Abstract

Group IV photonics is on its way to be integrated with electronic circuits, making information transfer and processing faster and more energy efficient. Light sources, a critical component of photonic integrated circuits, are still in development. Here, we compare multi-quantum-well (MQW) light-emitting diodes (LEDs) with Ge0.915Sn0.085 wells and Si0.1Ge0.8Sn0.1 barriers to a reference Ge0.915Sn0.085 homojunction LED. Material properties as well as band structure calculations are discussed, followed by optical investigations. Electroluminescence spectra acquired at various temperatures indicate effective carrier confinement for electrons and holes in the GeSn quantum wells and confirm the excellent performance of GeSn/SiGeSn MQW light emitters.

© 2017 Optical Society of America

The integration of optical circuits into everyday electronic systems is driven by the need for an effective reduction of energy consumption. Replacing copper wires partly by optical interconnects would strongly reduce heat dissipation—crucial for high-performance nanoscale devices—and simultaneously solve the electronic modulation bandwidth bottleneck [1]. The industry standard wavelength range for telecommunication lies between 1.3 and 1.6 μm, where optical components based on Si and Ge are already available but could be expanded to higher wavelengths in future [2]. However, the fabrication of an on-chip light source poses challenges. Advanced materials like III–V semiconductors offer suitable properties for light emission, but integration into Si technology is cost intensive with insufficient return in terms of wafer bonding on silicon. Group IV semiconductors, on the other hand, lack emission efficiency due to their indirect bandgap. This major drawback has been overcome by alloying Ge with Sn, which offers the possibility of tuning the bandgap of Ge, shifting it to lower energies [3]. This lowering occurs faster for the Γ- than for the L-valley, and therefore the indirect semiconductor Ge turns into a fundamental direct-bandgap semiconductor GeSn [4]. Thus, lasing action has already been demonstrated for GeSn layers with a Sn content above 8.5% in Fabry–Perot and microcavity resonators [4,5]. Another set of group IV alloys, ternary SiGeSn, extend Sn-based material properties, offering additional degrees of freedom in the design of group IV heterostructures. The combination of GeSn and SiGeSn can expand the range of accessible wavelengths and, therefore, the range of applications of integrated optical chips on the powerful silicon microelectronics platform. Recent developments in the growth of group IV heterostructures and quantum structures also offer the possibility of using these low-dimensional structures for other (opto-) electronic applications [6], and even in quantum computing.

In this article we demonstrate the advantages of (Si)GeSn heterostructures for light-emitting devices. GeSn alloys as active materials for light-emitting diodes (LEDs) have already been investigated, but up to now the breakthrough to efficient LEDs or electrically pumped lasing is still missing. Approaches using GeSn homojunctions with Sn concentrations up to 12% [7] lead to an increased emission compared to elemental Ge diodes [8]. The implementation of hetero- and multi-quantum-well (MQW) structures with GeSn wells and Ge barriers did not significantly enhance light emission or decreased current density compared to simple homojunction devices [911]. Due to established light emitters from III-V materials, it is well known that quantum structures can lead to lower lasing threshold current densities by several orders of magnitude [12]. The carrier confinement inside direct-bandgap GeSn wells is weak when Ge is used as a barrier material, leading either to a lack of type I band alignment or to small barrier heights, of the order of kBT, 25meV at room temperature [11]. Switching from Ge to SiGeSn ternary alloys would, provided that the Si and Sn atomic concentrations are properly chosen [13], offer much stronger carrier confinement and type I band alignment. However, uncertainties concerning the SiSn bowing parameter make the calculations of GeSn/SiGeSn band alignment unreliable. Depending on the bSiSn,Γ value, which varies in literature between 3.9 [14] and 24 [1517], the very same GeSn/SiGeSn heterostructure can offer either a strong type II band alignment (confinement of electrons and holes in different layers) or a strong type I alignment (carrier confinement in the GeSn well). The only way to verify that carriers are efficiently trapped in GeSn quantum wells is the experimental fabrication of such GeSn/SiGeSn LEDs and study of their electroluminescence (EL) properties. Hence, we investigate experimentally the influence of SiGeSn barriers in a GeSn/SiGeSn MQW LED, and compare it to homojunction GeSn LEDs, based on EL performance. Following this idea, we have fabricated LEDs from a Ge0.914Sn0.086/Si0.105Ge0.786Sn0.109 MQW stack. The heterostructure was grown by reactive gas source epitaxy [4]. The LED structure was deposited on a 2.7 μm thick Ge buffer on top of a 200 mm Si(001) wafer [18] in a single epitaxial run. A 280 nm thick partially relaxed n-type doped Ge0.914Sn0.086 buffer was first grown (Phosphorus, 3·1019cm3). This sets the residual compressive strain in the GeSn wells coherently grown on top to only 0.24% (which is beneficial in terms of bandgap directness). The PH3 precursor flux was stopped 60 nm before the first SiGeSn barrier to avoid any unintentional doping of the active layers. The quantum wells (GeSn) and barriers (SiGeSn) are lattice matched, whereas the absolute strain in the SiGeSn barriers amounts to 0.09%, meaning that the material is almost strain free. The LED structure is completed by a p-doped Ge0.915Sn0.085 layer (Boron, 7·1018cm3). The doping concentrations are evaluated by electrochemical capacitance voltage measurements and the localization is verified, together with stoichiometry, by atom probe tomography (APT); see Fig. 1. The composition of a central part with five quantum wells is shown in Fig. 1(a). Reconstructed APT elemental maps are provided in Figs. 1(b)1(f). The GeSn wells, forming the active region, have a Sn concentration of 8.6%, which was confirmed by Rutherford backscattering spectrometry, and a thickness of about 19 nm for each of the seven wells. By switching on the Si flux during barrier growth, 10.5% Si is incorporated into the roughly 11 nm thick barrier layers. The Si atoms are well confined within the SiGeSn barrier layers, where a slight Sn content increase can also be observed; adding Si modifies the incorporated Sn concentration, which increases here to 10.9% Sn [19]. Based on APT, the location of p-dopants and separation of n-dopants from the first barrier are also verified [Figs. 1(e) and 1(f)]. It should be noted that phosphorus atoms, which can be seen in the measurement above the n-doped layer, are noise due to the measurement. In contrast, the GeSn homojunction LED, used for comparison, consists of a 514 nm thick Ge0.915Sn0.085 layer with a residual compressive strain of 0.2%, determined by x-ray diffraction reciprocal space mapping. The n-doping and p-doping amount to 7·1019cm3 and 3·1018cm3, respectively.

 figure: Fig. 1.

Fig. 1. (a) APT concentration profiles across a central part of the MQW LED. APT elemental maps of the GeSn/SiGeSn MQW: (b)–(d) individual maps for Ge, Sn, and Si, (e) the B atoms in the GeSn:B layer on top of the MQW appear as violet dots in the top part, (f) the P atoms in the bottom Ge:P layer, which is 60nm beneath the first SiGeSn barrier, appear as dark green dots in the bottom part.

Download Full Size | PPT Slide | PDF

The light-emitting devices are fabricated using standard cleanroom silicon CMOS processing. The structures are defined by optical photolithography. Mesas are patterned and contact windows are opened by reactive ion etching with Cl2/Ar, as well as CHF3 plasmas. Surface passivation is assured by 150nm SiO2 deposited using plasma-enhanced chemical vapor deposition at 300°C. Low-resistance metallic NiGeSn layers [20], together with 200 nm sputtered Al, form the metallic contacts. A schematic of a fabricated device is presented in Fig. 2(a).

 figure: Fig. 2.

Fig. 2. (a) Schematic of a GeSn/SiGeSn MQW LED. (b), (c) Calculated electronic band structure of the associated GeSn/SiGeSn quantum well structure with either (b) high or (c) low SiSn bowing parameters.

Download Full Size | PPT Slide | PDF

To investigate the MQW structure confinement properties, the bulk alloy band structures [21] were first calculated (using an eight-band kp model at Γ), with strain effects described via deformation potentials [22], and were then used to find the band alignment in MQWs [14], as shown in Figs. 2(b) and 2(c). The compressive strain in the wells makes them more indirect. Calculations for the GeSn well give an energy separation between the L- and Γ-valleys in the conduction band of just ΔE=4meV for the slightly indirect material. Two GeSn/SiGeSn band structures, one with a bSiSn,Γ=19eV [23] bowing parameter at the Γ point [Fig. 2(b)] and the other with bSiSn,Γ=3.9eV [14] [Fig. 2(c)], were then computed (in order to account for the spread in the literature values). The same bSiSn,L=2.124eV [14] value at the L point was used in both cases. The {GeSn/SiGeSn} configuration investigated here was chosen so that it always provides type I band alignment, irrespective of the Γ-valley SiSn bowing parameter used. As seen in Figs. 2(b) and 2(c), both electrons and holes are confined in the GeSn wells, which should lead to a large improvement in the radiative recombination rate. This situation is not fulfilled for most GeSn/Ge MQW configurations, as detailed in Ref. [11]. Note that the strong dependence of the Γ-valley on the SiSn bowing parameter results more rapidly in direct bandgaps for higher bSiSn,Γ values. With bSiSn,Γ=19eV, the bandgap of the SiGeSn ternary alloy used here is actually direct. However, even in this case the structure maintains its required properties: a significantly larger bandgap in the SiGeSn barriers than in the GeSn wells, and type I band alignment. Clearly, the band structure of SiGeSn has to be investigated in more detail in order to match calculations and experimental data. With the large dispersion of the reported values of SiSn bowing parameters, it is likely that more than a simple quadratic interpolation of conventional binary bowing terms is necessary for the ternary. Because of these uncertainties in band structure calculations, only the experiment can reveal the extent of carrier confinement.

EL is recorded using a Vertex 80v Bruker spectrometer in step scan mode. The sample is mounted in a He-cooled finger cryostat enabling temperature-dependent analysis. A modulated rectangular voltage is applied with a repetition rate of 2kHz and a duty cycle (DC) of 50%. The emitted light is detected by a liquid-itrogen-cooled InSb detector with an optical filter with a cutoff wavelength of 3 μm mounted in front. Spectra of the GeSn/SiGeSn MQW structure (blue) and of the GeSn homojunction (green, dashed) collected at 4 K (left) and 300 K (right) are shown in Fig. 3(a). The peak current density j, matched for both devices, is about 150A/cm2. At both temperatures, the light emission yield of the MQW structure is definitely higher than that of the homojunction. At low temperatures, where nonradiative recombination paths are reduced, the intensity is tremendously enhanced. Temperature-dependent measurements of both LEDs show that the EL intensity increases strongly as the temperature decreases. This rise is obvious in Fig. 3(b), where the normalized intensities of the GeSn/SiGeSn MQW (solid squares) and the GeSn homojunction (open circles) are compared between 4 and 300 K. Integrated intensities are normalized to room temperature values. The strong MQW LED emission increase compared to the homojunction at low temperatures may be attributed to the type I band alignment, which yields efficient confinement of electrons and holes in the wells. More carriers are then available for band-to-band recombination in the active material than in the homojunction case. Moreover, a GeSn alloy with a smaller energy offset between L and Γ has a higher ratio of electrons at Γ, resulting in a higher radiative band-to-band recombination rate. An effect of quantization on the EL emission cannot be resolved and is not intended, since quantization effects would transform the alloy to a more indirect one. EL peak energy positions and full width at half maximum (FWHM) were extracted from the spectra and are provided in Fig. 3(c). The MQW spectra show (i) a Varshni-like increase of the EL peak energy with decreasing temperature (open squares) and (ii) a steady broadening of the FWHM (solid squares) as the temperature increases. The peak positions of spectra collected from a homojunction LED are plotted as open green circles in Fig. 3(c). Despite the comparable strain values in the active regions, the emission energy of the homojunction lies 20 meV above the emission energy of the MQW device, which is a clear sign that the bandgap is slightly smaller in the latter. Measurement inaccuracies concerning the Sn concentration (±0.5%) and strain (±0.1%) may explain this discrepancy.

 figure: Fig. 3.

Fig. 3. (a) Emission spectra at 4 K and 300 K of d=100μm GeSn/SiGeSn MQW (blue) and homojunction (dashed green) LEDs, (b) integrated intensity of both LEDs as a function of temperature for j=250Acm2 normalized to the values at 300 K, (c) FWHM (for the MQW) and peak position (homojunction and MQW) at different temperatures.

Download Full Size | PPT Slide | PDF

Power dependence of the light emission from the GeSn/SiGeSn MQW device is also investigated. Figure 4(a) shows EL spectra at temperatures of 4 and 300 K (inset) for various injection current densities. The current density values given in Fig. 4(a) correspond to the applied peak current densities. As expected, the EL intensities increase with the current densities (from 0.8 up to 223A/cm2 at 4 K). The integrated EL intensity is shown as a function of the current density for different temperatures in Fig. 4(b). In line with the temperature dependence shown in Fig. 3(b), the EL intensities at low temperatures are higher than that at room temperature. At T=4K the slope of the power dependence on a log–log scale in Fig. 4(b) is around 0.3 for low injection (e.g., j<5A/cm2), an injection regime in which the limiting process might be trap-assisted nonradiative recombination paths. It increases to 0.6 for larger injection currents, suggesting Auger recombination [24] in the layer. At higher temperatures, the radiative recombination seems to be dominated by direct band-to-band recombination, and the slope of the current dependence of the EL approaches a value of 1.0.

 figure: Fig. 4.

Fig. 4. (a) EL spectra for different peak current densities j at 4 K and 300 K (inset), (b) the integrated intensity of a GeSn/SiGeSn MQW device plotted as a function of j at different temperatures, (c) EL peak position as a function of j at different temperatures, (d) integrated EL intensity and peak position at 15 K as a function of the duty cycle.

Download Full Size | PPT Slide | PDF

The EL peak positions are analyzed and displayed in Fig. 4(c) as a function of the current density, for four temperatures. The peak position is almost constant over the whole current density range at every temperature probed. At higher temperatures the decrease in peak energy is below 5 meV, indicating the absence of any significant heating in the device. The DC-dependent EL was also investigated at 15 K in a 150 μm diameter MQW LED for j=194A/cm2. The repetition rate was kept at 2 kHz. To investigate the impact of heating due to high power supplied to the diodes, the peak position was measured as a function of DC, shown in Fig. 4(d) (open squares). The peak position remains constant at 583 meV, irrespective of the DC. The EL intensity has a maximum at 50% DC, and varies linearly in either direction from this point. The maximum is just an effect of the lock-in amplifier measurements of the first term of the Fourier transformation. Both the constant peak of the EL spectra and the linear dependence of the EL intensity position on the DC are clear hints that heating is negligible. These are important findings regarding the devices’ temperature stability.

In conclusion, we showed strongly improved MQW LED performance compared to that of homojunction devices. The temperature dependence clearly highlights the influence of SiGeSn barrier material for efficient carrier confinement in heterostructures; however, compositions with even stronger confinement would be favorable for operation at room temperature. Further analysis of the MQW LED was provided by power-dependent EL measurements below 500A/cm2. Heating, expected to occur with increased injection currents, has no impact on optical properties, underlining the temperature stability of the presented devices. The ongoing improvement in material quality will lead to decreased trap-assisted recombination, offering higher efficiency at low injection. In addition, the use of a direct-bandgap MQW structure with SiGeSn as the barrier material will lead to a higher density of confined Γ-electrons and thus efficient light emission, which is also a prerequisite for electrically pumped GeSn lasers.

Funding

Villum Foundation; Romanian National Authority for Scientific Research and Innovation, CCCDI–UEFISCDI (58/2016 M.ERANET-3107-GESNAPHOTO, within PNCDI III); Deutsche Forschungsgemeinschaft (DFG), (SiGeSn Laser for Silicon Photonics); Royal Society International Exchanges (IE131593).

Acknowledgment

We thank the Helmholtz Nano Facility (HNF) team for cleanroom support and service.

REFERENCES

1. D. J. Richardson, Nat. Photonics 3, 562 (2009). [CrossRef]  

2. D. J. Thomson, L. Shen, J. J. Ackert, E. Huante-Ceron, A. P. Knights, M. Nedeljkovic, A. C. Peacock, and G. Z. Mashanovich, Opt. Express 22, 10825 (2014). [CrossRef]  

3. P. Moontragoon, Z. Ikonić, and P. Harrison, Semicond. Sci. Technol. 22, 742 (2007). [CrossRef]  

4. S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, Nat. Photonics 9, 88 (2015). [CrossRef]  

5. D. Stange, S. Wirths, R. Geiger, C. Schulte-Braucks, B. Marzban, N. von den Driesch, G. Mussler, T. Zabel, T. Stoica, J.-M. Hartmann, S. Mantl, Z. Ikonic, D. Grützmacher, H. Sigg, J. Witzens, and D. Buca, ACS Photon. 3, 1279 (2016). [CrossRef]  

6. S. J. Shin, J. Guzman, C.-W. Yuan, C. Y. Liao, C. N. Boswell-Koller, P. R. Stone, O. D. Dubon, A. M. Minor, M. Watanabe, J. W. Beeman, K. M. Yu, and J. W. Ager III, D. C. Chrzan and E. E. Haller, Nano Lett. 10, 2794 (2010). [CrossRef]  

7. J. D. Gallagher, C. L. Senaratne, P. M. Wallace, J. Menéndez, and J. Kouvetakis, Appl. Phys. Lett. 107, 123507 (2015). [CrossRef]  

8. M. Oehme, K. Kostecki, T. Arguirov, G. Mussler, K. Ye, M. Gollhofer, M. Schmid, M. Kaschel, R. A. Körner, M. Kittler, D. Buca, E. Kasper, and J. Schulze, IEEE Photon. Technol. Lett. 26, 187 (2014). [CrossRef]  

9. Y. Zhou, W. Dou, W. Du, T. Pham, S. A. Ghetmiri, S. Al-Kabi, A. Mosleh, M. Alher, J. Margetis, J. Tolle, G. Sun, R. Soref, B. Li, M. Mortazavi, H. Naseem, and S.-Q. Yu, J. Appl. Phys. 120, 023102 (2016). [CrossRef]  

10. B. Schwartz, M. Oehme, K. Kostecki, D. Widmann, M. Gollhofer, R. Koerner, S. Bechler, I. A. Fischer, T. Wendav, E. Kasper, J. Schulze, and M. Kittler, Opt. Lett. 40, 3209 (2015). [CrossRef]  

11. D. Stange, N. von den Driesch, D. Rainko, C. Schulte-Braucks, S. Wirths, G. Mussler, A. T. Tiedemann, T. Stoica, J. M. Hartmann, Z. Ikonic, S. Mantl, D. Grützmacher, and D. Buca, Opt. Express 24, 1358 (2016). [CrossRef]  

12. Z. Alferov, IEEE J. Sel. Top. Quantum Electron. 6, 832 (2000). [CrossRef]  

13. C. L. Senaratne, P. M. Wallace, J. D. Gallagher, P. E. Sims, J. Kouvetakis, and J. Menéndez, J. Appl. Phys. 120, 025701 (2016). [CrossRef]  

14. P. Moontragoon, R. A. Soref, and Z. Ikonic, J. Appl. Phys. 112, 073106 (2012). [CrossRef]  

15. G. Sun, R. A. Soref, and H. H. Cheng, J. Appl. Phys. 108, 033107 (2010). [CrossRef]  

16. G.-E. Chang, S.-W. Chang, and S. L. Chuang, Opt. Express 17, 11246 (2009). [CrossRef]  

17. T. Wendav, I. A. Fischer, M. Montanari, M. H. Zoellner, W. Klesse, G. Capellini, N. von den Driesch, M. Oehme, D. Buca, K. Busch, and J. Schulze, Appl. Phys. Lett. 108, 242104 (2016). [CrossRef]  

18. J. M. Hartmann, A. Abbadie, N. Cherkashin, H. Grampeix, and L. Clavelier, Semicond. Sci. Technol. 24, 055002 (2009). [CrossRef]  

19. S. Wirths, D. Buca, Z. Ikonic, P. Harrison, A. T. Tiedemann, B. Holländer, T. Stoica, G. Mussler, U. Breuer, J. M. Hartmann, D. Grützmacher, and S. Mantl, Thin Solid Films 557, 183 (2014). [CrossRef]  

20. S. Wirths, R. Troitsch, G. Mussler, J.-M. Hartmann, P. Zaumseil, T. Schroeder, S. Mantl, and D. Buca, Semicond. Sci. Technol. 30, 055003 (2015). [CrossRef]  

21. T. B. Bahder, Phys. Rev. B 41, 11992 (1990). [CrossRef]  

22. G.-E. Chang, S.-W. Chang, and S. L. Chuang, IEEE J. Quantum Electron. 46, 1813 (2010). [CrossRef]  

23. N. von den Driesch, D. Stange, S. Wirths, D. Rainko, I. Povstugar, A. Savenko, U. Breuer, R. Geiger, H. Sigg, Z. Ikonic, J.-M. Hartmann, D. Grützmacher, S. Mantl, and D. Buca, Small, to be submitted.

24. T. Stoica, L. Vescan, A. Muck, B. Hollander, and G. Schope, Phys. E 16, 359 (2003). [CrossRef]  

References

  • View by:

  1. D. J. Richardson, Nat. Photonics 3, 562 (2009).
    [Crossref]
  2. D. J. Thomson, L. Shen, J. J. Ackert, E. Huante-Ceron, A. P. Knights, M. Nedeljkovic, A. C. Peacock, and G. Z. Mashanovich, Opt. Express 22, 10825 (2014).
    [Crossref]
  3. P. Moontragoon, Z. Ikonić, and P. Harrison, Semicond. Sci. Technol. 22, 742 (2007).
    [Crossref]
  4. S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, Nat. Photonics 9, 88 (2015).
    [Crossref]
  5. D. Stange, S. Wirths, R. Geiger, C. Schulte-Braucks, B. Marzban, N. von den Driesch, G. Mussler, T. Zabel, T. Stoica, J.-M. Hartmann, S. Mantl, Z. Ikonic, D. Grützmacher, H. Sigg, J. Witzens, and D. Buca, ACS Photon. 3, 1279 (2016).
    [Crossref]
  6. S. J. Shin, J. Guzman, C.-W. Yuan, C. Y. Liao, C. N. Boswell-Koller, P. R. Stone, O. D. Dubon, A. M. Minor, M. Watanabe, J. W. Beeman, K. M. Yu, and J. W. Ager, D. C. Chrzan and E. E. Haller, Nano Lett. 10, 2794 (2010).
    [Crossref]
  7. J. D. Gallagher, C. L. Senaratne, P. M. Wallace, J. Menéndez, and J. Kouvetakis, Appl. Phys. Lett. 107, 123507 (2015).
    [Crossref]
  8. M. Oehme, K. Kostecki, T. Arguirov, G. Mussler, K. Ye, M. Gollhofer, M. Schmid, M. Kaschel, R. A. Körner, M. Kittler, D. Buca, E. Kasper, and J. Schulze, IEEE Photon. Technol. Lett. 26, 187 (2014).
    [Crossref]
  9. Y. Zhou, W. Dou, W. Du, T. Pham, S. A. Ghetmiri, S. Al-Kabi, A. Mosleh, M. Alher, J. Margetis, J. Tolle, G. Sun, R. Soref, B. Li, M. Mortazavi, H. Naseem, and S.-Q. Yu, J. Appl. Phys. 120, 023102 (2016).
    [Crossref]
  10. B. Schwartz, M. Oehme, K. Kostecki, D. Widmann, M. Gollhofer, R. Koerner, S. Bechler, I. A. Fischer, T. Wendav, E. Kasper, J. Schulze, and M. Kittler, Opt. Lett. 40, 3209 (2015).
    [Crossref]
  11. D. Stange, N. von den Driesch, D. Rainko, C. Schulte-Braucks, S. Wirths, G. Mussler, A. T. Tiedemann, T. Stoica, J. M. Hartmann, Z. Ikonic, S. Mantl, D. Grützmacher, and D. Buca, Opt. Express 24, 1358 (2016).
    [Crossref]
  12. Z. Alferov, IEEE J. Sel. Top. Quantum Electron. 6, 832 (2000).
    [Crossref]
  13. C. L. Senaratne, P. M. Wallace, J. D. Gallagher, P. E. Sims, J. Kouvetakis, and J. Menéndez, J. Appl. Phys. 120, 025701 (2016).
    [Crossref]
  14. P. Moontragoon, R. A. Soref, and Z. Ikonic, J. Appl. Phys. 112, 073106 (2012).
    [Crossref]
  15. G. Sun, R. A. Soref, and H. H. Cheng, J. Appl. Phys. 108, 033107 (2010).
    [Crossref]
  16. G.-E. Chang, S.-W. Chang, and S. L. Chuang, Opt. Express 17, 11246 (2009).
    [Crossref]
  17. T. Wendav, I. A. Fischer, M. Montanari, M. H. Zoellner, W. Klesse, G. Capellini, N. von den Driesch, M. Oehme, D. Buca, K. Busch, and J. Schulze, Appl. Phys. Lett. 108, 242104 (2016).
    [Crossref]
  18. J. M. Hartmann, A. Abbadie, N. Cherkashin, H. Grampeix, and L. Clavelier, Semicond. Sci. Technol. 24, 055002 (2009).
    [Crossref]
  19. S. Wirths, D. Buca, Z. Ikonic, P. Harrison, A. T. Tiedemann, B. Holländer, T. Stoica, G. Mussler, U. Breuer, J. M. Hartmann, D. Grützmacher, and S. Mantl, Thin Solid Films 557, 183 (2014).
    [Crossref]
  20. S. Wirths, R. Troitsch, G. Mussler, J.-M. Hartmann, P. Zaumseil, T. Schroeder, S. Mantl, and D. Buca, Semicond. Sci. Technol. 30, 055003 (2015).
    [Crossref]
  21. T. B. Bahder, Phys. Rev. B 41, 11992 (1990).
    [Crossref]
  22. G.-E. Chang, S.-W. Chang, and S. L. Chuang, IEEE J. Quantum Electron. 46, 1813 (2010).
    [Crossref]
  23. N. von den Driesch, D. Stange, S. Wirths, D. Rainko, I. Povstugar, A. Savenko, U. Breuer, R. Geiger, H. Sigg, Z. Ikonic, J.-M. Hartmann, D. Grützmacher, S. Mantl, and D. Buca, Small, to be submitted.
  24. T. Stoica, L. Vescan, A. Muck, B. Hollander, and G. Schope, Phys. E 16, 359 (2003).
    [Crossref]

2016 (5)

D. Stange, S. Wirths, R. Geiger, C. Schulte-Braucks, B. Marzban, N. von den Driesch, G. Mussler, T. Zabel, T. Stoica, J.-M. Hartmann, S. Mantl, Z. Ikonic, D. Grützmacher, H. Sigg, J. Witzens, and D. Buca, ACS Photon. 3, 1279 (2016).
[Crossref]

Y. Zhou, W. Dou, W. Du, T. Pham, S. A. Ghetmiri, S. Al-Kabi, A. Mosleh, M. Alher, J. Margetis, J. Tolle, G. Sun, R. Soref, B. Li, M. Mortazavi, H. Naseem, and S.-Q. Yu, J. Appl. Phys. 120, 023102 (2016).
[Crossref]

D. Stange, N. von den Driesch, D. Rainko, C. Schulte-Braucks, S. Wirths, G. Mussler, A. T. Tiedemann, T. Stoica, J. M. Hartmann, Z. Ikonic, S. Mantl, D. Grützmacher, and D. Buca, Opt. Express 24, 1358 (2016).
[Crossref]

C. L. Senaratne, P. M. Wallace, J. D. Gallagher, P. E. Sims, J. Kouvetakis, and J. Menéndez, J. Appl. Phys. 120, 025701 (2016).
[Crossref]

T. Wendav, I. A. Fischer, M. Montanari, M. H. Zoellner, W. Klesse, G. Capellini, N. von den Driesch, M. Oehme, D. Buca, K. Busch, and J. Schulze, Appl. Phys. Lett. 108, 242104 (2016).
[Crossref]

2015 (4)

S. Wirths, R. Troitsch, G. Mussler, J.-M. Hartmann, P. Zaumseil, T. Schroeder, S. Mantl, and D. Buca, Semicond. Sci. Technol. 30, 055003 (2015).
[Crossref]

B. Schwartz, M. Oehme, K. Kostecki, D. Widmann, M. Gollhofer, R. Koerner, S. Bechler, I. A. Fischer, T. Wendav, E. Kasper, J. Schulze, and M. Kittler, Opt. Lett. 40, 3209 (2015).
[Crossref]

J. D. Gallagher, C. L. Senaratne, P. M. Wallace, J. Menéndez, and J. Kouvetakis, Appl. Phys. Lett. 107, 123507 (2015).
[Crossref]

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, Nat. Photonics 9, 88 (2015).
[Crossref]

2014 (3)

D. J. Thomson, L. Shen, J. J. Ackert, E. Huante-Ceron, A. P. Knights, M. Nedeljkovic, A. C. Peacock, and G. Z. Mashanovich, Opt. Express 22, 10825 (2014).
[Crossref]

M. Oehme, K. Kostecki, T. Arguirov, G. Mussler, K. Ye, M. Gollhofer, M. Schmid, M. Kaschel, R. A. Körner, M. Kittler, D. Buca, E. Kasper, and J. Schulze, IEEE Photon. Technol. Lett. 26, 187 (2014).
[Crossref]

S. Wirths, D. Buca, Z. Ikonic, P. Harrison, A. T. Tiedemann, B. Holländer, T. Stoica, G. Mussler, U. Breuer, J. M. Hartmann, D. Grützmacher, and S. Mantl, Thin Solid Films 557, 183 (2014).
[Crossref]

2012 (1)

P. Moontragoon, R. A. Soref, and Z. Ikonic, J. Appl. Phys. 112, 073106 (2012).
[Crossref]

2010 (3)

G. Sun, R. A. Soref, and H. H. Cheng, J. Appl. Phys. 108, 033107 (2010).
[Crossref]

S. J. Shin, J. Guzman, C.-W. Yuan, C. Y. Liao, C. N. Boswell-Koller, P. R. Stone, O. D. Dubon, A. M. Minor, M. Watanabe, J. W. Beeman, K. M. Yu, and J. W. Ager, D. C. Chrzan and E. E. Haller, Nano Lett. 10, 2794 (2010).
[Crossref]

S. J. Shin, J. Guzman, C.-W. Yuan, C. Y. Liao, C. N. Boswell-Koller, P. R. Stone, O. D. Dubon, A. M. Minor, M. Watanabe, J. W. Beeman, K. M. Yu, and J. W. Ager, D. C. Chrzan and E. E. Haller, Nano Lett. 10, 2794 (2010).
[Crossref]

G.-E. Chang, S.-W. Chang, and S. L. Chuang, IEEE J. Quantum Electron. 46, 1813 (2010).
[Crossref]

2009 (3)

J. M. Hartmann, A. Abbadie, N. Cherkashin, H. Grampeix, and L. Clavelier, Semicond. Sci. Technol. 24, 055002 (2009).
[Crossref]

D. J. Richardson, Nat. Photonics 3, 562 (2009).
[Crossref]

G.-E. Chang, S.-W. Chang, and S. L. Chuang, Opt. Express 17, 11246 (2009).
[Crossref]

2007 (1)

P. Moontragoon, Z. Ikonić, and P. Harrison, Semicond. Sci. Technol. 22, 742 (2007).
[Crossref]

2003 (1)

T. Stoica, L. Vescan, A. Muck, B. Hollander, and G. Schope, Phys. E 16, 359 (2003).
[Crossref]

2000 (1)

Z. Alferov, IEEE J. Sel. Top. Quantum Electron. 6, 832 (2000).
[Crossref]

1990 (1)

T. B. Bahder, Phys. Rev. B 41, 11992 (1990).
[Crossref]

Abbadie, A.

J. M. Hartmann, A. Abbadie, N. Cherkashin, H. Grampeix, and L. Clavelier, Semicond. Sci. Technol. 24, 055002 (2009).
[Crossref]

Ackert, J. J.

Ager, J. W.

S. J. Shin, J. Guzman, C.-W. Yuan, C. Y. Liao, C. N. Boswell-Koller, P. R. Stone, O. D. Dubon, A. M. Minor, M. Watanabe, J. W. Beeman, K. M. Yu, and J. W. Ager, D. C. Chrzan and E. E. Haller, Nano Lett. 10, 2794 (2010).
[Crossref]

Alferov, Z.

Z. Alferov, IEEE J. Sel. Top. Quantum Electron. 6, 832 (2000).
[Crossref]

Alher, M.

Y. Zhou, W. Dou, W. Du, T. Pham, S. A. Ghetmiri, S. Al-Kabi, A. Mosleh, M. Alher, J. Margetis, J. Tolle, G. Sun, R. Soref, B. Li, M. Mortazavi, H. Naseem, and S.-Q. Yu, J. Appl. Phys. 120, 023102 (2016).
[Crossref]

Al-Kabi, S.

Y. Zhou, W. Dou, W. Du, T. Pham, S. A. Ghetmiri, S. Al-Kabi, A. Mosleh, M. Alher, J. Margetis, J. Tolle, G. Sun, R. Soref, B. Li, M. Mortazavi, H. Naseem, and S.-Q. Yu, J. Appl. Phys. 120, 023102 (2016).
[Crossref]

Arguirov, T.

M. Oehme, K. Kostecki, T. Arguirov, G. Mussler, K. Ye, M. Gollhofer, M. Schmid, M. Kaschel, R. A. Körner, M. Kittler, D. Buca, E. Kasper, and J. Schulze, IEEE Photon. Technol. Lett. 26, 187 (2014).
[Crossref]

Bahder, T. B.

T. B. Bahder, Phys. Rev. B 41, 11992 (1990).
[Crossref]

Bechler, S.

Beeman, J. W.

S. J. Shin, J. Guzman, C.-W. Yuan, C. Y. Liao, C. N. Boswell-Koller, P. R. Stone, O. D. Dubon, A. M. Minor, M. Watanabe, J. W. Beeman, K. M. Yu, and J. W. Ager, D. C. Chrzan and E. E. Haller, Nano Lett. 10, 2794 (2010).
[Crossref]

Boswell-Koller, C. N.

S. J. Shin, J. Guzman, C.-W. Yuan, C. Y. Liao, C. N. Boswell-Koller, P. R. Stone, O. D. Dubon, A. M. Minor, M. Watanabe, J. W. Beeman, K. M. Yu, and J. W. Ager, D. C. Chrzan and E. E. Haller, Nano Lett. 10, 2794 (2010).
[Crossref]

Breuer, U.

S. Wirths, D. Buca, Z. Ikonic, P. Harrison, A. T. Tiedemann, B. Holländer, T. Stoica, G. Mussler, U. Breuer, J. M. Hartmann, D. Grützmacher, and S. Mantl, Thin Solid Films 557, 183 (2014).
[Crossref]

N. von den Driesch, D. Stange, S. Wirths, D. Rainko, I. Povstugar, A. Savenko, U. Breuer, R. Geiger, H. Sigg, Z. Ikonic, J.-M. Hartmann, D. Grützmacher, S. Mantl, and D. Buca, Small, to be submitted.

Buca, D.

D. Stange, S. Wirths, R. Geiger, C. Schulte-Braucks, B. Marzban, N. von den Driesch, G. Mussler, T. Zabel, T. Stoica, J.-M. Hartmann, S. Mantl, Z. Ikonic, D. Grützmacher, H. Sigg, J. Witzens, and D. Buca, ACS Photon. 3, 1279 (2016).
[Crossref]

D. Stange, N. von den Driesch, D. Rainko, C. Schulte-Braucks, S. Wirths, G. Mussler, A. T. Tiedemann, T. Stoica, J. M. Hartmann, Z. Ikonic, S. Mantl, D. Grützmacher, and D. Buca, Opt. Express 24, 1358 (2016).
[Crossref]

T. Wendav, I. A. Fischer, M. Montanari, M. H. Zoellner, W. Klesse, G. Capellini, N. von den Driesch, M. Oehme, D. Buca, K. Busch, and J. Schulze, Appl. Phys. Lett. 108, 242104 (2016).
[Crossref]

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, Nat. Photonics 9, 88 (2015).
[Crossref]

S. Wirths, R. Troitsch, G. Mussler, J.-M. Hartmann, P. Zaumseil, T. Schroeder, S. Mantl, and D. Buca, Semicond. Sci. Technol. 30, 055003 (2015).
[Crossref]

S. Wirths, D. Buca, Z. Ikonic, P. Harrison, A. T. Tiedemann, B. Holländer, T. Stoica, G. Mussler, U. Breuer, J. M. Hartmann, D. Grützmacher, and S. Mantl, Thin Solid Films 557, 183 (2014).
[Crossref]

M. Oehme, K. Kostecki, T. Arguirov, G. Mussler, K. Ye, M. Gollhofer, M. Schmid, M. Kaschel, R. A. Körner, M. Kittler, D. Buca, E. Kasper, and J. Schulze, IEEE Photon. Technol. Lett. 26, 187 (2014).
[Crossref]

N. von den Driesch, D. Stange, S. Wirths, D. Rainko, I. Povstugar, A. Savenko, U. Breuer, R. Geiger, H. Sigg, Z. Ikonic, J.-M. Hartmann, D. Grützmacher, S. Mantl, and D. Buca, Small, to be submitted.

Busch, K.

T. Wendav, I. A. Fischer, M. Montanari, M. H. Zoellner, W. Klesse, G. Capellini, N. von den Driesch, M. Oehme, D. Buca, K. Busch, and J. Schulze, Appl. Phys. Lett. 108, 242104 (2016).
[Crossref]

Capellini, G.

T. Wendav, I. A. Fischer, M. Montanari, M. H. Zoellner, W. Klesse, G. Capellini, N. von den Driesch, M. Oehme, D. Buca, K. Busch, and J. Schulze, Appl. Phys. Lett. 108, 242104 (2016).
[Crossref]

Chang, G.-E.

G.-E. Chang, S.-W. Chang, and S. L. Chuang, IEEE J. Quantum Electron. 46, 1813 (2010).
[Crossref]

G.-E. Chang, S.-W. Chang, and S. L. Chuang, Opt. Express 17, 11246 (2009).
[Crossref]

Chang, S.-W.

G.-E. Chang, S.-W. Chang, and S. L. Chuang, IEEE J. Quantum Electron. 46, 1813 (2010).
[Crossref]

G.-E. Chang, S.-W. Chang, and S. L. Chuang, Opt. Express 17, 11246 (2009).
[Crossref]

Cheng, H. H.

G. Sun, R. A. Soref, and H. H. Cheng, J. Appl. Phys. 108, 033107 (2010).
[Crossref]

Cherkashin, N.

J. M. Hartmann, A. Abbadie, N. Cherkashin, H. Grampeix, and L. Clavelier, Semicond. Sci. Technol. 24, 055002 (2009).
[Crossref]

Chiussi, S.

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, Nat. Photonics 9, 88 (2015).
[Crossref]

Chrzan, D. C.

S. J. Shin, J. Guzman, C.-W. Yuan, C. Y. Liao, C. N. Boswell-Koller, P. R. Stone, O. D. Dubon, A. M. Minor, M. Watanabe, J. W. Beeman, K. M. Yu, and J. W. Ager, D. C. Chrzan and E. E. Haller, Nano Lett. 10, 2794 (2010).
[Crossref]

Chuang, S. L.

G.-E. Chang, S.-W. Chang, and S. L. Chuang, IEEE J. Quantum Electron. 46, 1813 (2010).
[Crossref]

G.-E. Chang, S.-W. Chang, and S. L. Chuang, Opt. Express 17, 11246 (2009).
[Crossref]

Clavelier, L.

J. M. Hartmann, A. Abbadie, N. Cherkashin, H. Grampeix, and L. Clavelier, Semicond. Sci. Technol. 24, 055002 (2009).
[Crossref]

Dou, W.

Y. Zhou, W. Dou, W. Du, T. Pham, S. A. Ghetmiri, S. Al-Kabi, A. Mosleh, M. Alher, J. Margetis, J. Tolle, G. Sun, R. Soref, B. Li, M. Mortazavi, H. Naseem, and S.-Q. Yu, J. Appl. Phys. 120, 023102 (2016).
[Crossref]

Du, W.

Y. Zhou, W. Dou, W. Du, T. Pham, S. A. Ghetmiri, S. Al-Kabi, A. Mosleh, M. Alher, J. Margetis, J. Tolle, G. Sun, R. Soref, B. Li, M. Mortazavi, H. Naseem, and S.-Q. Yu, J. Appl. Phys. 120, 023102 (2016).
[Crossref]

Dubon, O. D.

S. J. Shin, J. Guzman, C.-W. Yuan, C. Y. Liao, C. N. Boswell-Koller, P. R. Stone, O. D. Dubon, A. M. Minor, M. Watanabe, J. W. Beeman, K. M. Yu, and J. W. Ager, D. C. Chrzan and E. E. Haller, Nano Lett. 10, 2794 (2010).
[Crossref]

Faist, J.

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, Nat. Photonics 9, 88 (2015).
[Crossref]

Fischer, I. A.

T. Wendav, I. A. Fischer, M. Montanari, M. H. Zoellner, W. Klesse, G. Capellini, N. von den Driesch, M. Oehme, D. Buca, K. Busch, and J. Schulze, Appl. Phys. Lett. 108, 242104 (2016).
[Crossref]

B. Schwartz, M. Oehme, K. Kostecki, D. Widmann, M. Gollhofer, R. Koerner, S. Bechler, I. A. Fischer, T. Wendav, E. Kasper, J. Schulze, and M. Kittler, Opt. Lett. 40, 3209 (2015).
[Crossref]

Gallagher, J. D.

C. L. Senaratne, P. M. Wallace, J. D. Gallagher, P. E. Sims, J. Kouvetakis, and J. Menéndez, J. Appl. Phys. 120, 025701 (2016).
[Crossref]

J. D. Gallagher, C. L. Senaratne, P. M. Wallace, J. Menéndez, and J. Kouvetakis, Appl. Phys. Lett. 107, 123507 (2015).
[Crossref]

Geiger, R.

D. Stange, S. Wirths, R. Geiger, C. Schulte-Braucks, B. Marzban, N. von den Driesch, G. Mussler, T. Zabel, T. Stoica, J.-M. Hartmann, S. Mantl, Z. Ikonic, D. Grützmacher, H. Sigg, J. Witzens, and D. Buca, ACS Photon. 3, 1279 (2016).
[Crossref]

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, Nat. Photonics 9, 88 (2015).
[Crossref]

N. von den Driesch, D. Stange, S. Wirths, D. Rainko, I. Povstugar, A. Savenko, U. Breuer, R. Geiger, H. Sigg, Z. Ikonic, J.-M. Hartmann, D. Grützmacher, S. Mantl, and D. Buca, Small, to be submitted.

Ghetmiri, S. A.

Y. Zhou, W. Dou, W. Du, T. Pham, S. A. Ghetmiri, S. Al-Kabi, A. Mosleh, M. Alher, J. Margetis, J. Tolle, G. Sun, R. Soref, B. Li, M. Mortazavi, H. Naseem, and S.-Q. Yu, J. Appl. Phys. 120, 023102 (2016).
[Crossref]

Gollhofer, M.

B. Schwartz, M. Oehme, K. Kostecki, D. Widmann, M. Gollhofer, R. Koerner, S. Bechler, I. A. Fischer, T. Wendav, E. Kasper, J. Schulze, and M. Kittler, Opt. Lett. 40, 3209 (2015).
[Crossref]

M. Oehme, K. Kostecki, T. Arguirov, G. Mussler, K. Ye, M. Gollhofer, M. Schmid, M. Kaschel, R. A. Körner, M. Kittler, D. Buca, E. Kasper, and J. Schulze, IEEE Photon. Technol. Lett. 26, 187 (2014).
[Crossref]

Grampeix, H.

J. M. Hartmann, A. Abbadie, N. Cherkashin, H. Grampeix, and L. Clavelier, Semicond. Sci. Technol. 24, 055002 (2009).
[Crossref]

Grützmacher, D.

D. Stange, N. von den Driesch, D. Rainko, C. Schulte-Braucks, S. Wirths, G. Mussler, A. T. Tiedemann, T. Stoica, J. M. Hartmann, Z. Ikonic, S. Mantl, D. Grützmacher, and D. Buca, Opt. Express 24, 1358 (2016).
[Crossref]

D. Stange, S. Wirths, R. Geiger, C. Schulte-Braucks, B. Marzban, N. von den Driesch, G. Mussler, T. Zabel, T. Stoica, J.-M. Hartmann, S. Mantl, Z. Ikonic, D. Grützmacher, H. Sigg, J. Witzens, and D. Buca, ACS Photon. 3, 1279 (2016).
[Crossref]

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, Nat. Photonics 9, 88 (2015).
[Crossref]

S. Wirths, D. Buca, Z. Ikonic, P. Harrison, A. T. Tiedemann, B. Holländer, T. Stoica, G. Mussler, U. Breuer, J. M. Hartmann, D. Grützmacher, and S. Mantl, Thin Solid Films 557, 183 (2014).
[Crossref]

N. von den Driesch, D. Stange, S. Wirths, D. Rainko, I. Povstugar, A. Savenko, U. Breuer, R. Geiger, H. Sigg, Z. Ikonic, J.-M. Hartmann, D. Grützmacher, S. Mantl, and D. Buca, Small, to be submitted.

Guzman, J.

S. J. Shin, J. Guzman, C.-W. Yuan, C. Y. Liao, C. N. Boswell-Koller, P. R. Stone, O. D. Dubon, A. M. Minor, M. Watanabe, J. W. Beeman, K. M. Yu, and J. W. Ager, D. C. Chrzan and E. E. Haller, Nano Lett. 10, 2794 (2010).
[Crossref]

Haller, E. E.

S. J. Shin, J. Guzman, C.-W. Yuan, C. Y. Liao, C. N. Boswell-Koller, P. R. Stone, O. D. Dubon, A. M. Minor, M. Watanabe, J. W. Beeman, K. M. Yu, and J. W. Ager, D. C. Chrzan and E. E. Haller, Nano Lett. 10, 2794 (2010).
[Crossref]

Harrison, P.

S. Wirths, D. Buca, Z. Ikonic, P. Harrison, A. T. Tiedemann, B. Holländer, T. Stoica, G. Mussler, U. Breuer, J. M. Hartmann, D. Grützmacher, and S. Mantl, Thin Solid Films 557, 183 (2014).
[Crossref]

P. Moontragoon, Z. Ikonić, and P. Harrison, Semicond. Sci. Technol. 22, 742 (2007).
[Crossref]

Hartmann, J. M.

D. Stange, N. von den Driesch, D. Rainko, C. Schulte-Braucks, S. Wirths, G. Mussler, A. T. Tiedemann, T. Stoica, J. M. Hartmann, Z. Ikonic, S. Mantl, D. Grützmacher, and D. Buca, Opt. Express 24, 1358 (2016).
[Crossref]

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, Nat. Photonics 9, 88 (2015).
[Crossref]

S. Wirths, D. Buca, Z. Ikonic, P. Harrison, A. T. Tiedemann, B. Holländer, T. Stoica, G. Mussler, U. Breuer, J. M. Hartmann, D. Grützmacher, and S. Mantl, Thin Solid Films 557, 183 (2014).
[Crossref]

J. M. Hartmann, A. Abbadie, N. Cherkashin, H. Grampeix, and L. Clavelier, Semicond. Sci. Technol. 24, 055002 (2009).
[Crossref]

Hartmann, J.-M.

D. Stange, S. Wirths, R. Geiger, C. Schulte-Braucks, B. Marzban, N. von den Driesch, G. Mussler, T. Zabel, T. Stoica, J.-M. Hartmann, S. Mantl, Z. Ikonic, D. Grützmacher, H. Sigg, J. Witzens, and D. Buca, ACS Photon. 3, 1279 (2016).
[Crossref]

S. Wirths, R. Troitsch, G. Mussler, J.-M. Hartmann, P. Zaumseil, T. Schroeder, S. Mantl, and D. Buca, Semicond. Sci. Technol. 30, 055003 (2015).
[Crossref]

N. von den Driesch, D. Stange, S. Wirths, D. Rainko, I. Povstugar, A. Savenko, U. Breuer, R. Geiger, H. Sigg, Z. Ikonic, J.-M. Hartmann, D. Grützmacher, S. Mantl, and D. Buca, Small, to be submitted.

Hollander, B.

T. Stoica, L. Vescan, A. Muck, B. Hollander, and G. Schope, Phys. E 16, 359 (2003).
[Crossref]

Holländer, B.

S. Wirths, D. Buca, Z. Ikonic, P. Harrison, A. T. Tiedemann, B. Holländer, T. Stoica, G. Mussler, U. Breuer, J. M. Hartmann, D. Grützmacher, and S. Mantl, Thin Solid Films 557, 183 (2014).
[Crossref]

Huante-Ceron, E.

Ikonic, Z.

D. Stange, S. Wirths, R. Geiger, C. Schulte-Braucks, B. Marzban, N. von den Driesch, G. Mussler, T. Zabel, T. Stoica, J.-M. Hartmann, S. Mantl, Z. Ikonic, D. Grützmacher, H. Sigg, J. Witzens, and D. Buca, ACS Photon. 3, 1279 (2016).
[Crossref]

D. Stange, N. von den Driesch, D. Rainko, C. Schulte-Braucks, S. Wirths, G. Mussler, A. T. Tiedemann, T. Stoica, J. M. Hartmann, Z. Ikonic, S. Mantl, D. Grützmacher, and D. Buca, Opt. Express 24, 1358 (2016).
[Crossref]

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, Nat. Photonics 9, 88 (2015).
[Crossref]

S. Wirths, D. Buca, Z. Ikonic, P. Harrison, A. T. Tiedemann, B. Holländer, T. Stoica, G. Mussler, U. Breuer, J. M. Hartmann, D. Grützmacher, and S. Mantl, Thin Solid Films 557, 183 (2014).
[Crossref]

P. Moontragoon, R. A. Soref, and Z. Ikonic, J. Appl. Phys. 112, 073106 (2012).
[Crossref]

P. Moontragoon, Z. Ikonić, and P. Harrison, Semicond. Sci. Technol. 22, 742 (2007).
[Crossref]

N. von den Driesch, D. Stange, S. Wirths, D. Rainko, I. Povstugar, A. Savenko, U. Breuer, R. Geiger, H. Sigg, Z. Ikonic, J.-M. Hartmann, D. Grützmacher, S. Mantl, and D. Buca, Small, to be submitted.

Kaschel, M.

M. Oehme, K. Kostecki, T. Arguirov, G. Mussler, K. Ye, M. Gollhofer, M. Schmid, M. Kaschel, R. A. Körner, M. Kittler, D. Buca, E. Kasper, and J. Schulze, IEEE Photon. Technol. Lett. 26, 187 (2014).
[Crossref]

Kasper, E.

B. Schwartz, M. Oehme, K. Kostecki, D. Widmann, M. Gollhofer, R. Koerner, S. Bechler, I. A. Fischer, T. Wendav, E. Kasper, J. Schulze, and M. Kittler, Opt. Lett. 40, 3209 (2015).
[Crossref]

M. Oehme, K. Kostecki, T. Arguirov, G. Mussler, K. Ye, M. Gollhofer, M. Schmid, M. Kaschel, R. A. Körner, M. Kittler, D. Buca, E. Kasper, and J. Schulze, IEEE Photon. Technol. Lett. 26, 187 (2014).
[Crossref]

Kittler, M.

B. Schwartz, M. Oehme, K. Kostecki, D. Widmann, M. Gollhofer, R. Koerner, S. Bechler, I. A. Fischer, T. Wendav, E. Kasper, J. Schulze, and M. Kittler, Opt. Lett. 40, 3209 (2015).
[Crossref]

M. Oehme, K. Kostecki, T. Arguirov, G. Mussler, K. Ye, M. Gollhofer, M. Schmid, M. Kaschel, R. A. Körner, M. Kittler, D. Buca, E. Kasper, and J. Schulze, IEEE Photon. Technol. Lett. 26, 187 (2014).
[Crossref]

Klesse, W.

T. Wendav, I. A. Fischer, M. Montanari, M. H. Zoellner, W. Klesse, G. Capellini, N. von den Driesch, M. Oehme, D. Buca, K. Busch, and J. Schulze, Appl. Phys. Lett. 108, 242104 (2016).
[Crossref]

Knights, A. P.

Koerner, R.

Körner, R. A.

M. Oehme, K. Kostecki, T. Arguirov, G. Mussler, K. Ye, M. Gollhofer, M. Schmid, M. Kaschel, R. A. Körner, M. Kittler, D. Buca, E. Kasper, and J. Schulze, IEEE Photon. Technol. Lett. 26, 187 (2014).
[Crossref]

Kostecki, K.

B. Schwartz, M. Oehme, K. Kostecki, D. Widmann, M. Gollhofer, R. Koerner, S. Bechler, I. A. Fischer, T. Wendav, E. Kasper, J. Schulze, and M. Kittler, Opt. Lett. 40, 3209 (2015).
[Crossref]

M. Oehme, K. Kostecki, T. Arguirov, G. Mussler, K. Ye, M. Gollhofer, M. Schmid, M. Kaschel, R. A. Körner, M. Kittler, D. Buca, E. Kasper, and J. Schulze, IEEE Photon. Technol. Lett. 26, 187 (2014).
[Crossref]

Kouvetakis, J.

C. L. Senaratne, P. M. Wallace, J. D. Gallagher, P. E. Sims, J. Kouvetakis, and J. Menéndez, J. Appl. Phys. 120, 025701 (2016).
[Crossref]

J. D. Gallagher, C. L. Senaratne, P. M. Wallace, J. Menéndez, and J. Kouvetakis, Appl. Phys. Lett. 107, 123507 (2015).
[Crossref]

Li, B.

Y. Zhou, W. Dou, W. Du, T. Pham, S. A. Ghetmiri, S. Al-Kabi, A. Mosleh, M. Alher, J. Margetis, J. Tolle, G. Sun, R. Soref, B. Li, M. Mortazavi, H. Naseem, and S.-Q. Yu, J. Appl. Phys. 120, 023102 (2016).
[Crossref]

Liao, C. Y.

S. J. Shin, J. Guzman, C.-W. Yuan, C. Y. Liao, C. N. Boswell-Koller, P. R. Stone, O. D. Dubon, A. M. Minor, M. Watanabe, J. W. Beeman, K. M. Yu, and J. W. Ager, D. C. Chrzan and E. E. Haller, Nano Lett. 10, 2794 (2010).
[Crossref]

Luysberg, M.

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, Nat. Photonics 9, 88 (2015).
[Crossref]

Mantl, S.

D. Stange, S. Wirths, R. Geiger, C. Schulte-Braucks, B. Marzban, N. von den Driesch, G. Mussler, T. Zabel, T. Stoica, J.-M. Hartmann, S. Mantl, Z. Ikonic, D. Grützmacher, H. Sigg, J. Witzens, and D. Buca, ACS Photon. 3, 1279 (2016).
[Crossref]

D. Stange, N. von den Driesch, D. Rainko, C. Schulte-Braucks, S. Wirths, G. Mussler, A. T. Tiedemann, T. Stoica, J. M. Hartmann, Z. Ikonic, S. Mantl, D. Grützmacher, and D. Buca, Opt. Express 24, 1358 (2016).
[Crossref]

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, Nat. Photonics 9, 88 (2015).
[Crossref]

S. Wirths, R. Troitsch, G. Mussler, J.-M. Hartmann, P. Zaumseil, T. Schroeder, S. Mantl, and D. Buca, Semicond. Sci. Technol. 30, 055003 (2015).
[Crossref]

S. Wirths, D. Buca, Z. Ikonic, P. Harrison, A. T. Tiedemann, B. Holländer, T. Stoica, G. Mussler, U. Breuer, J. M. Hartmann, D. Grützmacher, and S. Mantl, Thin Solid Films 557, 183 (2014).
[Crossref]

N. von den Driesch, D. Stange, S. Wirths, D. Rainko, I. Povstugar, A. Savenko, U. Breuer, R. Geiger, H. Sigg, Z. Ikonic, J.-M. Hartmann, D. Grützmacher, S. Mantl, and D. Buca, Small, to be submitted.

Margetis, J.

Y. Zhou, W. Dou, W. Du, T. Pham, S. A. Ghetmiri, S. Al-Kabi, A. Mosleh, M. Alher, J. Margetis, J. Tolle, G. Sun, R. Soref, B. Li, M. Mortazavi, H. Naseem, and S.-Q. Yu, J. Appl. Phys. 120, 023102 (2016).
[Crossref]

Marzban, B.

D. Stange, S. Wirths, R. Geiger, C. Schulte-Braucks, B. Marzban, N. von den Driesch, G. Mussler, T. Zabel, T. Stoica, J.-M. Hartmann, S. Mantl, Z. Ikonic, D. Grützmacher, H. Sigg, J. Witzens, and D. Buca, ACS Photon. 3, 1279 (2016).
[Crossref]

Mashanovich, G. Z.

Menéndez, J.

C. L. Senaratne, P. M. Wallace, J. D. Gallagher, P. E. Sims, J. Kouvetakis, and J. Menéndez, J. Appl. Phys. 120, 025701 (2016).
[Crossref]

J. D. Gallagher, C. L. Senaratne, P. M. Wallace, J. Menéndez, and J. Kouvetakis, Appl. Phys. Lett. 107, 123507 (2015).
[Crossref]

Minor, A. M.

S. J. Shin, J. Guzman, C.-W. Yuan, C. Y. Liao, C. N. Boswell-Koller, P. R. Stone, O. D. Dubon, A. M. Minor, M. Watanabe, J. W. Beeman, K. M. Yu, and J. W. Ager, D. C. Chrzan and E. E. Haller, Nano Lett. 10, 2794 (2010).
[Crossref]

Montanari, M.

T. Wendav, I. A. Fischer, M. Montanari, M. H. Zoellner, W. Klesse, G. Capellini, N. von den Driesch, M. Oehme, D. Buca, K. Busch, and J. Schulze, Appl. Phys. Lett. 108, 242104 (2016).
[Crossref]

Moontragoon, P.

P. Moontragoon, R. A. Soref, and Z. Ikonic, J. Appl. Phys. 112, 073106 (2012).
[Crossref]

P. Moontragoon, Z. Ikonić, and P. Harrison, Semicond. Sci. Technol. 22, 742 (2007).
[Crossref]

Mortazavi, M.

Y. Zhou, W. Dou, W. Du, T. Pham, S. A. Ghetmiri, S. Al-Kabi, A. Mosleh, M. Alher, J. Margetis, J. Tolle, G. Sun, R. Soref, B. Li, M. Mortazavi, H. Naseem, and S.-Q. Yu, J. Appl. Phys. 120, 023102 (2016).
[Crossref]

Mosleh, A.

Y. Zhou, W. Dou, W. Du, T. Pham, S. A. Ghetmiri, S. Al-Kabi, A. Mosleh, M. Alher, J. Margetis, J. Tolle, G. Sun, R. Soref, B. Li, M. Mortazavi, H. Naseem, and S.-Q. Yu, J. Appl. Phys. 120, 023102 (2016).
[Crossref]

Muck, A.

T. Stoica, L. Vescan, A. Muck, B. Hollander, and G. Schope, Phys. E 16, 359 (2003).
[Crossref]

Mussler, G.

D. Stange, N. von den Driesch, D. Rainko, C. Schulte-Braucks, S. Wirths, G. Mussler, A. T. Tiedemann, T. Stoica, J. M. Hartmann, Z. Ikonic, S. Mantl, D. Grützmacher, and D. Buca, Opt. Express 24, 1358 (2016).
[Crossref]

D. Stange, S. Wirths, R. Geiger, C. Schulte-Braucks, B. Marzban, N. von den Driesch, G. Mussler, T. Zabel, T. Stoica, J.-M. Hartmann, S. Mantl, Z. Ikonic, D. Grützmacher, H. Sigg, J. Witzens, and D. Buca, ACS Photon. 3, 1279 (2016).
[Crossref]

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, Nat. Photonics 9, 88 (2015).
[Crossref]

S. Wirths, R. Troitsch, G. Mussler, J.-M. Hartmann, P. Zaumseil, T. Schroeder, S. Mantl, and D. Buca, Semicond. Sci. Technol. 30, 055003 (2015).
[Crossref]

S. Wirths, D. Buca, Z. Ikonic, P. Harrison, A. T. Tiedemann, B. Holländer, T. Stoica, G. Mussler, U. Breuer, J. M. Hartmann, D. Grützmacher, and S. Mantl, Thin Solid Films 557, 183 (2014).
[Crossref]

M. Oehme, K. Kostecki, T. Arguirov, G. Mussler, K. Ye, M. Gollhofer, M. Schmid, M. Kaschel, R. A. Körner, M. Kittler, D. Buca, E. Kasper, and J. Schulze, IEEE Photon. Technol. Lett. 26, 187 (2014).
[Crossref]

Naseem, H.

Y. Zhou, W. Dou, W. Du, T. Pham, S. A. Ghetmiri, S. Al-Kabi, A. Mosleh, M. Alher, J. Margetis, J. Tolle, G. Sun, R. Soref, B. Li, M. Mortazavi, H. Naseem, and S.-Q. Yu, J. Appl. Phys. 120, 023102 (2016).
[Crossref]

Nedeljkovic, M.

Oehme, M.

T. Wendav, I. A. Fischer, M. Montanari, M. H. Zoellner, W. Klesse, G. Capellini, N. von den Driesch, M. Oehme, D. Buca, K. Busch, and J. Schulze, Appl. Phys. Lett. 108, 242104 (2016).
[Crossref]

B. Schwartz, M. Oehme, K. Kostecki, D. Widmann, M. Gollhofer, R. Koerner, S. Bechler, I. A. Fischer, T. Wendav, E. Kasper, J. Schulze, and M. Kittler, Opt. Lett. 40, 3209 (2015).
[Crossref]

M. Oehme, K. Kostecki, T. Arguirov, G. Mussler, K. Ye, M. Gollhofer, M. Schmid, M. Kaschel, R. A. Körner, M. Kittler, D. Buca, E. Kasper, and J. Schulze, IEEE Photon. Technol. Lett. 26, 187 (2014).
[Crossref]

Peacock, A. C.

Pham, T.

Y. Zhou, W. Dou, W. Du, T. Pham, S. A. Ghetmiri, S. Al-Kabi, A. Mosleh, M. Alher, J. Margetis, J. Tolle, G. Sun, R. Soref, B. Li, M. Mortazavi, H. Naseem, and S.-Q. Yu, J. Appl. Phys. 120, 023102 (2016).
[Crossref]

Povstugar, I.

N. von den Driesch, D. Stange, S. Wirths, D. Rainko, I. Povstugar, A. Savenko, U. Breuer, R. Geiger, H. Sigg, Z. Ikonic, J.-M. Hartmann, D. Grützmacher, S. Mantl, and D. Buca, Small, to be submitted.

Rainko, D.

D. Stange, N. von den Driesch, D. Rainko, C. Schulte-Braucks, S. Wirths, G. Mussler, A. T. Tiedemann, T. Stoica, J. M. Hartmann, Z. Ikonic, S. Mantl, D. Grützmacher, and D. Buca, Opt. Express 24, 1358 (2016).
[Crossref]

N. von den Driesch, D. Stange, S. Wirths, D. Rainko, I. Povstugar, A. Savenko, U. Breuer, R. Geiger, H. Sigg, Z. Ikonic, J.-M. Hartmann, D. Grützmacher, S. Mantl, and D. Buca, Small, to be submitted.

Richardson, D. J.

D. J. Richardson, Nat. Photonics 3, 562 (2009).
[Crossref]

Savenko, A.

N. von den Driesch, D. Stange, S. Wirths, D. Rainko, I. Povstugar, A. Savenko, U. Breuer, R. Geiger, H. Sigg, Z. Ikonic, J.-M. Hartmann, D. Grützmacher, S. Mantl, and D. Buca, Small, to be submitted.

Schmid, M.

M. Oehme, K. Kostecki, T. Arguirov, G. Mussler, K. Ye, M. Gollhofer, M. Schmid, M. Kaschel, R. A. Körner, M. Kittler, D. Buca, E. Kasper, and J. Schulze, IEEE Photon. Technol. Lett. 26, 187 (2014).
[Crossref]

Schope, G.

T. Stoica, L. Vescan, A. Muck, B. Hollander, and G. Schope, Phys. E 16, 359 (2003).
[Crossref]

Schroeder, T.

S. Wirths, R. Troitsch, G. Mussler, J.-M. Hartmann, P. Zaumseil, T. Schroeder, S. Mantl, and D. Buca, Semicond. Sci. Technol. 30, 055003 (2015).
[Crossref]

Schulte-Braucks, C.

D. Stange, S. Wirths, R. Geiger, C. Schulte-Braucks, B. Marzban, N. von den Driesch, G. Mussler, T. Zabel, T. Stoica, J.-M. Hartmann, S. Mantl, Z. Ikonic, D. Grützmacher, H. Sigg, J. Witzens, and D. Buca, ACS Photon. 3, 1279 (2016).
[Crossref]

D. Stange, N. von den Driesch, D. Rainko, C. Schulte-Braucks, S. Wirths, G. Mussler, A. T. Tiedemann, T. Stoica, J. M. Hartmann, Z. Ikonic, S. Mantl, D. Grützmacher, and D. Buca, Opt. Express 24, 1358 (2016).
[Crossref]

Schulze, J.

T. Wendav, I. A. Fischer, M. Montanari, M. H. Zoellner, W. Klesse, G. Capellini, N. von den Driesch, M. Oehme, D. Buca, K. Busch, and J. Schulze, Appl. Phys. Lett. 108, 242104 (2016).
[Crossref]

B. Schwartz, M. Oehme, K. Kostecki, D. Widmann, M. Gollhofer, R. Koerner, S. Bechler, I. A. Fischer, T. Wendav, E. Kasper, J. Schulze, and M. Kittler, Opt. Lett. 40, 3209 (2015).
[Crossref]

M. Oehme, K. Kostecki, T. Arguirov, G. Mussler, K. Ye, M. Gollhofer, M. Schmid, M. Kaschel, R. A. Körner, M. Kittler, D. Buca, E. Kasper, and J. Schulze, IEEE Photon. Technol. Lett. 26, 187 (2014).
[Crossref]

Schwartz, B.

Senaratne, C. L.

C. L. Senaratne, P. M. Wallace, J. D. Gallagher, P. E. Sims, J. Kouvetakis, and J. Menéndez, J. Appl. Phys. 120, 025701 (2016).
[Crossref]

J. D. Gallagher, C. L. Senaratne, P. M. Wallace, J. Menéndez, and J. Kouvetakis, Appl. Phys. Lett. 107, 123507 (2015).
[Crossref]

Shen, L.

Shin, S. J.

S. J. Shin, J. Guzman, C.-W. Yuan, C. Y. Liao, C. N. Boswell-Koller, P. R. Stone, O. D. Dubon, A. M. Minor, M. Watanabe, J. W. Beeman, K. M. Yu, and J. W. Ager, D. C. Chrzan and E. E. Haller, Nano Lett. 10, 2794 (2010).
[Crossref]

Sigg, H.

D. Stange, S. Wirths, R. Geiger, C. Schulte-Braucks, B. Marzban, N. von den Driesch, G. Mussler, T. Zabel, T. Stoica, J.-M. Hartmann, S. Mantl, Z. Ikonic, D. Grützmacher, H. Sigg, J. Witzens, and D. Buca, ACS Photon. 3, 1279 (2016).
[Crossref]

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, Nat. Photonics 9, 88 (2015).
[Crossref]

N. von den Driesch, D. Stange, S. Wirths, D. Rainko, I. Povstugar, A. Savenko, U. Breuer, R. Geiger, H. Sigg, Z. Ikonic, J.-M. Hartmann, D. Grützmacher, S. Mantl, and D. Buca, Small, to be submitted.

Sims, P. E.

C. L. Senaratne, P. M. Wallace, J. D. Gallagher, P. E. Sims, J. Kouvetakis, and J. Menéndez, J. Appl. Phys. 120, 025701 (2016).
[Crossref]

Soref, R.

Y. Zhou, W. Dou, W. Du, T. Pham, S. A. Ghetmiri, S. Al-Kabi, A. Mosleh, M. Alher, J. Margetis, J. Tolle, G. Sun, R. Soref, B. Li, M. Mortazavi, H. Naseem, and S.-Q. Yu, J. Appl. Phys. 120, 023102 (2016).
[Crossref]

Soref, R. A.

P. Moontragoon, R. A. Soref, and Z. Ikonic, J. Appl. Phys. 112, 073106 (2012).
[Crossref]

G. Sun, R. A. Soref, and H. H. Cheng, J. Appl. Phys. 108, 033107 (2010).
[Crossref]

Stange, D.

D. Stange, N. von den Driesch, D. Rainko, C. Schulte-Braucks, S. Wirths, G. Mussler, A. T. Tiedemann, T. Stoica, J. M. Hartmann, Z. Ikonic, S. Mantl, D. Grützmacher, and D. Buca, Opt. Express 24, 1358 (2016).
[Crossref]

D. Stange, S. Wirths, R. Geiger, C. Schulte-Braucks, B. Marzban, N. von den Driesch, G. Mussler, T. Zabel, T. Stoica, J.-M. Hartmann, S. Mantl, Z. Ikonic, D. Grützmacher, H. Sigg, J. Witzens, and D. Buca, ACS Photon. 3, 1279 (2016).
[Crossref]

N. von den Driesch, D. Stange, S. Wirths, D. Rainko, I. Povstugar, A. Savenko, U. Breuer, R. Geiger, H. Sigg, Z. Ikonic, J.-M. Hartmann, D. Grützmacher, S. Mantl, and D. Buca, Small, to be submitted.

Stoica, T.

D. Stange, S. Wirths, R. Geiger, C. Schulte-Braucks, B. Marzban, N. von den Driesch, G. Mussler, T. Zabel, T. Stoica, J.-M. Hartmann, S. Mantl, Z. Ikonic, D. Grützmacher, H. Sigg, J. Witzens, and D. Buca, ACS Photon. 3, 1279 (2016).
[Crossref]

D. Stange, N. von den Driesch, D. Rainko, C. Schulte-Braucks, S. Wirths, G. Mussler, A. T. Tiedemann, T. Stoica, J. M. Hartmann, Z. Ikonic, S. Mantl, D. Grützmacher, and D. Buca, Opt. Express 24, 1358 (2016).
[Crossref]

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, Nat. Photonics 9, 88 (2015).
[Crossref]

S. Wirths, D. Buca, Z. Ikonic, P. Harrison, A. T. Tiedemann, B. Holländer, T. Stoica, G. Mussler, U. Breuer, J. M. Hartmann, D. Grützmacher, and S. Mantl, Thin Solid Films 557, 183 (2014).
[Crossref]

T. Stoica, L. Vescan, A. Muck, B. Hollander, and G. Schope, Phys. E 16, 359 (2003).
[Crossref]

Stone, P. R.

S. J. Shin, J. Guzman, C.-W. Yuan, C. Y. Liao, C. N. Boswell-Koller, P. R. Stone, O. D. Dubon, A. M. Minor, M. Watanabe, J. W. Beeman, K. M. Yu, and J. W. Ager, D. C. Chrzan and E. E. Haller, Nano Lett. 10, 2794 (2010).
[Crossref]

Sun, G.

Y. Zhou, W. Dou, W. Du, T. Pham, S. A. Ghetmiri, S. Al-Kabi, A. Mosleh, M. Alher, J. Margetis, J. Tolle, G. Sun, R. Soref, B. Li, M. Mortazavi, H. Naseem, and S.-Q. Yu, J. Appl. Phys. 120, 023102 (2016).
[Crossref]

G. Sun, R. A. Soref, and H. H. Cheng, J. Appl. Phys. 108, 033107 (2010).
[Crossref]

Thomson, D. J.

Tiedemann, A. T.

D. Stange, N. von den Driesch, D. Rainko, C. Schulte-Braucks, S. Wirths, G. Mussler, A. T. Tiedemann, T. Stoica, J. M. Hartmann, Z. Ikonic, S. Mantl, D. Grützmacher, and D. Buca, Opt. Express 24, 1358 (2016).
[Crossref]

S. Wirths, D. Buca, Z. Ikonic, P. Harrison, A. T. Tiedemann, B. Holländer, T. Stoica, G. Mussler, U. Breuer, J. M. Hartmann, D. Grützmacher, and S. Mantl, Thin Solid Films 557, 183 (2014).
[Crossref]

Tolle, J.

Y. Zhou, W. Dou, W. Du, T. Pham, S. A. Ghetmiri, S. Al-Kabi, A. Mosleh, M. Alher, J. Margetis, J. Tolle, G. Sun, R. Soref, B. Li, M. Mortazavi, H. Naseem, and S.-Q. Yu, J. Appl. Phys. 120, 023102 (2016).
[Crossref]

Troitsch, R.

S. Wirths, R. Troitsch, G. Mussler, J.-M. Hartmann, P. Zaumseil, T. Schroeder, S. Mantl, and D. Buca, Semicond. Sci. Technol. 30, 055003 (2015).
[Crossref]

Vescan, L.

T. Stoica, L. Vescan, A. Muck, B. Hollander, and G. Schope, Phys. E 16, 359 (2003).
[Crossref]

von den Driesch, N.

D. Stange, N. von den Driesch, D. Rainko, C. Schulte-Braucks, S. Wirths, G. Mussler, A. T. Tiedemann, T. Stoica, J. M. Hartmann, Z. Ikonic, S. Mantl, D. Grützmacher, and D. Buca, Opt. Express 24, 1358 (2016).
[Crossref]

T. Wendav, I. A. Fischer, M. Montanari, M. H. Zoellner, W. Klesse, G. Capellini, N. von den Driesch, M. Oehme, D. Buca, K. Busch, and J. Schulze, Appl. Phys. Lett. 108, 242104 (2016).
[Crossref]

D. Stange, S. Wirths, R. Geiger, C. Schulte-Braucks, B. Marzban, N. von den Driesch, G. Mussler, T. Zabel, T. Stoica, J.-M. Hartmann, S. Mantl, Z. Ikonic, D. Grützmacher, H. Sigg, J. Witzens, and D. Buca, ACS Photon. 3, 1279 (2016).
[Crossref]

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, Nat. Photonics 9, 88 (2015).
[Crossref]

N. von den Driesch, D. Stange, S. Wirths, D. Rainko, I. Povstugar, A. Savenko, U. Breuer, R. Geiger, H. Sigg, Z. Ikonic, J.-M. Hartmann, D. Grützmacher, S. Mantl, and D. Buca, Small, to be submitted.

Wallace, P. M.

C. L. Senaratne, P. M. Wallace, J. D. Gallagher, P. E. Sims, J. Kouvetakis, and J. Menéndez, J. Appl. Phys. 120, 025701 (2016).
[Crossref]

J. D. Gallagher, C. L. Senaratne, P. M. Wallace, J. Menéndez, and J. Kouvetakis, Appl. Phys. Lett. 107, 123507 (2015).
[Crossref]

Watanabe, M.

S. J. Shin, J. Guzman, C.-W. Yuan, C. Y. Liao, C. N. Boswell-Koller, P. R. Stone, O. D. Dubon, A. M. Minor, M. Watanabe, J. W. Beeman, K. M. Yu, and J. W. Ager, D. C. Chrzan and E. E. Haller, Nano Lett. 10, 2794 (2010).
[Crossref]

Wendav, T.

T. Wendav, I. A. Fischer, M. Montanari, M. H. Zoellner, W. Klesse, G. Capellini, N. von den Driesch, M. Oehme, D. Buca, K. Busch, and J. Schulze, Appl. Phys. Lett. 108, 242104 (2016).
[Crossref]

B. Schwartz, M. Oehme, K. Kostecki, D. Widmann, M. Gollhofer, R. Koerner, S. Bechler, I. A. Fischer, T. Wendav, E. Kasper, J. Schulze, and M. Kittler, Opt. Lett. 40, 3209 (2015).
[Crossref]

Widmann, D.

Wirths, S.

D. Stange, N. von den Driesch, D. Rainko, C. Schulte-Braucks, S. Wirths, G. Mussler, A. T. Tiedemann, T. Stoica, J. M. Hartmann, Z. Ikonic, S. Mantl, D. Grützmacher, and D. Buca, Opt. Express 24, 1358 (2016).
[Crossref]

D. Stange, S. Wirths, R. Geiger, C. Schulte-Braucks, B. Marzban, N. von den Driesch, G. Mussler, T. Zabel, T. Stoica, J.-M. Hartmann, S. Mantl, Z. Ikonic, D. Grützmacher, H. Sigg, J. Witzens, and D. Buca, ACS Photon. 3, 1279 (2016).
[Crossref]

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, Nat. Photonics 9, 88 (2015).
[Crossref]

S. Wirths, R. Troitsch, G. Mussler, J.-M. Hartmann, P. Zaumseil, T. Schroeder, S. Mantl, and D. Buca, Semicond. Sci. Technol. 30, 055003 (2015).
[Crossref]

S. Wirths, D. Buca, Z. Ikonic, P. Harrison, A. T. Tiedemann, B. Holländer, T. Stoica, G. Mussler, U. Breuer, J. M. Hartmann, D. Grützmacher, and S. Mantl, Thin Solid Films 557, 183 (2014).
[Crossref]

N. von den Driesch, D. Stange, S. Wirths, D. Rainko, I. Povstugar, A. Savenko, U. Breuer, R. Geiger, H. Sigg, Z. Ikonic, J.-M. Hartmann, D. Grützmacher, S. Mantl, and D. Buca, Small, to be submitted.

Witzens, J.

D. Stange, S. Wirths, R. Geiger, C. Schulte-Braucks, B. Marzban, N. von den Driesch, G. Mussler, T. Zabel, T. Stoica, J.-M. Hartmann, S. Mantl, Z. Ikonic, D. Grützmacher, H. Sigg, J. Witzens, and D. Buca, ACS Photon. 3, 1279 (2016).
[Crossref]

Ye, K.

M. Oehme, K. Kostecki, T. Arguirov, G. Mussler, K. Ye, M. Gollhofer, M. Schmid, M. Kaschel, R. A. Körner, M. Kittler, D. Buca, E. Kasper, and J. Schulze, IEEE Photon. Technol. Lett. 26, 187 (2014).
[Crossref]

Yu, K. M.

S. J. Shin, J. Guzman, C.-W. Yuan, C. Y. Liao, C. N. Boswell-Koller, P. R. Stone, O. D. Dubon, A. M. Minor, M. Watanabe, J. W. Beeman, K. M. Yu, and J. W. Ager, D. C. Chrzan and E. E. Haller, Nano Lett. 10, 2794 (2010).
[Crossref]

Yu, S.-Q.

Y. Zhou, W. Dou, W. Du, T. Pham, S. A. Ghetmiri, S. Al-Kabi, A. Mosleh, M. Alher, J. Margetis, J. Tolle, G. Sun, R. Soref, B. Li, M. Mortazavi, H. Naseem, and S.-Q. Yu, J. Appl. Phys. 120, 023102 (2016).
[Crossref]

Yuan, C.-W.

S. J. Shin, J. Guzman, C.-W. Yuan, C. Y. Liao, C. N. Boswell-Koller, P. R. Stone, O. D. Dubon, A. M. Minor, M. Watanabe, J. W. Beeman, K. M. Yu, and J. W. Ager, D. C. Chrzan and E. E. Haller, Nano Lett. 10, 2794 (2010).
[Crossref]

Zabel, T.

D. Stange, S. Wirths, R. Geiger, C. Schulte-Braucks, B. Marzban, N. von den Driesch, G. Mussler, T. Zabel, T. Stoica, J.-M. Hartmann, S. Mantl, Z. Ikonic, D. Grützmacher, H. Sigg, J. Witzens, and D. Buca, ACS Photon. 3, 1279 (2016).
[Crossref]

Zaumseil, P.

S. Wirths, R. Troitsch, G. Mussler, J.-M. Hartmann, P. Zaumseil, T. Schroeder, S. Mantl, and D. Buca, Semicond. Sci. Technol. 30, 055003 (2015).
[Crossref]

Zhou, Y.

Y. Zhou, W. Dou, W. Du, T. Pham, S. A. Ghetmiri, S. Al-Kabi, A. Mosleh, M. Alher, J. Margetis, J. Tolle, G. Sun, R. Soref, B. Li, M. Mortazavi, H. Naseem, and S.-Q. Yu, J. Appl. Phys. 120, 023102 (2016).
[Crossref]

Zoellner, M. H.

T. Wendav, I. A. Fischer, M. Montanari, M. H. Zoellner, W. Klesse, G. Capellini, N. von den Driesch, M. Oehme, D. Buca, K. Busch, and J. Schulze, Appl. Phys. Lett. 108, 242104 (2016).
[Crossref]

ACS Photon. (1)

D. Stange, S. Wirths, R. Geiger, C. Schulte-Braucks, B. Marzban, N. von den Driesch, G. Mussler, T. Zabel, T. Stoica, J.-M. Hartmann, S. Mantl, Z. Ikonic, D. Grützmacher, H. Sigg, J. Witzens, and D. Buca, ACS Photon. 3, 1279 (2016).
[Crossref]

Appl. Phys. Lett. (2)

J. D. Gallagher, C. L. Senaratne, P. M. Wallace, J. Menéndez, and J. Kouvetakis, Appl. Phys. Lett. 107, 123507 (2015).
[Crossref]

T. Wendav, I. A. Fischer, M. Montanari, M. H. Zoellner, W. Klesse, G. Capellini, N. von den Driesch, M. Oehme, D. Buca, K. Busch, and J. Schulze, Appl. Phys. Lett. 108, 242104 (2016).
[Crossref]

IEEE J. Quantum Electron. (1)

G.-E. Chang, S.-W. Chang, and S. L. Chuang, IEEE J. Quantum Electron. 46, 1813 (2010).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

Z. Alferov, IEEE J. Sel. Top. Quantum Electron. 6, 832 (2000).
[Crossref]

IEEE Photon. Technol. Lett. (1)

M. Oehme, K. Kostecki, T. Arguirov, G. Mussler, K. Ye, M. Gollhofer, M. Schmid, M. Kaschel, R. A. Körner, M. Kittler, D. Buca, E. Kasper, and J. Schulze, IEEE Photon. Technol. Lett. 26, 187 (2014).
[Crossref]

J. Appl. Phys. (4)

Y. Zhou, W. Dou, W. Du, T. Pham, S. A. Ghetmiri, S. Al-Kabi, A. Mosleh, M. Alher, J. Margetis, J. Tolle, G. Sun, R. Soref, B. Li, M. Mortazavi, H. Naseem, and S.-Q. Yu, J. Appl. Phys. 120, 023102 (2016).
[Crossref]

C. L. Senaratne, P. M. Wallace, J. D. Gallagher, P. E. Sims, J. Kouvetakis, and J. Menéndez, J. Appl. Phys. 120, 025701 (2016).
[Crossref]

P. Moontragoon, R. A. Soref, and Z. Ikonic, J. Appl. Phys. 112, 073106 (2012).
[Crossref]

G. Sun, R. A. Soref, and H. H. Cheng, J. Appl. Phys. 108, 033107 (2010).
[Crossref]

Nano Lett. (1)

S. J. Shin, J. Guzman, C.-W. Yuan, C. Y. Liao, C. N. Boswell-Koller, P. R. Stone, O. D. Dubon, A. M. Minor, M. Watanabe, J. W. Beeman, K. M. Yu, and J. W. Ager, D. C. Chrzan and E. E. Haller, Nano Lett. 10, 2794 (2010).
[Crossref]

Nat. Photonics (2)

D. J. Richardson, Nat. Photonics 3, 562 (2009).
[Crossref]

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, Nat. Photonics 9, 88 (2015).
[Crossref]

Opt. Express (3)

Opt. Lett. (1)

Phys. E (1)

T. Stoica, L. Vescan, A. Muck, B. Hollander, and G. Schope, Phys. E 16, 359 (2003).
[Crossref]

Phys. Rev. B (1)

T. B. Bahder, Phys. Rev. B 41, 11992 (1990).
[Crossref]

Semicond. Sci. Technol. (3)

S. Wirths, R. Troitsch, G. Mussler, J.-M. Hartmann, P. Zaumseil, T. Schroeder, S. Mantl, and D. Buca, Semicond. Sci. Technol. 30, 055003 (2015).
[Crossref]

P. Moontragoon, Z. Ikonić, and P. Harrison, Semicond. Sci. Technol. 22, 742 (2007).
[Crossref]

J. M. Hartmann, A. Abbadie, N. Cherkashin, H. Grampeix, and L. Clavelier, Semicond. Sci. Technol. 24, 055002 (2009).
[Crossref]

Thin Solid Films (1)

S. Wirths, D. Buca, Z. Ikonic, P. Harrison, A. T. Tiedemann, B. Holländer, T. Stoica, G. Mussler, U. Breuer, J. M. Hartmann, D. Grützmacher, and S. Mantl, Thin Solid Films 557, 183 (2014).
[Crossref]

Other (1)

N. von den Driesch, D. Stange, S. Wirths, D. Rainko, I. Povstugar, A. Savenko, U. Breuer, R. Geiger, H. Sigg, Z. Ikonic, J.-M. Hartmann, D. Grützmacher, S. Mantl, and D. Buca, Small, to be submitted.

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. (a) APT concentration profiles across a central part of the MQW LED. APT elemental maps of the GeSn/SiGeSn MQW: (b)–(d) individual maps for Ge, Sn, and Si, (e) the B atoms in the GeSn:B layer on top of the MQW appear as violet dots in the top part, (f) the P atoms in the bottom Ge:P layer, which is 60 nm beneath the first SiGeSn barrier, appear as dark green dots in the bottom part.
Fig. 2.
Fig. 2. (a) Schematic of a GeSn/SiGeSn MQW LED. (b), (c) Calculated electronic band structure of the associated GeSn/SiGeSn quantum well structure with either (b) high or (c) low SiSn bowing parameters.
Fig. 3.
Fig. 3. (a) Emission spectra at 4 K and 300 K of d = 100 μm GeSn/SiGeSn MQW (blue) and homojunction (dashed green) LEDs, (b) integrated intensity of both LEDs as a function of temperature for j = 250 A cm 2 normalized to the values at 300 K, (c) FWHM (for the MQW) and peak position (homojunction and MQW) at different temperatures.
Fig. 4.
Fig. 4. (a) EL spectra for different peak current densities j at 4 K and 300 K (inset), (b) the integrated intensity of a GeSn/SiGeSn MQW device plotted as a function of j at different temperatures, (c) EL peak position as a function of j at different temperatures, (d) integrated EL intensity and peak position at 15 K as a function of the duty cycle.

Metrics