Abstract

Coherent quantum control and resonance fluorescence of few-level quantum systems is integral for quantum technologies. Here we perform resonance and near-resonance excitation of three-dimensionally confined excitons in monolayer WSe2 to reveal near-ideal single-photon fluorescence with count rates up to 3 MHz. Using high-resolution photoluminescence excitation spectroscopy of the localized excitons, we uncover a weakly fluorescent exciton state 5meV blue shifted from the ground-state exciton, providing important information to unravel the precise nature of quantum states. Successful demonstration of resonance fluorescence paves the way to probe the localized exciton coherence in two-dimensional semiconductors.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

1. INTRODUCTION

Near-resonance optical excitation of quantized matter underpins the field of quantum photonics. It enables the initialization, coherent manipulation, and readout of the quantum states [16] and, via resonance fluorescence [7,8], the generation of indistinguishable single photons [912], a crucial resource for future quantum technologies [13]. In the solid state, such quantum optical demonstrations have been made with quantum dots [14,7,12], single molecules [8,9], and crystal defects [5,6,11]. For fundamental investigations, resonant or near-resonant optical excitation is invaluable to probe the coherence and dephasing mechanisms in few-level quantum systems.

Rapid progress has recently been made in understanding the two-dimensional exciton (2D-X), spin, and valley-pseudospin properties in monolayer transition metal dichalcogenide (TMD) semiconductors [1416]. The first Brillouin zone of a monolayer TMD, such as MoS2, WS2, WSe2, or MoSe2, has a hexagonal shape that accommodates three pairs of degenerate but inequivalent edges, often denoted by K and -K, which exhibit a direct bandgap with unique selection rules: for W-based TMDs, left- (right-) handed circular polarized photons couple to interband transitions in the K (-K) valley only [1518]. Further, strong spin-orbit coupling links the spin and the valley pseudospin, giving rise to spin-dependent optical selection rules. Also unique to these semiconductors with intrinsic two-dimensional confinement are very strong Coulomb interactions, large effective masses, and reduced dielectric screening, which lead to large exciton binding energies (0.5eV) and small Bohr radii (<1nm) [19,20].

Recently, localized excitons that exhibit substantially reduced linewidths compared to 2D-X have been discovered in two-dimensional materials [2128]. However, besides their basic magneto-optical properties, these quantum emitters have yet to be explored in detail. Fundamental open questions revolve around the precise nature of three-dimensional confinement and its effect on emitter properties, e.g., spin-orbit coupling and valley hybridization [29], which impact the potential for a coherent spin-valley qubit that can be coherently controlled with near-resonance optical excitation [30].

Here we focus on single quantum emitters in WSe2, in which a range of observed magneto-optical properties are broadly categorized as follows: (i) emitters with a fine-structure splitting (FSS) of 0.6–0.8 meV caused by exchange interactions that exhibit a large (7–10) exciton g-factor [2124,26]. The FSS doublet typically exhibits equal intensity and orthogonal linear polarization, but not exclusively [26]. (ii) Emitters with a smaller FSS doublet (0.3meV) with approximately parallel linear polarization and a very small g-factor. (iii) Spectral lines without measurable FSS that do not exhibit any or extremely small Zeeman splitting even for Bext=9T [22]. These emitters are typically linearly polarized, and the degree of linear polarization is unchanged with a magnetic field. In this paper, we investigate emitters in categories (ii) and (iii).

2. ISOLATED QUANTUM EMITTER WITH HIGH-PURITY SINGLE-PHOTON EMISSION

First, we show in Fig. 1 that monolayer WSe2 is a suitable host for a pure single-photon emitter. Under nonresonant excitation, a highly spectrally and spatially isolated emitter delivers single-photon emission with a single-photon purity g(2)(0)2% and a single-photon count-rate >3MHz at saturation. A low-resolution microphotoluminescence (μ-PL) spectrum of emitter A, described by emitter category (iii) above, is shown in Fig. 1(a). In contrast to all previous observations, where sharp emission lines have been accompanied by extraneous emissions from other localized emitters or 2D-X [2128], here we demonstrate an emission spectrum dominated by a single quantum emitter. The 2D-X emission is highly suppressed as the optically excited electron-hole pairs are efficiently captured by a single confined exciton. The left inset of Fig. 1(a) shows the high-resolution μ-PL spectrum, revealing the zero-phonon line (ZPL) and a low-energy phonon sideband (PSB). The intensity ratio of ZPL:PSB is 6040. Figure 1(b) presents the second-order correlation function g(2)(τ) under nonresonant CW excitation. Using Bayesian statistics (see Section IV of Supplement 1 for details) to fit (solid lines) the measured data (closed circles), we obtain a deconvolved g(2)(0)=0.022±0.004 (see also the right inset of Fig. 1(b) for the probability density plot). This high single-photon purity is essential for future quantum photonic applications.

 figure: Fig. 1.

Fig. 1. (a) A low-resolution emission spectrum from location A on the WSe2 monolayer showing a single emission line from a single localized emitter. Inset left: a high-resolution spectrum showing the ZPL and a low-energy phonon sideband (PSB). Inset right: color-coded normalized peak intensities map of emitter A and a neighboring emitter B with strong spatial localization of both emitters. (b) Normalized second-order correlation function g(2)(τ) of the emission line of emitter A exhibiting nearly perfect antibunching. The solid red line is a 95% confidence band for fitting of the measured data. The thin cyan line is the calculated deconvolved g(2)(τ). Time bin=128ps. Nonresonant CW excitation at λ=532nm with powers of 4 nW for (a) and 2 nW for (b). Inset left: power dependence of integrated intensity and photon counting rate for emitter A. Inset right: the probability density of g(2)(0) calculated using the probabilistic values of the fitted parameters.

Download Full Size | PPT Slide | PDF

3. RESONANCE FLUORESCENCE FROM A SINGLE QUANTUM EMITTER

We now present resonance fluorescence (RF) from a single quantum emitter in monolayer WSe2. Emitter B, belonging to emitter category (ii) above, was chosen due to its favorable wavelength (λ784.69nm) for our tunable laser diode and good spatial and spectral isolation [see right inset of Fig. 1(a)]. Nonresonant μ-PL was first used to identify the ZPL wavelength, and then the excitation laser was tuned into the resonance. The background laser scattering was highly, but not completely, suppressed using orthogonal linear polarizers in the excitation and collection arms of the microscope (see Section 7). We split the RF signal into two parts: 70% was measured by an avalanche photodiode (APD) [see Fig. 2(a)] and 30% by a spectrometer [see Fig. 2(b)]. By fitting each spectrum in Fig. 2(b), the emitter peak energy detuning (δ=ElaserEp1, where Ep1 is the peak emission energy), is determined [see Fig. 2(c)]. Two example spectra with fits are shown in Fig. 2(e). The single photon count-rate dynamics are directly correlated with δ. We ascribe the slow spectral fluctuations to charge noise in the emitter environment, similar to that observed in semiconductor quantum dots [31,32]. A maximum count rate (mean background level) of 1.7 (0.4) MHz is observed when the emitter is in resonance (out of resonance) with the excitation laser. A second-order coherence measurement during a time interval when the emitter was in resonance with the excitation laser yielded g(2)(0)=0.341±0.007, conclusively demonstrating that the RF signal is indeed composed of quantum light [see Fig. 2(d)]. A signal-to-background of 4.3 is obtained by fitting the measured antibunching data, in agreement with the maximum signal and background count rates shown in Fig. 2(a).

 figure: Fig. 2.

Fig. 2. Simultaneous time traces of the fluorescence from emitter B under resonant CW excitation at λ=784.69460nm with a power of 1 μW as recorded on (a) an APD and (b) a high-resolution spectrometer with 70 ms and 5 s integration, respectively. The background level of 0.4 MHz shown by a horizontal dashed line in (a) and the line at 1580.03meV in (b) is due to the scattered excitation laser. (c) The time trace of emitter detuning δ=ElaserEp1 of the dominant emission line p1 of emitter B. The gray area is the fitting errors of δ. (d) g(2)(τ) for a time interval when δ0. The solid thick line is a 95% confidence band for fitting of the measured data. The dashed line shows the experimental limitation for g(2)(0) due to the scattered laser background. (e) The fluorescence spectra of emitter B at two different time instances marked by black (blue) dashed lines in (a)–(c) corresponding to time t=12.8 (16.2) min for δ=10 (190) μeV. The black (blue) closed circles are measured data and solid lines are fits.

Download Full Size | PPT Slide | PDF

4. HIGH-RESOLUTION LASER SPECTROSCOPY AND OBSERVATION OF A WEAKLY FLUORESCENT BLUE-SHIFTED EXCITON (BS-X)

The polarization properties of emitter B under nonresonant excitation are shown in Fig. 3(a). The brightest peak p1 is accompanied by peak p2 (p0) on its low- (high-) energy side, energetically separated by 330 (600) μeV. The polarization-resolved μ-PL map [see Fig. 3(a): bottom] shows that peaks p1 and p2 are linearly polarized along almost the same direction, and peak p0 is polarized at slightly different angle (see Section I of Supplement 1 for the quantitative analysis). Notably, under resonant excitation conditions [see Figs. 2(b) and 2(e) and Figs. S2 and S3 of Supplement 1], emission from p2 is highly suppressed compared to the nonresonant excitation. This result provides a hint that a specific valley index can be optically addressed, encouraging further investigations.

 figure: Fig. 3.

Fig. 3. (a) Polarization-resolved single fluorescence spectrum (top) and color-coded intensity map (bottom) of emitter B under nonresonant excitation showing three emission lines. (b) The PLE spectrum of emitter B shows two bright-exciton peaks p0 and p1 and a BS-X resonance. Closed blue circles are integrated intensities of the line p1 obtained by scanning the laser wavelengths. The open red circles are PLE resonances for peaks p1 and p0 obtained using high-resolution PLE spectroscopy. Peak p2 is not visible in this experiment due to its lower emission energy.

Download Full Size | PPT Slide | PDF

The photoluminescence excitation (PLE) spectrum of emitter B over an extended range of detuning is shown in Fig. 3(b). The closed (open) circles are obtained using the conventional (high-resolution) PLE method. For the conventional method, the resonant laser was scanned manually with a step size of 100μeV, and the integrated intensity of peak p1 was recorded. This method does not allow us to measure the resonances with an accuracy better than 100μeV due to the spectral fluctuations that could occur over the acquisition time of a single μ-PL spectrum. We take advantage of these spectral fluctuations over time to perform high-resolution PLE spectroscopy. This is done by keeping the laser at a fixed wavelength and allowing the spectral fluctuations to detune the emitter randomly, which can then be determined with a fitting limited accuracy of ±5μeV. This allows us to measure several δ values and corresponding intensities at a single excitation wavelength. The resonances of peaks p1, p0, and a high-energy PSB are clearly resolved. More importantly, an additional resonance peak, blue shifted by 4.75meV from p1, is also observed. The μ-PL spectrum of emitter B under nonresonant excitation shows negligible emission at this energy (see Fig. S2 of Supplement 1).

To investigate if the blue-shifted exciton (BS-X) observed in PLE is an intrinsic property of the quantum emitters in monolayer WSe2, we probe a third emitter. Emitter C, from the same monolayer flake and belonging to emitter category (iii), exhibits a BS-X detuned from the ground state exciton by 5.07±0.01meV. We compare the PLE spectrum [Fig. 4(a)] with a μ-PL spectrum [Fig. 4(b), which has a high-resolution, logarithmic intensity scale spectrum shown in the inset]. Compared to the ground-state exciton, the μ-PL emission from BS-X is suppressed by a factor of 1,250.

 figure: Fig. 4.

Fig. 4. (a) PLE spectrum of emitter C identifying the “BS-X” exciton at an energy 5meV higher than the ground-state exciton. The closed blue circles are data points, while the solid red curve is a guide for the eye composed of three Gaussian functions. (b) The fluorescence spectrum of emitter C under nonresonant excitation at a power of 4 μW. The spectrum matches the energy range for which PLE is performed in (a). Insets: the full fluorescence spectrum of emitter C acquired on the high-resolution grating under nonresonant excitation. (c) The fluorescence spectrum of emitter C under resonant excitation of the BS-X. The excitation power for (a) and (c) was 80 nW. Inset: schematic of resonant excitation to the BS-X and emission via the ground-state exciton. (d) g(2)(τ) under resonant CW excitation of the BS-X.

Download Full Size | PPT Slide | PDF

5. HIGH-PURITY SINGLE-PHOTON EMISSION UNDER RESONANT EXCITATION OF BS-X

Finally, we establish high-purity single-photon emission from the ground-state exciton under the resonant excitation of the BS-X state. Figure 4(c) shows a spectrum consisting of the low-energy bright exciton emission and the scattered excitation laser due to imperfect polarization cancellation. This laser peak can be filtered with high fidelity, enabling clean g(2)(τ) measurements, as shown in Fig. 4(d). A deconvolved g(2)(0) value of <0.002 is achieved, demonstrating a single-photon source with perfect purity.

6. DISCUSSION AND SUMMARY

The experiments have revealed that optical absorption into the BS-X state quickly relaxes into the ground state exciton state, from which it can emit pure single photons. We currently do not understand the nature or origin of BS-X, but we exclude coupling to the lowest-energy discrete phonon mode [33]. One possibility is that the BS-X is a charged species that quickly relaxes into the ground-state exciton, motivating future experiments with charge-tunable samples [24]. Another possibility is that the BS-X state is a mostly optically inactive dark exciton. For W-based monolayer TMDs (WS2, WSe2), the electron spin in the lowest conduction band is antiparallel to hole spin in the highest valence band, leading to optically inactive dark states, which limits their quantum efficiency for light emission at low temperatures in comparison to Mo-based monolayer TMDs such as MoSe2 [34,35]. Similar to valley hybridization, the optical activity of localized dark excitons could be linked to the symmetry of the confinement potential and underlying crystal lattice. Further investigations are required to understand the nature of the ground-state excitons and BS-X. Tantalizingly, unlike with strict resonance fluorescence, the BS-X offers future opportunities to investigate spin-valley coupling using excitation and fluorescence detection in both co-polarized and cross-polarized configurations.

We have demonstrated that monolayer WSe2 is a benevolent host for a pure single-photon emitter. These quantum emitters yield bright, stable, and highly pure quantum light. The two-dimensional nature of the platform provides unique opportunities to engineer the light-matter interaction and integrate onto quantum photonic chips. We unambiguously achieve resonance fluorescence from the quantum emitters in spite of significant spectral fluctuations and background laser scattering. Strategies such as incorporating the single-photon emitters into tunable electronic devices and surface passivation or encapsulation are likely to provide significant improvement. While the spectral fluctuations create challenges for quantum control and resonance fluorescence, we also demonstrate its utility for high-resolution PLE spectroscopy. PLE yields the direct observation of a three-dimensionally confined weakly fluorescent exciton state that is energetically blue shifted by 5meV. Resonant excitation of this BS-X state provides an extremely robust and pure single-photon source. The high-resolution characterization of the bright-exciton fine structure and the experimental observation of the BS-X are important results to better understand the specific nature of these localized excitons. The resonance fluorescence and laser spectroscopy techniques demonstrated here raise the prospect for indistinguishable single-photon generation and investigations of the spin and valley coherence of strongly confined excitons in 2D-TMDs.

7. METHODS

Sample fabrication: Using an all-dry viscoelastic stamping procedure [36], we integrate a mechanically exfoliated WSe2 flake onto a few layers of h-BN on top of a piezoelectric actuator so that in-plane dynamic strain could be induced in the flake by applying an out-of-plane electric field to the actuator. The actuator is made of a PMN-PT substrate. In the context of this paper, all experiments have been performed at the zero external electric field to the actuator, and therefore, both the top and bottom Ti/Au (5/100 nm) electrodes of the actuator have been grounded. All measurements have been performed on a single monolayer, which has been identified using optical micrographs and spatial maps of μ-PL.

Experimental Setup: A confocal microscope with an objective lens with an NA of 0.82, yielding a diffraction limited focus of 460nm at λ=750nm, was used for resonant laser spectroscopy. A CW tunable laser diode, covering a wavelength range of 765–805 nm, was used for resonant excitation. λ=532nm was used for nonresonant CW excitation. The fluorescence signal was separated from the excitation laser via orthogonally oriented linear polarizers in the excitation and collection arms of the microscope. This yields a 107 suppression of laser counts on smooth substrates, but the rough gold surface used here yields 105 suppression at best. The sample was placed on automated nanopositioners at T=4K in a closed-cycle cryostat. All spectra were acquired with a 0.5 m focal length spectrometer and a nitrogen-cooled charge-coupled device with a measured spectral resolution of 75μeV at λ=784nm for an 1800 l/mm grating. A separate confocal microscope is used to perform the polarization-resolved μ-PL measurements. A fiber-based Hanbury Brown and Twiss interferometer was used for second-order correlation measurements, and photon counting was performed using Si APDs.

Funding

Royal Society; Engineering and Physical Sciences Research Council (EPSRC) (EP/I023186/1, EP/K015338/1, EP/L015110/1); European Research Council (ERC) (307392); Spanish Government (TEC2014-53727-C2-1-R); Comunidad Valenciana Government (PROMETEOII/2014/059); University of Valencia (UV-INV-PREDOC13-110538).

Acknowledgment

We thank B. Urbaszek for the fruitful discussion, A. Rastelli for the data analysis software, and A. C. Dada for assisting us with the experimental setup.

 

See Supplement 1 for supporting content.

REFERENCES

1. D. Press, T. D. Ladd, B. Zhang, and Y. Yamamoto, “Complete quantum control of a single quantum dot spin using ultrafast optical pulses,” Nature 456, 218–221 (2008). [CrossRef]  

2. A. J. Ramsay, S. J. Boyle, R. S. Kolodka, J. B. B. Oliveira, J. Skiba-Szymanska, H. Y. Liu, M. Hopkinson, A. M. Fox, and M. S. Skolnick, “Fast optical preparation, control, and readout of a single quantum dot spin,” Phys. Rev. Lett. 100, 197401 (2008). [CrossRef]  

3. D. Kim, S. G. Carter, A. Greilich, A. S. Bracker, and D. Gammon, “Ultrafast optical control of entanglement between two quantum-dot spins,” Nat. Phys. 7, 223–229 (2011). [CrossRef]  

4. E. Poem, O. Kenneth, Y. Kodriano, Y. Benny, S. Khatsevich, J. E. Avron, and D. Gershoni, “Optically induced rotation of an exciton spin in a semiconductor quantum dot,” Phys. Rev. Lett. 107, 087401 (2011). [CrossRef]  

5. C. G. Yale, B. B. Buckley, D. J. Christle, G. Burkard, F. J. Heremans, L. C. Bassett, and D. D. Awschalom, “All-optical control of a solid-state spin using coherent dark states,” Proc. Natl. Acad. Sci. USA 110, 7595 (2013). [CrossRef]  

6. K. Xia, R. Kolesov, Y. Wang, P. Siyushev, R. Reuter, T. Kornher, N. Kukharchyk, A. D. Wieck, B. Villa, S. Yang, and J. Wrachtrup, “All-optical preparation of coherent dark states of a single rare earth ion spin in a crystal,” Phys. Rev. Lett. 115, 093602 (2015). [CrossRef]  

7. A. Muller, E. B. Flagg, P. Bianucci, X. Y. Wang, D. G. Deppe, W. Ma, J. Zhang, G. J. Salamo, M. Xiao, and C. K. Shih, “Resonance fluorescence from a coherently driven semiconductor quantum dot in a cavity,” Phys. Rev. Lett. 99, 187402 (2007). [CrossRef]  

8. G. Wrigge, I. Gerhardt, J. Hwang, G. Zumofen, and V. Sandoghdar, “Efficient coupling of photons to a single molecule and the observation of its resonance fluorescence,” Nat. Phys. 4, 60–66 (2008). [CrossRef]  

9. R. Lettow, Y. L. A. Rezus, A. Renn, G. Zumofen, E. Ikonen, S. Goetzinger, and V. Sandoghdar, “Quantum interference of tunably indistinguishable photons from remote organic molecules,” Phys. Rev. Lett. 104, 123605 (2010). [CrossRef]  

10. Y.-M. He, Y. He, Y.-J. Wei, D. Wu, M. Atatuere, C. Schneider, S. Hoefling, M. Kamp, C.-Y. Lu, and J.-W. Pan, “On-demand semiconductor single-photon source with near-unity indistinguishability,” Nat. Nanotechnol. 8, 213–217 (2013). [CrossRef]  

11. A. Sipahigil, K. D. Jahnke, L. J. Rogers, T. Teraji, J. Isoya, A. S. Zibrov, F. Jelezko, and M. D. Lukin, “Indistinguishable photons from separated silicon-vacancy centers in diamond,” Phys. Rev. Lett. 113, 113602 (2014). [CrossRef]  

12. R. Proux, M. Maragkou, E. Baudin, C. Voisin, P. Roussignol, and C. Diederichs, “Measuring the photon coalescence time window in the continuous-wave regime for resonantly driven semiconductor quantum dots,” Phys. Rev. Lett. 114, 067401 (2015). [CrossRef]  

13. W. B. Gao, A. Imamoglu, H. Bernien, and R. Hanson, “Coherent manipulation, measurement and entanglement of individual solid-state spins using optical fields,” Nat. Photonics 9, 363–373 (2015). [CrossRef]  

14. G.-B. Liu, D. Xiao, Y. Yao, X. Xu, and W. Yao, “Electronic structures and theoretical modelling of two-dimensional group-vib transition metal dichalcogenides,” Chem. Soc. Rev. 44, 2643–2663 (2015). [CrossRef]  

15. X. Xu, W. Yao, D. Xiao, and T. F. Heinz, “Spin and pseudospins in layered transition metal dichalcogenides,” Nat. Phys. 10, 343–350 (2014). [CrossRef]  

16. M. M. Glazov, E. L. Ivchenko, G. Wang, T. Amand, X. Marie, B. Urbaszek, and B. L. Liu, “Spin and valley dynamics of excitons in transition metal dichalcogenide monolayers,” Phys. Status Solidi B 252, 2349–2362 (2015). [CrossRef]  

17. A. M. Jones, H. Yu, N. J. Ghimire, S. Wu, G. Aivazian, J. S. Ross, B. Zhao, J. Yan, D. G. Mandrus, D. Xiao, W. Yao, and X. Xu, “Optical generation of excitonic valley coherence in monolayer WSe2,” Nat. Nanotechnol. 8, 634–638 (2013). [CrossRef]  

18. G. Wang, L. Bouet, D. Lagarde, M. Vidal, A. Balocchi, T. Amand, X. Marie, and B. Urbaszek, “Valley dynamics probed through charged and neutral exciton emission in monolayer WSe2,” Phys. Rev. B 90, 075413 (2014). [CrossRef]  

19. K. He, N. Kumar, L. Zhao, Z. Wang, K. F. Mak, H. Zhao, and J. Shan, “Tightly bound excitons in monolayer WSe2,” Phys. Rev. Lett. 113, 026803 (2014). [CrossRef]  

20. A. Chernikov, T. C. Berkelbach, H. M. Hill, A. Rigosi, Y. Li, O. B. Aslan, D. R. Reichman, M. S. Hybertsen, and T. F. Heinz, “Exciton binding energy and nonhydrogenic Rydberg series in monolayer WS2,” Phys. Rev. Lett. 113, 076802 (2014). [CrossRef]  

21. A. Srivastava, M. Sidler, A. V. Allain, D. S. Lembke, A. Kis, and A. Imamoglu, “Optically active quantum dots in monolayer WSe2,” Nat. Nanotechnol. 10, 491–496 (2015). [CrossRef]  

22. Y.-M. He, G. Clark, J. R. Schaibley, Y. He, M.-C. Chen, Y.-J. Wei, X. Ding, Q. Zhang, W. Yao, C.-Y. Xu, X. Lu, and J.-W. Pan, “Single quantum emitters in monolayer semiconductors,” Nat. Nanotechnol. 10, 497–502 (2015). [CrossRef]  

23. M. Koperski, K. Nogajewski, A. Arora, J. Marcus, P. Kossacki, and M. Potemski, “Single photon emitters in exfoliated WSe2 structures,” Nat. Nanotechnol. 10, 503–506 (2015). [CrossRef]  

24. C. Chakraborty, L. Kinnischtzke, K. M. Goodfellow, R. Beams, and A. N. Vamivakas, “Voltage-controlled quantum light from an atomically thin semiconductor,” Nat. Nanotechnol. 10, 507–511 (2015). [CrossRef]  

25. P. Tonndorf, R. Schmidt, R. Schneider, J. Kern, M. Buscema, G. A. Steele, A. Castellanos-Gomez, H. S. van der Zant, S. M. de Vasconcellos, and R. Bratschitsch, “Single-photon emission from localized excitons in an atomically thin semiconductor,” Optica 2, 347–352 (2015). [CrossRef]  

26. S. Kumar, A. Kaczmarczyk, and B. D. Gerardot, “Strain-induced spatial and spectral isolation of quantum emitters in mono- and bilayer WSe2,” Nano Lett. 15, 7567–7573 (2015). [CrossRef]  

27. T. T. Tran, K. Bray, M. J. Ford, M. Toth, and I. Aharonovich, “Quantum emission from hexagonal boron nitride monolayers,” Nat. Nanotechnol. 11, 37–41 (2016). [CrossRef]  

28. A. Branny, G. Wang, C. Kumar, S. Robert, B. Lassagne, X. Marie, B. D. Gerardot, and B. Urbaszek, “Discrete quantum dot like emitters in monolayer MoSe2: spatial mapping, magneto-optics and charge tuning,” Appl. Phys. Lett. 108, 142101 (2016). [CrossRef]  

29. G.-B. Liu, H. Pang, Y. Yao, and W. Yao, “Intervalley coupling by quantum dot confinement potentials in monolayer transition metal dichalcogenides,” New J. Phys. 16, 105011 (2014). [CrossRef]  

30. Y. Wu, Q. Tong, G.-B. Liu, H. Yu, and W. Yao, “Spin-valley qubit in nanostructures of monolayer semiconductors: optical control and hyperfine interaction,” Physica Rev. B 93, 045313 (2016). [CrossRef]  

31. J. Houel, A. V. Kuhlmann, L. Greuter, F. Xue, M. Poggio, B. D. Gerardot, P. A. Dalgarno, A. Badolato, P. M. Petroff, A. Ludwig, D. Reuter, A. D. Wieck, and R. J. Warburton, “Probing single-charge fluctuations at a GaAs/AlAs interface using laser spectroscopy on a nearby InGaAs quantum dot,” Phys. Rev. Lett. 108, 107401 (2012). [CrossRef]  

32. C. Dekker, A. J. Scholten, F. Liefrink, R. Eppenga, H. van Houten, and C. T. Foxon, “Spontaneous resistance switching and low-frequency noise in quantum point contacts,” Phys. Rev. Lett. 66, 2148 (1991). [CrossRef]  

33. X. Zhang, X.-F. Qiao, W. Shi, J.-B. Wu, D.-S. Jiang, and P.-H. Tan, “Phonon and Raman scattering of two-dimensional transition metal dichalcogenides from monolayer, multilayer to bulk material,” Chem. Soc. Rev. 44, 2757–2785 (2015). [CrossRef]  

34. X.-X. Zhang, Y. You, S. Y. F. Zhao, and T. F. Heinz, “Experimental evidence for dark excitons in monolayer WSe2,” Phys. Rev. Lett. 115, 257403 (2015). [CrossRef]  

35. G. Wang, L. Bouet, M. M. Glazov, T. Amand, E. L. Ivchenko, E. Palleau, X. Marie, and B. Urbaszek, “Magneto-optics in transition metal diselenide monolayers,” 2D Mater. 2, 034002 (2015).

36. A. Castellanos-Gomez, M. Buscema, R. Molenaar, V. Singh, L. Janssen, H. S. J. van der Zant, and G. A. Steele, “Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping,” 2D Mater. 1, 011002 (2014). [CrossRef]  

References

  • View by:

  1. D. Press, T. D. Ladd, B. Zhang, and Y. Yamamoto, “Complete quantum control of a single quantum dot spin using ultrafast optical pulses,” Nature 456, 218–221 (2008).
    [Crossref]
  2. A. J. Ramsay, S. J. Boyle, R. S. Kolodka, J. B. B. Oliveira, J. Skiba-Szymanska, H. Y. Liu, M. Hopkinson, A. M. Fox, and M. S. Skolnick, “Fast optical preparation, control, and readout of a single quantum dot spin,” Phys. Rev. Lett. 100, 197401 (2008).
    [Crossref]
  3. D. Kim, S. G. Carter, A. Greilich, A. S. Bracker, and D. Gammon, “Ultrafast optical control of entanglement between two quantum-dot spins,” Nat. Phys. 7, 223–229 (2011).
    [Crossref]
  4. E. Poem, O. Kenneth, Y. Kodriano, Y. Benny, S. Khatsevich, J. E. Avron, and D. Gershoni, “Optically induced rotation of an exciton spin in a semiconductor quantum dot,” Phys. Rev. Lett. 107, 087401 (2011).
    [Crossref]
  5. C. G. Yale, B. B. Buckley, D. J. Christle, G. Burkard, F. J. Heremans, L. C. Bassett, and D. D. Awschalom, “All-optical control of a solid-state spin using coherent dark states,” Proc. Natl. Acad. Sci. USA 110, 7595 (2013).
    [Crossref]
  6. K. Xia, R. Kolesov, Y. Wang, P. Siyushev, R. Reuter, T. Kornher, N. Kukharchyk, A. D. Wieck, B. Villa, S. Yang, and J. Wrachtrup, “All-optical preparation of coherent dark states of a single rare earth ion spin in a crystal,” Phys. Rev. Lett. 115, 093602 (2015).
    [Crossref]
  7. A. Muller, E. B. Flagg, P. Bianucci, X. Y. Wang, D. G. Deppe, W. Ma, J. Zhang, G. J. Salamo, M. Xiao, and C. K. Shih, “Resonance fluorescence from a coherently driven semiconductor quantum dot in a cavity,” Phys. Rev. Lett. 99, 187402 (2007).
    [Crossref]
  8. G. Wrigge, I. Gerhardt, J. Hwang, G. Zumofen, and V. Sandoghdar, “Efficient coupling of photons to a single molecule and the observation of its resonance fluorescence,” Nat. Phys. 4, 60–66 (2008).
    [Crossref]
  9. R. Lettow, Y. L. A. Rezus, A. Renn, G. Zumofen, E. Ikonen, S. Goetzinger, and V. Sandoghdar, “Quantum interference of tunably indistinguishable photons from remote organic molecules,” Phys. Rev. Lett. 104, 123605 (2010).
    [Crossref]
  10. Y.-M. He, Y. He, Y.-J. Wei, D. Wu, M. Atatuere, C. Schneider, S. Hoefling, M. Kamp, C.-Y. Lu, and J.-W. Pan, “On-demand semiconductor single-photon source with near-unity indistinguishability,” Nat. Nanotechnol. 8, 213–217 (2013).
    [Crossref]
  11. A. Sipahigil, K. D. Jahnke, L. J. Rogers, T. Teraji, J. Isoya, A. S. Zibrov, F. Jelezko, and M. D. Lukin, “Indistinguishable photons from separated silicon-vacancy centers in diamond,” Phys. Rev. Lett. 113, 113602 (2014).
    [Crossref]
  12. R. Proux, M. Maragkou, E. Baudin, C. Voisin, P. Roussignol, and C. Diederichs, “Measuring the photon coalescence time window in the continuous-wave regime for resonantly driven semiconductor quantum dots,” Phys. Rev. Lett. 114, 067401 (2015).
    [Crossref]
  13. W. B. Gao, A. Imamoglu, H. Bernien, and R. Hanson, “Coherent manipulation, measurement and entanglement of individual solid-state spins using optical fields,” Nat. Photonics 9, 363–373 (2015).
    [Crossref]
  14. G.-B. Liu, D. Xiao, Y. Yao, X. Xu, and W. Yao, “Electronic structures and theoretical modelling of two-dimensional group-vib transition metal dichalcogenides,” Chem. Soc. Rev. 44, 2643–2663 (2015).
    [Crossref]
  15. X. Xu, W. Yao, D. Xiao, and T. F. Heinz, “Spin and pseudospins in layered transition metal dichalcogenides,” Nat. Phys. 10, 343–350 (2014).
    [Crossref]
  16. M. M. Glazov, E. L. Ivchenko, G. Wang, T. Amand, X. Marie, B. Urbaszek, and B. L. Liu, “Spin and valley dynamics of excitons in transition metal dichalcogenide monolayers,” Phys. Status Solidi B 252, 2349–2362 (2015).
    [Crossref]
  17. A. M. Jones, H. Yu, N. J. Ghimire, S. Wu, G. Aivazian, J. S. Ross, B. Zhao, J. Yan, D. G. Mandrus, D. Xiao, W. Yao, and X. Xu, “Optical generation of excitonic valley coherence in monolayer WSe2,” Nat. Nanotechnol. 8, 634–638 (2013).
    [Crossref]
  18. G. Wang, L. Bouet, D. Lagarde, M. Vidal, A. Balocchi, T. Amand, X. Marie, and B. Urbaszek, “Valley dynamics probed through charged and neutral exciton emission in monolayer WSe2,” Phys. Rev. B 90, 075413 (2014).
    [Crossref]
  19. K. He, N. Kumar, L. Zhao, Z. Wang, K. F. Mak, H. Zhao, and J. Shan, “Tightly bound excitons in monolayer WSe2,” Phys. Rev. Lett. 113, 026803 (2014).
    [Crossref]
  20. A. Chernikov, T. C. Berkelbach, H. M. Hill, A. Rigosi, Y. Li, O. B. Aslan, D. R. Reichman, M. S. Hybertsen, and T. F. Heinz, “Exciton binding energy and nonhydrogenic Rydberg series in monolayer WS2,” Phys. Rev. Lett. 113, 076802 (2014).
    [Crossref]
  21. A. Srivastava, M. Sidler, A. V. Allain, D. S. Lembke, A. Kis, and A. Imamoglu, “Optically active quantum dots in monolayer WSe2,” Nat. Nanotechnol. 10, 491–496 (2015).
    [Crossref]
  22. Y.-M. He, G. Clark, J. R. Schaibley, Y. He, M.-C. Chen, Y.-J. Wei, X. Ding, Q. Zhang, W. Yao, C.-Y. Xu, X. Lu, and J.-W. Pan, “Single quantum emitters in monolayer semiconductors,” Nat. Nanotechnol. 10, 497–502 (2015).
    [Crossref]
  23. M. Koperski, K. Nogajewski, A. Arora, J. Marcus, P. Kossacki, and M. Potemski, “Single photon emitters in exfoliated WSe2 structures,” Nat. Nanotechnol. 10, 503–506 (2015).
    [Crossref]
  24. C. Chakraborty, L. Kinnischtzke, K. M. Goodfellow, R. Beams, and A. N. Vamivakas, “Voltage-controlled quantum light from an atomically thin semiconductor,” Nat. Nanotechnol. 10, 507–511 (2015).
    [Crossref]
  25. P. Tonndorf, R. Schmidt, R. Schneider, J. Kern, M. Buscema, G. A. Steele, A. Castellanos-Gomez, H. S. van der Zant, S. M. de Vasconcellos, and R. Bratschitsch, “Single-photon emission from localized excitons in an atomically thin semiconductor,” Optica 2, 347–352 (2015).
    [Crossref]
  26. S. Kumar, A. Kaczmarczyk, and B. D. Gerardot, “Strain-induced spatial and spectral isolation of quantum emitters in mono- and bilayer WSe2,” Nano Lett. 15, 7567–7573 (2015).
    [Crossref]
  27. T. T. Tran, K. Bray, M. J. Ford, M. Toth, and I. Aharonovich, “Quantum emission from hexagonal boron nitride monolayers,” Nat. Nanotechnol. 11, 37–41 (2016).
    [Crossref]
  28. A. Branny, G. Wang, C. Kumar, S. Robert, B. Lassagne, X. Marie, B. D. Gerardot, and B. Urbaszek, “Discrete quantum dot like emitters in monolayer MoSe2: spatial mapping, magneto-optics and charge tuning,” Appl. Phys. Lett. 108, 142101 (2016).
    [Crossref]
  29. G.-B. Liu, H. Pang, Y. Yao, and W. Yao, “Intervalley coupling by quantum dot confinement potentials in monolayer transition metal dichalcogenides,” New J. Phys. 16, 105011 (2014).
    [Crossref]
  30. Y. Wu, Q. Tong, G.-B. Liu, H. Yu, and W. Yao, “Spin-valley qubit in nanostructures of monolayer semiconductors: optical control and hyperfine interaction,” Physica Rev. B 93, 045313 (2016).
    [Crossref]
  31. J. Houel, A. V. Kuhlmann, L. Greuter, F. Xue, M. Poggio, B. D. Gerardot, P. A. Dalgarno, A. Badolato, P. M. Petroff, A. Ludwig, D. Reuter, A. D. Wieck, and R. J. Warburton, “Probing single-charge fluctuations at a GaAs/AlAs interface using laser spectroscopy on a nearby InGaAs quantum dot,” Phys. Rev. Lett. 108, 107401 (2012).
    [Crossref]
  32. C. Dekker, A. J. Scholten, F. Liefrink, R. Eppenga, H. van Houten, and C. T. Foxon, “Spontaneous resistance switching and low-frequency noise in quantum point contacts,” Phys. Rev. Lett. 66, 2148 (1991).
    [Crossref]
  33. X. Zhang, X.-F. Qiao, W. Shi, J.-B. Wu, D.-S. Jiang, and P.-H. Tan, “Phonon and Raman scattering of two-dimensional transition metal dichalcogenides from monolayer, multilayer to bulk material,” Chem. Soc. Rev. 44, 2757–2785 (2015).
    [Crossref]
  34. X.-X. Zhang, Y. You, S. Y. F. Zhao, and T. F. Heinz, “Experimental evidence for dark excitons in monolayer WSe2,” Phys. Rev. Lett. 115, 257403 (2015).
    [Crossref]
  35. G. Wang, L. Bouet, M. M. Glazov, T. Amand, E. L. Ivchenko, E. Palleau, X. Marie, and B. Urbaszek, “Magneto-optics in transition metal diselenide monolayers,” 2D Mater. 2, 034002 (2015).
  36. A. Castellanos-Gomez, M. Buscema, R. Molenaar, V. Singh, L. Janssen, H. S. J. van der Zant, and G. A. Steele, “Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping,” 2D Mater. 1, 011002 (2014).
    [Crossref]

2016 (3)

T. T. Tran, K. Bray, M. J. Ford, M. Toth, and I. Aharonovich, “Quantum emission from hexagonal boron nitride monolayers,” Nat. Nanotechnol. 11, 37–41 (2016).
[Crossref]

A. Branny, G. Wang, C. Kumar, S. Robert, B. Lassagne, X. Marie, B. D. Gerardot, and B. Urbaszek, “Discrete quantum dot like emitters in monolayer MoSe2: spatial mapping, magneto-optics and charge tuning,” Appl. Phys. Lett. 108, 142101 (2016).
[Crossref]

Y. Wu, Q. Tong, G.-B. Liu, H. Yu, and W. Yao, “Spin-valley qubit in nanostructures of monolayer semiconductors: optical control and hyperfine interaction,” Physica Rev. B 93, 045313 (2016).
[Crossref]

2015 (14)

X. Zhang, X.-F. Qiao, W. Shi, J.-B. Wu, D.-S. Jiang, and P.-H. Tan, “Phonon and Raman scattering of two-dimensional transition metal dichalcogenides from monolayer, multilayer to bulk material,” Chem. Soc. Rev. 44, 2757–2785 (2015).
[Crossref]

X.-X. Zhang, Y. You, S. Y. F. Zhao, and T. F. Heinz, “Experimental evidence for dark excitons in monolayer WSe2,” Phys. Rev. Lett. 115, 257403 (2015).
[Crossref]

G. Wang, L. Bouet, M. M. Glazov, T. Amand, E. L. Ivchenko, E. Palleau, X. Marie, and B. Urbaszek, “Magneto-optics in transition metal diselenide monolayers,” 2D Mater. 2, 034002 (2015).

A. Srivastava, M. Sidler, A. V. Allain, D. S. Lembke, A. Kis, and A. Imamoglu, “Optically active quantum dots in monolayer WSe2,” Nat. Nanotechnol. 10, 491–496 (2015).
[Crossref]

Y.-M. He, G. Clark, J. R. Schaibley, Y. He, M.-C. Chen, Y.-J. Wei, X. Ding, Q. Zhang, W. Yao, C.-Y. Xu, X. Lu, and J.-W. Pan, “Single quantum emitters in monolayer semiconductors,” Nat. Nanotechnol. 10, 497–502 (2015).
[Crossref]

M. Koperski, K. Nogajewski, A. Arora, J. Marcus, P. Kossacki, and M. Potemski, “Single photon emitters in exfoliated WSe2 structures,” Nat. Nanotechnol. 10, 503–506 (2015).
[Crossref]

C. Chakraborty, L. Kinnischtzke, K. M. Goodfellow, R. Beams, and A. N. Vamivakas, “Voltage-controlled quantum light from an atomically thin semiconductor,” Nat. Nanotechnol. 10, 507–511 (2015).
[Crossref]

P. Tonndorf, R. Schmidt, R. Schneider, J. Kern, M. Buscema, G. A. Steele, A. Castellanos-Gomez, H. S. van der Zant, S. M. de Vasconcellos, and R. Bratschitsch, “Single-photon emission from localized excitons in an atomically thin semiconductor,” Optica 2, 347–352 (2015).
[Crossref]

S. Kumar, A. Kaczmarczyk, and B. D. Gerardot, “Strain-induced spatial and spectral isolation of quantum emitters in mono- and bilayer WSe2,” Nano Lett. 15, 7567–7573 (2015).
[Crossref]

K. Xia, R. Kolesov, Y. Wang, P. Siyushev, R. Reuter, T. Kornher, N. Kukharchyk, A. D. Wieck, B. Villa, S. Yang, and J. Wrachtrup, “All-optical preparation of coherent dark states of a single rare earth ion spin in a crystal,” Phys. Rev. Lett. 115, 093602 (2015).
[Crossref]

R. Proux, M. Maragkou, E. Baudin, C. Voisin, P. Roussignol, and C. Diederichs, “Measuring the photon coalescence time window in the continuous-wave regime for resonantly driven semiconductor quantum dots,” Phys. Rev. Lett. 114, 067401 (2015).
[Crossref]

W. B. Gao, A. Imamoglu, H. Bernien, and R. Hanson, “Coherent manipulation, measurement and entanglement of individual solid-state spins using optical fields,” Nat. Photonics 9, 363–373 (2015).
[Crossref]

G.-B. Liu, D. Xiao, Y. Yao, X. Xu, and W. Yao, “Electronic structures and theoretical modelling of two-dimensional group-vib transition metal dichalcogenides,” Chem. Soc. Rev. 44, 2643–2663 (2015).
[Crossref]

M. M. Glazov, E. L. Ivchenko, G. Wang, T. Amand, X. Marie, B. Urbaszek, and B. L. Liu, “Spin and valley dynamics of excitons in transition metal dichalcogenide monolayers,” Phys. Status Solidi B 252, 2349–2362 (2015).
[Crossref]

2014 (7)

X. Xu, W. Yao, D. Xiao, and T. F. Heinz, “Spin and pseudospins in layered transition metal dichalcogenides,” Nat. Phys. 10, 343–350 (2014).
[Crossref]

G.-B. Liu, H. Pang, Y. Yao, and W. Yao, “Intervalley coupling by quantum dot confinement potentials in monolayer transition metal dichalcogenides,” New J. Phys. 16, 105011 (2014).
[Crossref]

G. Wang, L. Bouet, D. Lagarde, M. Vidal, A. Balocchi, T. Amand, X. Marie, and B. Urbaszek, “Valley dynamics probed through charged and neutral exciton emission in monolayer WSe2,” Phys. Rev. B 90, 075413 (2014).
[Crossref]

K. He, N. Kumar, L. Zhao, Z. Wang, K. F. Mak, H. Zhao, and J. Shan, “Tightly bound excitons in monolayer WSe2,” Phys. Rev. Lett. 113, 026803 (2014).
[Crossref]

A. Chernikov, T. C. Berkelbach, H. M. Hill, A. Rigosi, Y. Li, O. B. Aslan, D. R. Reichman, M. S. Hybertsen, and T. F. Heinz, “Exciton binding energy and nonhydrogenic Rydberg series in monolayer WS2,” Phys. Rev. Lett. 113, 076802 (2014).
[Crossref]

A. Castellanos-Gomez, M. Buscema, R. Molenaar, V. Singh, L. Janssen, H. S. J. van der Zant, and G. A. Steele, “Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping,” 2D Mater. 1, 011002 (2014).
[Crossref]

A. Sipahigil, K. D. Jahnke, L. J. Rogers, T. Teraji, J. Isoya, A. S. Zibrov, F. Jelezko, and M. D. Lukin, “Indistinguishable photons from separated silicon-vacancy centers in diamond,” Phys. Rev. Lett. 113, 113602 (2014).
[Crossref]

2013 (3)

A. M. Jones, H. Yu, N. J. Ghimire, S. Wu, G. Aivazian, J. S. Ross, B. Zhao, J. Yan, D. G. Mandrus, D. Xiao, W. Yao, and X. Xu, “Optical generation of excitonic valley coherence in monolayer WSe2,” Nat. Nanotechnol. 8, 634–638 (2013).
[Crossref]

Y.-M. He, Y. He, Y.-J. Wei, D. Wu, M. Atatuere, C. Schneider, S. Hoefling, M. Kamp, C.-Y. Lu, and J.-W. Pan, “On-demand semiconductor single-photon source with near-unity indistinguishability,” Nat. Nanotechnol. 8, 213–217 (2013).
[Crossref]

C. G. Yale, B. B. Buckley, D. J. Christle, G. Burkard, F. J. Heremans, L. C. Bassett, and D. D. Awschalom, “All-optical control of a solid-state spin using coherent dark states,” Proc. Natl. Acad. Sci. USA 110, 7595 (2013).
[Crossref]

2012 (1)

J. Houel, A. V. Kuhlmann, L. Greuter, F. Xue, M. Poggio, B. D. Gerardot, P. A. Dalgarno, A. Badolato, P. M. Petroff, A. Ludwig, D. Reuter, A. D. Wieck, and R. J. Warburton, “Probing single-charge fluctuations at a GaAs/AlAs interface using laser spectroscopy on a nearby InGaAs quantum dot,” Phys. Rev. Lett. 108, 107401 (2012).
[Crossref]

2011 (2)

D. Kim, S. G. Carter, A. Greilich, A. S. Bracker, and D. Gammon, “Ultrafast optical control of entanglement between two quantum-dot spins,” Nat. Phys. 7, 223–229 (2011).
[Crossref]

E. Poem, O. Kenneth, Y. Kodriano, Y. Benny, S. Khatsevich, J. E. Avron, and D. Gershoni, “Optically induced rotation of an exciton spin in a semiconductor quantum dot,” Phys. Rev. Lett. 107, 087401 (2011).
[Crossref]

2010 (1)

R. Lettow, Y. L. A. Rezus, A. Renn, G. Zumofen, E. Ikonen, S. Goetzinger, and V. Sandoghdar, “Quantum interference of tunably indistinguishable photons from remote organic molecules,” Phys. Rev. Lett. 104, 123605 (2010).
[Crossref]

2008 (3)

D. Press, T. D. Ladd, B. Zhang, and Y. Yamamoto, “Complete quantum control of a single quantum dot spin using ultrafast optical pulses,” Nature 456, 218–221 (2008).
[Crossref]

A. J. Ramsay, S. J. Boyle, R. S. Kolodka, J. B. B. Oliveira, J. Skiba-Szymanska, H. Y. Liu, M. Hopkinson, A. M. Fox, and M. S. Skolnick, “Fast optical preparation, control, and readout of a single quantum dot spin,” Phys. Rev. Lett. 100, 197401 (2008).
[Crossref]

G. Wrigge, I. Gerhardt, J. Hwang, G. Zumofen, and V. Sandoghdar, “Efficient coupling of photons to a single molecule and the observation of its resonance fluorescence,” Nat. Phys. 4, 60–66 (2008).
[Crossref]

2007 (1)

A. Muller, E. B. Flagg, P. Bianucci, X. Y. Wang, D. G. Deppe, W. Ma, J. Zhang, G. J. Salamo, M. Xiao, and C. K. Shih, “Resonance fluorescence from a coherently driven semiconductor quantum dot in a cavity,” Phys. Rev. Lett. 99, 187402 (2007).
[Crossref]

1991 (1)

C. Dekker, A. J. Scholten, F. Liefrink, R. Eppenga, H. van Houten, and C. T. Foxon, “Spontaneous resistance switching and low-frequency noise in quantum point contacts,” Phys. Rev. Lett. 66, 2148 (1991).
[Crossref]

Aharonovich, I.

T. T. Tran, K. Bray, M. J. Ford, M. Toth, and I. Aharonovich, “Quantum emission from hexagonal boron nitride monolayers,” Nat. Nanotechnol. 11, 37–41 (2016).
[Crossref]

Aivazian, G.

A. M. Jones, H. Yu, N. J. Ghimire, S. Wu, G. Aivazian, J. S. Ross, B. Zhao, J. Yan, D. G. Mandrus, D. Xiao, W. Yao, and X. Xu, “Optical generation of excitonic valley coherence in monolayer WSe2,” Nat. Nanotechnol. 8, 634–638 (2013).
[Crossref]

Allain, A. V.

A. Srivastava, M. Sidler, A. V. Allain, D. S. Lembke, A. Kis, and A. Imamoglu, “Optically active quantum dots in monolayer WSe2,” Nat. Nanotechnol. 10, 491–496 (2015).
[Crossref]

Amand, T.

G. Wang, L. Bouet, M. M. Glazov, T. Amand, E. L. Ivchenko, E. Palleau, X. Marie, and B. Urbaszek, “Magneto-optics in transition metal diselenide monolayers,” 2D Mater. 2, 034002 (2015).

M. M. Glazov, E. L. Ivchenko, G. Wang, T. Amand, X. Marie, B. Urbaszek, and B. L. Liu, “Spin and valley dynamics of excitons in transition metal dichalcogenide monolayers,” Phys. Status Solidi B 252, 2349–2362 (2015).
[Crossref]

G. Wang, L. Bouet, D. Lagarde, M. Vidal, A. Balocchi, T. Amand, X. Marie, and B. Urbaszek, “Valley dynamics probed through charged and neutral exciton emission in monolayer WSe2,” Phys. Rev. B 90, 075413 (2014).
[Crossref]

Arora, A.

M. Koperski, K. Nogajewski, A. Arora, J. Marcus, P. Kossacki, and M. Potemski, “Single photon emitters in exfoliated WSe2 structures,” Nat. Nanotechnol. 10, 503–506 (2015).
[Crossref]

Aslan, O. B.

A. Chernikov, T. C. Berkelbach, H. M. Hill, A. Rigosi, Y. Li, O. B. Aslan, D. R. Reichman, M. S. Hybertsen, and T. F. Heinz, “Exciton binding energy and nonhydrogenic Rydberg series in monolayer WS2,” Phys. Rev. Lett. 113, 076802 (2014).
[Crossref]

Atatuere, M.

Y.-M. He, Y. He, Y.-J. Wei, D. Wu, M. Atatuere, C. Schneider, S. Hoefling, M. Kamp, C.-Y. Lu, and J.-W. Pan, “On-demand semiconductor single-photon source with near-unity indistinguishability,” Nat. Nanotechnol. 8, 213–217 (2013).
[Crossref]

Avron, J. E.

E. Poem, O. Kenneth, Y. Kodriano, Y. Benny, S. Khatsevich, J. E. Avron, and D. Gershoni, “Optically induced rotation of an exciton spin in a semiconductor quantum dot,” Phys. Rev. Lett. 107, 087401 (2011).
[Crossref]

Awschalom, D. D.

C. G. Yale, B. B. Buckley, D. J. Christle, G. Burkard, F. J. Heremans, L. C. Bassett, and D. D. Awschalom, “All-optical control of a solid-state spin using coherent dark states,” Proc. Natl. Acad. Sci. USA 110, 7595 (2013).
[Crossref]

Badolato, A.

J. Houel, A. V. Kuhlmann, L. Greuter, F. Xue, M. Poggio, B. D. Gerardot, P. A. Dalgarno, A. Badolato, P. M. Petroff, A. Ludwig, D. Reuter, A. D. Wieck, and R. J. Warburton, “Probing single-charge fluctuations at a GaAs/AlAs interface using laser spectroscopy on a nearby InGaAs quantum dot,” Phys. Rev. Lett. 108, 107401 (2012).
[Crossref]

Balocchi, A.

G. Wang, L. Bouet, D. Lagarde, M. Vidal, A. Balocchi, T. Amand, X. Marie, and B. Urbaszek, “Valley dynamics probed through charged and neutral exciton emission in monolayer WSe2,” Phys. Rev. B 90, 075413 (2014).
[Crossref]

Bassett, L. C.

C. G. Yale, B. B. Buckley, D. J. Christle, G. Burkard, F. J. Heremans, L. C. Bassett, and D. D. Awschalom, “All-optical control of a solid-state spin using coherent dark states,” Proc. Natl. Acad. Sci. USA 110, 7595 (2013).
[Crossref]

Baudin, E.

R. Proux, M. Maragkou, E. Baudin, C. Voisin, P. Roussignol, and C. Diederichs, “Measuring the photon coalescence time window in the continuous-wave regime for resonantly driven semiconductor quantum dots,” Phys. Rev. Lett. 114, 067401 (2015).
[Crossref]

Beams, R.

C. Chakraborty, L. Kinnischtzke, K. M. Goodfellow, R. Beams, and A. N. Vamivakas, “Voltage-controlled quantum light from an atomically thin semiconductor,” Nat. Nanotechnol. 10, 507–511 (2015).
[Crossref]

Benny, Y.

E. Poem, O. Kenneth, Y. Kodriano, Y. Benny, S. Khatsevich, J. E. Avron, and D. Gershoni, “Optically induced rotation of an exciton spin in a semiconductor quantum dot,” Phys. Rev. Lett. 107, 087401 (2011).
[Crossref]

Berkelbach, T. C.

A. Chernikov, T. C. Berkelbach, H. M. Hill, A. Rigosi, Y. Li, O. B. Aslan, D. R. Reichman, M. S. Hybertsen, and T. F. Heinz, “Exciton binding energy and nonhydrogenic Rydberg series in monolayer WS2,” Phys. Rev. Lett. 113, 076802 (2014).
[Crossref]

Bernien, H.

W. B. Gao, A. Imamoglu, H. Bernien, and R. Hanson, “Coherent manipulation, measurement and entanglement of individual solid-state spins using optical fields,” Nat. Photonics 9, 363–373 (2015).
[Crossref]

Bianucci, P.

A. Muller, E. B. Flagg, P. Bianucci, X. Y. Wang, D. G. Deppe, W. Ma, J. Zhang, G. J. Salamo, M. Xiao, and C. K. Shih, “Resonance fluorescence from a coherently driven semiconductor quantum dot in a cavity,” Phys. Rev. Lett. 99, 187402 (2007).
[Crossref]

Bouet, L.

G. Wang, L. Bouet, M. M. Glazov, T. Amand, E. L. Ivchenko, E. Palleau, X. Marie, and B. Urbaszek, “Magneto-optics in transition metal diselenide monolayers,” 2D Mater. 2, 034002 (2015).

G. Wang, L. Bouet, D. Lagarde, M. Vidal, A. Balocchi, T. Amand, X. Marie, and B. Urbaszek, “Valley dynamics probed through charged and neutral exciton emission in monolayer WSe2,” Phys. Rev. B 90, 075413 (2014).
[Crossref]

Boyle, S. J.

A. J. Ramsay, S. J. Boyle, R. S. Kolodka, J. B. B. Oliveira, J. Skiba-Szymanska, H. Y. Liu, M. Hopkinson, A. M. Fox, and M. S. Skolnick, “Fast optical preparation, control, and readout of a single quantum dot spin,” Phys. Rev. Lett. 100, 197401 (2008).
[Crossref]

Bracker, A. S.

D. Kim, S. G. Carter, A. Greilich, A. S. Bracker, and D. Gammon, “Ultrafast optical control of entanglement between two quantum-dot spins,” Nat. Phys. 7, 223–229 (2011).
[Crossref]

Branny, A.

A. Branny, G. Wang, C. Kumar, S. Robert, B. Lassagne, X. Marie, B. D. Gerardot, and B. Urbaszek, “Discrete quantum dot like emitters in monolayer MoSe2: spatial mapping, magneto-optics and charge tuning,” Appl. Phys. Lett. 108, 142101 (2016).
[Crossref]

Bratschitsch, R.

Bray, K.

T. T. Tran, K. Bray, M. J. Ford, M. Toth, and I. Aharonovich, “Quantum emission from hexagonal boron nitride monolayers,” Nat. Nanotechnol. 11, 37–41 (2016).
[Crossref]

Buckley, B. B.

C. G. Yale, B. B. Buckley, D. J. Christle, G. Burkard, F. J. Heremans, L. C. Bassett, and D. D. Awschalom, “All-optical control of a solid-state spin using coherent dark states,” Proc. Natl. Acad. Sci. USA 110, 7595 (2013).
[Crossref]

Burkard, G.

C. G. Yale, B. B. Buckley, D. J. Christle, G. Burkard, F. J. Heremans, L. C. Bassett, and D. D. Awschalom, “All-optical control of a solid-state spin using coherent dark states,” Proc. Natl. Acad. Sci. USA 110, 7595 (2013).
[Crossref]

Buscema, M.

P. Tonndorf, R. Schmidt, R. Schneider, J. Kern, M. Buscema, G. A. Steele, A. Castellanos-Gomez, H. S. van der Zant, S. M. de Vasconcellos, and R. Bratschitsch, “Single-photon emission from localized excitons in an atomically thin semiconductor,” Optica 2, 347–352 (2015).
[Crossref]

A. Castellanos-Gomez, M. Buscema, R. Molenaar, V. Singh, L. Janssen, H. S. J. van der Zant, and G. A. Steele, “Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping,” 2D Mater. 1, 011002 (2014).
[Crossref]

Carter, S. G.

D. Kim, S. G. Carter, A. Greilich, A. S. Bracker, and D. Gammon, “Ultrafast optical control of entanglement between two quantum-dot spins,” Nat. Phys. 7, 223–229 (2011).
[Crossref]

Castellanos-Gomez, A.

P. Tonndorf, R. Schmidt, R. Schneider, J. Kern, M. Buscema, G. A. Steele, A. Castellanos-Gomez, H. S. van der Zant, S. M. de Vasconcellos, and R. Bratschitsch, “Single-photon emission from localized excitons in an atomically thin semiconductor,” Optica 2, 347–352 (2015).
[Crossref]

A. Castellanos-Gomez, M. Buscema, R. Molenaar, V. Singh, L. Janssen, H. S. J. van der Zant, and G. A. Steele, “Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping,” 2D Mater. 1, 011002 (2014).
[Crossref]

Chakraborty, C.

C. Chakraborty, L. Kinnischtzke, K. M. Goodfellow, R. Beams, and A. N. Vamivakas, “Voltage-controlled quantum light from an atomically thin semiconductor,” Nat. Nanotechnol. 10, 507–511 (2015).
[Crossref]

Chen, M.-C.

Y.-M. He, G. Clark, J. R. Schaibley, Y. He, M.-C. Chen, Y.-J. Wei, X. Ding, Q. Zhang, W. Yao, C.-Y. Xu, X. Lu, and J.-W. Pan, “Single quantum emitters in monolayer semiconductors,” Nat. Nanotechnol. 10, 497–502 (2015).
[Crossref]

Chernikov, A.

A. Chernikov, T. C. Berkelbach, H. M. Hill, A. Rigosi, Y. Li, O. B. Aslan, D. R. Reichman, M. S. Hybertsen, and T. F. Heinz, “Exciton binding energy and nonhydrogenic Rydberg series in monolayer WS2,” Phys. Rev. Lett. 113, 076802 (2014).
[Crossref]

Christle, D. J.

C. G. Yale, B. B. Buckley, D. J. Christle, G. Burkard, F. J. Heremans, L. C. Bassett, and D. D. Awschalom, “All-optical control of a solid-state spin using coherent dark states,” Proc. Natl. Acad. Sci. USA 110, 7595 (2013).
[Crossref]

Clark, G.

Y.-M. He, G. Clark, J. R. Schaibley, Y. He, M.-C. Chen, Y.-J. Wei, X. Ding, Q. Zhang, W. Yao, C.-Y. Xu, X. Lu, and J.-W. Pan, “Single quantum emitters in monolayer semiconductors,” Nat. Nanotechnol. 10, 497–502 (2015).
[Crossref]

Dalgarno, P. A.

J. Houel, A. V. Kuhlmann, L. Greuter, F. Xue, M. Poggio, B. D. Gerardot, P. A. Dalgarno, A. Badolato, P. M. Petroff, A. Ludwig, D. Reuter, A. D. Wieck, and R. J. Warburton, “Probing single-charge fluctuations at a GaAs/AlAs interface using laser spectroscopy on a nearby InGaAs quantum dot,” Phys. Rev. Lett. 108, 107401 (2012).
[Crossref]

de Vasconcellos, S. M.

Dekker, C.

C. Dekker, A. J. Scholten, F. Liefrink, R. Eppenga, H. van Houten, and C. T. Foxon, “Spontaneous resistance switching and low-frequency noise in quantum point contacts,” Phys. Rev. Lett. 66, 2148 (1991).
[Crossref]

Deppe, D. G.

A. Muller, E. B. Flagg, P. Bianucci, X. Y. Wang, D. G. Deppe, W. Ma, J. Zhang, G. J. Salamo, M. Xiao, and C. K. Shih, “Resonance fluorescence from a coherently driven semiconductor quantum dot in a cavity,” Phys. Rev. Lett. 99, 187402 (2007).
[Crossref]

Diederichs, C.

R. Proux, M. Maragkou, E. Baudin, C. Voisin, P. Roussignol, and C. Diederichs, “Measuring the photon coalescence time window in the continuous-wave regime for resonantly driven semiconductor quantum dots,” Phys. Rev. Lett. 114, 067401 (2015).
[Crossref]

Ding, X.

Y.-M. He, G. Clark, J. R. Schaibley, Y. He, M.-C. Chen, Y.-J. Wei, X. Ding, Q. Zhang, W. Yao, C.-Y. Xu, X. Lu, and J.-W. Pan, “Single quantum emitters in monolayer semiconductors,” Nat. Nanotechnol. 10, 497–502 (2015).
[Crossref]

Eppenga, R.

C. Dekker, A. J. Scholten, F. Liefrink, R. Eppenga, H. van Houten, and C. T. Foxon, “Spontaneous resistance switching and low-frequency noise in quantum point contacts,” Phys. Rev. Lett. 66, 2148 (1991).
[Crossref]

Flagg, E. B.

A. Muller, E. B. Flagg, P. Bianucci, X. Y. Wang, D. G. Deppe, W. Ma, J. Zhang, G. J. Salamo, M. Xiao, and C. K. Shih, “Resonance fluorescence from a coherently driven semiconductor quantum dot in a cavity,” Phys. Rev. Lett. 99, 187402 (2007).
[Crossref]

Ford, M. J.

T. T. Tran, K. Bray, M. J. Ford, M. Toth, and I. Aharonovich, “Quantum emission from hexagonal boron nitride monolayers,” Nat. Nanotechnol. 11, 37–41 (2016).
[Crossref]

Fox, A. M.

A. J. Ramsay, S. J. Boyle, R. S. Kolodka, J. B. B. Oliveira, J. Skiba-Szymanska, H. Y. Liu, M. Hopkinson, A. M. Fox, and M. S. Skolnick, “Fast optical preparation, control, and readout of a single quantum dot spin,” Phys. Rev. Lett. 100, 197401 (2008).
[Crossref]

Foxon, C. T.

C. Dekker, A. J. Scholten, F. Liefrink, R. Eppenga, H. van Houten, and C. T. Foxon, “Spontaneous resistance switching and low-frequency noise in quantum point contacts,” Phys. Rev. Lett. 66, 2148 (1991).
[Crossref]

Gammon, D.

D. Kim, S. G. Carter, A. Greilich, A. S. Bracker, and D. Gammon, “Ultrafast optical control of entanglement between two quantum-dot spins,” Nat. Phys. 7, 223–229 (2011).
[Crossref]

Gao, W. B.

W. B. Gao, A. Imamoglu, H. Bernien, and R. Hanson, “Coherent manipulation, measurement and entanglement of individual solid-state spins using optical fields,” Nat. Photonics 9, 363–373 (2015).
[Crossref]

Gerardot, B. D.

A. Branny, G. Wang, C. Kumar, S. Robert, B. Lassagne, X. Marie, B. D. Gerardot, and B. Urbaszek, “Discrete quantum dot like emitters in monolayer MoSe2: spatial mapping, magneto-optics and charge tuning,” Appl. Phys. Lett. 108, 142101 (2016).
[Crossref]

S. Kumar, A. Kaczmarczyk, and B. D. Gerardot, “Strain-induced spatial and spectral isolation of quantum emitters in mono- and bilayer WSe2,” Nano Lett. 15, 7567–7573 (2015).
[Crossref]

J. Houel, A. V. Kuhlmann, L. Greuter, F. Xue, M. Poggio, B. D. Gerardot, P. A. Dalgarno, A. Badolato, P. M. Petroff, A. Ludwig, D. Reuter, A. D. Wieck, and R. J. Warburton, “Probing single-charge fluctuations at a GaAs/AlAs interface using laser spectroscopy on a nearby InGaAs quantum dot,” Phys. Rev. Lett. 108, 107401 (2012).
[Crossref]

Gerhardt, I.

G. Wrigge, I. Gerhardt, J. Hwang, G. Zumofen, and V. Sandoghdar, “Efficient coupling of photons to a single molecule and the observation of its resonance fluorescence,” Nat. Phys. 4, 60–66 (2008).
[Crossref]

Gershoni, D.

E. Poem, O. Kenneth, Y. Kodriano, Y. Benny, S. Khatsevich, J. E. Avron, and D. Gershoni, “Optically induced rotation of an exciton spin in a semiconductor quantum dot,” Phys. Rev. Lett. 107, 087401 (2011).
[Crossref]

Ghimire, N. J.

A. M. Jones, H. Yu, N. J. Ghimire, S. Wu, G. Aivazian, J. S. Ross, B. Zhao, J. Yan, D. G. Mandrus, D. Xiao, W. Yao, and X. Xu, “Optical generation of excitonic valley coherence in monolayer WSe2,” Nat. Nanotechnol. 8, 634–638 (2013).
[Crossref]

Glazov, M. M.

M. M. Glazov, E. L. Ivchenko, G. Wang, T. Amand, X. Marie, B. Urbaszek, and B. L. Liu, “Spin and valley dynamics of excitons in transition metal dichalcogenide monolayers,” Phys. Status Solidi B 252, 2349–2362 (2015).
[Crossref]

G. Wang, L. Bouet, M. M. Glazov, T. Amand, E. L. Ivchenko, E. Palleau, X. Marie, and B. Urbaszek, “Magneto-optics in transition metal diselenide monolayers,” 2D Mater. 2, 034002 (2015).

Goetzinger, S.

R. Lettow, Y. L. A. Rezus, A. Renn, G. Zumofen, E. Ikonen, S. Goetzinger, and V. Sandoghdar, “Quantum interference of tunably indistinguishable photons from remote organic molecules,” Phys. Rev. Lett. 104, 123605 (2010).
[Crossref]

Goodfellow, K. M.

C. Chakraborty, L. Kinnischtzke, K. M. Goodfellow, R. Beams, and A. N. Vamivakas, “Voltage-controlled quantum light from an atomically thin semiconductor,” Nat. Nanotechnol. 10, 507–511 (2015).
[Crossref]

Greilich, A.

D. Kim, S. G. Carter, A. Greilich, A. S. Bracker, and D. Gammon, “Ultrafast optical control of entanglement between two quantum-dot spins,” Nat. Phys. 7, 223–229 (2011).
[Crossref]

Greuter, L.

J. Houel, A. V. Kuhlmann, L. Greuter, F. Xue, M. Poggio, B. D. Gerardot, P. A. Dalgarno, A. Badolato, P. M. Petroff, A. Ludwig, D. Reuter, A. D. Wieck, and R. J. Warburton, “Probing single-charge fluctuations at a GaAs/AlAs interface using laser spectroscopy on a nearby InGaAs quantum dot,” Phys. Rev. Lett. 108, 107401 (2012).
[Crossref]

Hanson, R.

W. B. Gao, A. Imamoglu, H. Bernien, and R. Hanson, “Coherent manipulation, measurement and entanglement of individual solid-state spins using optical fields,” Nat. Photonics 9, 363–373 (2015).
[Crossref]

He, K.

K. He, N. Kumar, L. Zhao, Z. Wang, K. F. Mak, H. Zhao, and J. Shan, “Tightly bound excitons in monolayer WSe2,” Phys. Rev. Lett. 113, 026803 (2014).
[Crossref]

He, Y.

Y.-M. He, G. Clark, J. R. Schaibley, Y. He, M.-C. Chen, Y.-J. Wei, X. Ding, Q. Zhang, W. Yao, C.-Y. Xu, X. Lu, and J.-W. Pan, “Single quantum emitters in monolayer semiconductors,” Nat. Nanotechnol. 10, 497–502 (2015).
[Crossref]

Y.-M. He, Y. He, Y.-J. Wei, D. Wu, M. Atatuere, C. Schneider, S. Hoefling, M. Kamp, C.-Y. Lu, and J.-W. Pan, “On-demand semiconductor single-photon source with near-unity indistinguishability,” Nat. Nanotechnol. 8, 213–217 (2013).
[Crossref]

He, Y.-M.

Y.-M. He, G. Clark, J. R. Schaibley, Y. He, M.-C. Chen, Y.-J. Wei, X. Ding, Q. Zhang, W. Yao, C.-Y. Xu, X. Lu, and J.-W. Pan, “Single quantum emitters in monolayer semiconductors,” Nat. Nanotechnol. 10, 497–502 (2015).
[Crossref]

Y.-M. He, Y. He, Y.-J. Wei, D. Wu, M. Atatuere, C. Schneider, S. Hoefling, M. Kamp, C.-Y. Lu, and J.-W. Pan, “On-demand semiconductor single-photon source with near-unity indistinguishability,” Nat. Nanotechnol. 8, 213–217 (2013).
[Crossref]

Heinz, T. F.

X.-X. Zhang, Y. You, S. Y. F. Zhao, and T. F. Heinz, “Experimental evidence for dark excitons in monolayer WSe2,” Phys. Rev. Lett. 115, 257403 (2015).
[Crossref]

X. Xu, W. Yao, D. Xiao, and T. F. Heinz, “Spin and pseudospins in layered transition metal dichalcogenides,” Nat. Phys. 10, 343–350 (2014).
[Crossref]

A. Chernikov, T. C. Berkelbach, H. M. Hill, A. Rigosi, Y. Li, O. B. Aslan, D. R. Reichman, M. S. Hybertsen, and T. F. Heinz, “Exciton binding energy and nonhydrogenic Rydberg series in monolayer WS2,” Phys. Rev. Lett. 113, 076802 (2014).
[Crossref]

Heremans, F. J.

C. G. Yale, B. B. Buckley, D. J. Christle, G. Burkard, F. J. Heremans, L. C. Bassett, and D. D. Awschalom, “All-optical control of a solid-state spin using coherent dark states,” Proc. Natl. Acad. Sci. USA 110, 7595 (2013).
[Crossref]

Hill, H. M.

A. Chernikov, T. C. Berkelbach, H. M. Hill, A. Rigosi, Y. Li, O. B. Aslan, D. R. Reichman, M. S. Hybertsen, and T. F. Heinz, “Exciton binding energy and nonhydrogenic Rydberg series in monolayer WS2,” Phys. Rev. Lett. 113, 076802 (2014).
[Crossref]

Hoefling, S.

Y.-M. He, Y. He, Y.-J. Wei, D. Wu, M. Atatuere, C. Schneider, S. Hoefling, M. Kamp, C.-Y. Lu, and J.-W. Pan, “On-demand semiconductor single-photon source with near-unity indistinguishability,” Nat. Nanotechnol. 8, 213–217 (2013).
[Crossref]

Hopkinson, M.

A. J. Ramsay, S. J. Boyle, R. S. Kolodka, J. B. B. Oliveira, J. Skiba-Szymanska, H. Y. Liu, M. Hopkinson, A. M. Fox, and M. S. Skolnick, “Fast optical preparation, control, and readout of a single quantum dot spin,” Phys. Rev. Lett. 100, 197401 (2008).
[Crossref]

Houel, J.

J. Houel, A. V. Kuhlmann, L. Greuter, F. Xue, M. Poggio, B. D. Gerardot, P. A. Dalgarno, A. Badolato, P. M. Petroff, A. Ludwig, D. Reuter, A. D. Wieck, and R. J. Warburton, “Probing single-charge fluctuations at a GaAs/AlAs interface using laser spectroscopy on a nearby InGaAs quantum dot,” Phys. Rev. Lett. 108, 107401 (2012).
[Crossref]

Hwang, J.

G. Wrigge, I. Gerhardt, J. Hwang, G. Zumofen, and V. Sandoghdar, “Efficient coupling of photons to a single molecule and the observation of its resonance fluorescence,” Nat. Phys. 4, 60–66 (2008).
[Crossref]

Hybertsen, M. S.

A. Chernikov, T. C. Berkelbach, H. M. Hill, A. Rigosi, Y. Li, O. B. Aslan, D. R. Reichman, M. S. Hybertsen, and T. F. Heinz, “Exciton binding energy and nonhydrogenic Rydberg series in monolayer WS2,” Phys. Rev. Lett. 113, 076802 (2014).
[Crossref]

Ikonen, E.

R. Lettow, Y. L. A. Rezus, A. Renn, G. Zumofen, E. Ikonen, S. Goetzinger, and V. Sandoghdar, “Quantum interference of tunably indistinguishable photons from remote organic molecules,” Phys. Rev. Lett. 104, 123605 (2010).
[Crossref]

Imamoglu, A.

W. B. Gao, A. Imamoglu, H. Bernien, and R. Hanson, “Coherent manipulation, measurement and entanglement of individual solid-state spins using optical fields,” Nat. Photonics 9, 363–373 (2015).
[Crossref]

A. Srivastava, M. Sidler, A. V. Allain, D. S. Lembke, A. Kis, and A. Imamoglu, “Optically active quantum dots in monolayer WSe2,” Nat. Nanotechnol. 10, 491–496 (2015).
[Crossref]

Isoya, J.

A. Sipahigil, K. D. Jahnke, L. J. Rogers, T. Teraji, J. Isoya, A. S. Zibrov, F. Jelezko, and M. D. Lukin, “Indistinguishable photons from separated silicon-vacancy centers in diamond,” Phys. Rev. Lett. 113, 113602 (2014).
[Crossref]

Ivchenko, E. L.

M. M. Glazov, E. L. Ivchenko, G. Wang, T. Amand, X. Marie, B. Urbaszek, and B. L. Liu, “Spin and valley dynamics of excitons in transition metal dichalcogenide monolayers,” Phys. Status Solidi B 252, 2349–2362 (2015).
[Crossref]

G. Wang, L. Bouet, M. M. Glazov, T. Amand, E. L. Ivchenko, E. Palleau, X. Marie, and B. Urbaszek, “Magneto-optics in transition metal diselenide monolayers,” 2D Mater. 2, 034002 (2015).

Jahnke, K. D.

A. Sipahigil, K. D. Jahnke, L. J. Rogers, T. Teraji, J. Isoya, A. S. Zibrov, F. Jelezko, and M. D. Lukin, “Indistinguishable photons from separated silicon-vacancy centers in diamond,” Phys. Rev. Lett. 113, 113602 (2014).
[Crossref]

Janssen, L.

A. Castellanos-Gomez, M. Buscema, R. Molenaar, V. Singh, L. Janssen, H. S. J. van der Zant, and G. A. Steele, “Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping,” 2D Mater. 1, 011002 (2014).
[Crossref]

Jelezko, F.

A. Sipahigil, K. D. Jahnke, L. J. Rogers, T. Teraji, J. Isoya, A. S. Zibrov, F. Jelezko, and M. D. Lukin, “Indistinguishable photons from separated silicon-vacancy centers in diamond,” Phys. Rev. Lett. 113, 113602 (2014).
[Crossref]

Jiang, D.-S.

X. Zhang, X.-F. Qiao, W. Shi, J.-B. Wu, D.-S. Jiang, and P.-H. Tan, “Phonon and Raman scattering of two-dimensional transition metal dichalcogenides from monolayer, multilayer to bulk material,” Chem. Soc. Rev. 44, 2757–2785 (2015).
[Crossref]

Jones, A. M.

A. M. Jones, H. Yu, N. J. Ghimire, S. Wu, G. Aivazian, J. S. Ross, B. Zhao, J. Yan, D. G. Mandrus, D. Xiao, W. Yao, and X. Xu, “Optical generation of excitonic valley coherence in monolayer WSe2,” Nat. Nanotechnol. 8, 634–638 (2013).
[Crossref]

Kaczmarczyk, A.

S. Kumar, A. Kaczmarczyk, and B. D. Gerardot, “Strain-induced spatial and spectral isolation of quantum emitters in mono- and bilayer WSe2,” Nano Lett. 15, 7567–7573 (2015).
[Crossref]

Kamp, M.

Y.-M. He, Y. He, Y.-J. Wei, D. Wu, M. Atatuere, C. Schneider, S. Hoefling, M. Kamp, C.-Y. Lu, and J.-W. Pan, “On-demand semiconductor single-photon source with near-unity indistinguishability,” Nat. Nanotechnol. 8, 213–217 (2013).
[Crossref]

Kenneth, O.

E. Poem, O. Kenneth, Y. Kodriano, Y. Benny, S. Khatsevich, J. E. Avron, and D. Gershoni, “Optically induced rotation of an exciton spin in a semiconductor quantum dot,” Phys. Rev. Lett. 107, 087401 (2011).
[Crossref]

Kern, J.

Khatsevich, S.

E. Poem, O. Kenneth, Y. Kodriano, Y. Benny, S. Khatsevich, J. E. Avron, and D. Gershoni, “Optically induced rotation of an exciton spin in a semiconductor quantum dot,” Phys. Rev. Lett. 107, 087401 (2011).
[Crossref]

Kim, D.

D. Kim, S. G. Carter, A. Greilich, A. S. Bracker, and D. Gammon, “Ultrafast optical control of entanglement between two quantum-dot spins,” Nat. Phys. 7, 223–229 (2011).
[Crossref]

Kinnischtzke, L.

C. Chakraborty, L. Kinnischtzke, K. M. Goodfellow, R. Beams, and A. N. Vamivakas, “Voltage-controlled quantum light from an atomically thin semiconductor,” Nat. Nanotechnol. 10, 507–511 (2015).
[Crossref]

Kis, A.

A. Srivastava, M. Sidler, A. V. Allain, D. S. Lembke, A. Kis, and A. Imamoglu, “Optically active quantum dots in monolayer WSe2,” Nat. Nanotechnol. 10, 491–496 (2015).
[Crossref]

Kodriano, Y.

E. Poem, O. Kenneth, Y. Kodriano, Y. Benny, S. Khatsevich, J. E. Avron, and D. Gershoni, “Optically induced rotation of an exciton spin in a semiconductor quantum dot,” Phys. Rev. Lett. 107, 087401 (2011).
[Crossref]

Kolesov, R.

K. Xia, R. Kolesov, Y. Wang, P. Siyushev, R. Reuter, T. Kornher, N. Kukharchyk, A. D. Wieck, B. Villa, S. Yang, and J. Wrachtrup, “All-optical preparation of coherent dark states of a single rare earth ion spin in a crystal,” Phys. Rev. Lett. 115, 093602 (2015).
[Crossref]

Kolodka, R. S.

A. J. Ramsay, S. J. Boyle, R. S. Kolodka, J. B. B. Oliveira, J. Skiba-Szymanska, H. Y. Liu, M. Hopkinson, A. M. Fox, and M. S. Skolnick, “Fast optical preparation, control, and readout of a single quantum dot spin,” Phys. Rev. Lett. 100, 197401 (2008).
[Crossref]

Koperski, M.

M. Koperski, K. Nogajewski, A. Arora, J. Marcus, P. Kossacki, and M. Potemski, “Single photon emitters in exfoliated WSe2 structures,” Nat. Nanotechnol. 10, 503–506 (2015).
[Crossref]

Kornher, T.

K. Xia, R. Kolesov, Y. Wang, P. Siyushev, R. Reuter, T. Kornher, N. Kukharchyk, A. D. Wieck, B. Villa, S. Yang, and J. Wrachtrup, “All-optical preparation of coherent dark states of a single rare earth ion spin in a crystal,” Phys. Rev. Lett. 115, 093602 (2015).
[Crossref]

Kossacki, P.

M. Koperski, K. Nogajewski, A. Arora, J. Marcus, P. Kossacki, and M. Potemski, “Single photon emitters in exfoliated WSe2 structures,” Nat. Nanotechnol. 10, 503–506 (2015).
[Crossref]

Kuhlmann, A. V.

J. Houel, A. V. Kuhlmann, L. Greuter, F. Xue, M. Poggio, B. D. Gerardot, P. A. Dalgarno, A. Badolato, P. M. Petroff, A. Ludwig, D. Reuter, A. D. Wieck, and R. J. Warburton, “Probing single-charge fluctuations at a GaAs/AlAs interface using laser spectroscopy on a nearby InGaAs quantum dot,” Phys. Rev. Lett. 108, 107401 (2012).
[Crossref]

Kukharchyk, N.

K. Xia, R. Kolesov, Y. Wang, P. Siyushev, R. Reuter, T. Kornher, N. Kukharchyk, A. D. Wieck, B. Villa, S. Yang, and J. Wrachtrup, “All-optical preparation of coherent dark states of a single rare earth ion spin in a crystal,” Phys. Rev. Lett. 115, 093602 (2015).
[Crossref]

Kumar, C.

A. Branny, G. Wang, C. Kumar, S. Robert, B. Lassagne, X. Marie, B. D. Gerardot, and B. Urbaszek, “Discrete quantum dot like emitters in monolayer MoSe2: spatial mapping, magneto-optics and charge tuning,” Appl. Phys. Lett. 108, 142101 (2016).
[Crossref]

Kumar, N.

K. He, N. Kumar, L. Zhao, Z. Wang, K. F. Mak, H. Zhao, and J. Shan, “Tightly bound excitons in monolayer WSe2,” Phys. Rev. Lett. 113, 026803 (2014).
[Crossref]

Kumar, S.

S. Kumar, A. Kaczmarczyk, and B. D. Gerardot, “Strain-induced spatial and spectral isolation of quantum emitters in mono- and bilayer WSe2,” Nano Lett. 15, 7567–7573 (2015).
[Crossref]

Ladd, T. D.

D. Press, T. D. Ladd, B. Zhang, and Y. Yamamoto, “Complete quantum control of a single quantum dot spin using ultrafast optical pulses,” Nature 456, 218–221 (2008).
[Crossref]

Lagarde, D.

G. Wang, L. Bouet, D. Lagarde, M. Vidal, A. Balocchi, T. Amand, X. Marie, and B. Urbaszek, “Valley dynamics probed through charged and neutral exciton emission in monolayer WSe2,” Phys. Rev. B 90, 075413 (2014).
[Crossref]

Lassagne, B.

A. Branny, G. Wang, C. Kumar, S. Robert, B. Lassagne, X. Marie, B. D. Gerardot, and B. Urbaszek, “Discrete quantum dot like emitters in monolayer MoSe2: spatial mapping, magneto-optics and charge tuning,” Appl. Phys. Lett. 108, 142101 (2016).
[Crossref]

Lembke, D. S.

A. Srivastava, M. Sidler, A. V. Allain, D. S. Lembke, A. Kis, and A. Imamoglu, “Optically active quantum dots in monolayer WSe2,” Nat. Nanotechnol. 10, 491–496 (2015).
[Crossref]

Lettow, R.

R. Lettow, Y. L. A. Rezus, A. Renn, G. Zumofen, E. Ikonen, S. Goetzinger, and V. Sandoghdar, “Quantum interference of tunably indistinguishable photons from remote organic molecules,” Phys. Rev. Lett. 104, 123605 (2010).
[Crossref]

Li, Y.

A. Chernikov, T. C. Berkelbach, H. M. Hill, A. Rigosi, Y. Li, O. B. Aslan, D. R. Reichman, M. S. Hybertsen, and T. F. Heinz, “Exciton binding energy and nonhydrogenic Rydberg series in monolayer WS2,” Phys. Rev. Lett. 113, 076802 (2014).
[Crossref]

Liefrink, F.

C. Dekker, A. J. Scholten, F. Liefrink, R. Eppenga, H. van Houten, and C. T. Foxon, “Spontaneous resistance switching and low-frequency noise in quantum point contacts,” Phys. Rev. Lett. 66, 2148 (1991).
[Crossref]

Liu, B. L.

M. M. Glazov, E. L. Ivchenko, G. Wang, T. Amand, X. Marie, B. Urbaszek, and B. L. Liu, “Spin and valley dynamics of excitons in transition metal dichalcogenide monolayers,” Phys. Status Solidi B 252, 2349–2362 (2015).
[Crossref]

Liu, G.-B.

Y. Wu, Q. Tong, G.-B. Liu, H. Yu, and W. Yao, “Spin-valley qubit in nanostructures of monolayer semiconductors: optical control and hyperfine interaction,” Physica Rev. B 93, 045313 (2016).
[Crossref]

G.-B. Liu, D. Xiao, Y. Yao, X. Xu, and W. Yao, “Electronic structures and theoretical modelling of two-dimensional group-vib transition metal dichalcogenides,” Chem. Soc. Rev. 44, 2643–2663 (2015).
[Crossref]

G.-B. Liu, H. Pang, Y. Yao, and W. Yao, “Intervalley coupling by quantum dot confinement potentials in monolayer transition metal dichalcogenides,” New J. Phys. 16, 105011 (2014).
[Crossref]

Liu, H. Y.

A. J. Ramsay, S. J. Boyle, R. S. Kolodka, J. B. B. Oliveira, J. Skiba-Szymanska, H. Y. Liu, M. Hopkinson, A. M. Fox, and M. S. Skolnick, “Fast optical preparation, control, and readout of a single quantum dot spin,” Phys. Rev. Lett. 100, 197401 (2008).
[Crossref]

Lu, C.-Y.

Y.-M. He, Y. He, Y.-J. Wei, D. Wu, M. Atatuere, C. Schneider, S. Hoefling, M. Kamp, C.-Y. Lu, and J.-W. Pan, “On-demand semiconductor single-photon source with near-unity indistinguishability,” Nat. Nanotechnol. 8, 213–217 (2013).
[Crossref]

Lu, X.

Y.-M. He, G. Clark, J. R. Schaibley, Y. He, M.-C. Chen, Y.-J. Wei, X. Ding, Q. Zhang, W. Yao, C.-Y. Xu, X. Lu, and J.-W. Pan, “Single quantum emitters in monolayer semiconductors,” Nat. Nanotechnol. 10, 497–502 (2015).
[Crossref]

Ludwig, A.

J. Houel, A. V. Kuhlmann, L. Greuter, F. Xue, M. Poggio, B. D. Gerardot, P. A. Dalgarno, A. Badolato, P. M. Petroff, A. Ludwig, D. Reuter, A. D. Wieck, and R. J. Warburton, “Probing single-charge fluctuations at a GaAs/AlAs interface using laser spectroscopy on a nearby InGaAs quantum dot,” Phys. Rev. Lett. 108, 107401 (2012).
[Crossref]

Lukin, M. D.

A. Sipahigil, K. D. Jahnke, L. J. Rogers, T. Teraji, J. Isoya, A. S. Zibrov, F. Jelezko, and M. D. Lukin, “Indistinguishable photons from separated silicon-vacancy centers in diamond,” Phys. Rev. Lett. 113, 113602 (2014).
[Crossref]

Ma, W.

A. Muller, E. B. Flagg, P. Bianucci, X. Y. Wang, D. G. Deppe, W. Ma, J. Zhang, G. J. Salamo, M. Xiao, and C. K. Shih, “Resonance fluorescence from a coherently driven semiconductor quantum dot in a cavity,” Phys. Rev. Lett. 99, 187402 (2007).
[Crossref]

Mak, K. F.

K. He, N. Kumar, L. Zhao, Z. Wang, K. F. Mak, H. Zhao, and J. Shan, “Tightly bound excitons in monolayer WSe2,” Phys. Rev. Lett. 113, 026803 (2014).
[Crossref]

Mandrus, D. G.

A. M. Jones, H. Yu, N. J. Ghimire, S. Wu, G. Aivazian, J. S. Ross, B. Zhao, J. Yan, D. G. Mandrus, D. Xiao, W. Yao, and X. Xu, “Optical generation of excitonic valley coherence in monolayer WSe2,” Nat. Nanotechnol. 8, 634–638 (2013).
[Crossref]

Maragkou, M.

R. Proux, M. Maragkou, E. Baudin, C. Voisin, P. Roussignol, and C. Diederichs, “Measuring the photon coalescence time window in the continuous-wave regime for resonantly driven semiconductor quantum dots,” Phys. Rev. Lett. 114, 067401 (2015).
[Crossref]

Marcus, J.

M. Koperski, K. Nogajewski, A. Arora, J. Marcus, P. Kossacki, and M. Potemski, “Single photon emitters in exfoliated WSe2 structures,” Nat. Nanotechnol. 10, 503–506 (2015).
[Crossref]

Marie, X.

A. Branny, G. Wang, C. Kumar, S. Robert, B. Lassagne, X. Marie, B. D. Gerardot, and B. Urbaszek, “Discrete quantum dot like emitters in monolayer MoSe2: spatial mapping, magneto-optics and charge tuning,” Appl. Phys. Lett. 108, 142101 (2016).
[Crossref]

G. Wang, L. Bouet, M. M. Glazov, T. Amand, E. L. Ivchenko, E. Palleau, X. Marie, and B. Urbaszek, “Magneto-optics in transition metal diselenide monolayers,” 2D Mater. 2, 034002 (2015).

M. M. Glazov, E. L. Ivchenko, G. Wang, T. Amand, X. Marie, B. Urbaszek, and B. L. Liu, “Spin and valley dynamics of excitons in transition metal dichalcogenide monolayers,” Phys. Status Solidi B 252, 2349–2362 (2015).
[Crossref]

G. Wang, L. Bouet, D. Lagarde, M. Vidal, A. Balocchi, T. Amand, X. Marie, and B. Urbaszek, “Valley dynamics probed through charged and neutral exciton emission in monolayer WSe2,” Phys. Rev. B 90, 075413 (2014).
[Crossref]

Molenaar, R.

A. Castellanos-Gomez, M. Buscema, R. Molenaar, V. Singh, L. Janssen, H. S. J. van der Zant, and G. A. Steele, “Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping,” 2D Mater. 1, 011002 (2014).
[Crossref]

Muller, A.

A. Muller, E. B. Flagg, P. Bianucci, X. Y. Wang, D. G. Deppe, W. Ma, J. Zhang, G. J. Salamo, M. Xiao, and C. K. Shih, “Resonance fluorescence from a coherently driven semiconductor quantum dot in a cavity,” Phys. Rev. Lett. 99, 187402 (2007).
[Crossref]

Nogajewski, K.

M. Koperski, K. Nogajewski, A. Arora, J. Marcus, P. Kossacki, and M. Potemski, “Single photon emitters in exfoliated WSe2 structures,” Nat. Nanotechnol. 10, 503–506 (2015).
[Crossref]

Oliveira, J. B. B.

A. J. Ramsay, S. J. Boyle, R. S. Kolodka, J. B. B. Oliveira, J. Skiba-Szymanska, H. Y. Liu, M. Hopkinson, A. M. Fox, and M. S. Skolnick, “Fast optical preparation, control, and readout of a single quantum dot spin,” Phys. Rev. Lett. 100, 197401 (2008).
[Crossref]

Palleau, E.

G. Wang, L. Bouet, M. M. Glazov, T. Amand, E. L. Ivchenko, E. Palleau, X. Marie, and B. Urbaszek, “Magneto-optics in transition metal diselenide monolayers,” 2D Mater. 2, 034002 (2015).

Pan, J.-W.

Y.-M. He, G. Clark, J. R. Schaibley, Y. He, M.-C. Chen, Y.-J. Wei, X. Ding, Q. Zhang, W. Yao, C.-Y. Xu, X. Lu, and J.-W. Pan, “Single quantum emitters in monolayer semiconductors,” Nat. Nanotechnol. 10, 497–502 (2015).
[Crossref]

Y.-M. He, Y. He, Y.-J. Wei, D. Wu, M. Atatuere, C. Schneider, S. Hoefling, M. Kamp, C.-Y. Lu, and J.-W. Pan, “On-demand semiconductor single-photon source with near-unity indistinguishability,” Nat. Nanotechnol. 8, 213–217 (2013).
[Crossref]

Pang, H.

G.-B. Liu, H. Pang, Y. Yao, and W. Yao, “Intervalley coupling by quantum dot confinement potentials in monolayer transition metal dichalcogenides,” New J. Phys. 16, 105011 (2014).
[Crossref]

Petroff, P. M.

J. Houel, A. V. Kuhlmann, L. Greuter, F. Xue, M. Poggio, B. D. Gerardot, P. A. Dalgarno, A. Badolato, P. M. Petroff, A. Ludwig, D. Reuter, A. D. Wieck, and R. J. Warburton, “Probing single-charge fluctuations at a GaAs/AlAs interface using laser spectroscopy on a nearby InGaAs quantum dot,” Phys. Rev. Lett. 108, 107401 (2012).
[Crossref]

Poem, E.

E. Poem, O. Kenneth, Y. Kodriano, Y. Benny, S. Khatsevich, J. E. Avron, and D. Gershoni, “Optically induced rotation of an exciton spin in a semiconductor quantum dot,” Phys. Rev. Lett. 107, 087401 (2011).
[Crossref]

Poggio, M.

J. Houel, A. V. Kuhlmann, L. Greuter, F. Xue, M. Poggio, B. D. Gerardot, P. A. Dalgarno, A. Badolato, P. M. Petroff, A. Ludwig, D. Reuter, A. D. Wieck, and R. J. Warburton, “Probing single-charge fluctuations at a GaAs/AlAs interface using laser spectroscopy on a nearby InGaAs quantum dot,” Phys. Rev. Lett. 108, 107401 (2012).
[Crossref]

Potemski, M.

M. Koperski, K. Nogajewski, A. Arora, J. Marcus, P. Kossacki, and M. Potemski, “Single photon emitters in exfoliated WSe2 structures,” Nat. Nanotechnol. 10, 503–506 (2015).
[Crossref]

Press, D.

D. Press, T. D. Ladd, B. Zhang, and Y. Yamamoto, “Complete quantum control of a single quantum dot spin using ultrafast optical pulses,” Nature 456, 218–221 (2008).
[Crossref]

Proux, R.

R. Proux, M. Maragkou, E. Baudin, C. Voisin, P. Roussignol, and C. Diederichs, “Measuring the photon coalescence time window in the continuous-wave regime for resonantly driven semiconductor quantum dots,” Phys. Rev. Lett. 114, 067401 (2015).
[Crossref]

Qiao, X.-F.

X. Zhang, X.-F. Qiao, W. Shi, J.-B. Wu, D.-S. Jiang, and P.-H. Tan, “Phonon and Raman scattering of two-dimensional transition metal dichalcogenides from monolayer, multilayer to bulk material,” Chem. Soc. Rev. 44, 2757–2785 (2015).
[Crossref]

Ramsay, A. J.

A. J. Ramsay, S. J. Boyle, R. S. Kolodka, J. B. B. Oliveira, J. Skiba-Szymanska, H. Y. Liu, M. Hopkinson, A. M. Fox, and M. S. Skolnick, “Fast optical preparation, control, and readout of a single quantum dot spin,” Phys. Rev. Lett. 100, 197401 (2008).
[Crossref]

Reichman, D. R.

A. Chernikov, T. C. Berkelbach, H. M. Hill, A. Rigosi, Y. Li, O. B. Aslan, D. R. Reichman, M. S. Hybertsen, and T. F. Heinz, “Exciton binding energy and nonhydrogenic Rydberg series in monolayer WS2,” Phys. Rev. Lett. 113, 076802 (2014).
[Crossref]

Renn, A.

R. Lettow, Y. L. A. Rezus, A. Renn, G. Zumofen, E. Ikonen, S. Goetzinger, and V. Sandoghdar, “Quantum interference of tunably indistinguishable photons from remote organic molecules,” Phys. Rev. Lett. 104, 123605 (2010).
[Crossref]

Reuter, D.

J. Houel, A. V. Kuhlmann, L. Greuter, F. Xue, M. Poggio, B. D. Gerardot, P. A. Dalgarno, A. Badolato, P. M. Petroff, A. Ludwig, D. Reuter, A. D. Wieck, and R. J. Warburton, “Probing single-charge fluctuations at a GaAs/AlAs interface using laser spectroscopy on a nearby InGaAs quantum dot,” Phys. Rev. Lett. 108, 107401 (2012).
[Crossref]

Reuter, R.

K. Xia, R. Kolesov, Y. Wang, P. Siyushev, R. Reuter, T. Kornher, N. Kukharchyk, A. D. Wieck, B. Villa, S. Yang, and J. Wrachtrup, “All-optical preparation of coherent dark states of a single rare earth ion spin in a crystal,” Phys. Rev. Lett. 115, 093602 (2015).
[Crossref]

Rezus, Y. L. A.

R. Lettow, Y. L. A. Rezus, A. Renn, G. Zumofen, E. Ikonen, S. Goetzinger, and V. Sandoghdar, “Quantum interference of tunably indistinguishable photons from remote organic molecules,” Phys. Rev. Lett. 104, 123605 (2010).
[Crossref]

Rigosi, A.

A. Chernikov, T. C. Berkelbach, H. M. Hill, A. Rigosi, Y. Li, O. B. Aslan, D. R. Reichman, M. S. Hybertsen, and T. F. Heinz, “Exciton binding energy and nonhydrogenic Rydberg series in monolayer WS2,” Phys. Rev. Lett. 113, 076802 (2014).
[Crossref]

Robert, S.

A. Branny, G. Wang, C. Kumar, S. Robert, B. Lassagne, X. Marie, B. D. Gerardot, and B. Urbaszek, “Discrete quantum dot like emitters in monolayer MoSe2: spatial mapping, magneto-optics and charge tuning,” Appl. Phys. Lett. 108, 142101 (2016).
[Crossref]

Rogers, L. J.

A. Sipahigil, K. D. Jahnke, L. J. Rogers, T. Teraji, J. Isoya, A. S. Zibrov, F. Jelezko, and M. D. Lukin, “Indistinguishable photons from separated silicon-vacancy centers in diamond,” Phys. Rev. Lett. 113, 113602 (2014).
[Crossref]

Ross, J. S.

A. M. Jones, H. Yu, N. J. Ghimire, S. Wu, G. Aivazian, J. S. Ross, B. Zhao, J. Yan, D. G. Mandrus, D. Xiao, W. Yao, and X. Xu, “Optical generation of excitonic valley coherence in monolayer WSe2,” Nat. Nanotechnol. 8, 634–638 (2013).
[Crossref]

Roussignol, P.

R. Proux, M. Maragkou, E. Baudin, C. Voisin, P. Roussignol, and C. Diederichs, “Measuring the photon coalescence time window in the continuous-wave regime for resonantly driven semiconductor quantum dots,” Phys. Rev. Lett. 114, 067401 (2015).
[Crossref]

Salamo, G. J.

A. Muller, E. B. Flagg, P. Bianucci, X. Y. Wang, D. G. Deppe, W. Ma, J. Zhang, G. J. Salamo, M. Xiao, and C. K. Shih, “Resonance fluorescence from a coherently driven semiconductor quantum dot in a cavity,” Phys. Rev. Lett. 99, 187402 (2007).
[Crossref]

Sandoghdar, V.

R. Lettow, Y. L. A. Rezus, A. Renn, G. Zumofen, E. Ikonen, S. Goetzinger, and V. Sandoghdar, “Quantum interference of tunably indistinguishable photons from remote organic molecules,” Phys. Rev. Lett. 104, 123605 (2010).
[Crossref]

G. Wrigge, I. Gerhardt, J. Hwang, G. Zumofen, and V. Sandoghdar, “Efficient coupling of photons to a single molecule and the observation of its resonance fluorescence,” Nat. Phys. 4, 60–66 (2008).
[Crossref]

Schaibley, J. R.

Y.-M. He, G. Clark, J. R. Schaibley, Y. He, M.-C. Chen, Y.-J. Wei, X. Ding, Q. Zhang, W. Yao, C.-Y. Xu, X. Lu, and J.-W. Pan, “Single quantum emitters in monolayer semiconductors,” Nat. Nanotechnol. 10, 497–502 (2015).
[Crossref]

Schmidt, R.

Schneider, C.

Y.-M. He, Y. He, Y.-J. Wei, D. Wu, M. Atatuere, C. Schneider, S. Hoefling, M. Kamp, C.-Y. Lu, and J.-W. Pan, “On-demand semiconductor single-photon source with near-unity indistinguishability,” Nat. Nanotechnol. 8, 213–217 (2013).
[Crossref]

Schneider, R.

Scholten, A. J.

C. Dekker, A. J. Scholten, F. Liefrink, R. Eppenga, H. van Houten, and C. T. Foxon, “Spontaneous resistance switching and low-frequency noise in quantum point contacts,” Phys. Rev. Lett. 66, 2148 (1991).
[Crossref]

Shan, J.

K. He, N. Kumar, L. Zhao, Z. Wang, K. F. Mak, H. Zhao, and J. Shan, “Tightly bound excitons in monolayer WSe2,” Phys. Rev. Lett. 113, 026803 (2014).
[Crossref]

Shi, W.

X. Zhang, X.-F. Qiao, W. Shi, J.-B. Wu, D.-S. Jiang, and P.-H. Tan, “Phonon and Raman scattering of two-dimensional transition metal dichalcogenides from monolayer, multilayer to bulk material,” Chem. Soc. Rev. 44, 2757–2785 (2015).
[Crossref]

Shih, C. K.

A. Muller, E. B. Flagg, P. Bianucci, X. Y. Wang, D. G. Deppe, W. Ma, J. Zhang, G. J. Salamo, M. Xiao, and C. K. Shih, “Resonance fluorescence from a coherently driven semiconductor quantum dot in a cavity,” Phys. Rev. Lett. 99, 187402 (2007).
[Crossref]

Sidler, M.

A. Srivastava, M. Sidler, A. V. Allain, D. S. Lembke, A. Kis, and A. Imamoglu, “Optically active quantum dots in monolayer WSe2,” Nat. Nanotechnol. 10, 491–496 (2015).
[Crossref]

Singh, V.

A. Castellanos-Gomez, M. Buscema, R. Molenaar, V. Singh, L. Janssen, H. S. J. van der Zant, and G. A. Steele, “Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping,” 2D Mater. 1, 011002 (2014).
[Crossref]

Sipahigil, A.

A. Sipahigil, K. D. Jahnke, L. J. Rogers, T. Teraji, J. Isoya, A. S. Zibrov, F. Jelezko, and M. D. Lukin, “Indistinguishable photons from separated silicon-vacancy centers in diamond,” Phys. Rev. Lett. 113, 113602 (2014).
[Crossref]

Siyushev, P.

K. Xia, R. Kolesov, Y. Wang, P. Siyushev, R. Reuter, T. Kornher, N. Kukharchyk, A. D. Wieck, B. Villa, S. Yang, and J. Wrachtrup, “All-optical preparation of coherent dark states of a single rare earth ion spin in a crystal,” Phys. Rev. Lett. 115, 093602 (2015).
[Crossref]

Skiba-Szymanska, J.

A. J. Ramsay, S. J. Boyle, R. S. Kolodka, J. B. B. Oliveira, J. Skiba-Szymanska, H. Y. Liu, M. Hopkinson, A. M. Fox, and M. S. Skolnick, “Fast optical preparation, control, and readout of a single quantum dot spin,” Phys. Rev. Lett. 100, 197401 (2008).
[Crossref]

Skolnick, M. S.

A. J. Ramsay, S. J. Boyle, R. S. Kolodka, J. B. B. Oliveira, J. Skiba-Szymanska, H. Y. Liu, M. Hopkinson, A. M. Fox, and M. S. Skolnick, “Fast optical preparation, control, and readout of a single quantum dot spin,” Phys. Rev. Lett. 100, 197401 (2008).
[Crossref]

Srivastava, A.

A. Srivastava, M. Sidler, A. V. Allain, D. S. Lembke, A. Kis, and A. Imamoglu, “Optically active quantum dots in monolayer WSe2,” Nat. Nanotechnol. 10, 491–496 (2015).
[Crossref]

Steele, G. A.

P. Tonndorf, R. Schmidt, R. Schneider, J. Kern, M. Buscema, G. A. Steele, A. Castellanos-Gomez, H. S. van der Zant, S. M. de Vasconcellos, and R. Bratschitsch, “Single-photon emission from localized excitons in an atomically thin semiconductor,” Optica 2, 347–352 (2015).
[Crossref]

A. Castellanos-Gomez, M. Buscema, R. Molenaar, V. Singh, L. Janssen, H. S. J. van der Zant, and G. A. Steele, “Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping,” 2D Mater. 1, 011002 (2014).
[Crossref]

Tan, P.-H.

X. Zhang, X.-F. Qiao, W. Shi, J.-B. Wu, D.-S. Jiang, and P.-H. Tan, “Phonon and Raman scattering of two-dimensional transition metal dichalcogenides from monolayer, multilayer to bulk material,” Chem. Soc. Rev. 44, 2757–2785 (2015).
[Crossref]

Teraji, T.

A. Sipahigil, K. D. Jahnke, L. J. Rogers, T. Teraji, J. Isoya, A. S. Zibrov, F. Jelezko, and M. D. Lukin, “Indistinguishable photons from separated silicon-vacancy centers in diamond,” Phys. Rev. Lett. 113, 113602 (2014).
[Crossref]

Tong, Q.

Y. Wu, Q. Tong, G.-B. Liu, H. Yu, and W. Yao, “Spin-valley qubit in nanostructures of monolayer semiconductors: optical control and hyperfine interaction,” Physica Rev. B 93, 045313 (2016).
[Crossref]

Tonndorf, P.

Toth, M.

T. T. Tran, K. Bray, M. J. Ford, M. Toth, and I. Aharonovich, “Quantum emission from hexagonal boron nitride monolayers,” Nat. Nanotechnol. 11, 37–41 (2016).
[Crossref]

Tran, T. T.

T. T. Tran, K. Bray, M. J. Ford, M. Toth, and I. Aharonovich, “Quantum emission from hexagonal boron nitride monolayers,” Nat. Nanotechnol. 11, 37–41 (2016).
[Crossref]

Urbaszek, B.

A. Branny, G. Wang, C. Kumar, S. Robert, B. Lassagne, X. Marie, B. D. Gerardot, and B. Urbaszek, “Discrete quantum dot like emitters in monolayer MoSe2: spatial mapping, magneto-optics and charge tuning,” Appl. Phys. Lett. 108, 142101 (2016).
[Crossref]

G. Wang, L. Bouet, M. M. Glazov, T. Amand, E. L. Ivchenko, E. Palleau, X. Marie, and B. Urbaszek, “Magneto-optics in transition metal diselenide monolayers,” 2D Mater. 2, 034002 (2015).

M. M. Glazov, E. L. Ivchenko, G. Wang, T. Amand, X. Marie, B. Urbaszek, and B. L. Liu, “Spin and valley dynamics of excitons in transition metal dichalcogenide monolayers,” Phys. Status Solidi B 252, 2349–2362 (2015).
[Crossref]

G. Wang, L. Bouet, D. Lagarde, M. Vidal, A. Balocchi, T. Amand, X. Marie, and B. Urbaszek, “Valley dynamics probed through charged and neutral exciton emission in monolayer WSe2,” Phys. Rev. B 90, 075413 (2014).
[Crossref]

Vamivakas, A. N.

C. Chakraborty, L. Kinnischtzke, K. M. Goodfellow, R. Beams, and A. N. Vamivakas, “Voltage-controlled quantum light from an atomically thin semiconductor,” Nat. Nanotechnol. 10, 507–511 (2015).
[Crossref]

van der Zant, H. S.

van der Zant, H. S. J.

A. Castellanos-Gomez, M. Buscema, R. Molenaar, V. Singh, L. Janssen, H. S. J. van der Zant, and G. A. Steele, “Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping,” 2D Mater. 1, 011002 (2014).
[Crossref]

van Houten, H.

C. Dekker, A. J. Scholten, F. Liefrink, R. Eppenga, H. van Houten, and C. T. Foxon, “Spontaneous resistance switching and low-frequency noise in quantum point contacts,” Phys. Rev. Lett. 66, 2148 (1991).
[Crossref]

Vidal, M.

G. Wang, L. Bouet, D. Lagarde, M. Vidal, A. Balocchi, T. Amand, X. Marie, and B. Urbaszek, “Valley dynamics probed through charged and neutral exciton emission in monolayer WSe2,” Phys. Rev. B 90, 075413 (2014).
[Crossref]

Villa, B.

K. Xia, R. Kolesov, Y. Wang, P. Siyushev, R. Reuter, T. Kornher, N. Kukharchyk, A. D. Wieck, B. Villa, S. Yang, and J. Wrachtrup, “All-optical preparation of coherent dark states of a single rare earth ion spin in a crystal,” Phys. Rev. Lett. 115, 093602 (2015).
[Crossref]

Voisin, C.

R. Proux, M. Maragkou, E. Baudin, C. Voisin, P. Roussignol, and C. Diederichs, “Measuring the photon coalescence time window in the continuous-wave regime for resonantly driven semiconductor quantum dots,” Phys. Rev. Lett. 114, 067401 (2015).
[Crossref]

Wang, G.

A. Branny, G. Wang, C. Kumar, S. Robert, B. Lassagne, X. Marie, B. D. Gerardot, and B. Urbaszek, “Discrete quantum dot like emitters in monolayer MoSe2: spatial mapping, magneto-optics and charge tuning,” Appl. Phys. Lett. 108, 142101 (2016).
[Crossref]

G. Wang, L. Bouet, M. M. Glazov, T. Amand, E. L. Ivchenko, E. Palleau, X. Marie, and B. Urbaszek, “Magneto-optics in transition metal diselenide monolayers,” 2D Mater. 2, 034002 (2015).

M. M. Glazov, E. L. Ivchenko, G. Wang, T. Amand, X. Marie, B. Urbaszek, and B. L. Liu, “Spin and valley dynamics of excitons in transition metal dichalcogenide monolayers,” Phys. Status Solidi B 252, 2349–2362 (2015).
[Crossref]

G. Wang, L. Bouet, D. Lagarde, M. Vidal, A. Balocchi, T. Amand, X. Marie, and B. Urbaszek, “Valley dynamics probed through charged and neutral exciton emission in monolayer WSe2,” Phys. Rev. B 90, 075413 (2014).
[Crossref]

Wang, X. Y.

A. Muller, E. B. Flagg, P. Bianucci, X. Y. Wang, D. G. Deppe, W. Ma, J. Zhang, G. J. Salamo, M. Xiao, and C. K. Shih, “Resonance fluorescence from a coherently driven semiconductor quantum dot in a cavity,” Phys. Rev. Lett. 99, 187402 (2007).
[Crossref]

Wang, Y.

K. Xia, R. Kolesov, Y. Wang, P. Siyushev, R. Reuter, T. Kornher, N. Kukharchyk, A. D. Wieck, B. Villa, S. Yang, and J. Wrachtrup, “All-optical preparation of coherent dark states of a single rare earth ion spin in a crystal,” Phys. Rev. Lett. 115, 093602 (2015).
[Crossref]

Wang, Z.

K. He, N. Kumar, L. Zhao, Z. Wang, K. F. Mak, H. Zhao, and J. Shan, “Tightly bound excitons in monolayer WSe2,” Phys. Rev. Lett. 113, 026803 (2014).
[Crossref]

Warburton, R. J.

J. Houel, A. V. Kuhlmann, L. Greuter, F. Xue, M. Poggio, B. D. Gerardot, P. A. Dalgarno, A. Badolato, P. M. Petroff, A. Ludwig, D. Reuter, A. D. Wieck, and R. J. Warburton, “Probing single-charge fluctuations at a GaAs/AlAs interface using laser spectroscopy on a nearby InGaAs quantum dot,” Phys. Rev. Lett. 108, 107401 (2012).
[Crossref]

Wei, Y.-J.

Y.-M. He, G. Clark, J. R. Schaibley, Y. He, M.-C. Chen, Y.-J. Wei, X. Ding, Q. Zhang, W. Yao, C.-Y. Xu, X. Lu, and J.-W. Pan, “Single quantum emitters in monolayer semiconductors,” Nat. Nanotechnol. 10, 497–502 (2015).
[Crossref]

Y.-M. He, Y. He, Y.-J. Wei, D. Wu, M. Atatuere, C. Schneider, S. Hoefling, M. Kamp, C.-Y. Lu, and J.-W. Pan, “On-demand semiconductor single-photon source with near-unity indistinguishability,” Nat. Nanotechnol. 8, 213–217 (2013).
[Crossref]

Wieck, A. D.

K. Xia, R. Kolesov, Y. Wang, P. Siyushev, R. Reuter, T. Kornher, N. Kukharchyk, A. D. Wieck, B. Villa, S. Yang, and J. Wrachtrup, “All-optical preparation of coherent dark states of a single rare earth ion spin in a crystal,” Phys. Rev. Lett. 115, 093602 (2015).
[Crossref]

J. Houel, A. V. Kuhlmann, L. Greuter, F. Xue, M. Poggio, B. D. Gerardot, P. A. Dalgarno, A. Badolato, P. M. Petroff, A. Ludwig, D. Reuter, A. D. Wieck, and R. J. Warburton, “Probing single-charge fluctuations at a GaAs/AlAs interface using laser spectroscopy on a nearby InGaAs quantum dot,” Phys. Rev. Lett. 108, 107401 (2012).
[Crossref]

Wrachtrup, J.

K. Xia, R. Kolesov, Y. Wang, P. Siyushev, R. Reuter, T. Kornher, N. Kukharchyk, A. D. Wieck, B. Villa, S. Yang, and J. Wrachtrup, “All-optical preparation of coherent dark states of a single rare earth ion spin in a crystal,” Phys. Rev. Lett. 115, 093602 (2015).
[Crossref]

Wrigge, G.

G. Wrigge, I. Gerhardt, J. Hwang, G. Zumofen, and V. Sandoghdar, “Efficient coupling of photons to a single molecule and the observation of its resonance fluorescence,” Nat. Phys. 4, 60–66 (2008).
[Crossref]

Wu, D.

Y.-M. He, Y. He, Y.-J. Wei, D. Wu, M. Atatuere, C. Schneider, S. Hoefling, M. Kamp, C.-Y. Lu, and J.-W. Pan, “On-demand semiconductor single-photon source with near-unity indistinguishability,” Nat. Nanotechnol. 8, 213–217 (2013).
[Crossref]

Wu, J.-B.

X. Zhang, X.-F. Qiao, W. Shi, J.-B. Wu, D.-S. Jiang, and P.-H. Tan, “Phonon and Raman scattering of two-dimensional transition metal dichalcogenides from monolayer, multilayer to bulk material,” Chem. Soc. Rev. 44, 2757–2785 (2015).
[Crossref]

Wu, S.

A. M. Jones, H. Yu, N. J. Ghimire, S. Wu, G. Aivazian, J. S. Ross, B. Zhao, J. Yan, D. G. Mandrus, D. Xiao, W. Yao, and X. Xu, “Optical generation of excitonic valley coherence in monolayer WSe2,” Nat. Nanotechnol. 8, 634–638 (2013).
[Crossref]

Wu, Y.

Y. Wu, Q. Tong, G.-B. Liu, H. Yu, and W. Yao, “Spin-valley qubit in nanostructures of monolayer semiconductors: optical control and hyperfine interaction,” Physica Rev. B 93, 045313 (2016).
[Crossref]

Xia, K.

K. Xia, R. Kolesov, Y. Wang, P. Siyushev, R. Reuter, T. Kornher, N. Kukharchyk, A. D. Wieck, B. Villa, S. Yang, and J. Wrachtrup, “All-optical preparation of coherent dark states of a single rare earth ion spin in a crystal,” Phys. Rev. Lett. 115, 093602 (2015).
[Crossref]

Xiao, D.

G.-B. Liu, D. Xiao, Y. Yao, X. Xu, and W. Yao, “Electronic structures and theoretical modelling of two-dimensional group-vib transition metal dichalcogenides,” Chem. Soc. Rev. 44, 2643–2663 (2015).
[Crossref]

X. Xu, W. Yao, D. Xiao, and T. F. Heinz, “Spin and pseudospins in layered transition metal dichalcogenides,” Nat. Phys. 10, 343–350 (2014).
[Crossref]

A. M. Jones, H. Yu, N. J. Ghimire, S. Wu, G. Aivazian, J. S. Ross, B. Zhao, J. Yan, D. G. Mandrus, D. Xiao, W. Yao, and X. Xu, “Optical generation of excitonic valley coherence in monolayer WSe2,” Nat. Nanotechnol. 8, 634–638 (2013).
[Crossref]

Xiao, M.

A. Muller, E. B. Flagg, P. Bianucci, X. Y. Wang, D. G. Deppe, W. Ma, J. Zhang, G. J. Salamo, M. Xiao, and C. K. Shih, “Resonance fluorescence from a coherently driven semiconductor quantum dot in a cavity,” Phys. Rev. Lett. 99, 187402 (2007).
[Crossref]

Xu, C.-Y.

Y.-M. He, G. Clark, J. R. Schaibley, Y. He, M.-C. Chen, Y.-J. Wei, X. Ding, Q. Zhang, W. Yao, C.-Y. Xu, X. Lu, and J.-W. Pan, “Single quantum emitters in monolayer semiconductors,” Nat. Nanotechnol. 10, 497–502 (2015).
[Crossref]

Xu, X.

G.-B. Liu, D. Xiao, Y. Yao, X. Xu, and W. Yao, “Electronic structures and theoretical modelling of two-dimensional group-vib transition metal dichalcogenides,” Chem. Soc. Rev. 44, 2643–2663 (2015).
[Crossref]

X. Xu, W. Yao, D. Xiao, and T. F. Heinz, “Spin and pseudospins in layered transition metal dichalcogenides,” Nat. Phys. 10, 343–350 (2014).
[Crossref]

A. M. Jones, H. Yu, N. J. Ghimire, S. Wu, G. Aivazian, J. S. Ross, B. Zhao, J. Yan, D. G. Mandrus, D. Xiao, W. Yao, and X. Xu, “Optical generation of excitonic valley coherence in monolayer WSe2,” Nat. Nanotechnol. 8, 634–638 (2013).
[Crossref]

Xue, F.

J. Houel, A. V. Kuhlmann, L. Greuter, F. Xue, M. Poggio, B. D. Gerardot, P. A. Dalgarno, A. Badolato, P. M. Petroff, A. Ludwig, D. Reuter, A. D. Wieck, and R. J. Warburton, “Probing single-charge fluctuations at a GaAs/AlAs interface using laser spectroscopy on a nearby InGaAs quantum dot,” Phys. Rev. Lett. 108, 107401 (2012).
[Crossref]

Yale, C. G.

C. G. Yale, B. B. Buckley, D. J. Christle, G. Burkard, F. J. Heremans, L. C. Bassett, and D. D. Awschalom, “All-optical control of a solid-state spin using coherent dark states,” Proc. Natl. Acad. Sci. USA 110, 7595 (2013).
[Crossref]

Yamamoto, Y.

D. Press, T. D. Ladd, B. Zhang, and Y. Yamamoto, “Complete quantum control of a single quantum dot spin using ultrafast optical pulses,” Nature 456, 218–221 (2008).
[Crossref]

Yan, J.

A. M. Jones, H. Yu, N. J. Ghimire, S. Wu, G. Aivazian, J. S. Ross, B. Zhao, J. Yan, D. G. Mandrus, D. Xiao, W. Yao, and X. Xu, “Optical generation of excitonic valley coherence in monolayer WSe2,” Nat. Nanotechnol. 8, 634–638 (2013).
[Crossref]

Yang, S.

K. Xia, R. Kolesov, Y. Wang, P. Siyushev, R. Reuter, T. Kornher, N. Kukharchyk, A. D. Wieck, B. Villa, S. Yang, and J. Wrachtrup, “All-optical preparation of coherent dark states of a single rare earth ion spin in a crystal,” Phys. Rev. Lett. 115, 093602 (2015).
[Crossref]

Yao, W.

Y. Wu, Q. Tong, G.-B. Liu, H. Yu, and W. Yao, “Spin-valley qubit in nanostructures of monolayer semiconductors: optical control and hyperfine interaction,” Physica Rev. B 93, 045313 (2016).
[Crossref]

Y.-M. He, G. Clark, J. R. Schaibley, Y. He, M.-C. Chen, Y.-J. Wei, X. Ding, Q. Zhang, W. Yao, C.-Y. Xu, X. Lu, and J.-W. Pan, “Single quantum emitters in monolayer semiconductors,” Nat. Nanotechnol. 10, 497–502 (2015).
[Crossref]

G.-B. Liu, D. Xiao, Y. Yao, X. Xu, and W. Yao, “Electronic structures and theoretical modelling of two-dimensional group-vib transition metal dichalcogenides,” Chem. Soc. Rev. 44, 2643–2663 (2015).
[Crossref]

X. Xu, W. Yao, D. Xiao, and T. F. Heinz, “Spin and pseudospins in layered transition metal dichalcogenides,” Nat. Phys. 10, 343–350 (2014).
[Crossref]

G.-B. Liu, H. Pang, Y. Yao, and W. Yao, “Intervalley coupling by quantum dot confinement potentials in monolayer transition metal dichalcogenides,” New J. Phys. 16, 105011 (2014).
[Crossref]

A. M. Jones, H. Yu, N. J. Ghimire, S. Wu, G. Aivazian, J. S. Ross, B. Zhao, J. Yan, D. G. Mandrus, D. Xiao, W. Yao, and X. Xu, “Optical generation of excitonic valley coherence in monolayer WSe2,” Nat. Nanotechnol. 8, 634–638 (2013).
[Crossref]

Yao, Y.

G.-B. Liu, D. Xiao, Y. Yao, X. Xu, and W. Yao, “Electronic structures and theoretical modelling of two-dimensional group-vib transition metal dichalcogenides,” Chem. Soc. Rev. 44, 2643–2663 (2015).
[Crossref]

G.-B. Liu, H. Pang, Y. Yao, and W. Yao, “Intervalley coupling by quantum dot confinement potentials in monolayer transition metal dichalcogenides,” New J. Phys. 16, 105011 (2014).
[Crossref]

You, Y.

X.-X. Zhang, Y. You, S. Y. F. Zhao, and T. F. Heinz, “Experimental evidence for dark excitons in monolayer WSe2,” Phys. Rev. Lett. 115, 257403 (2015).
[Crossref]

Yu, H.

Y. Wu, Q. Tong, G.-B. Liu, H. Yu, and W. Yao, “Spin-valley qubit in nanostructures of monolayer semiconductors: optical control and hyperfine interaction,” Physica Rev. B 93, 045313 (2016).
[Crossref]

A. M. Jones, H. Yu, N. J. Ghimire, S. Wu, G. Aivazian, J. S. Ross, B. Zhao, J. Yan, D. G. Mandrus, D. Xiao, W. Yao, and X. Xu, “Optical generation of excitonic valley coherence in monolayer WSe2,” Nat. Nanotechnol. 8, 634–638 (2013).
[Crossref]

Zhang, B.

D. Press, T. D. Ladd, B. Zhang, and Y. Yamamoto, “Complete quantum control of a single quantum dot spin using ultrafast optical pulses,” Nature 456, 218–221 (2008).
[Crossref]

Zhang, J.

A. Muller, E. B. Flagg, P. Bianucci, X. Y. Wang, D. G. Deppe, W. Ma, J. Zhang, G. J. Salamo, M. Xiao, and C. K. Shih, “Resonance fluorescence from a coherently driven semiconductor quantum dot in a cavity,” Phys. Rev. Lett. 99, 187402 (2007).
[Crossref]

Zhang, Q.

Y.-M. He, G. Clark, J. R. Schaibley, Y. He, M.-C. Chen, Y.-J. Wei, X. Ding, Q. Zhang, W. Yao, C.-Y. Xu, X. Lu, and J.-W. Pan, “Single quantum emitters in monolayer semiconductors,” Nat. Nanotechnol. 10, 497–502 (2015).
[Crossref]

Zhang, X.

X. Zhang, X.-F. Qiao, W. Shi, J.-B. Wu, D.-S. Jiang, and P.-H. Tan, “Phonon and Raman scattering of two-dimensional transition metal dichalcogenides from monolayer, multilayer to bulk material,” Chem. Soc. Rev. 44, 2757–2785 (2015).
[Crossref]

Zhang, X.-X.

X.-X. Zhang, Y. You, S. Y. F. Zhao, and T. F. Heinz, “Experimental evidence for dark excitons in monolayer WSe2,” Phys. Rev. Lett. 115, 257403 (2015).
[Crossref]

Zhao, B.

A. M. Jones, H. Yu, N. J. Ghimire, S. Wu, G. Aivazian, J. S. Ross, B. Zhao, J. Yan, D. G. Mandrus, D. Xiao, W. Yao, and X. Xu, “Optical generation of excitonic valley coherence in monolayer WSe2,” Nat. Nanotechnol. 8, 634–638 (2013).
[Crossref]

Zhao, H.

K. He, N. Kumar, L. Zhao, Z. Wang, K. F. Mak, H. Zhao, and J. Shan, “Tightly bound excitons in monolayer WSe2,” Phys. Rev. Lett. 113, 026803 (2014).
[Crossref]

Zhao, L.

K. He, N. Kumar, L. Zhao, Z. Wang, K. F. Mak, H. Zhao, and J. Shan, “Tightly bound excitons in monolayer WSe2,” Phys. Rev. Lett. 113, 026803 (2014).
[Crossref]

Zhao, S. Y. F.

X.-X. Zhang, Y. You, S. Y. F. Zhao, and T. F. Heinz, “Experimental evidence for dark excitons in monolayer WSe2,” Phys. Rev. Lett. 115, 257403 (2015).
[Crossref]

Zibrov, A. S.

A. Sipahigil, K. D. Jahnke, L. J. Rogers, T. Teraji, J. Isoya, A. S. Zibrov, F. Jelezko, and M. D. Lukin, “Indistinguishable photons from separated silicon-vacancy centers in diamond,” Phys. Rev. Lett. 113, 113602 (2014).
[Crossref]

Zumofen, G.

R. Lettow, Y. L. A. Rezus, A. Renn, G. Zumofen, E. Ikonen, S. Goetzinger, and V. Sandoghdar, “Quantum interference of tunably indistinguishable photons from remote organic molecules,” Phys. Rev. Lett. 104, 123605 (2010).
[Crossref]

G. Wrigge, I. Gerhardt, J. Hwang, G. Zumofen, and V. Sandoghdar, “Efficient coupling of photons to a single molecule and the observation of its resonance fluorescence,” Nat. Phys. 4, 60–66 (2008).
[Crossref]

2D Mater. (2)

G. Wang, L. Bouet, M. M. Glazov, T. Amand, E. L. Ivchenko, E. Palleau, X. Marie, and B. Urbaszek, “Magneto-optics in transition metal diselenide monolayers,” 2D Mater. 2, 034002 (2015).

A. Castellanos-Gomez, M. Buscema, R. Molenaar, V. Singh, L. Janssen, H. S. J. van der Zant, and G. A. Steele, “Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping,” 2D Mater. 1, 011002 (2014).
[Crossref]

Appl. Phys. Lett. (1)

A. Branny, G. Wang, C. Kumar, S. Robert, B. Lassagne, X. Marie, B. D. Gerardot, and B. Urbaszek, “Discrete quantum dot like emitters in monolayer MoSe2: spatial mapping, magneto-optics and charge tuning,” Appl. Phys. Lett. 108, 142101 (2016).
[Crossref]

Chem. Soc. Rev. (2)

X. Zhang, X.-F. Qiao, W. Shi, J.-B. Wu, D.-S. Jiang, and P.-H. Tan, “Phonon and Raman scattering of two-dimensional transition metal dichalcogenides from monolayer, multilayer to bulk material,” Chem. Soc. Rev. 44, 2757–2785 (2015).
[Crossref]

G.-B. Liu, D. Xiao, Y. Yao, X. Xu, and W. Yao, “Electronic structures and theoretical modelling of two-dimensional group-vib transition metal dichalcogenides,” Chem. Soc. Rev. 44, 2643–2663 (2015).
[Crossref]

Nano Lett. (1)

S. Kumar, A. Kaczmarczyk, and B. D. Gerardot, “Strain-induced spatial and spectral isolation of quantum emitters in mono- and bilayer WSe2,” Nano Lett. 15, 7567–7573 (2015).
[Crossref]

Nat. Nanotechnol. (7)

T. T. Tran, K. Bray, M. J. Ford, M. Toth, and I. Aharonovich, “Quantum emission from hexagonal boron nitride monolayers,” Nat. Nanotechnol. 11, 37–41 (2016).
[Crossref]

A. Srivastava, M. Sidler, A. V. Allain, D. S. Lembke, A. Kis, and A. Imamoglu, “Optically active quantum dots in monolayer WSe2,” Nat. Nanotechnol. 10, 491–496 (2015).
[Crossref]

Y.-M. He, G. Clark, J. R. Schaibley, Y. He, M.-C. Chen, Y.-J. Wei, X. Ding, Q. Zhang, W. Yao, C.-Y. Xu, X. Lu, and J.-W. Pan, “Single quantum emitters in monolayer semiconductors,” Nat. Nanotechnol. 10, 497–502 (2015).
[Crossref]

M. Koperski, K. Nogajewski, A. Arora, J. Marcus, P. Kossacki, and M. Potemski, “Single photon emitters in exfoliated WSe2 structures,” Nat. Nanotechnol. 10, 503–506 (2015).
[Crossref]

C. Chakraborty, L. Kinnischtzke, K. M. Goodfellow, R. Beams, and A. N. Vamivakas, “Voltage-controlled quantum light from an atomically thin semiconductor,” Nat. Nanotechnol. 10, 507–511 (2015).
[Crossref]

Y.-M. He, Y. He, Y.-J. Wei, D. Wu, M. Atatuere, C. Schneider, S. Hoefling, M. Kamp, C.-Y. Lu, and J.-W. Pan, “On-demand semiconductor single-photon source with near-unity indistinguishability,” Nat. Nanotechnol. 8, 213–217 (2013).
[Crossref]

A. M. Jones, H. Yu, N. J. Ghimire, S. Wu, G. Aivazian, J. S. Ross, B. Zhao, J. Yan, D. G. Mandrus, D. Xiao, W. Yao, and X. Xu, “Optical generation of excitonic valley coherence in monolayer WSe2,” Nat. Nanotechnol. 8, 634–638 (2013).
[Crossref]

Nat. Photonics (1)

W. B. Gao, A. Imamoglu, H. Bernien, and R. Hanson, “Coherent manipulation, measurement and entanglement of individual solid-state spins using optical fields,” Nat. Photonics 9, 363–373 (2015).
[Crossref]

Nat. Phys. (3)

X. Xu, W. Yao, D. Xiao, and T. F. Heinz, “Spin and pseudospins in layered transition metal dichalcogenides,” Nat. Phys. 10, 343–350 (2014).
[Crossref]

D. Kim, S. G. Carter, A. Greilich, A. S. Bracker, and D. Gammon, “Ultrafast optical control of entanglement between two quantum-dot spins,” Nat. Phys. 7, 223–229 (2011).
[Crossref]

G. Wrigge, I. Gerhardt, J. Hwang, G. Zumofen, and V. Sandoghdar, “Efficient coupling of photons to a single molecule and the observation of its resonance fluorescence,” Nat. Phys. 4, 60–66 (2008).
[Crossref]

Nature (1)

D. Press, T. D. Ladd, B. Zhang, and Y. Yamamoto, “Complete quantum control of a single quantum dot spin using ultrafast optical pulses,” Nature 456, 218–221 (2008).
[Crossref]

New J. Phys. (1)

G.-B. Liu, H. Pang, Y. Yao, and W. Yao, “Intervalley coupling by quantum dot confinement potentials in monolayer transition metal dichalcogenides,” New J. Phys. 16, 105011 (2014).
[Crossref]

Optica (1)

Phys. Rev. B (1)

G. Wang, L. Bouet, D. Lagarde, M. Vidal, A. Balocchi, T. Amand, X. Marie, and B. Urbaszek, “Valley dynamics probed through charged and neutral exciton emission in monolayer WSe2,” Phys. Rev. B 90, 075413 (2014).
[Crossref]

Phys. Rev. Lett. (12)

K. He, N. Kumar, L. Zhao, Z. Wang, K. F. Mak, H. Zhao, and J. Shan, “Tightly bound excitons in monolayer WSe2,” Phys. Rev. Lett. 113, 026803 (2014).
[Crossref]

A. Chernikov, T. C. Berkelbach, H. M. Hill, A. Rigosi, Y. Li, O. B. Aslan, D. R. Reichman, M. S. Hybertsen, and T. F. Heinz, “Exciton binding energy and nonhydrogenic Rydberg series in monolayer WS2,” Phys. Rev. Lett. 113, 076802 (2014).
[Crossref]

A. Sipahigil, K. D. Jahnke, L. J. Rogers, T. Teraji, J. Isoya, A. S. Zibrov, F. Jelezko, and M. D. Lukin, “Indistinguishable photons from separated silicon-vacancy centers in diamond,” Phys. Rev. Lett. 113, 113602 (2014).
[Crossref]

R. Proux, M. Maragkou, E. Baudin, C. Voisin, P. Roussignol, and C. Diederichs, “Measuring the photon coalescence time window in the continuous-wave regime for resonantly driven semiconductor quantum dots,” Phys. Rev. Lett. 114, 067401 (2015).
[Crossref]

A. J. Ramsay, S. J. Boyle, R. S. Kolodka, J. B. B. Oliveira, J. Skiba-Szymanska, H. Y. Liu, M. Hopkinson, A. M. Fox, and M. S. Skolnick, “Fast optical preparation, control, and readout of a single quantum dot spin,” Phys. Rev. Lett. 100, 197401 (2008).
[Crossref]

E. Poem, O. Kenneth, Y. Kodriano, Y. Benny, S. Khatsevich, J. E. Avron, and D. Gershoni, “Optically induced rotation of an exciton spin in a semiconductor quantum dot,” Phys. Rev. Lett. 107, 087401 (2011).
[Crossref]

R. Lettow, Y. L. A. Rezus, A. Renn, G. Zumofen, E. Ikonen, S. Goetzinger, and V. Sandoghdar, “Quantum interference of tunably indistinguishable photons from remote organic molecules,” Phys. Rev. Lett. 104, 123605 (2010).
[Crossref]

K. Xia, R. Kolesov, Y. Wang, P. Siyushev, R. Reuter, T. Kornher, N. Kukharchyk, A. D. Wieck, B. Villa, S. Yang, and J. Wrachtrup, “All-optical preparation of coherent dark states of a single rare earth ion spin in a crystal,” Phys. Rev. Lett. 115, 093602 (2015).
[Crossref]

A. Muller, E. B. Flagg, P. Bianucci, X. Y. Wang, D. G. Deppe, W. Ma, J. Zhang, G. J. Salamo, M. Xiao, and C. K. Shih, “Resonance fluorescence from a coherently driven semiconductor quantum dot in a cavity,” Phys. Rev. Lett. 99, 187402 (2007).
[Crossref]

X.-X. Zhang, Y. You, S. Y. F. Zhao, and T. F. Heinz, “Experimental evidence for dark excitons in monolayer WSe2,” Phys. Rev. Lett. 115, 257403 (2015).
[Crossref]

J. Houel, A. V. Kuhlmann, L. Greuter, F. Xue, M. Poggio, B. D. Gerardot, P. A. Dalgarno, A. Badolato, P. M. Petroff, A. Ludwig, D. Reuter, A. D. Wieck, and R. J. Warburton, “Probing single-charge fluctuations at a GaAs/AlAs interface using laser spectroscopy on a nearby InGaAs quantum dot,” Phys. Rev. Lett. 108, 107401 (2012).
[Crossref]

C. Dekker, A. J. Scholten, F. Liefrink, R. Eppenga, H. van Houten, and C. T. Foxon, “Spontaneous resistance switching and low-frequency noise in quantum point contacts,” Phys. Rev. Lett. 66, 2148 (1991).
[Crossref]

Phys. Status Solidi B (1)

M. M. Glazov, E. L. Ivchenko, G. Wang, T. Amand, X. Marie, B. Urbaszek, and B. L. Liu, “Spin and valley dynamics of excitons in transition metal dichalcogenide monolayers,” Phys. Status Solidi B 252, 2349–2362 (2015).
[Crossref]

Physica Rev. B (1)

Y. Wu, Q. Tong, G.-B. Liu, H. Yu, and W. Yao, “Spin-valley qubit in nanostructures of monolayer semiconductors: optical control and hyperfine interaction,” Physica Rev. B 93, 045313 (2016).
[Crossref]

Proc. Natl. Acad. Sci. USA (1)

C. G. Yale, B. B. Buckley, D. J. Christle, G. Burkard, F. J. Heremans, L. C. Bassett, and D. D. Awschalom, “All-optical control of a solid-state spin using coherent dark states,” Proc. Natl. Acad. Sci. USA 110, 7595 (2013).
[Crossref]

Supplementary Material (1)

NameDescription
Supplement 1: PDF (783 KB)      Revised Supplemental 1

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. (a) A low-resolution emission spectrum from location A on the WSe2 monolayer showing a single emission line from a single localized emitter. Inset left: a high-resolution spectrum showing the ZPL and a low-energy phonon sideband (PSB). Inset right: color-coded normalized peak intensities map of emitter A and a neighboring emitter B with strong spatial localization of both emitters. (b) Normalized second-order correlation function g(2)(τ) of the emission line of emitter A exhibiting nearly perfect antibunching. The solid red line is a 95% confidence band for fitting of the measured data. The thin cyan line is the calculated deconvolved g(2)(τ). Time bin=128ps. Nonresonant CW excitation at λ=532nm with powers of 4 nW for (a) and 2 nW for (b). Inset left: power dependence of integrated intensity and photon counting rate for emitter A. Inset right: the probability density of g(2)(0) calculated using the probabilistic values of the fitted parameters.
Fig. 2.
Fig. 2. Simultaneous time traces of the fluorescence from emitter B under resonant CW excitation at λ=784.69460nm with a power of 1 μW as recorded on (a) an APD and (b) a high-resolution spectrometer with 70 ms and 5 s integration, respectively. The background level of 0.4 MHz shown by a horizontal dashed line in (a) and the line at 1580.03meV in (b) is due to the scattered excitation laser. (c) The time trace of emitter detuning δ=ElaserEp1 of the dominant emission line p1 of emitter B. The gray area is the fitting errors of δ. (d) g(2)(τ) for a time interval when δ0. The solid thick line is a 95% confidence band for fitting of the measured data. The dashed line shows the experimental limitation for g(2)(0) due to the scattered laser background. (e) The fluorescence spectra of emitter B at two different time instances marked by black (blue) dashed lines in (a)–(c) corresponding to time t=12.8 (16.2) min for δ=10 (190) μeV. The black (blue) closed circles are measured data and solid lines are fits.
Fig. 3.
Fig. 3. (a) Polarization-resolved single fluorescence spectrum (top) and color-coded intensity map (bottom) of emitter B under nonresonant excitation showing three emission lines. (b) The PLE spectrum of emitter B shows two bright-exciton peaks p0 and p1 and a BS-X resonance. Closed blue circles are integrated intensities of the line p1 obtained by scanning the laser wavelengths. The open red circles are PLE resonances for peaks p1 and p0 obtained using high-resolution PLE spectroscopy. Peak p2 is not visible in this experiment due to its lower emission energy.
Fig. 4.
Fig. 4. (a) PLE spectrum of emitter C identifying the “BS-X” exciton at an energy 5meV higher than the ground-state exciton. The closed blue circles are data points, while the solid red curve is a guide for the eye composed of three Gaussian functions. (b) The fluorescence spectrum of emitter C under nonresonant excitation at a power of 4 μW. The spectrum matches the energy range for which PLE is performed in (a). Insets: the full fluorescence spectrum of emitter C acquired on the high-resolution grating under nonresonant excitation. (c) The fluorescence spectrum of emitter C under resonant excitation of the BS-X. The excitation power for (a) and (c) was 80 nW. Inset: schematic of resonant excitation to the BS-X and emission via the ground-state exciton. (d) g(2)(τ) under resonant CW excitation of the BS-X.

Metrics