Abstract

It has been known for four decades that high finesse millimeter-scale optical cavities can produce high-performance, compact optical gyroscopes. Yet, a practical implementation of such a device has been hindered by multiple technical challenges, including Rayleigh scattering and optical nonlinearity of the cavity material. In this Letter we report on the implementation of an integrated passive gyroscope using a monolithic cavity characterized by 7 mm diameter, finesse of 105, and Rayleigh backscattering less than 10 ppm. The device is characterized with quantum noise limited angle random walk of 0.02deg/h1/2, and bias drift of 3deg/h, corresponding to detection of rotation-originated optical path change of 1.3×1016cm.

© 2017 Optical Society of America

Interferometric optical measurement techniques enable measurement of extremely small distances. For instance, the Advanced Laser Interferometric Gravitational Observatory (aLIGO) allows measurements of optical path change of the order of 1016cm, which is 3 orders of magnitude smaller than the classical electron radius (2.8×1013cm). Naturally, this suggests the use of optical interferometers for detection of mechanical rotation that changes the distance traveled by light propagating clockwise (CW) and counterclockwise (CCW) with respect to the rotation axis, due to the Sagnac effect [14]. In a passive ring cavity, the nonreciprocity of the counterpropagating waves results in a phase difference between them and as a consequence, a spatial shift of the interference fringe pattern created by the fields inside the cavity. The phase difference can be directly measured, and the signal in such a measurement is proportional to the finesse of the cavity. In this work we report an integrated high finesse optical microcavity capable of measuring rotation-induced optical path change at the level of 1.3×1016cm at 1 s integration time.

Laser [57], fiber optic [3,8,9], and micro-electro-mechanical system (MEMS) gyroscopes [1013] constitute three types of mature rotation sensors used outside the laboratory. Each type has its own challenges, so the ongoing research is devoted to improvement of the existing technology and also to the development of novel gyroscopes free from the inherent disadvantages of existing approaches. One of the outstanding goals is to reduce the size of the optical rotation sensors without sensitivity degradation [14]. A variety of microphotonic gyroscopes, including ring microlaser, photonic crystal microfiber [15], and waveguide microring resonator [1621], have been recently demonstrated. While significant improvement in the performance of these devices has been achieved, the ultimate goal of creating a high-sensitivity and low-drift optical micro-gyroscope has not been previously realized.

We focus on research and development of miniature passive optical gyroscopes based on the Sagnac effect. The initial development of this type of sensor was driven by the development of high-quality optical fibers. The length of the optical fiber Sagnac cavity can be increased significantly with limited actual increase in the size of the interferometric device [3]. It was realized that the gyroscope can have a practically useful modular structure [22]. The device reached maturity in the middle of the 1980s, with the development of integrated fiber-optic components [23], as well as polarization-maintaining fibers [24]. Further reduction of the size of fiber-based gyroscopes is difficult because of the limitation in the reduction of volume of the fiber coil, as well as bending loss of sub-centimeter coils. There are several hurdles preventing fiber-optic gyroscopes from reaching the fundamental limit of their performance. To achieve a sensitivity that approaches the quantum limit, all sources of nonreciprocity, other than that induced by the Sagnac effect, must be eliminated. Zero-point errors and fluctuations mask the Sagnac phase shift when counterpropagating waves accumulate a nonreciprocal phase shift due to optical components or environmentally induced disturbances.

Resonant passive optical gyroscopes were introduced as an alternative to fiber optical gyroscopes [2528]. Resonant devices have a smaller size compared with fiber optic gyros, and they do not have a lock-in range for small rotation rates, compared with laser gyroscopes. Unlike interferometric fiber optical gyroscopes, passive resonant gyroscopes have not been developed beyond the proof-of-principle experiments, because of the technical complexity of their implementation. The activity in this area dropped significantly until recently, when the interest in small gyros surged to fill the need for accurate and compact devices suitable for application on small moving platforms.

In the work reported here, we utilized ultra-high-Q crystalline whispering gallery mode resonators (WGMRs) [29,30] to create a gyroscope. The WGMR gyroscope has numerous advantages over fiber-optic devices [9] since its sources of nonreciprocity are limited in number. For example, in a fiber gyroscope significant measurement errors emerge if the counterpropagating waves do not travel along the fiber with the same state of polarization and the same modal distribution [8]. Spatial, as well as optical, modal filters and polarization controllers must be employed to reduce these effects. The WGMR gyroscope is not impacted by this limitation because the monolithic resonator itself does not change mode polarization. Moreover, because crystalline materials generally have significant birefringence, there is no cross talk among modes having TE and TM polarizations. Our gyroscope does not need polarization control elements, while fiber-optic devices do.

Another source of error in fiber-optic devices is backscattering, which induces a cross talk between the clockwise and the counterclockwise waves. In fiber-optic gyroscopes, scattering usually includes Rayleigh backscattering as well as backreflections at the interfaces. As we show below, the problem is significantly less severe in the WGMR-based gyroscope. The magneto-optical Faraday effect due, for example, to electromagnetic interference is a nonreciprocal effect that can potentially add to the Sagnac phase [9]. This effect is not important for crystalline resonators.

We found the performance of the WGMR gyroscope is limited because of optical nonlinearity of the resonator host material and the residual resonant Rayleigh scattering. The self- and cross-phase modulation effects and χ(3) nonlinearity of the material limit the accessible level of angle random walk (ARW) of the gyroscope, while Rayleigh scattering, together with misalignment due to mechanical stress release, lead to bias drift of the gyroscope signal. With optimization of physical parameters, we achieved quantum noise limited ARW of 0.02deg/h1/2 and bias drift of 3deg/h in a gyroscope based on a CaF2 WGMR having 7 mm in diameter. This is at least 1 order of magnitude better when compared with previous results [1421]. This performance was achieved with 80 μW of total optical power interrogating the resonator mode.

The schematic diagram of the gyroscope setup is shown in Fig. 1. The setup includes a distributed feedback (DFB) semiconductor laser, stabilized with using a piezo-tunable WGMR. The laser radiation is frequency modulated at 50 kHz and directed to a 50/50 beam splitter, reflected from 50/50 service beam splitters, and then sent to an input evanescent prism coupler attached to a high-Q WGMR. The resonator has 200 and 12 kHz loaded and intrinsic bandwidth, respectively. The linear mode frequency splitting resulting from Rayleigh scattering is less than 1 kHz. The DFB laser emits 20 mW of power, 99.5% of which is intentionally attenuated so that the total optimal power at the resonator input is 140 μW. The power of the optical signals reflected from the resonator input coupling prism is about 40 μW in each direction (power at photodiodes PD1 and PD2). There is another coupling prism attached to the resonator (not shown in the picture) and used for tracking the field inside the resonator. The total transmitted power through that service prism is 60 μW. The total power attenuated in the resonator is less than 1%.

 figure: Fig. 1.

Fig. 1. Schematic of the experimental setup. A frequency modulated semiconductor laser is locked to the CCW mode of a crystalline WGMR by using the PDH technique. The rotation signal is obtained by measuring the phase delay of the modulation signal interacting with the CW resonator mode.

Download Full Size | PPT Slide | PDF

The laser frequency is locked to a mode of the resonator in the CCW direction using the Pound–Drever–Hall (PDH) technique. Photodiode PD1 is used for this purpose. The signal from the photodiode is sent to the lock-in amplifier and a proportional–integral–derivative (PID) controller, as shown in Fig. 1. The rotation signal is inferred from phase measurement of the of the frequency position of the CW mode using detector PD2. The measurement is performed using two lock-in amplifiers.

The gyroscope is integrated on an optical micro-bench, as shown in Fig. 2. The volume of the physics package is 15cm3. All parts, including the semiconductor DFB laser chip, a modulatable service WGMR, the gyroscope resonator, and the photodiodes are assembled on the micro-bench.

 figure: Fig. 2.

Fig. 2. (a) Drawing and (b) photograph of the assembled gyroscope unit.

Download Full Size | PPT Slide | PDF

The gyroscope was calibrated using a high-precision rotation stage. To measure the sensitivity of the device, it was left at rest and the rotation signal was measured (Fig. 3). The sensitivity increases with the increase of the averaging time at a short time scale, saturates at about 1 to 10 s, and then decreases due to drift. The short term sensitivity is limited by the noise of the pump light, while the drift results from the drift of the Sagnac loop parameters and imbalance of the power of the pump light. Thermal gradients and interaction among various resonator modes are responsible for the interferometer instability. We found that warping of the interferometer plane and change of the position of the beam spots on the photodiodes is the major reason for the observed long-term drift.

 figure: Fig. 3.

Fig. 3. Measured sensitivity of the gyroscope. The inset shows a time trace of the signal measured when the gyroscope is at rest. The short-term uncertainty of the angular speed due to ARW is defined as T1/2 ARW (T is the averaging time). ARW is evaluated by finding the crossing of the log scale data set with a line proportional to T1/2 [11]. For instance, if the line reaches 1deg/h sensitivity at T=1s, the ARW is (1/60)deg/h1/2 Bias drift is evaluated by finding a line proportional to T0 that limits the data set from below.

Download Full Size | PPT Slide | PDF

There are other mechanisms limiting the sensitivity; for instance, linear interaction among the resonator modes. The WGMR supports many nearly nondegenerate modes. The pump light is selectively coupled to one of these modes. The residual coupling with other modes changes the measured position of the mode center and, hence, results in a change of the measured signal. This effect results in bias drift if the WGM spectrum changes due to stress relief, thermal gradients, and aging of the gyroscope package. Solutions of this problem include spatial matching of the input beam profile to a selected WGM to reduce the coupling to other modes, as well as making the alignment and coupling to the CW and CCW modes as symmetric as possible to minimize the differential coupling drift.

The variation in differential power of the pump light occurs due to several major causes. Fluctuation of the laser power before entering the gyroscope interferometer is one of them. Change of the ratio of CW to CCW circulating power is the second one. This could result from a change in the beam split ratio, or if there is a residual interference (fringing) effect in each arm of the interferometer. Any change in the CW and CCW coupling coefficients that depends on the alignment of the pump light at both the input and output of the interferometer also impacts the performance.

The major challenge of making a sensitive micro-gyroscope is the small scale factor resulting from the small area of the resonator. The interferometer must have exceptionally good stability because of the small signal. We estimated the theoretical values of the bias drift of the gyroscope and found the achieved interferometer path differential drift was at the sub-nanometer level. The optical power difference was stabilized to better than a nanowatt.

In the gyro, the frequency splitting between WGMs corresponding to CW and CCW electromagnetic waves propagating in a resonator rotating with angular velocity Ω is measured. Let us assume that the resonator rotates CW. In this case, the frequencies of the CW (ω0cw) and CCW (ω0ccw) modes shift ω0cw,ccw=ω0δΩ.

The frequency shift can be presented as [2,31]

δΩ=2πaλn0Ω,
where a is the radius of the ring resonator, λ is the pump light wavelength, n0 is the refractive index of the resonator host material, and c is the speed of light in vacuum.

To understand the importance of the resonator size for the measurement sensitivity note that the frequency shift in Eq. (1) can be obtained by changing the resonator radius a by a small value:

Δa=aδΩω0=a2cn0Ω.
Therefore, for the same rotation speed, the smaller resonator-based gyroscope needs to resolve a much smaller equivalent change in its radius. The gyroscope based on a resonator with sub-centimeter diameter must detect frequency shifts of the optical mode corresponding to the radius change of the order of 1018m to achieve 1deg/h bias-drift-limited sensitivity at 1 s (see Fig. 4). Such a high sensitivity is achievable because the measurement is performed for the nearly degenerate CW and CCW modes, and is not practically impacted by the environmental fluctuations.

 figure: Fig. 4.

Fig. 4. Equivalent change of the resonator diameter corresponding to the measurement sensitivity of 1deg/h.

Download Full Size | PPT Slide | PDF

Let us assume a linear coupling of the CW and CCW waves in the resonator. To describe this coupling, we introduce a set of nonlinear equations:

B˙cw=[i(δ0δΩ)+γ]Bcw+iβBccw+ig[|Bcw|2+2|Bccw|2]Bcw+Fcw,
B˙ccw=[i(δ0+δΩ)+γ]Bccw+iβBcw+ig[|Bccw|2+2|Bcw|2]Bccw+Fccw,
where β describes linear coupling between the modes; γ=γ0+γc; γ0 and γc are intrinsic and loaded half-widths at the half-maxima of the mode; δ0=ω0ω is the detuning between the mode eigenfrequency ω0 and the pump light frequency ω; g is the nonlinear coefficient characterizing frequency shift of a resonator mode per photon [32] defined as g=(n2/n0)(ω02c/Vn0), where n2 is an optical cubic nonlinearity coefficient and V is the effective mode volume; and Fcw and Fccw stand for the external coherent optical pumping (Fcw,ccw=(2γcP/ω)1/2, where P is an average optical pump power for each direction.

For the field amplitude of the output light, we have the following relationship:

Boutcw,ccw=Fcw,ccwτ/2γc+2γcτBcw,ccw,
where τ is the round trip of light in the cavity.

By solving Eqs. (3) and (4) we find that Rayleigh scattering and power imbalance result in the shift of the signal from the dark fringe in accordance with the formula

δΩshift=gPγcω(|κ|21)+β2(|κ|21)cosφ+β2γ0sin(2φ),
where |κ|expiφ=Bccw/Bcw, and γc=γ0. This shift results in a nonzero signal in a nonrotating gyroscope. Drift of the pump power and in optical detuning values, power balance (|κ|2), and phase difference between CW and CCW beams lead to bias drift of the system.

Assuming that g=2×104rad/s, P=40μW, and γ0=γc=π×2×105rad/s, the nonlinear frequency shift becomes gP/γcω=2π×1.6×104rad/s. This is a large number that can exceed the value of the β coefficient, which is less than 1 kHz in our device. However, since the alignment can be relatively good, |κ|21102, the value of the nonlinear frequency shift can be reduced significantly.

The ARW of the gyroscope is limited by the shot noise and by quantum backaction noise:

δΩ2γ02>2[ωP+2g2Pγ04ω]Δf.
The maximum sensitivity of the gyroscope is given by δΩ>(4×21/2gΔf)1/2, achieved when Popt=ωγ0(γ0/21/2g). The minimal ARW value for g=2×104rad/s and γ0=γc=π×2×105rad/s is 102deg/h1/2. This value is in the vicinity of the measured ARW. To improve the sensitivity, the volume of the resonator mode must be increased. This is possible with appropriate design of the resonator geometry.

In conclusion, a high-performance gyroscope based on a high-Q WGMR is demonstrated. The results confirm the feasibility of the technology and pave the way for achieving ARW and bias drift of the order of typical values of optical fiber gyroscopes. We have evaluated the limitation of the device sensitivity and conclude that further improvements of the performance of the device are readily feasible.

REFERENCES

1. G. Sagnac, C. R. Acad. Sci. 157, 708 (1913).

2. E. J. Post, Rev. Mod. Phys. 39, 475 (1967). [CrossRef]  

3. V. Vali and R. W. Shorthill, Appl. Opt. 15, 1099 (1976). [CrossRef]  

4. H. J. Arditty and H. C. Lefevre, Opt. Lett. 6, 401 (1981). [CrossRef]  

5. W. M. Macek and D. T. M. Davis, Appl. Phys. Lett. 2, 67 (1963). [CrossRef]  

6. G. E. Stedman, Rep. Prog. Phys. 60, 615 (1997). [CrossRef]  

7. K. U. Schreiber and J.-P. R. Wells, Rev. Sci. Instrum. 84, 041101 (2013). [CrossRef]  

8. J. M. López-Higuera, Handbook of Optical Fibre Sensing Technology (Wiley, 2002).

9. H. C. Lefevre, The Fiber-Optic Gyroscope (Artech House, 2014).

10. N. Yazdi, F. Ayazi, and K. Najafi, Proc. IEEE 86, 1640 (1998). [CrossRef]  

11. C. Acar and A. Shkel, MEMS Vibratory Gyroscopes: Structural Approaches to Improve Robustness (Springer, 2008).

12. M. S. Weinberg, IEEE International Symposium on Inertial Sensors and Systems (ISISS) (2015), pp. 1–5.

13. G. Zhanshe, C. Fucheng, L. Boyu, C. Le, L. Chao, and S. Ke, Microsyst. Technol. 21, 2053 (2015). [CrossRef]  

14. C. Ciminelli, F. Dell’Olio, C. E. Campanella, and M. N. Armenise, Adv. Opt. Photon. 2, 370 (2010). [CrossRef]  

15. J. Tawney, F. Hakimi, R. L. Willig, J. Alonzo, R. T. Bise, F. DiMarcello, E. M. Monberg, T. Stockert, and D. J. Trevor, Optical Fiber Sensors (Optical Society of America, 2006), paper ME8.

16. K. Suzuki, K. Takiguchi, and K. Hotate, J. Lightwave Technol. 18, 66 (2000). [CrossRef]  

17. G. A. Sanders, L. K. Strandjord, and T. Qiu, Optical Fiber Sensors (Optical Society of America, 2006), paper ME6.

18. H. Mao, H. Ma, and Z. Jin, Opt. Express 19, 4632 (2011). [CrossRef]  

19. H. Ma, J. Zhang, L. Wang, and Z. Jin, Opt. Express 23, 15088 (2015). [CrossRef]  

20. J. Wang, L. Feng, Y. Tang, and Y. Zhi, Opt. Lett. 40, 155 (2015). [CrossRef]  

21. H. Ma, J. Zhang, L. Wang, Y. Lu, D. Ying, and Z. Jin, Opt. Lett. 40, 5862 (2015). [CrossRef]  

22. W. C. Goss, R. Goldstein, M. D. Nelson, H. T. Fearnehaugh, and O. G. Ramer, Appl. Opt. 19, 852 (1980). [CrossRef]  

23. R. A. Bergh, H. C. Lefevre, and H. J. Shaw, Opt. Lett. 6, 198 (1981). [CrossRef]  

24. W. K. Burns, R. P. Moeller, C. A. Villarruel, and M. Abebe, Opt. Lett. 8, 540 (1983). [CrossRef]  

25. S. Ezekiel and S. R. Balsamo, Appl. Phys. Lett. 30, 478 (1977). [CrossRef]  

26. J. L. Davis and S. Ezekiel, Opt. Lett. 6, 505 (1981). [CrossRef]  

27. G. A. Sanders, M. G. Prentiss, and S. Ezekiel, Opt. Lett. 6, 569 (1981). [CrossRef]  

28. R. E. Meyer, S. Ezekiel, D. W. Stowe, and V. J. Tekippe, Opt. Lett. 8, 644 (1983). [CrossRef]  

29. A. B. Matsko and V. S. Ilchenko, IEEE J. Sel. Top. Quantum Electron 12, 3 (2006). [CrossRef]  

30. A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, and L. Maleki, Opt. Express 15, 6768 (2007). [CrossRef]  

31. G. B. Malykin, Phys. Usp. 57, 714 (2014). [CrossRef]  

32. A. B. Matsko, A. A. Savchenkov, D. Strekalov, V. S. Ilchenko, and L. Maleki, Phys. Rev. A 71, 033804 (2005). [CrossRef]  

References

  • View by:

  1. G. Sagnac, C. R. Acad. Sci. 157, 708 (1913).
  2. E. J. Post, Rev. Mod. Phys. 39, 475 (1967).
    [Crossref]
  3. V. Vali and R. W. Shorthill, Appl. Opt. 15, 1099 (1976).
    [Crossref]
  4. H. J. Arditty and H. C. Lefevre, Opt. Lett. 6, 401 (1981).
    [Crossref]
  5. W. M. Macek and D. T. M. Davis, Appl. Phys. Lett. 2, 67 (1963).
    [Crossref]
  6. G. E. Stedman, Rep. Prog. Phys. 60, 615 (1997).
    [Crossref]
  7. K. U. Schreiber and J.-P. R. Wells, Rev. Sci. Instrum. 84, 041101 (2013).
    [Crossref]
  8. J. M. López-Higuera, Handbook of Optical Fibre Sensing Technology (Wiley, 2002).
  9. H. C. Lefevre, The Fiber-Optic Gyroscope (Artech House, 2014).
  10. N. Yazdi, F. Ayazi, and K. Najafi, Proc. IEEE 86, 1640 (1998).
    [Crossref]
  11. C. Acar and A. Shkel, MEMS Vibratory Gyroscopes: Structural Approaches to Improve Robustness (Springer, 2008).
  12. M. S. Weinberg, IEEE International Symposium on Inertial Sensors and Systems (ISISS) (2015), pp. 1–5.
  13. G. Zhanshe, C. Fucheng, L. Boyu, C. Le, L. Chao, and S. Ke, Microsyst. Technol. 21, 2053 (2015).
    [Crossref]
  14. C. Ciminelli, F. Dell’Olio, C. E. Campanella, and M. N. Armenise, Adv. Opt. Photon. 2, 370 (2010).
    [Crossref]
  15. J. Tawney, F. Hakimi, R. L. Willig, J. Alonzo, R. T. Bise, F. DiMarcello, E. M. Monberg, T. Stockert, and D. J. Trevor, Optical Fiber Sensors (Optical Society of America, 2006), paper ME8.
  16. K. Suzuki, K. Takiguchi, and K. Hotate, J. Lightwave Technol. 18, 66 (2000).
    [Crossref]
  17. G. A. Sanders, L. K. Strandjord, and T. Qiu, Optical Fiber Sensors (Optical Society of America, 2006), paper ME6.
  18. H. Mao, H. Ma, and Z. Jin, Opt. Express 19, 4632 (2011).
    [Crossref]
  19. H. Ma, J. Zhang, L. Wang, and Z. Jin, Opt. Express 23, 15088 (2015).
    [Crossref]
  20. J. Wang, L. Feng, Y. Tang, and Y. Zhi, Opt. Lett. 40, 155 (2015).
    [Crossref]
  21. H. Ma, J. Zhang, L. Wang, Y. Lu, D. Ying, and Z. Jin, Opt. Lett. 40, 5862 (2015).
    [Crossref]
  22. W. C. Goss, R. Goldstein, M. D. Nelson, H. T. Fearnehaugh, and O. G. Ramer, Appl. Opt. 19, 852 (1980).
    [Crossref]
  23. R. A. Bergh, H. C. Lefevre, and H. J. Shaw, Opt. Lett. 6, 198 (1981).
    [Crossref]
  24. W. K. Burns, R. P. Moeller, C. A. Villarruel, and M. Abebe, Opt. Lett. 8, 540 (1983).
    [Crossref]
  25. S. Ezekiel and S. R. Balsamo, Appl. Phys. Lett. 30, 478 (1977).
    [Crossref]
  26. J. L. Davis and S. Ezekiel, Opt. Lett. 6, 505 (1981).
    [Crossref]
  27. G. A. Sanders, M. G. Prentiss, and S. Ezekiel, Opt. Lett. 6, 569 (1981).
    [Crossref]
  28. R. E. Meyer, S. Ezekiel, D. W. Stowe, and V. J. Tekippe, Opt. Lett. 8, 644 (1983).
    [Crossref]
  29. A. B. Matsko and V. S. Ilchenko, IEEE J. Sel. Top. Quantum Electron 12, 3 (2006).
    [Crossref]
  30. A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, and L. Maleki, Opt. Express 15, 6768 (2007).
    [Crossref]
  31. G. B. Malykin, Phys. Usp. 57, 714 (2014).
    [Crossref]
  32. A. B. Matsko, A. A. Savchenkov, D. Strekalov, V. S. Ilchenko, and L. Maleki, Phys. Rev. A 71, 033804 (2005).
    [Crossref]

2015 (4)

2014 (1)

G. B. Malykin, Phys. Usp. 57, 714 (2014).
[Crossref]

2013 (1)

K. U. Schreiber and J.-P. R. Wells, Rev. Sci. Instrum. 84, 041101 (2013).
[Crossref]

2011 (1)

2010 (1)

2007 (1)

2006 (1)

A. B. Matsko and V. S. Ilchenko, IEEE J. Sel. Top. Quantum Electron 12, 3 (2006).
[Crossref]

2005 (1)

A. B. Matsko, A. A. Savchenkov, D. Strekalov, V. S. Ilchenko, and L. Maleki, Phys. Rev. A 71, 033804 (2005).
[Crossref]

2000 (1)

1998 (1)

N. Yazdi, F. Ayazi, and K. Najafi, Proc. IEEE 86, 1640 (1998).
[Crossref]

1997 (1)

G. E. Stedman, Rep. Prog. Phys. 60, 615 (1997).
[Crossref]

1983 (2)

1981 (4)

1980 (1)

1977 (1)

S. Ezekiel and S. R. Balsamo, Appl. Phys. Lett. 30, 478 (1977).
[Crossref]

1976 (1)

1967 (1)

E. J. Post, Rev. Mod. Phys. 39, 475 (1967).
[Crossref]

1963 (1)

W. M. Macek and D. T. M. Davis, Appl. Phys. Lett. 2, 67 (1963).
[Crossref]

1913 (1)

G. Sagnac, C. R. Acad. Sci. 157, 708 (1913).

Abebe, M.

Acar, C.

C. Acar and A. Shkel, MEMS Vibratory Gyroscopes: Structural Approaches to Improve Robustness (Springer, 2008).

Alonzo, J.

J. Tawney, F. Hakimi, R. L. Willig, J. Alonzo, R. T. Bise, F. DiMarcello, E. M. Monberg, T. Stockert, and D. J. Trevor, Optical Fiber Sensors (Optical Society of America, 2006), paper ME8.

Arditty, H. J.

Armenise, M. N.

Ayazi, F.

N. Yazdi, F. Ayazi, and K. Najafi, Proc. IEEE 86, 1640 (1998).
[Crossref]

Balsamo, S. R.

S. Ezekiel and S. R. Balsamo, Appl. Phys. Lett. 30, 478 (1977).
[Crossref]

Bergh, R. A.

Bise, R. T.

J. Tawney, F. Hakimi, R. L. Willig, J. Alonzo, R. T. Bise, F. DiMarcello, E. M. Monberg, T. Stockert, and D. J. Trevor, Optical Fiber Sensors (Optical Society of America, 2006), paper ME8.

Boyu, L.

G. Zhanshe, C. Fucheng, L. Boyu, C. Le, L. Chao, and S. Ke, Microsyst. Technol. 21, 2053 (2015).
[Crossref]

Burns, W. K.

Campanella, C. E.

Chao, L.

G. Zhanshe, C. Fucheng, L. Boyu, C. Le, L. Chao, and S. Ke, Microsyst. Technol. 21, 2053 (2015).
[Crossref]

Ciminelli, C.

Davis, D. T. M.

W. M. Macek and D. T. M. Davis, Appl. Phys. Lett. 2, 67 (1963).
[Crossref]

Davis, J. L.

Dell’Olio, F.

DiMarcello, F.

J. Tawney, F. Hakimi, R. L. Willig, J. Alonzo, R. T. Bise, F. DiMarcello, E. M. Monberg, T. Stockert, and D. J. Trevor, Optical Fiber Sensors (Optical Society of America, 2006), paper ME8.

Ezekiel, S.

Fearnehaugh, H. T.

Feng, L.

Fucheng, C.

G. Zhanshe, C. Fucheng, L. Boyu, C. Le, L. Chao, and S. Ke, Microsyst. Technol. 21, 2053 (2015).
[Crossref]

Goldstein, R.

Goss, W. C.

Hakimi, F.

J. Tawney, F. Hakimi, R. L. Willig, J. Alonzo, R. T. Bise, F. DiMarcello, E. M. Monberg, T. Stockert, and D. J. Trevor, Optical Fiber Sensors (Optical Society of America, 2006), paper ME8.

Hotate, K.

Ilchenko, V. S.

A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, and L. Maleki, Opt. Express 15, 6768 (2007).
[Crossref]

A. B. Matsko and V. S. Ilchenko, IEEE J. Sel. Top. Quantum Electron 12, 3 (2006).
[Crossref]

A. B. Matsko, A. A. Savchenkov, D. Strekalov, V. S. Ilchenko, and L. Maleki, Phys. Rev. A 71, 033804 (2005).
[Crossref]

Jin, Z.

Ke, S.

G. Zhanshe, C. Fucheng, L. Boyu, C. Le, L. Chao, and S. Ke, Microsyst. Technol. 21, 2053 (2015).
[Crossref]

Le, C.

G. Zhanshe, C. Fucheng, L. Boyu, C. Le, L. Chao, and S. Ke, Microsyst. Technol. 21, 2053 (2015).
[Crossref]

Lefevre, H. C.

López-Higuera, J. M.

J. M. López-Higuera, Handbook of Optical Fibre Sensing Technology (Wiley, 2002).

Lu, Y.

Ma, H.

Macek, W. M.

W. M. Macek and D. T. M. Davis, Appl. Phys. Lett. 2, 67 (1963).
[Crossref]

Maleki, L.

A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, and L. Maleki, Opt. Express 15, 6768 (2007).
[Crossref]

A. B. Matsko, A. A. Savchenkov, D. Strekalov, V. S. Ilchenko, and L. Maleki, Phys. Rev. A 71, 033804 (2005).
[Crossref]

Malykin, G. B.

G. B. Malykin, Phys. Usp. 57, 714 (2014).
[Crossref]

Mao, H.

Matsko, A. B.

A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, and L. Maleki, Opt. Express 15, 6768 (2007).
[Crossref]

A. B. Matsko and V. S. Ilchenko, IEEE J. Sel. Top. Quantum Electron 12, 3 (2006).
[Crossref]

A. B. Matsko, A. A. Savchenkov, D. Strekalov, V. S. Ilchenko, and L. Maleki, Phys. Rev. A 71, 033804 (2005).
[Crossref]

Meyer, R. E.

Moeller, R. P.

Monberg, E. M.

J. Tawney, F. Hakimi, R. L. Willig, J. Alonzo, R. T. Bise, F. DiMarcello, E. M. Monberg, T. Stockert, and D. J. Trevor, Optical Fiber Sensors (Optical Society of America, 2006), paper ME8.

Najafi, K.

N. Yazdi, F. Ayazi, and K. Najafi, Proc. IEEE 86, 1640 (1998).
[Crossref]

Nelson, M. D.

Post, E. J.

E. J. Post, Rev. Mod. Phys. 39, 475 (1967).
[Crossref]

Prentiss, M. G.

Qiu, T.

G. A. Sanders, L. K. Strandjord, and T. Qiu, Optical Fiber Sensors (Optical Society of America, 2006), paper ME6.

Ramer, O. G.

Sagnac, G.

G. Sagnac, C. R. Acad. Sci. 157, 708 (1913).

Sanders, G. A.

G. A. Sanders, M. G. Prentiss, and S. Ezekiel, Opt. Lett. 6, 569 (1981).
[Crossref]

G. A. Sanders, L. K. Strandjord, and T. Qiu, Optical Fiber Sensors (Optical Society of America, 2006), paper ME6.

Savchenkov, A. A.

A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, and L. Maleki, Opt. Express 15, 6768 (2007).
[Crossref]

A. B. Matsko, A. A. Savchenkov, D. Strekalov, V. S. Ilchenko, and L. Maleki, Phys. Rev. A 71, 033804 (2005).
[Crossref]

Schreiber, K. U.

K. U. Schreiber and J.-P. R. Wells, Rev. Sci. Instrum. 84, 041101 (2013).
[Crossref]

Shaw, H. J.

Shkel, A.

C. Acar and A. Shkel, MEMS Vibratory Gyroscopes: Structural Approaches to Improve Robustness (Springer, 2008).

Shorthill, R. W.

Stedman, G. E.

G. E. Stedman, Rep. Prog. Phys. 60, 615 (1997).
[Crossref]

Stockert, T.

J. Tawney, F. Hakimi, R. L. Willig, J. Alonzo, R. T. Bise, F. DiMarcello, E. M. Monberg, T. Stockert, and D. J. Trevor, Optical Fiber Sensors (Optical Society of America, 2006), paper ME8.

Stowe, D. W.

Strandjord, L. K.

G. A. Sanders, L. K. Strandjord, and T. Qiu, Optical Fiber Sensors (Optical Society of America, 2006), paper ME6.

Strekalov, D.

A. B. Matsko, A. A. Savchenkov, D. Strekalov, V. S. Ilchenko, and L. Maleki, Phys. Rev. A 71, 033804 (2005).
[Crossref]

Suzuki, K.

Takiguchi, K.

Tang, Y.

Tawney, J.

J. Tawney, F. Hakimi, R. L. Willig, J. Alonzo, R. T. Bise, F. DiMarcello, E. M. Monberg, T. Stockert, and D. J. Trevor, Optical Fiber Sensors (Optical Society of America, 2006), paper ME8.

Tekippe, V. J.

Trevor, D. J.

J. Tawney, F. Hakimi, R. L. Willig, J. Alonzo, R. T. Bise, F. DiMarcello, E. M. Monberg, T. Stockert, and D. J. Trevor, Optical Fiber Sensors (Optical Society of America, 2006), paper ME8.

Vali, V.

Villarruel, C. A.

Wang, J.

Wang, L.

Weinberg, M. S.

M. S. Weinberg, IEEE International Symposium on Inertial Sensors and Systems (ISISS) (2015), pp. 1–5.

Wells, J.-P. R.

K. U. Schreiber and J.-P. R. Wells, Rev. Sci. Instrum. 84, 041101 (2013).
[Crossref]

Willig, R. L.

J. Tawney, F. Hakimi, R. L. Willig, J. Alonzo, R. T. Bise, F. DiMarcello, E. M. Monberg, T. Stockert, and D. J. Trevor, Optical Fiber Sensors (Optical Society of America, 2006), paper ME8.

Yazdi, N.

N. Yazdi, F. Ayazi, and K. Najafi, Proc. IEEE 86, 1640 (1998).
[Crossref]

Ying, D.

Zhang, J.

Zhanshe, G.

G. Zhanshe, C. Fucheng, L. Boyu, C. Le, L. Chao, and S. Ke, Microsyst. Technol. 21, 2053 (2015).
[Crossref]

Zhi, Y.

Adv. Opt. Photon. (1)

Appl. Opt. (2)

Appl. Phys. Lett. (2)

S. Ezekiel and S. R. Balsamo, Appl. Phys. Lett. 30, 478 (1977).
[Crossref]

W. M. Macek and D. T. M. Davis, Appl. Phys. Lett. 2, 67 (1963).
[Crossref]

C. R. Acad. Sci. (1)

G. Sagnac, C. R. Acad. Sci. 157, 708 (1913).

IEEE J. Sel. Top. Quantum Electron (1)

A. B. Matsko and V. S. Ilchenko, IEEE J. Sel. Top. Quantum Electron 12, 3 (2006).
[Crossref]

J. Lightwave Technol. (1)

Microsyst. Technol. (1)

G. Zhanshe, C. Fucheng, L. Boyu, C. Le, L. Chao, and S. Ke, Microsyst. Technol. 21, 2053 (2015).
[Crossref]

Opt. Express (3)

Opt. Lett. (8)

Phys. Rev. A (1)

A. B. Matsko, A. A. Savchenkov, D. Strekalov, V. S. Ilchenko, and L. Maleki, Phys. Rev. A 71, 033804 (2005).
[Crossref]

Phys. Usp. (1)

G. B. Malykin, Phys. Usp. 57, 714 (2014).
[Crossref]

Proc. IEEE (1)

N. Yazdi, F. Ayazi, and K. Najafi, Proc. IEEE 86, 1640 (1998).
[Crossref]

Rep. Prog. Phys. (1)

G. E. Stedman, Rep. Prog. Phys. 60, 615 (1997).
[Crossref]

Rev. Mod. Phys. (1)

E. J. Post, Rev. Mod. Phys. 39, 475 (1967).
[Crossref]

Rev. Sci. Instrum. (1)

K. U. Schreiber and J.-P. R. Wells, Rev. Sci. Instrum. 84, 041101 (2013).
[Crossref]

Other (6)

J. M. López-Higuera, Handbook of Optical Fibre Sensing Technology (Wiley, 2002).

H. C. Lefevre, The Fiber-Optic Gyroscope (Artech House, 2014).

C. Acar and A. Shkel, MEMS Vibratory Gyroscopes: Structural Approaches to Improve Robustness (Springer, 2008).

M. S. Weinberg, IEEE International Symposium on Inertial Sensors and Systems (ISISS) (2015), pp. 1–5.

J. Tawney, F. Hakimi, R. L. Willig, J. Alonzo, R. T. Bise, F. DiMarcello, E. M. Monberg, T. Stockert, and D. J. Trevor, Optical Fiber Sensors (Optical Society of America, 2006), paper ME8.

G. A. Sanders, L. K. Strandjord, and T. Qiu, Optical Fiber Sensors (Optical Society of America, 2006), paper ME6.

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. Schematic of the experimental setup. A frequency modulated semiconductor laser is locked to the CCW mode of a crystalline WGMR by using the PDH technique. The rotation signal is obtained by measuring the phase delay of the modulation signal interacting with the CW resonator mode.
Fig. 2.
Fig. 2. (a) Drawing and (b) photograph of the assembled gyroscope unit.
Fig. 3.
Fig. 3. Measured sensitivity of the gyroscope. The inset shows a time trace of the signal measured when the gyroscope is at rest. The short-term uncertainty of the angular speed due to ARW is defined as T1/2 ARW (T is the averaging time). ARW is evaluated by finding the crossing of the log scale data set with a line proportional to T1/2 [11]. For instance, if the line reaches 1deg/h sensitivity at T=1s, the ARW is (1/60)deg/h1/2 Bias drift is evaluated by finding a line proportional to T0 that limits the data set from below.
Fig. 4.
Fig. 4. Equivalent change of the resonator diameter corresponding to the measurement sensitivity of 1deg/h.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

δΩ=2πaλn0Ω,
Δa=aδΩω0=a2cn0Ω.
B˙cw=[i(δ0δΩ)+γ]Bcw+iβBccw+ig[|Bcw|2+2|Bccw|2]Bcw+Fcw,
B˙ccw=[i(δ0+δΩ)+γ]Bccw+iβBcw+ig[|Bccw|2+2|Bcw|2]Bccw+Fccw,
Boutcw,ccw=Fcw,ccwτ/2γc+2γcτBcw,ccw,
δΩshift=gPγcω(|κ|21)+β2(|κ|21)cosφ+β2γ0sin(2φ),
δΩ2γ02>2[ωP+2g2Pγ04ω]Δf.

Metrics