Abstract

Humans and other warm-blooded mammals maintain their body temperature within a narrow range in a process called homeostasis. This ability to maintain an internal temperature, which is relatively insensitive to changes in the external environment or heat load is vital for all complex processes that sustain life. Without the ability to regulate temperature, materials and devices that experience large temperature gradients or temperature cycles are vulnerable to performance degradation or even catastrophic failure. Thermal control akin to the way living organisms achieve thermal homeostasis is particularly important in environments such as space, where changing solar illumination can cause large temperature variations. Various systems have been used to mitigate temperature fluctuations; however, they tend to be bulky and require power. Here, we model micropatterned phase-change materials to design an efficient, solid-state alternative, which requires no external input power. Our design is based on switchable thermal emission, which takes advantage of temperature-induced phase-change behavior in thin films of vanadium oxide on silicon microcones.

© 2017 Optical Society of America

Corrections

Shao-Hua Wu, Mingkun Chen, Michael T. Barako, Vladan Jankovic, Philip W. C. Hon, Luke A. Sweatlock, and Michelle L. Povinelli, "Thermal homeostasis using microstructured phase-change materials: erratum," Optica 5, 1155-1155 (2018)
https://www.osapublishing.org/optica/abstract.cfm?uri=optica-5-9-1155

1. INTRODUCTION

Thermal control schemes for space have focused on emission control since the absence of convection makes radiative emission the sole cooling mechanism. Radiators that emit significantly more when heated than cooled can be designed to dampen temperature fluctuations that arise from changes in solar illumination and from on-board heat generation [1]. Solid-state approaches to emission control [2,3] offer lightweight alternatives to approaches based on mechanically moving parts [47] or fluid-filled heat pipes [8,9]. The majority of these schemes, however, require electrical power [2,47], limiting their application space. Here, we present a novel, passive scheme for thermal self-regulation. Our design uses micropatterned phase-change materials to achieve a 10× difference in emissivity between high- and low-temperature states, resulting in an 20× reduction in temperature variation relative to ordinary materials.

Micropatterning has been a subject of intense research for applications in radiative cooling [10,11]. Recent work has shown that micropatterned materials can be designed to achieve near-unity infrared (IR) emissivity and steady-state radiative cooling [11]. To provide passive temperature regulation, however, temperature-switchable emissivity is required. Phase-change materials such as vanadium dioxide (VO2) show a dramatic change in optical properties near their phase-change temperature, Tc [1215]. VO2 has been used previously to achieve switchable reflectivity and transmissivity in the IR [16,17] and visible ranges [13,18]; IR emissivity tuning has also been demonstrated with this unique material [19,20]. None of these works, however, considered a passive, switchable IR emitter for thermal self-regulation. Previous work on bulk perovskite manganese oxide used a metal–insulator phase transition to provide switchable emission [3,21,22]; however, the maximum difference in emissivity between high- and low-temperature states was only 0.5, and the width of temperature range for the phase transition was as large as 200  K [22]. As we will see below, the width of the transition limits temperature regulation. Chalcogenide phase-change materials such as Ge–Sb–Te (GST) can also provide switchable optical properties [2325]. However, their non-volatile nature—in which the phase transition must be triggered by an energetic pulse—makes them nonideal for passive thermal homeostasis applications.

In this paper, we design a VO2-coated silicon microcone structure with a large emissivity difference of 0.8 between low and high-temperature states. We show that our structure’s sharp change in emissivity at the phase-change temperature (330 K) provides excellent thermal regulation capability due in part to the narrow width of the VO2 insulator-to-metal phase transition, which can be as small as 4 K for high material quality [18]. In particular, we solve the time-dependent heat equation using a lumped capacitor approach to obtain the transient temperature in response to a time-varying heat load. Our results show an 20× reduction in temperature variation relative to an uncoated silicon film.

A. Design of Structures for Thermal Homeostasis

The concept of thermal homeostasis is illustrated in Fig. 1. The ideal surface for thermal homeostasis would have near-zero thermal emissivity below the design temperature set point, Tc [Fig. 1(a)], and close-to-unity thermal emissivity above it [Fig. 1(b)]. In this case, fluctuations in temperature will be mitigated by changes in emissivity. When the object gets too cold, heat loss to the environment is minimized [Fig. 1(a)]; when the object gets too hot, heat loss is enhanced [Fig. 1(b)].

 figure: Fig. 1.

Fig. 1. Illustrations of thermal homeostasis in optics. A surface that radiates much more at a higher temperature will help maintain the object at the target temperature, Tc.

Download Full Size | PPT Slide | PDF

We have designed a structure with temperature-dependent emissivity needed for thermal homeostasis. Our design is shown in Fig. 2(a). A square array of silicon microcones is covered by a conformal layer of VO2. Cone arrays are known to show strong antireflection and to be relatively insensitive to the angle of incidence, making them well suited for absorber and emitter applications [2629]. In the calculations below, we will take the height of silicon microcones to be 40 μm, the period to be 20 μm, and the thickness of the coating to be 200 nm. These dimensions were optimized by running a particle swarm optimization [30] to maximize the broadband emissivity difference between the insulating and metallic states. The lower and upper bounds on period, cone height, and VO2 thickness were set to at 5–40 μm, 5–40 μm, and 0.2–1.0 μm, respectively. For reference, we will also consider a flat, VO2-coated silicon film [Fig. 2(b)] and an uncoated silicon film [Fig. 2(c)], and calculate thermal emissivity for all three structures.

 figure: Fig. 2.

Fig. 2. Design of structure for thermal homeostasis. (a) A square array of silicon microcones with a conformal VO2 coating, residing on a silicon film. Note that layer thicknesses are not drawn to scale. (b) A flat, VO2-coated silicon film. (c) An uncoated silicon film.

Download Full Size | PPT Slide | PDF

2. RESULTS

A. Spectral Emissivity

We first calculated the IR spectral emissivity for the VO2-coated Si microcones (see Methods). The results are shown in Fig. 3(a). For T<Tc, VO2 is in the insulating phase and the emissivity of the VO2-coated microcones is low (blue curve). For T>Tc, the VO2 layer is metallic and the emissivity is high (red curve). The VO2-coated microcones thus act as a switchable thermal emitter, with a nearly 10× difference in emission between the insulating and metallic states.

 figure: Fig. 3.

Fig. 3. Emissivity spectra. (a) VO2-coated silicon microcones, (b) a VO2-coated flat silicon film, and (c) an uncoated silicon film. Results are for normal incidence, averaged over polarization.

Download Full Size | PPT Slide | PDF

The difference in emission can be understood as follows: consider IR light incident on the structure. The metallic state has a much larger imaginary part of permittivity than the insulating state, yielding strong attenuation in the thin VO2 layer. From Kirchoff’s law, the increased attenuation (absorption) corresponds to an increase in emission. We note that the oscillatory features in Fig. 3(a) are due to reflection from the back surface of the sample, resulting from the negligibly small absorption in Si.

The emission from a microcone structure is far more switchable than that from a planar film. For the planar film, the difference in emissivity between metallic and insulating states is smaller [Fig. 3(b)]. Moreover, the emissivity for the metallic state [red curve; Fig. 3(b)] is much lower than for the microcones [red curve; Fig. 3(a)]. To understand this effect, we again consider incident IR light. In the metallic state, the planar structure is highly reflective and little light is absorbed in the VO2 layer. In contrast, the microcones act as impedance-matching tapers and effectively serve as an antireflection coating, allowing light to be better absorbed in the VO2. The emissivity for the insulator state of the planar film [blue curve; Fig. 3(b)] is largely dominated by the properties of the silicon; above 10 μm, the spectrum of the VO2-coated film is nearly identical to that of the uncoated Si film [Fig. 3(c)]. We note that the sharp cut-off seen in Fig. 3(c) at 10 μm is due to the transparent nature of Si in this wavelength range (1–10 μm) [31].

We note that the calculations shown in Fig. 3 are obtained from coherent absorptivity at normal incidence. Experiments may not resolve the fine-scale wavelength features seen in the plots, and we have thus added smoothed lines as a guide to the eye.

B. Radiated Thermal Power

We next calculate the total radiated power in the insulating and metallic phases from the angle-averaged emissivity of each structure (see Methods). The radiated powers at the transition temperature, Prad (Tc), are shown by symbols in Fig. 4. The microcones have a large difference in radiated power between the insulator (filled green circle) and metallic (unfilled green circle) states. The VO2-coated flat film (magenta diamonds) has a smaller difference, as expected from the smaller difference in thermal emissivity.

 figure: Fig. 4.

Fig. 4. Radiated thermal power. (a) The arrows indicate the direction of heating or cooling processes. The symbols represent the calculated values of thermal radiation for metallic (hollow symbols) VO2 or insulating (filled symbols) VO2 structures at 330 K. The solid curves represent the temperature-dependent model for radiated power assuming a phase transition width of 10 K. (b) Boundary conditions used to solve the heat equation.

Download Full Size | PPT Slide | PDF

To model the temperature dependence of the radiated power, we assume a model that takes into account the hysteresis of the phase transition and temperature dependence of the blackbody spectrum (see Methods). The full model of Prad (T) is shown by curves in Fig. 4(a). The directions of heating and cooling processes are indicated by arrows. For the microcone heating curve, the radiated power increases sharply with temperature through the VO2 phase transition (green curve, upward arrow). This sharp increase is consistent with its function as a switchable emitter. When the temperature is decreased, the radiated power also drops sharply due to a change in emissivity across the phase transition. These trends are much more pronounced than for the planar film. The radiated power for the uncoated silicon film is shown for reference and increases slowly across the entire range.

C. Thermal Homeostasis

The large, sharp increase in radiated power across the phase transition helps regulate the temperature of the microcones. Given a fluctuating heat input, the temperature variation for the microcones is much smaller than for a Si film. To see this effect, consider the time-varying heat input shown in the top panel in Fig. 5(a). The value of Pin oscillates between 150 and 550  W/m2. Such an input could result, for example, from a time-varying solar illumination or internal heat load. We demonstrate the thermal dynamics of the system by solving the time-dependent heat equation for an isothermal mass (i.e., a “lumped capacitor”) [32] with an initial temperature of 330 K. We plot the system temperature as a function of rescaled time t=t/ρCLC, where ρ is the material density, C is the thermal capacitance of the structure, and LC is the characteristic length scale (i.e., height) of the structure.

 figure: Fig. 5.

Fig. 5. Thermal homeostasis. (a) Temperature variation for different structures with a time-varying heat input flux. (b) Radiated power in an extended temperature range. The dotted–gray lines indicate the heat input range (150550  W/m2) and the corresponding steady-state temperature values for each structure.

Download Full Size | PPT Slide | PDF

For the bare silicon film, the temperature of the device oscillates strongly in response to the input, as shown by the dotted–dashed black curve in Fig. 5(a). The amplitude of the variation is 219.3 K. The VO2-coated flat film reduces these fluctuations to 147.3 K (dotted magenta curve). However, the microcone structure has a nearly constant temperature response: the fluctuation amplitude is reduced by nearly 20× relative to the silicon film, to 11.9 K (solid green curve). We refer to this behavior as thermal homeostasis; by proper design, the material can passively regulate its temperature far better than a bare silicon film. Moreover, the material also regulates temperature better than a blackbody emitter. Calculations show that the fluctuation amplitude of the microcone structure is approximately 8× smaller than for a perfect blackbody (see Supplement 1).

The origin of thermal homeostasis can be understood from power balance formalism. We assume that the input power varies slowly enough for the device to reach steady state at each step (increase or decrease in Pin). The steady-state temperature is determined by a balance between input and radiated power, shown schematically in Fig. 4(b): Pin(T)=Prad(T). For convenience, we replot the radiated power curves from Fig. 4(a) over an extended temperature range in Fig. 5(b).

Starting with the uncoated Si (black curve), we determine that the temperature value corresponding to Pin=Prad=550  W/m2 is 749 K. For the lower power Pin=Prad=150  W/m2, T=530  K. The temperature fluctuation is indicated by black arrows in Fig. 5(b). For the flat VO2-coated structure, a similar procedure gives a narrower temperature range, indicated by magenta arrows in Fig. 5(b). For the microcone structure, however, the range of temperature corresponding to powers between 150 and 550  W/m2 is much smaller. To find this range, we take into account the hysteresis in the curve. When Pin is increased to 550  W/m2, the heating curve (right side of hysteresis loop) gives a steady-state temperature of 337 K. When Pin is decreased to 150  W/m2, the cooling curve (left side of hysteresis loop) gives a temperature of 325 K. The overall temperature fluctuation (green arrows) is thus much smaller than for the other two structures. In summary, the design of the microcone structure, which yields a steep dPrad/dT at the phase transition, provides strong thermal regulation behavior with much smaller oscillation in temperature than a Si film.

D. Homeostatic Operating Range

The ability of the VO2-coated microcone device to maintain thermal homeostasis is limited by the width and height of the hysteresis loop associated with the insulator-to-metal phase around Tc. In Fig. 5(b), the height of the loop (green curve) extends from 40 to 550  W/m2. The width of the loop is approximately 10 K. Figure 6 shows the temperature variation of the microcones for three different input power oscillations. In Fig. 6(a), the values of Pin fall well within the range of the loop (shaded yellow). The resulting thermal variation is 11.6 K, as in Fig. 5(a) (note the change in y-axis scale). However, when the range of Pin is lowered below [Fig. 6(b)] or above [Fig. 6(c)] the range of the hysteresis loop, the temperature variations over the cycle are larger. For optimal performance, the variations in input power should therefore fall within the range of the hysteresis loop. However, we note that for variations in input power larger than the range of the hysteresis loop, the microcone structure still outperforms the flat film or uncoated Si film.

 figure: Fig. 6.

Fig. 6. Homeostatic operating range. [(a)–(c)] Temperature variation of the silicon microcone structure for different heat inputs. (d) Reduction in temperature variation for microcones with a narrower hysteresis width. The yellow shade illustrates the range of the hysteresis loop (homeostatic operating range).

Download Full Size | PPT Slide | PDF

The width of the loop will determine the size of the temperature fluctuations. As the width is reduced to 0, the fluctuations decrease as well, as shown in Fig. 6(d). Experimentally, the width of the hysteresis loop can be reduced via improvements in material quality [12,14,18,33], with some works showing hysteresis widths as low as 4 K. [33] The best thermal regulation performance will thus be obtained by using material with minimal hysteresis.

E. Dependence on VO2 Thickness and Fabrication Feasibility

In our calculations, the VO2 coating thickness was set to 200 nm for ease of computation, but better performance may be possible using a thinner coating. While a full optimization for the microcone structure is computationally prohibitive, we can easily calculate the emissivity of the flat, VO2-coated silicon film as a function of VO2 thickness. For the best performance, the radiated power in the metallic and insulating states should be as different as possible at Tc. In Fig. 7, we plot Prad (Tc), normalized by the radiated power at Tc for a perfect blackbody. Figure 7 shows that for a flat, VO2-coated film, the largest difference between metallic and insulating states occurs for a thickness of 0.03 μm, or 30 nm. For insulating VO2 (blue circles), Prad (Tc) increases with increasing VO2 thickness. Insulating VO2 is optically absorptive in the IR range. As the amount of VO2 increases, the emissivity is increased at wavelengths where Si is transparent. The results suggest that a very thin layer of VO2 is sufficient to provide maximum emissivity difference between metallic and insulating states.

 figure: Fig. 7.

Fig. 7. Dependence on coating thickness. Radiated power at phase transition for a flat, VO2-coated silicon film.

Download Full Size | PPT Slide | PDF

Our design is amenable to standard microfabrication techniques. Si cone arrays with similar aspect ratios to our design have been fabricated by cryogenic, inductively coupled plasma reactive-ion etching [26,28,34,35]. Thin VO2 conformal coatings can be achieved by using gas-phase reactions and deposition, such as sputtering deposition [12,13,15,33,36], pulsed-laser deposition [14,37], and atomic layer deposition [3842]. Deposition of conformal coatings on microscale structures is an ongoing area of research [42]. In this work, we have assumed a perfect conformal coating for simplicity. However, further calculations show that deviations from perfect conformality do not change the qualitative difference in emissivity between metal and insulator states. Future work will design and test the concept of thermal homeostasis in experiment.

In the calculations above, we have considered a microcone structure surrounded by vacuum on both sides for simplicity. We note that the addition of an opaque material as the bottom boundary, e.g., a gold coating on the back surface of the Si substrate, has a minimal effect on the emissivity spectrum (see Supplement 1).

F. General Considerations

In the discussion and calculations above, we have analyzed specific structures based on VO2-coated microcones. We can abstract from our results to speculate on the ideal conditions for thermal homeostasis.

First, the temperature at which homeostasis is obtained corresponds to the phase-change temperature of the material. For VO2, this temperature can be tuned between 310 and 360 K [13,18] by adjusting the processing method [13,18,33,37,40], doping [13,36], or strain [12,43]. For applications at other temperatures, one could hope to identify a different phase-change material with a transition temperature in the target range.

When evaluating alternative materials, several considerations should be kept in mind. First, the time scale for the phase change should be shorter than both the thermal response time of the structure and the time scale for fluctuations in input power. For VO2, experimental measurements of phase transition time are in the picosecond range [44]. Second, materials with large changes in permittivity across the phase transition will generally make it easier to design a microstructure geometry that provides the desired change in emissivity. Emissivity should be as close as possible to 0 below the transition, and as close as possible to the blackbody above. The microcone structure presented here is optimized for VO2; other materials will likely require different microstructures and/or metamaterial designs. Third, the width of the phase transition should be as small as possible. As discussed above, the residual temperature fluctuations for our material will be reduced as the width of the hysteresis loop shrinks [Fig. 6(d)].

3. CONCLUSION

In conclusion, we have proposed a route to thermal homeostasis using passive microstructures. We have presented a specific design that uses a thin film of VO2 conformally coated on Si microcone structures to yield switchable thermal radiation. The design concept is based on a temperature-switchable thermal emitter: below the target temperature, emission is minimized, whereas emission is maximized above the target temperature. This sharp change in emission helps to lower or dampen the temperature variation of the structure due to a time-varying heat load. The proposed thermal homeostasis structure has a 10× difference in emissivity between the metallic and insulating states of VO2, resulting in a nearly 20× reduction in temperature variation relative to a Si film, and 8× reduction relative to a perfect blackbody. These numbers are obtained within a one-dimensional (1D) heat-transfer system in which radiation is the sole heat dissipation mechanism. Our results provide a light-weight, completely solid-state thermal control mechanism particularly well suited for space applications. The use of mechanically static structures, free of any moving parts, provides a complementary alternative to existing microelectromechanical systems (MEMS)-based approaches for thermal emission control [45].

A. Methods

1. Thermal Emissivity

Thermal emissivity ϵ(λ,Ω) in the IR range is calculated via electromagnetic simulation, using the ISU-TMM package [46,47], an implementation of the plane-wave-based transfer matrix method. The simulation calculates absorptivity, where absorptivity is equal to emissivity, by Kirchoff’s law. The values shown in Fig. 3 are for normal incidence. The wavelength range shown is chosen to be 2.5–30 μm; outside this range, the blackbody radiance at room temperature is negligible. The calculated spectral resolution is 10 nm. The optical constants for VO2 and Si are obtained from semi-empirical fitted experimental [15] data and experiments [31], respectively. We note that the measured optical constants for silicon in the IR range are obtained from intrinsic samples, and so the free-carrier contribution is minimal.

2. Radiated Power

The radiated thermal power can be written as

Prad(T)=dΩcosθ2.5  μm30  μmdλ·IBB(λ,T)·ϵ(λ,Ω),
where IBB(λ,T) is the spectral blackbody radiance and ϵ(λ,Ω) is the computed emissivity at 330 K. The angle resolution was 5 deg. The calculated values of Prad (Tc=330  K) for Si cone structures coated with metallic and insulating VO2 are 550  W/m2 and 40  W/m2 (as shown in Fig. 4; unfilled and filled green circles), respectively.

Given the calculated values of Prad at 330 K (symbols in Fig. 4), we assume a model for Prad (T) that takes into account the hysteresis of the phase transition and the temperature dependence of the blackbody spectrum (solid curves). Experimentally, the phase transition of VO2 shows a hysteresis loop with a width of 4–15 K [1315,18]. The hysteretic width can be reduced by annealing or depositing VO2 onto a lattice-matched substrate to improve the quality of VO2 [14,18]. We assume a smooth function that matches the calculated values at 330 K and a hysteretic width of 10 K:

Prad(T)=dΩcosθ2.5  μm30  μmdλ·IBB(λ,T)·{ϵM(λ,Ω)·12[1+erf(TTc±12ΔTc)]+ϵI(λ,Ω)·12[1erf(TTc±12ΔTc)]},
where IBB(λ,T) is the spectral blackbody radiance, ϵM(λ,Ω) is the emissivity for metallic VO2, ϵI(λ,Ω) is the emissivity for insulating VO2, ΔTc is the hysteretic width of 10 K, and erf is the error function. The error function is used for convenience in interpolation; substituting another smooth function will slightly change the shape of the temperature response curves in Fig. 5, but will not alter their qualitative behavior. The + and − branches of Eq. (5) give the cooling and heating branches of the Prad(T) loop, respectively.

3. Thermal Modeling Approach

We solve the time-dependent heat equation to obtain the transient temperature resulting from a time-varying heat input. When the resistance to heat spreading in the structure is small, the volume can be approximated as being isothermal, and we can neglect the spatial distribution of the temperature. The entire layered structure can thus be treated as a boundary, as shown in Fig. 4(b). Pin is the heat source in the system and Prad is the radiated thermal power. Such a lumped capacitor approach is valid for Biot numbers Bi=LChrad/k0.1, where hrad is a radiative heat transfer coefficient, LC is the characteristic length scale (e.g., the height of the structure in a 1D heat flow), and k is the thermal conductivity [32]. The radiative heat transfer coefficient can be written as hrad4ϵσT3, where σ is the Stefan–Boltzmann constant and ϵ is the effective emissivity (Prad normalized by radiated power for a perfect blackbody). Assuming a perfect blackbody with T=800  K and Lc=300  μm, the Biot number can be calculated as Bi=8.34×1040.1. Since the blackbody value is an upper bound for our structure, the Biot number is smaller than this value.

The time-dependent heat equation can then be written as

ρCLCdT(t)dt=Pin(t)Prad(T),
where ρ is the material density (kg/m3), C is the heat capacitance (J/K-kg), LC is the characteristic length scale (m), Pin(t) is the time-dependent heat source (W/m2), and Prad(T) is the radiated thermal power (W/m2). By a change of variables, the rescaled time (t) can be written as
t=tρCLC.

Equation (3) can be further simplified to

dT(t)dt=Pin(t)Prad(T).

Here we assume for simplicity that C is the thermal capacitance of the structure itself. If the structure is in thermal contact with an additional object, the time-dependent response will depend on the lumped thermal capacitance [32] of the entire system.

Funding

National Science Foundation (NSF) (ECCS-1711268); NG Next Northrop Grumman Corporation.

Acknowledgment

Computation was supported by the University of Southern California Center for High Performance Computing and Communication. The authors thank Luqi Wang for performing calculations of absorption in the visible range. The authors also thank Dr. Virginia Wheeler for insightful discussion on VO2 ALD methods.

M. L. P. laid out the concept and supervised the project. All authors conceived and designed the simulations. Simulations and data analysis were carried out by S.-H. W. and M. C. Interpretation of the data and writing of the manuscript were performed by S.-H. W., M. C., and M. L. P. All authors commented on the data and on the final version of the manuscript.

The authors declare no competing financial interests.

 

See Supplement 1 for supporting content.

REFERENCES

1. V. L. Pisacane, Fundamentals of Space Systems (Oxford University, 1994).

2. T. Inoue, M. D. Zoysa, T. Asano, and S. Noda, “Realization of dynamic thermal emission control,” Nat. Mater. 13, 928–931 (2014). [CrossRef]  

3. S. Tachikawa, A. Ohnishi, Y. Shimakawa, A. Ochi, A. Okamoto, and Y. Nakamura, “Development of a variable emittance radiator based on a Perovskite manganese oxide,” J. Thermophys. Heat Transfer 17, 264–268 (2003). [CrossRef]  

4. R. Osiander, J. L. Champion, A. M. Darrin, J. J. Sniegowski, S. M. Rodgers, D. Douglas, and T. D. Swanson, “Micromachined Louver arrays for spacecraft thermal control radiators,” in 39th Aerospace Sciences Meeting and Exhibit, Aerospace Sciences Meetings (2001), paper 0215.

5. T. D. Swanson and G. C. Birur, “NASA thermal control technologies for robotic spacecraft,” Appl. Therm. Eng. 23, 1055–1065 (2003). [CrossRef]  

6. R. Osiander, S. L. Firebaugh, J. L. Champion, D. Farrar, and M. A. G. Darrin, “Microelectromechanical devices for satellite thermal control,” IEEE Sens. 4, 525–531 (2004). [CrossRef]  

7. H. Nagano and Y. Nagasaka, “Simple deployable radiator with autonomous thermal control function,” J. Thermophys. Heat Transfer 20, 856–864 (2006). [CrossRef]  

8. C. Lashley, S. Krein, and P. Barcomb, “Deployable radiators—a multidiscipline approach,” in SAE Paper (1998), paper 981691.

9. K. Goncharov, A. Orlov, A. Tarabrin, M. Gottero, V. Perotto, S. Tavera, and G. P. Zoppo, “1500  W deployable radiator with loop heat pipe,” in SAE Paper (2001), paper 012194.

10. A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515, 540–544 (2014). [CrossRef]  

11. L. Zhu, A. Raman, K. X. Wang, M. A. Anoma, and S. Fan, “Radiative cooling of solar cells,” Optica 1, 32–38 (2014). [CrossRef]  

12. Z. Yang, C. Ko, and S. Ramanathan, “Metal–insulator transition characteristics of VO2 thin films grown on Ge(100) single crystals,” J. Appl. Phys. 108, 073708 (2010). [CrossRef]  

13. C. Batista, R. M. Ribeiro, and V. Teixeira, “Synthesis and characterization of VO2-based thermochromic thin films for energy-efficient windows,” Nano. Res. Lett. 6, 301–307 (2011). [CrossRef]  

14. D. Fu, K. Liu, T. Tao, K. Lo, C. Cheng, B. Liu, R. Zhang, H. A. Bechtel, and J. Wu, “Comprehensive study of the metal–insulator transition in pulsed laser deposited epitaxial VO2 thin films,” J. Appl. Phys. 113, 043707 (2013). [CrossRef]  

15. J. B. K. Kana, G. Vignaud, A. Gibaud, and M. Maaza, “Thermally driven sign switch of static dielectric constant of VO2 thin film,” Opt. Mater. 54, 165–169 (2016). [CrossRef]  

16. M. J. Dicken, K. Aydin, I. M. Pryce, L. A. Sweatlock, E. M. Boyd, S. Walavalkar, J. Ma, and H. A. Atwater, “Frequency tunable near-infrared metamaterials based on VO2 phase transition,” Opt. Express 17, 018330 (2009). [CrossRef]  

17. J. Rensberg, S. Zhang, Y. Zhou, A. S. McLeod, C. Schwarz, M. Goldflam, M. Liu, J. Kerbusch, R. Nawrodt, S. Ramanathan, D. N. Basov, F. Capasso, C. Ronning, and M. A. Kats, “Active optical metasurfaces based on defect-engineered phase-transition materials,” Nano Lett. 16, 1050–1055 (2015). [CrossRef]  

18. Y. Gao, H. Luo, Z. Zhang, L. Kang, Z. Chen, J. Du, M. Kanehira, and C. Cao, “Nanoceramic VO2 thermochromic smart glass: a review on progress in solution processing,” Nano Energy 1, 221–246 (2012). [CrossRef]  

19. G. Xu, C.-M. Huang, M. Tazawa, P. Jin, and D.-M. Chen, “Nano-Ag on vanadium dioxide. II. Thermal tuning of surface plasmon resonance,” J. Appl. Phys. 104, 053102 (2008). [CrossRef]  

20. M. A. Kats, R. Blanchard, S. Zhang, P. Genevet, C. Ko, S. Ramanathan, and F. Capasso, “Vanadium dioxide as a natural disordered metamaterial: perfect thermal emission and large broadband negative differential thermal emittance,” Phys. Rev. X 3, 041004 (2013). [CrossRef]  

21. D. Fan, Q. Li, and P. Dai, “Temperature-dependent emissivity property in La0.7Sr0.3MnO3 films,” Acta Astronaut. 121, 144–152 (2016). [CrossRef]  

22. D. Fan, Q. Li, Y. Xuan, H. Tan, and J. Fang, “Temperature-dependent infrared properties of Ca doped (La, Sr)MnO3 compositions with potential thermal control application,” Appl. Therm. Eng. 51, 255–261 (2013). [CrossRef]  

23. B. Gholipour, J. Zhang, K. F. MacDonald, D. W. Hewak, and N. I. Zheludev, “An all-optical, non-volatile, bidirectional, phase-change meta-switch,” Adv. Mater. 25, 3050–3054 (2013). [CrossRef]  

24. A. Tittl, A.-K. U. Michel, M. Schäferling, X. Yin, B. Gholipour, L. Cui, M. Wuttig, T. Taubner, F. Neubrech, and H. Giessen, “A switchable mid-infrared plasmonic perfect absorber with multispectral thermal imaging capability,” Adv. Mater. 27, 4597–4603 (2015). [CrossRef]  

25. X. Tian and Z.-Y. Li, “Visible-near infrared ultra-broadband polarization-independent metamaterial perfect absorber involving phase-change materials,” Photon. Res. 4, 146–152 (2016). [CrossRef]  

26. H. K. Raut, V. A. Ganesh, A. S. Nairb, and S. Ramakrishna, “Anti-reflective coatings: a critical, in-depth review,” Energy Environ. Sci. 4, 3779–3804 (2011). [CrossRef]  

27. O. N. Smolnikova and S. P. Skobelev, “Analysis of electromagnetic scattering from lossy periodic structures with application to wedge absorber,” in European Conference on Antennas and Propagation (2011).

28. J. Cai and L. Qi, “Recent advances in antireflective surfaces based on nanostructure arrays,” Mater. Horiz. 2, 37–53 (2015). [CrossRef]  

29. F. Menges, M. Dittberner, L. Novotny, D. Passarello, S. S. P. Parkin, M. Spieser, H. Riel, and B. Gotsmann, “Thermal radiative near field transport between vanadium dioxide and silicon oxide across the metal insulator transition,” Appl. Phys. Lett. 108, 171904 (2016). [CrossRef]  

30. M. Shokooh-Saremi and R. Magnusson, “Particle swarm optimization and its application to the design of diffraction grating filters,” Opt. Lett. 32, 894–896 (2007). [CrossRef]  

31. E. D. Palik, Handbook of Optical Constants of Solids (Elsevier, 1985).

32. F. P. Incropera, D. P. DeWitt, T. L. Bergman, and A. S. Lavine, Introduction to Heat Transfer (Wiley, 1990).

33. Y. Xiong, Q. Y. Wen, Z. Chen, W. Tian, T. L. Wen, Y. L. Jing, Q. H. Yang, and H. W. Zhang, “Tuning the phase transitions of VO2 thin films on silicon substrates using ultrathin Al2O3 as buffer layers,” J. Phys. D 47, 455304 (2014). [CrossRef]  

34. Y. W. Chen and X.-C. Zhang, “Anti-reflection implementations for terahertz waves,” Front. Optoelectron. 7, 243–262 (2014). [CrossRef]  

35. S. Yalamanchili, H. S. Emmer, K. T. Fountaine, C. T. Chen, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and <1% spectrum-and-angle-averaged reflection in tapered microwire arrays,” ACS Photon. 3, 1854–1861 (2016). [CrossRef]  

36. S. Hu, S. Y. Li, R. Ahuja, C. G. Granqvist, K. Hermansson, G. A. Niklasson, and R. H. Scheicher, “Optical properties of Mg-doped VO2: absorption measurements and hybrid functional calculations,” Appl. Phys. Lett. 101, 201902 (2012). [CrossRef]  

37. A. Rua, R. D. Diaz, S. Lysenko, and F. E. Fernandez, “Semiconductor–insulator transition in VO2 (B) thin films grown by pulsed laser deposition,” J. Appl. Phys. 118, 125308 (2015). [CrossRef]  

38. I. M. Povey, M. Bardosova, F. Chalvet, M. E. Pemble, and H. M. Yates, “Atomic layer deposition for the fabrication of 3D photonic crystals structures: growth of Al2O3 and VO2 photonic crystal systems,” Surf. Coat. Technol. 201, 9345–9348 (2007). [CrossRef]  

39. G. Rampelberg, D. Deduytsche, B. D. Schutter, P. A. Premkumar, M. Toeller, M. Schaekers, K. Martens, I. Radu, and C. Detavernier, “Crystallization and semiconductor–metal switching behavior of thin VO2 layers grown by atomic layer deposition,” Thin Solid Films 550, 59–64 (2014). [CrossRef]  

40. X. Lv, Y. Cao, L. Yan, Y. Li, and L. Song, “Atomic layer deposition of VO2 films with Tetrakis-dimethyl-amino vanadium (IV) as vanadium precursor,” Appl. Surf. Sci. 396, 214–220 (2017). [CrossRef]  

41. G. Rampelberg, M. Schaekers, K. Martens, Q. Xie, D. Deduytsche, B. D. Schutter, N. Blasco, J. Kittl, and C. Detavernier, “Semiconductor–metal transition in thin VO2 films grown by ozone based atomic layer deposition,” Appl. Phys. Lett. 98, 162902 (2011). [CrossRef]  

42. P. Guo, M. S. Weimer, J. D. Emery, B. T. Diroll, X. Chen, A. S. Hock, R. P. H. Chang, A. B. F. Martinson, and R. D. Schaller, “Conformal coating of a phase change material on ordered plasmonic nanorod arrays for broadband all-optical switching,” ACS Nano 11, 693–701 (2016). [CrossRef]  

43. J. Cao, E. Ertekin, V. Srinivasan, W. Fan, S. Huang, H. Zheng, J. W. L. Yim, D. R. Khanal, D. F. Ogletree, J. C. Grossman, and J. Wu, “Strain engineering and one-dimensional organization of metal–insulator domains in single-crystal vanadium dioxide beams,” Nat. Nanotech. 4, 732–737 (2009). [CrossRef]  

44. A. Pashkin, C. Kübler, H. Ehrke, R. Lopez, A. Halabica, R. F. Haglund, R. Huber, and A. Leitenstorfer, “Ultrafast insulator–metal phase transition in VO2 studied by multiterahertz spectroscopy,” Phys. Rev. B 83, 195120 (2011). [CrossRef]  

45. X. Liu and W. J. Padilla, “Thermochromic infrared metamaterials,” Adv. Mater. 28, 871–875 (2016). [CrossRef]  

46. J. A. Mason, S. Smith, and D. Wasserman, “Strong absorption and selective thermal emission from a midinfrared metamaterial,” Appl. Phys. Lett. 98, 241105 (2011). [CrossRef]  

47. M. Ghebrebrhan, P. Bermel, Y. X. Yeng, I. Celanovic, M. Soljačić, and J. D. Joannopoulos, “Tailoring thermal emission via Q matching of photonic crystal resonances,” Phys. Rev. A 83, 033810 (2011). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. V. L. Pisacane, Fundamentals of Space Systems (Oxford University, 1994).
  2. T. Inoue, M. D. Zoysa, T. Asano, and S. Noda, “Realization of dynamic thermal emission control,” Nat. Mater. 13, 928–931 (2014).
    [Crossref]
  3. S. Tachikawa, A. Ohnishi, Y. Shimakawa, A. Ochi, A. Okamoto, and Y. Nakamura, “Development of a variable emittance radiator based on a Perovskite manganese oxide,” J. Thermophys. Heat Transfer 17, 264–268 (2003).
    [Crossref]
  4. R. Osiander, J. L. Champion, A. M. Darrin, J. J. Sniegowski, S. M. Rodgers, D. Douglas, and T. D. Swanson, “Micromachined Louver arrays for spacecraft thermal control radiators,” in 39th Aerospace Sciences Meeting and Exhibit, Aerospace Sciences Meetings (2001), paper 0215.
  5. T. D. Swanson and G. C. Birur, “NASA thermal control technologies for robotic spacecraft,” Appl. Therm. Eng. 23, 1055–1065 (2003).
    [Crossref]
  6. R. Osiander, S. L. Firebaugh, J. L. Champion, D. Farrar, and M. A. G. Darrin, “Microelectromechanical devices for satellite thermal control,” IEEE Sens. 4, 525–531 (2004).
    [Crossref]
  7. H. Nagano and Y. Nagasaka, “Simple deployable radiator with autonomous thermal control function,” J. Thermophys. Heat Transfer 20, 856–864 (2006).
    [Crossref]
  8. C. Lashley, S. Krein, and P. Barcomb, “Deployable radiators—a multidiscipline approach,” in SAE Paper (1998), paper 981691.
  9. K. Goncharov, A. Orlov, A. Tarabrin, M. Gottero, V. Perotto, S. Tavera, and G. P. Zoppo, “1500  W deployable radiator with loop heat pipe,” in SAE Paper (2001), paper 012194.
  10. A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515, 540–544 (2014).
    [Crossref]
  11. L. Zhu, A. Raman, K. X. Wang, M. A. Anoma, and S. Fan, “Radiative cooling of solar cells,” Optica 1, 32–38 (2014).
    [Crossref]
  12. Z. Yang, C. Ko, and S. Ramanathan, “Metal–insulator transition characteristics of VO2 thin films grown on Ge(100) single crystals,” J. Appl. Phys. 108, 073708 (2010).
    [Crossref]
  13. C. Batista, R. M. Ribeiro, and V. Teixeira, “Synthesis and characterization of VO2-based thermochromic thin films for energy-efficient windows,” Nano. Res. Lett. 6, 301–307 (2011).
    [Crossref]
  14. D. Fu, K. Liu, T. Tao, K. Lo, C. Cheng, B. Liu, R. Zhang, H. A. Bechtel, and J. Wu, “Comprehensive study of the metal–insulator transition in pulsed laser deposited epitaxial VO2 thin films,” J. Appl. Phys. 113, 043707 (2013).
    [Crossref]
  15. J. B. K. Kana, G. Vignaud, A. Gibaud, and M. Maaza, “Thermally driven sign switch of static dielectric constant of VO2 thin film,” Opt. Mater. 54, 165–169 (2016).
    [Crossref]
  16. M. J. Dicken, K. Aydin, I. M. Pryce, L. A. Sweatlock, E. M. Boyd, S. Walavalkar, J. Ma, and H. A. Atwater, “Frequency tunable near-infrared metamaterials based on VO2 phase transition,” Opt. Express 17, 018330 (2009).
    [Crossref]
  17. J. Rensberg, S. Zhang, Y. Zhou, A. S. McLeod, C. Schwarz, M. Goldflam, M. Liu, J. Kerbusch, R. Nawrodt, S. Ramanathan, D. N. Basov, F. Capasso, C. Ronning, and M. A. Kats, “Active optical metasurfaces based on defect-engineered phase-transition materials,” Nano Lett. 16, 1050–1055 (2015).
    [Crossref]
  18. Y. Gao, H. Luo, Z. Zhang, L. Kang, Z. Chen, J. Du, M. Kanehira, and C. Cao, “Nanoceramic VO2 thermochromic smart glass: a review on progress in solution processing,” Nano Energy 1, 221–246 (2012).
    [Crossref]
  19. G. Xu, C.-M. Huang, M. Tazawa, P. Jin, and D.-M. Chen, “Nano-Ag on vanadium dioxide. II. Thermal tuning of surface plasmon resonance,” J. Appl. Phys. 104, 053102 (2008).
    [Crossref]
  20. M. A. Kats, R. Blanchard, S. Zhang, P. Genevet, C. Ko, S. Ramanathan, and F. Capasso, “Vanadium dioxide as a natural disordered metamaterial: perfect thermal emission and large broadband negative differential thermal emittance,” Phys. Rev. X 3, 041004 (2013).
    [Crossref]
  21. D. Fan, Q. Li, and P. Dai, “Temperature-dependent emissivity property in La0.7Sr0.3MnO3 films,” Acta Astronaut. 121, 144–152 (2016).
    [Crossref]
  22. D. Fan, Q. Li, Y. Xuan, H. Tan, and J. Fang, “Temperature-dependent infrared properties of Ca doped (La, Sr)MnO3 compositions with potential thermal control application,” Appl. Therm. Eng. 51, 255–261 (2013).
    [Crossref]
  23. B. Gholipour, J. Zhang, K. F. MacDonald, D. W. Hewak, and N. I. Zheludev, “An all-optical, non-volatile, bidirectional, phase-change meta-switch,” Adv. Mater. 25, 3050–3054 (2013).
    [Crossref]
  24. A. Tittl, A.-K. U. Michel, M. Schäferling, X. Yin, B. Gholipour, L. Cui, M. Wuttig, T. Taubner, F. Neubrech, and H. Giessen, “A switchable mid-infrared plasmonic perfect absorber with multispectral thermal imaging capability,” Adv. Mater. 27, 4597–4603 (2015).
    [Crossref]
  25. X. Tian and Z.-Y. Li, “Visible-near infrared ultra-broadband polarization-independent metamaterial perfect absorber involving phase-change materials,” Photon. Res. 4, 146–152 (2016).
    [Crossref]
  26. H. K. Raut, V. A. Ganesh, A. S. Nairb, and S. Ramakrishna, “Anti-reflective coatings: a critical, in-depth review,” Energy Environ. Sci. 4, 3779–3804 (2011).
    [Crossref]
  27. O. N. Smolnikova and S. P. Skobelev, “Analysis of electromagnetic scattering from lossy periodic structures with application to wedge absorber,” in European Conference on Antennas and Propagation (2011).
  28. J. Cai and L. Qi, “Recent advances in antireflective surfaces based on nanostructure arrays,” Mater. Horiz. 2, 37–53 (2015).
    [Crossref]
  29. F. Menges, M. Dittberner, L. Novotny, D. Passarello, S. S. P. Parkin, M. Spieser, H. Riel, and B. Gotsmann, “Thermal radiative near field transport between vanadium dioxide and silicon oxide across the metal insulator transition,” Appl. Phys. Lett. 108, 171904 (2016).
    [Crossref]
  30. M. Shokooh-Saremi and R. Magnusson, “Particle swarm optimization and its application to the design of diffraction grating filters,” Opt. Lett. 32, 894–896 (2007).
    [Crossref]
  31. E. D. Palik, Handbook of Optical Constants of Solids (Elsevier, 1985).
  32. F. P. Incropera, D. P. DeWitt, T. L. Bergman, and A. S. Lavine, Introduction to Heat Transfer (Wiley, 1990).
  33. Y. Xiong, Q. Y. Wen, Z. Chen, W. Tian, T. L. Wen, Y. L. Jing, Q. H. Yang, and H. W. Zhang, “Tuning the phase transitions of VO2 thin films on silicon substrates using ultrathin Al2O3 as buffer layers,” J. Phys. D 47, 455304 (2014).
    [Crossref]
  34. Y. W. Chen and X.-C. Zhang, “Anti-reflection implementations for terahertz waves,” Front. Optoelectron. 7, 243–262 (2014).
    [Crossref]
  35. S. Yalamanchili, H. S. Emmer, K. T. Fountaine, C. T. Chen, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and <1% spectrum-and-angle-averaged reflection in tapered microwire arrays,” ACS Photon. 3, 1854–1861 (2016).
    [Crossref]
  36. S. Hu, S. Y. Li, R. Ahuja, C. G. Granqvist, K. Hermansson, G. A. Niklasson, and R. H. Scheicher, “Optical properties of Mg-doped VO2: absorption measurements and hybrid functional calculations,” Appl. Phys. Lett. 101, 201902 (2012).
    [Crossref]
  37. A. Rua, R. D. Diaz, S. Lysenko, and F. E. Fernandez, “Semiconductor–insulator transition in VO2 (B) thin films grown by pulsed laser deposition,” J. Appl. Phys. 118, 125308 (2015).
    [Crossref]
  38. I. M. Povey, M. Bardosova, F. Chalvet, M. E. Pemble, and H. M. Yates, “Atomic layer deposition for the fabrication of 3D photonic crystals structures: growth of Al2O3 and VO2 photonic crystal systems,” Surf. Coat. Technol. 201, 9345–9348 (2007).
    [Crossref]
  39. G. Rampelberg, D. Deduytsche, B. D. Schutter, P. A. Premkumar, M. Toeller, M. Schaekers, K. Martens, I. Radu, and C. Detavernier, “Crystallization and semiconductor–metal switching behavior of thin VO2 layers grown by atomic layer deposition,” Thin Solid Films 550, 59–64 (2014).
    [Crossref]
  40. X. Lv, Y. Cao, L. Yan, Y. Li, and L. Song, “Atomic layer deposition of VO2 films with Tetrakis-dimethyl-amino vanadium (IV) as vanadium precursor,” Appl. Surf. Sci. 396, 214–220 (2017).
    [Crossref]
  41. G. Rampelberg, M. Schaekers, K. Martens, Q. Xie, D. Deduytsche, B. D. Schutter, N. Blasco, J. Kittl, and C. Detavernier, “Semiconductor–metal transition in thin VO2 films grown by ozone based atomic layer deposition,” Appl. Phys. Lett. 98, 162902 (2011).
    [Crossref]
  42. P. Guo, M. S. Weimer, J. D. Emery, B. T. Diroll, X. Chen, A. S. Hock, R. P. H. Chang, A. B. F. Martinson, and R. D. Schaller, “Conformal coating of a phase change material on ordered plasmonic nanorod arrays for broadband all-optical switching,” ACS Nano 11, 693–701 (2016).
    [Crossref]
  43. J. Cao, E. Ertekin, V. Srinivasan, W. Fan, S. Huang, H. Zheng, J. W. L. Yim, D. R. Khanal, D. F. Ogletree, J. C. Grossman, and J. Wu, “Strain engineering and one-dimensional organization of metal–insulator domains in single-crystal vanadium dioxide beams,” Nat. Nanotech. 4, 732–737 (2009).
    [Crossref]
  44. A. Pashkin, C. Kübler, H. Ehrke, R. Lopez, A. Halabica, R. F. Haglund, R. Huber, and A. Leitenstorfer, “Ultrafast insulator–metal phase transition in VO2 studied by multiterahertz spectroscopy,” Phys. Rev. B 83, 195120 (2011).
    [Crossref]
  45. X. Liu and W. J. Padilla, “Thermochromic infrared metamaterials,” Adv. Mater. 28, 871–875 (2016).
    [Crossref]
  46. J. A. Mason, S. Smith, and D. Wasserman, “Strong absorption and selective thermal emission from a midinfrared metamaterial,” Appl. Phys. Lett. 98, 241105 (2011).
    [Crossref]
  47. M. Ghebrebrhan, P. Bermel, Y. X. Yeng, I. Celanovic, M. Soljačić, and J. D. Joannopoulos, “Tailoring thermal emission via Q matching of photonic crystal resonances,” Phys. Rev. A 83, 033810 (2011).
    [Crossref]

2017 (1)

X. Lv, Y. Cao, L. Yan, Y. Li, and L. Song, “Atomic layer deposition of VO2 films with Tetrakis-dimethyl-amino vanadium (IV) as vanadium precursor,” Appl. Surf. Sci. 396, 214–220 (2017).
[Crossref]

2016 (7)

P. Guo, M. S. Weimer, J. D. Emery, B. T. Diroll, X. Chen, A. S. Hock, R. P. H. Chang, A. B. F. Martinson, and R. D. Schaller, “Conformal coating of a phase change material on ordered plasmonic nanorod arrays for broadband all-optical switching,” ACS Nano 11, 693–701 (2016).
[Crossref]

X. Tian and Z.-Y. Li, “Visible-near infrared ultra-broadband polarization-independent metamaterial perfect absorber involving phase-change materials,” Photon. Res. 4, 146–152 (2016).
[Crossref]

F. Menges, M. Dittberner, L. Novotny, D. Passarello, S. S. P. Parkin, M. Spieser, H. Riel, and B. Gotsmann, “Thermal radiative near field transport between vanadium dioxide and silicon oxide across the metal insulator transition,” Appl. Phys. Lett. 108, 171904 (2016).
[Crossref]

S. Yalamanchili, H. S. Emmer, K. T. Fountaine, C. T. Chen, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and <1% spectrum-and-angle-averaged reflection in tapered microwire arrays,” ACS Photon. 3, 1854–1861 (2016).
[Crossref]

J. B. K. Kana, G. Vignaud, A. Gibaud, and M. Maaza, “Thermally driven sign switch of static dielectric constant of VO2 thin film,” Opt. Mater. 54, 165–169 (2016).
[Crossref]

D. Fan, Q. Li, and P. Dai, “Temperature-dependent emissivity property in La0.7Sr0.3MnO3 films,” Acta Astronaut. 121, 144–152 (2016).
[Crossref]

X. Liu and W. J. Padilla, “Thermochromic infrared metamaterials,” Adv. Mater. 28, 871–875 (2016).
[Crossref]

2015 (4)

A. Tittl, A.-K. U. Michel, M. Schäferling, X. Yin, B. Gholipour, L. Cui, M. Wuttig, T. Taubner, F. Neubrech, and H. Giessen, “A switchable mid-infrared plasmonic perfect absorber with multispectral thermal imaging capability,” Adv. Mater. 27, 4597–4603 (2015).
[Crossref]

J. Rensberg, S. Zhang, Y. Zhou, A. S. McLeod, C. Schwarz, M. Goldflam, M. Liu, J. Kerbusch, R. Nawrodt, S. Ramanathan, D. N. Basov, F. Capasso, C. Ronning, and M. A. Kats, “Active optical metasurfaces based on defect-engineered phase-transition materials,” Nano Lett. 16, 1050–1055 (2015).
[Crossref]

A. Rua, R. D. Diaz, S. Lysenko, and F. E. Fernandez, “Semiconductor–insulator transition in VO2 (B) thin films grown by pulsed laser deposition,” J. Appl. Phys. 118, 125308 (2015).
[Crossref]

J. Cai and L. Qi, “Recent advances in antireflective surfaces based on nanostructure arrays,” Mater. Horiz. 2, 37–53 (2015).
[Crossref]

2014 (6)

G. Rampelberg, D. Deduytsche, B. D. Schutter, P. A. Premkumar, M. Toeller, M. Schaekers, K. Martens, I. Radu, and C. Detavernier, “Crystallization and semiconductor–metal switching behavior of thin VO2 layers grown by atomic layer deposition,” Thin Solid Films 550, 59–64 (2014).
[Crossref]

Y. Xiong, Q. Y. Wen, Z. Chen, W. Tian, T. L. Wen, Y. L. Jing, Q. H. Yang, and H. W. Zhang, “Tuning the phase transitions of VO2 thin films on silicon substrates using ultrathin Al2O3 as buffer layers,” J. Phys. D 47, 455304 (2014).
[Crossref]

Y. W. Chen and X.-C. Zhang, “Anti-reflection implementations for terahertz waves,” Front. Optoelectron. 7, 243–262 (2014).
[Crossref]

T. Inoue, M. D. Zoysa, T. Asano, and S. Noda, “Realization of dynamic thermal emission control,” Nat. Mater. 13, 928–931 (2014).
[Crossref]

A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515, 540–544 (2014).
[Crossref]

L. Zhu, A. Raman, K. X. Wang, M. A. Anoma, and S. Fan, “Radiative cooling of solar cells,” Optica 1, 32–38 (2014).
[Crossref]

2013 (4)

D. Fu, K. Liu, T. Tao, K. Lo, C. Cheng, B. Liu, R. Zhang, H. A. Bechtel, and J. Wu, “Comprehensive study of the metal–insulator transition in pulsed laser deposited epitaxial VO2 thin films,” J. Appl. Phys. 113, 043707 (2013).
[Crossref]

M. A. Kats, R. Blanchard, S. Zhang, P. Genevet, C. Ko, S. Ramanathan, and F. Capasso, “Vanadium dioxide as a natural disordered metamaterial: perfect thermal emission and large broadband negative differential thermal emittance,” Phys. Rev. X 3, 041004 (2013).
[Crossref]

D. Fan, Q. Li, Y. Xuan, H. Tan, and J. Fang, “Temperature-dependent infrared properties of Ca doped (La, Sr)MnO3 compositions with potential thermal control application,” Appl. Therm. Eng. 51, 255–261 (2013).
[Crossref]

B. Gholipour, J. Zhang, K. F. MacDonald, D. W. Hewak, and N. I. Zheludev, “An all-optical, non-volatile, bidirectional, phase-change meta-switch,” Adv. Mater. 25, 3050–3054 (2013).
[Crossref]

2012 (2)

Y. Gao, H. Luo, Z. Zhang, L. Kang, Z. Chen, J. Du, M. Kanehira, and C. Cao, “Nanoceramic VO2 thermochromic smart glass: a review on progress in solution processing,” Nano Energy 1, 221–246 (2012).
[Crossref]

S. Hu, S. Y. Li, R. Ahuja, C. G. Granqvist, K. Hermansson, G. A. Niklasson, and R. H. Scheicher, “Optical properties of Mg-doped VO2: absorption measurements and hybrid functional calculations,” Appl. Phys. Lett. 101, 201902 (2012).
[Crossref]

2011 (6)

H. K. Raut, V. A. Ganesh, A. S. Nairb, and S. Ramakrishna, “Anti-reflective coatings: a critical, in-depth review,” Energy Environ. Sci. 4, 3779–3804 (2011).
[Crossref]

G. Rampelberg, M. Schaekers, K. Martens, Q. Xie, D. Deduytsche, B. D. Schutter, N. Blasco, J. Kittl, and C. Detavernier, “Semiconductor–metal transition in thin VO2 films grown by ozone based atomic layer deposition,” Appl. Phys. Lett. 98, 162902 (2011).
[Crossref]

C. Batista, R. M. Ribeiro, and V. Teixeira, “Synthesis and characterization of VO2-based thermochromic thin films for energy-efficient windows,” Nano. Res. Lett. 6, 301–307 (2011).
[Crossref]

J. A. Mason, S. Smith, and D. Wasserman, “Strong absorption and selective thermal emission from a midinfrared metamaterial,” Appl. Phys. Lett. 98, 241105 (2011).
[Crossref]

M. Ghebrebrhan, P. Bermel, Y. X. Yeng, I. Celanovic, M. Soljačić, and J. D. Joannopoulos, “Tailoring thermal emission via Q matching of photonic crystal resonances,” Phys. Rev. A 83, 033810 (2011).
[Crossref]

A. Pashkin, C. Kübler, H. Ehrke, R. Lopez, A. Halabica, R. F. Haglund, R. Huber, and A. Leitenstorfer, “Ultrafast insulator–metal phase transition in VO2 studied by multiterahertz spectroscopy,” Phys. Rev. B 83, 195120 (2011).
[Crossref]

2010 (1)

Z. Yang, C. Ko, and S. Ramanathan, “Metal–insulator transition characteristics of VO2 thin films grown on Ge(100) single crystals,” J. Appl. Phys. 108, 073708 (2010).
[Crossref]

2009 (2)

M. J. Dicken, K. Aydin, I. M. Pryce, L. A. Sweatlock, E. M. Boyd, S. Walavalkar, J. Ma, and H. A. Atwater, “Frequency tunable near-infrared metamaterials based on VO2 phase transition,” Opt. Express 17, 018330 (2009).
[Crossref]

J. Cao, E. Ertekin, V. Srinivasan, W. Fan, S. Huang, H. Zheng, J. W. L. Yim, D. R. Khanal, D. F. Ogletree, J. C. Grossman, and J. Wu, “Strain engineering and one-dimensional organization of metal–insulator domains in single-crystal vanadium dioxide beams,” Nat. Nanotech. 4, 732–737 (2009).
[Crossref]

2008 (1)

G. Xu, C.-M. Huang, M. Tazawa, P. Jin, and D.-M. Chen, “Nano-Ag on vanadium dioxide. II. Thermal tuning of surface plasmon resonance,” J. Appl. Phys. 104, 053102 (2008).
[Crossref]

2007 (2)

I. M. Povey, M. Bardosova, F. Chalvet, M. E. Pemble, and H. M. Yates, “Atomic layer deposition for the fabrication of 3D photonic crystals structures: growth of Al2O3 and VO2 photonic crystal systems,” Surf. Coat. Technol. 201, 9345–9348 (2007).
[Crossref]

M. Shokooh-Saremi and R. Magnusson, “Particle swarm optimization and its application to the design of diffraction grating filters,” Opt. Lett. 32, 894–896 (2007).
[Crossref]

2006 (1)

H. Nagano and Y. Nagasaka, “Simple deployable radiator with autonomous thermal control function,” J. Thermophys. Heat Transfer 20, 856–864 (2006).
[Crossref]

2004 (1)

R. Osiander, S. L. Firebaugh, J. L. Champion, D. Farrar, and M. A. G. Darrin, “Microelectromechanical devices for satellite thermal control,” IEEE Sens. 4, 525–531 (2004).
[Crossref]

2003 (2)

S. Tachikawa, A. Ohnishi, Y. Shimakawa, A. Ochi, A. Okamoto, and Y. Nakamura, “Development of a variable emittance radiator based on a Perovskite manganese oxide,” J. Thermophys. Heat Transfer 17, 264–268 (2003).
[Crossref]

T. D. Swanson and G. C. Birur, “NASA thermal control technologies for robotic spacecraft,” Appl. Therm. Eng. 23, 1055–1065 (2003).
[Crossref]

Ahuja, R.

S. Hu, S. Y. Li, R. Ahuja, C. G. Granqvist, K. Hermansson, G. A. Niklasson, and R. H. Scheicher, “Optical properties of Mg-doped VO2: absorption measurements and hybrid functional calculations,” Appl. Phys. Lett. 101, 201902 (2012).
[Crossref]

Anoma, M. A.

A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515, 540–544 (2014).
[Crossref]

L. Zhu, A. Raman, K. X. Wang, M. A. Anoma, and S. Fan, “Radiative cooling of solar cells,” Optica 1, 32–38 (2014).
[Crossref]

Asano, T.

T. Inoue, M. D. Zoysa, T. Asano, and S. Noda, “Realization of dynamic thermal emission control,” Nat. Mater. 13, 928–931 (2014).
[Crossref]

Atwater, H. A.

S. Yalamanchili, H. S. Emmer, K. T. Fountaine, C. T. Chen, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and <1% spectrum-and-angle-averaged reflection in tapered microwire arrays,” ACS Photon. 3, 1854–1861 (2016).
[Crossref]

M. J. Dicken, K. Aydin, I. M. Pryce, L. A. Sweatlock, E. M. Boyd, S. Walavalkar, J. Ma, and H. A. Atwater, “Frequency tunable near-infrared metamaterials based on VO2 phase transition,” Opt. Express 17, 018330 (2009).
[Crossref]

Aydin, K.

M. J. Dicken, K. Aydin, I. M. Pryce, L. A. Sweatlock, E. M. Boyd, S. Walavalkar, J. Ma, and H. A. Atwater, “Frequency tunable near-infrared metamaterials based on VO2 phase transition,” Opt. Express 17, 018330 (2009).
[Crossref]

Barcomb, P.

C. Lashley, S. Krein, and P. Barcomb, “Deployable radiators—a multidiscipline approach,” in SAE Paper (1998), paper 981691.

Bardosova, M.

I. M. Povey, M. Bardosova, F. Chalvet, M. E. Pemble, and H. M. Yates, “Atomic layer deposition for the fabrication of 3D photonic crystals structures: growth of Al2O3 and VO2 photonic crystal systems,” Surf. Coat. Technol. 201, 9345–9348 (2007).
[Crossref]

Basov, D. N.

J. Rensberg, S. Zhang, Y. Zhou, A. S. McLeod, C. Schwarz, M. Goldflam, M. Liu, J. Kerbusch, R. Nawrodt, S. Ramanathan, D. N. Basov, F. Capasso, C. Ronning, and M. A. Kats, “Active optical metasurfaces based on defect-engineered phase-transition materials,” Nano Lett. 16, 1050–1055 (2015).
[Crossref]

Batista, C.

C. Batista, R. M. Ribeiro, and V. Teixeira, “Synthesis and characterization of VO2-based thermochromic thin films for energy-efficient windows,” Nano. Res. Lett. 6, 301–307 (2011).
[Crossref]

Bechtel, H. A.

D. Fu, K. Liu, T. Tao, K. Lo, C. Cheng, B. Liu, R. Zhang, H. A. Bechtel, and J. Wu, “Comprehensive study of the metal–insulator transition in pulsed laser deposited epitaxial VO2 thin films,” J. Appl. Phys. 113, 043707 (2013).
[Crossref]

Bergman, T. L.

F. P. Incropera, D. P. DeWitt, T. L. Bergman, and A. S. Lavine, Introduction to Heat Transfer (Wiley, 1990).

Bermel, P.

M. Ghebrebrhan, P. Bermel, Y. X. Yeng, I. Celanovic, M. Soljačić, and J. D. Joannopoulos, “Tailoring thermal emission via Q matching of photonic crystal resonances,” Phys. Rev. A 83, 033810 (2011).
[Crossref]

Birur, G. C.

T. D. Swanson and G. C. Birur, “NASA thermal control technologies for robotic spacecraft,” Appl. Therm. Eng. 23, 1055–1065 (2003).
[Crossref]

Blanchard, R.

M. A. Kats, R. Blanchard, S. Zhang, P. Genevet, C. Ko, S. Ramanathan, and F. Capasso, “Vanadium dioxide as a natural disordered metamaterial: perfect thermal emission and large broadband negative differential thermal emittance,” Phys. Rev. X 3, 041004 (2013).
[Crossref]

Blasco, N.

G. Rampelberg, M. Schaekers, K. Martens, Q. Xie, D. Deduytsche, B. D. Schutter, N. Blasco, J. Kittl, and C. Detavernier, “Semiconductor–metal transition in thin VO2 films grown by ozone based atomic layer deposition,” Appl. Phys. Lett. 98, 162902 (2011).
[Crossref]

Boyd, E. M.

M. J. Dicken, K. Aydin, I. M. Pryce, L. A. Sweatlock, E. M. Boyd, S. Walavalkar, J. Ma, and H. A. Atwater, “Frequency tunable near-infrared metamaterials based on VO2 phase transition,” Opt. Express 17, 018330 (2009).
[Crossref]

Cai, J.

J. Cai and L. Qi, “Recent advances in antireflective surfaces based on nanostructure arrays,” Mater. Horiz. 2, 37–53 (2015).
[Crossref]

Cao, C.

Y. Gao, H. Luo, Z. Zhang, L. Kang, Z. Chen, J. Du, M. Kanehira, and C. Cao, “Nanoceramic VO2 thermochromic smart glass: a review on progress in solution processing,” Nano Energy 1, 221–246 (2012).
[Crossref]

Cao, J.

J. Cao, E. Ertekin, V. Srinivasan, W. Fan, S. Huang, H. Zheng, J. W. L. Yim, D. R. Khanal, D. F. Ogletree, J. C. Grossman, and J. Wu, “Strain engineering and one-dimensional organization of metal–insulator domains in single-crystal vanadium dioxide beams,” Nat. Nanotech. 4, 732–737 (2009).
[Crossref]

Cao, Y.

X. Lv, Y. Cao, L. Yan, Y. Li, and L. Song, “Atomic layer deposition of VO2 films with Tetrakis-dimethyl-amino vanadium (IV) as vanadium precursor,” Appl. Surf. Sci. 396, 214–220 (2017).
[Crossref]

Capasso, F.

J. Rensberg, S. Zhang, Y. Zhou, A. S. McLeod, C. Schwarz, M. Goldflam, M. Liu, J. Kerbusch, R. Nawrodt, S. Ramanathan, D. N. Basov, F. Capasso, C. Ronning, and M. A. Kats, “Active optical metasurfaces based on defect-engineered phase-transition materials,” Nano Lett. 16, 1050–1055 (2015).
[Crossref]

M. A. Kats, R. Blanchard, S. Zhang, P. Genevet, C. Ko, S. Ramanathan, and F. Capasso, “Vanadium dioxide as a natural disordered metamaterial: perfect thermal emission and large broadband negative differential thermal emittance,” Phys. Rev. X 3, 041004 (2013).
[Crossref]

Celanovic, I.

M. Ghebrebrhan, P. Bermel, Y. X. Yeng, I. Celanovic, M. Soljačić, and J. D. Joannopoulos, “Tailoring thermal emission via Q matching of photonic crystal resonances,” Phys. Rev. A 83, 033810 (2011).
[Crossref]

Chalvet, F.

I. M. Povey, M. Bardosova, F. Chalvet, M. E. Pemble, and H. M. Yates, “Atomic layer deposition for the fabrication of 3D photonic crystals structures: growth of Al2O3 and VO2 photonic crystal systems,” Surf. Coat. Technol. 201, 9345–9348 (2007).
[Crossref]

Champion, J. L.

R. Osiander, S. L. Firebaugh, J. L. Champion, D. Farrar, and M. A. G. Darrin, “Microelectromechanical devices for satellite thermal control,” IEEE Sens. 4, 525–531 (2004).
[Crossref]

R. Osiander, J. L. Champion, A. M. Darrin, J. J. Sniegowski, S. M. Rodgers, D. Douglas, and T. D. Swanson, “Micromachined Louver arrays for spacecraft thermal control radiators,” in 39th Aerospace Sciences Meeting and Exhibit, Aerospace Sciences Meetings (2001), paper 0215.

Chang, R. P. H.

P. Guo, M. S. Weimer, J. D. Emery, B. T. Diroll, X. Chen, A. S. Hock, R. P. H. Chang, A. B. F. Martinson, and R. D. Schaller, “Conformal coating of a phase change material on ordered plasmonic nanorod arrays for broadband all-optical switching,” ACS Nano 11, 693–701 (2016).
[Crossref]

Chen, C. T.

S. Yalamanchili, H. S. Emmer, K. T. Fountaine, C. T. Chen, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and <1% spectrum-and-angle-averaged reflection in tapered microwire arrays,” ACS Photon. 3, 1854–1861 (2016).
[Crossref]

Chen, D.-M.

G. Xu, C.-M. Huang, M. Tazawa, P. Jin, and D.-M. Chen, “Nano-Ag on vanadium dioxide. II. Thermal tuning of surface plasmon resonance,” J. Appl. Phys. 104, 053102 (2008).
[Crossref]

Chen, X.

P. Guo, M. S. Weimer, J. D. Emery, B. T. Diroll, X. Chen, A. S. Hock, R. P. H. Chang, A. B. F. Martinson, and R. D. Schaller, “Conformal coating of a phase change material on ordered plasmonic nanorod arrays for broadband all-optical switching,” ACS Nano 11, 693–701 (2016).
[Crossref]

Chen, Y. W.

Y. W. Chen and X.-C. Zhang, “Anti-reflection implementations for terahertz waves,” Front. Optoelectron. 7, 243–262 (2014).
[Crossref]

Chen, Z.

Y. Xiong, Q. Y. Wen, Z. Chen, W. Tian, T. L. Wen, Y. L. Jing, Q. H. Yang, and H. W. Zhang, “Tuning the phase transitions of VO2 thin films on silicon substrates using ultrathin Al2O3 as buffer layers,” J. Phys. D 47, 455304 (2014).
[Crossref]

Y. Gao, H. Luo, Z. Zhang, L. Kang, Z. Chen, J. Du, M. Kanehira, and C. Cao, “Nanoceramic VO2 thermochromic smart glass: a review on progress in solution processing,” Nano Energy 1, 221–246 (2012).
[Crossref]

Cheng, C.

D. Fu, K. Liu, T. Tao, K. Lo, C. Cheng, B. Liu, R. Zhang, H. A. Bechtel, and J. Wu, “Comprehensive study of the metal–insulator transition in pulsed laser deposited epitaxial VO2 thin films,” J. Appl. Phys. 113, 043707 (2013).
[Crossref]

Cui, L.

A. Tittl, A.-K. U. Michel, M. Schäferling, X. Yin, B. Gholipour, L. Cui, M. Wuttig, T. Taubner, F. Neubrech, and H. Giessen, “A switchable mid-infrared plasmonic perfect absorber with multispectral thermal imaging capability,” Adv. Mater. 27, 4597–4603 (2015).
[Crossref]

Dai, P.

D. Fan, Q. Li, and P. Dai, “Temperature-dependent emissivity property in La0.7Sr0.3MnO3 films,” Acta Astronaut. 121, 144–152 (2016).
[Crossref]

Darrin, A. M.

R. Osiander, J. L. Champion, A. M. Darrin, J. J. Sniegowski, S. M. Rodgers, D. Douglas, and T. D. Swanson, “Micromachined Louver arrays for spacecraft thermal control radiators,” in 39th Aerospace Sciences Meeting and Exhibit, Aerospace Sciences Meetings (2001), paper 0215.

Darrin, M. A. G.

R. Osiander, S. L. Firebaugh, J. L. Champion, D. Farrar, and M. A. G. Darrin, “Microelectromechanical devices for satellite thermal control,” IEEE Sens. 4, 525–531 (2004).
[Crossref]

Deduytsche, D.

G. Rampelberg, D. Deduytsche, B. D. Schutter, P. A. Premkumar, M. Toeller, M. Schaekers, K. Martens, I. Radu, and C. Detavernier, “Crystallization and semiconductor–metal switching behavior of thin VO2 layers grown by atomic layer deposition,” Thin Solid Films 550, 59–64 (2014).
[Crossref]

G. Rampelberg, M. Schaekers, K. Martens, Q. Xie, D. Deduytsche, B. D. Schutter, N. Blasco, J. Kittl, and C. Detavernier, “Semiconductor–metal transition in thin VO2 films grown by ozone based atomic layer deposition,” Appl. Phys. Lett. 98, 162902 (2011).
[Crossref]

Detavernier, C.

G. Rampelberg, D. Deduytsche, B. D. Schutter, P. A. Premkumar, M. Toeller, M. Schaekers, K. Martens, I. Radu, and C. Detavernier, “Crystallization and semiconductor–metal switching behavior of thin VO2 layers grown by atomic layer deposition,” Thin Solid Films 550, 59–64 (2014).
[Crossref]

G. Rampelberg, M. Schaekers, K. Martens, Q. Xie, D. Deduytsche, B. D. Schutter, N. Blasco, J. Kittl, and C. Detavernier, “Semiconductor–metal transition in thin VO2 films grown by ozone based atomic layer deposition,” Appl. Phys. Lett. 98, 162902 (2011).
[Crossref]

DeWitt, D. P.

F. P. Incropera, D. P. DeWitt, T. L. Bergman, and A. S. Lavine, Introduction to Heat Transfer (Wiley, 1990).

Diaz, R. D.

A. Rua, R. D. Diaz, S. Lysenko, and F. E. Fernandez, “Semiconductor–insulator transition in VO2 (B) thin films grown by pulsed laser deposition,” J. Appl. Phys. 118, 125308 (2015).
[Crossref]

Dicken, M. J.

M. J. Dicken, K. Aydin, I. M. Pryce, L. A. Sweatlock, E. M. Boyd, S. Walavalkar, J. Ma, and H. A. Atwater, “Frequency tunable near-infrared metamaterials based on VO2 phase transition,” Opt. Express 17, 018330 (2009).
[Crossref]

Diroll, B. T.

P. Guo, M. S. Weimer, J. D. Emery, B. T. Diroll, X. Chen, A. S. Hock, R. P. H. Chang, A. B. F. Martinson, and R. D. Schaller, “Conformal coating of a phase change material on ordered plasmonic nanorod arrays for broadband all-optical switching,” ACS Nano 11, 693–701 (2016).
[Crossref]

Dittberner, M.

F. Menges, M. Dittberner, L. Novotny, D. Passarello, S. S. P. Parkin, M. Spieser, H. Riel, and B. Gotsmann, “Thermal radiative near field transport between vanadium dioxide and silicon oxide across the metal insulator transition,” Appl. Phys. Lett. 108, 171904 (2016).
[Crossref]

Douglas, D.

R. Osiander, J. L. Champion, A. M. Darrin, J. J. Sniegowski, S. M. Rodgers, D. Douglas, and T. D. Swanson, “Micromachined Louver arrays for spacecraft thermal control radiators,” in 39th Aerospace Sciences Meeting and Exhibit, Aerospace Sciences Meetings (2001), paper 0215.

Du, J.

Y. Gao, H. Luo, Z. Zhang, L. Kang, Z. Chen, J. Du, M. Kanehira, and C. Cao, “Nanoceramic VO2 thermochromic smart glass: a review on progress in solution processing,” Nano Energy 1, 221–246 (2012).
[Crossref]

Ehrke, H.

A. Pashkin, C. Kübler, H. Ehrke, R. Lopez, A. Halabica, R. F. Haglund, R. Huber, and A. Leitenstorfer, “Ultrafast insulator–metal phase transition in VO2 studied by multiterahertz spectroscopy,” Phys. Rev. B 83, 195120 (2011).
[Crossref]

Emery, J. D.

P. Guo, M. S. Weimer, J. D. Emery, B. T. Diroll, X. Chen, A. S. Hock, R. P. H. Chang, A. B. F. Martinson, and R. D. Schaller, “Conformal coating of a phase change material on ordered plasmonic nanorod arrays for broadband all-optical switching,” ACS Nano 11, 693–701 (2016).
[Crossref]

Emmer, H. S.

S. Yalamanchili, H. S. Emmer, K. T. Fountaine, C. T. Chen, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and <1% spectrum-and-angle-averaged reflection in tapered microwire arrays,” ACS Photon. 3, 1854–1861 (2016).
[Crossref]

Ertekin, E.

J. Cao, E. Ertekin, V. Srinivasan, W. Fan, S. Huang, H. Zheng, J. W. L. Yim, D. R. Khanal, D. F. Ogletree, J. C. Grossman, and J. Wu, “Strain engineering and one-dimensional organization of metal–insulator domains in single-crystal vanadium dioxide beams,” Nat. Nanotech. 4, 732–737 (2009).
[Crossref]

Fan, D.

D. Fan, Q. Li, and P. Dai, “Temperature-dependent emissivity property in La0.7Sr0.3MnO3 films,” Acta Astronaut. 121, 144–152 (2016).
[Crossref]

D. Fan, Q. Li, Y. Xuan, H. Tan, and J. Fang, “Temperature-dependent infrared properties of Ca doped (La, Sr)MnO3 compositions with potential thermal control application,” Appl. Therm. Eng. 51, 255–261 (2013).
[Crossref]

Fan, S.

L. Zhu, A. Raman, K. X. Wang, M. A. Anoma, and S. Fan, “Radiative cooling of solar cells,” Optica 1, 32–38 (2014).
[Crossref]

A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515, 540–544 (2014).
[Crossref]

Fan, W.

J. Cao, E. Ertekin, V. Srinivasan, W. Fan, S. Huang, H. Zheng, J. W. L. Yim, D. R. Khanal, D. F. Ogletree, J. C. Grossman, and J. Wu, “Strain engineering and one-dimensional organization of metal–insulator domains in single-crystal vanadium dioxide beams,” Nat. Nanotech. 4, 732–737 (2009).
[Crossref]

Fang, J.

D. Fan, Q. Li, Y. Xuan, H. Tan, and J. Fang, “Temperature-dependent infrared properties of Ca doped (La, Sr)MnO3 compositions with potential thermal control application,” Appl. Therm. Eng. 51, 255–261 (2013).
[Crossref]

Farrar, D.

R. Osiander, S. L. Firebaugh, J. L. Champion, D. Farrar, and M. A. G. Darrin, “Microelectromechanical devices for satellite thermal control,” IEEE Sens. 4, 525–531 (2004).
[Crossref]

Fernandez, F. E.

A. Rua, R. D. Diaz, S. Lysenko, and F. E. Fernandez, “Semiconductor–insulator transition in VO2 (B) thin films grown by pulsed laser deposition,” J. Appl. Phys. 118, 125308 (2015).
[Crossref]

Firebaugh, S. L.

R. Osiander, S. L. Firebaugh, J. L. Champion, D. Farrar, and M. A. G. Darrin, “Microelectromechanical devices for satellite thermal control,” IEEE Sens. 4, 525–531 (2004).
[Crossref]

Fountaine, K. T.

S. Yalamanchili, H. S. Emmer, K. T. Fountaine, C. T. Chen, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and <1% spectrum-and-angle-averaged reflection in tapered microwire arrays,” ACS Photon. 3, 1854–1861 (2016).
[Crossref]

Fu, D.

D. Fu, K. Liu, T. Tao, K. Lo, C. Cheng, B. Liu, R. Zhang, H. A. Bechtel, and J. Wu, “Comprehensive study of the metal–insulator transition in pulsed laser deposited epitaxial VO2 thin films,” J. Appl. Phys. 113, 043707 (2013).
[Crossref]

Ganesh, V. A.

H. K. Raut, V. A. Ganesh, A. S. Nairb, and S. Ramakrishna, “Anti-reflective coatings: a critical, in-depth review,” Energy Environ. Sci. 4, 3779–3804 (2011).
[Crossref]

Gao, Y.

Y. Gao, H. Luo, Z. Zhang, L. Kang, Z. Chen, J. Du, M. Kanehira, and C. Cao, “Nanoceramic VO2 thermochromic smart glass: a review on progress in solution processing,” Nano Energy 1, 221–246 (2012).
[Crossref]

Genevet, P.

M. A. Kats, R. Blanchard, S. Zhang, P. Genevet, C. Ko, S. Ramanathan, and F. Capasso, “Vanadium dioxide as a natural disordered metamaterial: perfect thermal emission and large broadband negative differential thermal emittance,” Phys. Rev. X 3, 041004 (2013).
[Crossref]

Ghebrebrhan, M.

M. Ghebrebrhan, P. Bermel, Y. X. Yeng, I. Celanovic, M. Soljačić, and J. D. Joannopoulos, “Tailoring thermal emission via Q matching of photonic crystal resonances,” Phys. Rev. A 83, 033810 (2011).
[Crossref]

Gholipour, B.

A. Tittl, A.-K. U. Michel, M. Schäferling, X. Yin, B. Gholipour, L. Cui, M. Wuttig, T. Taubner, F. Neubrech, and H. Giessen, “A switchable mid-infrared plasmonic perfect absorber with multispectral thermal imaging capability,” Adv. Mater. 27, 4597–4603 (2015).
[Crossref]

B. Gholipour, J. Zhang, K. F. MacDonald, D. W. Hewak, and N. I. Zheludev, “An all-optical, non-volatile, bidirectional, phase-change meta-switch,” Adv. Mater. 25, 3050–3054 (2013).
[Crossref]

Gibaud, A.

J. B. K. Kana, G. Vignaud, A. Gibaud, and M. Maaza, “Thermally driven sign switch of static dielectric constant of VO2 thin film,” Opt. Mater. 54, 165–169 (2016).
[Crossref]

Giessen, H.

A. Tittl, A.-K. U. Michel, M. Schäferling, X. Yin, B. Gholipour, L. Cui, M. Wuttig, T. Taubner, F. Neubrech, and H. Giessen, “A switchable mid-infrared plasmonic perfect absorber with multispectral thermal imaging capability,” Adv. Mater. 27, 4597–4603 (2015).
[Crossref]

Goldflam, M.

J. Rensberg, S. Zhang, Y. Zhou, A. S. McLeod, C. Schwarz, M. Goldflam, M. Liu, J. Kerbusch, R. Nawrodt, S. Ramanathan, D. N. Basov, F. Capasso, C. Ronning, and M. A. Kats, “Active optical metasurfaces based on defect-engineered phase-transition materials,” Nano Lett. 16, 1050–1055 (2015).
[Crossref]

Goncharov, K.

K. Goncharov, A. Orlov, A. Tarabrin, M. Gottero, V. Perotto, S. Tavera, and G. P. Zoppo, “1500  W deployable radiator with loop heat pipe,” in SAE Paper (2001), paper 012194.

Gotsmann, B.

F. Menges, M. Dittberner, L. Novotny, D. Passarello, S. S. P. Parkin, M. Spieser, H. Riel, and B. Gotsmann, “Thermal radiative near field transport between vanadium dioxide and silicon oxide across the metal insulator transition,” Appl. Phys. Lett. 108, 171904 (2016).
[Crossref]

Gottero, M.

K. Goncharov, A. Orlov, A. Tarabrin, M. Gottero, V. Perotto, S. Tavera, and G. P. Zoppo, “1500  W deployable radiator with loop heat pipe,” in SAE Paper (2001), paper 012194.

Granqvist, C. G.

S. Hu, S. Y. Li, R. Ahuja, C. G. Granqvist, K. Hermansson, G. A. Niklasson, and R. H. Scheicher, “Optical properties of Mg-doped VO2: absorption measurements and hybrid functional calculations,” Appl. Phys. Lett. 101, 201902 (2012).
[Crossref]

Grossman, J. C.

J. Cao, E. Ertekin, V. Srinivasan, W. Fan, S. Huang, H. Zheng, J. W. L. Yim, D. R. Khanal, D. F. Ogletree, J. C. Grossman, and J. Wu, “Strain engineering and one-dimensional organization of metal–insulator domains in single-crystal vanadium dioxide beams,” Nat. Nanotech. 4, 732–737 (2009).
[Crossref]

Guo, P.

P. Guo, M. S. Weimer, J. D. Emery, B. T. Diroll, X. Chen, A. S. Hock, R. P. H. Chang, A. B. F. Martinson, and R. D. Schaller, “Conformal coating of a phase change material on ordered plasmonic nanorod arrays for broadband all-optical switching,” ACS Nano 11, 693–701 (2016).
[Crossref]

Haglund, R. F.

A. Pashkin, C. Kübler, H. Ehrke, R. Lopez, A. Halabica, R. F. Haglund, R. Huber, and A. Leitenstorfer, “Ultrafast insulator–metal phase transition in VO2 studied by multiterahertz spectroscopy,” Phys. Rev. B 83, 195120 (2011).
[Crossref]

Halabica, A.

A. Pashkin, C. Kübler, H. Ehrke, R. Lopez, A. Halabica, R. F. Haglund, R. Huber, and A. Leitenstorfer, “Ultrafast insulator–metal phase transition in VO2 studied by multiterahertz spectroscopy,” Phys. Rev. B 83, 195120 (2011).
[Crossref]

Hermansson, K.

S. Hu, S. Y. Li, R. Ahuja, C. G. Granqvist, K. Hermansson, G. A. Niklasson, and R. H. Scheicher, “Optical properties of Mg-doped VO2: absorption measurements and hybrid functional calculations,” Appl. Phys. Lett. 101, 201902 (2012).
[Crossref]

Hewak, D. W.

B. Gholipour, J. Zhang, K. F. MacDonald, D. W. Hewak, and N. I. Zheludev, “An all-optical, non-volatile, bidirectional, phase-change meta-switch,” Adv. Mater. 25, 3050–3054 (2013).
[Crossref]

Hock, A. S.

P. Guo, M. S. Weimer, J. D. Emery, B. T. Diroll, X. Chen, A. S. Hock, R. P. H. Chang, A. B. F. Martinson, and R. D. Schaller, “Conformal coating of a phase change material on ordered plasmonic nanorod arrays for broadband all-optical switching,” ACS Nano 11, 693–701 (2016).
[Crossref]

Hu, S.

S. Hu, S. Y. Li, R. Ahuja, C. G. Granqvist, K. Hermansson, G. A. Niklasson, and R. H. Scheicher, “Optical properties of Mg-doped VO2: absorption measurements and hybrid functional calculations,” Appl. Phys. Lett. 101, 201902 (2012).
[Crossref]

Huang, C.-M.

G. Xu, C.-M. Huang, M. Tazawa, P. Jin, and D.-M. Chen, “Nano-Ag on vanadium dioxide. II. Thermal tuning of surface plasmon resonance,” J. Appl. Phys. 104, 053102 (2008).
[Crossref]

Huang, S.

J. Cao, E. Ertekin, V. Srinivasan, W. Fan, S. Huang, H. Zheng, J. W. L. Yim, D. R. Khanal, D. F. Ogletree, J. C. Grossman, and J. Wu, “Strain engineering and one-dimensional organization of metal–insulator domains in single-crystal vanadium dioxide beams,” Nat. Nanotech. 4, 732–737 (2009).
[Crossref]

Huber, R.

A. Pashkin, C. Kübler, H. Ehrke, R. Lopez, A. Halabica, R. F. Haglund, R. Huber, and A. Leitenstorfer, “Ultrafast insulator–metal phase transition in VO2 studied by multiterahertz spectroscopy,” Phys. Rev. B 83, 195120 (2011).
[Crossref]

Incropera, F. P.

F. P. Incropera, D. P. DeWitt, T. L. Bergman, and A. S. Lavine, Introduction to Heat Transfer (Wiley, 1990).

Inoue, T.

T. Inoue, M. D. Zoysa, T. Asano, and S. Noda, “Realization of dynamic thermal emission control,” Nat. Mater. 13, 928–931 (2014).
[Crossref]

Jin, P.

G. Xu, C.-M. Huang, M. Tazawa, P. Jin, and D.-M. Chen, “Nano-Ag on vanadium dioxide. II. Thermal tuning of surface plasmon resonance,” J. Appl. Phys. 104, 053102 (2008).
[Crossref]

Jing, Y. L.

Y. Xiong, Q. Y. Wen, Z. Chen, W. Tian, T. L. Wen, Y. L. Jing, Q. H. Yang, and H. W. Zhang, “Tuning the phase transitions of VO2 thin films on silicon substrates using ultrathin Al2O3 as buffer layers,” J. Phys. D 47, 455304 (2014).
[Crossref]

Joannopoulos, J. D.

M. Ghebrebrhan, P. Bermel, Y. X. Yeng, I. Celanovic, M. Soljačić, and J. D. Joannopoulos, “Tailoring thermal emission via Q matching of photonic crystal resonances,” Phys. Rev. A 83, 033810 (2011).
[Crossref]

Kana, J. B. K.

J. B. K. Kana, G. Vignaud, A. Gibaud, and M. Maaza, “Thermally driven sign switch of static dielectric constant of VO2 thin film,” Opt. Mater. 54, 165–169 (2016).
[Crossref]

Kanehira, M.

Y. Gao, H. Luo, Z. Zhang, L. Kang, Z. Chen, J. Du, M. Kanehira, and C. Cao, “Nanoceramic VO2 thermochromic smart glass: a review on progress in solution processing,” Nano Energy 1, 221–246 (2012).
[Crossref]

Kang, L.

Y. Gao, H. Luo, Z. Zhang, L. Kang, Z. Chen, J. Du, M. Kanehira, and C. Cao, “Nanoceramic VO2 thermochromic smart glass: a review on progress in solution processing,” Nano Energy 1, 221–246 (2012).
[Crossref]

Kats, M. A.

J. Rensberg, S. Zhang, Y. Zhou, A. S. McLeod, C. Schwarz, M. Goldflam, M. Liu, J. Kerbusch, R. Nawrodt, S. Ramanathan, D. N. Basov, F. Capasso, C. Ronning, and M. A. Kats, “Active optical metasurfaces based on defect-engineered phase-transition materials,” Nano Lett. 16, 1050–1055 (2015).
[Crossref]

M. A. Kats, R. Blanchard, S. Zhang, P. Genevet, C. Ko, S. Ramanathan, and F. Capasso, “Vanadium dioxide as a natural disordered metamaterial: perfect thermal emission and large broadband negative differential thermal emittance,” Phys. Rev. X 3, 041004 (2013).
[Crossref]

Kerbusch, J.

J. Rensberg, S. Zhang, Y. Zhou, A. S. McLeod, C. Schwarz, M. Goldflam, M. Liu, J. Kerbusch, R. Nawrodt, S. Ramanathan, D. N. Basov, F. Capasso, C. Ronning, and M. A. Kats, “Active optical metasurfaces based on defect-engineered phase-transition materials,” Nano Lett. 16, 1050–1055 (2015).
[Crossref]

Khanal, D. R.

J. Cao, E. Ertekin, V. Srinivasan, W. Fan, S. Huang, H. Zheng, J. W. L. Yim, D. R. Khanal, D. F. Ogletree, J. C. Grossman, and J. Wu, “Strain engineering and one-dimensional organization of metal–insulator domains in single-crystal vanadium dioxide beams,” Nat. Nanotech. 4, 732–737 (2009).
[Crossref]

Kittl, J.

G. Rampelberg, M. Schaekers, K. Martens, Q. Xie, D. Deduytsche, B. D. Schutter, N. Blasco, J. Kittl, and C. Detavernier, “Semiconductor–metal transition in thin VO2 films grown by ozone based atomic layer deposition,” Appl. Phys. Lett. 98, 162902 (2011).
[Crossref]

Ko, C.

M. A. Kats, R. Blanchard, S. Zhang, P. Genevet, C. Ko, S. Ramanathan, and F. Capasso, “Vanadium dioxide as a natural disordered metamaterial: perfect thermal emission and large broadband negative differential thermal emittance,” Phys. Rev. X 3, 041004 (2013).
[Crossref]

Z. Yang, C. Ko, and S. Ramanathan, “Metal–insulator transition characteristics of VO2 thin films grown on Ge(100) single crystals,” J. Appl. Phys. 108, 073708 (2010).
[Crossref]

Krein, S.

C. Lashley, S. Krein, and P. Barcomb, “Deployable radiators—a multidiscipline approach,” in SAE Paper (1998), paper 981691.

Kübler, C.

A. Pashkin, C. Kübler, H. Ehrke, R. Lopez, A. Halabica, R. F. Haglund, R. Huber, and A. Leitenstorfer, “Ultrafast insulator–metal phase transition in VO2 studied by multiterahertz spectroscopy,” Phys. Rev. B 83, 195120 (2011).
[Crossref]

Lashley, C.

C. Lashley, S. Krein, and P. Barcomb, “Deployable radiators—a multidiscipline approach,” in SAE Paper (1998), paper 981691.

Lavine, A. S.

F. P. Incropera, D. P. DeWitt, T. L. Bergman, and A. S. Lavine, Introduction to Heat Transfer (Wiley, 1990).

Leitenstorfer, A.

A. Pashkin, C. Kübler, H. Ehrke, R. Lopez, A. Halabica, R. F. Haglund, R. Huber, and A. Leitenstorfer, “Ultrafast insulator–metal phase transition in VO2 studied by multiterahertz spectroscopy,” Phys. Rev. B 83, 195120 (2011).
[Crossref]

Lewis, N. S.

S. Yalamanchili, H. S. Emmer, K. T. Fountaine, C. T. Chen, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and <1% spectrum-and-angle-averaged reflection in tapered microwire arrays,” ACS Photon. 3, 1854–1861 (2016).
[Crossref]

Li, Q.

D. Fan, Q. Li, and P. Dai, “Temperature-dependent emissivity property in La0.7Sr0.3MnO3 films,” Acta Astronaut. 121, 144–152 (2016).
[Crossref]

D. Fan, Q. Li, Y. Xuan, H. Tan, and J. Fang, “Temperature-dependent infrared properties of Ca doped (La, Sr)MnO3 compositions with potential thermal control application,” Appl. Therm. Eng. 51, 255–261 (2013).
[Crossref]

Li, S. Y.

S. Hu, S. Y. Li, R. Ahuja, C. G. Granqvist, K. Hermansson, G. A. Niklasson, and R. H. Scheicher, “Optical properties of Mg-doped VO2: absorption measurements and hybrid functional calculations,” Appl. Phys. Lett. 101, 201902 (2012).
[Crossref]

Li, Y.

X. Lv, Y. Cao, L. Yan, Y. Li, and L. Song, “Atomic layer deposition of VO2 films with Tetrakis-dimethyl-amino vanadium (IV) as vanadium precursor,” Appl. Surf. Sci. 396, 214–220 (2017).
[Crossref]

Li, Z.-Y.

Liu, B.

D. Fu, K. Liu, T. Tao, K. Lo, C. Cheng, B. Liu, R. Zhang, H. A. Bechtel, and J. Wu, “Comprehensive study of the metal–insulator transition in pulsed laser deposited epitaxial VO2 thin films,” J. Appl. Phys. 113, 043707 (2013).
[Crossref]

Liu, K.

D. Fu, K. Liu, T. Tao, K. Lo, C. Cheng, B. Liu, R. Zhang, H. A. Bechtel, and J. Wu, “Comprehensive study of the metal–insulator transition in pulsed laser deposited epitaxial VO2 thin films,” J. Appl. Phys. 113, 043707 (2013).
[Crossref]

Liu, M.

J. Rensberg, S. Zhang, Y. Zhou, A. S. McLeod, C. Schwarz, M. Goldflam, M. Liu, J. Kerbusch, R. Nawrodt, S. Ramanathan, D. N. Basov, F. Capasso, C. Ronning, and M. A. Kats, “Active optical metasurfaces based on defect-engineered phase-transition materials,” Nano Lett. 16, 1050–1055 (2015).
[Crossref]

Liu, X.

X. Liu and W. J. Padilla, “Thermochromic infrared metamaterials,” Adv. Mater. 28, 871–875 (2016).
[Crossref]

Lo, K.

D. Fu, K. Liu, T. Tao, K. Lo, C. Cheng, B. Liu, R. Zhang, H. A. Bechtel, and J. Wu, “Comprehensive study of the metal–insulator transition in pulsed laser deposited epitaxial VO2 thin films,” J. Appl. Phys. 113, 043707 (2013).
[Crossref]

Lopez, R.

A. Pashkin, C. Kübler, H. Ehrke, R. Lopez, A. Halabica, R. F. Haglund, R. Huber, and A. Leitenstorfer, “Ultrafast insulator–metal phase transition in VO2 studied by multiterahertz spectroscopy,” Phys. Rev. B 83, 195120 (2011).
[Crossref]

Luo, H.

Y. Gao, H. Luo, Z. Zhang, L. Kang, Z. Chen, J. Du, M. Kanehira, and C. Cao, “Nanoceramic VO2 thermochromic smart glass: a review on progress in solution processing,” Nano Energy 1, 221–246 (2012).
[Crossref]

Lv, X.

X. Lv, Y. Cao, L. Yan, Y. Li, and L. Song, “Atomic layer deposition of VO2 films with Tetrakis-dimethyl-amino vanadium (IV) as vanadium precursor,” Appl. Surf. Sci. 396, 214–220 (2017).
[Crossref]

Lysenko, S.

A. Rua, R. D. Diaz, S. Lysenko, and F. E. Fernandez, “Semiconductor–insulator transition in VO2 (B) thin films grown by pulsed laser deposition,” J. Appl. Phys. 118, 125308 (2015).
[Crossref]

Ma, J.

M. J. Dicken, K. Aydin, I. M. Pryce, L. A. Sweatlock, E. M. Boyd, S. Walavalkar, J. Ma, and H. A. Atwater, “Frequency tunable near-infrared metamaterials based on VO2 phase transition,” Opt. Express 17, 018330 (2009).
[Crossref]

Maaza, M.

J. B. K. Kana, G. Vignaud, A. Gibaud, and M. Maaza, “Thermally driven sign switch of static dielectric constant of VO2 thin film,” Opt. Mater. 54, 165–169 (2016).
[Crossref]

MacDonald, K. F.

B. Gholipour, J. Zhang, K. F. MacDonald, D. W. Hewak, and N. I. Zheludev, “An all-optical, non-volatile, bidirectional, phase-change meta-switch,” Adv. Mater. 25, 3050–3054 (2013).
[Crossref]

Magnusson, R.

Martens, K.

G. Rampelberg, D. Deduytsche, B. D. Schutter, P. A. Premkumar, M. Toeller, M. Schaekers, K. Martens, I. Radu, and C. Detavernier, “Crystallization and semiconductor–metal switching behavior of thin VO2 layers grown by atomic layer deposition,” Thin Solid Films 550, 59–64 (2014).
[Crossref]

G. Rampelberg, M. Schaekers, K. Martens, Q. Xie, D. Deduytsche, B. D. Schutter, N. Blasco, J. Kittl, and C. Detavernier, “Semiconductor–metal transition in thin VO2 films grown by ozone based atomic layer deposition,” Appl. Phys. Lett. 98, 162902 (2011).
[Crossref]

Martinson, A. B. F.

P. Guo, M. S. Weimer, J. D. Emery, B. T. Diroll, X. Chen, A. S. Hock, R. P. H. Chang, A. B. F. Martinson, and R. D. Schaller, “Conformal coating of a phase change material on ordered plasmonic nanorod arrays for broadband all-optical switching,” ACS Nano 11, 693–701 (2016).
[Crossref]

Mason, J. A.

J. A. Mason, S. Smith, and D. Wasserman, “Strong absorption and selective thermal emission from a midinfrared metamaterial,” Appl. Phys. Lett. 98, 241105 (2011).
[Crossref]

McLeod, A. S.

J. Rensberg, S. Zhang, Y. Zhou, A. S. McLeod, C. Schwarz, M. Goldflam, M. Liu, J. Kerbusch, R. Nawrodt, S. Ramanathan, D. N. Basov, F. Capasso, C. Ronning, and M. A. Kats, “Active optical metasurfaces based on defect-engineered phase-transition materials,” Nano Lett. 16, 1050–1055 (2015).
[Crossref]

Menges, F.

F. Menges, M. Dittberner, L. Novotny, D. Passarello, S. S. P. Parkin, M. Spieser, H. Riel, and B. Gotsmann, “Thermal radiative near field transport between vanadium dioxide and silicon oxide across the metal insulator transition,” Appl. Phys. Lett. 108, 171904 (2016).
[Crossref]

Michel, A.-K. U.

A. Tittl, A.-K. U. Michel, M. Schäferling, X. Yin, B. Gholipour, L. Cui, M. Wuttig, T. Taubner, F. Neubrech, and H. Giessen, “A switchable mid-infrared plasmonic perfect absorber with multispectral thermal imaging capability,” Adv. Mater. 27, 4597–4603 (2015).
[Crossref]

Nagano, H.

H. Nagano and Y. Nagasaka, “Simple deployable radiator with autonomous thermal control function,” J. Thermophys. Heat Transfer 20, 856–864 (2006).
[Crossref]

Nagasaka, Y.

H. Nagano and Y. Nagasaka, “Simple deployable radiator with autonomous thermal control function,” J. Thermophys. Heat Transfer 20, 856–864 (2006).
[Crossref]

Nairb, A. S.

H. K. Raut, V. A. Ganesh, A. S. Nairb, and S. Ramakrishna, “Anti-reflective coatings: a critical, in-depth review,” Energy Environ. Sci. 4, 3779–3804 (2011).
[Crossref]

Nakamura, Y.

S. Tachikawa, A. Ohnishi, Y. Shimakawa, A. Ochi, A. Okamoto, and Y. Nakamura, “Development of a variable emittance radiator based on a Perovskite manganese oxide,” J. Thermophys. Heat Transfer 17, 264–268 (2003).
[Crossref]

Nawrodt, R.

J. Rensberg, S. Zhang, Y. Zhou, A. S. McLeod, C. Schwarz, M. Goldflam, M. Liu, J. Kerbusch, R. Nawrodt, S. Ramanathan, D. N. Basov, F. Capasso, C. Ronning, and M. A. Kats, “Active optical metasurfaces based on defect-engineered phase-transition materials,” Nano Lett. 16, 1050–1055 (2015).
[Crossref]

Neubrech, F.

A. Tittl, A.-K. U. Michel, M. Schäferling, X. Yin, B. Gholipour, L. Cui, M. Wuttig, T. Taubner, F. Neubrech, and H. Giessen, “A switchable mid-infrared plasmonic perfect absorber with multispectral thermal imaging capability,” Adv. Mater. 27, 4597–4603 (2015).
[Crossref]

Niklasson, G. A.

S. Hu, S. Y. Li, R. Ahuja, C. G. Granqvist, K. Hermansson, G. A. Niklasson, and R. H. Scheicher, “Optical properties of Mg-doped VO2: absorption measurements and hybrid functional calculations,” Appl. Phys. Lett. 101, 201902 (2012).
[Crossref]

Noda, S.

T. Inoue, M. D. Zoysa, T. Asano, and S. Noda, “Realization of dynamic thermal emission control,” Nat. Mater. 13, 928–931 (2014).
[Crossref]

Novotny, L.

F. Menges, M. Dittberner, L. Novotny, D. Passarello, S. S. P. Parkin, M. Spieser, H. Riel, and B. Gotsmann, “Thermal radiative near field transport between vanadium dioxide and silicon oxide across the metal insulator transition,” Appl. Phys. Lett. 108, 171904 (2016).
[Crossref]

Ochi, A.

S. Tachikawa, A. Ohnishi, Y. Shimakawa, A. Ochi, A. Okamoto, and Y. Nakamura, “Development of a variable emittance radiator based on a Perovskite manganese oxide,” J. Thermophys. Heat Transfer 17, 264–268 (2003).
[Crossref]

Ogletree, D. F.

J. Cao, E. Ertekin, V. Srinivasan, W. Fan, S. Huang, H. Zheng, J. W. L. Yim, D. R. Khanal, D. F. Ogletree, J. C. Grossman, and J. Wu, “Strain engineering and one-dimensional organization of metal–insulator domains in single-crystal vanadium dioxide beams,” Nat. Nanotech. 4, 732–737 (2009).
[Crossref]

Ohnishi, A.

S. Tachikawa, A. Ohnishi, Y. Shimakawa, A. Ochi, A. Okamoto, and Y. Nakamura, “Development of a variable emittance radiator based on a Perovskite manganese oxide,” J. Thermophys. Heat Transfer 17, 264–268 (2003).
[Crossref]

Okamoto, A.

S. Tachikawa, A. Ohnishi, Y. Shimakawa, A. Ochi, A. Okamoto, and Y. Nakamura, “Development of a variable emittance radiator based on a Perovskite manganese oxide,” J. Thermophys. Heat Transfer 17, 264–268 (2003).
[Crossref]

Orlov, A.

K. Goncharov, A. Orlov, A. Tarabrin, M. Gottero, V. Perotto, S. Tavera, and G. P. Zoppo, “1500  W deployable radiator with loop heat pipe,” in SAE Paper (2001), paper 012194.

Osiander, R.

R. Osiander, S. L. Firebaugh, J. L. Champion, D. Farrar, and M. A. G. Darrin, “Microelectromechanical devices for satellite thermal control,” IEEE Sens. 4, 525–531 (2004).
[Crossref]

R. Osiander, J. L. Champion, A. M. Darrin, J. J. Sniegowski, S. M. Rodgers, D. Douglas, and T. D. Swanson, “Micromachined Louver arrays for spacecraft thermal control radiators,” in 39th Aerospace Sciences Meeting and Exhibit, Aerospace Sciences Meetings (2001), paper 0215.

Padilla, W. J.

X. Liu and W. J. Padilla, “Thermochromic infrared metamaterials,” Adv. Mater. 28, 871–875 (2016).
[Crossref]

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids (Elsevier, 1985).

Parkin, S. S. P.

F. Menges, M. Dittberner, L. Novotny, D. Passarello, S. S. P. Parkin, M. Spieser, H. Riel, and B. Gotsmann, “Thermal radiative near field transport between vanadium dioxide and silicon oxide across the metal insulator transition,” Appl. Phys. Lett. 108, 171904 (2016).
[Crossref]

Pashkin, A.

A. Pashkin, C. Kübler, H. Ehrke, R. Lopez, A. Halabica, R. F. Haglund, R. Huber, and A. Leitenstorfer, “Ultrafast insulator–metal phase transition in VO2 studied by multiterahertz spectroscopy,” Phys. Rev. B 83, 195120 (2011).
[Crossref]

Passarello, D.

F. Menges, M. Dittberner, L. Novotny, D. Passarello, S. S. P. Parkin, M. Spieser, H. Riel, and B. Gotsmann, “Thermal radiative near field transport between vanadium dioxide and silicon oxide across the metal insulator transition,” Appl. Phys. Lett. 108, 171904 (2016).
[Crossref]

Pemble, M. E.

I. M. Povey, M. Bardosova, F. Chalvet, M. E. Pemble, and H. M. Yates, “Atomic layer deposition for the fabrication of 3D photonic crystals structures: growth of Al2O3 and VO2 photonic crystal systems,” Surf. Coat. Technol. 201, 9345–9348 (2007).
[Crossref]

Perotto, V.

K. Goncharov, A. Orlov, A. Tarabrin, M. Gottero, V. Perotto, S. Tavera, and G. P. Zoppo, “1500  W deployable radiator with loop heat pipe,” in SAE Paper (2001), paper 012194.

Pisacane, V. L.

V. L. Pisacane, Fundamentals of Space Systems (Oxford University, 1994).

Povey, I. M.

I. M. Povey, M. Bardosova, F. Chalvet, M. E. Pemble, and H. M. Yates, “Atomic layer deposition for the fabrication of 3D photonic crystals structures: growth of Al2O3 and VO2 photonic crystal systems,” Surf. Coat. Technol. 201, 9345–9348 (2007).
[Crossref]

Premkumar, P. A.

G. Rampelberg, D. Deduytsche, B. D. Schutter, P. A. Premkumar, M. Toeller, M. Schaekers, K. Martens, I. Radu, and C. Detavernier, “Crystallization and semiconductor–metal switching behavior of thin VO2 layers grown by atomic layer deposition,” Thin Solid Films 550, 59–64 (2014).
[Crossref]

Pryce, I. M.

M. J. Dicken, K. Aydin, I. M. Pryce, L. A. Sweatlock, E. M. Boyd, S. Walavalkar, J. Ma, and H. A. Atwater, “Frequency tunable near-infrared metamaterials based on VO2 phase transition,” Opt. Express 17, 018330 (2009).
[Crossref]

Qi, L.

J. Cai and L. Qi, “Recent advances in antireflective surfaces based on nanostructure arrays,” Mater. Horiz. 2, 37–53 (2015).
[Crossref]

Radu, I.

G. Rampelberg, D. Deduytsche, B. D. Schutter, P. A. Premkumar, M. Toeller, M. Schaekers, K. Martens, I. Radu, and C. Detavernier, “Crystallization and semiconductor–metal switching behavior of thin VO2 layers grown by atomic layer deposition,” Thin Solid Films 550, 59–64 (2014).
[Crossref]

Ramakrishna, S.

H. K. Raut, V. A. Ganesh, A. S. Nairb, and S. Ramakrishna, “Anti-reflective coatings: a critical, in-depth review,” Energy Environ. Sci. 4, 3779–3804 (2011).
[Crossref]

Raman, A.

Raman, A. P.

A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515, 540–544 (2014).
[Crossref]

Ramanathan, S.

J. Rensberg, S. Zhang, Y. Zhou, A. S. McLeod, C. Schwarz, M. Goldflam, M. Liu, J. Kerbusch, R. Nawrodt, S. Ramanathan, D. N. Basov, F. Capasso, C. Ronning, and M. A. Kats, “Active optical metasurfaces based on defect-engineered phase-transition materials,” Nano Lett. 16, 1050–1055 (2015).
[Crossref]

M. A. Kats, R. Blanchard, S. Zhang, P. Genevet, C. Ko, S. Ramanathan, and F. Capasso, “Vanadium dioxide as a natural disordered metamaterial: perfect thermal emission and large broadband negative differential thermal emittance,” Phys. Rev. X 3, 041004 (2013).
[Crossref]

Z. Yang, C. Ko, and S. Ramanathan, “Metal–insulator transition characteristics of VO2 thin films grown on Ge(100) single crystals,” J. Appl. Phys. 108, 073708 (2010).
[Crossref]

Rampelberg, G.

G. Rampelberg, D. Deduytsche, B. D. Schutter, P. A. Premkumar, M. Toeller, M. Schaekers, K. Martens, I. Radu, and C. Detavernier, “Crystallization and semiconductor–metal switching behavior of thin VO2 layers grown by atomic layer deposition,” Thin Solid Films 550, 59–64 (2014).
[Crossref]

G. Rampelberg, M. Schaekers, K. Martens, Q. Xie, D. Deduytsche, B. D. Schutter, N. Blasco, J. Kittl, and C. Detavernier, “Semiconductor–metal transition in thin VO2 films grown by ozone based atomic layer deposition,” Appl. Phys. Lett. 98, 162902 (2011).
[Crossref]

Raut, H. K.

H. K. Raut, V. A. Ganesh, A. S. Nairb, and S. Ramakrishna, “Anti-reflective coatings: a critical, in-depth review,” Energy Environ. Sci. 4, 3779–3804 (2011).
[Crossref]

Rensberg, J.

J. Rensberg, S. Zhang, Y. Zhou, A. S. McLeod, C. Schwarz, M. Goldflam, M. Liu, J. Kerbusch, R. Nawrodt, S. Ramanathan, D. N. Basov, F. Capasso, C. Ronning, and M. A. Kats, “Active optical metasurfaces based on defect-engineered phase-transition materials,” Nano Lett. 16, 1050–1055 (2015).
[Crossref]

Rephaeli, E.

A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515, 540–544 (2014).
[Crossref]

Ribeiro, R. M.

C. Batista, R. M. Ribeiro, and V. Teixeira, “Synthesis and characterization of VO2-based thermochromic thin films for energy-efficient windows,” Nano. Res. Lett. 6, 301–307 (2011).
[Crossref]

Riel, H.

F. Menges, M. Dittberner, L. Novotny, D. Passarello, S. S. P. Parkin, M. Spieser, H. Riel, and B. Gotsmann, “Thermal radiative near field transport between vanadium dioxide and silicon oxide across the metal insulator transition,” Appl. Phys. Lett. 108, 171904 (2016).
[Crossref]

Rodgers, S. M.

R. Osiander, J. L. Champion, A. M. Darrin, J. J. Sniegowski, S. M. Rodgers, D. Douglas, and T. D. Swanson, “Micromachined Louver arrays for spacecraft thermal control radiators,” in 39th Aerospace Sciences Meeting and Exhibit, Aerospace Sciences Meetings (2001), paper 0215.

Ronning, C.

J. Rensberg, S. Zhang, Y. Zhou, A. S. McLeod, C. Schwarz, M. Goldflam, M. Liu, J. Kerbusch, R. Nawrodt, S. Ramanathan, D. N. Basov, F. Capasso, C. Ronning, and M. A. Kats, “Active optical metasurfaces based on defect-engineered phase-transition materials,” Nano Lett. 16, 1050–1055 (2015).
[Crossref]

Rua, A.

A. Rua, R. D. Diaz, S. Lysenko, and F. E. Fernandez, “Semiconductor–insulator transition in VO2 (B) thin films grown by pulsed laser deposition,” J. Appl. Phys. 118, 125308 (2015).
[Crossref]

Schaekers, M.

G. Rampelberg, D. Deduytsche, B. D. Schutter, P. A. Premkumar, M. Toeller, M. Schaekers, K. Martens, I. Radu, and C. Detavernier, “Crystallization and semiconductor–metal switching behavior of thin VO2 layers grown by atomic layer deposition,” Thin Solid Films 550, 59–64 (2014).
[Crossref]

G. Rampelberg, M. Schaekers, K. Martens, Q. Xie, D. Deduytsche, B. D. Schutter, N. Blasco, J. Kittl, and C. Detavernier, “Semiconductor–metal transition in thin VO2 films grown by ozone based atomic layer deposition,” Appl. Phys. Lett. 98, 162902 (2011).
[Crossref]

Schäferling, M.

A. Tittl, A.-K. U. Michel, M. Schäferling, X. Yin, B. Gholipour, L. Cui, M. Wuttig, T. Taubner, F. Neubrech, and H. Giessen, “A switchable mid-infrared plasmonic perfect absorber with multispectral thermal imaging capability,” Adv. Mater. 27, 4597–4603 (2015).
[Crossref]

Schaller, R. D.

P. Guo, M. S. Weimer, J. D. Emery, B. T. Diroll, X. Chen, A. S. Hock, R. P. H. Chang, A. B. F. Martinson, and R. D. Schaller, “Conformal coating of a phase change material on ordered plasmonic nanorod arrays for broadband all-optical switching,” ACS Nano 11, 693–701 (2016).
[Crossref]

Scheicher, R. H.

S. Hu, S. Y. Li, R. Ahuja, C. G. Granqvist, K. Hermansson, G. A. Niklasson, and R. H. Scheicher, “Optical properties of Mg-doped VO2: absorption measurements and hybrid functional calculations,” Appl. Phys. Lett. 101, 201902 (2012).
[Crossref]

Schutter, B. D.

G. Rampelberg, D. Deduytsche, B. D. Schutter, P. A. Premkumar, M. Toeller, M. Schaekers, K. Martens, I. Radu, and C. Detavernier, “Crystallization and semiconductor–metal switching behavior of thin VO2 layers grown by atomic layer deposition,” Thin Solid Films 550, 59–64 (2014).
[Crossref]

G. Rampelberg, M. Schaekers, K. Martens, Q. Xie, D. Deduytsche, B. D. Schutter, N. Blasco, J. Kittl, and C. Detavernier, “Semiconductor–metal transition in thin VO2 films grown by ozone based atomic layer deposition,” Appl. Phys. Lett. 98, 162902 (2011).
[Crossref]

Schwarz, C.

J. Rensberg, S. Zhang, Y. Zhou, A. S. McLeod, C. Schwarz, M. Goldflam, M. Liu, J. Kerbusch, R. Nawrodt, S. Ramanathan, D. N. Basov, F. Capasso, C. Ronning, and M. A. Kats, “Active optical metasurfaces based on defect-engineered phase-transition materials,” Nano Lett. 16, 1050–1055 (2015).
[Crossref]

Shimakawa, Y.

S. Tachikawa, A. Ohnishi, Y. Shimakawa, A. Ochi, A. Okamoto, and Y. Nakamura, “Development of a variable emittance radiator based on a Perovskite manganese oxide,” J. Thermophys. Heat Transfer 17, 264–268 (2003).
[Crossref]

Shokooh-Saremi, M.

Skobelev, S. P.

O. N. Smolnikova and S. P. Skobelev, “Analysis of electromagnetic scattering from lossy periodic structures with application to wedge absorber,” in European Conference on Antennas and Propagation (2011).

Smith, S.

J. A. Mason, S. Smith, and D. Wasserman, “Strong absorption and selective thermal emission from a midinfrared metamaterial,” Appl. Phys. Lett. 98, 241105 (2011).
[Crossref]

Smolnikova, O. N.

O. N. Smolnikova and S. P. Skobelev, “Analysis of electromagnetic scattering from lossy periodic structures with application to wedge absorber,” in European Conference on Antennas and Propagation (2011).

Sniegowski, J. J.

R. Osiander, J. L. Champion, A. M. Darrin, J. J. Sniegowski, S. M. Rodgers, D. Douglas, and T. D. Swanson, “Micromachined Louver arrays for spacecraft thermal control radiators,” in 39th Aerospace Sciences Meeting and Exhibit, Aerospace Sciences Meetings (2001), paper 0215.

Soljacic, M.

M. Ghebrebrhan, P. Bermel, Y. X. Yeng, I. Celanovic, M. Soljačić, and J. D. Joannopoulos, “Tailoring thermal emission via Q matching of photonic crystal resonances,” Phys. Rev. A 83, 033810 (2011).
[Crossref]

Song, L.

X. Lv, Y. Cao, L. Yan, Y. Li, and L. Song, “Atomic layer deposition of VO2 films with Tetrakis-dimethyl-amino vanadium (IV) as vanadium precursor,” Appl. Surf. Sci. 396, 214–220 (2017).
[Crossref]

Spieser, M.

F. Menges, M. Dittberner, L. Novotny, D. Passarello, S. S. P. Parkin, M. Spieser, H. Riel, and B. Gotsmann, “Thermal radiative near field transport between vanadium dioxide and silicon oxide across the metal insulator transition,” Appl. Phys. Lett. 108, 171904 (2016).
[Crossref]

Srinivasan, V.

J. Cao, E. Ertekin, V. Srinivasan, W. Fan, S. Huang, H. Zheng, J. W. L. Yim, D. R. Khanal, D. F. Ogletree, J. C. Grossman, and J. Wu, “Strain engineering and one-dimensional organization of metal–insulator domains in single-crystal vanadium dioxide beams,” Nat. Nanotech. 4, 732–737 (2009).
[Crossref]

Swanson, T. D.

T. D. Swanson and G. C. Birur, “NASA thermal control technologies for robotic spacecraft,” Appl. Therm. Eng. 23, 1055–1065 (2003).
[Crossref]

R. Osiander, J. L. Champion, A. M. Darrin, J. J. Sniegowski, S. M. Rodgers, D. Douglas, and T. D. Swanson, “Micromachined Louver arrays for spacecraft thermal control radiators,” in 39th Aerospace Sciences Meeting and Exhibit, Aerospace Sciences Meetings (2001), paper 0215.

Sweatlock, L. A.

M. J. Dicken, K. Aydin, I. M. Pryce, L. A. Sweatlock, E. M. Boyd, S. Walavalkar, J. Ma, and H. A. Atwater, “Frequency tunable near-infrared metamaterials based on VO2 phase transition,” Opt. Express 17, 018330 (2009).
[Crossref]

Tachikawa, S.

S. Tachikawa, A. Ohnishi, Y. Shimakawa, A. Ochi, A. Okamoto, and Y. Nakamura, “Development of a variable emittance radiator based on a Perovskite manganese oxide,” J. Thermophys. Heat Transfer 17, 264–268 (2003).
[Crossref]

Tan, H.

D. Fan, Q. Li, Y. Xuan, H. Tan, and J. Fang, “Temperature-dependent infrared properties of Ca doped (La, Sr)MnO3 compositions with potential thermal control application,” Appl. Therm. Eng. 51, 255–261 (2013).
[Crossref]

Tao, T.

D. Fu, K. Liu, T. Tao, K. Lo, C. Cheng, B. Liu, R. Zhang, H. A. Bechtel, and J. Wu, “Comprehensive study of the metal–insulator transition in pulsed laser deposited epitaxial VO2 thin films,” J. Appl. Phys. 113, 043707 (2013).
[Crossref]

Tarabrin, A.

K. Goncharov, A. Orlov, A. Tarabrin, M. Gottero, V. Perotto, S. Tavera, and G. P. Zoppo, “1500  W deployable radiator with loop heat pipe,” in SAE Paper (2001), paper 012194.

Taubner, T.

A. Tittl, A.-K. U. Michel, M. Schäferling, X. Yin, B. Gholipour, L. Cui, M. Wuttig, T. Taubner, F. Neubrech, and H. Giessen, “A switchable mid-infrared plasmonic perfect absorber with multispectral thermal imaging capability,” Adv. Mater. 27, 4597–4603 (2015).
[Crossref]

Tavera, S.

K. Goncharov, A. Orlov, A. Tarabrin, M. Gottero, V. Perotto, S. Tavera, and G. P. Zoppo, “1500  W deployable radiator with loop heat pipe,” in SAE Paper (2001), paper 012194.

Tazawa, M.

G. Xu, C.-M. Huang, M. Tazawa, P. Jin, and D.-M. Chen, “Nano-Ag on vanadium dioxide. II. Thermal tuning of surface plasmon resonance,” J. Appl. Phys. 104, 053102 (2008).
[Crossref]

Teixeira, V.

C. Batista, R. M. Ribeiro, and V. Teixeira, “Synthesis and characterization of VO2-based thermochromic thin films for energy-efficient windows,” Nano. Res. Lett. 6, 301–307 (2011).
[Crossref]

Tian, W.

Y. Xiong, Q. Y. Wen, Z. Chen, W. Tian, T. L. Wen, Y. L. Jing, Q. H. Yang, and H. W. Zhang, “Tuning the phase transitions of VO2 thin films on silicon substrates using ultrathin Al2O3 as buffer layers,” J. Phys. D 47, 455304 (2014).
[Crossref]

Tian, X.

Tittl, A.

A. Tittl, A.-K. U. Michel, M. Schäferling, X. Yin, B. Gholipour, L. Cui, M. Wuttig, T. Taubner, F. Neubrech, and H. Giessen, “A switchable mid-infrared plasmonic perfect absorber with multispectral thermal imaging capability,” Adv. Mater. 27, 4597–4603 (2015).
[Crossref]

Toeller, M.

G. Rampelberg, D. Deduytsche, B. D. Schutter, P. A. Premkumar, M. Toeller, M. Schaekers, K. Martens, I. Radu, and C. Detavernier, “Crystallization and semiconductor–metal switching behavior of thin VO2 layers grown by atomic layer deposition,” Thin Solid Films 550, 59–64 (2014).
[Crossref]

Vignaud, G.

J. B. K. Kana, G. Vignaud, A. Gibaud, and M. Maaza, “Thermally driven sign switch of static dielectric constant of VO2 thin film,” Opt. Mater. 54, 165–169 (2016).
[Crossref]

Walavalkar, S.

M. J. Dicken, K. Aydin, I. M. Pryce, L. A. Sweatlock, E. M. Boyd, S. Walavalkar, J. Ma, and H. A. Atwater, “Frequency tunable near-infrared metamaterials based on VO2 phase transition,” Opt. Express 17, 018330 (2009).
[Crossref]

Wang, K. X.

Wasserman, D.

J. A. Mason, S. Smith, and D. Wasserman, “Strong absorption and selective thermal emission from a midinfrared metamaterial,” Appl. Phys. Lett. 98, 241105 (2011).
[Crossref]

Weimer, M. S.

P. Guo, M. S. Weimer, J. D. Emery, B. T. Diroll, X. Chen, A. S. Hock, R. P. H. Chang, A. B. F. Martinson, and R. D. Schaller, “Conformal coating of a phase change material on ordered plasmonic nanorod arrays for broadband all-optical switching,” ACS Nano 11, 693–701 (2016).
[Crossref]

Wen, Q. Y.

Y. Xiong, Q. Y. Wen, Z. Chen, W. Tian, T. L. Wen, Y. L. Jing, Q. H. Yang, and H. W. Zhang, “Tuning the phase transitions of VO2 thin films on silicon substrates using ultrathin Al2O3 as buffer layers,” J. Phys. D 47, 455304 (2014).
[Crossref]

Wen, T. L.

Y. Xiong, Q. Y. Wen, Z. Chen, W. Tian, T. L. Wen, Y. L. Jing, Q. H. Yang, and H. W. Zhang, “Tuning the phase transitions of VO2 thin films on silicon substrates using ultrathin Al2O3 as buffer layers,” J. Phys. D 47, 455304 (2014).
[Crossref]

Wu, J.

D. Fu, K. Liu, T. Tao, K. Lo, C. Cheng, B. Liu, R. Zhang, H. A. Bechtel, and J. Wu, “Comprehensive study of the metal–insulator transition in pulsed laser deposited epitaxial VO2 thin films,” J. Appl. Phys. 113, 043707 (2013).
[Crossref]

J. Cao, E. Ertekin, V. Srinivasan, W. Fan, S. Huang, H. Zheng, J. W. L. Yim, D. R. Khanal, D. F. Ogletree, J. C. Grossman, and J. Wu, “Strain engineering and one-dimensional organization of metal–insulator domains in single-crystal vanadium dioxide beams,” Nat. Nanotech. 4, 732–737 (2009).
[Crossref]

Wuttig, M.

A. Tittl, A.-K. U. Michel, M. Schäferling, X. Yin, B. Gholipour, L. Cui, M. Wuttig, T. Taubner, F. Neubrech, and H. Giessen, “A switchable mid-infrared plasmonic perfect absorber with multispectral thermal imaging capability,” Adv. Mater. 27, 4597–4603 (2015).
[Crossref]

Xie, Q.

G. Rampelberg, M. Schaekers, K. Martens, Q. Xie, D. Deduytsche, B. D. Schutter, N. Blasco, J. Kittl, and C. Detavernier, “Semiconductor–metal transition in thin VO2 films grown by ozone based atomic layer deposition,” Appl. Phys. Lett. 98, 162902 (2011).
[Crossref]

Xiong, Y.

Y. Xiong, Q. Y. Wen, Z. Chen, W. Tian, T. L. Wen, Y. L. Jing, Q. H. Yang, and H. W. Zhang, “Tuning the phase transitions of VO2 thin films on silicon substrates using ultrathin Al2O3 as buffer layers,” J. Phys. D 47, 455304 (2014).
[Crossref]

Xu, G.

G. Xu, C.-M. Huang, M. Tazawa, P. Jin, and D.-M. Chen, “Nano-Ag on vanadium dioxide. II. Thermal tuning of surface plasmon resonance,” J. Appl. Phys. 104, 053102 (2008).
[Crossref]

Xuan, Y.

D. Fan, Q. Li, Y. Xuan, H. Tan, and J. Fang, “Temperature-dependent infrared properties of Ca doped (La, Sr)MnO3 compositions with potential thermal control application,” Appl. Therm. Eng. 51, 255–261 (2013).
[Crossref]

Yalamanchili, S.

S. Yalamanchili, H. S. Emmer, K. T. Fountaine, C. T. Chen, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and <1% spectrum-and-angle-averaged reflection in tapered microwire arrays,” ACS Photon. 3, 1854–1861 (2016).
[Crossref]

Yan, L.

X. Lv, Y. Cao, L. Yan, Y. Li, and L. Song, “Atomic layer deposition of VO2 films with Tetrakis-dimethyl-amino vanadium (IV) as vanadium precursor,” Appl. Surf. Sci. 396, 214–220 (2017).
[Crossref]

Yang, Q. H.

Y. Xiong, Q. Y. Wen, Z. Chen, W. Tian, T. L. Wen, Y. L. Jing, Q. H. Yang, and H. W. Zhang, “Tuning the phase transitions of VO2 thin films on silicon substrates using ultrathin Al2O3 as buffer layers,” J. Phys. D 47, 455304 (2014).
[Crossref]

Yang, Z.

Z. Yang, C. Ko, and S. Ramanathan, “Metal–insulator transition characteristics of VO2 thin films grown on Ge(100) single crystals,” J. Appl. Phys. 108, 073708 (2010).
[Crossref]

Yates, H. M.

I. M. Povey, M. Bardosova, F. Chalvet, M. E. Pemble, and H. M. Yates, “Atomic layer deposition for the fabrication of 3D photonic crystals structures: growth of Al2O3 and VO2 photonic crystal systems,” Surf. Coat. Technol. 201, 9345–9348 (2007).
[Crossref]

Yeng, Y. X.

M. Ghebrebrhan, P. Bermel, Y. X. Yeng, I. Celanovic, M. Soljačić, and J. D. Joannopoulos, “Tailoring thermal emission via Q matching of photonic crystal resonances,” Phys. Rev. A 83, 033810 (2011).
[Crossref]

Yim, J. W. L.

J. Cao, E. Ertekin, V. Srinivasan, W. Fan, S. Huang, H. Zheng, J. W. L. Yim, D. R. Khanal, D. F. Ogletree, J. C. Grossman, and J. Wu, “Strain engineering and one-dimensional organization of metal–insulator domains in single-crystal vanadium dioxide beams,” Nat. Nanotech. 4, 732–737 (2009).
[Crossref]

Yin, X.

A. Tittl, A.-K. U. Michel, M. Schäferling, X. Yin, B. Gholipour, L. Cui, M. Wuttig, T. Taubner, F. Neubrech, and H. Giessen, “A switchable mid-infrared plasmonic perfect absorber with multispectral thermal imaging capability,” Adv. Mater. 27, 4597–4603 (2015).
[Crossref]

Zhang, H. W.

Y. Xiong, Q. Y. Wen, Z. Chen, W. Tian, T. L. Wen, Y. L. Jing, Q. H. Yang, and H. W. Zhang, “Tuning the phase transitions of VO2 thin films on silicon substrates using ultrathin Al2O3 as buffer layers,” J. Phys. D 47, 455304 (2014).
[Crossref]

Zhang, J.

B. Gholipour, J. Zhang, K. F. MacDonald, D. W. Hewak, and N. I. Zheludev, “An all-optical, non-volatile, bidirectional, phase-change meta-switch,” Adv. Mater. 25, 3050–3054 (2013).
[Crossref]

Zhang, R.

D. Fu, K. Liu, T. Tao, K. Lo, C. Cheng, B. Liu, R. Zhang, H. A. Bechtel, and J. Wu, “Comprehensive study of the metal–insulator transition in pulsed laser deposited epitaxial VO2 thin films,” J. Appl. Phys. 113, 043707 (2013).
[Crossref]

Zhang, S.

J. Rensberg, S. Zhang, Y. Zhou, A. S. McLeod, C. Schwarz, M. Goldflam, M. Liu, J. Kerbusch, R. Nawrodt, S. Ramanathan, D. N. Basov, F. Capasso, C. Ronning, and M. A. Kats, “Active optical metasurfaces based on defect-engineered phase-transition materials,” Nano Lett. 16, 1050–1055 (2015).
[Crossref]

M. A. Kats, R. Blanchard, S. Zhang, P. Genevet, C. Ko, S. Ramanathan, and F. Capasso, “Vanadium dioxide as a natural disordered metamaterial: perfect thermal emission and large broadband negative differential thermal emittance,” Phys. Rev. X 3, 041004 (2013).
[Crossref]

Zhang, X.-C.

Y. W. Chen and X.-C. Zhang, “Anti-reflection implementations for terahertz waves,” Front. Optoelectron. 7, 243–262 (2014).
[Crossref]

Zhang, Z.

Y. Gao, H. Luo, Z. Zhang, L. Kang, Z. Chen, J. Du, M. Kanehira, and C. Cao, “Nanoceramic VO2 thermochromic smart glass: a review on progress in solution processing,” Nano Energy 1, 221–246 (2012).
[Crossref]

Zheludev, N. I.

B. Gholipour, J. Zhang, K. F. MacDonald, D. W. Hewak, and N. I. Zheludev, “An all-optical, non-volatile, bidirectional, phase-change meta-switch,” Adv. Mater. 25, 3050–3054 (2013).
[Crossref]

Zheng, H.

J. Cao, E. Ertekin, V. Srinivasan, W. Fan, S. Huang, H. Zheng, J. W. L. Yim, D. R. Khanal, D. F. Ogletree, J. C. Grossman, and J. Wu, “Strain engineering and one-dimensional organization of metal–insulator domains in single-crystal vanadium dioxide beams,” Nat. Nanotech. 4, 732–737 (2009).
[Crossref]

Zhou, Y.

J. Rensberg, S. Zhang, Y. Zhou, A. S. McLeod, C. Schwarz, M. Goldflam, M. Liu, J. Kerbusch, R. Nawrodt, S. Ramanathan, D. N. Basov, F. Capasso, C. Ronning, and M. A. Kats, “Active optical metasurfaces based on defect-engineered phase-transition materials,” Nano Lett. 16, 1050–1055 (2015).
[Crossref]

Zhu, L.

L. Zhu, A. Raman, K. X. Wang, M. A. Anoma, and S. Fan, “Radiative cooling of solar cells,” Optica 1, 32–38 (2014).
[Crossref]

A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515, 540–544 (2014).
[Crossref]

Zoppo, G. P.

K. Goncharov, A. Orlov, A. Tarabrin, M. Gottero, V. Perotto, S. Tavera, and G. P. Zoppo, “1500  W deployable radiator with loop heat pipe,” in SAE Paper (2001), paper 012194.

Zoysa, M. D.

T. Inoue, M. D. Zoysa, T. Asano, and S. Noda, “Realization of dynamic thermal emission control,” Nat. Mater. 13, 928–931 (2014).
[Crossref]

ACS Nano (1)

P. Guo, M. S. Weimer, J. D. Emery, B. T. Diroll, X. Chen, A. S. Hock, R. P. H. Chang, A. B. F. Martinson, and R. D. Schaller, “Conformal coating of a phase change material on ordered plasmonic nanorod arrays for broadband all-optical switching,” ACS Nano 11, 693–701 (2016).
[Crossref]

ACS Photon. (1)

S. Yalamanchili, H. S. Emmer, K. T. Fountaine, C. T. Chen, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and <1% spectrum-and-angle-averaged reflection in tapered microwire arrays,” ACS Photon. 3, 1854–1861 (2016).
[Crossref]

Acta Astronaut. (1)

D. Fan, Q. Li, and P. Dai, “Temperature-dependent emissivity property in La0.7Sr0.3MnO3 films,” Acta Astronaut. 121, 144–152 (2016).
[Crossref]

Adv. Mater. (3)

B. Gholipour, J. Zhang, K. F. MacDonald, D. W. Hewak, and N. I. Zheludev, “An all-optical, non-volatile, bidirectional, phase-change meta-switch,” Adv. Mater. 25, 3050–3054 (2013).
[Crossref]

A. Tittl, A.-K. U. Michel, M. Schäferling, X. Yin, B. Gholipour, L. Cui, M. Wuttig, T. Taubner, F. Neubrech, and H. Giessen, “A switchable mid-infrared plasmonic perfect absorber with multispectral thermal imaging capability,” Adv. Mater. 27, 4597–4603 (2015).
[Crossref]

X. Liu and W. J. Padilla, “Thermochromic infrared metamaterials,” Adv. Mater. 28, 871–875 (2016).
[Crossref]

Appl. Phys. Lett. (4)

J. A. Mason, S. Smith, and D. Wasserman, “Strong absorption and selective thermal emission from a midinfrared metamaterial,” Appl. Phys. Lett. 98, 241105 (2011).
[Crossref]

S. Hu, S. Y. Li, R. Ahuja, C. G. Granqvist, K. Hermansson, G. A. Niklasson, and R. H. Scheicher, “Optical properties of Mg-doped VO2: absorption measurements and hybrid functional calculations,” Appl. Phys. Lett. 101, 201902 (2012).
[Crossref]

G. Rampelberg, M. Schaekers, K. Martens, Q. Xie, D. Deduytsche, B. D. Schutter, N. Blasco, J. Kittl, and C. Detavernier, “Semiconductor–metal transition in thin VO2 films grown by ozone based atomic layer deposition,” Appl. Phys. Lett. 98, 162902 (2011).
[Crossref]

F. Menges, M. Dittberner, L. Novotny, D. Passarello, S. S. P. Parkin, M. Spieser, H. Riel, and B. Gotsmann, “Thermal radiative near field transport between vanadium dioxide and silicon oxide across the metal insulator transition,” Appl. Phys. Lett. 108, 171904 (2016).
[Crossref]

Appl. Surf. Sci. (1)

X. Lv, Y. Cao, L. Yan, Y. Li, and L. Song, “Atomic layer deposition of VO2 films with Tetrakis-dimethyl-amino vanadium (IV) as vanadium precursor,” Appl. Surf. Sci. 396, 214–220 (2017).
[Crossref]

Appl. Therm. Eng. (2)

D. Fan, Q. Li, Y. Xuan, H. Tan, and J. Fang, “Temperature-dependent infrared properties of Ca doped (La, Sr)MnO3 compositions with potential thermal control application,” Appl. Therm. Eng. 51, 255–261 (2013).
[Crossref]

T. D. Swanson and G. C. Birur, “NASA thermal control technologies for robotic spacecraft,” Appl. Therm. Eng. 23, 1055–1065 (2003).
[Crossref]

Energy Environ. Sci. (1)

H. K. Raut, V. A. Ganesh, A. S. Nairb, and S. Ramakrishna, “Anti-reflective coatings: a critical, in-depth review,” Energy Environ. Sci. 4, 3779–3804 (2011).
[Crossref]

Front. Optoelectron. (1)

Y. W. Chen and X.-C. Zhang, “Anti-reflection implementations for terahertz waves,” Front. Optoelectron. 7, 243–262 (2014).
[Crossref]

IEEE Sens. (1)

R. Osiander, S. L. Firebaugh, J. L. Champion, D. Farrar, and M. A. G. Darrin, “Microelectromechanical devices for satellite thermal control,” IEEE Sens. 4, 525–531 (2004).
[Crossref]

J. Appl. Phys. (4)

Z. Yang, C. Ko, and S. Ramanathan, “Metal–insulator transition characteristics of VO2 thin films grown on Ge(100) single crystals,” J. Appl. Phys. 108, 073708 (2010).
[Crossref]

D. Fu, K. Liu, T. Tao, K. Lo, C. Cheng, B. Liu, R. Zhang, H. A. Bechtel, and J. Wu, “Comprehensive study of the metal–insulator transition in pulsed laser deposited epitaxial VO2 thin films,” J. Appl. Phys. 113, 043707 (2013).
[Crossref]

G. Xu, C.-M. Huang, M. Tazawa, P. Jin, and D.-M. Chen, “Nano-Ag on vanadium dioxide. II. Thermal tuning of surface plasmon resonance,” J. Appl. Phys. 104, 053102 (2008).
[Crossref]

A. Rua, R. D. Diaz, S. Lysenko, and F. E. Fernandez, “Semiconductor–insulator transition in VO2 (B) thin films grown by pulsed laser deposition,” J. Appl. Phys. 118, 125308 (2015).
[Crossref]

J. Phys. D (1)

Y. Xiong, Q. Y. Wen, Z. Chen, W. Tian, T. L. Wen, Y. L. Jing, Q. H. Yang, and H. W. Zhang, “Tuning the phase transitions of VO2 thin films on silicon substrates using ultrathin Al2O3 as buffer layers,” J. Phys. D 47, 455304 (2014).
[Crossref]

J. Thermophys. Heat Transfer (2)

H. Nagano and Y. Nagasaka, “Simple deployable radiator with autonomous thermal control function,” J. Thermophys. Heat Transfer 20, 856–864 (2006).
[Crossref]

S. Tachikawa, A. Ohnishi, Y. Shimakawa, A. Ochi, A. Okamoto, and Y. Nakamura, “Development of a variable emittance radiator based on a Perovskite manganese oxide,” J. Thermophys. Heat Transfer 17, 264–268 (2003).
[Crossref]

Mater. Horiz. (1)

J. Cai and L. Qi, “Recent advances in antireflective surfaces based on nanostructure arrays,” Mater. Horiz. 2, 37–53 (2015).
[Crossref]

Nano Energy (1)

Y. Gao, H. Luo, Z. Zhang, L. Kang, Z. Chen, J. Du, M. Kanehira, and C. Cao, “Nanoceramic VO2 thermochromic smart glass: a review on progress in solution processing,” Nano Energy 1, 221–246 (2012).
[Crossref]

Nano Lett. (1)

J. Rensberg, S. Zhang, Y. Zhou, A. S. McLeod, C. Schwarz, M. Goldflam, M. Liu, J. Kerbusch, R. Nawrodt, S. Ramanathan, D. N. Basov, F. Capasso, C. Ronning, and M. A. Kats, “Active optical metasurfaces based on defect-engineered phase-transition materials,” Nano Lett. 16, 1050–1055 (2015).
[Crossref]

Nano. Res. Lett. (1)

C. Batista, R. M. Ribeiro, and V. Teixeira, “Synthesis and characterization of VO2-based thermochromic thin films for energy-efficient windows,” Nano. Res. Lett. 6, 301–307 (2011).
[Crossref]

Nat. Mater. (1)

T. Inoue, M. D. Zoysa, T. Asano, and S. Noda, “Realization of dynamic thermal emission control,” Nat. Mater. 13, 928–931 (2014).
[Crossref]

Nat. Nanotech. (1)

J. Cao, E. Ertekin, V. Srinivasan, W. Fan, S. Huang, H. Zheng, J. W. L. Yim, D. R. Khanal, D. F. Ogletree, J. C. Grossman, and J. Wu, “Strain engineering and one-dimensional organization of metal–insulator domains in single-crystal vanadium dioxide beams,” Nat. Nanotech. 4, 732–737 (2009).
[Crossref]

Nature (1)

A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515, 540–544 (2014).
[Crossref]

Opt. Express (1)

M. J. Dicken, K. Aydin, I. M. Pryce, L. A. Sweatlock, E. M. Boyd, S. Walavalkar, J. Ma, and H. A. Atwater, “Frequency tunable near-infrared metamaterials based on VO2 phase transition,” Opt. Express 17, 018330 (2009).
[Crossref]

Opt. Lett. (1)

Opt. Mater. (1)

J. B. K. Kana, G. Vignaud, A. Gibaud, and M. Maaza, “Thermally driven sign switch of static dielectric constant of VO2 thin film,” Opt. Mater. 54, 165–169 (2016).
[Crossref]

Optica (1)

Photon. Res. (1)

Phys. Rev. A (1)

M. Ghebrebrhan, P. Bermel, Y. X. Yeng, I. Celanovic, M. Soljačić, and J. D. Joannopoulos, “Tailoring thermal emission via Q matching of photonic crystal resonances,” Phys. Rev. A 83, 033810 (2011).
[Crossref]

Phys. Rev. B (1)

A. Pashkin, C. Kübler, H. Ehrke, R. Lopez, A. Halabica, R. F. Haglund, R. Huber, and A. Leitenstorfer, “Ultrafast insulator–metal phase transition in VO2 studied by multiterahertz spectroscopy,” Phys. Rev. B 83, 195120 (2011).
[Crossref]

Phys. Rev. X (1)

M. A. Kats, R. Blanchard, S. Zhang, P. Genevet, C. Ko, S. Ramanathan, and F. Capasso, “Vanadium dioxide as a natural disordered metamaterial: perfect thermal emission and large broadband negative differential thermal emittance,” Phys. Rev. X 3, 041004 (2013).
[Crossref]

Surf. Coat. Technol. (1)

I. M. Povey, M. Bardosova, F. Chalvet, M. E. Pemble, and H. M. Yates, “Atomic layer deposition for the fabrication of 3D photonic crystals structures: growth of Al2O3 and VO2 photonic crystal systems,” Surf. Coat. Technol. 201, 9345–9348 (2007).
[Crossref]

Thin Solid Films (1)

G. Rampelberg, D. Deduytsche, B. D. Schutter, P. A. Premkumar, M. Toeller, M. Schaekers, K. Martens, I. Radu, and C. Detavernier, “Crystallization and semiconductor–metal switching behavior of thin VO2 layers grown by atomic layer deposition,” Thin Solid Films 550, 59–64 (2014).
[Crossref]

Other (7)

O. N. Smolnikova and S. P. Skobelev, “Analysis of electromagnetic scattering from lossy periodic structures with application to wedge absorber,” in European Conference on Antennas and Propagation (2011).

E. D. Palik, Handbook of Optical Constants of Solids (Elsevier, 1985).

F. P. Incropera, D. P. DeWitt, T. L. Bergman, and A. S. Lavine, Introduction to Heat Transfer (Wiley, 1990).

V. L. Pisacane, Fundamentals of Space Systems (Oxford University, 1994).

R. Osiander, J. L. Champion, A. M. Darrin, J. J. Sniegowski, S. M. Rodgers, D. Douglas, and T. D. Swanson, “Micromachined Louver arrays for spacecraft thermal control radiators,” in 39th Aerospace Sciences Meeting and Exhibit, Aerospace Sciences Meetings (2001), paper 0215.

C. Lashley, S. Krein, and P. Barcomb, “Deployable radiators—a multidiscipline approach,” in SAE Paper (1998), paper 981691.

K. Goncharov, A. Orlov, A. Tarabrin, M. Gottero, V. Perotto, S. Tavera, and G. P. Zoppo, “1500  W deployable radiator with loop heat pipe,” in SAE Paper (2001), paper 012194.

Supplementary Material (1)

NameDescription
» Supplement 1       Supplementary Information

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. Illustrations of thermal homeostasis in optics. A surface that radiates much more at a higher temperature will help maintain the object at the target temperature, Tc.
Fig. 2.
Fig. 2. Design of structure for thermal homeostasis. (a) A square array of silicon microcones with a conformal VO2 coating, residing on a silicon film. Note that layer thicknesses are not drawn to scale. (b) A flat, VO2-coated silicon film. (c) An uncoated silicon film.
Fig. 3.
Fig. 3. Emissivity spectra. (a) VO2-coated silicon microcones, (b) a VO2-coated flat silicon film, and (c) an uncoated silicon film. Results are for normal incidence, averaged over polarization.
Fig. 4.
Fig. 4. Radiated thermal power. (a) The arrows indicate the direction of heating or cooling processes. The symbols represent the calculated values of thermal radiation for metallic (hollow symbols) VO2 or insulating (filled symbols) VO2 structures at 330 K. The solid curves represent the temperature-dependent model for radiated power assuming a phase transition width of 10 K. (b) Boundary conditions used to solve the heat equation.
Fig. 5.
Fig. 5. Thermal homeostasis. (a) Temperature variation for different structures with a time-varying heat input flux. (b) Radiated power in an extended temperature range. The dotted–gray lines indicate the heat input range (150550  W/m2) and the corresponding steady-state temperature values for each structure.
Fig. 6.
Fig. 6. Homeostatic operating range. [(a)–(c)] Temperature variation of the silicon microcone structure for different heat inputs. (d) Reduction in temperature variation for microcones with a narrower hysteresis width. The yellow shade illustrates the range of the hysteresis loop (homeostatic operating range).
Fig. 7.
Fig. 7. Dependence on coating thickness. Radiated power at phase transition for a flat, VO2-coated silicon film.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Prad(T)=dΩcosθ2.5  μm30  μmdλ·IBB(λ,T)·ϵ(λ,Ω),
Prad(T)=dΩcosθ2.5  μm30  μmdλ·IBB(λ,T)·{ϵM(λ,Ω)·12[1+erf(TTc±12ΔTc)]+ϵI(λ,Ω)·12[1erf(TTc±12ΔTc)]},
ρCLCdT(t)dt=Pin(t)Prad(T),
t=tρCLC.
dT(t)dt=Pin(t)Prad(T).

Metrics