Abstract

We report on bidirectional frequency conversion between the microwave and optical domains using electro-optics. Advances in communications, time keeping, and quantum sensing have all come to depend upon the coherent interoperation of light wave and microwave signals. To connect these domains, which are separated by a factor of 10,000 in frequency, requires specialized technology that has until now only been achieved by ultrafast mode-locked lasers. In contrast, electro-optic modulation (EOM) combs arise deterministically by imposing microwave-rate oscillations on a continuous-wave laser. Here we demonstrate electro-optic generation of a 160 THz bandwidth supercontinuum and realize f-2f self-referencing. Coherence of the supercontinuum is achieved through optical filtering of electronic noise on the seed EOM comb. The mode frequencies of the supercontinuum are derived from the electronic oscillator and they achieve <5×1014 fractional accuracy and stability, which opens a novel regime for tunable combs with wide mode spacing apart from the requirements of mode locking.

1. INTRODUCTION

Optical frequency combs, precise rulers for measuring and controlling light waves, are now an important tool in modern science and technology. The key feature frequency combs provide is a phase-coherent link between optical and microwave frequencies through self-referencing [1,2]. Combs enable diverse applications, including measurement of optical clocks [3]; precise calibration for optical spectroscopy [4], molecular identification [5], and coherent imaging [6]; control of quantum systems [7]; carrier-phase control in ultrafast science [8]; and photonic generation of microwave signals [9]. Existing self-referenced frequency comb technology is based either on mode-locked lasers or Kerr soliton generation in microcombs [10,11]. Combs based on mode-locked lasers mostly operate at fixed <1GHz pulse repetition rate, while microresonator combs offer much larger mode spacings (tens to hundreds of GHz), with values rigidly fixed by platform geometry. However, an emerging class of novel applications for combs, including coherent light wave communications [12], multiheterodyne optical detection [1315], optical waveform synthesis [16], frequency calibration, and searches for exoplanets [17], calls for a coincidence of wide tunability and pulse rates at tens of GHz or higher. These are already some of the established features of electro-optic modulation (EOM) combs in which the modes are derived electronically, but the central outstanding question is whether they can support coherent optical-microwave conversion.

Before the introduction of mode-locked-laser frequency combs, a leading approach to comb generation was direct EOM of CW light [18,19]. In such an EOM comb [2023], the frequency of each comb mode (counted n from the CW laser) is νn=νp+nfeo and arises jointly from the CW-laser frequency νp and frequency multiplication of the microwave modulation feo. The relative phases of comb lines are derived from the modulation index apart from any mode-locking mechanism; hence, the modulation deterministically transforms a CW laser into a train of light pulses. Furthermore, EOM-comb generators are already commercialized and can be straightforwardly reconfigured by simply changing the laser or modulation frequencies. Despite the simplicity of EOM frequency combs, they have not yet been developed into self-referenced frequency combs.

Here, we accomplish electronic synthesis of light with an EOM comb by identifying and solving two major scientific challenges: low spectral broadening efficiency associated with narrow EOM-comb bandwidth and microwave repetition rates, and full conversion of electronic noise to the optical comb that progressively degrades as n2 the first-order optical coherence of the comb lines. Our approach multiplies the frequency of a 10 GHz oscillator to create an effective optical frequency reference for the 193 THz CW laser at the center of the EOM comb. We implement frequency multiplication both with linear EOM-comb generation and with nonlinear-fiber spectral broadening. An optical filter cavity sufficiently reduces the fundamental electro-optic noise of the comb to preserve its coherence.

The carrier-envelope offset frequency of an EOM comb is f0=νpNfeo, whereby a multiplicative factor N19,340 relates the exact phase of the electronic oscillator to that of the CW laser. The need for optical filtering arises since microwave oscillators, given their thermal phase noise, do not support frequency multiplication to the optical domain [12,24,25]. Optical filtering reduces the impact of high-frequency oscillator noise and modifies the phase noise Fourier-frequency dependence to 1/f2, which is consistent with that of a laser.

To understand the filter cavity’s effect, we note that the solution of the integral equation [26] δω2πfeo/2Sϕ(N)F(ω)dω=1 estimates the linewidth δω(N) of the Nth EOM-comb mode. Here we focus on the limiting case for an EOM-comb mode with phase noise Sϕ(N)=N2Sϕ, where Sϕ is a constant microwave oscillator spectrum and F(ω) is the filter cavity lineshape that we approximate as a rectangle. Even for a state-of-the-art 10 GHz oscillator with thermally limited phase noise of 189dBc/Hz at +12dBm at 300 K without filtering, the comb lines needed for self-referencing are estimated to have δω(19340)/2π>1GHz and are practically undetectable. By use of an optical cavity following EOM-comb generation, we sufficiently reduce the contribution from oscillator phase noise. The result is a negligible projected linewidth contribution to the EOM-comb modes needed for self-referencing.

2. EXPERIMENTAL STUDIES

A. EOM Frequency Comb Generation

Our EOM-comb system (Fig. 1) begins with a 1550 nm CW laser that is for convenience stabilized to a high-finesse, low-expansion Fabry–Perot cavity. A frequency comb is derived by way of optical phase and intensity modulation with waveguide lithium-niobate devices at modulation frequency feo that transforms the CW laser into light pulses repeated with each modulation cycle [2729]. The resulting linear chirp yields pulses whose spectral envelopes are relatively flat, as shown in Figs. 1(a) and 1(c), for combs with 10 and 33 GHz spacing, respectively. Still, the bandwidth of these combs is <1THz, a factor of 200 too small for self-referencing. Subsequent spectral broadening of the EOM comb exploits the fact that its spectral-phase profile can be compensated using just second-order dispersion [30]. Propagation of the 50% duty cycle pulse train through an appropriate length of 1550 nm single-mode fiber (SMF) allows pulse compression to 1.7 ps, which is near the Fourier-transform limit.

 figure: Fig. 1.

Fig. 1. Apparatus for self-referencing a CW laser. The system is comprised of electro-optic phase and intensity modulators, two stages of nonlinear-fiber (HNLF-1 and -2) spectral broadening, a Fabry–Perot optical cavity filter, and f2f detection. (a) EOM comb with 10 GHz spacing. (b) Idem after HNLF-1. (c) EOM comb with 33 GHz spacing. (d) Idem after HNLF-1 and line-by-line intensity control.

Download Full Size | PPT Slide | PDF

To increase the EOM-comb bandwidth for self-referencing, we utilize two stages of spectral broadening [31] in commercially available highly nonlinear fiber (HNLF). In contrast to earlier results obtained with sub-40-fs titanium–sapphire mode-locked pulses [32], our work opens a new regime in which we realize coherent, octave-spanning frequency combs seeded by relatively long optical pulses. In the first broadening stage, we amplify the EOM comb to 500 mW using a commercial erbium-doped fiber amplifier. Next, the light is guided through a 100 m length of near-zero-dispersion HNLF. The resulting optical spectrum is characteristic of self-phase modulation (SPM); Fig. 1(b) shows the 10 GHz comb following the first broadening stage. In the case of the 33 GHz EOM comb, we show the use of line-by-line power flattening with a spatial light modulator after the SPM broadening [see Fig. 1(d)].

B. Supercontinuum Generation

Our second broadening stage is designed to coherently increase the EOM-comb span to the >1000nm needed for f-2f self-referencing. Operationally, as shown in Fig. 1, the EOM comb light is reamplified with a cladding-pumped, anomalous dispersion Er/Yb co-doped fiber to yield 140, 400, and 560 pJ pulses for the 33, 10, and 2.5 GHz EOM comb repetition frequencies, respectively. The 2.5 GHz comb is obtained by attenuating three out of every four 10 GHz pulses using a waveguide lithium-niobate intensity modulator [8,21,33,34]. The Er/Yb amplifier offers a maximum average power of 4.5 W, while the temporal intensity autocorrelation of optical pulses exiting the amplifier exhibits <300fs duration. Prior to the second-stage amplifier, we adjust both the polarization and dispersion of the second stage to maximize supercontinuum generation in HNLF-2. Specifically, second-order dispersion is applied in increments of 0.005ps2 using the line-by-line pulse shaper.

The design and implementation of coherent supercontinuum generation at high repetition rate is an advancement of our work. HNLF-2 is composed of two segments of nonlinear fiber with different spectral-dispersion profiles. These are fusion-spliced together with >80% transmission. The first segment has a zero dispersion point near 1300 nm that explains the dispersive wave centered at 1100 nm in Figs. 2(b) and 2(c). The dispersion of the second segment is 1.5 ps/(nm-km), and this fiber generates a dispersive-wave pattern near 1200 nm and broad supercontinuum peaks near 2100 nm. We largely avoid supercontinuum decoherence mechanisms previously associated with >100fs pulse duration [35]. Figure 2 shows particular examples of the ultrabroad spectra we obtain with our EOM comb. The 10 and 2.5 GHz cases feature more than one octave of bandwidth, and the 10 and 33 GHz comb teeth are prominent across the entire spectra. (Optical-spectrum-analyzer resolution prevents observation of the 2.5 GHz spaced teeth.)

 figure: Fig. 2.

Fig. 2. Supercontinuum generated using our second broadening stage with HNLF-2. (a) EOM-comb spacing is 33 GHz. (b) Idem but for 10 GHz spacing. (c) Pulse picking prior to HNLF-2 reduces the initial spacing to 2.5 GHz.

Download Full Size | PPT Slide | PDF

C. Carrier-Envelope-Offset-Frequency Detection of an EOM Comb

Following supercontinuum generation, we detect the carrier-envelope-offset frequency (f0) of the EOM comb. A 10 mm sample of periodically poled lithium niobate generates the second harmonic of supercontinuum light at 2140 nm; Fig. 3(a) shows separately obtained optical spectra of the f and 2f components at 1070 nm for the 2.5 GHz comb. We photodetect the optical heterodyne beat of these two spectra and optimize alignment of their relative arrival time and polarization. The photocurrent reveals the offset frequency f0 of an EOM comb. This signal represents the generation of an effective optical frequency reference through extreme multiplication of the microwave feo; Fig. 3(b) shows the RF spectrum of the offset beat f0. We have not been able to detect f0 with the filter cavity removed from the system. This Fabry–Perot optical cavity, which includes a mechanical translation stage to match the FSR to feo, features a 7 MHz FWHM linewidth, a 10GHz FSR directly locked to νp by feedback to its length, and an insertion loss of 8 dB for the entire SPM-broadened EOM comb. Our unsuccessful search for f0 without the filter cavity involves careful re-optimization of the pulse shaper dispersion setting and all other relevant system parameters. The procedure yields f and 2f supercontinuum components comparable to those shown in Fig. 3(a). (Furthermore, we use the highest-performance feo oscillator available; see our discussion of the sapphire device.) This matches our expectation that the supercontinuum coherence is severely degraded by frequency multiplication of oscillator thermal phase noise, which sits between the modes of the EOM comb. We did not explore placing the filter cavity before HNLF-1 because the dispersion properties of our cavity allow transmission of the complete SPM comb, but future exploration could consider such an arrangement. Future work should consider mode-pulling effects related to the filter cavity, which can be reduced by noise cancelling [36].

 figure: Fig. 3.

Fig. 3. EOM-comb offset-frequency detection. (a) Spectra of fundamental and second-harmonic supercontinuum light at 1070 nm. (b) i, Carrier-offset heterodyne beat (f0) in black; ii, intensity noise in red; iii, detector noise in gray. (c)–(e) Spectrum of f0 with different feo sources, including a synthesizer, dielectric-resonator oscillator, and sapphire-cavity oscillator. The 2.5 GHz cases utilize pulse picking. All the photocurrent spectra are acquired with 100 kHz bandwidth, and frequency axes are offset 706.6, 1793, 491, and 726 MHz, respectively, in (b)–(d).

Download Full Size | PPT Slide | PDF

We characterize f0 in detail to understand the potential for precision optical measurements with an EOM comb. Electronic spectrum analyzer traces of the 2.5 GHz comb f0 beat and its background contributions are shown in Fig. 3(b); the black trace (i) is the signal, and the red (ii) and gray (iii) traces represent the supercontinuum intensity noise and photodetector noise, respectively. [Fig. 3(c) shows the 10 GHz case, without pulse picking.] Since the EOM comb spacing feo=9.999952GHz is locked to a hydrogen-maser frequency reference traceable to the International System second, detecting the center of the f0 spectrum represents an absolute determination of νp. Frequency-counting experiments with f0 are enabled by a high signal-to-noise ratio (SNR) and narrow spectral width. The noise floor of f0 exceeds the intensity noise by 8 dB. At present, we cannot determine the relative contributions to this noise floor of supercontinuum generation, which often induces phase noise in f0 [35,37], and electronic noise that is not sufficiently attenuated by the filter cavity. Still, as we show later, the offset beat we obtain is adequate to establish a phase-coherent link between the microwave and optical domains.

The linewidth of f0 is an important consideration for future applications. Previous work has analyzed the relationship between a laser’s linewidth and its phase-noise spectrum [3840]. Building on Ref. [40], we would expect that the EOM comb f0 linewidth is largely determined by the level of feo phase noise at Fourier frequencies from approximately 10 kHz–10 MHz. (The filter cavity reduces >3.5MHz noise.) In this range, a high modulation index leads to the most significant f0 broadening. To directly explore this concept with the EOM comb, we record the power spectrum of f0 using three separate feo oscillators, which have different 10 kHz–10 MHz phase-noise levels. Figures 3(c)3(e) are acquired using feo oscillators with improving phase-noise performance: the same synthesizer as just discussed but excluding pulse picking, a 10 GHz dielectric-resonator oscillator (DRO), and a 10 GHz sapphire-cavity oscillator (sapphire), respectively.

The data traces in Figs. 3(c)3(e) indicate up to a factor of 40 reduction in linewidth to 100kHz with improved feo performance, which roughly corresponds to the phase-noise specification of these devices. In particular, since pulse picking only divides the pulse-repetition rate, we expect and observe no linewidth change when using the synthesizer for the 10 and 2.5 GHz combs. Our f0 linewidth measurements suggest the DRO (sapphire) devices feature a 10 kHz–10 MHz integrated phase noise at least a factor of 9(2200) lower than the synthesizer. Moreover, the filter cavity was included in the setup for these measurements; hence, they highlight the role of frequency-dependent feo phase noise apart from broadband thermal noise. Future experiments utilizing ultralow-noise microwave references could realize a <100kHz linewidth f0 beat that is competitive with some mode-locked lasers [41,42].

D. Electronic Measurement and Synthesis of an Optical Frequency

Access to the offset frequency of the EOM comb enables precision experiments, including measurement and synthesis of optical frequencies. The schematic in Fig. 4(a) summarizes the optical and electronic connections for our experiments with the synthesizer-driven comb. By measuring f0 with an Agilent 53230A frequency counter, we determine νp with respect to the EOM-comb spacing. The counter records f0 after RF filtering and digital frequency division, which phase-coherently reduce fluctuations. Each 1 s measurement yields νp with a fractional uncertainty of 3×1013. As a crosscheck and for comparison, we obtain a separate measurement of νp with respect to the 250.32413 MHz spacing of a self-referenced erbium-fiber frequency comb. Both the EOM-comb and the fiber-comb spacings are referenced to the same hydrogen maser. Figure 4(b) shows a record over 4000 s, during which we monitor the CW laser frequency with the EOM comb (black points) and fiber comb (green points). This data tracks the approximately 65 mHz/s instantaneous linear drift rate of the cavity-stabilized νp. Moreover, linear fitting of the two data sets reveals an average offset between them of 17 Hz, which is less than 2 standard deviations of the mean of their combined uncertainty. This represents the accuracy level, in terms of environmental fluctuations that exceed the SNR limits of our digital frequency counting, which our EOM comb system achieves with <22dB SNR in f0 [43]. Operating the comb with the DRO and sapphire oscillator yield improved results, as expected from their increased SNR.

 figure: Fig. 4.

Fig. 4. Demonstration of optical frequency measurements and synthesis. (a) System components and connections. Both the EOM comb and an auxiliary fiber comb are referenced to a hydrogen maser. (b) Frequency counting record over 4000 s of the pump laser νp with the EOM (black points) and fiber (green circles) combs. (c) Allan deviation of the frequency count record from (b) for EOM comb (black points) and fiber comb (green circles) and the synthesis data (green points) in (d). The solid line indicates the Allan deviation of a 193 THz laser drifting at 65 mHz/s. (d) Phase-lock synthesis of νp with respect to the maser-referenced feo; νset=193397334972kHz. Green points are measurements of locked νp with the fiber comb, and blue points are the in-loop noise.

Download Full Size | PPT Slide | PDF

To understand the precision of such optical frequency-counting measurements, we present their Allan deviation in Fig. 4(c). For less than 100 s averaging, both the EOM and fiber comb instabilities are consistent with their common reference maser’s instability of 3×1013/τ, where τ is the averaging time. Beyond τ100s the drift rate of νp, indicated by the solid line, becomes apparent. By post-correcting the two datasets with the fitted drift rates, the fractional instability reduces to 3×1014 at 1000 s and represents the uncertainty in our determination of the means of the two sets. By comparing νp and feo of the comb at the input and output of our entire system, we deduce that the near 1 km fiber length of the system contributes to the uncertainty at approximately this level.

Finally, we stabilize the frequency νp of the CW laser using an RF phase-lock of f0 while feo is held fixed at 9.999 952 GHz. Operationally, we phase-coherently filter f0 and divide it by 512 prior to discrimination with a digital phase-frequency detector, and feedback with <1kHz bandwidth is provided to an acousto-optic frequency modulator immediately following the CW laser. The phase-noise spectrum of f0 (see Fig. S5 in Supplement 1) is not substantially changed but the slow drift of νp is reduced. This represents an optimization of our system in which the cavity-stabilized pump laser is much more spectrally pure (but less stable long term) than the effective optical frequency of the multiplied feo. To verify the phase lock, Fig. 4(d) presents two consecutively obtained frequency-counting modalities with νp: fiber comb measurements (green points) and in-loop fluctuations in the νp phase lock (blue points). In these experiments, the set point of the νp phase lock is held constant at precisely 193.397 334 972 THz, but this value is adjustable within the CW fiber laser’s tuning range of 30GHz about the 1.5 GHz FSR modes of the optical reference cavity. The data is semi-continuously acquired at 1 s gate time for 2000 s, as we reconfigure system connections and slightly adjust the phase-lock loop filter. The mean difference of the green points and the phase-lock setpoint is 14(8)Hz, while the frequency offset of the in-loop signal scatters closely about zero. Furthermore, the Allan deviation of the locked νp is presented alongside previously described data in Fig. 4(c). Here the solid green points fall slightly below the other two Allan deviation measurements and do not show the 65 mHz/s cavity drift, since all system components are phase-locked to the same maser reference. This demonstrates the capability to directly synthesize with respect to the maser of the optical frequency of every EOM-comb line.

3. CONCLUSION

We have demonstrated optical frequency synthesis and control of a CW laser by way of electro-optic modulation. To accomplish this, we form an EOM comb with 600 GHz initial bandwidth, and then use HNLF-based spectral broadening to create an octave-spanning supercontinuum. A second advancement of our work is the demonstration of optical filtering to preserve the optical coherence of the EOM comb following frequency multiplication from 10 GHz to 193 THz. We demonstrate both precision optical frequency measurements and phase-locked synthesis of all the comb frequencies. These capabilities have already matured in the mode-locked-laser platform. Nevertheless, EOM combs offer important advantages, including wide microwave-rate mode spacing, frequency tuning of the comb, and already-commercialized components that immediately lead to robust systems for a variety of applications in spectroscopy, astronomy, and communications.

Funding

Air Force Office of Scientific Research (AFOSR) (FA9550-16-1-0016); Defense Advanced Research Projects Agency (DARPA); National Aeronautics and Space Administration (NASA); National Science Foundation (NSF) (DGE 1144083).

Acknowledgment

We thank L. Sinclair and E. Lamb for helpful comments on the manuscript, M. Hirano for providing the HNLF, F. Baynes and F. Quinlan for the cavity-stabilized laser, and A. Hati for providing the sapphire oscillator.

 

See Supplement 1 for supporting content.

REFERENCES

1. S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Haensch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102–5105 (2000). [CrossRef]  

2. D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000). [CrossRef]  

3. A. D. Ludlow, M. M. Boyd, J. Ye, E. Peik, and P. O. Schmidt, “Optical atomic clocks,” Rev. Mod. Phys. 87, 637–701 (2015). [CrossRef]  

4. A. Marian, M. C. Stowe, J. R. Lawall, D. Felinto, and J. Ye, “United time-frequency spectroscopy for dynamics and global structure,” Science 306, 2063–2068 (2004). [CrossRef]  

5. S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature 445, 627–630 (2007). [CrossRef]  

6. T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Coherent Raman spectro-imaging with laser frequency combs,” Nature 502, 355–358 (2013). [CrossRef]  

7. S. T. Cundiff and J. Ye, “Colloquium: femtosecond optical frequency combs,” Rev. Mod. Phys. 75, 325–342 (2003). [CrossRef]  

8. A. Baltuska, T. Udem, M. Uiberacker, M. Hentschel, E. Goulielmakis, C. Gohle, R. Holzwarth, V. S. Yakovlev, A. Scrinzi, T. W. Hansch, and F. Krausz, “Attosecond control of electronic processes by intense light fields,” Nature 421, 611–615 (2003). [CrossRef]  

9. T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nat. Photonics 5, 425–429 (2011). [CrossRef]  

10. P. Del’Haye, A. Coillet, T. Fortier, K. Beha, D. C. Cole, K. Y. Yang, H. Lee, K. J. Vahala, S. B. Papp, and S. A. Diddams, “Phase-coherent microwave-to-optical link with a self-referenced microcomb,” Nat. Photonics 10, 516–520 (2016). [CrossRef]  

11. V. Brasch, E. Lucas, J. D. Jost, M. Geiselmann, and T. J. Kippenberg, “Self-referencing of an on-chip soliton Kerr frequency comb without external broadening,” arXiv:1605.02801 (2016).

12. A. Ishizawa, T. Nishikawa, A. Mizutori, H. Takara, A. Takada, T. Sogawa, and M. Koga, “Phase-noise characteristics of a 25-GHz-spaced optical frequency comb based on a phase- and intensity-modulated laser,” Opt. Express 21, 29186–29194 (2013). [CrossRef]  

13. I. Coddington, W. Swann, and N. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100, 013902 (2008). [CrossRef]  

14. B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4, 55–57 (2009). [CrossRef]  

15. D. A. Long, A. J. Fleisher, K. O. Douglass, S. E. Maxwell, K. Bielska, J. T. Hodges, and D. F. Plusquellic, “Multiheterodyne spectroscopy with optical frequency combs generated from a continuous-wave laser,” Opt. Lett. 39, 2688–2690 (2014). [CrossRef]  

16. S. T. Cundiff and A. M. Weiner, “Optical arbitrary waveform generation,” Nat. Photonics 4, 760–766 (2010). [CrossRef]  

17. X. Yi, K. Vahala, J. Li, S. Diddams, G. Ycas, P. Plavchan, S. Leifer, J. Sandhu, G. Vasisht, P. Chen, P. Gao, J. Gagne, E. Furlan, M. Bottom, E. C. Martin, M. P. Fitzgerald, G. Doppmann, and C. Beichman, “Demonstration of a near-IR line-referenced electro-optical laser frequency comb for precision radial velocity measurements in astronomy,” Nat. Commun. 7, 10436 (2016). [CrossRef]  

18. T. Kobayashi, “High-repetition-rate optical pulse generator using a Fabry–Perot electro-optic modulator,” Appl. Phys. Lett. 21, 341–343 (1972). [CrossRef]  

19. M. Kourogi, K. Nakagawa, and M. Ohtsu, “Wide-span optical frequency comb generator for accurate optical frequency difference measurement,” IEEE J. Quantum Electron. 29, 2693–2701 (1993). [CrossRef]  

20. I. Morohashi, T. Sakamoto, H. Sotobayashi, T. Kawanishi, I. Hosako, and M. Tsuchiya, “Widely repetition-tunable 200 fs pulse source using a Mach–Zehnder-modulator-based flat comb generator and dispersion-flattened dispersion-decreasing fiber,” Opt. Lett. 33, 1192–1194 (2008). [CrossRef]  

21. A. Ishizawa, T. Nishikawa, A. Mizutori, H. Takara, S. Aozasa, A. Mori, H. Nakano, A. Takada, and M. Koga, “Octave-spanning frequency comb generated by 250 fs pulse train emitted from 25 GHz externally phase-modulated laser diode for carrier-envelope-offset-locking,” Electron. Lett. 46, 1343–1344 (2010). [CrossRef]  

22. V. R. Supradeepa and A. M. Weiner, “Bandwidth scaling and spectral flatness enhancement of optical frequency combs from phase-modulated continuous-wave lasers using cascaded four-wave mixing,” Opt. Lett. 37, 3066–3068 (2012). [CrossRef]  

23. T. Sakamoto, T. Kawanishi, and M. Izutsu, “Asymptotic formalism for ultraflat optical frequency comb generation using a Mach–Zehnder modulator,” Opt. Lett. 32, 1515–1517 (2007). [CrossRef]  

24. F. L. Walls and A. Demarchi, “RF spectrum of a signal after frequency multiplication; measurement and comparison with a simple calculation,” IEEE Trans. Instrum. Meas. 24, 210–217 (1975). [CrossRef]  

25. H. R. Telle, Frequency Control of Semiconductor Lasers, Wiley Series in Microwave and Optical Engineering (Wiley, 1996).

26. D. R. Hjelme, A. R. Mickelson, and R. G. Beausoleil, “Semiconductor laser stabilization by external optical feedback,” IEEE J. Quantum Electron. 27, 352–372 (1991). [CrossRef]  

27. M. Fujiwara, M. Teshima, J. Kani, H. Suzuki, N. Takachio, and K. Iwatsuki, “Optical carrier supply module using flattened optical multicarrier generation based on sinusoidal amplitude and phase hybrid modulation,” J. Lightwave Technol. 21, 2705–2714 (2003). [CrossRef]  

28. R. Wu, V. R. Supradeepa, C. M. Long, D. E. Leaird, and A. M. Weiner, “Generation of very flat optical frequency combs from continuous-wave lasers using cascaded intensity and phase modulators driven by tailored radio frequency waveforms,” Opt. Lett. 35, 3234–3236 (2010). [CrossRef]  

29. D. C. Cole, K. M. Beha, S. A. Diddams, and S. B. Papp, “Octave-spanning supercontinuum generation via microwave frequency multiplication,” J. Phys. 723, 012035 (2016). [CrossRef]  

30. T. Kobayashi, H. Yao, K. Amano, Y. Fukushima, A. Morimoto, and T. Sueta, “Optical pulse compression using high-frequency electrooptic phase modulation,” IEEE J. Quantum Electron. 24, 382–387 (1988). [CrossRef]  

31. E. Myslivets, B. P. P. Kuo, N. Alic, and S. Radic, “Generation of wideband frequency combs by continuous-wave seeding of multistage mixers with synthesized dispersion,” Opt. Express 20, 3331–3344 (2012). [CrossRef]  

32. A. Bartels, D. Heinecke, and S. A. Diddams, “10 GHz self-referenced optical frequency comb,” Science 326, 681 (2009). [CrossRef]  

33. C. Gohle, J. Rauschenberger, T. Fuji, T. Udem, A. Apolonski, F. Krausz, and T. W. Hänsch, “Carrier envelope phase noise in stabilized amplifier systems,” Opt. Lett. 30, 2487–2489 (2005). [CrossRef]  

34. D. C. Cole, S. B. Papp, and S. A. Diddams, “Downsampling of optical frequency combs for carrier-envelope offset frequency detection,” arXiv:1310.4134 (2013).

35. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006). [CrossRef]  

36. L.-S. Ma, P. Jungner, J. Ye, and J. L. Hall, “Delivering the same optical frequency at two places: accurate cancellation of phase noise introduced by an optical fiber or other time-varying path,” Opt. Lett. 19, 1777–1779 (1994). [CrossRef]  

37. K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, “Fundamental noise limitations to supercontinuum generation in microstructure fiber,” Phys. Rev. Lett. 90, 113904 (2003). [CrossRef]  

38. D. S. Elliott, R. Roy, and S. J. Smith, “Extracavity laser band-shape and bandwidth modification,” Phys. Rev. A 26, 12–18 (1982). [CrossRef]  

39. G. Di Domenico, S. Schilt, and P. Thomann, “Simple approach to the relation between laser frequency noise and laser line shape,” Appl. Opt. 49, 4801–4807 (2010). [CrossRef]  

40. N. Bucalovic, V. Dolgovskiy, C. Schori, P. Thomann, G. Di Domenico, and S. Schilt, “Experimental validation of a simple approximation to determine the linewidth of a laser from its frequency noise spectrum,” Appl. Opt. 51, 4582–4588 (2012). [CrossRef]  

41. A. Hati, C. W. Nelson, B. Riddle, and D. A. Howe, “PM noise of a 40 GHz air-dielectric cavity oscillator,” arXiv:1404.4828v1 (2014).

42. M. Reagor, H. Paik, G. Catelani, L. Sun, C. Axline, E. Holland, I. M. Pop, N. A. Masluk, T. Brecht, L. Frunzio, M. H. Devoret, L. Glazman, and R. J. Schoelkopf, “Reaching 10 ms single photon lifetimes for superconducting aluminum cavities,” Appl. Phys. Lett. 102, 192604 (2013). [CrossRef]  

43. L. C. Sinclair, I. Coddington, W. C. Swann, G. B. Rieker, A. Hati, K. Iwakuni, and N. R. Newbury, “Operation of an optically coherent frequency comb outside the metrology lab,” Opt. Express 22, 6996–7006 (2014). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Haensch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102–5105 (2000).
    [Crossref]
  2. D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
    [Crossref]
  3. A. D. Ludlow, M. M. Boyd, J. Ye, E. Peik, and P. O. Schmidt, “Optical atomic clocks,” Rev. Mod. Phys. 87, 637–701 (2015).
    [Crossref]
  4. A. Marian, M. C. Stowe, J. R. Lawall, D. Felinto, and J. Ye, “United time-frequency spectroscopy for dynamics and global structure,” Science 306, 2063–2068 (2004).
    [Crossref]
  5. S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature 445, 627–630 (2007).
    [Crossref]
  6. T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Coherent Raman spectro-imaging with laser frequency combs,” Nature 502, 355–358 (2013).
    [Crossref]
  7. S. T. Cundiff and J. Ye, “Colloquium: femtosecond optical frequency combs,” Rev. Mod. Phys. 75, 325–342 (2003).
    [Crossref]
  8. A. Baltuska, T. Udem, M. Uiberacker, M. Hentschel, E. Goulielmakis, C. Gohle, R. Holzwarth, V. S. Yakovlev, A. Scrinzi, T. W. Hansch, and F. Krausz, “Attosecond control of electronic processes by intense light fields,” Nature 421, 611–615 (2003).
    [Crossref]
  9. T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nat. Photonics 5, 425–429 (2011).
    [Crossref]
  10. P. Del’Haye, A. Coillet, T. Fortier, K. Beha, D. C. Cole, K. Y. Yang, H. Lee, K. J. Vahala, S. B. Papp, and S. A. Diddams, “Phase-coherent microwave-to-optical link with a self-referenced microcomb,” Nat. Photonics 10, 516–520 (2016).
    [Crossref]
  11. V. Brasch, E. Lucas, J. D. Jost, M. Geiselmann, and T. J. Kippenberg, “Self-referencing of an on-chip soliton Kerr frequency comb without external broadening,” arXiv:1605.02801 (2016).
  12. A. Ishizawa, T. Nishikawa, A. Mizutori, H. Takara, A. Takada, T. Sogawa, and M. Koga, “Phase-noise characteristics of a 25-GHz-spaced optical frequency comb based on a phase- and intensity-modulated laser,” Opt. Express 21, 29186–29194 (2013).
    [Crossref]
  13. I. Coddington, W. Swann, and N. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100, 013902 (2008).
    [Crossref]
  14. B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4, 55–57 (2009).
    [Crossref]
  15. D. A. Long, A. J. Fleisher, K. O. Douglass, S. E. Maxwell, K. Bielska, J. T. Hodges, and D. F. Plusquellic, “Multiheterodyne spectroscopy with optical frequency combs generated from a continuous-wave laser,” Opt. Lett. 39, 2688–2690 (2014).
    [Crossref]
  16. S. T. Cundiff and A. M. Weiner, “Optical arbitrary waveform generation,” Nat. Photonics 4, 760–766 (2010).
    [Crossref]
  17. X. Yi, K. Vahala, J. Li, S. Diddams, G. Ycas, P. Plavchan, S. Leifer, J. Sandhu, G. Vasisht, P. Chen, P. Gao, J. Gagne, E. Furlan, M. Bottom, E. C. Martin, M. P. Fitzgerald, G. Doppmann, and C. Beichman, “Demonstration of a near-IR line-referenced electro-optical laser frequency comb for precision radial velocity measurements in astronomy,” Nat. Commun. 7, 10436 (2016).
    [Crossref]
  18. T. Kobayashi, “High-repetition-rate optical pulse generator using a Fabry–Perot electro-optic modulator,” Appl. Phys. Lett. 21, 341–343 (1972).
    [Crossref]
  19. M. Kourogi, K. Nakagawa, and M. Ohtsu, “Wide-span optical frequency comb generator for accurate optical frequency difference measurement,” IEEE J. Quantum Electron. 29, 2693–2701 (1993).
    [Crossref]
  20. I. Morohashi, T. Sakamoto, H. Sotobayashi, T. Kawanishi, I. Hosako, and M. Tsuchiya, “Widely repetition-tunable 200 fs pulse source using a Mach–Zehnder-modulator-based flat comb generator and dispersion-flattened dispersion-decreasing fiber,” Opt. Lett. 33, 1192–1194 (2008).
    [Crossref]
  21. A. Ishizawa, T. Nishikawa, A. Mizutori, H. Takara, S. Aozasa, A. Mori, H. Nakano, A. Takada, and M. Koga, “Octave-spanning frequency comb generated by 250  fs pulse train emitted from 25  GHz externally phase-modulated laser diode for carrier-envelope-offset-locking,” Electron. Lett. 46, 1343–1344 (2010).
    [Crossref]
  22. V. R. Supradeepa and A. M. Weiner, “Bandwidth scaling and spectral flatness enhancement of optical frequency combs from phase-modulated continuous-wave lasers using cascaded four-wave mixing,” Opt. Lett. 37, 3066–3068 (2012).
    [Crossref]
  23. T. Sakamoto, T. Kawanishi, and M. Izutsu, “Asymptotic formalism for ultraflat optical frequency comb generation using a Mach–Zehnder modulator,” Opt. Lett. 32, 1515–1517 (2007).
    [Crossref]
  24. F. L. Walls and A. Demarchi, “RF spectrum of a signal after frequency multiplication; measurement and comparison with a simple calculation,” IEEE Trans. Instrum. Meas. 24, 210–217 (1975).
    [Crossref]
  25. H. R. Telle, Frequency Control of Semiconductor Lasers, Wiley Series in Microwave and Optical Engineering (Wiley, 1996).
  26. D. R. Hjelme, A. R. Mickelson, and R. G. Beausoleil, “Semiconductor laser stabilization by external optical feedback,” IEEE J. Quantum Electron. 27, 352–372 (1991).
    [Crossref]
  27. M. Fujiwara, M. Teshima, J. Kani, H. Suzuki, N. Takachio, and K. Iwatsuki, “Optical carrier supply module using flattened optical multicarrier generation based on sinusoidal amplitude and phase hybrid modulation,” J. Lightwave Technol. 21, 2705–2714 (2003).
    [Crossref]
  28. R. Wu, V. R. Supradeepa, C. M. Long, D. E. Leaird, and A. M. Weiner, “Generation of very flat optical frequency combs from continuous-wave lasers using cascaded intensity and phase modulators driven by tailored radio frequency waveforms,” Opt. Lett. 35, 3234–3236 (2010).
    [Crossref]
  29. D. C. Cole, K. M. Beha, S. A. Diddams, and S. B. Papp, “Octave-spanning supercontinuum generation via microwave frequency multiplication,” J. Phys. 723, 012035 (2016).
    [Crossref]
  30. T. Kobayashi, H. Yao, K. Amano, Y. Fukushima, A. Morimoto, and T. Sueta, “Optical pulse compression using high-frequency electrooptic phase modulation,” IEEE J. Quantum Electron. 24, 382–387 (1988).
    [Crossref]
  31. E. Myslivets, B. P. P. Kuo, N. Alic, and S. Radic, “Generation of wideband frequency combs by continuous-wave seeding of multistage mixers with synthesized dispersion,” Opt. Express 20, 3331–3344 (2012).
    [Crossref]
  32. A. Bartels, D. Heinecke, and S. A. Diddams, “10  GHz self-referenced optical frequency comb,” Science 326, 681 (2009).
    [Crossref]
  33. C. Gohle, J. Rauschenberger, T. Fuji, T. Udem, A. Apolonski, F. Krausz, and T. W. Hänsch, “Carrier envelope phase noise in stabilized amplifier systems,” Opt. Lett. 30, 2487–2489 (2005).
    [Crossref]
  34. D. C. Cole, S. B. Papp, and S. A. Diddams, “Downsampling of optical frequency combs for carrier-envelope offset frequency detection,” arXiv:1310.4134 (2013).
  35. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
    [Crossref]
  36. L.-S. Ma, P. Jungner, J. Ye, and J. L. Hall, “Delivering the same optical frequency at two places: accurate cancellation of phase noise introduced by an optical fiber or other time-varying path,” Opt. Lett. 19, 1777–1779 (1994).
    [Crossref]
  37. K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, “Fundamental noise limitations to supercontinuum generation in microstructure fiber,” Phys. Rev. Lett. 90, 113904 (2003).
    [Crossref]
  38. D. S. Elliott, R. Roy, and S. J. Smith, “Extracavity laser band-shape and bandwidth modification,” Phys. Rev. A 26, 12–18 (1982).
    [Crossref]
  39. G. Di Domenico, S. Schilt, and P. Thomann, “Simple approach to the relation between laser frequency noise and laser line shape,” Appl. Opt. 49, 4801–4807 (2010).
    [Crossref]
  40. N. Bucalovic, V. Dolgovskiy, C. Schori, P. Thomann, G. Di Domenico, and S. Schilt, “Experimental validation of a simple approximation to determine the linewidth of a laser from its frequency noise spectrum,” Appl. Opt. 51, 4582–4588 (2012).
    [Crossref]
  41. A. Hati, C. W. Nelson, B. Riddle, and D. A. Howe, “PM noise of a 40  GHz air-dielectric cavity oscillator,” arXiv:1404.4828v1 (2014).
  42. M. Reagor, H. Paik, G. Catelani, L. Sun, C. Axline, E. Holland, I. M. Pop, N. A. Masluk, T. Brecht, L. Frunzio, M. H. Devoret, L. Glazman, and R. J. Schoelkopf, “Reaching 10  ms single photon lifetimes for superconducting aluminum cavities,” Appl. Phys. Lett. 102, 192604 (2013).
    [Crossref]
  43. L. C. Sinclair, I. Coddington, W. C. Swann, G. B. Rieker, A. Hati, K. Iwakuni, and N. R. Newbury, “Operation of an optically coherent frequency comb outside the metrology lab,” Opt. Express 22, 6996–7006 (2014).
    [Crossref]

2016 (3)

P. Del’Haye, A. Coillet, T. Fortier, K. Beha, D. C. Cole, K. Y. Yang, H. Lee, K. J. Vahala, S. B. Papp, and S. A. Diddams, “Phase-coherent microwave-to-optical link with a self-referenced microcomb,” Nat. Photonics 10, 516–520 (2016).
[Crossref]

X. Yi, K. Vahala, J. Li, S. Diddams, G. Ycas, P. Plavchan, S. Leifer, J. Sandhu, G. Vasisht, P. Chen, P. Gao, J. Gagne, E. Furlan, M. Bottom, E. C. Martin, M. P. Fitzgerald, G. Doppmann, and C. Beichman, “Demonstration of a near-IR line-referenced electro-optical laser frequency comb for precision radial velocity measurements in astronomy,” Nat. Commun. 7, 10436 (2016).
[Crossref]

D. C. Cole, K. M. Beha, S. A. Diddams, and S. B. Papp, “Octave-spanning supercontinuum generation via microwave frequency multiplication,” J. Phys. 723, 012035 (2016).
[Crossref]

2015 (1)

A. D. Ludlow, M. M. Boyd, J. Ye, E. Peik, and P. O. Schmidt, “Optical atomic clocks,” Rev. Mod. Phys. 87, 637–701 (2015).
[Crossref]

2014 (2)

2013 (3)

M. Reagor, H. Paik, G. Catelani, L. Sun, C. Axline, E. Holland, I. M. Pop, N. A. Masluk, T. Brecht, L. Frunzio, M. H. Devoret, L. Glazman, and R. J. Schoelkopf, “Reaching 10  ms single photon lifetimes for superconducting aluminum cavities,” Appl. Phys. Lett. 102, 192604 (2013).
[Crossref]

A. Ishizawa, T. Nishikawa, A. Mizutori, H. Takara, A. Takada, T. Sogawa, and M. Koga, “Phase-noise characteristics of a 25-GHz-spaced optical frequency comb based on a phase- and intensity-modulated laser,” Opt. Express 21, 29186–29194 (2013).
[Crossref]

T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Coherent Raman spectro-imaging with laser frequency combs,” Nature 502, 355–358 (2013).
[Crossref]

2012 (3)

2011 (1)

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nat. Photonics 5, 425–429 (2011).
[Crossref]

2010 (4)

S. T. Cundiff and A. M. Weiner, “Optical arbitrary waveform generation,” Nat. Photonics 4, 760–766 (2010).
[Crossref]

R. Wu, V. R. Supradeepa, C. M. Long, D. E. Leaird, and A. M. Weiner, “Generation of very flat optical frequency combs from continuous-wave lasers using cascaded intensity and phase modulators driven by tailored radio frequency waveforms,” Opt. Lett. 35, 3234–3236 (2010).
[Crossref]

G. Di Domenico, S. Schilt, and P. Thomann, “Simple approach to the relation between laser frequency noise and laser line shape,” Appl. Opt. 49, 4801–4807 (2010).
[Crossref]

A. Ishizawa, T. Nishikawa, A. Mizutori, H. Takara, S. Aozasa, A. Mori, H. Nakano, A. Takada, and M. Koga, “Octave-spanning frequency comb generated by 250  fs pulse train emitted from 25  GHz externally phase-modulated laser diode for carrier-envelope-offset-locking,” Electron. Lett. 46, 1343–1344 (2010).
[Crossref]

2009 (2)

A. Bartels, D. Heinecke, and S. A. Diddams, “10  GHz self-referenced optical frequency comb,” Science 326, 681 (2009).
[Crossref]

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4, 55–57 (2009).
[Crossref]

2008 (2)

2007 (2)

T. Sakamoto, T. Kawanishi, and M. Izutsu, “Asymptotic formalism for ultraflat optical frequency comb generation using a Mach–Zehnder modulator,” Opt. Lett. 32, 1515–1517 (2007).
[Crossref]

S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature 445, 627–630 (2007).
[Crossref]

2006 (1)

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[Crossref]

2005 (1)

2004 (1)

A. Marian, M. C. Stowe, J. R. Lawall, D. Felinto, and J. Ye, “United time-frequency spectroscopy for dynamics and global structure,” Science 306, 2063–2068 (2004).
[Crossref]

2003 (4)

S. T. Cundiff and J. Ye, “Colloquium: femtosecond optical frequency combs,” Rev. Mod. Phys. 75, 325–342 (2003).
[Crossref]

A. Baltuska, T. Udem, M. Uiberacker, M. Hentschel, E. Goulielmakis, C. Gohle, R. Holzwarth, V. S. Yakovlev, A. Scrinzi, T. W. Hansch, and F. Krausz, “Attosecond control of electronic processes by intense light fields,” Nature 421, 611–615 (2003).
[Crossref]

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, “Fundamental noise limitations to supercontinuum generation in microstructure fiber,” Phys. Rev. Lett. 90, 113904 (2003).
[Crossref]

M. Fujiwara, M. Teshima, J. Kani, H. Suzuki, N. Takachio, and K. Iwatsuki, “Optical carrier supply module using flattened optical multicarrier generation based on sinusoidal amplitude and phase hybrid modulation,” J. Lightwave Technol. 21, 2705–2714 (2003).
[Crossref]

2000 (2)

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Haensch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102–5105 (2000).
[Crossref]

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[Crossref]

1994 (1)

1993 (1)

M. Kourogi, K. Nakagawa, and M. Ohtsu, “Wide-span optical frequency comb generator for accurate optical frequency difference measurement,” IEEE J. Quantum Electron. 29, 2693–2701 (1993).
[Crossref]

1991 (1)

D. R. Hjelme, A. R. Mickelson, and R. G. Beausoleil, “Semiconductor laser stabilization by external optical feedback,” IEEE J. Quantum Electron. 27, 352–372 (1991).
[Crossref]

1988 (1)

T. Kobayashi, H. Yao, K. Amano, Y. Fukushima, A. Morimoto, and T. Sueta, “Optical pulse compression using high-frequency electrooptic phase modulation,” IEEE J. Quantum Electron. 24, 382–387 (1988).
[Crossref]

1982 (1)

D. S. Elliott, R. Roy, and S. J. Smith, “Extracavity laser band-shape and bandwidth modification,” Phys. Rev. A 26, 12–18 (1982).
[Crossref]

1975 (1)

F. L. Walls and A. Demarchi, “RF spectrum of a signal after frequency multiplication; measurement and comparison with a simple calculation,” IEEE Trans. Instrum. Meas. 24, 210–217 (1975).
[Crossref]

1972 (1)

T. Kobayashi, “High-repetition-rate optical pulse generator using a Fabry–Perot electro-optic modulator,” Appl. Phys. Lett. 21, 341–343 (1972).
[Crossref]

Alic, N.

Amano, K.

T. Kobayashi, H. Yao, K. Amano, Y. Fukushima, A. Morimoto, and T. Sueta, “Optical pulse compression using high-frequency electrooptic phase modulation,” IEEE J. Quantum Electron. 24, 382–387 (1988).
[Crossref]

Aozasa, S.

A. Ishizawa, T. Nishikawa, A. Mizutori, H. Takara, S. Aozasa, A. Mori, H. Nakano, A. Takada, and M. Koga, “Octave-spanning frequency comb generated by 250  fs pulse train emitted from 25  GHz externally phase-modulated laser diode for carrier-envelope-offset-locking,” Electron. Lett. 46, 1343–1344 (2010).
[Crossref]

Apolonski, A.

Axline, C.

M. Reagor, H. Paik, G. Catelani, L. Sun, C. Axline, E. Holland, I. M. Pop, N. A. Masluk, T. Brecht, L. Frunzio, M. H. Devoret, L. Glazman, and R. J. Schoelkopf, “Reaching 10  ms single photon lifetimes for superconducting aluminum cavities,” Appl. Phys. Lett. 102, 192604 (2013).
[Crossref]

Baltuska, A.

A. Baltuska, T. Udem, M. Uiberacker, M. Hentschel, E. Goulielmakis, C. Gohle, R. Holzwarth, V. S. Yakovlev, A. Scrinzi, T. W. Hansch, and F. Krausz, “Attosecond control of electronic processes by intense light fields,” Nature 421, 611–615 (2003).
[Crossref]

Bartels, A.

A. Bartels, D. Heinecke, and S. A. Diddams, “10  GHz self-referenced optical frequency comb,” Science 326, 681 (2009).
[Crossref]

Beausoleil, R. G.

D. R. Hjelme, A. R. Mickelson, and R. G. Beausoleil, “Semiconductor laser stabilization by external optical feedback,” IEEE J. Quantum Electron. 27, 352–372 (1991).
[Crossref]

Beha, K.

P. Del’Haye, A. Coillet, T. Fortier, K. Beha, D. C. Cole, K. Y. Yang, H. Lee, K. J. Vahala, S. B. Papp, and S. A. Diddams, “Phase-coherent microwave-to-optical link with a self-referenced microcomb,” Nat. Photonics 10, 516–520 (2016).
[Crossref]

Beha, K. M.

D. C. Cole, K. M. Beha, S. A. Diddams, and S. B. Papp, “Octave-spanning supercontinuum generation via microwave frequency multiplication,” J. Phys. 723, 012035 (2016).
[Crossref]

Beichman, C.

X. Yi, K. Vahala, J. Li, S. Diddams, G. Ycas, P. Plavchan, S. Leifer, J. Sandhu, G. Vasisht, P. Chen, P. Gao, J. Gagne, E. Furlan, M. Bottom, E. C. Martin, M. P. Fitzgerald, G. Doppmann, and C. Beichman, “Demonstration of a near-IR line-referenced electro-optical laser frequency comb for precision radial velocity measurements in astronomy,” Nat. Commun. 7, 10436 (2016).
[Crossref]

Bergquist, J. C.

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nat. Photonics 5, 425–429 (2011).
[Crossref]

Bernhardt, B.

T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Coherent Raman spectro-imaging with laser frequency combs,” Nature 502, 355–358 (2013).
[Crossref]

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4, 55–57 (2009).
[Crossref]

Bielska, K.

Bottom, M.

X. Yi, K. Vahala, J. Li, S. Diddams, G. Ycas, P. Plavchan, S. Leifer, J. Sandhu, G. Vasisht, P. Chen, P. Gao, J. Gagne, E. Furlan, M. Bottom, E. C. Martin, M. P. Fitzgerald, G. Doppmann, and C. Beichman, “Demonstration of a near-IR line-referenced electro-optical laser frequency comb for precision radial velocity measurements in astronomy,” Nat. Commun. 7, 10436 (2016).
[Crossref]

Boyd, M. M.

A. D. Ludlow, M. M. Boyd, J. Ye, E. Peik, and P. O. Schmidt, “Optical atomic clocks,” Rev. Mod. Phys. 87, 637–701 (2015).
[Crossref]

Brasch, V.

V. Brasch, E. Lucas, J. D. Jost, M. Geiselmann, and T. J. Kippenberg, “Self-referencing of an on-chip soliton Kerr frequency comb without external broadening,” arXiv:1605.02801 (2016).

Brecht, T.

M. Reagor, H. Paik, G. Catelani, L. Sun, C. Axline, E. Holland, I. M. Pop, N. A. Masluk, T. Brecht, L. Frunzio, M. H. Devoret, L. Glazman, and R. J. Schoelkopf, “Reaching 10  ms single photon lifetimes for superconducting aluminum cavities,” Appl. Phys. Lett. 102, 192604 (2013).
[Crossref]

Bucalovic, N.

Catelani, G.

M. Reagor, H. Paik, G. Catelani, L. Sun, C. Axline, E. Holland, I. M. Pop, N. A. Masluk, T. Brecht, L. Frunzio, M. H. Devoret, L. Glazman, and R. J. Schoelkopf, “Reaching 10  ms single photon lifetimes for superconducting aluminum cavities,” Appl. Phys. Lett. 102, 192604 (2013).
[Crossref]

Chen, P.

X. Yi, K. Vahala, J. Li, S. Diddams, G. Ycas, P. Plavchan, S. Leifer, J. Sandhu, G. Vasisht, P. Chen, P. Gao, J. Gagne, E. Furlan, M. Bottom, E. C. Martin, M. P. Fitzgerald, G. Doppmann, and C. Beichman, “Demonstration of a near-IR line-referenced electro-optical laser frequency comb for precision radial velocity measurements in astronomy,” Nat. Commun. 7, 10436 (2016).
[Crossref]

Coddington, I.

L. C. Sinclair, I. Coddington, W. C. Swann, G. B. Rieker, A. Hati, K. Iwakuni, and N. R. Newbury, “Operation of an optically coherent frequency comb outside the metrology lab,” Opt. Express 22, 6996–7006 (2014).
[Crossref]

I. Coddington, W. Swann, and N. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100, 013902 (2008).
[Crossref]

Coen, S.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[Crossref]

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, “Fundamental noise limitations to supercontinuum generation in microstructure fiber,” Phys. Rev. Lett. 90, 113904 (2003).
[Crossref]

Coillet, A.

P. Del’Haye, A. Coillet, T. Fortier, K. Beha, D. C. Cole, K. Y. Yang, H. Lee, K. J. Vahala, S. B. Papp, and S. A. Diddams, “Phase-coherent microwave-to-optical link with a self-referenced microcomb,” Nat. Photonics 10, 516–520 (2016).
[Crossref]

Cole, D. C.

P. Del’Haye, A. Coillet, T. Fortier, K. Beha, D. C. Cole, K. Y. Yang, H. Lee, K. J. Vahala, S. B. Papp, and S. A. Diddams, “Phase-coherent microwave-to-optical link with a self-referenced microcomb,” Nat. Photonics 10, 516–520 (2016).
[Crossref]

D. C. Cole, K. M. Beha, S. A. Diddams, and S. B. Papp, “Octave-spanning supercontinuum generation via microwave frequency multiplication,” J. Phys. 723, 012035 (2016).
[Crossref]

D. C. Cole, S. B. Papp, and S. A. Diddams, “Downsampling of optical frequency combs for carrier-envelope offset frequency detection,” arXiv:1310.4134 (2013).

Corwin, K. L.

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, “Fundamental noise limitations to supercontinuum generation in microstructure fiber,” Phys. Rev. Lett. 90, 113904 (2003).
[Crossref]

Cundiff, S. T.

S. T. Cundiff and A. M. Weiner, “Optical arbitrary waveform generation,” Nat. Photonics 4, 760–766 (2010).
[Crossref]

S. T. Cundiff and J. Ye, “Colloquium: femtosecond optical frequency combs,” Rev. Mod. Phys. 75, 325–342 (2003).
[Crossref]

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Haensch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102–5105 (2000).
[Crossref]

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[Crossref]

Del’Haye, P.

P. Del’Haye, A. Coillet, T. Fortier, K. Beha, D. C. Cole, K. Y. Yang, H. Lee, K. J. Vahala, S. B. Papp, and S. A. Diddams, “Phase-coherent microwave-to-optical link with a self-referenced microcomb,” Nat. Photonics 10, 516–520 (2016).
[Crossref]

Demarchi, A.

F. L. Walls and A. Demarchi, “RF spectrum of a signal after frequency multiplication; measurement and comparison with a simple calculation,” IEEE Trans. Instrum. Meas. 24, 210–217 (1975).
[Crossref]

Devoret, M. H.

M. Reagor, H. Paik, G. Catelani, L. Sun, C. Axline, E. Holland, I. M. Pop, N. A. Masluk, T. Brecht, L. Frunzio, M. H. Devoret, L. Glazman, and R. J. Schoelkopf, “Reaching 10  ms single photon lifetimes for superconducting aluminum cavities,” Appl. Phys. Lett. 102, 192604 (2013).
[Crossref]

Di Domenico, G.

Diddams, S.

X. Yi, K. Vahala, J. Li, S. Diddams, G. Ycas, P. Plavchan, S. Leifer, J. Sandhu, G. Vasisht, P. Chen, P. Gao, J. Gagne, E. Furlan, M. Bottom, E. C. Martin, M. P. Fitzgerald, G. Doppmann, and C. Beichman, “Demonstration of a near-IR line-referenced electro-optical laser frequency comb for precision radial velocity measurements in astronomy,” Nat. Commun. 7, 10436 (2016).
[Crossref]

Diddams, S. A.

P. Del’Haye, A. Coillet, T. Fortier, K. Beha, D. C. Cole, K. Y. Yang, H. Lee, K. J. Vahala, S. B. Papp, and S. A. Diddams, “Phase-coherent microwave-to-optical link with a self-referenced microcomb,” Nat. Photonics 10, 516–520 (2016).
[Crossref]

D. C. Cole, K. M. Beha, S. A. Diddams, and S. B. Papp, “Octave-spanning supercontinuum generation via microwave frequency multiplication,” J. Phys. 723, 012035 (2016).
[Crossref]

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nat. Photonics 5, 425–429 (2011).
[Crossref]

A. Bartels, D. Heinecke, and S. A. Diddams, “10  GHz self-referenced optical frequency comb,” Science 326, 681 (2009).
[Crossref]

S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature 445, 627–630 (2007).
[Crossref]

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, “Fundamental noise limitations to supercontinuum generation in microstructure fiber,” Phys. Rev. Lett. 90, 113904 (2003).
[Crossref]

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[Crossref]

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Haensch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102–5105 (2000).
[Crossref]

D. C. Cole, S. B. Papp, and S. A. Diddams, “Downsampling of optical frequency combs for carrier-envelope offset frequency detection,” arXiv:1310.4134 (2013).

Dolgovskiy, V.

Doppmann, G.

X. Yi, K. Vahala, J. Li, S. Diddams, G. Ycas, P. Plavchan, S. Leifer, J. Sandhu, G. Vasisht, P. Chen, P. Gao, J. Gagne, E. Furlan, M. Bottom, E. C. Martin, M. P. Fitzgerald, G. Doppmann, and C. Beichman, “Demonstration of a near-IR line-referenced electro-optical laser frequency comb for precision radial velocity measurements in astronomy,” Nat. Commun. 7, 10436 (2016).
[Crossref]

Douglass, K. O.

Dudley, J. M.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[Crossref]

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, “Fundamental noise limitations to supercontinuum generation in microstructure fiber,” Phys. Rev. Lett. 90, 113904 (2003).
[Crossref]

Elliott, D. S.

D. S. Elliott, R. Roy, and S. J. Smith, “Extracavity laser band-shape and bandwidth modification,” Phys. Rev. A 26, 12–18 (1982).
[Crossref]

Felinto, D.

A. Marian, M. C. Stowe, J. R. Lawall, D. Felinto, and J. Ye, “United time-frequency spectroscopy for dynamics and global structure,” Science 306, 2063–2068 (2004).
[Crossref]

Fitzgerald, M. P.

X. Yi, K. Vahala, J. Li, S. Diddams, G. Ycas, P. Plavchan, S. Leifer, J. Sandhu, G. Vasisht, P. Chen, P. Gao, J. Gagne, E. Furlan, M. Bottom, E. C. Martin, M. P. Fitzgerald, G. Doppmann, and C. Beichman, “Demonstration of a near-IR line-referenced electro-optical laser frequency comb for precision radial velocity measurements in astronomy,” Nat. Commun. 7, 10436 (2016).
[Crossref]

Fleisher, A. J.

Fortier, T.

P. Del’Haye, A. Coillet, T. Fortier, K. Beha, D. C. Cole, K. Y. Yang, H. Lee, K. J. Vahala, S. B. Papp, and S. A. Diddams, “Phase-coherent microwave-to-optical link with a self-referenced microcomb,” Nat. Photonics 10, 516–520 (2016).
[Crossref]

Fortier, T. M.

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nat. Photonics 5, 425–429 (2011).
[Crossref]

Frunzio, L.

M. Reagor, H. Paik, G. Catelani, L. Sun, C. Axline, E. Holland, I. M. Pop, N. A. Masluk, T. Brecht, L. Frunzio, M. H. Devoret, L. Glazman, and R. J. Schoelkopf, “Reaching 10  ms single photon lifetimes for superconducting aluminum cavities,” Appl. Phys. Lett. 102, 192604 (2013).
[Crossref]

Fuji, T.

Fujiwara, M.

Fukushima, Y.

T. Kobayashi, H. Yao, K. Amano, Y. Fukushima, A. Morimoto, and T. Sueta, “Optical pulse compression using high-frequency electrooptic phase modulation,” IEEE J. Quantum Electron. 24, 382–387 (1988).
[Crossref]

Furlan, E.

X. Yi, K. Vahala, J. Li, S. Diddams, G. Ycas, P. Plavchan, S. Leifer, J. Sandhu, G. Vasisht, P. Chen, P. Gao, J. Gagne, E. Furlan, M. Bottom, E. C. Martin, M. P. Fitzgerald, G. Doppmann, and C. Beichman, “Demonstration of a near-IR line-referenced electro-optical laser frequency comb for precision radial velocity measurements in astronomy,” Nat. Commun. 7, 10436 (2016).
[Crossref]

Gagne, J.

X. Yi, K. Vahala, J. Li, S. Diddams, G. Ycas, P. Plavchan, S. Leifer, J. Sandhu, G. Vasisht, P. Chen, P. Gao, J. Gagne, E. Furlan, M. Bottom, E. C. Martin, M. P. Fitzgerald, G. Doppmann, and C. Beichman, “Demonstration of a near-IR line-referenced electro-optical laser frequency comb for precision radial velocity measurements in astronomy,” Nat. Commun. 7, 10436 (2016).
[Crossref]

Gao, P.

X. Yi, K. Vahala, J. Li, S. Diddams, G. Ycas, P. Plavchan, S. Leifer, J. Sandhu, G. Vasisht, P. Chen, P. Gao, J. Gagne, E. Furlan, M. Bottom, E. C. Martin, M. P. Fitzgerald, G. Doppmann, and C. Beichman, “Demonstration of a near-IR line-referenced electro-optical laser frequency comb for precision radial velocity measurements in astronomy,” Nat. Commun. 7, 10436 (2016).
[Crossref]

Geiselmann, M.

V. Brasch, E. Lucas, J. D. Jost, M. Geiselmann, and T. J. Kippenberg, “Self-referencing of an on-chip soliton Kerr frequency comb without external broadening,” arXiv:1605.02801 (2016).

Genty, G.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[Crossref]

Glazman, L.

M. Reagor, H. Paik, G. Catelani, L. Sun, C. Axline, E. Holland, I. M. Pop, N. A. Masluk, T. Brecht, L. Frunzio, M. H. Devoret, L. Glazman, and R. J. Schoelkopf, “Reaching 10  ms single photon lifetimes for superconducting aluminum cavities,” Appl. Phys. Lett. 102, 192604 (2013).
[Crossref]

Gohle, C.

C. Gohle, J. Rauschenberger, T. Fuji, T. Udem, A. Apolonski, F. Krausz, and T. W. Hänsch, “Carrier envelope phase noise in stabilized amplifier systems,” Opt. Lett. 30, 2487–2489 (2005).
[Crossref]

A. Baltuska, T. Udem, M. Uiberacker, M. Hentschel, E. Goulielmakis, C. Gohle, R. Holzwarth, V. S. Yakovlev, A. Scrinzi, T. W. Hansch, and F. Krausz, “Attosecond control of electronic processes by intense light fields,” Nature 421, 611–615 (2003).
[Crossref]

Goulielmakis, E.

A. Baltuska, T. Udem, M. Uiberacker, M. Hentschel, E. Goulielmakis, C. Gohle, R. Holzwarth, V. S. Yakovlev, A. Scrinzi, T. W. Hansch, and F. Krausz, “Attosecond control of electronic processes by intense light fields,” Nature 421, 611–615 (2003).
[Crossref]

Guelachvili, G.

T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Coherent Raman spectro-imaging with laser frequency combs,” Nature 502, 355–358 (2013).
[Crossref]

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4, 55–57 (2009).
[Crossref]

Haensch, T. W.

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Haensch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102–5105 (2000).
[Crossref]

Hall, J. L.

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Haensch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102–5105 (2000).
[Crossref]

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[Crossref]

L.-S. Ma, P. Jungner, J. Ye, and J. L. Hall, “Delivering the same optical frequency at two places: accurate cancellation of phase noise introduced by an optical fiber or other time-varying path,” Opt. Lett. 19, 1777–1779 (1994).
[Crossref]

Hansch, T. W.

A. Baltuska, T. Udem, M. Uiberacker, M. Hentschel, E. Goulielmakis, C. Gohle, R. Holzwarth, V. S. Yakovlev, A. Scrinzi, T. W. Hansch, and F. Krausz, “Attosecond control of electronic processes by intense light fields,” Nature 421, 611–615 (2003).
[Crossref]

Hänsch, T. W.

T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Coherent Raman spectro-imaging with laser frequency combs,” Nature 502, 355–358 (2013).
[Crossref]

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4, 55–57 (2009).
[Crossref]

C. Gohle, J. Rauschenberger, T. Fuji, T. Udem, A. Apolonski, F. Krausz, and T. W. Hänsch, “Carrier envelope phase noise in stabilized amplifier systems,” Opt. Lett. 30, 2487–2489 (2005).
[Crossref]

Hati, A.

Heinecke, D.

A. Bartels, D. Heinecke, and S. A. Diddams, “10  GHz self-referenced optical frequency comb,” Science 326, 681 (2009).
[Crossref]

Hentschel, M.

A. Baltuska, T. Udem, M. Uiberacker, M. Hentschel, E. Goulielmakis, C. Gohle, R. Holzwarth, V. S. Yakovlev, A. Scrinzi, T. W. Hansch, and F. Krausz, “Attosecond control of electronic processes by intense light fields,” Nature 421, 611–615 (2003).
[Crossref]

Hjelme, D. R.

D. R. Hjelme, A. R. Mickelson, and R. G. Beausoleil, “Semiconductor laser stabilization by external optical feedback,” IEEE J. Quantum Electron. 27, 352–372 (1991).
[Crossref]

Hodges, J. T.

Holland, E.

M. Reagor, H. Paik, G. Catelani, L. Sun, C. Axline, E. Holland, I. M. Pop, N. A. Masluk, T. Brecht, L. Frunzio, M. H. Devoret, L. Glazman, and R. J. Schoelkopf, “Reaching 10  ms single photon lifetimes for superconducting aluminum cavities,” Appl. Phys. Lett. 102, 192604 (2013).
[Crossref]

Hollberg, L.

S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature 445, 627–630 (2007).
[Crossref]

Holzner, S.

T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Coherent Raman spectro-imaging with laser frequency combs,” Nature 502, 355–358 (2013).
[Crossref]

Holzwarth, R.

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4, 55–57 (2009).
[Crossref]

A. Baltuska, T. Udem, M. Uiberacker, M. Hentschel, E. Goulielmakis, C. Gohle, R. Holzwarth, V. S. Yakovlev, A. Scrinzi, T. W. Hansch, and F. Krausz, “Attosecond control of electronic processes by intense light fields,” Nature 421, 611–615 (2003).
[Crossref]

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Haensch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102–5105 (2000).
[Crossref]

Hosako, I.

Howe, D. A.

A. Hati, C. W. Nelson, B. Riddle, and D. A. Howe, “PM noise of a 40  GHz air-dielectric cavity oscillator,” arXiv:1404.4828v1 (2014).

Ideguchi, T.

T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Coherent Raman spectro-imaging with laser frequency combs,” Nature 502, 355–358 (2013).
[Crossref]

Ishizawa, A.

A. Ishizawa, T. Nishikawa, A. Mizutori, H. Takara, A. Takada, T. Sogawa, and M. Koga, “Phase-noise characteristics of a 25-GHz-spaced optical frequency comb based on a phase- and intensity-modulated laser,” Opt. Express 21, 29186–29194 (2013).
[Crossref]

A. Ishizawa, T. Nishikawa, A. Mizutori, H. Takara, S. Aozasa, A. Mori, H. Nakano, A. Takada, and M. Koga, “Octave-spanning frequency comb generated by 250  fs pulse train emitted from 25  GHz externally phase-modulated laser diode for carrier-envelope-offset-locking,” Electron. Lett. 46, 1343–1344 (2010).
[Crossref]

Iwakuni, K.

Iwatsuki, K.

Izutsu, M.

Jacquet, P.

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4, 55–57 (2009).
[Crossref]

Jacquey, M.

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4, 55–57 (2009).
[Crossref]

Jiang, Y.

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nat. Photonics 5, 425–429 (2011).
[Crossref]

Jones, D. J.

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Haensch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102–5105 (2000).
[Crossref]

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[Crossref]

Jost, J. D.

V. Brasch, E. Lucas, J. D. Jost, M. Geiselmann, and T. J. Kippenberg, “Self-referencing of an on-chip soliton Kerr frequency comb without external broadening,” arXiv:1605.02801 (2016).

Jungner, P.

Kani, J.

Kawanishi, T.

Kippenberg, T. J.

V. Brasch, E. Lucas, J. D. Jost, M. Geiselmann, and T. J. Kippenberg, “Self-referencing of an on-chip soliton Kerr frequency comb without external broadening,” arXiv:1605.02801 (2016).

Kirchner, M. S.

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nat. Photonics 5, 425–429 (2011).
[Crossref]

Kobayashi, T.

T. Kobayashi, H. Yao, K. Amano, Y. Fukushima, A. Morimoto, and T. Sueta, “Optical pulse compression using high-frequency electrooptic phase modulation,” IEEE J. Quantum Electron. 24, 382–387 (1988).
[Crossref]

T. Kobayashi, “High-repetition-rate optical pulse generator using a Fabry–Perot electro-optic modulator,” Appl. Phys. Lett. 21, 341–343 (1972).
[Crossref]

Kobayashi, Y.

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4, 55–57 (2009).
[Crossref]

Koga, M.

A. Ishizawa, T. Nishikawa, A. Mizutori, H. Takara, A. Takada, T. Sogawa, and M. Koga, “Phase-noise characteristics of a 25-GHz-spaced optical frequency comb based on a phase- and intensity-modulated laser,” Opt. Express 21, 29186–29194 (2013).
[Crossref]

A. Ishizawa, T. Nishikawa, A. Mizutori, H. Takara, S. Aozasa, A. Mori, H. Nakano, A. Takada, and M. Koga, “Octave-spanning frequency comb generated by 250  fs pulse train emitted from 25  GHz externally phase-modulated laser diode for carrier-envelope-offset-locking,” Electron. Lett. 46, 1343–1344 (2010).
[Crossref]

Kourogi, M.

M. Kourogi, K. Nakagawa, and M. Ohtsu, “Wide-span optical frequency comb generator for accurate optical frequency difference measurement,” IEEE J. Quantum Electron. 29, 2693–2701 (1993).
[Crossref]

Krausz, F.

C. Gohle, J. Rauschenberger, T. Fuji, T. Udem, A. Apolonski, F. Krausz, and T. W. Hänsch, “Carrier envelope phase noise in stabilized amplifier systems,” Opt. Lett. 30, 2487–2489 (2005).
[Crossref]

A. Baltuska, T. Udem, M. Uiberacker, M. Hentschel, E. Goulielmakis, C. Gohle, R. Holzwarth, V. S. Yakovlev, A. Scrinzi, T. W. Hansch, and F. Krausz, “Attosecond control of electronic processes by intense light fields,” Nature 421, 611–615 (2003).
[Crossref]

Kuo, B. P. P.

Lawall, J. R.

A. Marian, M. C. Stowe, J. R. Lawall, D. Felinto, and J. Ye, “United time-frequency spectroscopy for dynamics and global structure,” Science 306, 2063–2068 (2004).
[Crossref]

Leaird, D. E.

Lee, H.

P. Del’Haye, A. Coillet, T. Fortier, K. Beha, D. C. Cole, K. Y. Yang, H. Lee, K. J. Vahala, S. B. Papp, and S. A. Diddams, “Phase-coherent microwave-to-optical link with a self-referenced microcomb,” Nat. Photonics 10, 516–520 (2016).
[Crossref]

Leifer, S.

X. Yi, K. Vahala, J. Li, S. Diddams, G. Ycas, P. Plavchan, S. Leifer, J. Sandhu, G. Vasisht, P. Chen, P. Gao, J. Gagne, E. Furlan, M. Bottom, E. C. Martin, M. P. Fitzgerald, G. Doppmann, and C. Beichman, “Demonstration of a near-IR line-referenced electro-optical laser frequency comb for precision radial velocity measurements in astronomy,” Nat. Commun. 7, 10436 (2016).
[Crossref]

Lemke, N.

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nat. Photonics 5, 425–429 (2011).
[Crossref]

Li, J.

X. Yi, K. Vahala, J. Li, S. Diddams, G. Ycas, P. Plavchan, S. Leifer, J. Sandhu, G. Vasisht, P. Chen, P. Gao, J. Gagne, E. Furlan, M. Bottom, E. C. Martin, M. P. Fitzgerald, G. Doppmann, and C. Beichman, “Demonstration of a near-IR line-referenced electro-optical laser frequency comb for precision radial velocity measurements in astronomy,” Nat. Commun. 7, 10436 (2016).
[Crossref]

Long, C. M.

Long, D. A.

Lucas, E.

V. Brasch, E. Lucas, J. D. Jost, M. Geiselmann, and T. J. Kippenberg, “Self-referencing of an on-chip soliton Kerr frequency comb without external broadening,” arXiv:1605.02801 (2016).

Ludlow, A.

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nat. Photonics 5, 425–429 (2011).
[Crossref]

Ludlow, A. D.

A. D. Ludlow, M. M. Boyd, J. Ye, E. Peik, and P. O. Schmidt, “Optical atomic clocks,” Rev. Mod. Phys. 87, 637–701 (2015).
[Crossref]

Ma, L.-S.

Marian, A.

A. Marian, M. C. Stowe, J. R. Lawall, D. Felinto, and J. Ye, “United time-frequency spectroscopy for dynamics and global structure,” Science 306, 2063–2068 (2004).
[Crossref]

Martin, E. C.

X. Yi, K. Vahala, J. Li, S. Diddams, G. Ycas, P. Plavchan, S. Leifer, J. Sandhu, G. Vasisht, P. Chen, P. Gao, J. Gagne, E. Furlan, M. Bottom, E. C. Martin, M. P. Fitzgerald, G. Doppmann, and C. Beichman, “Demonstration of a near-IR line-referenced electro-optical laser frequency comb for precision radial velocity measurements in astronomy,” Nat. Commun. 7, 10436 (2016).
[Crossref]

Masluk, N. A.

M. Reagor, H. Paik, G. Catelani, L. Sun, C. Axline, E. Holland, I. M. Pop, N. A. Masluk, T. Brecht, L. Frunzio, M. H. Devoret, L. Glazman, and R. J. Schoelkopf, “Reaching 10  ms single photon lifetimes for superconducting aluminum cavities,” Appl. Phys. Lett. 102, 192604 (2013).
[Crossref]

Maxwell, S. E.

Mbele, V.

S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature 445, 627–630 (2007).
[Crossref]

Mickelson, A. R.

D. R. Hjelme, A. R. Mickelson, and R. G. Beausoleil, “Semiconductor laser stabilization by external optical feedback,” IEEE J. Quantum Electron. 27, 352–372 (1991).
[Crossref]

Mizutori, A.

A. Ishizawa, T. Nishikawa, A. Mizutori, H. Takara, A. Takada, T. Sogawa, and M. Koga, “Phase-noise characteristics of a 25-GHz-spaced optical frequency comb based on a phase- and intensity-modulated laser,” Opt. Express 21, 29186–29194 (2013).
[Crossref]

A. Ishizawa, T. Nishikawa, A. Mizutori, H. Takara, S. Aozasa, A. Mori, H. Nakano, A. Takada, and M. Koga, “Octave-spanning frequency comb generated by 250  fs pulse train emitted from 25  GHz externally phase-modulated laser diode for carrier-envelope-offset-locking,” Electron. Lett. 46, 1343–1344 (2010).
[Crossref]

Mori, A.

A. Ishizawa, T. Nishikawa, A. Mizutori, H. Takara, S. Aozasa, A. Mori, H. Nakano, A. Takada, and M. Koga, “Octave-spanning frequency comb generated by 250  fs pulse train emitted from 25  GHz externally phase-modulated laser diode for carrier-envelope-offset-locking,” Electron. Lett. 46, 1343–1344 (2010).
[Crossref]

Morimoto, A.

T. Kobayashi, H. Yao, K. Amano, Y. Fukushima, A. Morimoto, and T. Sueta, “Optical pulse compression using high-frequency electrooptic phase modulation,” IEEE J. Quantum Electron. 24, 382–387 (1988).
[Crossref]

Morohashi, I.

Myslivets, E.

Nakagawa, K.

M. Kourogi, K. Nakagawa, and M. Ohtsu, “Wide-span optical frequency comb generator for accurate optical frequency difference measurement,” IEEE J. Quantum Electron. 29, 2693–2701 (1993).
[Crossref]

Nakano, H.

A. Ishizawa, T. Nishikawa, A. Mizutori, H. Takara, S. Aozasa, A. Mori, H. Nakano, A. Takada, and M. Koga, “Octave-spanning frequency comb generated by 250  fs pulse train emitted from 25  GHz externally phase-modulated laser diode for carrier-envelope-offset-locking,” Electron. Lett. 46, 1343–1344 (2010).
[Crossref]

Nelson, C. W.

A. Hati, C. W. Nelson, B. Riddle, and D. A. Howe, “PM noise of a 40  GHz air-dielectric cavity oscillator,” arXiv:1404.4828v1 (2014).

Newbury, N.

I. Coddington, W. Swann, and N. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100, 013902 (2008).
[Crossref]

Newbury, N. R.

L. C. Sinclair, I. Coddington, W. C. Swann, G. B. Rieker, A. Hati, K. Iwakuni, and N. R. Newbury, “Operation of an optically coherent frequency comb outside the metrology lab,” Opt. Express 22, 6996–7006 (2014).
[Crossref]

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, “Fundamental noise limitations to supercontinuum generation in microstructure fiber,” Phys. Rev. Lett. 90, 113904 (2003).
[Crossref]

Nishikawa, T.

A. Ishizawa, T. Nishikawa, A. Mizutori, H. Takara, A. Takada, T. Sogawa, and M. Koga, “Phase-noise characteristics of a 25-GHz-spaced optical frequency comb based on a phase- and intensity-modulated laser,” Opt. Express 21, 29186–29194 (2013).
[Crossref]

A. Ishizawa, T. Nishikawa, A. Mizutori, H. Takara, S. Aozasa, A. Mori, H. Nakano, A. Takada, and M. Koga, “Octave-spanning frequency comb generated by 250  fs pulse train emitted from 25  GHz externally phase-modulated laser diode for carrier-envelope-offset-locking,” Electron. Lett. 46, 1343–1344 (2010).
[Crossref]

Oates, C. W.

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nat. Photonics 5, 425–429 (2011).
[Crossref]

Ohtsu, M.

M. Kourogi, K. Nakagawa, and M. Ohtsu, “Wide-span optical frequency comb generator for accurate optical frequency difference measurement,” IEEE J. Quantum Electron. 29, 2693–2701 (1993).
[Crossref]

Ozawa, A.

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4, 55–57 (2009).
[Crossref]

Paik, H.

M. Reagor, H. Paik, G. Catelani, L. Sun, C. Axline, E. Holland, I. M. Pop, N. A. Masluk, T. Brecht, L. Frunzio, M. H. Devoret, L. Glazman, and R. J. Schoelkopf, “Reaching 10  ms single photon lifetimes for superconducting aluminum cavities,” Appl. Phys. Lett. 102, 192604 (2013).
[Crossref]

Papp, S. B.

D. C. Cole, K. M. Beha, S. A. Diddams, and S. B. Papp, “Octave-spanning supercontinuum generation via microwave frequency multiplication,” J. Phys. 723, 012035 (2016).
[Crossref]

P. Del’Haye, A. Coillet, T. Fortier, K. Beha, D. C. Cole, K. Y. Yang, H. Lee, K. J. Vahala, S. B. Papp, and S. A. Diddams, “Phase-coherent microwave-to-optical link with a self-referenced microcomb,” Nat. Photonics 10, 516–520 (2016).
[Crossref]

D. C. Cole, S. B. Papp, and S. A. Diddams, “Downsampling of optical frequency combs for carrier-envelope offset frequency detection,” arXiv:1310.4134 (2013).

Peik, E.

A. D. Ludlow, M. M. Boyd, J. Ye, E. Peik, and P. O. Schmidt, “Optical atomic clocks,” Rev. Mod. Phys. 87, 637–701 (2015).
[Crossref]

Picqué, N.

T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Coherent Raman spectro-imaging with laser frequency combs,” Nature 502, 355–358 (2013).
[Crossref]

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4, 55–57 (2009).
[Crossref]

Plavchan, P.

X. Yi, K. Vahala, J. Li, S. Diddams, G. Ycas, P. Plavchan, S. Leifer, J. Sandhu, G. Vasisht, P. Chen, P. Gao, J. Gagne, E. Furlan, M. Bottom, E. C. Martin, M. P. Fitzgerald, G. Doppmann, and C. Beichman, “Demonstration of a near-IR line-referenced electro-optical laser frequency comb for precision radial velocity measurements in astronomy,” Nat. Commun. 7, 10436 (2016).
[Crossref]

Plusquellic, D. F.

Pop, I. M.

M. Reagor, H. Paik, G. Catelani, L. Sun, C. Axline, E. Holland, I. M. Pop, N. A. Masluk, T. Brecht, L. Frunzio, M. H. Devoret, L. Glazman, and R. J. Schoelkopf, “Reaching 10  ms single photon lifetimes for superconducting aluminum cavities,” Appl. Phys. Lett. 102, 192604 (2013).
[Crossref]

Quinlan, F.

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nat. Photonics 5, 425–429 (2011).
[Crossref]

Radic, S.

Ranka, J. K.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[Crossref]

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Haensch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102–5105 (2000).
[Crossref]

Rauschenberger, J.

Reagor, M.

M. Reagor, H. Paik, G. Catelani, L. Sun, C. Axline, E. Holland, I. M. Pop, N. A. Masluk, T. Brecht, L. Frunzio, M. H. Devoret, L. Glazman, and R. J. Schoelkopf, “Reaching 10  ms single photon lifetimes for superconducting aluminum cavities,” Appl. Phys. Lett. 102, 192604 (2013).
[Crossref]

Riddle, B.

A. Hati, C. W. Nelson, B. Riddle, and D. A. Howe, “PM noise of a 40  GHz air-dielectric cavity oscillator,” arXiv:1404.4828v1 (2014).

Rieker, G. B.

Rosenband, T.

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nat. Photonics 5, 425–429 (2011).
[Crossref]

Roy, R.

D. S. Elliott, R. Roy, and S. J. Smith, “Extracavity laser band-shape and bandwidth modification,” Phys. Rev. A 26, 12–18 (1982).
[Crossref]

Sakamoto, T.

Sandhu, J.

X. Yi, K. Vahala, J. Li, S. Diddams, G. Ycas, P. Plavchan, S. Leifer, J. Sandhu, G. Vasisht, P. Chen, P. Gao, J. Gagne, E. Furlan, M. Bottom, E. C. Martin, M. P. Fitzgerald, G. Doppmann, and C. Beichman, “Demonstration of a near-IR line-referenced electro-optical laser frequency comb for precision radial velocity measurements in astronomy,” Nat. Commun. 7, 10436 (2016).
[Crossref]

Schilt, S.

Schmidt, P. O.

A. D. Ludlow, M. M. Boyd, J. Ye, E. Peik, and P. O. Schmidt, “Optical atomic clocks,” Rev. Mod. Phys. 87, 637–701 (2015).
[Crossref]

Schoelkopf, R. J.

M. Reagor, H. Paik, G. Catelani, L. Sun, C. Axline, E. Holland, I. M. Pop, N. A. Masluk, T. Brecht, L. Frunzio, M. H. Devoret, L. Glazman, and R. J. Schoelkopf, “Reaching 10  ms single photon lifetimes for superconducting aluminum cavities,” Appl. Phys. Lett. 102, 192604 (2013).
[Crossref]

Schori, C.

Scrinzi, A.

A. Baltuska, T. Udem, M. Uiberacker, M. Hentschel, E. Goulielmakis, C. Gohle, R. Holzwarth, V. S. Yakovlev, A. Scrinzi, T. W. Hansch, and F. Krausz, “Attosecond control of electronic processes by intense light fields,” Nature 421, 611–615 (2003).
[Crossref]

Sinclair, L. C.

Smith, S. J.

D. S. Elliott, R. Roy, and S. J. Smith, “Extracavity laser band-shape and bandwidth modification,” Phys. Rev. A 26, 12–18 (1982).
[Crossref]

Sogawa, T.

Sotobayashi, H.

Stentz, A.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[Crossref]

Stowe, M. C.

A. Marian, M. C. Stowe, J. R. Lawall, D. Felinto, and J. Ye, “United time-frequency spectroscopy for dynamics and global structure,” Science 306, 2063–2068 (2004).
[Crossref]

Sueta, T.

T. Kobayashi, H. Yao, K. Amano, Y. Fukushima, A. Morimoto, and T. Sueta, “Optical pulse compression using high-frequency electrooptic phase modulation,” IEEE J. Quantum Electron. 24, 382–387 (1988).
[Crossref]

Sun, L.

M. Reagor, H. Paik, G. Catelani, L. Sun, C. Axline, E. Holland, I. M. Pop, N. A. Masluk, T. Brecht, L. Frunzio, M. H. Devoret, L. Glazman, and R. J. Schoelkopf, “Reaching 10  ms single photon lifetimes for superconducting aluminum cavities,” Appl. Phys. Lett. 102, 192604 (2013).
[Crossref]

Supradeepa, V. R.

Suzuki, H.

Swann, W.

I. Coddington, W. Swann, and N. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100, 013902 (2008).
[Crossref]

Swann, W. C.

Takachio, N.

Takada, A.

A. Ishizawa, T. Nishikawa, A. Mizutori, H. Takara, A. Takada, T. Sogawa, and M. Koga, “Phase-noise characteristics of a 25-GHz-spaced optical frequency comb based on a phase- and intensity-modulated laser,” Opt. Express 21, 29186–29194 (2013).
[Crossref]

A. Ishizawa, T. Nishikawa, A. Mizutori, H. Takara, S. Aozasa, A. Mori, H. Nakano, A. Takada, and M. Koga, “Octave-spanning frequency comb generated by 250  fs pulse train emitted from 25  GHz externally phase-modulated laser diode for carrier-envelope-offset-locking,” Electron. Lett. 46, 1343–1344 (2010).
[Crossref]

Takara, H.

A. Ishizawa, T. Nishikawa, A. Mizutori, H. Takara, A. Takada, T. Sogawa, and M. Koga, “Phase-noise characteristics of a 25-GHz-spaced optical frequency comb based on a phase- and intensity-modulated laser,” Opt. Express 21, 29186–29194 (2013).
[Crossref]

A. Ishizawa, T. Nishikawa, A. Mizutori, H. Takara, S. Aozasa, A. Mori, H. Nakano, A. Takada, and M. Koga, “Octave-spanning frequency comb generated by 250  fs pulse train emitted from 25  GHz externally phase-modulated laser diode for carrier-envelope-offset-locking,” Electron. Lett. 46, 1343–1344 (2010).
[Crossref]

Taylor, J.

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nat. Photonics 5, 425–429 (2011).
[Crossref]

Telle, H. R.

H. R. Telle, Frequency Control of Semiconductor Lasers, Wiley Series in Microwave and Optical Engineering (Wiley, 1996).

Teshima, M.

Thomann, P.

Tsuchiya, M.

Udem, T.

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4, 55–57 (2009).
[Crossref]

C. Gohle, J. Rauschenberger, T. Fuji, T. Udem, A. Apolonski, F. Krausz, and T. W. Hänsch, “Carrier envelope phase noise in stabilized amplifier systems,” Opt. Lett. 30, 2487–2489 (2005).
[Crossref]

A. Baltuska, T. Udem, M. Uiberacker, M. Hentschel, E. Goulielmakis, C. Gohle, R. Holzwarth, V. S. Yakovlev, A. Scrinzi, T. W. Hansch, and F. Krausz, “Attosecond control of electronic processes by intense light fields,” Nature 421, 611–615 (2003).
[Crossref]

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Haensch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102–5105 (2000).
[Crossref]

Uiberacker, M.

A. Baltuska, T. Udem, M. Uiberacker, M. Hentschel, E. Goulielmakis, C. Gohle, R. Holzwarth, V. S. Yakovlev, A. Scrinzi, T. W. Hansch, and F. Krausz, “Attosecond control of electronic processes by intense light fields,” Nature 421, 611–615 (2003).
[Crossref]

Vahala, K.

X. Yi, K. Vahala, J. Li, S. Diddams, G. Ycas, P. Plavchan, S. Leifer, J. Sandhu, G. Vasisht, P. Chen, P. Gao, J. Gagne, E. Furlan, M. Bottom, E. C. Martin, M. P. Fitzgerald, G. Doppmann, and C. Beichman, “Demonstration of a near-IR line-referenced electro-optical laser frequency comb for precision radial velocity measurements in astronomy,” Nat. Commun. 7, 10436 (2016).
[Crossref]

Vahala, K. J.

P. Del’Haye, A. Coillet, T. Fortier, K. Beha, D. C. Cole, K. Y. Yang, H. Lee, K. J. Vahala, S. B. Papp, and S. A. Diddams, “Phase-coherent microwave-to-optical link with a self-referenced microcomb,” Nat. Photonics 10, 516–520 (2016).
[Crossref]

Vasisht, G.

X. Yi, K. Vahala, J. Li, S. Diddams, G. Ycas, P. Plavchan, S. Leifer, J. Sandhu, G. Vasisht, P. Chen, P. Gao, J. Gagne, E. Furlan, M. Bottom, E. C. Martin, M. P. Fitzgerald, G. Doppmann, and C. Beichman, “Demonstration of a near-IR line-referenced electro-optical laser frequency comb for precision radial velocity measurements in astronomy,” Nat. Commun. 7, 10436 (2016).
[Crossref]

Walls, F. L.

F. L. Walls and A. Demarchi, “RF spectrum of a signal after frequency multiplication; measurement and comparison with a simple calculation,” IEEE Trans. Instrum. Meas. 24, 210–217 (1975).
[Crossref]

Weber, K.

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, “Fundamental noise limitations to supercontinuum generation in microstructure fiber,” Phys. Rev. Lett. 90, 113904 (2003).
[Crossref]

Weiner, A. M.

Windeler, R. S.

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, “Fundamental noise limitations to supercontinuum generation in microstructure fiber,” Phys. Rev. Lett. 90, 113904 (2003).
[Crossref]

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Haensch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102–5105 (2000).
[Crossref]

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[Crossref]

Wu, R.

Yakovlev, V. S.

A. Baltuska, T. Udem, M. Uiberacker, M. Hentschel, E. Goulielmakis, C. Gohle, R. Holzwarth, V. S. Yakovlev, A. Scrinzi, T. W. Hansch, and F. Krausz, “Attosecond control of electronic processes by intense light fields,” Nature 421, 611–615 (2003).
[Crossref]

Yang, K. Y.

P. Del’Haye, A. Coillet, T. Fortier, K. Beha, D. C. Cole, K. Y. Yang, H. Lee, K. J. Vahala, S. B. Papp, and S. A. Diddams, “Phase-coherent microwave-to-optical link with a self-referenced microcomb,” Nat. Photonics 10, 516–520 (2016).
[Crossref]

Yao, H.

T. Kobayashi, H. Yao, K. Amano, Y. Fukushima, A. Morimoto, and T. Sueta, “Optical pulse compression using high-frequency electrooptic phase modulation,” IEEE J. Quantum Electron. 24, 382–387 (1988).
[Crossref]

Ycas, G.

X. Yi, K. Vahala, J. Li, S. Diddams, G. Ycas, P. Plavchan, S. Leifer, J. Sandhu, G. Vasisht, P. Chen, P. Gao, J. Gagne, E. Furlan, M. Bottom, E. C. Martin, M. P. Fitzgerald, G. Doppmann, and C. Beichman, “Demonstration of a near-IR line-referenced electro-optical laser frequency comb for precision radial velocity measurements in astronomy,” Nat. Commun. 7, 10436 (2016).
[Crossref]

Ye, J.

A. D. Ludlow, M. M. Boyd, J. Ye, E. Peik, and P. O. Schmidt, “Optical atomic clocks,” Rev. Mod. Phys. 87, 637–701 (2015).
[Crossref]

A. Marian, M. C. Stowe, J. R. Lawall, D. Felinto, and J. Ye, “United time-frequency spectroscopy for dynamics and global structure,” Science 306, 2063–2068 (2004).
[Crossref]

S. T. Cundiff and J. Ye, “Colloquium: femtosecond optical frequency combs,” Rev. Mod. Phys. 75, 325–342 (2003).
[Crossref]

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Haensch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102–5105 (2000).
[Crossref]

L.-S. Ma, P. Jungner, J. Ye, and J. L. Hall, “Delivering the same optical frequency at two places: accurate cancellation of phase noise introduced by an optical fiber or other time-varying path,” Opt. Lett. 19, 1777–1779 (1994).
[Crossref]

Yi, X.

X. Yi, K. Vahala, J. Li, S. Diddams, G. Ycas, P. Plavchan, S. Leifer, J. Sandhu, G. Vasisht, P. Chen, P. Gao, J. Gagne, E. Furlan, M. Bottom, E. C. Martin, M. P. Fitzgerald, G. Doppmann, and C. Beichman, “Demonstration of a near-IR line-referenced electro-optical laser frequency comb for precision radial velocity measurements in astronomy,” Nat. Commun. 7, 10436 (2016).
[Crossref]

Appl. Opt. (2)

Appl. Phys. Lett. (2)

M. Reagor, H. Paik, G. Catelani, L. Sun, C. Axline, E. Holland, I. M. Pop, N. A. Masluk, T. Brecht, L. Frunzio, M. H. Devoret, L. Glazman, and R. J. Schoelkopf, “Reaching 10  ms single photon lifetimes for superconducting aluminum cavities,” Appl. Phys. Lett. 102, 192604 (2013).
[Crossref]

T. Kobayashi, “High-repetition-rate optical pulse generator using a Fabry–Perot electro-optic modulator,” Appl. Phys. Lett. 21, 341–343 (1972).
[Crossref]

Electron. Lett. (1)

A. Ishizawa, T. Nishikawa, A. Mizutori, H. Takara, S. Aozasa, A. Mori, H. Nakano, A. Takada, and M. Koga, “Octave-spanning frequency comb generated by 250  fs pulse train emitted from 25  GHz externally phase-modulated laser diode for carrier-envelope-offset-locking,” Electron. Lett. 46, 1343–1344 (2010).
[Crossref]

IEEE J. Quantum Electron. (3)

D. R. Hjelme, A. R. Mickelson, and R. G. Beausoleil, “Semiconductor laser stabilization by external optical feedback,” IEEE J. Quantum Electron. 27, 352–372 (1991).
[Crossref]

T. Kobayashi, H. Yao, K. Amano, Y. Fukushima, A. Morimoto, and T. Sueta, “Optical pulse compression using high-frequency electrooptic phase modulation,” IEEE J. Quantum Electron. 24, 382–387 (1988).
[Crossref]

M. Kourogi, K. Nakagawa, and M. Ohtsu, “Wide-span optical frequency comb generator for accurate optical frequency difference measurement,” IEEE J. Quantum Electron. 29, 2693–2701 (1993).
[Crossref]

IEEE Trans. Instrum. Meas. (1)

F. L. Walls and A. Demarchi, “RF spectrum of a signal after frequency multiplication; measurement and comparison with a simple calculation,” IEEE Trans. Instrum. Meas. 24, 210–217 (1975).
[Crossref]

J. Lightwave Technol. (1)

J. Phys. (1)

D. C. Cole, K. M. Beha, S. A. Diddams, and S. B. Papp, “Octave-spanning supercontinuum generation via microwave frequency multiplication,” J. Phys. 723, 012035 (2016).
[Crossref]

Nat. Commun. (1)

X. Yi, K. Vahala, J. Li, S. Diddams, G. Ycas, P. Plavchan, S. Leifer, J. Sandhu, G. Vasisht, P. Chen, P. Gao, J. Gagne, E. Furlan, M. Bottom, E. C. Martin, M. P. Fitzgerald, G. Doppmann, and C. Beichman, “Demonstration of a near-IR line-referenced electro-optical laser frequency comb for precision radial velocity measurements in astronomy,” Nat. Commun. 7, 10436 (2016).
[Crossref]

Nat. Photonics (4)

S. T. Cundiff and A. M. Weiner, “Optical arbitrary waveform generation,” Nat. Photonics 4, 760–766 (2010).
[Crossref]

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4, 55–57 (2009).
[Crossref]

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nat. Photonics 5, 425–429 (2011).
[Crossref]

P. Del’Haye, A. Coillet, T. Fortier, K. Beha, D. C. Cole, K. Y. Yang, H. Lee, K. J. Vahala, S. B. Papp, and S. A. Diddams, “Phase-coherent microwave-to-optical link with a self-referenced microcomb,” Nat. Photonics 10, 516–520 (2016).
[Crossref]

Nature (3)

S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature 445, 627–630 (2007).
[Crossref]

T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Coherent Raman spectro-imaging with laser frequency combs,” Nature 502, 355–358 (2013).
[Crossref]

A. Baltuska, T. Udem, M. Uiberacker, M. Hentschel, E. Goulielmakis, C. Gohle, R. Holzwarth, V. S. Yakovlev, A. Scrinzi, T. W. Hansch, and F. Krausz, “Attosecond control of electronic processes by intense light fields,” Nature 421, 611–615 (2003).
[Crossref]

Opt. Express (3)

Opt. Lett. (7)

C. Gohle, J. Rauschenberger, T. Fuji, T. Udem, A. Apolonski, F. Krausz, and T. W. Hänsch, “Carrier envelope phase noise in stabilized amplifier systems,” Opt. Lett. 30, 2487–2489 (2005).
[Crossref]

L.-S. Ma, P. Jungner, J. Ye, and J. L. Hall, “Delivering the same optical frequency at two places: accurate cancellation of phase noise introduced by an optical fiber or other time-varying path,” Opt. Lett. 19, 1777–1779 (1994).
[Crossref]

R. Wu, V. R. Supradeepa, C. M. Long, D. E. Leaird, and A. M. Weiner, “Generation of very flat optical frequency combs from continuous-wave lasers using cascaded intensity and phase modulators driven by tailored radio frequency waveforms,” Opt. Lett. 35, 3234–3236 (2010).
[Crossref]

V. R. Supradeepa and A. M. Weiner, “Bandwidth scaling and spectral flatness enhancement of optical frequency combs from phase-modulated continuous-wave lasers using cascaded four-wave mixing,” Opt. Lett. 37, 3066–3068 (2012).
[Crossref]

T. Sakamoto, T. Kawanishi, and M. Izutsu, “Asymptotic formalism for ultraflat optical frequency comb generation using a Mach–Zehnder modulator,” Opt. Lett. 32, 1515–1517 (2007).
[Crossref]

D. A. Long, A. J. Fleisher, K. O. Douglass, S. E. Maxwell, K. Bielska, J. T. Hodges, and D. F. Plusquellic, “Multiheterodyne spectroscopy with optical frequency combs generated from a continuous-wave laser,” Opt. Lett. 39, 2688–2690 (2014).
[Crossref]

I. Morohashi, T. Sakamoto, H. Sotobayashi, T. Kawanishi, I. Hosako, and M. Tsuchiya, “Widely repetition-tunable 200 fs pulse source using a Mach–Zehnder-modulator-based flat comb generator and dispersion-flattened dispersion-decreasing fiber,” Opt. Lett. 33, 1192–1194 (2008).
[Crossref]

Phys. Rev. A (1)

D. S. Elliott, R. Roy, and S. J. Smith, “Extracavity laser band-shape and bandwidth modification,” Phys. Rev. A 26, 12–18 (1982).
[Crossref]

Phys. Rev. Lett. (3)

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, “Fundamental noise limitations to supercontinuum generation in microstructure fiber,” Phys. Rev. Lett. 90, 113904 (2003).
[Crossref]

I. Coddington, W. Swann, and N. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100, 013902 (2008).
[Crossref]

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Haensch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102–5105 (2000).
[Crossref]

Rev. Mod. Phys. (3)

A. D. Ludlow, M. M. Boyd, J. Ye, E. Peik, and P. O. Schmidt, “Optical atomic clocks,” Rev. Mod. Phys. 87, 637–701 (2015).
[Crossref]

S. T. Cundiff and J. Ye, “Colloquium: femtosecond optical frequency combs,” Rev. Mod. Phys. 75, 325–342 (2003).
[Crossref]

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[Crossref]

Science (3)

A. Bartels, D. Heinecke, and S. A. Diddams, “10  GHz self-referenced optical frequency comb,” Science 326, 681 (2009).
[Crossref]

A. Marian, M. C. Stowe, J. R. Lawall, D. Felinto, and J. Ye, “United time-frequency spectroscopy for dynamics and global structure,” Science 306, 2063–2068 (2004).
[Crossref]

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[Crossref]

Other (4)

V. Brasch, E. Lucas, J. D. Jost, M. Geiselmann, and T. J. Kippenberg, “Self-referencing of an on-chip soliton Kerr frequency comb without external broadening,” arXiv:1605.02801 (2016).

D. C. Cole, S. B. Papp, and S. A. Diddams, “Downsampling of optical frequency combs for carrier-envelope offset frequency detection,” arXiv:1310.4134 (2013).

H. R. Telle, Frequency Control of Semiconductor Lasers, Wiley Series in Microwave and Optical Engineering (Wiley, 1996).

A. Hati, C. W. Nelson, B. Riddle, and D. A. Howe, “PM noise of a 40  GHz air-dielectric cavity oscillator,” arXiv:1404.4828v1 (2014).

Supplementary Material (1)

NameDescription
» Supplement 1: PDF (2397 KB)      supplement

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. Apparatus for self-referencing a CW laser. The system is comprised of electro-optic phase and intensity modulators, two stages of nonlinear-fiber (HNLF-1 and -2) spectral broadening, a Fabry–Perot optical cavity filter, and f 2 f detection. (a) EOM comb with 10 GHz spacing. (b) Idem after HNLF-1. (c) EOM comb with 33 GHz spacing. (d) Idem after HNLF-1 and line-by-line intensity control.
Fig. 2.
Fig. 2. Supercontinuum generated using our second broadening stage with HNLF-2. (a) EOM-comb spacing is 33 GHz. (b) Idem but for 10 GHz spacing. (c) Pulse picking prior to HNLF-2 reduces the initial spacing to 2.5 GHz.
Fig. 3.
Fig. 3. EOM-comb offset-frequency detection. (a) Spectra of fundamental and second-harmonic supercontinuum light at 1070 nm. (b) i, Carrier-offset heterodyne beat ( f 0 ) in black; ii, intensity noise in red; iii, detector noise in gray. (c)–(e) Spectrum of f 0 with different f e o sources, including a synthesizer, dielectric-resonator oscillator, and sapphire-cavity oscillator. The 2.5 GHz cases utilize pulse picking. All the photocurrent spectra are acquired with 100 kHz bandwidth, and frequency axes are offset 706.6, 1793, 491, and 726 MHz, respectively, in (b)–(d).
Fig. 4.
Fig. 4. Demonstration of optical frequency measurements and synthesis. (a) System components and connections. Both the EOM comb and an auxiliary fiber comb are referenced to a hydrogen maser. (b) Frequency counting record over 4000 s of the pump laser ν p with the EOM (black points) and fiber (green circles) combs. (c) Allan deviation of the frequency count record from (b) for EOM comb (black points) and fiber comb (green circles) and the synthesis data (green points) in (d). The solid line indicates the Allan deviation of a 193 THz laser drifting at 65 mHz/s. (d) Phase-lock synthesis of ν p with respect to the maser-referenced f eo ; ν set = 193 397 334 972 kHz . Green points are measurements of locked ν p with the fiber comb, and blue points are the in-loop noise.

Metrics