance-enhanced variable optical delay lines,” IEEE Photon. Technol. Lett. 17, 834–836 (2005).
[Crossref]

Pinchas, M.

Poitras, C. B.

Poulton, C. G.

Povinelli, M. L.

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96, 123901 (2006).
[Crossref]

Qian, W.

Rasras, M. S.

M. S. Rasras, C. K. Madsen, M. A. Cappuzzo, E. Chen, L. T. Gomez, E. J. Laskowski, A. Griffin, A. Wong-Foy, A. Gasparyan, A. Kasper, J. Le Grange, and S. S. Patel, “Integrated resonance-enhanced variable optical delay lines,” IEEE Photon. Technol. Lett. 17, 834–836 (2005).
[Crossref]

Rebeiz, G. M.

G. M. Rebeiz, RF MEMS: Theory, Design, and Technology (Wiley, 2004).

Roeloffzen, C.

Roeloffzen, C. G. H.

Rosenberg, S.

Salamin, Y.

Sales, S.

D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photon. Rev. 7, 506–538 (2013).
[Crossref]

J. Sancho, J. Bourderionnet, J. Lloret, S. Combrié, I. Gasulla, S. Xavier, S. Sales, P. Colman, G. Lehoucq, D. Dolfi, J. Capmany, and A. De Rossi, “Integrable microwave filter based on a photonic crystal delay line,” Nat. Commun. 3, 1075 (2012).
[Crossref]

J. Capmany, I. Gasulla, and S. Sales, “Microwave photonics: harnessing slow light,” Nat. Photonics 5, 731–733 (2011).
[Crossref]

S. Chin, L. Thévenaz, J. Sancho, S. Sales, J. Capmany, P. Berger, J. Bourderionnet, and D. Dolfi, “Broadband true time delay for microwave signal processing, using slow light based on stimulated Brillouin scattering in optical fibers,” Opt. Express 18, 22599–22613 (2010).
[Crossref]

Sancho, J.

J. Sancho, J. Bourderionnet, J. Lloret, S. Combrié, I. Gasulla, S. Xavier, S. Sales, P. Colman, G. Lehoucq, D. Dolfi, J. Capmany, and A. De Rossi, “Integrable microwave filter based on a photonic crystal delay line,” Nat. Commun. 3, 1075 (2012).
[Crossref]

S. Chin, L. Thévenaz, J. Sancho, S. Sales, J. Capmany, P. Berger, J. Bourderionnet, and D. Dolfi, “Broadband true time delay for microwave signal processing, using slow light based on stimulated Brillouin scattering in optical fibers,” Opt. Express 18, 22599–22613 (2010).
[Crossref]

Sandhu, S.

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96, 123901 (2006).
[Crossref]

Schwarzbaum, A.

Seeds, A. J.

Shafiiha, R.

Shahnia, S.

Shakya, J.

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96, 123901 (2006).
[Crossref]

Sherwood-Droz, N.

Slusher, R. E.

G. Lenz, B. J. Eggleton, C. K. Madsen, and R. E. Slusher, “Optical delay lines based on optical filters,” IEEE J. Quantum Electron. 37, 525–532 (2001).
[Crossref]

Sternklar, S.

Suh, W.

M. F. Yanik, W. Suh, Z. Wang, and S. Fan, “Stopping light in a waveguide with an all-optical analog of electromagnetically induced transparency,” Phys. Rev. Lett. 93, 233903 (2004).
[Crossref]

Sun, D.

R. Madrak, D. Sun, D. Wildman, E. Cherbak, and D. Horan, “New materials and designs for high-power, fast phase shifters,” in Proceedings of LINAC (2006), p. 829.

Supradeepa, V. R.

V. R. Supradeepa, C. M. Long, R. Wu, F. Ferdous, E. Hamidi, D. E. Leaird, and A. M. Weiner, “Comb-based radiofrequency photonic filters with rapid tunability and high selectivity,” Nat. Photonics 6, 186–194 (2012).
[Crossref]

Taddei, C.

Thévenaz, L.

van Dijk, P. W. L.

Vu, K.

Wang, B.

B. Wang and K. J. R. Liu, “Advances in cognitive radio networks: a survey,” IEEE J. Sel. Top. Signal Process. 5, 5–23 (2011).
[Crossref]

Wang, J.

J. Wang, R. Ashrafi, R. Adams, I. Glesk, I. Gasulla, J. Capmany, and L. R. Chen, “Subwavelength grating enabled on-chip ultra-compact optical true time delay line,” Sci. Rep. 6, 30235 (2016).
[Crossref]

Wang, Z.

M. F. Yanik, W. Suh, Z. Wang, and S. Fan, “Stopping light in a waveguide with an all-optical analog of electromagnetically induced transparency,” Phys. Rev. Lett. 93, 233903 (2004).
[Crossref]

Weiner, A. M.

V. R. Supradeepa, C. M. Long, R. Wu, F. Ferdous, E. Hamidi, D. E. Leaird, and A. M. Weiner, “Comb-based radiofrequency photonic filters with rapid tunability and high selectivity,” Nat. Photonics 6, 186–194 (2012).
[Crossref]

Welschen, S.

Wildman, D.

R. Madrak, D. Sun, D. Wildman, E. Cherbak, and D. Horan, “New materials and designs for high-power, fast phase shifters,” in Proceedings of LINAC (2006), p. 829.

Williams, K. J.

Wong-Foy, A.

M. S. Rasras, C. K. Madsen, M. A. Cappuzzo, E. Chen, L. T. Gomez, E. J. Laskowski, A. Griffin, A. Wong-Foy, A. Gasparyan, A. Kasper, J. Le Grange, and S. S. Patel, “Integrated resonance-enhanced variable optical delay lines,” IEEE Photon. Technol. Lett. 17, 834–836 (2005).
[Crossref]

Wu, R.

V. R. Supradeepa, C. M. Long, R. Wu, F. Ferdous, E. Hamidi, D. E. Leaird, and A. M. Weiner, “Comb-based radiofrequency photonic filters with rapid tunability and high selectivity,” Nat. Photonics 6, 186–194 (2012).
[Crossref]

Xavier, S.

J. Sancho, J. Bourderionnet, J. Lloret, S. Combrié, I. Gasulla, S. Xavier, S. Sales, P. Colman, G. Lehoucq, D. Dolfi, J. Capmany, and A. De Rossi, “Integrable microwave filter based on a photonic crystal delay line,” Nat. Commun. 3, 1075 (2012).
[Crossref]

Xu, Q.

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96, 123901 (2006).
[Crossref]

Yan, L. S.

Yang, J.

Y. Liu, J. Yang, and J. Yao, “Continuous true-time-delay beamforming for phased array antenna using a tunable chirped fiber grating delay line,” IEEE Photon. Technol. Lett. 14, 1172–1174 (2002).
[Crossref]

Yanik, M. F.

M. F. Yanik, W. Suh, Z. Wang, and S. Fan, “Stopping light in a waveguide with an all-optical analog of electromagnetically induced transparency,” Phys. Rev. Lett. 93, 233903 (2004).
[Crossref]

Yao, J.

J. Yao, “Microwave photonics,” J. Lightwave Technol. 27, 314–335 (2009).
[Crossref]

Y. Liu, J. Yang, and J. Yao, “Continuous true-time-delay beamforming for phased array antenna using a tunable chirped fiber grating delay line,” IEEE Photon. Technol. Lett. 14, 1172–1174 (2002).
[Crossref]

Yi, X.

Zhang, B.

Zhuang, L.

Zou, X. H.

IEEE J. Quantum Electron. (1)

G. Lenz, B. J. Eggleton, C. K. Madsen, and R. E. Slusher, “Optical delay lines based on optical filters,” IEEE J. Quantum Electron. 37, 525–532 (2001).
[Crossref]

IEEE J. Sel. Top. Signal Process. (1)

B. Wang and K. J. R. Liu, “Advances in cognitive radio networks: a survey,” IEEE J. Sel. Top. Signal Process. 5, 5–23 (2011).
[Crossref]

IEEE Photon. Technol. Lett. (4)

M. S. Rasras, C. K. Madsen, M. A. Cappuzzo, E. Chen, L. T. Gomez, E. J. Laskowski, A. Griffin, A. Wong-Foy, A. Gasparyan, A. Kasper, J. Le Grange, and S. S. Patel, “Integrated resonance-enhanced variable optical delay lines,” IEEE Photon. Technol. Lett. 17, 834–836 (2005).
[Crossref]

J. L. Corral, J. Marti, J. M. Fuster, and R. I. Laming, “True time-delay scheme for feeding optically controlled phased-array antennas using chirped-fiber gratings,” IEEE Photon. Technol. Lett. 9, 1529–1531 (1997).
[Crossref]

P. A. Morton and J. B. Khurgin, “Microwave photonic delay line with separate tuning of the optical carrier,” IEEE Photon. Technol. Lett. 21, 1686–1688 (2009).
[Crossref]

Y. Liu, J. Yang, and J. Yao, “Continuous true-time-delay beamforming for phased array antenna using a tunable chirped fiber grating delay line,” IEEE Photon. Technol. Lett. 14, 1172–1174 (2002).
[Crossref]

J. Lightwave Technol. (3)

Laser Photon. Rev. (1)

D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photon. Rev. 7, 506–538 (2013).
[Crossref]

Nat. Commun. (1)

J. Sancho, J. Bourderionnet, J. Lloret, S. Combrié, I. Gasulla, S. Xavier, S. Sales, P. Colman, G. Lehoucq, D. Dolfi, J. Capmany, and A. De Rossi, “Integrable microwave filter based on a photonic crystal delay line,” Nat. Commun. 3, 1075 (2012).
[Crossref]

Nat. Photonics (3)

J. Capmany, I. Gasulla, and S. Sales, “Microwave photonics: harnessing slow light,” Nat. Photonics 5, 731–733 (2011).
[Crossref]

V. R. Supradeepa, C. M. Long, R. Wu, F. Ferdous, E. Hamidi, D. E. Leaird, and A. M. Weiner, “Comb-based radiofrequency photonic filters with rapid tunability and high selectivity,” Nat. Photonics 6, 186–194 (2012).
[Crossref]

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1, 319–330 (2007).
[Crossref]

Opt. Eng. (1)

S. Fathpour, “Silicon-photonics-based wideband radar beamforming: basic design,” Opt. Eng. 49, 018201 (2010).
[Crossref]

Opt. Express (9)

R. Bonjour, M. Burla, F. C. Abrecht, S. Welschen, C. Hoessbacher, W. Heni, S. A. Gebrewold, B. Baeuerle, A. Josten, Y. Salamin, C. Haffner, P. V. Johnston, D. L. Elder, P. Leuchtmann, D. Hillerkuss, Y. Fddoryshyn, L. R. Dalton, C. Hafner, and J. Leuthold, “Plasmonic phased array feeder enabling ultra-fast beam steering at millimeter waves,” Opt. Express 24, 25608–25618 (2016).
[Crossref]

D. Marpaung, B. Morrison, R. Pant, C. Roeloffzen, A. Leinse, M. Hoekman, R. Heideman, and B. J. Eggleton, “Si3N4 ring resonator-based microwave photonic notch filter with an ultrahigh peak rejection,” Opt. Express 21, 23286–23294 (2013).
[Crossref]

P. Dong, W. Qian, H. Liang, R. Shafiiha, D. Feng, G. Li, J. E. Cunningham, A. V. Krishnamoorthy, and M. Asghari, “Thermally tunable silicon racetrack resonators with ultralow tuning power,” Opt. Express 18, 20298–20304 (2010).
[Crossref]

C. G. H. Roeloffzen, L. Zhuang, C. Taddei, A. Leinse, R. G. Heideman, P. W. L. van Dijk, R. M. Oldenbeuving, D. A. I. Marpaung, M. Burla, and K. J. Boller, “Silicon nitride microwave photonic circuits,” Opt. Express 21, 22937–22961 (2013).
[Crossref]

S. Chin, L. Thévenaz, J. Sancho, S. Sales, J. Capmany, P. Berger, J. Bourderionnet, and D. Dolfi, “Broadband true time delay for microwave signal processing, using slow light based on stimulated Brillouin scattering in optical fibers,” Opt. Express 18, 22599–22613 (2010).
[Crossref]

R. Bonjour, S. A. Gebrewold, D. Hillerkuss, C. Hafner, and J. Leuthold, “Continuously tunable true-time delays with ultra-low settling time,” Opt. Express 23, 6952–6964 (2015).
[Crossref]

J. Cardenas, M. A. Foster, N. Sherwood-Droz, C. B. Poitras, H. L. R. Lira, B. Zhang, A. L. Gaeta, J. B. Khurgin, P. Morton, and M. Lipson, “Wide-bandwidth continuously tunable optical delay line using silicon microring resonators,” Opt. Express 18, 26525–26534 (2010).
[Crossref]

L. Zhuang, D. Marpaung, M. Burla, W. Beeker, A. Leinse, and C. Roeloffzen, “Low-loss, high-index-contrast Si3N4/SiO2 optical waveguides for optical delay lines in microwave photonics signal processing,” Opt. Express 19, 23162–23170 (2011).
[Crossref]

M. Burla, D. Marpaung, L. Zhuang, C. Roeloffzen, M. R. Khan, A. Leinse, M. Hoekman, and R. Heideman, “On-chip CMOS compatible reconfigurable optical delay line with separate carrier tuning for microwave photonic signal processing,” Opt. Express 19, 21475–21484 (2011).
[Crossref]

Opt. Lett. (4)

Optica (1)

Phys. Rev. Lett. (2)

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96, 123901 (2006).
[Crossref]

M. F. Yanik, W. Suh, Z. Wang, and S. Fan, “Stopping light in a waveguide with an all-optical analog of electromagnetically induced transparency,” Phys. Rev. Lett. 93, 233903 (2004).
[Crossref]

Proc. IEEE (1)

P. F. McManamon, “A review of phased array steering for narrow-band electrooptical systems,” Proc. IEEE 97, 1078–1096 (2009).
[Crossref]

Sci. Rep. (1)

J. Wang, R. Ashrafi, R. Adams, I. Glesk, I. Gasulla, J. Capmany, and L. R. Chen, “Subwavelength grating enabled on-chip ultra-compact optical true time delay line,” Sci. Rep. 6, 30235 (2016).
[Crossref]

Other (2)

R. Madrak, D. Sun, D. Wildman, E. Cherbak, and D. Horan, “New materials and designs for high-power, fast phase shifters,” in Proceedings of LINAC (2006), p. 829.

G. M. Rebeiz, RF MEMS: Theory, Design, and Technology (Wiley, 2004).

Supplementary Material (1)

NameDescription
» Supplement 1: PDF (1250 KB)      Supplemental Document

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1. Basic block diagrams of (a) a conventional MWP delay line and (b) a MWP delay line with phase amplification. O-E, optical-to-electronic conversion; E-O, electronic-to-optical conversion.
Fig. 2.
Fig. 2. Schematic illustrations of the operational principle of (a) phase-amplification technique and (b) dispersion enhancement from an initial dispersion induced by an optical resonance.
Fig. 3.
Fig. 3. (a) Schematic implementation of dispersion control based on the phase-response amplification, using dual-sideband phase modulation. (b) Simulation results of synthesized phase response with various amplitudes of the reference signal. The phase slope flips when the amplitude ratio changes from A 2 / A 1 < 1 to A 2 / A 1 > 1 .
Fig. 4.
Fig. 4. (a) Schematic of the experimental setup to confirm the working principle of the phase-amplification technique. PM, phase modulator; PD, photodetector; VNA, network analyzer. Qualitative optical spectra denoted by red points are shown above the setup diagram. (b) Experimental results of synthesized phase response with various amplitude ratios. Notably, the phase slope flips when the amplitude ratio changes from A 2 / A 1 < 1 to A 2 / A 1 > 1 .
Fig. 5.
Fig. 5. Schematic of the experimental setup to demonstrate tunable RF signal delay based on the phase-amplification technique. PM, phase modulator; PD, photodetector; LO, local oscillator. Qualitative optical spectra denoted by red points are shown above the setup diagram.
Fig. 6.
Fig. 6. Experimental results of (a) pulse delay enhancement and (b) switching from negative delay to positive delay, along with corresponding spectra.
Fig. 7.
Fig. 7. Measured oscilloscope signals for demonstration of rapid tuning. The gate signal drives the phase switching that is reflected by the converted voltage indicated by the synthesized signal.
Fig. 8.
Fig. 8. Simulation results for the analysis of the phase-amplification capacity based on the schematic phasor representation in Fig. 2(a). (a) Synthesized phase response as a function of the phase input under different amplitude ratios A 2 / A 1 . (b) Amplification factor as a function of the amplitude ratio A 2 / A 1 under different phase inputs.
Fig. 9.
Fig. 9. Simulation results for analysis of the RF signal loss and synthesized group delay as a function of amplitude ratio. Parameters used in the simulation are based on those used in experiments.

Tables (1)

Tables Icon

Table 1. Tuning Speed Comparison of Reported MWP Tuning Schemes

Metrics