Abstract

Coherent wave splitting is crucial in interferometers. Normally, the waves after this splitting are of the same type. But recent progress in interactions between atom and light has led to the coherent conversion of photon to atomic excitation. This makes it possible to split an incoming light wave into a coherent superposition state of atom and light and paves the way for an interferometer made of different types of waves. Here we report on a Rabi-like coherent-superposition oscillation observed between an atom and light in a Raman process. We construct a new kind of hybrid interferometer based on the atom–light coherent superposition state. Interference fringes are observed in both the optical output intensity and atomic output in terms of the atomic spin wave strength when we scan either or both of the optical and atomic phases. Such a hybrid interferometer can be used to interrogate atomic states by optical detection and will find its applications in precision measurement and quantum control of atoms and light.

© 2016 Optical Society of America

1. INTRODUCTION

In quantum storage, complete conversion of quantum states between atoms and light is essential for the high-fidelity transfer of quantum information. Quantum storage was first realized with the method of electromagnetically induced transparency [16] and then by gradient echo memory [79]. More recently, Raman processes were used to achieve wide-band quantum storage [1012]. On the one hand, most research concentrated on increasing the efficiency of quantum storage because a partial conversion is usually regarded as a loss for the quantum system and leads to a reduction in the fidelity of quantum information transfer. But the unconverted part still contains the original information. So, if available, it can be further converted [13] for better overall conversion efficiency. On the other hand, since quantum storage is coherent in the sense that the phase of the quantum states is preserved, the converted and the unconverted parts are coherent to each other. This property can be employed for quantum interference. In 2012, Campbell et al. [14] achieved coherent mixture of an atomic wave and an optical wave in an atom-photon polariton state with a gradient echo memory scheme. Later, Pinel et al. [15] demonstrated a mirrorless spin wave resonator based on multiple interferences between light and an atomic spin wave. Such an interference effect was also the mechanism for a mirrorless oscillation in an atomic Raman process [16].

Rabi oscillation is a coherent population oscillation between two atomic levels when driven by a strong coherent radiation field coupled to the two levels [17]. It plays an important role in atomic clocks by forming a Ramsey atomic interferometer [18]. Two-photon Rabi oscillation was also realized in an atomic Raman system where two strong driving fields are present [19]. Recently, Rabi oscillation between photons of a Raman write field and the frequency-offset Stokes field was demonstrated [20] in a Raman process where the driving field was a strong atomic spin wave. Here, the roles were reversed for atom and light as compared to the traditional Rabi oscillation effect. It was recently predicted [21] that Rabi-like coherent-superposition oscillation between light and an atom can also occur in an atomic Raman process. When the driving field is a π-pulse, it is possible to make a complete conversion from light to atom for quantum storage or from atom to light for readout.

However, when the driving field is a π/2-pulse, we can achieve a coherent wave splitting of the input field into an optical wave and an atomic wave. The reverse process is just a coherent mixing of an optical wave and an atomic spin wave. Thus, it is possible to form a new type of interferometer made of an atom and light. In contrast to the traditional interferometers, which are constructed with linear beam splitters for coherent splitting into and mixing of the same type of wave and are only sensitive to the phase shift of one type of wave, this new hybrid atom–light interferometer involves waves of different types and should depend on the phases of both optical and atomic waves. This is somewhat similar to an SU(1,1) type atom–light interferometer recently realized by our group [22], whose beam splitting process is an SU(1,1)-type parametric Raman amplifier instead of an SU(2) linear beam splitter in the current scheme [23,24].

In this paper, we report on the first observation of Rabi-like superposition oscillation between light and an atom in a Raman process involving Rb-atoms and a demonstration of an atom–light interferometer by employing this Rabi-like superposition oscillation effect as an atom and light wave splitter and mixer. This is a Ramsey-type interferometer in the sense that a strong driving laser in π/2-pulse area creates a superposition between the atom and light, and after a time delay with the evolution of both the atom and light, another π/2-pulse laser is applied to mix the atom and light for interference. In additional to the usual dependence on the optical phase, we find that the interference fringes also depend on the atomic phase, which is sensitive to a variety of physical quantities. Thus, this type of interferometer can be applied in precision measurement, the sensitive measurement of atomic states, and the quantum control of light and atoms.

2. ATOM–LIGHT SUPERPOSITION OSCILLATION

The process we use to mix atomic and optical waves is the collective Raman process in an ensemble of Na three-level atoms. The process is depicted in Fig. 1(a), with the atomic levels and optical frequencies shown in Fig. 1(b). In the process, a pair of lower-level meta-stable states |g,|m is coupled to the Raman write field (W, or a^W) and the Stokes field (S, or a^S) via an upper excited level e1. After adiabatically eliminating the upper excited level e1, this process is a three-wave mixing process involving the write field, the Stokes field, and a collective atomic pseudo-spin field S^a(1/Na)k|gkm|, and the coupling Hamiltonian is given by [25,26]

H^R=iη(a^Wa^SS^aa^Wa^SS^a),
where η=Nageggem/Δ with geg,gem are the coupling coefficients between the excited state and the lower-level states. Na=ρV with ρ is the atomic density, and V is the volume of the interaction area of the Raman field and atoms. Δ is the detuning from the excited state for both the Stokes and Raman write fields, which satisfy the two-photon resonance condition: ωWωS=ωmg. When the Stokes field a^S is a very strong coherent field, by replacing it with a c-number AS in Eq. (1) and defining a Rabi-like frequency Ω=2ηAS*, we obtain the Hamiltonian
H^BSAL=12i(Ω*a^wS^aΩa^WS^a).
This Hamiltonian leads to the time evolution of the fields given by
a^Wout=a^Wincos(θ/2)+S^ainsin(θ/2),S^aout=S^aincos(θ/2)a^Winsin(θ/2),
where θ is equal to |Ω|t, where t is the evolution time.

 

Fig. 1. Experimental setup of atom–light superposition oscillation. (a) Raman process for three-wave coupling of two optical fields (write a^W and Stokes AS) and an atomic spin wave (S^a). (b) Atomic energy levels for coupling optical fields. |g and |m: two ground states |52S1/2,F=1,2; |e1 and |e2: two excited states |52P1/2,F=2 and |52P3/2. OP: optical pumping field resonant on the |m|e2 transition. (c) Experimental arrangement for observing Rabi-like superposition oscillation between atom and light driven by a strong Stokes field with the atoms having an initial spin wave. The initial spin wave is prepared by W0 & S0 (see Appendix A for detail). PBS: polarized beam splitter. (d1) and (d2) Timing sequences for the experiment with an initial spin wave S^ain (d1) and a write field a^Win (d2) as the only input field.

Download Full Size | PPT Slide | PDF

It is interesting to see that if there is only one input field, say, the write field (IW(0)0), the intensities of the output fields are IW=IW(0)cos2(θ/2), ISa=IW(0)sin2(θ/2), which oscillate in time with a frequency proportional to AS, the amplitude of the strong Stokes field. This resembles the Rabi oscillation in a two-level system driven by a strong field [17]. Here, the oscillation is between the write field and the atomic spin wave instead of the atomic levels, while the strong Stokes field (AS) is the driving field. Similar oscillation occurs if only the atomic spin wave is initially non-zero (ISa(0)0): IW=ISa(0)sin2(θ/2), ISa=ISa(0)cos2(θ/2). On the other hand, if both fields are initially non-zero, the outputs are coherent mixtures of the two fields with mixing coefficients sin(θ/2) and cos(θ/2).

For the experimental observation of the Rabi-like superposition oscillation between light and the atom, we can approach it by either preparing the atoms with an initial atomic spin wave or simply injecting a write field. The experimental sketch is shown in Fig. 1(c) with the timing sequence in Fig. 1(d1). In the first approach, atoms are initially prepared with a non-zero spin wave by two pulses of S0 and W0 (see Appendix A for detail). After a short delay, a strong Stokes driving pulse (AS) of 0.2 μs length is sent in the opposite direction into the cell to drive the Rabi-like superposition oscillation. To observe it, the W-field (a^Wout) is measured by a photodetector and recorded in an oscilloscope. Figure 2(a) shows a typical run, clearly demonstrating the oscillation effect. The amplitude decay is due to the decoherence of the atomic spin wave. Figure 2(b) shows the oscillation frequency as a function of the amplitude AS of the strong driving Stokes field. The linear dependence confirms it as a Rabi frequency, as given in Eq. (3). For the case of initial injection at the W-field (a^Win shown in Fig. 1), we need to lock its frequency to the strong Stokes driving field to within several hundred Hertz to satisfy the requirement of the two-photon resonance condition: ωWωS=ωgm. The time sequence is shown in Fig. 1(d2). Figure 2(c) shows a typical run for this case. The oscillation frequency is confirmed in Fig. 2(d) as the Rabi frequency given in Eq. (3). Notice that the curves in Figs. 2(a) and 2(c) are complementary to each other, reflecting the sine and cosine functions in Eq. (3).

 

Fig. 2. Results of Rabi-like superposition oscillation between atom and light. (a) The output write field observed in time when the atomic spin wave has an initial value but no write field injection and (b) the corresponding oscillation frequency as a function of the amplitude of the driving Stokes field. (c) The observed output write field when the write field has an input but the atoms are all in the ground state and (d) the corresponding Rabi oscillation frequency as a function of the amplitude of the driving Stokes field. The period of the oscillation is obtained from the first two peaks. The black arrows in (a) and (c) represent the start times of the strong Stokes pulse.

Download Full Size | PPT Slide | PDF

3. ATOM–LIGHT HYBRID INTERFEROMETER

From Eq. (3), we find when we adjust the pulse width or amplitude of the Stokes field so that θ=π, the oscillation stops at the maximum conversion between the atom and light. Notice that the Hamiltonian in Eq. (2) is in the form of an SU(2) interaction between atoms and light [24], and the input–output relation in Eq. (3) is exactly the relation for a lossless beam splitter [24,27]: the write field here is equivalent to one of the input fields of the beam splitter, and the atomic spin wave is the other field. Thus, the outputs are coherent mixtures of the optical field and the atomic spin wave. When the pulse width satisfies θ=π/2, only half will be converted, and this leads to a coherent atom–light wave splitting.

Next, we use this atom–light wave splitter to form an atom–light interferometer. As shown in Fig. 3, after the first splitting of the incoming wave (the initially prepared atomic spin wave here in our experiment), we mix the split atom and light waves with another similar conversion process. This is done by redirecting the generated W-field (W1) back to the atomic cell that contains the unconverted atomic spin wave and mixing them with another Stokes π/2-pulse. To separate the splitting and the mixing processes, a delay between the two Stokes π/2 pulses is introduced with a 100 m-long single-mode fiber (SMF0). A similar delay with another SMF1 is introduced in the returned W-field.

 

Fig. 3. Atom–light hybrid interferometer. (a) Experimental setup and (b) atomic energy levels with frequencies of optical fields for the formation of an atom–light hybrid interferometer. HWP: half-wave plate; F-R: Faraday rotator; PZT: piezoelectric transducer; SMF: single-mode fiber; W1, W2, W3: write fields; S1, S2, S3: strong Stokes fields. BS1: the first splitting process to split the initial spin wave Sa0 to coherent superposition of write field W1 and spin wave Sa1. BS2: the second beam splitting process to mix W1 and Sa1 and output W2 and Sa2. The angle between W0 and S1 beams is 0.3 deg. S1 and S2 are spatially overlapped. The lasers S1 (S2) and S3 come from the same semiconductor laser and are chopped by two acoustic optical modulators.

Download Full Size | PPT Slide | PDF

To make a comparison with a conventional interferometer with beam splitters, the first pulse will act as the Raman read field in the first Raman read process to split the initially prepared atomic spin wave Sa0 into half write field (W1) and half-spin wave (Sa1). This process can be regarded as the first beam splitter in the conventional interferometer. The lengths of the two SMFs are made equal to ensure that the delayed Stokes pulse (S2) and the write field W1 generated in the first Raman process and fed back to the cell will enter the vapor cell that contains the spin wave Sa1 at the same time to carry out the second Raman process for mixing Sa1 and W1, i.e., the second beam splitter process. In between the first splitting and the second mixing processes, we introduce a phase modulation unit (piezoelectric transducer, PZT) in W1’s path to change its phase. The final light signal in the write field (W2) after the second beam splitter is collected with another single-mode fiber (SMF2) and detected after an etalon, which is used to filter out the leaked strong Stokes photons. The atomic signal after the second beam splitter can be converted into the light field (W3) by injecting another strong read pulse (S3) right after the second Stokes pulse (S2). The conversion efficiency is about 20%. This signal is also collected by SMF2 and detected after the etalon. So we will observe two temporally separated pulses by the detector: the first one from W2, and the second one from W3. The heights of the two pulses correspond to the intensities of the final write field (W2) and the final atomic spin wave Sa2, respectively. Figure 4 shows the interference fringes detected in both the output W-field and the final atomic spin wave. The solid lines are the best fits to the cosine function with visibilities of 96.6% and 94.8%, respectively.

 

Fig. 4. Interference fringes of atom–light hybrid interferometer. Observed interference fringes at the output write field (blue squares) and for the final atomic spin wave (green dots) as the optical phase is scanned via a ramp voltage on the PZT.

Download Full Size | PPT Slide | PDF

Since the atomic spin wave is involved in this interference scheme, the interference fringes should depend on the phase of the atomic spin wave as well, which can be changed by some external fields, such as the magnetic field and electric field. However, dependence on the magnetic field relies on the magnetic sub-levels and can be very complicated. Here, we resort to an AC Stark effect [28] for the atomic phase change. It is well known that when atoms are subject to the illumination of an electromagnetic field, their energy level will be shifted. For the atomic Raman process discussed previously, the AC Stark shift is given by the amount of [26,29]

ΔΩAC=12cε02|μge|2I/Δ,
where I is the intensity of the field, μge is the transition dipole matrix element 52S1/2,F=1|er|52P3/2, and Δ is the detuning. This will lead to a phase shift of Δϕ=ΔΩACΔT for an interaction time of ΔT. Thus, the atomic phase is directly proportional to the intensity I of the applied field and the optical delay ΔT. In the experiment, the external field (called the probe) comes from another laser at 780 nm tuned to the D2 line with 1.96–3.72 GHz detuning. We turn on the laser after the first Raman splitting process for ΔT=80ns and turn it off right before the second Raman mixing process. In this way, the phase-shifting field will not affect the Raman processes for splitting and mixing the atomic and optical waves. Figure 5 shows two interference fringes with and without the 780 nm laser turned on. The laser power is about 45 mW. We can extract a phase shift of 2.5 rad from the two fringes. In Fig. 6(a), we plot the phase shift as a function of the intensity of the 780 nm laser at various detunings. Then, the inverse of the slopes of the linear fits from Fig. 6(a) are plotted against the detuning. The linear dependence shown in both Figs. 6(a) and 6(b) is in agreement with Eq. (4). From Fig. 6, we find Δϕ=κPΔT/Δ with κ=2.8×103Deg·GHz/(W/m2) for ΔT=80ns, corresponding to the polarizability α=4πε0×30.8×1025m3/Δ(GHz). This value is of the same order of magnitude as that calculated in Ref. [29].

 

Fig. 5. AC Stark effect on interference output. Interference fringes at the output write field with (blue) and without (red) the atomic phase shift induced by the AC Stark effect. Green lines are the ramp voltage on the PZT for phase scan and the dotted lines are for the probe light intensity (scales are not drawn for both lines).

Download Full Size | PPT Slide | PDF

 

Fig. 6. Atomic phase shift. (a) The induced phase shift as a function of the intensity of the inducing light field (probe). (b) The inverse of the slopes of the linear fits from (a) as a function of the detuning frequency of the probe field.

Download Full Size | PPT Slide | PDF

4. DISCUSSION

In summary, we demonstrate coherent conversion between an atom and light in the form of a Rabi-like oscillation. This coherent conversion process can be used as a wave splitter into the coherent superposition of an atomic spin wave and an optical wave and as a wave mixer of the coherent atomic spin wave and optical wave. We construct an atom–light hybrid interferometer in which the interference fringes depend on both the optical phase and atomic phase. The intensity-dependent atomic phase shift can be used for a quantum non-demolition measurement (QND) [3032] of the photon number of the phase-inducing field (the 780 nm laser beam in our experiment). This is similar to the QND measurement in the optical Kerr effect [3335]. Furthermore, the atomic phase can be changed by other means such as magnetic and electric fields. So, this atom–light interferometer will have wide applications in precision measurement, quantum metrology, and quantum control of atom and light.

It should be pointed out that the mechanisms of the current atom–light interferometer and atom interferometers [18,3638] are different, though the processes to split and recombine the interference beams are both Raman processes with the interaction Hamiltonian given in Eq. (1) [39] and the interference fringes depend on both the optical and atomic phases. For the atom interferometers, the optical fields are the driving fields for the superposition of the same type of waves of atomic states (either internal states in the Ramsey interferometer or external states in the matter-wave interferometer), and the driving fields do not participate in the actual interference, but only appear as parameters in the coefficients of the superposition states. For our current Ramsey-like atom–light interferometer, the Stokes driving field creates a superposition between different waves of light (write field) and the atom (spin wave) and so the two interfering fields are different types. It is interesting to note that even though the two interfering fields are different, in an apparent violation of Dirac’s famous statement on photon interference, i.e., a photon only interferes with itself [40], the final fields observed by the detectors are still the same type and it is still indistinguishability that leads to the interference effect.

APPENDIX A

In the experiment, the atomic medium is Rubidium-87 atoms which is contained in a 50 mm long paraffin coated glass cell. The energy levels of the Rb atom are shown in Fig. 1(b), where states |g and |m are the two ground states (52S1/2,F=1,2) from hyperfine splitting and |e1, |e2 are two excited states (52P1/2,F=2,52P3/2). An optical pumping field (OP), tuned to |m|e2 transition at 780 nm, is used to prepare the atoms in |g state. The power and waist of OP laser is 200 mW and 2.0 mm, respectively. To get the initial atomic spin wave Sa0, we apply the Raman write field (W0) and Stokes seed (S0) simultaneously to perform a stimulated Raman scattering. The write laser is blue-detuned about 1.5 GHz from |g|e1 transition. The Stokes seed we used comes from the same laser as the W0 beam but its frequency is red-shifted 6.8 GHz from W0 beam in another vapor cell using feedback Raman scattering [41]. In Fig. 2, the power of W0 and S0 fields are 1.0 mW and 0.5 μW, respectively. The waists of W0 and S0 fields are both 0.4 mm. In Fig. 4, the power of W0, S0 and S3 fields are 3.0 mW, 2.0 μW and 10 mW, respectively. The powers of S1 and S2 fields are 10 mW and 30 mW, respectively. The waists of S0, W0, S1, S2, S3 and probe beams are all 1.0 mm. The vapor cell is placed inside a four-layer magnetic shielding to reduce stray magnetic fields and is heated up to 75° corresponding to atomic density of 10111012/cm3 using a bifilar resistive heater. The density of the atomic sample is an important parameter for Rabi-like oscillation and hybrid interferometer because Ω=2ηAS*Na. The oscillation between light and atoms can be observed only when oscillation period is shorter than the decoherence time. In our experimental system, the coherence time of atomic spin wave is about 0.2 μs for 0.4 mm beam waist and 0.5 μs for 1.0 mm beam waist, which is mainly limited by the atomic diffusion while the magnetic inhomogeneity effect can be ignored because of four-layer magnetic shielding.

Funding

National Key Research Program of China (2016YFA0302000); National Natural Science Foundation of China (NSFC) (11129402, 11234003, 11274118, 91536114); Shanghai Municipal Education Commission (13ZZ036).

REFERENCES AND NOTES

1. M. Fleischhauer and M. D. Lukin, “Dark-state polaritons in electromagnetically induced transparency,” Phys. Rev. Lett. 84, 5094–5097 (2000). [CrossRef]  

2. C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490–493 (2001). [CrossRef]  

3. D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86, 783–786 (2001). [CrossRef]  

4. A. Mair, J. Hager, D. F. Phillips, R. L. Walsworth, and M. D. Lukin, “Phase coherence and control of stored photonic information,” Phys. Rev. A 65, 031802(R) (2002). [CrossRef]  

5. K. Honda, D. Akamatsu, M. Arikawa, Y. Yokoi, K. Akiba, S. Nagatsuka, T. Tanimura, A. Furusawa, and M. Kozuma, “Storage and retrieval of a squeezed vacuum,” Phys. Rev. Lett. 100, 093601 (2008). [CrossRef]  

6. J. Appel, E. Figueroa, D. Korystov, M. Lobino, and A. I. Lvovsky, “Quantum memory for squeezed light,” Phys. Rev. Lett. 100, 093602 (2008). [CrossRef]  

7. M. Hosseini, B. M. Sparkes, G. Campbell, P. K. Lam, and B. C. Buchler, “High efficiency coherent optical memory with warm rubidium vapour,” Nat. Commun. 2, 174 (2011). [CrossRef]  

8. G. Hétet and D. Guéry-Odelin, “Spin wave diffraction control and read-out with a quantum memory for light,” New J. Phys. 17, 073003 (2015). [CrossRef]  

9. M. Hosseini, G. Campbell, B. M. Sparkes, P. K. Lam, and B. C. Buchler, “Unconditional room-temperature quantum memory,” Nat. Phys. 7, 794–798 (2011). [CrossRef]  

10. J. Nunn, I. A. Walmsley, M. G. Raymer, K. Surmacz, F. C. Waldermann, Z. Wang, and D. Jaksch, “Mapping broadband single-photon wavepackets into an atomic memory,” Phys. Rev. A 75, 011401(R) (2007). [CrossRef]  

11. K. F. Reim, J. Nunn, V. O. Lorenz, B. J. Sussman, K. C. Lee, N. K. Langford, D. Jaksch, and I. A. Walmsley, “Towards high-speed optical quantum memories,” Nat. Photonics 4, 218–221 (2010). [CrossRef]  

12. K. F. Reim, P. Michelberger, K. C. Lee, J. Nunn, N. K. Langford, and I. A. Walmsley, “Single-photon-level quantum memory at room temperature,” Phys. Rev. Lett. 107, 053603 (2011). [CrossRef]  

13. K. F. Reim, J. Nunn, X.-M. Jin, P. S. Michelberger, T. F. M. Champion, D. G. England, K. C. Lee, W. S. Kolthammer, N. K. Langford, and I. A. Walmsley, “Multipulse addressing of a raman quantum memory: configurable beam splitting and efficient readout,” Phys. Rev. Lett. 108, 263602 (2012). [CrossRef]  

14. G. Campbell, M. Hosseini, B. M. Sparkes, P. K. Lam, and B. C. Buchler, “Time- and frequency-domain polariton interference,” New J. Phys. 14, 033022 (2012). [CrossRef]  

15. O. Pinel, J. L. Everett, M. Hosseini, G. T. Campbell, B. C. Buchler, and P. K. Lam, “A mirrorless spinwave resonator,” Sci. Rep. 5, 17633 (2015). [CrossRef]  

16. K. Zhang, J. Guo, C.-H. Yuan, L. Q. Chen, C. Bian, B. Chen, Z. Y. Ou, and W. Zhang, “Mirrorless parametric oscillation in an atomic Raman process,” Phys. Rev. A 89, 063826 (2014). [CrossRef]  

17. L. Allen and J. H. Eberly, Optical Resonance and Two-level Atoms (Wiley, 1975).

18. N. F. Ramsey, “A molecular beam resonance method with separated oscillating fields,” Phys. Rev. 78, 695–699 (1950). [CrossRef]  

19. M. M. T. Loy, “Observation of population inversion by optical adiabatic rapid passage,” Phys. Rev. Lett. 32, 814–817 (1974). [CrossRef]  

20. L. Q. Chen, G.-W. Zhang, C. Bian, C.-H. Yuan, Z. Y. Ou, and W. Zhang, “Observation of the Rabi oscillation of light driven by an atomic spin wave,” Phys. Rev. Lett. 105, 133603 (2010). [CrossRef]  

21. Z. Y. Ou, “Efficient conversion between photons and between photon and atom by stimulated emission,” Phys. Rev. A 78, 023819 (2008). [CrossRef]  

22. B. Chen, C. Qiu, S. Chen, J. Guo, L. Q. Chen, Z. Y. Ou, and W. Zhang, “Atom–light hybrid interferometer,” Phys. Rev. Lett. 115, 043602 (2015). [CrossRef]  

23. B. Yurke, S. L. McCall, and J. R. Klauder, “SU(2) and SU(1, 1) interferometers,” Phys. Rev. A 33, 4033–4054 (1986). [CrossRef]  

24. R. A. Campos, B. E. A. Saleh, and M. C. Teich, “Quantum-mechanical lossless beam splitter: SU(2) symmetry and photon statistics,” Phys. Rev. A 40, 1371–1384 (1989). [CrossRef]  

25. L. M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414, 413–418 (2001). [CrossRef]  

26. K. Hammerer, A. S. Sorensen, and E. S. Polzik, “Quantum interface between light and atomic ensembles,” Rev. Mod. Phys. 82, 1041–1093 (2010). [CrossRef]  

27. Z. Y. Ou, C. K. Hong, and L. Mandel, “Relation between input and output states for a beam splitter,” Opt. Commun. 63, 118–122 (1987). [CrossRef]  

28. S. H. Autler and C. H. Townes, “Stark effect in rapidly varying fields,” Phys. Rev. 100, 703–722 (1955). [CrossRef]  

29. B. Deissler, K. J. Hughes, J. H. T. Burke, and C. A. Sackett, “Measurement of the ac Stark shift with a guided matter-wave interferometer,” Phys. Rev. A 77, 031604(R) (2008). [CrossRef]  

30. V. B. Braginsky, Y. I. Vorontsov, and K. S. Thorne, “Quantum nondemolition measurements,” Science 209, 547–557 (1980). [CrossRef]  

31. A. L. Porta, R. E. Slusher, and B. Yurke, “Back-action evading measurements of an optical field using parametric down conversion,” Phys. Rev. Lett. 62, 28–31 (1989). [CrossRef]  

32. S. F. Pereira, Z. Y. Ou, and H. J. Kimble, “Backaction evading measurements for quantum nondemolition detection and quantum optical tapping,” Phys. Rev. Lett. 72, 214–217 (1994). [CrossRef]  

33. M. D. Levenson, R. M. Shelby, M. Reid, and D. F. Walls, “Quantum nondemolition detection of optical quadrature amplitudes,” Phys. Rev. Lett. 57, 2473–2476 (1986). [CrossRef]  

34. S. R. Friberg, S. Machida, and Y. Yamamoto, “Quantum-nondemolition measurement of the photon number of an optical soliton,” Phys. Rev. Lett. 69, 3165–3168 (1992). [CrossRef]  

35. J. Ph. Poizat and P. Grangier, “Experimental realization of a quantum optical tap,” Phys. Rev. Lett. 70, 271–274 (1993). [CrossRef]  

36. M. Kasevich and S. Chu, “Atomic interferometry using stimulated Raman transitions,” Phys. Rev. Lett. 67, 181–184 (1991). [CrossRef]  

37. M. Weitz, B. C. Young, and S. Chu, “Atomic interferometer based on adiabatic population transfer,” Phys. Rev. Lett. 73, 2563–2566 (1994). [CrossRef]  

38. A. D. Cronin, J. Schmiedmayer, and D. E. Pritchard, “Optics and interferometry with atoms and molecules,” Rev. Mod. Phys. 81, 1051–1129 (2009). [CrossRef]  

39. For two-level atoms, the interaction Hamiltonian can also be written in the form of Eq. (1) by changing a^W to b^1 and S^a to b^2, where b^1 and b^2 are the annihilation operators for the two atomic states.

40. P. A. M. Dirac, The Principles of Quantum Mechanics (Oxford University, 1981).

41. B. Chen, K. Zhang, C. Bian, C. Qiu, C.-H. Yuan, L. Q. Chen, Z. Y. Ou, and W. Zhang, “Efficient Raman frequency conversion by coherent feedback at low light intensity,” Opt. Express 21, 10490–10495 (2013). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. M. Fleischhauer and M. D. Lukin, “Dark-state polaritons in electromagnetically induced transparency,” Phys. Rev. Lett. 84, 5094–5097 (2000).
    [Crossref]
  2. C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490–493 (2001).
    [Crossref]
  3. D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86, 783–786 (2001).
    [Crossref]
  4. A. Mair, J. Hager, D. F. Phillips, R. L. Walsworth, and M. D. Lukin, “Phase coherence and control of stored photonic information,” Phys. Rev. A 65, 031802(R) (2002).
    [Crossref]
  5. K. Honda, D. Akamatsu, M. Arikawa, Y. Yokoi, K. Akiba, S. Nagatsuka, T. Tanimura, A. Furusawa, and M. Kozuma, “Storage and retrieval of a squeezed vacuum,” Phys. Rev. Lett. 100, 093601 (2008).
    [Crossref]
  6. J. Appel, E. Figueroa, D. Korystov, M. Lobino, and A. I. Lvovsky, “Quantum memory for squeezed light,” Phys. Rev. Lett. 100, 093602 (2008).
    [Crossref]
  7. M. Hosseini, B. M. Sparkes, G. Campbell, P. K. Lam, and B. C. Buchler, “High efficiency coherent optical memory with warm rubidium vapour,” Nat. Commun. 2, 174 (2011).
    [Crossref]
  8. G. Hétet and D. Guéry-Odelin, “Spin wave diffraction control and read-out with a quantum memory for light,” New J. Phys. 17, 073003 (2015).
    [Crossref]
  9. M. Hosseini, G. Campbell, B. M. Sparkes, P. K. Lam, and B. C. Buchler, “Unconditional room-temperature quantum memory,” Nat. Phys. 7, 794–798 (2011).
    [Crossref]
  10. J. Nunn, I. A. Walmsley, M. G. Raymer, K. Surmacz, F. C. Waldermann, Z. Wang, and D. Jaksch, “Mapping broadband single-photon wavepackets into an atomic memory,” Phys. Rev. A 75, 011401(R) (2007).
    [Crossref]
  11. K. F. Reim, J. Nunn, V. O. Lorenz, B. J. Sussman, K. C. Lee, N. K. Langford, D. Jaksch, and I. A. Walmsley, “Towards high-speed optical quantum memories,” Nat. Photonics 4, 218–221 (2010).
    [Crossref]
  12. K. F. Reim, P. Michelberger, K. C. Lee, J. Nunn, N. K. Langford, and I. A. Walmsley, “Single-photon-level quantum memory at room temperature,” Phys. Rev. Lett. 107, 053603 (2011).
    [Crossref]
  13. K. F. Reim, J. Nunn, X.-M. Jin, P. S. Michelberger, T. F. M. Champion, D. G. England, K. C. Lee, W. S. Kolthammer, N. K. Langford, and I. A. Walmsley, “Multipulse addressing of a raman quantum memory: configurable beam splitting and efficient readout,” Phys. Rev. Lett. 108, 263602 (2012).
    [Crossref]
  14. G. Campbell, M. Hosseini, B. M. Sparkes, P. K. Lam, and B. C. Buchler, “Time- and frequency-domain polariton interference,” New J. Phys. 14, 033022 (2012).
    [Crossref]
  15. O. Pinel, J. L. Everett, M. Hosseini, G. T. Campbell, B. C. Buchler, and P. K. Lam, “A mirrorless spinwave resonator,” Sci. Rep. 5, 17633 (2015).
    [Crossref]
  16. K. Zhang, J. Guo, C.-H. Yuan, L. Q. Chen, C. Bian, B. Chen, Z. Y. Ou, and W. Zhang, “Mirrorless parametric oscillation in an atomic Raman process,” Phys. Rev. A 89, 063826 (2014).
    [Crossref]
  17. L. Allen and J. H. Eberly, Optical Resonance and Two-level Atoms (Wiley, 1975).
  18. N. F. Ramsey, “A molecular beam resonance method with separated oscillating fields,” Phys. Rev. 78, 695–699 (1950).
    [Crossref]
  19. M. M. T. Loy, “Observation of population inversion by optical adiabatic rapid passage,” Phys. Rev. Lett. 32, 814–817 (1974).
    [Crossref]
  20. L. Q. Chen, G.-W. Zhang, C. Bian, C.-H. Yuan, Z. Y. Ou, and W. Zhang, “Observation of the Rabi oscillation of light driven by an atomic spin wave,” Phys. Rev. Lett. 105, 133603 (2010).
    [Crossref]
  21. Z. Y. Ou, “Efficient conversion between photons and between photon and atom by stimulated emission,” Phys. Rev. A 78, 023819 (2008).
    [Crossref]
  22. B. Chen, C. Qiu, S. Chen, J. Guo, L. Q. Chen, Z. Y. Ou, and W. Zhang, “Atom–light hybrid interferometer,” Phys. Rev. Lett. 115, 043602 (2015).
    [Crossref]
  23. B. Yurke, S. L. McCall, and J. R. Klauder, “SU(2) and SU(1, 1) interferometers,” Phys. Rev. A 33, 4033–4054 (1986).
    [Crossref]
  24. R. A. Campos, B. E. A. Saleh, and M. C. Teich, “Quantum-mechanical lossless beam splitter: SU(2) symmetry and photon statistics,” Phys. Rev. A 40, 1371–1384 (1989).
    [Crossref]
  25. L. M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414, 413–418 (2001).
    [Crossref]
  26. K. Hammerer, A. S. Sorensen, and E. S. Polzik, “Quantum interface between light and atomic ensembles,” Rev. Mod. Phys. 82, 1041–1093 (2010).
    [Crossref]
  27. Z. Y. Ou, C. K. Hong, and L. Mandel, “Relation between input and output states for a beam splitter,” Opt. Commun. 63, 118–122 (1987).
    [Crossref]
  28. S. H. Autler and C. H. Townes, “Stark effect in rapidly varying fields,” Phys. Rev. 100, 703–722 (1955).
    [Crossref]
  29. B. Deissler, K. J. Hughes, J. H. T. Burke, and C. A. Sackett, “Measurement of the ac Stark shift with a guided matter-wave interferometer,” Phys. Rev. A 77, 031604(R) (2008).
    [Crossref]
  30. V. B. Braginsky, Y. I. Vorontsov, and K. S. Thorne, “Quantum nondemolition measurements,” Science 209, 547–557 (1980).
    [Crossref]
  31. A. L. Porta, R. E. Slusher, and B. Yurke, “Back-action evading measurements of an optical field using parametric down conversion,” Phys. Rev. Lett. 62, 28–31 (1989).
    [Crossref]
  32. S. F. Pereira, Z. Y. Ou, and H. J. Kimble, “Backaction evading measurements for quantum nondemolition detection and quantum optical tapping,” Phys. Rev. Lett. 72, 214–217 (1994).
    [Crossref]
  33. M. D. Levenson, R. M. Shelby, M. Reid, and D. F. Walls, “Quantum nondemolition detection of optical quadrature amplitudes,” Phys. Rev. Lett. 57, 2473–2476 (1986).
    [Crossref]
  34. S. R. Friberg, S. Machida, and Y. Yamamoto, “Quantum-nondemolition measurement of the photon number of an optical soliton,” Phys. Rev. Lett. 69, 3165–3168 (1992).
    [Crossref]
  35. J. Ph. Poizat and P. Grangier, “Experimental realization of a quantum optical tap,” Phys. Rev. Lett. 70, 271–274 (1993).
    [Crossref]
  36. M. Kasevich and S. Chu, “Atomic interferometry using stimulated Raman transitions,” Phys. Rev. Lett. 67, 181–184 (1991).
    [Crossref]
  37. M. Weitz, B. C. Young, and S. Chu, “Atomic interferometer based on adiabatic population transfer,” Phys. Rev. Lett. 73, 2563–2566 (1994).
    [Crossref]
  38. A. D. Cronin, J. Schmiedmayer, and D. E. Pritchard, “Optics and interferometry with atoms and molecules,” Rev. Mod. Phys. 81, 1051–1129 (2009).
    [Crossref]
  39. For two-level atoms, the interaction Hamiltonian can also be written in the form of Eq. (1) by changing a^W to b^1 and S^a to b^2, where b^1 and b^2 are the annihilation operators for the two atomic states.
  40. P. A. M. Dirac, The Principles of Quantum Mechanics (Oxford University, 1981).
  41. B. Chen, K. Zhang, C. Bian, C. Qiu, C.-H. Yuan, L. Q. Chen, Z. Y. Ou, and W. Zhang, “Efficient Raman frequency conversion by coherent feedback at low light intensity,” Opt. Express 21, 10490–10495 (2013).
    [Crossref]

2015 (3)

G. Hétet and D. Guéry-Odelin, “Spin wave diffraction control and read-out with a quantum memory for light,” New J. Phys. 17, 073003 (2015).
[Crossref]

O. Pinel, J. L. Everett, M. Hosseini, G. T. Campbell, B. C. Buchler, and P. K. Lam, “A mirrorless spinwave resonator,” Sci. Rep. 5, 17633 (2015).
[Crossref]

B. Chen, C. Qiu, S. Chen, J. Guo, L. Q. Chen, Z. Y. Ou, and W. Zhang, “Atom–light hybrid interferometer,” Phys. Rev. Lett. 115, 043602 (2015).
[Crossref]

2014 (1)

K. Zhang, J. Guo, C.-H. Yuan, L. Q. Chen, C. Bian, B. Chen, Z. Y. Ou, and W. Zhang, “Mirrorless parametric oscillation in an atomic Raman process,” Phys. Rev. A 89, 063826 (2014).
[Crossref]

2013 (1)

2012 (2)

K. F. Reim, J. Nunn, X.-M. Jin, P. S. Michelberger, T. F. M. Champion, D. G. England, K. C. Lee, W. S. Kolthammer, N. K. Langford, and I. A. Walmsley, “Multipulse addressing of a raman quantum memory: configurable beam splitting and efficient readout,” Phys. Rev. Lett. 108, 263602 (2012).
[Crossref]

G. Campbell, M. Hosseini, B. M. Sparkes, P. K. Lam, and B. C. Buchler, “Time- and frequency-domain polariton interference,” New J. Phys. 14, 033022 (2012).
[Crossref]

2011 (3)

M. Hosseini, B. M. Sparkes, G. Campbell, P. K. Lam, and B. C. Buchler, “High efficiency coherent optical memory with warm rubidium vapour,” Nat. Commun. 2, 174 (2011).
[Crossref]

K. F. Reim, P. Michelberger, K. C. Lee, J. Nunn, N. K. Langford, and I. A. Walmsley, “Single-photon-level quantum memory at room temperature,” Phys. Rev. Lett. 107, 053603 (2011).
[Crossref]

M. Hosseini, G. Campbell, B. M. Sparkes, P. K. Lam, and B. C. Buchler, “Unconditional room-temperature quantum memory,” Nat. Phys. 7, 794–798 (2011).
[Crossref]

2010 (3)

K. F. Reim, J. Nunn, V. O. Lorenz, B. J. Sussman, K. C. Lee, N. K. Langford, D. Jaksch, and I. A. Walmsley, “Towards high-speed optical quantum memories,” Nat. Photonics 4, 218–221 (2010).
[Crossref]

L. Q. Chen, G.-W. Zhang, C. Bian, C.-H. Yuan, Z. Y. Ou, and W. Zhang, “Observation of the Rabi oscillation of light driven by an atomic spin wave,” Phys. Rev. Lett. 105, 133603 (2010).
[Crossref]

K. Hammerer, A. S. Sorensen, and E. S. Polzik, “Quantum interface between light and atomic ensembles,” Rev. Mod. Phys. 82, 1041–1093 (2010).
[Crossref]

2009 (1)

A. D. Cronin, J. Schmiedmayer, and D. E. Pritchard, “Optics and interferometry with atoms and molecules,” Rev. Mod. Phys. 81, 1051–1129 (2009).
[Crossref]

2008 (4)

Z. Y. Ou, “Efficient conversion between photons and between photon and atom by stimulated emission,” Phys. Rev. A 78, 023819 (2008).
[Crossref]

B. Deissler, K. J. Hughes, J. H. T. Burke, and C. A. Sackett, “Measurement of the ac Stark shift with a guided matter-wave interferometer,” Phys. Rev. A 77, 031604(R) (2008).
[Crossref]

K. Honda, D. Akamatsu, M. Arikawa, Y. Yokoi, K. Akiba, S. Nagatsuka, T. Tanimura, A. Furusawa, and M. Kozuma, “Storage and retrieval of a squeezed vacuum,” Phys. Rev. Lett. 100, 093601 (2008).
[Crossref]

J. Appel, E. Figueroa, D. Korystov, M. Lobino, and A. I. Lvovsky, “Quantum memory for squeezed light,” Phys. Rev. Lett. 100, 093602 (2008).
[Crossref]

2007 (1)

J. Nunn, I. A. Walmsley, M. G. Raymer, K. Surmacz, F. C. Waldermann, Z. Wang, and D. Jaksch, “Mapping broadband single-photon wavepackets into an atomic memory,” Phys. Rev. A 75, 011401(R) (2007).
[Crossref]

2002 (1)

A. Mair, J. Hager, D. F. Phillips, R. L. Walsworth, and M. D. Lukin, “Phase coherence and control of stored photonic information,” Phys. Rev. A 65, 031802(R) (2002).
[Crossref]

2001 (3)

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490–493 (2001).
[Crossref]

D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86, 783–786 (2001).
[Crossref]

L. M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414, 413–418 (2001).
[Crossref]

2000 (1)

M. Fleischhauer and M. D. Lukin, “Dark-state polaritons in electromagnetically induced transparency,” Phys. Rev. Lett. 84, 5094–5097 (2000).
[Crossref]

1994 (2)

S. F. Pereira, Z. Y. Ou, and H. J. Kimble, “Backaction evading measurements for quantum nondemolition detection and quantum optical tapping,” Phys. Rev. Lett. 72, 214–217 (1994).
[Crossref]

M. Weitz, B. C. Young, and S. Chu, “Atomic interferometer based on adiabatic population transfer,” Phys. Rev. Lett. 73, 2563–2566 (1994).
[Crossref]

1993 (1)

J. Ph. Poizat and P. Grangier, “Experimental realization of a quantum optical tap,” Phys. Rev. Lett. 70, 271–274 (1993).
[Crossref]

1992 (1)

S. R. Friberg, S. Machida, and Y. Yamamoto, “Quantum-nondemolition measurement of the photon number of an optical soliton,” Phys. Rev. Lett. 69, 3165–3168 (1992).
[Crossref]

1991 (1)

M. Kasevich and S. Chu, “Atomic interferometry using stimulated Raman transitions,” Phys. Rev. Lett. 67, 181–184 (1991).
[Crossref]

1989 (2)

A. L. Porta, R. E. Slusher, and B. Yurke, “Back-action evading measurements of an optical field using parametric down conversion,” Phys. Rev. Lett. 62, 28–31 (1989).
[Crossref]

R. A. Campos, B. E. A. Saleh, and M. C. Teich, “Quantum-mechanical lossless beam splitter: SU(2) symmetry and photon statistics,” Phys. Rev. A 40, 1371–1384 (1989).
[Crossref]

1987 (1)

Z. Y. Ou, C. K. Hong, and L. Mandel, “Relation between input and output states for a beam splitter,” Opt. Commun. 63, 118–122 (1987).
[Crossref]

1986 (2)

B. Yurke, S. L. McCall, and J. R. Klauder, “SU(2) and SU(1, 1) interferometers,” Phys. Rev. A 33, 4033–4054 (1986).
[Crossref]

M. D. Levenson, R. M. Shelby, M. Reid, and D. F. Walls, “Quantum nondemolition detection of optical quadrature amplitudes,” Phys. Rev. Lett. 57, 2473–2476 (1986).
[Crossref]

1980 (1)

V. B. Braginsky, Y. I. Vorontsov, and K. S. Thorne, “Quantum nondemolition measurements,” Science 209, 547–557 (1980).
[Crossref]

1974 (1)

M. M. T. Loy, “Observation of population inversion by optical adiabatic rapid passage,” Phys. Rev. Lett. 32, 814–817 (1974).
[Crossref]

1955 (1)

S. H. Autler and C. H. Townes, “Stark effect in rapidly varying fields,” Phys. Rev. 100, 703–722 (1955).
[Crossref]

1950 (1)

N. F. Ramsey, “A molecular beam resonance method with separated oscillating fields,” Phys. Rev. 78, 695–699 (1950).
[Crossref]

Akamatsu, D.

K. Honda, D. Akamatsu, M. Arikawa, Y. Yokoi, K. Akiba, S. Nagatsuka, T. Tanimura, A. Furusawa, and M. Kozuma, “Storage and retrieval of a squeezed vacuum,” Phys. Rev. Lett. 100, 093601 (2008).
[Crossref]

Akiba, K.

K. Honda, D. Akamatsu, M. Arikawa, Y. Yokoi, K. Akiba, S. Nagatsuka, T. Tanimura, A. Furusawa, and M. Kozuma, “Storage and retrieval of a squeezed vacuum,” Phys. Rev. Lett. 100, 093601 (2008).
[Crossref]

Allen, L.

L. Allen and J. H. Eberly, Optical Resonance and Two-level Atoms (Wiley, 1975).

Appel, J.

J. Appel, E. Figueroa, D. Korystov, M. Lobino, and A. I. Lvovsky, “Quantum memory for squeezed light,” Phys. Rev. Lett. 100, 093602 (2008).
[Crossref]

Arikawa, M.

K. Honda, D. Akamatsu, M. Arikawa, Y. Yokoi, K. Akiba, S. Nagatsuka, T. Tanimura, A. Furusawa, and M. Kozuma, “Storage and retrieval of a squeezed vacuum,” Phys. Rev. Lett. 100, 093601 (2008).
[Crossref]

Autler, S. H.

S. H. Autler and C. H. Townes, “Stark effect in rapidly varying fields,” Phys. Rev. 100, 703–722 (1955).
[Crossref]

Behroozi, C. H.

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490–493 (2001).
[Crossref]

Bian, C.

K. Zhang, J. Guo, C.-H. Yuan, L. Q. Chen, C. Bian, B. Chen, Z. Y. Ou, and W. Zhang, “Mirrorless parametric oscillation in an atomic Raman process,” Phys. Rev. A 89, 063826 (2014).
[Crossref]

B. Chen, K. Zhang, C. Bian, C. Qiu, C.-H. Yuan, L. Q. Chen, Z. Y. Ou, and W. Zhang, “Efficient Raman frequency conversion by coherent feedback at low light intensity,” Opt. Express 21, 10490–10495 (2013).
[Crossref]

L. Q. Chen, G.-W. Zhang, C. Bian, C.-H. Yuan, Z. Y. Ou, and W. Zhang, “Observation of the Rabi oscillation of light driven by an atomic spin wave,” Phys. Rev. Lett. 105, 133603 (2010).
[Crossref]

Braginsky, V. B.

V. B. Braginsky, Y. I. Vorontsov, and K. S. Thorne, “Quantum nondemolition measurements,” Science 209, 547–557 (1980).
[Crossref]

Buchler, B. C.

O. Pinel, J. L. Everett, M. Hosseini, G. T. Campbell, B. C. Buchler, and P. K. Lam, “A mirrorless spinwave resonator,” Sci. Rep. 5, 17633 (2015).
[Crossref]

G. Campbell, M. Hosseini, B. M. Sparkes, P. K. Lam, and B. C. Buchler, “Time- and frequency-domain polariton interference,” New J. Phys. 14, 033022 (2012).
[Crossref]

M. Hosseini, B. M. Sparkes, G. Campbell, P. K. Lam, and B. C. Buchler, “High efficiency coherent optical memory with warm rubidium vapour,” Nat. Commun. 2, 174 (2011).
[Crossref]

M. Hosseini, G. Campbell, B. M. Sparkes, P. K. Lam, and B. C. Buchler, “Unconditional room-temperature quantum memory,” Nat. Phys. 7, 794–798 (2011).
[Crossref]

Burke, J. H. T.

B. Deissler, K. J. Hughes, J. H. T. Burke, and C. A. Sackett, “Measurement of the ac Stark shift with a guided matter-wave interferometer,” Phys. Rev. A 77, 031604(R) (2008).
[Crossref]

Campbell, G.

G. Campbell, M. Hosseini, B. M. Sparkes, P. K. Lam, and B. C. Buchler, “Time- and frequency-domain polariton interference,” New J. Phys. 14, 033022 (2012).
[Crossref]

M. Hosseini, G. Campbell, B. M. Sparkes, P. K. Lam, and B. C. Buchler, “Unconditional room-temperature quantum memory,” Nat. Phys. 7, 794–798 (2011).
[Crossref]

M. Hosseini, B. M. Sparkes, G. Campbell, P. K. Lam, and B. C. Buchler, “High efficiency coherent optical memory with warm rubidium vapour,” Nat. Commun. 2, 174 (2011).
[Crossref]

Campbell, G. T.

O. Pinel, J. L. Everett, M. Hosseini, G. T. Campbell, B. C. Buchler, and P. K. Lam, “A mirrorless spinwave resonator,” Sci. Rep. 5, 17633 (2015).
[Crossref]

Campos, R. A.

R. A. Campos, B. E. A. Saleh, and M. C. Teich, “Quantum-mechanical lossless beam splitter: SU(2) symmetry and photon statistics,” Phys. Rev. A 40, 1371–1384 (1989).
[Crossref]

Champion, T. F. M.

K. F. Reim, J. Nunn, X.-M. Jin, P. S. Michelberger, T. F. M. Champion, D. G. England, K. C. Lee, W. S. Kolthammer, N. K. Langford, and I. A. Walmsley, “Multipulse addressing of a raman quantum memory: configurable beam splitting and efficient readout,” Phys. Rev. Lett. 108, 263602 (2012).
[Crossref]

Chen, B.

B. Chen, C. Qiu, S. Chen, J. Guo, L. Q. Chen, Z. Y. Ou, and W. Zhang, “Atom–light hybrid interferometer,” Phys. Rev. Lett. 115, 043602 (2015).
[Crossref]

K. Zhang, J. Guo, C.-H. Yuan, L. Q. Chen, C. Bian, B. Chen, Z. Y. Ou, and W. Zhang, “Mirrorless parametric oscillation in an atomic Raman process,” Phys. Rev. A 89, 063826 (2014).
[Crossref]

B. Chen, K. Zhang, C. Bian, C. Qiu, C.-H. Yuan, L. Q. Chen, Z. Y. Ou, and W. Zhang, “Efficient Raman frequency conversion by coherent feedback at low light intensity,” Opt. Express 21, 10490–10495 (2013).
[Crossref]

Chen, L. Q.

B. Chen, C. Qiu, S. Chen, J. Guo, L. Q. Chen, Z. Y. Ou, and W. Zhang, “Atom–light hybrid interferometer,” Phys. Rev. Lett. 115, 043602 (2015).
[Crossref]

K. Zhang, J. Guo, C.-H. Yuan, L. Q. Chen, C. Bian, B. Chen, Z. Y. Ou, and W. Zhang, “Mirrorless parametric oscillation in an atomic Raman process,” Phys. Rev. A 89, 063826 (2014).
[Crossref]

B. Chen, K. Zhang, C. Bian, C. Qiu, C.-H. Yuan, L. Q. Chen, Z. Y. Ou, and W. Zhang, “Efficient Raman frequency conversion by coherent feedback at low light intensity,” Opt. Express 21, 10490–10495 (2013).
[Crossref]

L. Q. Chen, G.-W. Zhang, C. Bian, C.-H. Yuan, Z. Y. Ou, and W. Zhang, “Observation of the Rabi oscillation of light driven by an atomic spin wave,” Phys. Rev. Lett. 105, 133603 (2010).
[Crossref]

Chen, S.

B. Chen, C. Qiu, S. Chen, J. Guo, L. Q. Chen, Z. Y. Ou, and W. Zhang, “Atom–light hybrid interferometer,” Phys. Rev. Lett. 115, 043602 (2015).
[Crossref]

Chu, S.

M. Weitz, B. C. Young, and S. Chu, “Atomic interferometer based on adiabatic population transfer,” Phys. Rev. Lett. 73, 2563–2566 (1994).
[Crossref]

M. Kasevich and S. Chu, “Atomic interferometry using stimulated Raman transitions,” Phys. Rev. Lett. 67, 181–184 (1991).
[Crossref]

Cirac, J. I.

L. M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414, 413–418 (2001).
[Crossref]

Cronin, A. D.

A. D. Cronin, J. Schmiedmayer, and D. E. Pritchard, “Optics and interferometry with atoms and molecules,” Rev. Mod. Phys. 81, 1051–1129 (2009).
[Crossref]

Deissler, B.

B. Deissler, K. J. Hughes, J. H. T. Burke, and C. A. Sackett, “Measurement of the ac Stark shift with a guided matter-wave interferometer,” Phys. Rev. A 77, 031604(R) (2008).
[Crossref]

Dirac, P. A. M.

P. A. M. Dirac, The Principles of Quantum Mechanics (Oxford University, 1981).

Duan, L. M.

L. M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414, 413–418 (2001).
[Crossref]

Dutton, Z.

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490–493 (2001).
[Crossref]

Eberly, J. H.

L. Allen and J. H. Eberly, Optical Resonance and Two-level Atoms (Wiley, 1975).

England, D. G.

K. F. Reim, J. Nunn, X.-M. Jin, P. S. Michelberger, T. F. M. Champion, D. G. England, K. C. Lee, W. S. Kolthammer, N. K. Langford, and I. A. Walmsley, “Multipulse addressing of a raman quantum memory: configurable beam splitting and efficient readout,” Phys. Rev. Lett. 108, 263602 (2012).
[Crossref]

Everett, J. L.

O. Pinel, J. L. Everett, M. Hosseini, G. T. Campbell, B. C. Buchler, and P. K. Lam, “A mirrorless spinwave resonator,” Sci. Rep. 5, 17633 (2015).
[Crossref]

Figueroa, E.

J. Appel, E. Figueroa, D. Korystov, M. Lobino, and A. I. Lvovsky, “Quantum memory for squeezed light,” Phys. Rev. Lett. 100, 093602 (2008).
[Crossref]

Fleischhauer, A.

D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86, 783–786 (2001).
[Crossref]

Fleischhauer, M.

M. Fleischhauer and M. D. Lukin, “Dark-state polaritons in electromagnetically induced transparency,” Phys. Rev. Lett. 84, 5094–5097 (2000).
[Crossref]

Friberg, S. R.

S. R. Friberg, S. Machida, and Y. Yamamoto, “Quantum-nondemolition measurement of the photon number of an optical soliton,” Phys. Rev. Lett. 69, 3165–3168 (1992).
[Crossref]

Furusawa, A.

K. Honda, D. Akamatsu, M. Arikawa, Y. Yokoi, K. Akiba, S. Nagatsuka, T. Tanimura, A. Furusawa, and M. Kozuma, “Storage and retrieval of a squeezed vacuum,” Phys. Rev. Lett. 100, 093601 (2008).
[Crossref]

Grangier, P.

J. Ph. Poizat and P. Grangier, “Experimental realization of a quantum optical tap,” Phys. Rev. Lett. 70, 271–274 (1993).
[Crossref]

Guéry-Odelin, D.

G. Hétet and D. Guéry-Odelin, “Spin wave diffraction control and read-out with a quantum memory for light,” New J. Phys. 17, 073003 (2015).
[Crossref]

Guo, J.

B. Chen, C. Qiu, S. Chen, J. Guo, L. Q. Chen, Z. Y. Ou, and W. Zhang, “Atom–light hybrid interferometer,” Phys. Rev. Lett. 115, 043602 (2015).
[Crossref]

K. Zhang, J. Guo, C.-H. Yuan, L. Q. Chen, C. Bian, B. Chen, Z. Y. Ou, and W. Zhang, “Mirrorless parametric oscillation in an atomic Raman process,” Phys. Rev. A 89, 063826 (2014).
[Crossref]

Hager, J.

A. Mair, J. Hager, D. F. Phillips, R. L. Walsworth, and M. D. Lukin, “Phase coherence and control of stored photonic information,” Phys. Rev. A 65, 031802(R) (2002).
[Crossref]

Hammerer, K.

K. Hammerer, A. S. Sorensen, and E. S. Polzik, “Quantum interface between light and atomic ensembles,” Rev. Mod. Phys. 82, 1041–1093 (2010).
[Crossref]

Hau, L. V.

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490–493 (2001).
[Crossref]

Hétet, G.

G. Hétet and D. Guéry-Odelin, “Spin wave diffraction control and read-out with a quantum memory for light,” New J. Phys. 17, 073003 (2015).
[Crossref]

Honda, K.

K. Honda, D. Akamatsu, M. Arikawa, Y. Yokoi, K. Akiba, S. Nagatsuka, T. Tanimura, A. Furusawa, and M. Kozuma, “Storage and retrieval of a squeezed vacuum,” Phys. Rev. Lett. 100, 093601 (2008).
[Crossref]

Hong, C. K.

Z. Y. Ou, C. K. Hong, and L. Mandel, “Relation between input and output states for a beam splitter,” Opt. Commun. 63, 118–122 (1987).
[Crossref]

Hosseini, M.

O. Pinel, J. L. Everett, M. Hosseini, G. T. Campbell, B. C. Buchler, and P. K. Lam, “A mirrorless spinwave resonator,” Sci. Rep. 5, 17633 (2015).
[Crossref]

G. Campbell, M. Hosseini, B. M. Sparkes, P. K. Lam, and B. C. Buchler, “Time- and frequency-domain polariton interference,” New J. Phys. 14, 033022 (2012).
[Crossref]

M. Hosseini, G. Campbell, B. M. Sparkes, P. K. Lam, and B. C. Buchler, “Unconditional room-temperature quantum memory,” Nat. Phys. 7, 794–798 (2011).
[Crossref]

M. Hosseini, B. M. Sparkes, G. Campbell, P. K. Lam, and B. C. Buchler, “High efficiency coherent optical memory with warm rubidium vapour,” Nat. Commun. 2, 174 (2011).
[Crossref]

Hughes, K. J.

B. Deissler, K. J. Hughes, J. H. T. Burke, and C. A. Sackett, “Measurement of the ac Stark shift with a guided matter-wave interferometer,” Phys. Rev. A 77, 031604(R) (2008).
[Crossref]

Jaksch, D.

K. F. Reim, J. Nunn, V. O. Lorenz, B. J. Sussman, K. C. Lee, N. K. Langford, D. Jaksch, and I. A. Walmsley, “Towards high-speed optical quantum memories,” Nat. Photonics 4, 218–221 (2010).
[Crossref]

J. Nunn, I. A. Walmsley, M. G. Raymer, K. Surmacz, F. C. Waldermann, Z. Wang, and D. Jaksch, “Mapping broadband single-photon wavepackets into an atomic memory,” Phys. Rev. A 75, 011401(R) (2007).
[Crossref]

Jin, X.-M.

K. F. Reim, J. Nunn, X.-M. Jin, P. S. Michelberger, T. F. M. Champion, D. G. England, K. C. Lee, W. S. Kolthammer, N. K. Langford, and I. A. Walmsley, “Multipulse addressing of a raman quantum memory: configurable beam splitting and efficient readout,” Phys. Rev. Lett. 108, 263602 (2012).
[Crossref]

Kasevich, M.

M. Kasevich and S. Chu, “Atomic interferometry using stimulated Raman transitions,” Phys. Rev. Lett. 67, 181–184 (1991).
[Crossref]

Kimble, H. J.

S. F. Pereira, Z. Y. Ou, and H. J. Kimble, “Backaction evading measurements for quantum nondemolition detection and quantum optical tapping,” Phys. Rev. Lett. 72, 214–217 (1994).
[Crossref]

Klauder, J. R.

B. Yurke, S. L. McCall, and J. R. Klauder, “SU(2) and SU(1, 1) interferometers,” Phys. Rev. A 33, 4033–4054 (1986).
[Crossref]

Kolthammer, W. S.

K. F. Reim, J. Nunn, X.-M. Jin, P. S. Michelberger, T. F. M. Champion, D. G. England, K. C. Lee, W. S. Kolthammer, N. K. Langford, and I. A. Walmsley, “Multipulse addressing of a raman quantum memory: configurable beam splitting and efficient readout,” Phys. Rev. Lett. 108, 263602 (2012).
[Crossref]

Korystov, D.

J. Appel, E. Figueroa, D. Korystov, M. Lobino, and A. I. Lvovsky, “Quantum memory for squeezed light,” Phys. Rev. Lett. 100, 093602 (2008).
[Crossref]

Kozuma, M.

K. Honda, D. Akamatsu, M. Arikawa, Y. Yokoi, K. Akiba, S. Nagatsuka, T. Tanimura, A. Furusawa, and M. Kozuma, “Storage and retrieval of a squeezed vacuum,” Phys. Rev. Lett. 100, 093601 (2008).
[Crossref]

Lam, P. K.

O. Pinel, J. L. Everett, M. Hosseini, G. T. Campbell, B. C. Buchler, and P. K. Lam, “A mirrorless spinwave resonator,” Sci. Rep. 5, 17633 (2015).
[Crossref]

G. Campbell, M. Hosseini, B. M. Sparkes, P. K. Lam, and B. C. Buchler, “Time- and frequency-domain polariton interference,” New J. Phys. 14, 033022 (2012).
[Crossref]

M. Hosseini, B. M. Sparkes, G. Campbell, P. K. Lam, and B. C. Buchler, “High efficiency coherent optical memory with warm rubidium vapour,” Nat. Commun. 2, 174 (2011).
[Crossref]

M. Hosseini, G. Campbell, B. M. Sparkes, P. K. Lam, and B. C. Buchler, “Unconditional room-temperature quantum memory,” Nat. Phys. 7, 794–798 (2011).
[Crossref]

Langford, N. K.

K. F. Reim, J. Nunn, X.-M. Jin, P. S. Michelberger, T. F. M. Champion, D. G. England, K. C. Lee, W. S. Kolthammer, N. K. Langford, and I. A. Walmsley, “Multipulse addressing of a raman quantum memory: configurable beam splitting and efficient readout,” Phys. Rev. Lett. 108, 263602 (2012).
[Crossref]

K. F. Reim, P. Michelberger, K. C. Lee, J. Nunn, N. K. Langford, and I. A. Walmsley, “Single-photon-level quantum memory at room temperature,” Phys. Rev. Lett. 107, 053603 (2011).
[Crossref]

K. F. Reim, J. Nunn, V. O. Lorenz, B. J. Sussman, K. C. Lee, N. K. Langford, D. Jaksch, and I. A. Walmsley, “Towards high-speed optical quantum memories,” Nat. Photonics 4, 218–221 (2010).
[Crossref]

Lee, K. C.

K. F. Reim, J. Nunn, X.-M. Jin, P. S. Michelberger, T. F. M. Champion, D. G. England, K. C. Lee, W. S. Kolthammer, N. K. Langford, and I. A. Walmsley, “Multipulse addressing of a raman quantum memory: configurable beam splitting and efficient readout,” Phys. Rev. Lett. 108, 263602 (2012).
[Crossref]

K. F. Reim, P. Michelberger, K. C. Lee, J. Nunn, N. K. Langford, and I. A. Walmsley, “Single-photon-level quantum memory at room temperature,” Phys. Rev. Lett. 107, 053603 (2011).
[Crossref]

K. F. Reim, J. Nunn, V. O. Lorenz, B. J. Sussman, K. C. Lee, N. K. Langford, D. Jaksch, and I. A. Walmsley, “Towards high-speed optical quantum memories,” Nat. Photonics 4, 218–221 (2010).
[Crossref]

Levenson, M. D.

M. D. Levenson, R. M. Shelby, M. Reid, and D. F. Walls, “Quantum nondemolition detection of optical quadrature amplitudes,” Phys. Rev. Lett. 57, 2473–2476 (1986).
[Crossref]

Liu, C.

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490–493 (2001).
[Crossref]

Lobino, M.

J. Appel, E. Figueroa, D. Korystov, M. Lobino, and A. I. Lvovsky, “Quantum memory for squeezed light,” Phys. Rev. Lett. 100, 093602 (2008).
[Crossref]

Lorenz, V. O.

K. F. Reim, J. Nunn, V. O. Lorenz, B. J. Sussman, K. C. Lee, N. K. Langford, D. Jaksch, and I. A. Walmsley, “Towards high-speed optical quantum memories,” Nat. Photonics 4, 218–221 (2010).
[Crossref]

Loy, M. M. T.

M. M. T. Loy, “Observation of population inversion by optical adiabatic rapid passage,” Phys. Rev. Lett. 32, 814–817 (1974).
[Crossref]

Lukin, M. D.

A. Mair, J. Hager, D. F. Phillips, R. L. Walsworth, and M. D. Lukin, “Phase coherence and control of stored photonic information,” Phys. Rev. A 65, 031802(R) (2002).
[Crossref]

D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86, 783–786 (2001).
[Crossref]

L. M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414, 413–418 (2001).
[Crossref]

M. Fleischhauer and M. D. Lukin, “Dark-state polaritons in electromagnetically induced transparency,” Phys. Rev. Lett. 84, 5094–5097 (2000).
[Crossref]

Lvovsky, A. I.

J. Appel, E. Figueroa, D. Korystov, M. Lobino, and A. I. Lvovsky, “Quantum memory for squeezed light,” Phys. Rev. Lett. 100, 093602 (2008).
[Crossref]

Machida, S.

S. R. Friberg, S. Machida, and Y. Yamamoto, “Quantum-nondemolition measurement of the photon number of an optical soliton,” Phys. Rev. Lett. 69, 3165–3168 (1992).
[Crossref]

Mair, A.

A. Mair, J. Hager, D. F. Phillips, R. L. Walsworth, and M. D. Lukin, “Phase coherence and control of stored photonic information,” Phys. Rev. A 65, 031802(R) (2002).
[Crossref]

D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86, 783–786 (2001).
[Crossref]

Mandel, L.

Z. Y. Ou, C. K. Hong, and L. Mandel, “Relation between input and output states for a beam splitter,” Opt. Commun. 63, 118–122 (1987).
[Crossref]

McCall, S. L.

B. Yurke, S. L. McCall, and J. R. Klauder, “SU(2) and SU(1, 1) interferometers,” Phys. Rev. A 33, 4033–4054 (1986).
[Crossref]

Michelberger, P.

K. F. Reim, P. Michelberger, K. C. Lee, J. Nunn, N. K. Langford, and I. A. Walmsley, “Single-photon-level quantum memory at room temperature,” Phys. Rev. Lett. 107, 053603 (2011).
[Crossref]

Michelberger, P. S.

K. F. Reim, J. Nunn, X.-M. Jin, P. S. Michelberger, T. F. M. Champion, D. G. England, K. C. Lee, W. S. Kolthammer, N. K. Langford, and I. A. Walmsley, “Multipulse addressing of a raman quantum memory: configurable beam splitting and efficient readout,” Phys. Rev. Lett. 108, 263602 (2012).
[Crossref]

Nagatsuka, S.

K. Honda, D. Akamatsu, M. Arikawa, Y. Yokoi, K. Akiba, S. Nagatsuka, T. Tanimura, A. Furusawa, and M. Kozuma, “Storage and retrieval of a squeezed vacuum,” Phys. Rev. Lett. 100, 093601 (2008).
[Crossref]

Nunn, J.

K. F. Reim, J. Nunn, X.-M. Jin, P. S. Michelberger, T. F. M. Champion, D. G. England, K. C. Lee, W. S. Kolthammer, N. K. Langford, and I. A. Walmsley, “Multipulse addressing of a raman quantum memory: configurable beam splitting and efficient readout,” Phys. Rev. Lett. 108, 263602 (2012).
[Crossref]

K. F. Reim, P. Michelberger, K. C. Lee, J. Nunn, N. K. Langford, and I. A. Walmsley, “Single-photon-level quantum memory at room temperature,” Phys. Rev. Lett. 107, 053603 (2011).
[Crossref]

K. F. Reim, J. Nunn, V. O. Lorenz, B. J. Sussman, K. C. Lee, N. K. Langford, D. Jaksch, and I. A. Walmsley, “Towards high-speed optical quantum memories,” Nat. Photonics 4, 218–221 (2010).
[Crossref]

J. Nunn, I. A. Walmsley, M. G. Raymer, K. Surmacz, F. C. Waldermann, Z. Wang, and D. Jaksch, “Mapping broadband single-photon wavepackets into an atomic memory,” Phys. Rev. A 75, 011401(R) (2007).
[Crossref]

Ou, Z. Y.

B. Chen, C. Qiu, S. Chen, J. Guo, L. Q. Chen, Z. Y. Ou, and W. Zhang, “Atom–light hybrid interferometer,” Phys. Rev. Lett. 115, 043602 (2015).
[Crossref]

K. Zhang, J. Guo, C.-H. Yuan, L. Q. Chen, C. Bian, B. Chen, Z. Y. Ou, and W. Zhang, “Mirrorless parametric oscillation in an atomic Raman process,” Phys. Rev. A 89, 063826 (2014).
[Crossref]

B. Chen, K. Zhang, C. Bian, C. Qiu, C.-H. Yuan, L. Q. Chen, Z. Y. Ou, and W. Zhang, “Efficient Raman frequency conversion by coherent feedback at low light intensity,” Opt. Express 21, 10490–10495 (2013).
[Crossref]

L. Q. Chen, G.-W. Zhang, C. Bian, C.-H. Yuan, Z. Y. Ou, and W. Zhang, “Observation of the Rabi oscillation of light driven by an atomic spin wave,” Phys. Rev. Lett. 105, 133603 (2010).
[Crossref]

Z. Y. Ou, “Efficient conversion between photons and between photon and atom by stimulated emission,” Phys. Rev. A 78, 023819 (2008).
[Crossref]

S. F. Pereira, Z. Y. Ou, and H. J. Kimble, “Backaction evading measurements for quantum nondemolition detection and quantum optical tapping,” Phys. Rev. Lett. 72, 214–217 (1994).
[Crossref]

Z. Y. Ou, C. K. Hong, and L. Mandel, “Relation between input and output states for a beam splitter,” Opt. Commun. 63, 118–122 (1987).
[Crossref]

Pereira, S. F.

S. F. Pereira, Z. Y. Ou, and H. J. Kimble, “Backaction evading measurements for quantum nondemolition detection and quantum optical tapping,” Phys. Rev. Lett. 72, 214–217 (1994).
[Crossref]

Phillips, D. F.

A. Mair, J. Hager, D. F. Phillips, R. L. Walsworth, and M. D. Lukin, “Phase coherence and control of stored photonic information,” Phys. Rev. A 65, 031802(R) (2002).
[Crossref]

D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86, 783–786 (2001).
[Crossref]

Pinel, O.

O. Pinel, J. L. Everett, M. Hosseini, G. T. Campbell, B. C. Buchler, and P. K. Lam, “A mirrorless spinwave resonator,” Sci. Rep. 5, 17633 (2015).
[Crossref]

Poizat, J. Ph.

J. Ph. Poizat and P. Grangier, “Experimental realization of a quantum optical tap,” Phys. Rev. Lett. 70, 271–274 (1993).
[Crossref]

Polzik, E. S.

K. Hammerer, A. S. Sorensen, and E. S. Polzik, “Quantum interface between light and atomic ensembles,” Rev. Mod. Phys. 82, 1041–1093 (2010).
[Crossref]

Porta, A. L.

A. L. Porta, R. E. Slusher, and B. Yurke, “Back-action evading measurements of an optical field using parametric down conversion,” Phys. Rev. Lett. 62, 28–31 (1989).
[Crossref]

Pritchard, D. E.

A. D. Cronin, J. Schmiedmayer, and D. E. Pritchard, “Optics and interferometry with atoms and molecules,” Rev. Mod. Phys. 81, 1051–1129 (2009).
[Crossref]

Qiu, C.

Ramsey, N. F.

N. F. Ramsey, “A molecular beam resonance method with separated oscillating fields,” Phys. Rev. 78, 695–699 (1950).
[Crossref]

Raymer, M. G.

J. Nunn, I. A. Walmsley, M. G. Raymer, K. Surmacz, F. C. Waldermann, Z. Wang, and D. Jaksch, “Mapping broadband single-photon wavepackets into an atomic memory,” Phys. Rev. A 75, 011401(R) (2007).
[Crossref]

Reid, M.

M. D. Levenson, R. M. Shelby, M. Reid, and D. F. Walls, “Quantum nondemolition detection of optical quadrature amplitudes,” Phys. Rev. Lett. 57, 2473–2476 (1986).
[Crossref]

Reim, K. F.

K. F. Reim, J. Nunn, X.-M. Jin, P. S. Michelberger, T. F. M. Champion, D. G. England, K. C. Lee, W. S. Kolthammer, N. K. Langford, and I. A. Walmsley, “Multipulse addressing of a raman quantum memory: configurable beam splitting and efficient readout,” Phys. Rev. Lett. 108, 263602 (2012).
[Crossref]

K. F. Reim, P. Michelberger, K. C. Lee, J. Nunn, N. K. Langford, and I. A. Walmsley, “Single-photon-level quantum memory at room temperature,” Phys. Rev. Lett. 107, 053603 (2011).
[Crossref]

K. F. Reim, J. Nunn, V. O. Lorenz, B. J. Sussman, K. C. Lee, N. K. Langford, D. Jaksch, and I. A. Walmsley, “Towards high-speed optical quantum memories,” Nat. Photonics 4, 218–221 (2010).
[Crossref]

Sackett, C. A.

B. Deissler, K. J. Hughes, J. H. T. Burke, and C. A. Sackett, “Measurement of the ac Stark shift with a guided matter-wave interferometer,” Phys. Rev. A 77, 031604(R) (2008).
[Crossref]

Saleh, B. E. A.

R. A. Campos, B. E. A. Saleh, and M. C. Teich, “Quantum-mechanical lossless beam splitter: SU(2) symmetry and photon statistics,” Phys. Rev. A 40, 1371–1384 (1989).
[Crossref]

Schmiedmayer, J.

A. D. Cronin, J. Schmiedmayer, and D. E. Pritchard, “Optics and interferometry with atoms and molecules,” Rev. Mod. Phys. 81, 1051–1129 (2009).
[Crossref]

Shelby, R. M.

M. D. Levenson, R. M. Shelby, M. Reid, and D. F. Walls, “Quantum nondemolition detection of optical quadrature amplitudes,” Phys. Rev. Lett. 57, 2473–2476 (1986).
[Crossref]

Slusher, R. E.

A. L. Porta, R. E. Slusher, and B. Yurke, “Back-action evading measurements of an optical field using parametric down conversion,” Phys. Rev. Lett. 62, 28–31 (1989).
[Crossref]

Sorensen, A. S.

K. Hammerer, A. S. Sorensen, and E. S. Polzik, “Quantum interface between light and atomic ensembles,” Rev. Mod. Phys. 82, 1041–1093 (2010).
[Crossref]

Sparkes, B. M.

G. Campbell, M. Hosseini, B. M. Sparkes, P. K. Lam, and B. C. Buchler, “Time- and frequency-domain polariton interference,” New J. Phys. 14, 033022 (2012).
[Crossref]

M. Hosseini, G. Campbell, B. M. Sparkes, P. K. Lam, and B. C. Buchler, “Unconditional room-temperature quantum memory,” Nat. Phys. 7, 794–798 (2011).
[Crossref]

M. Hosseini, B. M. Sparkes, G. Campbell, P. K. Lam, and B. C. Buchler, “High efficiency coherent optical memory with warm rubidium vapour,” Nat. Commun. 2, 174 (2011).
[Crossref]

Surmacz, K.

J. Nunn, I. A. Walmsley, M. G. Raymer, K. Surmacz, F. C. Waldermann, Z. Wang, and D. Jaksch, “Mapping broadband single-photon wavepackets into an atomic memory,” Phys. Rev. A 75, 011401(R) (2007).
[Crossref]

Sussman, B. J.

K. F. Reim, J. Nunn, V. O. Lorenz, B. J. Sussman, K. C. Lee, N. K. Langford, D. Jaksch, and I. A. Walmsley, “Towards high-speed optical quantum memories,” Nat. Photonics 4, 218–221 (2010).
[Crossref]

Tanimura, T.

K. Honda, D. Akamatsu, M. Arikawa, Y. Yokoi, K. Akiba, S. Nagatsuka, T. Tanimura, A. Furusawa, and M. Kozuma, “Storage and retrieval of a squeezed vacuum,” Phys. Rev. Lett. 100, 093601 (2008).
[Crossref]

Teich, M. C.

R. A. Campos, B. E. A. Saleh, and M. C. Teich, “Quantum-mechanical lossless beam splitter: SU(2) symmetry and photon statistics,” Phys. Rev. A 40, 1371–1384 (1989).
[Crossref]

Thorne, K. S.

V. B. Braginsky, Y. I. Vorontsov, and K. S. Thorne, “Quantum nondemolition measurements,” Science 209, 547–557 (1980).
[Crossref]

Townes, C. H.

S. H. Autler and C. H. Townes, “Stark effect in rapidly varying fields,” Phys. Rev. 100, 703–722 (1955).
[Crossref]

Vorontsov, Y. I.

V. B. Braginsky, Y. I. Vorontsov, and K. S. Thorne, “Quantum nondemolition measurements,” Science 209, 547–557 (1980).
[Crossref]

Waldermann, F. C.

J. Nunn, I. A. Walmsley, M. G. Raymer, K. Surmacz, F. C. Waldermann, Z. Wang, and D. Jaksch, “Mapping broadband single-photon wavepackets into an atomic memory,” Phys. Rev. A 75, 011401(R) (2007).
[Crossref]

Walls, D. F.

M. D. Levenson, R. M. Shelby, M. Reid, and D. F. Walls, “Quantum nondemolition detection of optical quadrature amplitudes,” Phys. Rev. Lett. 57, 2473–2476 (1986).
[Crossref]

Walmsley, I. A.

K. F. Reim, J. Nunn, X.-M. Jin, P. S. Michelberger, T. F. M. Champion, D. G. England, K. C. Lee, W. S. Kolthammer, N. K. Langford, and I. A. Walmsley, “Multipulse addressing of a raman quantum memory: configurable beam splitting and efficient readout,” Phys. Rev. Lett. 108, 263602 (2012).
[Crossref]

K. F. Reim, P. Michelberger, K. C. Lee, J. Nunn, N. K. Langford, and I. A. Walmsley, “Single-photon-level quantum memory at room temperature,” Phys. Rev. Lett. 107, 053603 (2011).
[Crossref]

K. F. Reim, J. Nunn, V. O. Lorenz, B. J. Sussman, K. C. Lee, N. K. Langford, D. Jaksch, and I. A. Walmsley, “Towards high-speed optical quantum memories,” Nat. Photonics 4, 218–221 (2010).
[Crossref]

J. Nunn, I. A. Walmsley, M. G. Raymer, K. Surmacz, F. C. Waldermann, Z. Wang, and D. Jaksch, “Mapping broadband single-photon wavepackets into an atomic memory,” Phys. Rev. A 75, 011401(R) (2007).
[Crossref]

Walsworth, R. L.

A. Mair, J. Hager, D. F. Phillips, R. L. Walsworth, and M. D. Lukin, “Phase coherence and control of stored photonic information,” Phys. Rev. A 65, 031802(R) (2002).
[Crossref]

D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86, 783–786 (2001).
[Crossref]

Wang, Z.

J. Nunn, I. A. Walmsley, M. G. Raymer, K. Surmacz, F. C. Waldermann, Z. Wang, and D. Jaksch, “Mapping broadband single-photon wavepackets into an atomic memory,” Phys. Rev. A 75, 011401(R) (2007).
[Crossref]

Weitz, M.

M. Weitz, B. C. Young, and S. Chu, “Atomic interferometer based on adiabatic population transfer,” Phys. Rev. Lett. 73, 2563–2566 (1994).
[Crossref]

Yamamoto, Y.

S. R. Friberg, S. Machida, and Y. Yamamoto, “Quantum-nondemolition measurement of the photon number of an optical soliton,” Phys. Rev. Lett. 69, 3165–3168 (1992).
[Crossref]

Yokoi, Y.

K. Honda, D. Akamatsu, M. Arikawa, Y. Yokoi, K. Akiba, S. Nagatsuka, T. Tanimura, A. Furusawa, and M. Kozuma, “Storage and retrieval of a squeezed vacuum,” Phys. Rev. Lett. 100, 093601 (2008).
[Crossref]

Young, B. C.

M. Weitz, B. C. Young, and S. Chu, “Atomic interferometer based on adiabatic population transfer,” Phys. Rev. Lett. 73, 2563–2566 (1994).
[Crossref]

Yuan, C.-H.

K. Zhang, J. Guo, C.-H. Yuan, L. Q. Chen, C. Bian, B. Chen, Z. Y. Ou, and W. Zhang, “Mirrorless parametric oscillation in an atomic Raman process,” Phys. Rev. A 89, 063826 (2014).
[Crossref]

B. Chen, K. Zhang, C. Bian, C. Qiu, C.-H. Yuan, L. Q. Chen, Z. Y. Ou, and W. Zhang, “Efficient Raman frequency conversion by coherent feedback at low light intensity,” Opt. Express 21, 10490–10495 (2013).
[Crossref]

L. Q. Chen, G.-W. Zhang, C. Bian, C.-H. Yuan, Z. Y. Ou, and W. Zhang, “Observation of the Rabi oscillation of light driven by an atomic spin wave,” Phys. Rev. Lett. 105, 133603 (2010).
[Crossref]

Yurke, B.

A. L. Porta, R. E. Slusher, and B. Yurke, “Back-action evading measurements of an optical field using parametric down conversion,” Phys. Rev. Lett. 62, 28–31 (1989).
[Crossref]

B. Yurke, S. L. McCall, and J. R. Klauder, “SU(2) and SU(1, 1) interferometers,” Phys. Rev. A 33, 4033–4054 (1986).
[Crossref]

Zhang, G.-W.

L. Q. Chen, G.-W. Zhang, C. Bian, C.-H. Yuan, Z. Y. Ou, and W. Zhang, “Observation of the Rabi oscillation of light driven by an atomic spin wave,” Phys. Rev. Lett. 105, 133603 (2010).
[Crossref]

Zhang, K.

K. Zhang, J. Guo, C.-H. Yuan, L. Q. Chen, C. Bian, B. Chen, Z. Y. Ou, and W. Zhang, “Mirrorless parametric oscillation in an atomic Raman process,” Phys. Rev. A 89, 063826 (2014).
[Crossref]

B. Chen, K. Zhang, C. Bian, C. Qiu, C.-H. Yuan, L. Q. Chen, Z. Y. Ou, and W. Zhang, “Efficient Raman frequency conversion by coherent feedback at low light intensity,” Opt. Express 21, 10490–10495 (2013).
[Crossref]

Zhang, W.

B. Chen, C. Qiu, S. Chen, J. Guo, L. Q. Chen, Z. Y. Ou, and W. Zhang, “Atom–light hybrid interferometer,” Phys. Rev. Lett. 115, 043602 (2015).
[Crossref]

K. Zhang, J. Guo, C.-H. Yuan, L. Q. Chen, C. Bian, B. Chen, Z. Y. Ou, and W. Zhang, “Mirrorless parametric oscillation in an atomic Raman process,” Phys. Rev. A 89, 063826 (2014).
[Crossref]

B. Chen, K. Zhang, C. Bian, C. Qiu, C.-H. Yuan, L. Q. Chen, Z. Y. Ou, and W. Zhang, “Efficient Raman frequency conversion by coherent feedback at low light intensity,” Opt. Express 21, 10490–10495 (2013).
[Crossref]

L. Q. Chen, G.-W. Zhang, C. Bian, C.-H. Yuan, Z. Y. Ou, and W. Zhang, “Observation of the Rabi oscillation of light driven by an atomic spin wave,” Phys. Rev. Lett. 105, 133603 (2010).
[Crossref]

Zoller, P.

L. M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414, 413–418 (2001).
[Crossref]

Nat. Commun. (1)

M. Hosseini, B. M. Sparkes, G. Campbell, P. K. Lam, and B. C. Buchler, “High efficiency coherent optical memory with warm rubidium vapour,” Nat. Commun. 2, 174 (2011).
[Crossref]

Nat. Photonics (1)

K. F. Reim, J. Nunn, V. O. Lorenz, B. J. Sussman, K. C. Lee, N. K. Langford, D. Jaksch, and I. A. Walmsley, “Towards high-speed optical quantum memories,” Nat. Photonics 4, 218–221 (2010).
[Crossref]

Nat. Phys. (1)

M. Hosseini, G. Campbell, B. M. Sparkes, P. K. Lam, and B. C. Buchler, “Unconditional room-temperature quantum memory,” Nat. Phys. 7, 794–798 (2011).
[Crossref]

Nature (2)

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490–493 (2001).
[Crossref]

L. M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414, 413–418 (2001).
[Crossref]

New J. Phys. (2)

G. Hétet and D. Guéry-Odelin, “Spin wave diffraction control and read-out with a quantum memory for light,” New J. Phys. 17, 073003 (2015).
[Crossref]

G. Campbell, M. Hosseini, B. M. Sparkes, P. K. Lam, and B. C. Buchler, “Time- and frequency-domain polariton interference,” New J. Phys. 14, 033022 (2012).
[Crossref]

Opt. Commun. (1)

Z. Y. Ou, C. K. Hong, and L. Mandel, “Relation between input and output states for a beam splitter,” Opt. Commun. 63, 118–122 (1987).
[Crossref]

Opt. Express (1)

Phys. Rev. (2)

S. H. Autler and C. H. Townes, “Stark effect in rapidly varying fields,” Phys. Rev. 100, 703–722 (1955).
[Crossref]

N. F. Ramsey, “A molecular beam resonance method with separated oscillating fields,” Phys. Rev. 78, 695–699 (1950).
[Crossref]

Phys. Rev. A (7)

K. Zhang, J. Guo, C.-H. Yuan, L. Q. Chen, C. Bian, B. Chen, Z. Y. Ou, and W. Zhang, “Mirrorless parametric oscillation in an atomic Raman process,” Phys. Rev. A 89, 063826 (2014).
[Crossref]

J. Nunn, I. A. Walmsley, M. G. Raymer, K. Surmacz, F. C. Waldermann, Z. Wang, and D. Jaksch, “Mapping broadband single-photon wavepackets into an atomic memory,” Phys. Rev. A 75, 011401(R) (2007).
[Crossref]

A. Mair, J. Hager, D. F. Phillips, R. L. Walsworth, and M. D. Lukin, “Phase coherence and control of stored photonic information,” Phys. Rev. A 65, 031802(R) (2002).
[Crossref]

B. Deissler, K. J. Hughes, J. H. T. Burke, and C. A. Sackett, “Measurement of the ac Stark shift with a guided matter-wave interferometer,” Phys. Rev. A 77, 031604(R) (2008).
[Crossref]

Z. Y. Ou, “Efficient conversion between photons and between photon and atom by stimulated emission,” Phys. Rev. A 78, 023819 (2008).
[Crossref]

B. Yurke, S. L. McCall, and J. R. Klauder, “SU(2) and SU(1, 1) interferometers,” Phys. Rev. A 33, 4033–4054 (1986).
[Crossref]

R. A. Campos, B. E. A. Saleh, and M. C. Teich, “Quantum-mechanical lossless beam splitter: SU(2) symmetry and photon statistics,” Phys. Rev. A 40, 1371–1384 (1989).
[Crossref]

Phys. Rev. Lett. (16)

B. Chen, C. Qiu, S. Chen, J. Guo, L. Q. Chen, Z. Y. Ou, and W. Zhang, “Atom–light hybrid interferometer,” Phys. Rev. Lett. 115, 043602 (2015).
[Crossref]

A. L. Porta, R. E. Slusher, and B. Yurke, “Back-action evading measurements of an optical field using parametric down conversion,” Phys. Rev. Lett. 62, 28–31 (1989).
[Crossref]

S. F. Pereira, Z. Y. Ou, and H. J. Kimble, “Backaction evading measurements for quantum nondemolition detection and quantum optical tapping,” Phys. Rev. Lett. 72, 214–217 (1994).
[Crossref]

M. D. Levenson, R. M. Shelby, M. Reid, and D. F. Walls, “Quantum nondemolition detection of optical quadrature amplitudes,” Phys. Rev. Lett. 57, 2473–2476 (1986).
[Crossref]

S. R. Friberg, S. Machida, and Y. Yamamoto, “Quantum-nondemolition measurement of the photon number of an optical soliton,” Phys. Rev. Lett. 69, 3165–3168 (1992).
[Crossref]

J. Ph. Poizat and P. Grangier, “Experimental realization of a quantum optical tap,” Phys. Rev. Lett. 70, 271–274 (1993).
[Crossref]

M. Kasevich and S. Chu, “Atomic interferometry using stimulated Raman transitions,” Phys. Rev. Lett. 67, 181–184 (1991).
[Crossref]

M. Weitz, B. C. Young, and S. Chu, “Atomic interferometer based on adiabatic population transfer,” Phys. Rev. Lett. 73, 2563–2566 (1994).
[Crossref]

K. Honda, D. Akamatsu, M. Arikawa, Y. Yokoi, K. Akiba, S. Nagatsuka, T. Tanimura, A. Furusawa, and M. Kozuma, “Storage and retrieval of a squeezed vacuum,” Phys. Rev. Lett. 100, 093601 (2008).
[Crossref]

J. Appel, E. Figueroa, D. Korystov, M. Lobino, and A. I. Lvovsky, “Quantum memory for squeezed light,” Phys. Rev. Lett. 100, 093602 (2008).
[Crossref]

D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86, 783–786 (2001).
[Crossref]

M. M. T. Loy, “Observation of population inversion by optical adiabatic rapid passage,” Phys. Rev. Lett. 32, 814–817 (1974).
[Crossref]

L. Q. Chen, G.-W. Zhang, C. Bian, C.-H. Yuan, Z. Y. Ou, and W. Zhang, “Observation of the Rabi oscillation of light driven by an atomic spin wave,” Phys. Rev. Lett. 105, 133603 (2010).
[Crossref]

K. F. Reim, P. Michelberger, K. C. Lee, J. Nunn, N. K. Langford, and I. A. Walmsley, “Single-photon-level quantum memory at room temperature,” Phys. Rev. Lett. 107, 053603 (2011).
[Crossref]

K. F. Reim, J. Nunn, X.-M. Jin, P. S. Michelberger, T. F. M. Champion, D. G. England, K. C. Lee, W. S. Kolthammer, N. K. Langford, and I. A. Walmsley, “Multipulse addressing of a raman quantum memory: configurable beam splitting and efficient readout,” Phys. Rev. Lett. 108, 263602 (2012).
[Crossref]

M. Fleischhauer and M. D. Lukin, “Dark-state polaritons in electromagnetically induced transparency,” Phys. Rev. Lett. 84, 5094–5097 (2000).
[Crossref]

Rev. Mod. Phys. (2)

K. Hammerer, A. S. Sorensen, and E. S. Polzik, “Quantum interface between light and atomic ensembles,” Rev. Mod. Phys. 82, 1041–1093 (2010).
[Crossref]

A. D. Cronin, J. Schmiedmayer, and D. E. Pritchard, “Optics and interferometry with atoms and molecules,” Rev. Mod. Phys. 81, 1051–1129 (2009).
[Crossref]

Sci. Rep. (1)

O. Pinel, J. L. Everett, M. Hosseini, G. T. Campbell, B. C. Buchler, and P. K. Lam, “A mirrorless spinwave resonator,” Sci. Rep. 5, 17633 (2015).
[Crossref]

Science (1)

V. B. Braginsky, Y. I. Vorontsov, and K. S. Thorne, “Quantum nondemolition measurements,” Science 209, 547–557 (1980).
[Crossref]

Other (3)

For two-level atoms, the interaction Hamiltonian can also be written in the form of Eq. (1) by changing a^W to b^1 and S^a to b^2, where b^1 and b^2 are the annihilation operators for the two atomic states.

P. A. M. Dirac, The Principles of Quantum Mechanics (Oxford University, 1981).

L. Allen and J. H. Eberly, Optical Resonance and Two-level Atoms (Wiley, 1975).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Experimental setup of atom–light superposition oscillation. (a) Raman process for three-wave coupling of two optical fields (write a ^ W and Stokes A S ) and an atomic spin wave ( S ^ a ). (b) Atomic energy levels for coupling optical fields. | g and | m : two ground states | 5 2 S 1 / 2 , F = 1,2 ; | e 1 and | e 2 : two excited states | 5 2 P 1 / 2 , F = 2 and | 5 2 P 3 / 2 . OP: optical pumping field resonant on the | m | e 2 transition. (c) Experimental arrangement for observing Rabi-like superposition oscillation between atom and light driven by a strong Stokes field with the atoms having an initial spin wave. The initial spin wave is prepared by W 0 & S 0 (see Appendix A for detail). PBS: polarized beam splitter. (d1) and (d2) Timing sequences for the experiment with an initial spin wave S ^ a in (d1) and a write field a ^ W in (d2) as the only input field.
Fig. 2.
Fig. 2. Results of Rabi-like superposition oscillation between atom and light. (a) The output write field observed in time when the atomic spin wave has an initial value but no write field injection and (b) the corresponding oscillation frequency as a function of the amplitude of the driving Stokes field. (c) The observed output write field when the write field has an input but the atoms are all in the ground state and (d) the corresponding Rabi oscillation frequency as a function of the amplitude of the driving Stokes field. The period of the oscillation is obtained from the first two peaks. The black arrows in (a) and (c) represent the start times of the strong Stokes pulse.
Fig. 3.
Fig. 3. Atom–light hybrid interferometer. (a) Experimental setup and (b) atomic energy levels with frequencies of optical fields for the formation of an atom–light hybrid interferometer. HWP: half-wave plate; F-R: Faraday rotator; PZT: piezoelectric transducer; SMF: single-mode fiber; W 1 , W 2 , W 3 : write fields; S 1 , S 2 , S 3 : strong Stokes fields. BS1: the first splitting process to split the initial spin wave S a 0 to coherent superposition of write field W 1 and spin wave S a 1 . BS2: the second beam splitting process to mix W 1 and S a 1 and output W 2 and S a 2 . The angle between W 0 and S 1 beams is 0.3 deg. S 1 and S 2 are spatially overlapped. The lasers S 1 ( S 2 ) and S 3 come from the same semiconductor laser and are chopped by two acoustic optical modulators.
Fig. 4.
Fig. 4. Interference fringes of atom–light hybrid interferometer. Observed interference fringes at the output write field (blue squares) and for the final atomic spin wave (green dots) as the optical phase is scanned via a ramp voltage on the PZT.
Fig. 5.
Fig. 5. AC Stark effect on interference output. Interference fringes at the output write field with (blue) and without (red) the atomic phase shift induced by the AC Stark effect. Green lines are the ramp voltage on the PZT for phase scan and the dotted lines are for the probe light intensity (scales are not drawn for both lines).
Fig. 6.
Fig. 6. Atomic phase shift. (a) The induced phase shift as a function of the intensity of the inducing light field (probe). (b) The inverse of the slopes of the linear fits from (a) as a function of the detuning frequency of the probe field.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

H ^ R = i η ( a ^ W a ^ S S ^ a a ^ W a ^ S S ^ a ) ,
H ^ BS AL = 1 2 i ( Ω * a ^ w S ^ a Ω a ^ W S ^ a ) .
a ^ W out = a ^ W in cos ( θ / 2 ) + S ^ a in sin ( θ / 2 ) , S ^ a out = S ^ a in cos ( θ / 2 ) a ^ W in sin ( θ / 2 ) ,
Δ Ω AC = 1 2 c ε 0 2 | μ g e | 2 I / Δ ,

Metrics