Abstract

The ability to distribute the precise time and frequency from an optical clock to remote platforms could enable future precise navigation and sensing systems. Here, we demonstrate tight, real-time synchronization of a remote microwave clock to a master optical clock over a turbulent 4 km open-air path via optical two-way time–frequency transfer. Once synchronized, the 10 GHz frequency signals generated at each site agree to 1014 at 1 s and below 1017 at 1000 s. In addition, the two clock times are synchronized to ±13fs over an 8-hour period. The ability to phase-synchronize 10 GHz signals across platforms supports future distributed coherent sensing, while the ability to time-synchronize multiple microwave-based clocks to a high-performance master optical clock supports future precision navigation/timing systems.

1. INTRODUCTION

The distribution of time and frequency across a network enables applications such as navigation, coherent multistatic radar, communications, and very-long-baseline interferometry. In the past, these applications have relied on microwave-based time–frequency transfer between microwave-based clocks. However, optically based time–frequency transfer over fiber and free space has the potential for over 1000 times higher performance [110]. Recently, we demonstrated optically based two-way time–frequency transfer (O-TWTFT) for comparison between the times of two distant optical clocks over turbulent free-space paths [7]. Moreover, because of the very high bandwidth and precision of O-TWTFT, it was possible to tightly synchronize the two optical clocks to identical times to better than a femtosecond over hours and better than 20 fs over days [11].

Here, we demonstrate synchronization between an optical clock and a remote microwave clock. We use the O-TWTFT approach of [11], but significantly modified, to support optical-to-microwave synchronization. The motivation to synchronize a microwave rather than an optical clock is twofold. First, while state-of-the-art microwave oscillators (e.g., quartz and dielectric resonator oscillators) have lower precision than optical oscillators (e.g., cavity-stabilized lasers), they are less expensive, smaller, more robust, and have lower power requirements by orders of magnitude. Second, many time-sensitive applications make use of a microwave signal—for example in the X-band at 10 GHz—which was not available in the all-optical system of [11]. A microwave clock at the remote site can supply this required signal directly, efficiently, and at high signal power. In future time networks, optical-to-microwave synchronization would enable fieldable master optical atomic clocks [12] to distribute time across a network of much simpler microwave-based clocks while maintaining the absolute accuracy of the master. As conceptually illustrated in Fig. 1(a), applications to other distributed coherent systems include multistatic synthetic aperture radar [13], precise time-resolved synchrotron measurements [14], very-long-baseline interferometry and radioastronomy [1518], pulse-position-modulation communication [19], or distribution of time to mobile platforms in a GPS-denied situation. In general, tight synchronization of a microwave clock is made difficult by its much greater timing noise than an optical clock. In GPS-disciplined oscillators, this timing noise is suppressed to the nanosecond level; here, we suppress this noise to the femtosecond level.

 

Fig. 1. (a) Conceptual multistatic synthetic aperture radar where an array of microwave oscillators are synchronized to a single master optical oscillator; LO, local oscillator. (b) The master site’s clock is based on a laser stabilized to an optical cavity (optical oscillator). The remote site’s clock is based on a combined quartz oscillator and DRO. This remote microwave clock is tightly synchronized to the optical clock over a folded 4 km long air path via O-TWTFT. The time and the frequency outputs from each clock are compared in a separate measurement to verify femtosecond time offsets and high phase coherence of the synchronized signals.

Download Full Size | PPT Slide | PDF

As shown in Fig. 1(b), we synchronize our microwave clock to the optical clock over a folded 4 km long turbulent air path. Each clock outputs both a time signal via labeled optical pulses from a local frequency comb and a separate RF frequency signal at 10 GHz. Here, we use the term “clock” to refer to the generation of a local timebase rather than an absolute international timescale. It refers to the combination of frequency comb, oscillator, and controller [Fig. 1(b)] that produces a phase-coherent output of labeled pulses, i.e., “ticks,” to define this local timebase; we are concerned with the difference between two such relative timescales. With modifications of the system, the master site could also be disciplined to an absolute timescale.

An “out-of-loop” comparison of the time signals shows a time deviation (tdev) below 10 fs for integration times ranging from 0.01 to 1000 s, reaching values as low as 200 as. This time deviation increases in the presence of turbulence-induced dropouts because of the random walk of the microwave clock. However, it remains below 10 fs at 85% link availability. A comparison of the 10 GHz frequency signals shows a similarly high level of coherence; the frequency difference, as measured by the modified Allan deviation, is 1014 at 1 s and drops to below 1017 at 1000 s. Within the 100 Hz synchronization bandwidth, the differential phase noise between the 10 GHz signals is reduced, resulting in 110 dB suppression at a 1 mHz Fourier frequency. The integrated differential phase noise is 375 μrad from 100 Hz to 100 μHz. This integrated phase noise corresponds to 6 fs of timing jitter, which is 3×105 times lower than the 2 ns jitter of the free-running microwave clock integrated over the same bandwidth. This phase coherence at 10 GHz is maintained despite a free-space link that suffers from turbulence-induced dropouts. To summarize, the demonstrated optical-to-microwave clock synchronization performance is comparable to optical-to-optical clock synchronization, in the limit of no turbulence-induced dropouts. Moreover, it provides highly phase-coherent 10 GHz signals, which were not available in the all-optical system [11].

We note that the synchronization rests on the previously demonstrated ability of the frequency comb to coherently convert phase between the microwave and optical domains. This capability is already used in optical frequency division to create extremely stable microwave frequencies [2023]. Here, the system exploits the frequency comb for optical-microwave coherence over a distributed system. Critically, the timing information is carried by high-bandwidth optical signals, which enables the high precision and rapid feedback required to phase-stabilize a remote microwave clock. The remote microwave clock does require a co-located optical frequency comb but current frequency combs, such as those in [24], are more compact and robust than optical oscillators (cavity-stabilized lasers).

2. EXPERIMENTAL SETUP

Figure 2 provides an overview of the system. At the master site, a compact, self-referenced fiber frequency comb [24] is phase-locked to a cavity-stabilized laser with a residual pulse timing jitter of a few femtoseconds. The frequency comb produces a near-infrared optical pulse train with 200 MHz repetition frequency whose pulses are “labeled” by a local field-programmable gate array (FPGA) controller with respect to their arrival at a calibrated reference plane to define a local time. In addition, the 50th harmonic of the comb repetition frequency is detected to generate a 10 GHz frequency signal. (The exact choice of microwave frequency will depend on the application).

 

Fig. 2. Schematic of the experimental setup. A master optical clock (blue shaded region) consists of a frequency comb phase-locked to a 195 THz cavity-stabilized laser. A remote synchronized microwave-based clock (red shaded region) consists of a frequency comb phase-locked to a 10 GHz oscillator. Each site produces a 10.037 GHz frequency output. At the master optical clock site, this 10 GHz signal corresponds to the 50th harmonic of the 200 MHz repetition rate frequency comb and is generated by optical frequency division. At the microwave clock site, it is the direct output of a quartz/DRO microwave oscillator. At both sites, the time output is defined by the arrival of the labeled optical pulses from the respective frequency combs at a common reference plane. (This step requires a separate calibration with a shorted link.) The two clocks are synchronized by a Kalman-filter-based loop filter that uses the input time offset, as measured through O-TWTFT, to steer the frequency of the DRO. DDS, direct digital synthesizer; fr, repetition frequency of the frequency comb.

Download Full Size | PPT Slide | PDF

At the microwave-clock site, a self-referenced frequency comb is phase-locked to a 10 GHz microwave oscillator via the 50th harmonic of its repetition frequency. (Details on the microwave clock architecture are presented in Supplement 1.) This labeled 200 MHz optical pulse train then provides an optical time output, just as is done at the master site. This clock remains a microwave clock since its timing rests on the underlying compact and inexpensive microwave oscillator rather than a much larger cavity-stabilized laser.

To synchronize the clocks, their time offset must be measured. Although we synchronize a microwave clock, the measurement of the time offset to femtosecond precision is done optically through O-TWTFT [7,11]. O-TWTFT relies on the reciprocity of a single-transverse-mode spatial link to cancel out turbulence and platform-induced variations in the path length and extracts the underlying clock time offsets. There are three basic subsystems: a comb-based two-way time–frequency transfer, a “coarser” two-way time–frequency transfer via a pseudorandom binary sequence (PRBS) imposed on an optical cw carrier, and a two-way optical communication channel for exchange of timing information. The coarser two-way transfer is necessary to resolve the 5 ns ambiguity of the 200 MHz comb pulses and to provide a coarse path delay measurement. The comb-based time transfer uses a linear optical sampling approach [25] to detect the pulse arrival times with femtosecond-level resolution. This linear optical sampling requires a third “transfer” comb located at the master clock site with a repetition frequency offset by Δfr relative to the master comb.

Here, we have modified the O-TWTFT system of [11] in three significant ways to allow optical-to-microwave clock synchronization. First, the microwave clock is constructed to maintain tight phase coherence between the microwave oscillator and local frequency comb used in the time transfer (see Supplement 1). The timing corrections returned from the O-TWTFT are applied directly to the 10 GHz oscillator so that its output follows the master site at low Fourier frequencies but retains the low phase noise of the dielectric resonator oscillator (DRO) at high Fourier frequencies, which is useful in applications such as synthetic aperture radar and phased-array systems where timing jitter at high offset frequencies degrades performance. Second, the effective overall feedback bandwidth has been increased tenfold to suppress the much higher random walk of the microwave oscillator compared to an optical oscillator. Third, the feedback is applied by a Kalman-filter-based loop filter for optimal holdover performance during a turbulence-induced dropout.

For the comb-based two-way transfer, the combs are operated at a repetition frequency of fr200MHz with the transfer comb’s repetition rate offset by Δfr2kHz. The comb pulses are filtered to a 1.5 THz spectral bandwidth centered at 1560 nm. An average power of 5 mW (2×108 photons per pulse) is launched across the 4 km folded open air path from both sites. The folded 4 km path is achieved through use of two 53 cm diameter flat mirrors separated by 1 km. Optical path length variations from mirror motion, just as those from turbulence, are removed by the two-way measurement. 2.5 cm aperture custom low-insertion-loss free-space optical terminals with tip/tilt correction are used to maximize the link availability, i.e., the amount of time the received power is above the detection threshold. The received power varied between 0 nW and 3.8 μW and was below 370 nW for 99% of the time. The detection threshold, the minimum received power for which the in-loop time offset can be computed, was set to 2.5 nW, corresponding to 96 photons per comb pulse. To operate over even longer air paths with similar link availability, a higher launch power will be required to overcome the increased diffraction and integrated turbulence. Also, the increased time of flight associated with longer air paths will degrade the two-way reciprocity but it has been shown this effect will have negligible impact on the two-way time–frequency transfer [26].

The coarser two-way time–frequency transfer and communication link are both implemented by phase modulation of a 5 mW, 1536 nm cw laser. This light is then wavelength multiplexed with the comb and copropagated to the other site, where it is heterodyned against the local cw laser and demodulated. A PRBS modulation is used for coarse two-way time–frequency transfer while, for communication, binary phase-shift keying is used, both operating at 10 Mbps. Communication packets are interposed between adjacent coarse two-way time measurements within a single time interval of length 1/Δfr.

The communication link transfers the timing data from the master optical-clock site to the remote microwave-clock site. An FPGA-based controller at the microwave-clock site then computes the time offset between the two clocks, ΔT, from the O-TWTFT master synchronization equation (Eq. (1) of [11]) every 1/Δfr0.5ms, as long as there is no turbulence-induced dropout. This time offset is input to a Kalman-filter-based loop filter whose output controls the microwave-oscillator frequency via a direct digital synthesizer (see next section and Supplement 1 for more details.) The overall synchronization bandwidth was set at 100 Hz by empirically minimizing the residual timing jitter.

As the overall system is essentially a spatially distributed phase-locked loop, it necessarily drives the measured in-loop time offset, ΔT, to zero. It is therefore critical to verify synchronization through separate out-of-loop measurements, which is possible here through the use of a folded air path [see Fig. 1(b)]. Moreover, the synchronized time outputs and frequency outputs must be separately measured. As shown in Fig. 2, the 10.037 GHz frequency outputs are down-mixed by a common 10 GHz stable oscillator to match the input bandwidth of the phase measurement test system [27].

The time offsets of the 200 MHz pulse trains are measured through the amplitude variation of their demodulated optical interference [11]. A 1 MHz heterodyne signal from the two pulse trains is obtained by shifting the carrier-envelope-offset frequency of the remote comb. This demodulated signal is shown as the “Time Offset” inset in Fig. 2, where the blue dot indicates “zero” calibrated time offset. Any deviations in amplitude from this zero point reflect time offsets between the clocks. This approach allows for time offset measurements within a range of ±5ps, based on the choice of optical filters, and femtosecond uncertainty. Direct photodetection of each signal is also possible but will introduce additional time uncertainty. These signals would form the time output of the clock to be used in a real-world application. It is also possible to pulse-pick these time signals for a lower-rate time signal than 200 MHz, depending on the application.

3. SYNCHRONIZATION ACROSS TURBULENCE-INDUCED DROPOUTS

Atmospheric turbulence causes distortions of the beam across the link and thus fluctuations in the received power. Because O-TWTFT requires a single spatial-mode optical link to ensure reciprocity [28], the fluctuations are relatively strong compared with a multimode link. Depending on transmitted power, turbulence strength, and distance, these turbulence-induced fluctuations can sometimes cause the received power to fall below the detection threshold, causing a dropout. The statistics of the dropout frequency and duration will depend on the exact conditions (i.e., turbulence strength, launched power, detection threshold, aperture diameter) and have been analyzed extensively in the context of free-space laser communications [29]. When a dropout occurs, the measured time offset is not updated. Microwave-to-optical synchronization puts greater demands on the system than optical-to-optical synchronization due to the larger excursions of microwave oscillators during these dropouts. The naïve approach of a sample-and-hold leads to runaway behavior. A Kalman-filter-based approach provides close to optimal holdover behavior [30].

Figure 3(a) shows the implemented loop filter based on a Kalman filter whose state vector contains two variables. The filter performs an estimation of the phase and frequency error between the clocks using intermittent time offset measurements provided by the O-TWTFT system. When a measurement is available, the internal estimate of the timing error is updated using feedback gain factors that depend on the dropout length and an a priori noise model. White (f0) measurement noise and frequency random walk (f4) oscillator phase noise are assumed here. To ease the implementation of the loop filter on the FPGA, the feedback gain as a function of measurement interval was precomputed and stored in a lookup table.

 

Fig. 3. System operation during dropouts. (a) Schematic of the Kalman-filter-based loop filter; PI, proportional and integral. (b) Measured out-of-loop time offset (black trace), in-loop time offset measured via the O-TWTFT system (red circles), and predicted in-loop timing offset from the loop filter (orange trace). During the shaded gray regions, the received power over the single-mode link was below threshold, leading to a dropout in the measured in-loop time offset. (c) Correction applied to the frequency of the 10 GHz signal (blue trace).

Download Full Size | PPT Slide | PDF

Figures 3(b) and 3(c) show the performance across relatively long dropouts of 50 ms (dropouts due to atmospheric turbulence usually last less than 10 ms under our operating conditions [11]). For most dropouts, the timing error due to the random walk of the microwave clock is below the high-frequency timing jitter, yet for longer dropouts there can sometimes be a significant excess deviation. The rapid recoveries from the excess deviations will appear in the phase-noise power spectral density (PSD) as an increased white noise floor below the synchronization feedback bandwidth (see Fig. 6). Since the remote controller has knowledge of the dropouts, a distributed system could operate in either “gated operation” only during periods of fully established synchronization or in continuous mode that includes periods of dropouts. Here, in gated operation, data is masked during the period of a dropout until the in-loop time offset becomes available again and falls below a threshold. The threshold is chosen to be 2σ of the instantaneous in-loop time offset.

4. PERFORMANCE

To test the synchronization, the system was operated continuously over an 8-hour period across the 4 km folded link. During this period, the synchronization was verified for both the time and frequency outputs of the clocks. In addition, the link availability, clock correction signals, and turbulence strength were also monitored. The measurement was stopped when shifts in the mirrors used to fold the optical path caused a very long dropout. (The free-space terminals include tip/tilt corrections to correct for temperature and turbulence-induced variations in pointing, but the folding mirrors have no active correction.) Figure 4 shows a partial data set including the out-of-loop time offset, link availability, and turbulence strength averaged over a 1 s window. The average link availability was 85% but varied significantly over the run depending on turbulence strength and the alignment of the folding mirrors. The time offset is discussed in more detail in the following section.

 

Fig. 4. (a) Time offset (gated operation) between the optical and microwave clocks. (b) Link availability. (c) Turbulence strength as measured by the turbulence structure function Cn2. All data is averaged over a 1 s window.

Download Full Size | PPT Slide | PDF

A. Time Outputs: Femtosecond Time Synchronization

The time between the two clocks is verified via the arrival of their optical pulses at a common reference plane (Fig. 2). Figure 4(a) shows the time offset for gated operation. Figure 5 shows the time deviation derived from these data for gated operation and also for continuous operation. The time deviation for continuous operation is below 10 fs for time periods ranging from 1000 down to 0.01 s. The time deviation for gated operation is also below 10 fs, reaching a minimum of 200 as at a 10 s averaging time. Finally, the overall variation in the time offset across 8 h, shown in Fig. 4, is below ±13fs. This variation is dominated by laboratory temperature variations that cause path length changes in the 1m fiber-optic paths used in the out-of-loop measurements as well as elsewhere in the transceivers. This temperature dependence can be seen in the slow 20-minute oscillations of Fig. 4(a), which match the cycling of the room air conditioning.

 

Fig. 5. Time deviation calculated from the measured time offset between the microwave and optical clock for gated operation (light blue curve) and for continuous operation (dark blue curve). The data for gated operation agrees with previous optical-to-optical synchronization (dashed green curve) [11] out to 100 s.

Download Full Size | PPT Slide | PDF

Both the time offset of Fig. 4(a) and the time deviation for gated operation of Fig. 5 are in good quantitative agreement with the previous optical-to-optical synchronization [11]. Therefore, there is no degradation in the time synchronization associated with the conversion of the remote clock from optical to a microwave oscillator beyond the unavoidable excess time wander that occurs during dropouts.

B. Frequency Outputs: Synchronized 10 GHz Signals

The 10 GHz microwave frequency signals are also compared during the 8-hour run by measuring their phase difference, as shown in Fig. 2. In this case, the phase measurement test system [27] only allows for continuous comparison of 10 GHz signals rather than gated operation. These phase-difference data yield a phase-noise PSD that quantifies the relative phase coherence or an Allan deviation that quantifies the relative frequency difference. We discuss both here. In addition, we can compare the coherence of the microwave signal to that of the optical pulse train.

Figure 6 shows the single-sideband PSD between the two sites for the case of a free-running microwave clock (purple line) and synchronized microwave clock across the turbulent 4 km link (red line). At low offset frequencies, the suppression of the free-running oscillator noise is significant, reaching 110 dB at a 1 mHz offset frequency. (Below a 1 Hz offset frequency, the synchronized 10 GHz phase noise is also below that of a free-running optical cavity.) This dramatic suppression of phase noise at low offset frequencies leads to a corresponding reduction in the integrated timing jitter. The timing jitter for the synchronized system is 6 fs integrated from the 100 Hz synchronization bandwidth to 100 μHz, compared to greater than 2 ns for the free-running case.

 

Fig. 6. Single-sideband PSD for differential phase noise of the 10 GHz outputs from the optical and microwave clocks without synchronization (purple curve), while synchronized over the 4 km link (red curve), and while synchronized over a shorted link (gray curve). The integrated phase noise is 375 μrad (6 fs) for the red curve from 100 μHz out to the synchronization bandwidth of 100 Hz. In addition, the PSD calculated from the optical time outputs is shown (in blue).

Download Full Size | PPT Slide | PDF

Figure 6 also shows the differential phase noise for a synchronized system over a shorted link (gray line) rather than over 4 km. There is an increase in phase noise for the 4 km synchronization at offset frequencies from 10 Hz to 10 mHz, which is attributed to dropouts and not to a lack of reciprocity across the link. As discussed in Section 3, dropouts occur only briefly and appear as wideband noise on the PSD, extending up to the synchronization bandwidth.

Finally, Fig. 6 shows the scaled phase noise from the optically measured time offset signals (blue line). The direct 10 GHz measurement exhibits a slightly higher phase noise than the optical measurement at low Fourier frequencies due to f1 noise associated with the microwave test setup (see Supplement 1).

Figure 7 presents the relative fractional frequency difference between the microwave and optical clocks in terms of the modified Allan deviation. The 10 GHz microwave signals agree to below 1×1014 at a 1 s averaging time and below 1×1017 at a 1000 s averaging time. Note that the master 10 GHz signal is not tied to an atomic reference but rather drifts slowly with the underlying optical cavity. However, for many sensing applications, the important parameter is the relative frequency stability of the microwave signal between clock nodes rather than the absolute frequency. If better long-term frequency stability is required, an atomic clock could be used at the master site. At long averaging times, there is a slight degradation compared to the values based on the optical time output (blue line). This degradation again reflects the additional excess f1 noise as in the PSD of Fig. 6.

 

Fig. 7. Fractional instability (modified Allan deviation) of the frequency difference between the remote site and master site clocks during continuous operation for the synchronized 10 GHz microwave outputs (red trace) and for the optical time offsets (blue trace).

Download Full Size | PPT Slide | PDF

5. CONCLUSIONS

We report the synchronization of a microwave oscillator to an optical oscillator over a 4 km turbulent free-space link. The residual time deviation is below 10 fs with a long-time variation that remains below ±13fs over 8 h. We find similar phase coherence between the synchronized 10 GHz frequency outputs with a residual frequency difference of 1017 at 1000 s averaging. For greater phase coherence at Fourier frequencies beyond the effective synchronization bandwidth of 100 Hz, the quartz–DRO pair could be replaced by an optical-frequency-division-generated signal [2023] or a cryogenic sapphire oscillator [31,32]. The high coherence and full time synchronization demonstrated here could enable applications from time distribution to long-baseline radio astronomy. If extended to moving platforms by appropriate compensation for Doppler shifts, this technique could similarly enable applications such as precise formation flying of phased satellite arrays.

Funding

National Institute of Standards and Technology (NIST); Defense Sciences Office, DARPA (DSO).

Acknowledgment

We thank Dave Howe and Kevin Cossel for helpful comments and Archita Hati and Michael Cermak for technical assistance.

 

See Supplement 1 for supporting content.

REFERENCES AND NOTES

1. G. Lutes and A. Kirk, “Reference frequency transmission over optical fiber,” in The Telecommunications and Data Acquisition Report (Jet Propulsion Laboratory, 1986).

2. L.-S. Ma, P. Jungner, J. Ye, and J. L. Hall, “Delivering the same optical frequency at two places: accurate cancellation of phase noise introduced by an optical fiber or other time-varying path,” Opt. Lett. 19, 1777–1779 (1994). [CrossRef]  

3. N. R. Newbury, P. A. Williams, and W. C. Swann, “Coherent transfer of an optical carrier over 251 km,” Opt. Lett. 32, 3056–3058 (2007). [CrossRef]  

4. E. Samain, P. Exertier, P. Guillemot, F. Pierron, D. Albanese, J. Paris, J.-M. Torre, I. Petitbon, and S. Leon, “Time transfer by laser link T2L2 first results,” in Joint Meeting of the European Frequency and Time Forum (EFTF) and the IEEE International Frequency Control Symposium (FCS), Besancon, France, 2009, pp. 194–198.

5. K. Djerroud, O. Acef, A. Clairon, P. Lemonde, C. N. Man, E. Samain, and P. Wolf, “Coherent optical link through the turbulent atmosphere,” Opt. Lett. 35, 1479–1481 (2010). [CrossRef]  

6. L. Sliwczynski, P. Krehlik, L. Buczek, and M. Lipinski, “Frequency transfer in electronically stabilized fiber optic link exploiting bidirectional optical amplifiers,” IEEE Trans. Instrum. Meas. 61, 2573–2580 (2012). [CrossRef]  

7. F. R. Giorgetta, W. C. Swann, L. C. Sinclair, E. Baumann, I. Coddington, and N. R. Newbury, “Optical two-way time and frequency transfer over free space,” Nat. Photonics 7, 434–438 (2013). [CrossRef]  

8. S. Droste, F. Ozimek, T. Udem, K. Predehl, T. W. Hänsch, H. Schnatz, G. Grosche, and R. Holzwarth, “Optical-frequency transfer over a single-span 1840 km fiber link,” Phys. Rev. Lett. 111, 110801 (2013). [CrossRef]  

9. O. Lopez, F. Kéfélian, H. Jiang, A. Haboucha, A. Bercy, F. Stefani, B. Chanteau, A. Kanj, D. Rovera, J. Achkar, C. Chardonnet, P.-E. Pottie, A. Amy-Klein, and G. Santarelli, “Frequency and time transfer for metrology and beyond using telecommunication network fibres,” C. R. Phys. 16, 531–539 (2015). [CrossRef]  

10. S. Droste, C. Grebing, J. Leute, S. M. F. Raupach, A. Matveev, T. W. Hänsch, A. Bauch, R. Holzwarth, and G. Grosche, “Characterization of a 450 km baseline GPS carrier-phase link using an optical fiber link,” New J. Phys. 17, 083044 (2015). [CrossRef]  

11. J.-D. Deschênes, L. C. Sinclair, F. R. Giorgetta, W. C. Swann, E. Baumann, H. Bergeron, M. Cermak, I. Coddington, and N. R. Newbury, “Synchronization of distant optical clocks at the femtosecond level,” Phys. Rev. X (in press).

12. K. Bongs, Y. Singh, L. Smith, W. He, O. Kock, D. Swierad, J. Hughes, S. Schiller, S. Alighanbari, S. Origlia, S. Vogt, U. Sterr, C. Lisdat, R. L. Targat, J. Lodewyck, D. Holleville, B. Venon, S. Bize, G. P. Barwood, P. Gill, I. R. Hill, Y. B. Ovchinnikov, N. Poli, G. M. Tino, J. Stuhler, W. Kaenders, and the SOC2 team, “Development of a strontium optical lattice clock for the SOC mission on the ISS,” C. R. Phys. 16, 553–564 (2015). [CrossRef]  

13. Z. Li, L. Yan, Y. Peng, W. Pan, B. Luo, and L. Shao, “Phase fluctuation cancellation of anonymous microwave signal transmission in passive systems,” Opt. Express 22, 19686 (2014). [CrossRef]  

14. R. Wilcox, J. M. Byrd, L. Doolittle, G. Huang, and J. W. Staples, “Stable transmission of radio frequency signals on fiber links using interferometric delay sensing,” Opt. Lett. 34, 3050–3052 (2009). [CrossRef]  

15. M. Calhoun, R. Sydnor, and W. Diener, “A stabilized 100-megahertz and 1-gigahertz reference frequency distribution for Cassini radio science,” Interplanet. Netw. Prog. Rep. 148, 1–11 (2001).

16. J.-F. Cliche and B. Shillue, “Precision timing control for radioastronomy: maintaining femtosecond synchronization in the Atacama large millimeter array,” IEEE Control Syst. 26, 19–26 (2006). [CrossRef]  

17. S. S. Doeleman, J. Weintroub, A. E. E. Rogers, R. Plambeck, R. Freund, R. P. J. Tilanus, P. Friberg, L. M. Ziurys, J. M. Moran, B. Corey, K. H. Young, D. L. Smythe, M. Titus, D. P. Marrone, R. J. Cappallo, D. C.-J. Bock, G. C. Bower, R. Chamberlin, G. R. Davis, T. P. Krichbaum, J. Lamb, H. Maness, A. E. Niell, A. Roy, P. Strittmatter, D. Werthimer, A. R. Whitney, and D. Woody, “Event-horizon-scale structure in the supermassive black hole candidate at the Galactic Centre,” Nature 455, 78–80 (2008). [CrossRef]  

18. S. Doeleman, T. Mai, A. E. E. Rogers, J. G. Hartnett, M. E. Tobar, and N. Nand, “Adapting a cryogenic sapphire oscillator for very long baseline interferometry,” Publ. Astron. Soc. Pac. 123, 582–595 (2011). [CrossRef]  

19. M. Sushchik Jr., N. Rulkov, L. Larson, L. Tsimring, H. Abarbanel, K. Yao, and A. Volkovskii, “Chaotic pulse position modulation: a robust method of communicating with chaos,” IEEE Commun. Lett. 4, 128–130 (2000). [CrossRef]  

20. T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nat. Photonics 5, 425–429 (2011). [CrossRef]  

21. A. Haboucha, W. Zhang, T. Li, M. Lours, A. N. Luiten, Y. Le Coq, and G. Santarelli, “Optical-fiber pulse rate multiplier for ultralow phase-noise signal generation,” Opt. Lett. 36, 3654–3656 (2011). [CrossRef]  

22. A. Hati, C. W. Nelson, C. Barnes, D. Lirette, T. Fortier, F. Quinlan, J. A. Desalvo, A. Ludlow, S. A. Diddams, and D. A. Howe, “State-of-the-art RF signal generation from optical frequency division,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 60, 1796–1803 (2013). [CrossRef]  

23. F. Quinlan, F. N. Baynes, T. M. Fortier, Q. Zhou, A. Cross, J. C. Campbell, and S. A. Diddams, “Optical amplification and pulse interleaving for low-noise photonic microwave generation,” Opt. Lett. 39, 1581–1584 (2014). [CrossRef]  

24. L. C. Sinclair, J.-D. Deschênes, L. Sonderhouse, W. C. Swann, I. H. Khader, E. Baumann, N. R. Newbury, and I. Coddington, “Invited Article: A compact optically coherent fiber frequency comb,” Rev. Sci. Instrum. 86, 081301 (2015). [CrossRef]  

25. I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent linear optical sampling at 15 bits of resolution,” Opt. Lett. 34, 2153–2155 (2009). [CrossRef]  

26. C. Robert, J.-M. Conan, and P. Wolf, “Impact of turbulent phase noise on frequency transfer with asymmetric two-way ground-satellite coherent optical links,” Phys. Rev. A 93, 033860 (2016).

27. Symmetricom Model 5125A. The use of trade names is necessary to specify the experimental results and cannot imply endorsement by the National Institute of Standards and Technology.

28. J. H. Shapiro, “Reciprocity of the turbulent atmosphere,” J. Opt. Soc. Am. 61, 492–495 (1971). [CrossRef]  

29. L. C. Andrews, R. L. Phillips, and C. Y. Hopen, Laser Beam Scintillation with Applications (SPIE, 2001).

30. R. E. Kalman, “A new approach to linear filtering and prediction problems,” Trans. ASME J. Basic Eng. 82, 35–45 (1960). [CrossRef]  

31. S. Grop, P.-Y. Bourgeois, R. Boudot, Y. Kersale, E. Rubiola, and V. Giordano, “10 GHz cryocooled sapphire oscillator with extremely low phase noise,” Electron. Lett. 46, 420–422 (2010). [CrossRef]  

32. N. R. Nand, J. G. Hartnett, E. N. Ivanov, and G. Santarelli, “Ultra-stable very-low phase-noise signal source for very long baseline interferometry using a cryocooled sapphire oscillator,” IEEE Trans. Microwave Theory Tech. 59, 2978–2986 (2011). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. G. Lutes and A. Kirk, “Reference frequency transmission over optical fiber,” in The Telecommunications and Data Acquisition Report (Jet Propulsion Laboratory, 1986).
  2. L.-S. Ma, P. Jungner, J. Ye, and J. L. Hall, “Delivering the same optical frequency at two places: accurate cancellation of phase noise introduced by an optical fiber or other time-varying path,” Opt. Lett. 19, 1777–1779 (1994).
    [Crossref]
  3. N. R. Newbury, P. A. Williams, and W. C. Swann, “Coherent transfer of an optical carrier over 251 km,” Opt. Lett. 32, 3056–3058 (2007).
    [Crossref]
  4. E. Samain, P. Exertier, P. Guillemot, F. Pierron, D. Albanese, J. Paris, J.-M. Torre, I. Petitbon, and S. Leon, “Time transfer by laser link T2L2 first results,” in Joint Meeting of the European Frequency and Time Forum (EFTF) and the IEEE International Frequency Control Symposium (FCS), Besancon, France, 2009, pp. 194–198.
  5. K. Djerroud, O. Acef, A. Clairon, P. Lemonde, C. N. Man, E. Samain, and P. Wolf, “Coherent optical link through the turbulent atmosphere,” Opt. Lett. 35, 1479–1481 (2010).
    [Crossref]
  6. L. Sliwczynski, P. Krehlik, L. Buczek, and M. Lipinski, “Frequency transfer in electronically stabilized fiber optic link exploiting bidirectional optical amplifiers,” IEEE Trans. Instrum. Meas. 61, 2573–2580 (2012).
    [Crossref]
  7. F. R. Giorgetta, W. C. Swann, L. C. Sinclair, E. Baumann, I. Coddington, and N. R. Newbury, “Optical two-way time and frequency transfer over free space,” Nat. Photonics 7, 434–438 (2013).
    [Crossref]
  8. S. Droste, F. Ozimek, T. Udem, K. Predehl, T. W. Hänsch, H. Schnatz, G. Grosche, and R. Holzwarth, “Optical-frequency transfer over a single-span 1840 km fiber link,” Phys. Rev. Lett. 111, 110801 (2013).
    [Crossref]
  9. O. Lopez, F. Kéfélian, H. Jiang, A. Haboucha, A. Bercy, F. Stefani, B. Chanteau, A. Kanj, D. Rovera, J. Achkar, C. Chardonnet, P.-E. Pottie, A. Amy-Klein, and G. Santarelli, “Frequency and time transfer for metrology and beyond using telecommunication network fibres,” C. R. Phys. 16, 531–539 (2015).
    [Crossref]
  10. S. Droste, C. Grebing, J. Leute, S. M. F. Raupach, A. Matveev, T. W. Hänsch, A. Bauch, R. Holzwarth, and G. Grosche, “Characterization of a 450 km baseline GPS carrier-phase link using an optical fiber link,” New J. Phys. 17, 083044 (2015).
    [Crossref]
  11. J.-D. Deschênes, L. C. Sinclair, F. R. Giorgetta, W. C. Swann, E. Baumann, H. Bergeron, M. Cermak, I. Coddington, and N. R. Newbury, “Synchronization of distant optical clocks at the femtosecond level,” Phys. Rev. X (in press).
  12. K. Bongs, Y. Singh, L. Smith, W. He, O. Kock, D. Swierad, J. Hughes, S. Schiller, S. Alighanbari, S. Origlia, S. Vogt, U. Sterr, C. Lisdat, R. L. Targat, J. Lodewyck, D. Holleville, B. Venon, S. Bize, G. P. Barwood, P. Gill, I. R. Hill, Y. B. Ovchinnikov, N. Poli, G. M. Tino, J. Stuhler, and W. Kaenders, and the SOC2 team, “Development of a strontium optical lattice clock for the SOC mission on the ISS,” C. R. Phys. 16, 553–564 (2015).
    [Crossref]
  13. Z. Li, L. Yan, Y. Peng, W. Pan, B. Luo, and L. Shao, “Phase fluctuation cancellation of anonymous microwave signal transmission in passive systems,” Opt. Express 22, 19686 (2014).
    [Crossref]
  14. R. Wilcox, J. M. Byrd, L. Doolittle, G. Huang, and J. W. Staples, “Stable transmission of radio frequency signals on fiber links using interferometric delay sensing,” Opt. Lett. 34, 3050–3052 (2009).
    [Crossref]
  15. M. Calhoun, R. Sydnor, and W. Diener, “A stabilized 100-megahertz and 1-gigahertz reference frequency distribution for Cassini radio science,” Interplanet. Netw. Prog. Rep. 148, 1–11 (2001).
  16. J.-F. Cliche and B. Shillue, “Precision timing control for radioastronomy: maintaining femtosecond synchronization in the Atacama large millimeter array,” IEEE Control Syst. 26, 19–26 (2006).
    [Crossref]
  17. S. S. Doeleman, J. Weintroub, A. E. E. Rogers, R. Plambeck, R. Freund, R. P. J. Tilanus, P. Friberg, L. M. Ziurys, J. M. Moran, B. Corey, K. H. Young, D. L. Smythe, M. Titus, D. P. Marrone, R. J. Cappallo, D. C.-J. Bock, G. C. Bower, R. Chamberlin, G. R. Davis, T. P. Krichbaum, J. Lamb, H. Maness, A. E. Niell, A. Roy, P. Strittmatter, D. Werthimer, A. R. Whitney, and D. Woody, “Event-horizon-scale structure in the supermassive black hole candidate at the Galactic Centre,” Nature 455, 78–80 (2008).
    [Crossref]
  18. S. Doeleman, T. Mai, A. E. E. Rogers, J. G. Hartnett, M. E. Tobar, and N. Nand, “Adapting a cryogenic sapphire oscillator for very long baseline interferometry,” Publ. Astron. Soc. Pac. 123, 582–595 (2011).
    [Crossref]
  19. M. Sushchik, N. Rulkov, L. Larson, L. Tsimring, H. Abarbanel, K. Yao, and A. Volkovskii, “Chaotic pulse position modulation: a robust method of communicating with chaos,” IEEE Commun. Lett. 4, 128–130 (2000).
    [Crossref]
  20. T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nat. Photonics 5, 425–429 (2011).
    [Crossref]
  21. A. Haboucha, W. Zhang, T. Li, M. Lours, A. N. Luiten, Y. Le Coq, and G. Santarelli, “Optical-fiber pulse rate multiplier for ultralow phase-noise signal generation,” Opt. Lett. 36, 3654–3656 (2011).
    [Crossref]
  22. A. Hati, C. W. Nelson, C. Barnes, D. Lirette, T. Fortier, F. Quinlan, J. A. Desalvo, A. Ludlow, S. A. Diddams, and D. A. Howe, “State-of-the-art RF signal generation from optical frequency division,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 60, 1796–1803 (2013).
    [Crossref]
  23. F. Quinlan, F. N. Baynes, T. M. Fortier, Q. Zhou, A. Cross, J. C. Campbell, and S. A. Diddams, “Optical amplification and pulse interleaving for low-noise photonic microwave generation,” Opt. Lett. 39, 1581–1584 (2014).
    [Crossref]
  24. L. C. Sinclair, J.-D. Deschênes, L. Sonderhouse, W. C. Swann, I. H. Khader, E. Baumann, N. R. Newbury, and I. Coddington, “Invited Article: A compact optically coherent fiber frequency comb,” Rev. Sci. Instrum. 86, 081301 (2015).
    [Crossref]
  25. I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent linear optical sampling at 15 bits of resolution,” Opt. Lett. 34, 2153–2155 (2009).
    [Crossref]
  26. C. Robert, J.-M. Conan, and P. Wolf, “Impact of turbulent phase noise on frequency transfer with asymmetric two-way ground-satellite coherent optical links,” Phys. Rev. A 93, 033860 (2016).
  27. Symmetricom Model 5125A. The use of trade names is necessary to specify the experimental results and cannot imply endorsement by the National Institute of Standards and Technology.
  28. J. H. Shapiro, “Reciprocity of the turbulent atmosphere,” J. Opt. Soc. Am. 61, 492–495 (1971).
    [Crossref]
  29. L. C. Andrews, R. L. Phillips, and C. Y. Hopen, Laser Beam Scintillation with Applications (SPIE, 2001).
  30. R. E. Kalman, “A new approach to linear filtering and prediction problems,” Trans. ASME J. Basic Eng. 82, 35–45 (1960).
    [Crossref]
  31. S. Grop, P.-Y. Bourgeois, R. Boudot, Y. Kersale, E. Rubiola, and V. Giordano, “10 GHz cryocooled sapphire oscillator with extremely low phase noise,” Electron. Lett. 46, 420–422 (2010).
    [Crossref]
  32. N. R. Nand, J. G. Hartnett, E. N. Ivanov, and G. Santarelli, “Ultra-stable very-low phase-noise signal source for very long baseline interferometry using a cryocooled sapphire oscillator,” IEEE Trans. Microwave Theory Tech. 59, 2978–2986 (2011).
    [Crossref]

2016 (1)

C. Robert, J.-M. Conan, and P. Wolf, “Impact of turbulent phase noise on frequency transfer with asymmetric two-way ground-satellite coherent optical links,” Phys. Rev. A 93, 033860 (2016).

2015 (4)

L. C. Sinclair, J.-D. Deschênes, L. Sonderhouse, W. C. Swann, I. H. Khader, E. Baumann, N. R. Newbury, and I. Coddington, “Invited Article: A compact optically coherent fiber frequency comb,” Rev. Sci. Instrum. 86, 081301 (2015).
[Crossref]

O. Lopez, F. Kéfélian, H. Jiang, A. Haboucha, A. Bercy, F. Stefani, B. Chanteau, A. Kanj, D. Rovera, J. Achkar, C. Chardonnet, P.-E. Pottie, A. Amy-Klein, and G. Santarelli, “Frequency and time transfer for metrology and beyond using telecommunication network fibres,” C. R. Phys. 16, 531–539 (2015).
[Crossref]

S. Droste, C. Grebing, J. Leute, S. M. F. Raupach, A. Matveev, T. W. Hänsch, A. Bauch, R. Holzwarth, and G. Grosche, “Characterization of a 450 km baseline GPS carrier-phase link using an optical fiber link,” New J. Phys. 17, 083044 (2015).
[Crossref]

K. Bongs, Y. Singh, L. Smith, W. He, O. Kock, D. Swierad, J. Hughes, S. Schiller, S. Alighanbari, S. Origlia, S. Vogt, U. Sterr, C. Lisdat, R. L. Targat, J. Lodewyck, D. Holleville, B. Venon, S. Bize, G. P. Barwood, P. Gill, I. R. Hill, Y. B. Ovchinnikov, N. Poli, G. M. Tino, J. Stuhler, and W. Kaenders, and the SOC2 team, “Development of a strontium optical lattice clock for the SOC mission on the ISS,” C. R. Phys. 16, 553–564 (2015).
[Crossref]

2014 (2)

2013 (3)

A. Hati, C. W. Nelson, C. Barnes, D. Lirette, T. Fortier, F. Quinlan, J. A. Desalvo, A. Ludlow, S. A. Diddams, and D. A. Howe, “State-of-the-art RF signal generation from optical frequency division,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 60, 1796–1803 (2013).
[Crossref]

F. R. Giorgetta, W. C. Swann, L. C. Sinclair, E. Baumann, I. Coddington, and N. R. Newbury, “Optical two-way time and frequency transfer over free space,” Nat. Photonics 7, 434–438 (2013).
[Crossref]

S. Droste, F. Ozimek, T. Udem, K. Predehl, T. W. Hänsch, H. Schnatz, G. Grosche, and R. Holzwarth, “Optical-frequency transfer over a single-span 1840 km fiber link,” Phys. Rev. Lett. 111, 110801 (2013).
[Crossref]

2012 (1)

L. Sliwczynski, P. Krehlik, L. Buczek, and M. Lipinski, “Frequency transfer in electronically stabilized fiber optic link exploiting bidirectional optical amplifiers,” IEEE Trans. Instrum. Meas. 61, 2573–2580 (2012).
[Crossref]

2011 (4)

S. Doeleman, T. Mai, A. E. E. Rogers, J. G. Hartnett, M. E. Tobar, and N. Nand, “Adapting a cryogenic sapphire oscillator for very long baseline interferometry,” Publ. Astron. Soc. Pac. 123, 582–595 (2011).
[Crossref]

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nat. Photonics 5, 425–429 (2011).
[Crossref]

A. Haboucha, W. Zhang, T. Li, M. Lours, A. N. Luiten, Y. Le Coq, and G. Santarelli, “Optical-fiber pulse rate multiplier for ultralow phase-noise signal generation,” Opt. Lett. 36, 3654–3656 (2011).
[Crossref]

N. R. Nand, J. G. Hartnett, E. N. Ivanov, and G. Santarelli, “Ultra-stable very-low phase-noise signal source for very long baseline interferometry using a cryocooled sapphire oscillator,” IEEE Trans. Microwave Theory Tech. 59, 2978–2986 (2011).
[Crossref]

2010 (2)

S. Grop, P.-Y. Bourgeois, R. Boudot, Y. Kersale, E. Rubiola, and V. Giordano, “10 GHz cryocooled sapphire oscillator with extremely low phase noise,” Electron. Lett. 46, 420–422 (2010).
[Crossref]

K. Djerroud, O. Acef, A. Clairon, P. Lemonde, C. N. Man, E. Samain, and P. Wolf, “Coherent optical link through the turbulent atmosphere,” Opt. Lett. 35, 1479–1481 (2010).
[Crossref]

2009 (2)

2008 (1)

S. S. Doeleman, J. Weintroub, A. E. E. Rogers, R. Plambeck, R. Freund, R. P. J. Tilanus, P. Friberg, L. M. Ziurys, J. M. Moran, B. Corey, K. H. Young, D. L. Smythe, M. Titus, D. P. Marrone, R. J. Cappallo, D. C.-J. Bock, G. C. Bower, R. Chamberlin, G. R. Davis, T. P. Krichbaum, J. Lamb, H. Maness, A. E. Niell, A. Roy, P. Strittmatter, D. Werthimer, A. R. Whitney, and D. Woody, “Event-horizon-scale structure in the supermassive black hole candidate at the Galactic Centre,” Nature 455, 78–80 (2008).
[Crossref]

2007 (1)

2006 (1)

J.-F. Cliche and B. Shillue, “Precision timing control for radioastronomy: maintaining femtosecond synchronization in the Atacama large millimeter array,” IEEE Control Syst. 26, 19–26 (2006).
[Crossref]

2001 (1)

M. Calhoun, R. Sydnor, and W. Diener, “A stabilized 100-megahertz and 1-gigahertz reference frequency distribution for Cassini radio science,” Interplanet. Netw. Prog. Rep. 148, 1–11 (2001).

2000 (1)

M. Sushchik, N. Rulkov, L. Larson, L. Tsimring, H. Abarbanel, K. Yao, and A. Volkovskii, “Chaotic pulse position modulation: a robust method of communicating with chaos,” IEEE Commun. Lett. 4, 128–130 (2000).
[Crossref]

1994 (1)

1971 (1)

1960 (1)

R. E. Kalman, “A new approach to linear filtering and prediction problems,” Trans. ASME J. Basic Eng. 82, 35–45 (1960).
[Crossref]

Abarbanel, H.

M. Sushchik, N. Rulkov, L. Larson, L. Tsimring, H. Abarbanel, K. Yao, and A. Volkovskii, “Chaotic pulse position modulation: a robust method of communicating with chaos,” IEEE Commun. Lett. 4, 128–130 (2000).
[Crossref]

Acef, O.

Achkar, J.

O. Lopez, F. Kéfélian, H. Jiang, A. Haboucha, A. Bercy, F. Stefani, B. Chanteau, A. Kanj, D. Rovera, J. Achkar, C. Chardonnet, P.-E. Pottie, A. Amy-Klein, and G. Santarelli, “Frequency and time transfer for metrology and beyond using telecommunication network fibres,” C. R. Phys. 16, 531–539 (2015).
[Crossref]

Albanese, D.

E. Samain, P. Exertier, P. Guillemot, F. Pierron, D. Albanese, J. Paris, J.-M. Torre, I. Petitbon, and S. Leon, “Time transfer by laser link T2L2 first results,” in Joint Meeting of the European Frequency and Time Forum (EFTF) and the IEEE International Frequency Control Symposium (FCS), Besancon, France, 2009, pp. 194–198.

Alighanbari, S.

K. Bongs, Y. Singh, L. Smith, W. He, O. Kock, D. Swierad, J. Hughes, S. Schiller, S. Alighanbari, S. Origlia, S. Vogt, U. Sterr, C. Lisdat, R. L. Targat, J. Lodewyck, D. Holleville, B. Venon, S. Bize, G. P. Barwood, P. Gill, I. R. Hill, Y. B. Ovchinnikov, N. Poli, G. M. Tino, J. Stuhler, and W. Kaenders, and the SOC2 team, “Development of a strontium optical lattice clock for the SOC mission on the ISS,” C. R. Phys. 16, 553–564 (2015).
[Crossref]

Amy-Klein, A.

O. Lopez, F. Kéfélian, H. Jiang, A. Haboucha, A. Bercy, F. Stefani, B. Chanteau, A. Kanj, D. Rovera, J. Achkar, C. Chardonnet, P.-E. Pottie, A. Amy-Klein, and G. Santarelli, “Frequency and time transfer for metrology and beyond using telecommunication network fibres,” C. R. Phys. 16, 531–539 (2015).
[Crossref]

Andrews, L. C.

L. C. Andrews, R. L. Phillips, and C. Y. Hopen, Laser Beam Scintillation with Applications (SPIE, 2001).

Barnes, C.

A. Hati, C. W. Nelson, C. Barnes, D. Lirette, T. Fortier, F. Quinlan, J. A. Desalvo, A. Ludlow, S. A. Diddams, and D. A. Howe, “State-of-the-art RF signal generation from optical frequency division,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 60, 1796–1803 (2013).
[Crossref]

Barwood, G. P.

K. Bongs, Y. Singh, L. Smith, W. He, O. Kock, D. Swierad, J. Hughes, S. Schiller, S. Alighanbari, S. Origlia, S. Vogt, U. Sterr, C. Lisdat, R. L. Targat, J. Lodewyck, D. Holleville, B. Venon, S. Bize, G. P. Barwood, P. Gill, I. R. Hill, Y. B. Ovchinnikov, N. Poli, G. M. Tino, J. Stuhler, and W. Kaenders, and the SOC2 team, “Development of a strontium optical lattice clock for the SOC mission on the ISS,” C. R. Phys. 16, 553–564 (2015).
[Crossref]

Bauch, A.

S. Droste, C. Grebing, J. Leute, S. M. F. Raupach, A. Matveev, T. W. Hänsch, A. Bauch, R. Holzwarth, and G. Grosche, “Characterization of a 450 km baseline GPS carrier-phase link using an optical fiber link,” New J. Phys. 17, 083044 (2015).
[Crossref]

Baumann, E.

L. C. Sinclair, J.-D. Deschênes, L. Sonderhouse, W. C. Swann, I. H. Khader, E. Baumann, N. R. Newbury, and I. Coddington, “Invited Article: A compact optically coherent fiber frequency comb,” Rev. Sci. Instrum. 86, 081301 (2015).
[Crossref]

F. R. Giorgetta, W. C. Swann, L. C. Sinclair, E. Baumann, I. Coddington, and N. R. Newbury, “Optical two-way time and frequency transfer over free space,” Nat. Photonics 7, 434–438 (2013).
[Crossref]

J.-D. Deschênes, L. C. Sinclair, F. R. Giorgetta, W. C. Swann, E. Baumann, H. Bergeron, M. Cermak, I. Coddington, and N. R. Newbury, “Synchronization of distant optical clocks at the femtosecond level,” Phys. Rev. X (in press).

Baynes, F. N.

Bercy, A.

O. Lopez, F. Kéfélian, H. Jiang, A. Haboucha, A. Bercy, F. Stefani, B. Chanteau, A. Kanj, D. Rovera, J. Achkar, C. Chardonnet, P.-E. Pottie, A. Amy-Klein, and G. Santarelli, “Frequency and time transfer for metrology and beyond using telecommunication network fibres,” C. R. Phys. 16, 531–539 (2015).
[Crossref]

Bergeron, H.

J.-D. Deschênes, L. C. Sinclair, F. R. Giorgetta, W. C. Swann, E. Baumann, H. Bergeron, M. Cermak, I. Coddington, and N. R. Newbury, “Synchronization of distant optical clocks at the femtosecond level,” Phys. Rev. X (in press).

Bergquist, J. C.

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nat. Photonics 5, 425–429 (2011).
[Crossref]

Bize, S.

K. Bongs, Y. Singh, L. Smith, W. He, O. Kock, D. Swierad, J. Hughes, S. Schiller, S. Alighanbari, S. Origlia, S. Vogt, U. Sterr, C. Lisdat, R. L. Targat, J. Lodewyck, D. Holleville, B. Venon, S. Bize, G. P. Barwood, P. Gill, I. R. Hill, Y. B. Ovchinnikov, N. Poli, G. M. Tino, J. Stuhler, and W. Kaenders, and the SOC2 team, “Development of a strontium optical lattice clock for the SOC mission on the ISS,” C. R. Phys. 16, 553–564 (2015).
[Crossref]

Bock, D. C.-J.

S. S. Doeleman, J. Weintroub, A. E. E. Rogers, R. Plambeck, R. Freund, R. P. J. Tilanus, P. Friberg, L. M. Ziurys, J. M. Moran, B. Corey, K. H. Young, D. L. Smythe, M. Titus, D. P. Marrone, R. J. Cappallo, D. C.-J. Bock, G. C. Bower, R. Chamberlin, G. R. Davis, T. P. Krichbaum, J. Lamb, H. Maness, A. E. Niell, A. Roy, P. Strittmatter, D. Werthimer, A. R. Whitney, and D. Woody, “Event-horizon-scale structure in the supermassive black hole candidate at the Galactic Centre,” Nature 455, 78–80 (2008).
[Crossref]

Bongs, K.

K. Bongs, Y. Singh, L. Smith, W. He, O. Kock, D. Swierad, J. Hughes, S. Schiller, S. Alighanbari, S. Origlia, S. Vogt, U. Sterr, C. Lisdat, R. L. Targat, J. Lodewyck, D. Holleville, B. Venon, S. Bize, G. P. Barwood, P. Gill, I. R. Hill, Y. B. Ovchinnikov, N. Poli, G. M. Tino, J. Stuhler, and W. Kaenders, and the SOC2 team, “Development of a strontium optical lattice clock for the SOC mission on the ISS,” C. R. Phys. 16, 553–564 (2015).
[Crossref]

Boudot, R.

S. Grop, P.-Y. Bourgeois, R. Boudot, Y. Kersale, E. Rubiola, and V. Giordano, “10 GHz cryocooled sapphire oscillator with extremely low phase noise,” Electron. Lett. 46, 420–422 (2010).
[Crossref]

Bourgeois, P.-Y.

S. Grop, P.-Y. Bourgeois, R. Boudot, Y. Kersale, E. Rubiola, and V. Giordano, “10 GHz cryocooled sapphire oscillator with extremely low phase noise,” Electron. Lett. 46, 420–422 (2010).
[Crossref]

Bower, G. C.

S. S. Doeleman, J. Weintroub, A. E. E. Rogers, R. Plambeck, R. Freund, R. P. J. Tilanus, P. Friberg, L. M. Ziurys, J. M. Moran, B. Corey, K. H. Young, D. L. Smythe, M. Titus, D. P. Marrone, R. J. Cappallo, D. C.-J. Bock, G. C. Bower, R. Chamberlin, G. R. Davis, T. P. Krichbaum, J. Lamb, H. Maness, A. E. Niell, A. Roy, P. Strittmatter, D. Werthimer, A. R. Whitney, and D. Woody, “Event-horizon-scale structure in the supermassive black hole candidate at the Galactic Centre,” Nature 455, 78–80 (2008).
[Crossref]

Buczek, L.

L. Sliwczynski, P. Krehlik, L. Buczek, and M. Lipinski, “Frequency transfer in electronically stabilized fiber optic link exploiting bidirectional optical amplifiers,” IEEE Trans. Instrum. Meas. 61, 2573–2580 (2012).
[Crossref]

Byrd, J. M.

Calhoun, M.

M. Calhoun, R. Sydnor, and W. Diener, “A stabilized 100-megahertz and 1-gigahertz reference frequency distribution for Cassini radio science,” Interplanet. Netw. Prog. Rep. 148, 1–11 (2001).

Campbell, J. C.

Cappallo, R. J.

S. S. Doeleman, J. Weintroub, A. E. E. Rogers, R. Plambeck, R. Freund, R. P. J. Tilanus, P. Friberg, L. M. Ziurys, J. M. Moran, B. Corey, K. H. Young, D. L. Smythe, M. Titus, D. P. Marrone, R. J. Cappallo, D. C.-J. Bock, G. C. Bower, R. Chamberlin, G. R. Davis, T. P. Krichbaum, J. Lamb, H. Maness, A. E. Niell, A. Roy, P. Strittmatter, D. Werthimer, A. R. Whitney, and D. Woody, “Event-horizon-scale structure in the supermassive black hole candidate at the Galactic Centre,” Nature 455, 78–80 (2008).
[Crossref]

Cermak, M.

J.-D. Deschênes, L. C. Sinclair, F. R. Giorgetta, W. C. Swann, E. Baumann, H. Bergeron, M. Cermak, I. Coddington, and N. R. Newbury, “Synchronization of distant optical clocks at the femtosecond level,” Phys. Rev. X (in press).

Chamberlin, R.

S. S. Doeleman, J. Weintroub, A. E. E. Rogers, R. Plambeck, R. Freund, R. P. J. Tilanus, P. Friberg, L. M. Ziurys, J. M. Moran, B. Corey, K. H. Young, D. L. Smythe, M. Titus, D. P. Marrone, R. J. Cappallo, D. C.-J. Bock, G. C. Bower, R. Chamberlin, G. R. Davis, T. P. Krichbaum, J. Lamb, H. Maness, A. E. Niell, A. Roy, P. Strittmatter, D. Werthimer, A. R. Whitney, and D. Woody, “Event-horizon-scale structure in the supermassive black hole candidate at the Galactic Centre,” Nature 455, 78–80 (2008).
[Crossref]

Chanteau, B.

O. Lopez, F. Kéfélian, H. Jiang, A. Haboucha, A. Bercy, F. Stefani, B. Chanteau, A. Kanj, D. Rovera, J. Achkar, C. Chardonnet, P.-E. Pottie, A. Amy-Klein, and G. Santarelli, “Frequency and time transfer for metrology and beyond using telecommunication network fibres,” C. R. Phys. 16, 531–539 (2015).
[Crossref]

Chardonnet, C.

O. Lopez, F. Kéfélian, H. Jiang, A. Haboucha, A. Bercy, F. Stefani, B. Chanteau, A. Kanj, D. Rovera, J. Achkar, C. Chardonnet, P.-E. Pottie, A. Amy-Klein, and G. Santarelli, “Frequency and time transfer for metrology and beyond using telecommunication network fibres,” C. R. Phys. 16, 531–539 (2015).
[Crossref]

Clairon, A.

Cliche, J.-F.

J.-F. Cliche and B. Shillue, “Precision timing control for radioastronomy: maintaining femtosecond synchronization in the Atacama large millimeter array,” IEEE Control Syst. 26, 19–26 (2006).
[Crossref]

Coddington, I.

L. C. Sinclair, J.-D. Deschênes, L. Sonderhouse, W. C. Swann, I. H. Khader, E. Baumann, N. R. Newbury, and I. Coddington, “Invited Article: A compact optically coherent fiber frequency comb,” Rev. Sci. Instrum. 86, 081301 (2015).
[Crossref]

F. R. Giorgetta, W. C. Swann, L. C. Sinclair, E. Baumann, I. Coddington, and N. R. Newbury, “Optical two-way time and frequency transfer over free space,” Nat. Photonics 7, 434–438 (2013).
[Crossref]

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent linear optical sampling at 15 bits of resolution,” Opt. Lett. 34, 2153–2155 (2009).
[Crossref]

J.-D. Deschênes, L. C. Sinclair, F. R. Giorgetta, W. C. Swann, E. Baumann, H. Bergeron, M. Cermak, I. Coddington, and N. R. Newbury, “Synchronization of distant optical clocks at the femtosecond level,” Phys. Rev. X (in press).

Conan, J.-M.

C. Robert, J.-M. Conan, and P. Wolf, “Impact of turbulent phase noise on frequency transfer with asymmetric two-way ground-satellite coherent optical links,” Phys. Rev. A 93, 033860 (2016).

Corey, B.

S. S. Doeleman, J. Weintroub, A. E. E. Rogers, R. Plambeck, R. Freund, R. P. J. Tilanus, P. Friberg, L. M. Ziurys, J. M. Moran, B. Corey, K. H. Young, D. L. Smythe, M. Titus, D. P. Marrone, R. J. Cappallo, D. C.-J. Bock, G. C. Bower, R. Chamberlin, G. R. Davis, T. P. Krichbaum, J. Lamb, H. Maness, A. E. Niell, A. Roy, P. Strittmatter, D. Werthimer, A. R. Whitney, and D. Woody, “Event-horizon-scale structure in the supermassive black hole candidate at the Galactic Centre,” Nature 455, 78–80 (2008).
[Crossref]

Cross, A.

Davis, G. R.

S. S. Doeleman, J. Weintroub, A. E. E. Rogers, R. Plambeck, R. Freund, R. P. J. Tilanus, P. Friberg, L. M. Ziurys, J. M. Moran, B. Corey, K. H. Young, D. L. Smythe, M. Titus, D. P. Marrone, R. J. Cappallo, D. C.-J. Bock, G. C. Bower, R. Chamberlin, G. R. Davis, T. P. Krichbaum, J. Lamb, H. Maness, A. E. Niell, A. Roy, P. Strittmatter, D. Werthimer, A. R. Whitney, and D. Woody, “Event-horizon-scale structure in the supermassive black hole candidate at the Galactic Centre,” Nature 455, 78–80 (2008).
[Crossref]

Desalvo, J. A.

A. Hati, C. W. Nelson, C. Barnes, D. Lirette, T. Fortier, F. Quinlan, J. A. Desalvo, A. Ludlow, S. A. Diddams, and D. A. Howe, “State-of-the-art RF signal generation from optical frequency division,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 60, 1796–1803 (2013).
[Crossref]

Deschênes, J.-D.

L. C. Sinclair, J.-D. Deschênes, L. Sonderhouse, W. C. Swann, I. H. Khader, E. Baumann, N. R. Newbury, and I. Coddington, “Invited Article: A compact optically coherent fiber frequency comb,” Rev. Sci. Instrum. 86, 081301 (2015).
[Crossref]

J.-D. Deschênes, L. C. Sinclair, F. R. Giorgetta, W. C. Swann, E. Baumann, H. Bergeron, M. Cermak, I. Coddington, and N. R. Newbury, “Synchronization of distant optical clocks at the femtosecond level,” Phys. Rev. X (in press).

Diddams, S. A.

F. Quinlan, F. N. Baynes, T. M. Fortier, Q. Zhou, A. Cross, J. C. Campbell, and S. A. Diddams, “Optical amplification and pulse interleaving for low-noise photonic microwave generation,” Opt. Lett. 39, 1581–1584 (2014).
[Crossref]

A. Hati, C. W. Nelson, C. Barnes, D. Lirette, T. Fortier, F. Quinlan, J. A. Desalvo, A. Ludlow, S. A. Diddams, and D. A. Howe, “State-of-the-art RF signal generation from optical frequency division,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 60, 1796–1803 (2013).
[Crossref]

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nat. Photonics 5, 425–429 (2011).
[Crossref]

Diener, W.

M. Calhoun, R. Sydnor, and W. Diener, “A stabilized 100-megahertz and 1-gigahertz reference frequency distribution for Cassini radio science,” Interplanet. Netw. Prog. Rep. 148, 1–11 (2001).

Djerroud, K.

Doeleman, S.

S. Doeleman, T. Mai, A. E. E. Rogers, J. G. Hartnett, M. E. Tobar, and N. Nand, “Adapting a cryogenic sapphire oscillator for very long baseline interferometry,” Publ. Astron. Soc. Pac. 123, 582–595 (2011).
[Crossref]

Doeleman, S. S.

S. S. Doeleman, J. Weintroub, A. E. E. Rogers, R. Plambeck, R. Freund, R. P. J. Tilanus, P. Friberg, L. M. Ziurys, J. M. Moran, B. Corey, K. H. Young, D. L. Smythe, M. Titus, D. P. Marrone, R. J. Cappallo, D. C.-J. Bock, G. C. Bower, R. Chamberlin, G. R. Davis, T. P. Krichbaum, J. Lamb, H. Maness, A. E. Niell, A. Roy, P. Strittmatter, D. Werthimer, A. R. Whitney, and D. Woody, “Event-horizon-scale structure in the supermassive black hole candidate at the Galactic Centre,” Nature 455, 78–80 (2008).
[Crossref]

Doolittle, L.

Droste, S.

S. Droste, C. Grebing, J. Leute, S. M. F. Raupach, A. Matveev, T. W. Hänsch, A. Bauch, R. Holzwarth, and G. Grosche, “Characterization of a 450 km baseline GPS carrier-phase link using an optical fiber link,” New J. Phys. 17, 083044 (2015).
[Crossref]

S. Droste, F. Ozimek, T. Udem, K. Predehl, T. W. Hänsch, H. Schnatz, G. Grosche, and R. Holzwarth, “Optical-frequency transfer over a single-span 1840 km fiber link,” Phys. Rev. Lett. 111, 110801 (2013).
[Crossref]

Exertier, P.

E. Samain, P. Exertier, P. Guillemot, F. Pierron, D. Albanese, J. Paris, J.-M. Torre, I. Petitbon, and S. Leon, “Time transfer by laser link T2L2 first results,” in Joint Meeting of the European Frequency and Time Forum (EFTF) and the IEEE International Frequency Control Symposium (FCS), Besancon, France, 2009, pp. 194–198.

Fortier, T.

A. Hati, C. W. Nelson, C. Barnes, D. Lirette, T. Fortier, F. Quinlan, J. A. Desalvo, A. Ludlow, S. A. Diddams, and D. A. Howe, “State-of-the-art RF signal generation from optical frequency division,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 60, 1796–1803 (2013).
[Crossref]

Fortier, T. M.

F. Quinlan, F. N. Baynes, T. M. Fortier, Q. Zhou, A. Cross, J. C. Campbell, and S. A. Diddams, “Optical amplification and pulse interleaving for low-noise photonic microwave generation,” Opt. Lett. 39, 1581–1584 (2014).
[Crossref]

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nat. Photonics 5, 425–429 (2011).
[Crossref]

Freund, R.

S. S. Doeleman, J. Weintroub, A. E. E. Rogers, R. Plambeck, R. Freund, R. P. J. Tilanus, P. Friberg, L. M. Ziurys, J. M. Moran, B. Corey, K. H. Young, D. L. Smythe, M. Titus, D. P. Marrone, R. J. Cappallo, D. C.-J. Bock, G. C. Bower, R. Chamberlin, G. R. Davis, T. P. Krichbaum, J. Lamb, H. Maness, A. E. Niell, A. Roy, P. Strittmatter, D. Werthimer, A. R. Whitney, and D. Woody, “Event-horizon-scale structure in the supermassive black hole candidate at the Galactic Centre,” Nature 455, 78–80 (2008).
[Crossref]

Friberg, P.

S. S. Doeleman, J. Weintroub, A. E. E. Rogers, R. Plambeck, R. Freund, R. P. J. Tilanus, P. Friberg, L. M. Ziurys, J. M. Moran, B. Corey, K. H. Young, D. L. Smythe, M. Titus, D. P. Marrone, R. J. Cappallo, D. C.-J. Bock, G. C. Bower, R. Chamberlin, G. R. Davis, T. P. Krichbaum, J. Lamb, H. Maness, A. E. Niell, A. Roy, P. Strittmatter, D. Werthimer, A. R. Whitney, and D. Woody, “Event-horizon-scale structure in the supermassive black hole candidate at the Galactic Centre,” Nature 455, 78–80 (2008).
[Crossref]

Gill, P.

K. Bongs, Y. Singh, L. Smith, W. He, O. Kock, D. Swierad, J. Hughes, S. Schiller, S. Alighanbari, S. Origlia, S. Vogt, U. Sterr, C. Lisdat, R. L. Targat, J. Lodewyck, D. Holleville, B. Venon, S. Bize, G. P. Barwood, P. Gill, I. R. Hill, Y. B. Ovchinnikov, N. Poli, G. M. Tino, J. Stuhler, and W. Kaenders, and the SOC2 team, “Development of a strontium optical lattice clock for the SOC mission on the ISS,” C. R. Phys. 16, 553–564 (2015).
[Crossref]

Giordano, V.

S. Grop, P.-Y. Bourgeois, R. Boudot, Y. Kersale, E. Rubiola, and V. Giordano, “10 GHz cryocooled sapphire oscillator with extremely low phase noise,” Electron. Lett. 46, 420–422 (2010).
[Crossref]

Giorgetta, F. R.

F. R. Giorgetta, W. C. Swann, L. C. Sinclair, E. Baumann, I. Coddington, and N. R. Newbury, “Optical two-way time and frequency transfer over free space,” Nat. Photonics 7, 434–438 (2013).
[Crossref]

J.-D. Deschênes, L. C. Sinclair, F. R. Giorgetta, W. C. Swann, E. Baumann, H. Bergeron, M. Cermak, I. Coddington, and N. R. Newbury, “Synchronization of distant optical clocks at the femtosecond level,” Phys. Rev. X (in press).

Grebing, C.

S. Droste, C. Grebing, J. Leute, S. M. F. Raupach, A. Matveev, T. W. Hänsch, A. Bauch, R. Holzwarth, and G. Grosche, “Characterization of a 450 km baseline GPS carrier-phase link using an optical fiber link,” New J. Phys. 17, 083044 (2015).
[Crossref]

Grop, S.

S. Grop, P.-Y. Bourgeois, R. Boudot, Y. Kersale, E. Rubiola, and V. Giordano, “10 GHz cryocooled sapphire oscillator with extremely low phase noise,” Electron. Lett. 46, 420–422 (2010).
[Crossref]

Grosche, G.

S. Droste, C. Grebing, J. Leute, S. M. F. Raupach, A. Matveev, T. W. Hänsch, A. Bauch, R. Holzwarth, and G. Grosche, “Characterization of a 450 km baseline GPS carrier-phase link using an optical fiber link,” New J. Phys. 17, 083044 (2015).
[Crossref]

S. Droste, F. Ozimek, T. Udem, K. Predehl, T. W. Hänsch, H. Schnatz, G. Grosche, and R. Holzwarth, “Optical-frequency transfer over a single-span 1840 km fiber link,” Phys. Rev. Lett. 111, 110801 (2013).
[Crossref]

Guillemot, P.

E. Samain, P. Exertier, P. Guillemot, F. Pierron, D. Albanese, J. Paris, J.-M. Torre, I. Petitbon, and S. Leon, “Time transfer by laser link T2L2 first results,” in Joint Meeting of the European Frequency and Time Forum (EFTF) and the IEEE International Frequency Control Symposium (FCS), Besancon, France, 2009, pp. 194–198.

Haboucha, A.

O. Lopez, F. Kéfélian, H. Jiang, A. Haboucha, A. Bercy, F. Stefani, B. Chanteau, A. Kanj, D. Rovera, J. Achkar, C. Chardonnet, P.-E. Pottie, A. Amy-Klein, and G. Santarelli, “Frequency and time transfer for metrology and beyond using telecommunication network fibres,” C. R. Phys. 16, 531–539 (2015).
[Crossref]

A. Haboucha, W. Zhang, T. Li, M. Lours, A. N. Luiten, Y. Le Coq, and G. Santarelli, “Optical-fiber pulse rate multiplier for ultralow phase-noise signal generation,” Opt. Lett. 36, 3654–3656 (2011).
[Crossref]

Hall, J. L.

Hänsch, T. W.

S. Droste, C. Grebing, J. Leute, S. M. F. Raupach, A. Matveev, T. W. Hänsch, A. Bauch, R. Holzwarth, and G. Grosche, “Characterization of a 450 km baseline GPS carrier-phase link using an optical fiber link,” New J. Phys. 17, 083044 (2015).
[Crossref]

S. Droste, F. Ozimek, T. Udem, K. Predehl, T. W. Hänsch, H. Schnatz, G. Grosche, and R. Holzwarth, “Optical-frequency transfer over a single-span 1840 km fiber link,” Phys. Rev. Lett. 111, 110801 (2013).
[Crossref]

Hartnett, J. G.

S. Doeleman, T. Mai, A. E. E. Rogers, J. G. Hartnett, M. E. Tobar, and N. Nand, “Adapting a cryogenic sapphire oscillator for very long baseline interferometry,” Publ. Astron. Soc. Pac. 123, 582–595 (2011).
[Crossref]

N. R. Nand, J. G. Hartnett, E. N. Ivanov, and G. Santarelli, “Ultra-stable very-low phase-noise signal source for very long baseline interferometry using a cryocooled sapphire oscillator,” IEEE Trans. Microwave Theory Tech. 59, 2978–2986 (2011).
[Crossref]

Hati, A.

A. Hati, C. W. Nelson, C. Barnes, D. Lirette, T. Fortier, F. Quinlan, J. A. Desalvo, A. Ludlow, S. A. Diddams, and D. A. Howe, “State-of-the-art RF signal generation from optical frequency division,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 60, 1796–1803 (2013).
[Crossref]

He, W.

K. Bongs, Y. Singh, L. Smith, W. He, O. Kock, D. Swierad, J. Hughes, S. Schiller, S. Alighanbari, S. Origlia, S. Vogt, U. Sterr, C. Lisdat, R. L. Targat, J. Lodewyck, D. Holleville, B. Venon, S. Bize, G. P. Barwood, P. Gill, I. R. Hill, Y. B. Ovchinnikov, N. Poli, G. M. Tino, J. Stuhler, and W. Kaenders, and the SOC2 team, “Development of a strontium optical lattice clock for the SOC mission on the ISS,” C. R. Phys. 16, 553–564 (2015).
[Crossref]

Hill, I. R.

K. Bongs, Y. Singh, L. Smith, W. He, O. Kock, D. Swierad, J. Hughes, S. Schiller, S. Alighanbari, S. Origlia, S. Vogt, U. Sterr, C. Lisdat, R. L. Targat, J. Lodewyck, D. Holleville, B. Venon, S. Bize, G. P. Barwood, P. Gill, I. R. Hill, Y. B. Ovchinnikov, N. Poli, G. M. Tino, J. Stuhler, and W. Kaenders, and the SOC2 team, “Development of a strontium optical lattice clock for the SOC mission on the ISS,” C. R. Phys. 16, 553–564 (2015).
[Crossref]

Holleville, D.

K. Bongs, Y. Singh, L. Smith, W. He, O. Kock, D. Swierad, J. Hughes, S. Schiller, S. Alighanbari, S. Origlia, S. Vogt, U. Sterr, C. Lisdat, R. L. Targat, J. Lodewyck, D. Holleville, B. Venon, S. Bize, G. P. Barwood, P. Gill, I. R. Hill, Y. B. Ovchinnikov, N. Poli, G. M. Tino, J. Stuhler, and W. Kaenders, and the SOC2 team, “Development of a strontium optical lattice clock for the SOC mission on the ISS,” C. R. Phys. 16, 553–564 (2015).
[Crossref]

Holzwarth, R.

S. Droste, C. Grebing, J. Leute, S. M. F. Raupach, A. Matveev, T. W. Hänsch, A. Bauch, R. Holzwarth, and G. Grosche, “Characterization of a 450 km baseline GPS carrier-phase link using an optical fiber link,” New J. Phys. 17, 083044 (2015).
[Crossref]

S. Droste, F. Ozimek, T. Udem, K. Predehl, T. W. Hänsch, H. Schnatz, G. Grosche, and R. Holzwarth, “Optical-frequency transfer over a single-span 1840 km fiber link,” Phys. Rev. Lett. 111, 110801 (2013).
[Crossref]

Hopen, C. Y.

L. C. Andrews, R. L. Phillips, and C. Y. Hopen, Laser Beam Scintillation with Applications (SPIE, 2001).

Howe, D. A.

A. Hati, C. W. Nelson, C. Barnes, D. Lirette, T. Fortier, F. Quinlan, J. A. Desalvo, A. Ludlow, S. A. Diddams, and D. A. Howe, “State-of-the-art RF signal generation from optical frequency division,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 60, 1796–1803 (2013).
[Crossref]

Huang, G.

Hughes, J.

K. Bongs, Y. Singh, L. Smith, W. He, O. Kock, D. Swierad, J. Hughes, S. Schiller, S. Alighanbari, S. Origlia, S. Vogt, U. Sterr, C. Lisdat, R. L. Targat, J. Lodewyck, D. Holleville, B. Venon, S. Bize, G. P. Barwood, P. Gill, I. R. Hill, Y. B. Ovchinnikov, N. Poli, G. M. Tino, J. Stuhler, and W. Kaenders, and the SOC2 team, “Development of a strontium optical lattice clock for the SOC mission on the ISS,” C. R. Phys. 16, 553–564 (2015).
[Crossref]

Ivanov, E. N.

N. R. Nand, J. G. Hartnett, E. N. Ivanov, and G. Santarelli, “Ultra-stable very-low phase-noise signal source for very long baseline interferometry using a cryocooled sapphire oscillator,” IEEE Trans. Microwave Theory Tech. 59, 2978–2986 (2011).
[Crossref]

Jiang, H.

O. Lopez, F. Kéfélian, H. Jiang, A. Haboucha, A. Bercy, F. Stefani, B. Chanteau, A. Kanj, D. Rovera, J. Achkar, C. Chardonnet, P.-E. Pottie, A. Amy-Klein, and G. Santarelli, “Frequency and time transfer for metrology and beyond using telecommunication network fibres,” C. R. Phys. 16, 531–539 (2015).
[Crossref]

Jiang, Y.

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nat. Photonics 5, 425–429 (2011).
[Crossref]

Jungner, P.

Kaenders, W.

K. Bongs, Y. Singh, L. Smith, W. He, O. Kock, D. Swierad, J. Hughes, S. Schiller, S. Alighanbari, S. Origlia, S. Vogt, U. Sterr, C. Lisdat, R. L. Targat, J. Lodewyck, D. Holleville, B. Venon, S. Bize, G. P. Barwood, P. Gill, I. R. Hill, Y. B. Ovchinnikov, N. Poli, G. M. Tino, J. Stuhler, and W. Kaenders, and the SOC2 team, “Development of a strontium optical lattice clock for the SOC mission on the ISS,” C. R. Phys. 16, 553–564 (2015).
[Crossref]

Kalman, R. E.

R. E. Kalman, “A new approach to linear filtering and prediction problems,” Trans. ASME J. Basic Eng. 82, 35–45 (1960).
[Crossref]

Kanj, A.

O. Lopez, F. Kéfélian, H. Jiang, A. Haboucha, A. Bercy, F. Stefani, B. Chanteau, A. Kanj, D. Rovera, J. Achkar, C. Chardonnet, P.-E. Pottie, A. Amy-Klein, and G. Santarelli, “Frequency and time transfer for metrology and beyond using telecommunication network fibres,” C. R. Phys. 16, 531–539 (2015).
[Crossref]

Kéfélian, F.

O. Lopez, F. Kéfélian, H. Jiang, A. Haboucha, A. Bercy, F. Stefani, B. Chanteau, A. Kanj, D. Rovera, J. Achkar, C. Chardonnet, P.-E. Pottie, A. Amy-Klein, and G. Santarelli, “Frequency and time transfer for metrology and beyond using telecommunication network fibres,” C. R. Phys. 16, 531–539 (2015).
[Crossref]

Kersale, Y.

S. Grop, P.-Y. Bourgeois, R. Boudot, Y. Kersale, E. Rubiola, and V. Giordano, “10 GHz cryocooled sapphire oscillator with extremely low phase noise,” Electron. Lett. 46, 420–422 (2010).
[Crossref]

Khader, I. H.

L. C. Sinclair, J.-D. Deschênes, L. Sonderhouse, W. C. Swann, I. H. Khader, E. Baumann, N. R. Newbury, and I. Coddington, “Invited Article: A compact optically coherent fiber frequency comb,” Rev. Sci. Instrum. 86, 081301 (2015).
[Crossref]

Kirchner, M. S.

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nat. Photonics 5, 425–429 (2011).
[Crossref]

Kirk, A.

G. Lutes and A. Kirk, “Reference frequency transmission over optical fiber,” in The Telecommunications and Data Acquisition Report (Jet Propulsion Laboratory, 1986).

Kock, O.

K. Bongs, Y. Singh, L. Smith, W. He, O. Kock, D. Swierad, J. Hughes, S. Schiller, S. Alighanbari, S. Origlia, S. Vogt, U. Sterr, C. Lisdat, R. L. Targat, J. Lodewyck, D. Holleville, B. Venon, S. Bize, G. P. Barwood, P. Gill, I. R. Hill, Y. B. Ovchinnikov, N. Poli, G. M. Tino, J. Stuhler, and W. Kaenders, and the SOC2 team, “Development of a strontium optical lattice clock for the SOC mission on the ISS,” C. R. Phys. 16, 553–564 (2015).
[Crossref]

Krehlik, P.

L. Sliwczynski, P. Krehlik, L. Buczek, and M. Lipinski, “Frequency transfer in electronically stabilized fiber optic link exploiting bidirectional optical amplifiers,” IEEE Trans. Instrum. Meas. 61, 2573–2580 (2012).
[Crossref]

Krichbaum, T. P.

S. S. Doeleman, J. Weintroub, A. E. E. Rogers, R. Plambeck, R. Freund, R. P. J. Tilanus, P. Friberg, L. M. Ziurys, J. M. Moran, B. Corey, K. H. Young, D. L. Smythe, M. Titus, D. P. Marrone, R. J. Cappallo, D. C.-J. Bock, G. C. Bower, R. Chamberlin, G. R. Davis, T. P. Krichbaum, J. Lamb, H. Maness, A. E. Niell, A. Roy, P. Strittmatter, D. Werthimer, A. R. Whitney, and D. Woody, “Event-horizon-scale structure in the supermassive black hole candidate at the Galactic Centre,” Nature 455, 78–80 (2008).
[Crossref]

Lamb, J.

S. S. Doeleman, J. Weintroub, A. E. E. Rogers, R. Plambeck, R. Freund, R. P. J. Tilanus, P. Friberg, L. M. Ziurys, J. M. Moran, B. Corey, K. H. Young, D. L. Smythe, M. Titus, D. P. Marrone, R. J. Cappallo, D. C.-J. Bock, G. C. Bower, R. Chamberlin, G. R. Davis, T. P. Krichbaum, J. Lamb, H. Maness, A. E. Niell, A. Roy, P. Strittmatter, D. Werthimer, A. R. Whitney, and D. Woody, “Event-horizon-scale structure in the supermassive black hole candidate at the Galactic Centre,” Nature 455, 78–80 (2008).
[Crossref]

Larson, L.

M. Sushchik, N. Rulkov, L. Larson, L. Tsimring, H. Abarbanel, K. Yao, and A. Volkovskii, “Chaotic pulse position modulation: a robust method of communicating with chaos,” IEEE Commun. Lett. 4, 128–130 (2000).
[Crossref]

Le Coq, Y.

Lemke, N.

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nat. Photonics 5, 425–429 (2011).
[Crossref]

Lemonde, P.

Leon, S.

E. Samain, P. Exertier, P. Guillemot, F. Pierron, D. Albanese, J. Paris, J.-M. Torre, I. Petitbon, and S. Leon, “Time transfer by laser link T2L2 first results,” in Joint Meeting of the European Frequency and Time Forum (EFTF) and the IEEE International Frequency Control Symposium (FCS), Besancon, France, 2009, pp. 194–198.

Leute, J.

S. Droste, C. Grebing, J. Leute, S. M. F. Raupach, A. Matveev, T. W. Hänsch, A. Bauch, R. Holzwarth, and G. Grosche, “Characterization of a 450 km baseline GPS carrier-phase link using an optical fiber link,” New J. Phys. 17, 083044 (2015).
[Crossref]

Li, T.

Li, Z.

Lipinski, M.

L. Sliwczynski, P. Krehlik, L. Buczek, and M. Lipinski, “Frequency transfer in electronically stabilized fiber optic link exploiting bidirectional optical amplifiers,” IEEE Trans. Instrum. Meas. 61, 2573–2580 (2012).
[Crossref]

Lirette, D.

A. Hati, C. W. Nelson, C. Barnes, D. Lirette, T. Fortier, F. Quinlan, J. A. Desalvo, A. Ludlow, S. A. Diddams, and D. A. Howe, “State-of-the-art RF signal generation from optical frequency division,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 60, 1796–1803 (2013).
[Crossref]

Lisdat, C.

K. Bongs, Y. Singh, L. Smith, W. He, O. Kock, D. Swierad, J. Hughes, S. Schiller, S. Alighanbari, S. Origlia, S. Vogt, U. Sterr, C. Lisdat, R. L. Targat, J. Lodewyck, D. Holleville, B. Venon, S. Bize, G. P. Barwood, P. Gill, I. R. Hill, Y. B. Ovchinnikov, N. Poli, G. M. Tino, J. Stuhler, and W. Kaenders, and the SOC2 team, “Development of a strontium optical lattice clock for the SOC mission on the ISS,” C. R. Phys. 16, 553–564 (2015).
[Crossref]

Lodewyck, J.

K. Bongs, Y. Singh, L. Smith, W. He, O. Kock, D. Swierad, J. Hughes, S. Schiller, S. Alighanbari, S. Origlia, S. Vogt, U. Sterr, C. Lisdat, R. L. Targat, J. Lodewyck, D. Holleville, B. Venon, S. Bize, G. P. Barwood, P. Gill, I. R. Hill, Y. B. Ovchinnikov, N. Poli, G. M. Tino, J. Stuhler, and W. Kaenders, and the SOC2 team, “Development of a strontium optical lattice clock for the SOC mission on the ISS,” C. R. Phys. 16, 553–564 (2015).
[Crossref]

Lopez, O.

O. Lopez, F. Kéfélian, H. Jiang, A. Haboucha, A. Bercy, F. Stefani, B. Chanteau, A. Kanj, D. Rovera, J. Achkar, C. Chardonnet, P.-E. Pottie, A. Amy-Klein, and G. Santarelli, “Frequency and time transfer for metrology and beyond using telecommunication network fibres,” C. R. Phys. 16, 531–539 (2015).
[Crossref]

Lours, M.

Ludlow, A.

A. Hati, C. W. Nelson, C. Barnes, D. Lirette, T. Fortier, F. Quinlan, J. A. Desalvo, A. Ludlow, S. A. Diddams, and D. A. Howe, “State-of-the-art RF signal generation from optical frequency division,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 60, 1796–1803 (2013).
[Crossref]

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nat. Photonics 5, 425–429 (2011).
[Crossref]

Luiten, A. N.

Luo, B.

Lutes, G.

G. Lutes and A. Kirk, “Reference frequency transmission over optical fiber,” in The Telecommunications and Data Acquisition Report (Jet Propulsion Laboratory, 1986).

Ma, L.-S.

Mai, T.

S. Doeleman, T. Mai, A. E. E. Rogers, J. G. Hartnett, M. E. Tobar, and N. Nand, “Adapting a cryogenic sapphire oscillator for very long baseline interferometry,” Publ. Astron. Soc. Pac. 123, 582–595 (2011).
[Crossref]

Man, C. N.

Maness, H.

S. S. Doeleman, J. Weintroub, A. E. E. Rogers, R. Plambeck, R. Freund, R. P. J. Tilanus, P. Friberg, L. M. Ziurys, J. M. Moran, B. Corey, K. H. Young, D. L. Smythe, M. Titus, D. P. Marrone, R. J. Cappallo, D. C.-J. Bock, G. C. Bower, R. Chamberlin, G. R. Davis, T. P. Krichbaum, J. Lamb, H. Maness, A. E. Niell, A. Roy, P. Strittmatter, D. Werthimer, A. R. Whitney, and D. Woody, “Event-horizon-scale structure in the supermassive black hole candidate at the Galactic Centre,” Nature 455, 78–80 (2008).
[Crossref]

Marrone, D. P.

S. S. Doeleman, J. Weintroub, A. E. E. Rogers, R. Plambeck, R. Freund, R. P. J. Tilanus, P. Friberg, L. M. Ziurys, J. M. Moran, B. Corey, K. H. Young, D. L. Smythe, M. Titus, D. P. Marrone, R. J. Cappallo, D. C.-J. Bock, G. C. Bower, R. Chamberlin, G. R. Davis, T. P. Krichbaum, J. Lamb, H. Maness, A. E. Niell, A. Roy, P. Strittmatter, D. Werthimer, A. R. Whitney, and D. Woody, “Event-horizon-scale structure in the supermassive black hole candidate at the Galactic Centre,” Nature 455, 78–80 (2008).
[Crossref]

Matveev, A.

S. Droste, C. Grebing, J. Leute, S. M. F. Raupach, A. Matveev, T. W. Hänsch, A. Bauch, R. Holzwarth, and G. Grosche, “Characterization of a 450 km baseline GPS carrier-phase link using an optical fiber link,” New J. Phys. 17, 083044 (2015).
[Crossref]

Moran, J. M.

S. S. Doeleman, J. Weintroub, A. E. E. Rogers, R. Plambeck, R. Freund, R. P. J. Tilanus, P. Friberg, L. M. Ziurys, J. M. Moran, B. Corey, K. H. Young, D. L. Smythe, M. Titus, D. P. Marrone, R. J. Cappallo, D. C.-J. Bock, G. C. Bower, R. Chamberlin, G. R. Davis, T. P. Krichbaum, J. Lamb, H. Maness, A. E. Niell, A. Roy, P. Strittmatter, D. Werthimer, A. R. Whitney, and D. Woody, “Event-horizon-scale structure in the supermassive black hole candidate at the Galactic Centre,” Nature 455, 78–80 (2008).
[Crossref]

Nand, N.

S. Doeleman, T. Mai, A. E. E. Rogers, J. G. Hartnett, M. E. Tobar, and N. Nand, “Adapting a cryogenic sapphire oscillator for very long baseline interferometry,” Publ. Astron. Soc. Pac. 123, 582–595 (2011).
[Crossref]

Nand, N. R.

N. R. Nand, J. G. Hartnett, E. N. Ivanov, and G. Santarelli, “Ultra-stable very-low phase-noise signal source for very long baseline interferometry using a cryocooled sapphire oscillator,” IEEE Trans. Microwave Theory Tech. 59, 2978–2986 (2011).
[Crossref]

Nelson, C. W.

A. Hati, C. W. Nelson, C. Barnes, D. Lirette, T. Fortier, F. Quinlan, J. A. Desalvo, A. Ludlow, S. A. Diddams, and D. A. Howe, “State-of-the-art RF signal generation from optical frequency division,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 60, 1796–1803 (2013).
[Crossref]

Newbury, N. R.

L. C. Sinclair, J.-D. Deschênes, L. Sonderhouse, W. C. Swann, I. H. Khader, E. Baumann, N. R. Newbury, and I. Coddington, “Invited Article: A compact optically coherent fiber frequency comb,” Rev. Sci. Instrum. 86, 081301 (2015).
[Crossref]

F. R. Giorgetta, W. C. Swann, L. C. Sinclair, E. Baumann, I. Coddington, and N. R. Newbury, “Optical two-way time and frequency transfer over free space,” Nat. Photonics 7, 434–438 (2013).
[Crossref]

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent linear optical sampling at 15 bits of resolution,” Opt. Lett. 34, 2153–2155 (2009).
[Crossref]

N. R. Newbury, P. A. Williams, and W. C. Swann, “Coherent transfer of an optical carrier over 251 km,” Opt. Lett. 32, 3056–3058 (2007).
[Crossref]

J.-D. Deschênes, L. C. Sinclair, F. R. Giorgetta, W. C. Swann, E. Baumann, H. Bergeron, M. Cermak, I. Coddington, and N. R. Newbury, “Synchronization of distant optical clocks at the femtosecond level,” Phys. Rev. X (in press).

Niell, A. E.

S. S. Doeleman, J. Weintroub, A. E. E. Rogers, R. Plambeck, R. Freund, R. P. J. Tilanus, P. Friberg, L. M. Ziurys, J. M. Moran, B. Corey, K. H. Young, D. L. Smythe, M. Titus, D. P. Marrone, R. J. Cappallo, D. C.-J. Bock, G. C. Bower, R. Chamberlin, G. R. Davis, T. P. Krichbaum, J. Lamb, H. Maness, A. E. Niell, A. Roy, P. Strittmatter, D. Werthimer, A. R. Whitney, and D. Woody, “Event-horizon-scale structure in the supermassive black hole candidate at the Galactic Centre,” Nature 455, 78–80 (2008).
[Crossref]

Oates, C. W.

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nat. Photonics 5, 425–429 (2011).
[Crossref]

Origlia, S.

K. Bongs, Y. Singh, L. Smith, W. He, O. Kock, D. Swierad, J. Hughes, S. Schiller, S. Alighanbari, S. Origlia, S. Vogt, U. Sterr, C. Lisdat, R. L. Targat, J. Lodewyck, D. Holleville, B. Venon, S. Bize, G. P. Barwood, P. Gill, I. R. Hill, Y. B. Ovchinnikov, N. Poli, G. M. Tino, J. Stuhler, and W. Kaenders, and the SOC2 team, “Development of a strontium optical lattice clock for the SOC mission on the ISS,” C. R. Phys. 16, 553–564 (2015).
[Crossref]

Ovchinnikov, Y. B.

K. Bongs, Y. Singh, L. Smith, W. He, O. Kock, D. Swierad, J. Hughes, S. Schiller, S. Alighanbari, S. Origlia, S. Vogt, U. Sterr, C. Lisdat, R. L. Targat, J. Lodewyck, D. Holleville, B. Venon, S. Bize, G. P. Barwood, P. Gill, I. R. Hill, Y. B. Ovchinnikov, N. Poli, G. M. Tino, J. Stuhler, and W. Kaenders, and the SOC2 team, “Development of a strontium optical lattice clock for the SOC mission on the ISS,” C. R. Phys. 16, 553–564 (2015).
[Crossref]

Ozimek, F.

S. Droste, F. Ozimek, T. Udem, K. Predehl, T. W. Hänsch, H. Schnatz, G. Grosche, and R. Holzwarth, “Optical-frequency transfer over a single-span 1840 km fiber link,” Phys. Rev. Lett. 111, 110801 (2013).
[Crossref]

Pan, W.

Paris, J.

E. Samain, P. Exertier, P. Guillemot, F. Pierron, D. Albanese, J. Paris, J.-M. Torre, I. Petitbon, and S. Leon, “Time transfer by laser link T2L2 first results,” in Joint Meeting of the European Frequency and Time Forum (EFTF) and the IEEE International Frequency Control Symposium (FCS), Besancon, France, 2009, pp. 194–198.

Peng, Y.

Petitbon, I.

E. Samain, P. Exertier, P. Guillemot, F. Pierron, D. Albanese, J. Paris, J.-M. Torre, I. Petitbon, and S. Leon, “Time transfer by laser link T2L2 first results,” in Joint Meeting of the European Frequency and Time Forum (EFTF) and the IEEE International Frequency Control Symposium (FCS), Besancon, France, 2009, pp. 194–198.

Phillips, R. L.

L. C. Andrews, R. L. Phillips, and C. Y. Hopen, Laser Beam Scintillation with Applications (SPIE, 2001).

Pierron, F.

E. Samain, P. Exertier, P. Guillemot, F. Pierron, D. Albanese, J. Paris, J.-M. Torre, I. Petitbon, and S. Leon, “Time transfer by laser link T2L2 first results,” in Joint Meeting of the European Frequency and Time Forum (EFTF) and the IEEE International Frequency Control Symposium (FCS), Besancon, France, 2009, pp. 194–198.

Plambeck, R.

S. S. Doeleman, J. Weintroub, A. E. E. Rogers, R. Plambeck, R. Freund, R. P. J. Tilanus, P. Friberg, L. M. Ziurys, J. M. Moran, B. Corey, K. H. Young, D. L. Smythe, M. Titus, D. P. Marrone, R. J. Cappallo, D. C.-J. Bock, G. C. Bower, R. Chamberlin, G. R. Davis, T. P. Krichbaum, J. Lamb, H. Maness, A. E. Niell, A. Roy, P. Strittmatter, D. Werthimer, A. R. Whitney, and D. Woody, “Event-horizon-scale structure in the supermassive black hole candidate at the Galactic Centre,” Nature 455, 78–80 (2008).
[Crossref]

Poli, N.

K. Bongs, Y. Singh, L. Smith, W. He, O. Kock, D. Swierad, J. Hughes, S. Schiller, S. Alighanbari, S. Origlia, S. Vogt, U. Sterr, C. Lisdat, R. L. Targat, J. Lodewyck, D. Holleville, B. Venon, S. Bize, G. P. Barwood, P. Gill, I. R. Hill, Y. B. Ovchinnikov, N. Poli, G. M. Tino, J. Stuhler, and W. Kaenders, and the SOC2 team, “Development of a strontium optical lattice clock for the SOC mission on the ISS,” C. R. Phys. 16, 553–564 (2015).
[Crossref]

Pottie, P.-E.

O. Lopez, F. Kéfélian, H. Jiang, A. Haboucha, A. Bercy, F. Stefani, B. Chanteau, A. Kanj, D. Rovera, J. Achkar, C. Chardonnet, P.-E. Pottie, A. Amy-Klein, and G. Santarelli, “Frequency and time transfer for metrology and beyond using telecommunication network fibres,” C. R. Phys. 16, 531–539 (2015).
[Crossref]

Predehl, K.

S. Droste, F. Ozimek, T. Udem, K. Predehl, T. W. Hänsch, H. Schnatz, G. Grosche, and R. Holzwarth, “Optical-frequency transfer over a single-span 1840 km fiber link,” Phys. Rev. Lett. 111, 110801 (2013).
[Crossref]

Quinlan, F.

F. Quinlan, F. N. Baynes, T. M. Fortier, Q. Zhou, A. Cross, J. C. Campbell, and S. A. Diddams, “Optical amplification and pulse interleaving for low-noise photonic microwave generation,” Opt. Lett. 39, 1581–1584 (2014).
[Crossref]

A. Hati, C. W. Nelson, C. Barnes, D. Lirette, T. Fortier, F. Quinlan, J. A. Desalvo, A. Ludlow, S. A. Diddams, and D. A. Howe, “State-of-the-art RF signal generation from optical frequency division,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 60, 1796–1803 (2013).
[Crossref]

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nat. Photonics 5, 425–429 (2011).
[Crossref]

Raupach, S. M. F.

S. Droste, C. Grebing, J. Leute, S. M. F. Raupach, A. Matveev, T. W. Hänsch, A. Bauch, R. Holzwarth, and G. Grosche, “Characterization of a 450 km baseline GPS carrier-phase link using an optical fiber link,” New J. Phys. 17, 083044 (2015).
[Crossref]

Robert, C.

C. Robert, J.-M. Conan, and P. Wolf, “Impact of turbulent phase noise on frequency transfer with asymmetric two-way ground-satellite coherent optical links,” Phys. Rev. A 93, 033860 (2016).

Rogers, A. E. E.

S. Doeleman, T. Mai, A. E. E. Rogers, J. G. Hartnett, M. E. Tobar, and N. Nand, “Adapting a cryogenic sapphire oscillator for very long baseline interferometry,” Publ. Astron. Soc. Pac. 123, 582–595 (2011).
[Crossref]

S. S. Doeleman, J. Weintroub, A. E. E. Rogers, R. Plambeck, R. Freund, R. P. J. Tilanus, P. Friberg, L. M. Ziurys, J. M. Moran, B. Corey, K. H. Young, D. L. Smythe, M. Titus, D. P. Marrone, R. J. Cappallo, D. C.-J. Bock, G. C. Bower, R. Chamberlin, G. R. Davis, T. P. Krichbaum, J. Lamb, H. Maness, A. E. Niell, A. Roy, P. Strittmatter, D. Werthimer, A. R. Whitney, and D. Woody, “Event-horizon-scale structure in the supermassive black hole candidate at the Galactic Centre,” Nature 455, 78–80 (2008).
[Crossref]

Rosenband, T.

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nat. Photonics 5, 425–429 (2011).
[Crossref]

Rovera, D.

O. Lopez, F. Kéfélian, H. Jiang, A. Haboucha, A. Bercy, F. Stefani, B. Chanteau, A. Kanj, D. Rovera, J. Achkar, C. Chardonnet, P.-E. Pottie, A. Amy-Klein, and G. Santarelli, “Frequency and time transfer for metrology and beyond using telecommunication network fibres,” C. R. Phys. 16, 531–539 (2015).
[Crossref]

Roy, A.

S. S. Doeleman, J. Weintroub, A. E. E. Rogers, R. Plambeck, R. Freund, R. P. J. Tilanus, P. Friberg, L. M. Ziurys, J. M. Moran, B. Corey, K. H. Young, D. L. Smythe, M. Titus, D. P. Marrone, R. J. Cappallo, D. C.-J. Bock, G. C. Bower, R. Chamberlin, G. R. Davis, T. P. Krichbaum, J. Lamb, H. Maness, A. E. Niell, A. Roy, P. Strittmatter, D. Werthimer, A. R. Whitney, and D. Woody, “Event-horizon-scale structure in the supermassive black hole candidate at the Galactic Centre,” Nature 455, 78–80 (2008).
[Crossref]

Rubiola, E.

S. Grop, P.-Y. Bourgeois, R. Boudot, Y. Kersale, E. Rubiola, and V. Giordano, “10 GHz cryocooled sapphire oscillator with extremely low phase noise,” Electron. Lett. 46, 420–422 (2010).
[Crossref]

Rulkov, N.

M. Sushchik, N. Rulkov, L. Larson, L. Tsimring, H. Abarbanel, K. Yao, and A. Volkovskii, “Chaotic pulse position modulation: a robust method of communicating with chaos,” IEEE Commun. Lett. 4, 128–130 (2000).
[Crossref]

Samain, E.

K. Djerroud, O. Acef, A. Clairon, P. Lemonde, C. N. Man, E. Samain, and P. Wolf, “Coherent optical link through the turbulent atmosphere,” Opt. Lett. 35, 1479–1481 (2010).
[Crossref]

E. Samain, P. Exertier, P. Guillemot, F. Pierron, D. Albanese, J. Paris, J.-M. Torre, I. Petitbon, and S. Leon, “Time transfer by laser link T2L2 first results,” in Joint Meeting of the European Frequency and Time Forum (EFTF) and the IEEE International Frequency Control Symposium (FCS), Besancon, France, 2009, pp. 194–198.

Santarelli, G.

O. Lopez, F. Kéfélian, H. Jiang, A. Haboucha, A. Bercy, F. Stefani, B. Chanteau, A. Kanj, D. Rovera, J. Achkar, C. Chardonnet, P.-E. Pottie, A. Amy-Klein, and G. Santarelli, “Frequency and time transfer for metrology and beyond using telecommunication network fibres,” C. R. Phys. 16, 531–539 (2015).
[Crossref]

A. Haboucha, W. Zhang, T. Li, M. Lours, A. N. Luiten, Y. Le Coq, and G. Santarelli, “Optical-fiber pulse rate multiplier for ultralow phase-noise signal generation,” Opt. Lett. 36, 3654–3656 (2011).
[Crossref]

N. R. Nand, J. G. Hartnett, E. N. Ivanov, and G. Santarelli, “Ultra-stable very-low phase-noise signal source for very long baseline interferometry using a cryocooled sapphire oscillator,” IEEE Trans. Microwave Theory Tech. 59, 2978–2986 (2011).
[Crossref]

Schiller, S.

K. Bongs, Y. Singh, L. Smith, W. He, O. Kock, D. Swierad, J. Hughes, S. Schiller, S. Alighanbari, S. Origlia, S. Vogt, U. Sterr, C. Lisdat, R. L. Targat, J. Lodewyck, D. Holleville, B. Venon, S. Bize, G. P. Barwood, P. Gill, I. R. Hill, Y. B. Ovchinnikov, N. Poli, G. M. Tino, J. Stuhler, and W. Kaenders, and the SOC2 team, “Development of a strontium optical lattice clock for the SOC mission on the ISS,” C. R. Phys. 16, 553–564 (2015).
[Crossref]

Schnatz, H.

S. Droste, F. Ozimek, T. Udem, K. Predehl, T. W. Hänsch, H. Schnatz, G. Grosche, and R. Holzwarth, “Optical-frequency transfer over a single-span 1840 km fiber link,” Phys. Rev. Lett. 111, 110801 (2013).
[Crossref]

Shao, L.

Shapiro, J. H.

Shillue, B.

J.-F. Cliche and B. Shillue, “Precision timing control for radioastronomy: maintaining femtosecond synchronization in the Atacama large millimeter array,” IEEE Control Syst. 26, 19–26 (2006).
[Crossref]

Sinclair, L. C.

L. C. Sinclair, J.-D. Deschênes, L. Sonderhouse, W. C. Swann, I. H. Khader, E. Baumann, N. R. Newbury, and I. Coddington, “Invited Article: A compact optically coherent fiber frequency comb,” Rev. Sci. Instrum. 86, 081301 (2015).
[Crossref]

F. R. Giorgetta, W. C. Swann, L. C. Sinclair, E. Baumann, I. Coddington, and N. R. Newbury, “Optical two-way time and frequency transfer over free space,” Nat. Photonics 7, 434–438 (2013).
[Crossref]

J.-D. Deschênes, L. C. Sinclair, F. R. Giorgetta, W. C. Swann, E. Baumann, H. Bergeron, M. Cermak, I. Coddington, and N. R. Newbury, “Synchronization of distant optical clocks at the femtosecond level,” Phys. Rev. X (in press).

Singh, Y.

K. Bongs, Y. Singh, L. Smith, W. He, O. Kock, D. Swierad, J. Hughes, S. Schiller, S. Alighanbari, S. Origlia, S. Vogt, U. Sterr, C. Lisdat, R. L. Targat, J. Lodewyck, D. Holleville, B. Venon, S. Bize, G. P. Barwood, P. Gill, I. R. Hill, Y. B. Ovchinnikov, N. Poli, G. M. Tino, J. Stuhler, and W. Kaenders, and the SOC2 team, “Development of a strontium optical lattice clock for the SOC mission on the ISS,” C. R. Phys. 16, 553–564 (2015).
[Crossref]

Sliwczynski, L.

L. Sliwczynski, P. Krehlik, L. Buczek, and M. Lipinski, “Frequency transfer in electronically stabilized fiber optic link exploiting bidirectional optical amplifiers,” IEEE Trans. Instrum. Meas. 61, 2573–2580 (2012).
[Crossref]

Smith, L.

K. Bongs, Y. Singh, L. Smith, W. He, O. Kock, D. Swierad, J. Hughes, S. Schiller, S. Alighanbari, S. Origlia, S. Vogt, U. Sterr, C. Lisdat, R. L. Targat, J. Lodewyck, D. Holleville, B. Venon, S. Bize, G. P. Barwood, P. Gill, I. R. Hill, Y. B. Ovchinnikov, N. Poli, G. M. Tino, J. Stuhler, and W. Kaenders, and the SOC2 team, “Development of a strontium optical lattice clock for the SOC mission on the ISS,” C. R. Phys. 16, 553–564 (2015).
[Crossref]

Smythe, D. L.

S. S. Doeleman, J. Weintroub, A. E. E. Rogers, R. Plambeck, R. Freund, R. P. J. Tilanus, P. Friberg, L. M. Ziurys, J. M. Moran, B. Corey, K. H. Young, D. L. Smythe, M. Titus, D. P. Marrone, R. J. Cappallo, D. C.-J. Bock, G. C. Bower, R. Chamberlin, G. R. Davis, T. P. Krichbaum, J. Lamb, H. Maness, A. E. Niell, A. Roy, P. Strittmatter, D. Werthimer, A. R. Whitney, and D. Woody, “Event-horizon-scale structure in the supermassive black hole candidate at the Galactic Centre,” Nature 455, 78–80 (2008).
[Crossref]

Sonderhouse, L.

L. C. Sinclair, J.-D. Deschênes, L. Sonderhouse, W. C. Swann, I. H. Khader, E. Baumann, N. R. Newbury, and I. Coddington, “Invited Article: A compact optically coherent fiber frequency comb,” Rev. Sci. Instrum. 86, 081301 (2015).
[Crossref]

Staples, J. W.

Stefani, F.

O. Lopez, F. Kéfélian, H. Jiang, A. Haboucha, A. Bercy, F. Stefani, B. Chanteau, A. Kanj, D. Rovera, J. Achkar, C. Chardonnet, P.-E. Pottie, A. Amy-Klein, and G. Santarelli, “Frequency and time transfer for metrology and beyond using telecommunication network fibres,” C. R. Phys. 16, 531–539 (2015).
[Crossref]

Sterr, U.

K. Bongs, Y. Singh, L. Smith, W. He, O. Kock, D. Swierad, J. Hughes, S. Schiller, S. Alighanbari, S. Origlia, S. Vogt, U. Sterr, C. Lisdat, R. L. Targat, J. Lodewyck, D. Holleville, B. Venon, S. Bize, G. P. Barwood, P. Gill, I. R. Hill, Y. B. Ovchinnikov, N. Poli, G. M. Tino, J. Stuhler, and W. Kaenders, and the SOC2 team, “Development of a strontium optical lattice clock for the SOC mission on the ISS,” C. R. Phys. 16, 553–564 (2015).
[Crossref]

Strittmatter, P.

S. S. Doeleman, J. Weintroub, A. E. E. Rogers, R. Plambeck, R. Freund, R. P. J. Tilanus, P. Friberg, L. M. Ziurys, J. M. Moran, B. Corey, K. H. Young, D. L. Smythe, M. Titus, D. P. Marrone, R. J. Cappallo, D. C.-J. Bock, G. C. Bower, R. Chamberlin, G. R. Davis, T. P. Krichbaum, J. Lamb, H. Maness, A. E. Niell, A. Roy, P. Strittmatter, D. Werthimer, A. R. Whitney, and D. Woody, “Event-horizon-scale structure in the supermassive black hole candidate at the Galactic Centre,” Nature 455, 78–80 (2008).
[Crossref]

Stuhler, J.

K. Bongs, Y. Singh, L. Smith, W. He, O. Kock, D. Swierad, J. Hughes, S. Schiller, S. Alighanbari, S. Origlia, S. Vogt, U. Sterr, C. Lisdat, R. L. Targat, J. Lodewyck, D. Holleville, B. Venon, S. Bize, G. P. Barwood, P. Gill, I. R. Hill, Y. B. Ovchinnikov, N. Poli, G. M. Tino, J. Stuhler, and W. Kaenders, and the SOC2 team, “Development of a strontium optical lattice clock for the SOC mission on the ISS,” C. R. Phys. 16, 553–564 (2015).
[Crossref]

Sushchik, M.

M. Sushchik, N. Rulkov, L. Larson, L. Tsimring, H. Abarbanel, K. Yao, and A. Volkovskii, “Chaotic pulse position modulation: a robust method of communicating with chaos,” IEEE Commun. Lett. 4, 128–130 (2000).
[Crossref]

Swann, W. C.

L. C. Sinclair, J.-D. Deschênes, L. Sonderhouse, W. C. Swann, I. H. Khader, E. Baumann, N. R. Newbury, and I. Coddington, “Invited Article: A compact optically coherent fiber frequency comb,” Rev. Sci. Instrum. 86, 081301 (2015).
[Crossref]

F. R. Giorgetta, W. C. Swann, L. C. Sinclair, E. Baumann, I. Coddington, and N. R. Newbury, “Optical two-way time and frequency transfer over free space,” Nat. Photonics 7, 434–438 (2013).
[Crossref]

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent linear optical sampling at 15 bits of resolution,” Opt. Lett. 34, 2153–2155 (2009).
[Crossref]

N. R. Newbury, P. A. Williams, and W. C. Swann, “Coherent transfer of an optical carrier over 251 km,” Opt. Lett. 32, 3056–3058 (2007).
[Crossref]

J.-D. Deschênes, L. C. Sinclair, F. R. Giorgetta, W. C. Swann, E. Baumann, H. Bergeron, M. Cermak, I. Coddington, and N. R. Newbury, “Synchronization of distant optical clocks at the femtosecond level,” Phys. Rev. X (in press).

Swierad, D.

K. Bongs, Y. Singh, L. Smith, W. He, O. Kock, D. Swierad, J. Hughes, S. Schiller, S. Alighanbari, S. Origlia, S. Vogt, U. Sterr, C. Lisdat, R. L. Targat, J. Lodewyck, D. Holleville, B. Venon, S. Bize, G. P. Barwood, P. Gill, I. R. Hill, Y. B. Ovchinnikov, N. Poli, G. M. Tino, J. Stuhler, and W. Kaenders, and the SOC2 team, “Development of a strontium optical lattice clock for the SOC mission on the ISS,” C. R. Phys. 16, 553–564 (2015).
[Crossref]

Sydnor, R.

M. Calhoun, R. Sydnor, and W. Diener, “A stabilized 100-megahertz and 1-gigahertz reference frequency distribution for Cassini radio science,” Interplanet. Netw. Prog. Rep. 148, 1–11 (2001).

Targat, R. L.

K. Bongs, Y. Singh, L. Smith, W. He, O. Kock, D. Swierad, J. Hughes, S. Schiller, S. Alighanbari, S. Origlia, S. Vogt, U. Sterr, C. Lisdat, R. L. Targat, J. Lodewyck, D. Holleville, B. Venon, S. Bize, G. P. Barwood, P. Gill, I. R. Hill, Y. B. Ovchinnikov, N. Poli, G. M. Tino, J. Stuhler, and W. Kaenders, and the SOC2 team, “Development of a strontium optical lattice clock for the SOC mission on the ISS,” C. R. Phys. 16, 553–564 (2015).
[Crossref]

Taylor, J.

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nat. Photonics 5, 425–429 (2011).
[Crossref]

Tilanus, R. P. J.

S. S. Doeleman, J. Weintroub, A. E. E. Rogers, R. Plambeck, R. Freund, R. P. J. Tilanus, P. Friberg, L. M. Ziurys, J. M. Moran, B. Corey, K. H. Young, D. L. Smythe, M. Titus, D. P. Marrone, R. J. Cappallo, D. C.-J. Bock, G. C. Bower, R. Chamberlin, G. R. Davis, T. P. Krichbaum, J. Lamb, H. Maness, A. E. Niell, A. Roy, P. Strittmatter, D. Werthimer, A. R. Whitney, and D. Woody, “Event-horizon-scale structure in the supermassive black hole candidate at the Galactic Centre,” Nature 455, 78–80 (2008).
[Crossref]

Tino, G. M.

K. Bongs, Y. Singh, L. Smith, W. He, O. Kock, D. Swierad, J. Hughes, S. Schiller, S. Alighanbari, S. Origlia, S. Vogt, U. Sterr, C. Lisdat, R. L. Targat, J. Lodewyck, D. Holleville, B. Venon, S. Bize, G. P. Barwood, P. Gill, I. R. Hill, Y. B. Ovchinnikov, N. Poli, G. M. Tino, J. Stuhler, and W. Kaenders, and the SOC2 team, “Development of a strontium optical lattice clock for the SOC mission on the ISS,” C. R. Phys. 16, 553–564 (2015).
[Crossref]

Titus, M.

S. S. Doeleman, J. Weintroub, A. E. E. Rogers, R. Plambeck, R. Freund, R. P. J. Tilanus, P. Friberg, L. M. Ziurys, J. M. Moran, B. Corey, K. H. Young, D. L. Smythe, M. Titus, D. P. Marrone, R. J. Cappallo, D. C.-J. Bock, G. C. Bower, R. Chamberlin, G. R. Davis, T. P. Krichbaum, J. Lamb, H. Maness, A. E. Niell, A. Roy, P. Strittmatter, D. Werthimer, A. R. Whitney, and D. Woody, “Event-horizon-scale structure in the supermassive black hole candidate at the Galactic Centre,” Nature 455, 78–80 (2008).
[Crossref]

Tobar, M. E.

S. Doeleman, T. Mai, A. E. E. Rogers, J. G. Hartnett, M. E. Tobar, and N. Nand, “Adapting a cryogenic sapphire oscillator for very long baseline interferometry,” Publ. Astron. Soc. Pac. 123, 582–595 (2011).
[Crossref]

Torre, J.-M.

E. Samain, P. Exertier, P. Guillemot, F. Pierron, D. Albanese, J. Paris, J.-M. Torre, I. Petitbon, and S. Leon, “Time transfer by laser link T2L2 first results,” in Joint Meeting of the European Frequency and Time Forum (EFTF) and the IEEE International Frequency Control Symposium (FCS), Besancon, France, 2009, pp. 194–198.

Tsimring, L.

M. Sushchik, N. Rulkov, L. Larson, L. Tsimring, H. Abarbanel, K. Yao, and A. Volkovskii, “Chaotic pulse position modulation: a robust method of communicating with chaos,” IEEE Commun. Lett. 4, 128–130 (2000).
[Crossref]

Udem, T.

S. Droste, F. Ozimek, T. Udem, K. Predehl, T. W. Hänsch, H. Schnatz, G. Grosche, and R. Holzwarth, “Optical-frequency transfer over a single-span 1840 km fiber link,” Phys. Rev. Lett. 111, 110801 (2013).
[Crossref]

Venon, B.

K. Bongs, Y. Singh, L. Smith, W. He, O. Kock, D. Swierad, J. Hughes, S. Schiller, S. Alighanbari, S. Origlia, S. Vogt, U. Sterr, C. Lisdat, R. L. Targat, J. Lodewyck, D. Holleville, B. Venon, S. Bize, G. P. Barwood, P. Gill, I. R. Hill, Y. B. Ovchinnikov, N. Poli, G. M. Tino, J. Stuhler, and W. Kaenders, and the SOC2 team, “Development of a strontium optical lattice clock for the SOC mission on the ISS,” C. R. Phys. 16, 553–564 (2015).
[Crossref]

Vogt, S.

K. Bongs, Y. Singh, L. Smith, W. He, O. Kock, D. Swierad, J. Hughes, S. Schiller, S. Alighanbari, S. Origlia, S. Vogt, U. Sterr, C. Lisdat, R. L. Targat, J. Lodewyck, D. Holleville, B. Venon, S. Bize, G. P. Barwood, P. Gill, I. R. Hill, Y. B. Ovchinnikov, N. Poli, G. M. Tino, J. Stuhler, and W. Kaenders, and the SOC2 team, “Development of a strontium optical lattice clock for the SOC mission on the ISS,” C. R. Phys. 16, 553–564 (2015).
[Crossref]

Volkovskii, A.

M. Sushchik, N. Rulkov, L. Larson, L. Tsimring, H. Abarbanel, K. Yao, and A. Volkovskii, “Chaotic pulse position modulation: a robust method of communicating with chaos,” IEEE Commun. Lett. 4, 128–130 (2000).
[Crossref]

Weintroub, J.

S. S. Doeleman, J. Weintroub, A. E. E. Rogers, R. Plambeck, R. Freund, R. P. J. Tilanus, P. Friberg, L. M. Ziurys, J. M. Moran, B. Corey, K. H. Young, D. L. Smythe, M. Titus, D. P. Marrone, R. J. Cappallo, D. C.-J. Bock, G. C. Bower, R. Chamberlin, G. R. Davis, T. P. Krichbaum, J. Lamb, H. Maness, A. E. Niell, A. Roy, P. Strittmatter, D. Werthimer, A. R. Whitney, and D. Woody, “Event-horizon-scale structure in the supermassive black hole candidate at the Galactic Centre,” Nature 455, 78–80 (2008).
[Crossref]

Werthimer, D.

S. S. Doeleman, J. Weintroub, A. E. E. Rogers, R. Plambeck, R. Freund, R. P. J. Tilanus, P. Friberg, L. M. Ziurys, J. M. Moran, B. Corey, K. H. Young, D. L. Smythe, M. Titus, D. P. Marrone, R. J. Cappallo, D. C.-J. Bock, G. C. Bower, R. Chamberlin, G. R. Davis, T. P. Krichbaum, J. Lamb, H. Maness, A. E. Niell, A. Roy, P. Strittmatter, D. Werthimer, A. R. Whitney, and D. Woody, “Event-horizon-scale structure in the supermassive black hole candidate at the Galactic Centre,” Nature 455, 78–80 (2008).
[Crossref]

Whitney, A. R.

S. S. Doeleman, J. Weintroub, A. E. E. Rogers, R. Plambeck, R. Freund, R. P. J. Tilanus, P. Friberg, L. M. Ziurys, J. M. Moran, B. Corey, K. H. Young, D. L. Smythe, M. Titus, D. P. Marrone, R. J. Cappallo, D. C.-J. Bock, G. C. Bower, R. Chamberlin, G. R. Davis, T. P. Krichbaum, J. Lamb, H. Maness, A. E. Niell, A. Roy, P. Strittmatter, D. Werthimer, A. R. Whitney, and D. Woody, “Event-horizon-scale structure in the supermassive black hole candidate at the Galactic Centre,” Nature 455, 78–80 (2008).
[Crossref]

Wilcox, R.

Williams, P. A.

Wolf, P.

C. Robert, J.-M. Conan, and P. Wolf, “Impact of turbulent phase noise on frequency transfer with asymmetric two-way ground-satellite coherent optical links,” Phys. Rev. A 93, 033860 (2016).

K. Djerroud, O. Acef, A. Clairon, P. Lemonde, C. N. Man, E. Samain, and P. Wolf, “Coherent optical link through the turbulent atmosphere,” Opt. Lett. 35, 1479–1481 (2010).
[Crossref]

Woody, D.

S. S. Doeleman, J. Weintroub, A. E. E. Rogers, R. Plambeck, R. Freund, R. P. J. Tilanus, P. Friberg, L. M. Ziurys, J. M. Moran, B. Corey, K. H. Young, D. L. Smythe, M. Titus, D. P. Marrone, R. J. Cappallo, D. C.-J. Bock, G. C. Bower, R. Chamberlin, G. R. Davis, T. P. Krichbaum, J. Lamb, H. Maness, A. E. Niell, A. Roy, P. Strittmatter, D. Werthimer, A. R. Whitney, and D. Woody, “Event-horizon-scale structure in the supermassive black hole candidate at the Galactic Centre,” Nature 455, 78–80 (2008).
[Crossref]

Yan, L.

Yao, K.

M. Sushchik, N. Rulkov, L. Larson, L. Tsimring, H. Abarbanel, K. Yao, and A. Volkovskii, “Chaotic pulse position modulation: a robust method of communicating with chaos,” IEEE Commun. Lett. 4, 128–130 (2000).
[Crossref]

Ye, J.

Young, K. H.

S. S. Doeleman, J. Weintroub, A. E. E. Rogers, R. Plambeck, R. Freund, R. P. J. Tilanus, P. Friberg, L. M. Ziurys, J. M. Moran, B. Corey, K. H. Young, D. L. Smythe, M. Titus, D. P. Marrone, R. J. Cappallo, D. C.-J. Bock, G. C. Bower, R. Chamberlin, G. R. Davis, T. P. Krichbaum, J. Lamb, H. Maness, A. E. Niell, A. Roy, P. Strittmatter, D. Werthimer, A. R. Whitney, and D. Woody, “Event-horizon-scale structure in the supermassive black hole candidate at the Galactic Centre,” Nature 455, 78–80 (2008).
[Crossref]

Zhang, W.

Zhou, Q.

Ziurys, L. M.

S. S. Doeleman, J. Weintroub, A. E. E. Rogers, R. Plambeck, R. Freund, R. P. J. Tilanus, P. Friberg, L. M. Ziurys, J. M. Moran, B. Corey, K. H. Young, D. L. Smythe, M. Titus, D. P. Marrone, R. J. Cappallo, D. C.-J. Bock, G. C. Bower, R. Chamberlin, G. R. Davis, T. P. Krichbaum, J. Lamb, H. Maness, A. E. Niell, A. Roy, P. Strittmatter, D. Werthimer, A. R. Whitney, and D. Woody, “Event-horizon-scale structure in the supermassive black hole candidate at the Galactic Centre,” Nature 455, 78–80 (2008).
[Crossref]

C. R. Phys. (2)

O. Lopez, F. Kéfélian, H. Jiang, A. Haboucha, A. Bercy, F. Stefani, B. Chanteau, A. Kanj, D. Rovera, J. Achkar, C. Chardonnet, P.-E. Pottie, A. Amy-Klein, and G. Santarelli, “Frequency and time transfer for metrology and beyond using telecommunication network fibres,” C. R. Phys. 16, 531–539 (2015).
[Crossref]

K. Bongs, Y. Singh, L. Smith, W. He, O. Kock, D. Swierad, J. Hughes, S. Schiller, S. Alighanbari, S. Origlia, S. Vogt, U. Sterr, C. Lisdat, R. L. Targat, J. Lodewyck, D. Holleville, B. Venon, S. Bize, G. P. Barwood, P. Gill, I. R. Hill, Y. B. Ovchinnikov, N. Poli, G. M. Tino, J. Stuhler, and W. Kaenders, and the SOC2 team, “Development of a strontium optical lattice clock for the SOC mission on the ISS,” C. R. Phys. 16, 553–564 (2015).
[Crossref]

Electron. Lett. (1)

S. Grop, P.-Y. Bourgeois, R. Boudot, Y. Kersale, E. Rubiola, and V. Giordano, “10 GHz cryocooled sapphire oscillator with extremely low phase noise,” Electron. Lett. 46, 420–422 (2010).
[Crossref]

IEEE Commun. Lett. (1)

M. Sushchik, N. Rulkov, L. Larson, L. Tsimring, H. Abarbanel, K. Yao, and A. Volkovskii, “Chaotic pulse position modulation: a robust method of communicating with chaos,” IEEE Commun. Lett. 4, 128–130 (2000).
[Crossref]

IEEE Control Syst. (1)

J.-F. Cliche and B. Shillue, “Precision timing control for radioastronomy: maintaining femtosecond synchronization in the Atacama large millimeter array,” IEEE Control Syst. 26, 19–26 (2006).
[Crossref]

IEEE Trans. Instrum. Meas. (1)

L. Sliwczynski, P. Krehlik, L. Buczek, and M. Lipinski, “Frequency transfer in electronically stabilized fiber optic link exploiting bidirectional optical amplifiers,” IEEE Trans. Instrum. Meas. 61, 2573–2580 (2012).
[Crossref]

IEEE Trans. Microwave Theory Tech. (1)

N. R. Nand, J. G. Hartnett, E. N. Ivanov, and G. Santarelli, “Ultra-stable very-low phase-noise signal source for very long baseline interferometry using a cryocooled sapphire oscillator,” IEEE Trans. Microwave Theory Tech. 59, 2978–2986 (2011).
[Crossref]

IEEE Trans. Ultrason. Ferroelectr. Freq. Control (1)

A. Hati, C. W. Nelson, C. Barnes, D. Lirette, T. Fortier, F. Quinlan, J. A. Desalvo, A. Ludlow, S. A. Diddams, and D. A. Howe, “State-of-the-art RF signal generation from optical frequency division,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 60, 1796–1803 (2013).
[Crossref]

Interplanet. Netw. Prog. Rep. (1)

M. Calhoun, R. Sydnor, and W. Diener, “A stabilized 100-megahertz and 1-gigahertz reference frequency distribution for Cassini radio science,” Interplanet. Netw. Prog. Rep. 148, 1–11 (2001).

J. Opt. Soc. Am. (1)

Nat. Photonics (2)

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nat. Photonics 5, 425–429 (2011).
[Crossref]

F. R. Giorgetta, W. C. Swann, L. C. Sinclair, E. Baumann, I. Coddington, and N. R. Newbury, “Optical two-way time and frequency transfer over free space,” Nat. Photonics 7, 434–438 (2013).
[Crossref]

Nature (1)

S. S. Doeleman, J. Weintroub, A. E. E. Rogers, R. Plambeck, R. Freund, R. P. J. Tilanus, P. Friberg, L. M. Ziurys, J. M. Moran, B. Corey, K. H. Young, D. L. Smythe, M. Titus, D. P. Marrone, R. J. Cappallo, D. C.-J. Bock, G. C. Bower, R. Chamberlin, G. R. Davis, T. P. Krichbaum, J. Lamb, H. Maness, A. E. Niell, A. Roy, P. Strittmatter, D. Werthimer, A. R. Whitney, and D. Woody, “Event-horizon-scale structure in the supermassive black hole candidate at the Galactic Centre,” Nature 455, 78–80 (2008).
[Crossref]

New J. Phys. (1)

S. Droste, C. Grebing, J. Leute, S. M. F. Raupach, A. Matveev, T. W. Hänsch, A. Bauch, R. Holzwarth, and G. Grosche, “Characterization of a 450 km baseline GPS carrier-phase link using an optical fiber link,” New J. Phys. 17, 083044 (2015).
[Crossref]

Opt. Express (1)

Opt. Lett. (7)

Phys. Rev. A (1)

C. Robert, J.-M. Conan, and P. Wolf, “Impact of turbulent phase noise on frequency transfer with asymmetric two-way ground-satellite coherent optical links,” Phys. Rev. A 93, 033860 (2016).

Phys. Rev. Lett. (1)

S. Droste, F. Ozimek, T. Udem, K. Predehl, T. W. Hänsch, H. Schnatz, G. Grosche, and R. Holzwarth, “Optical-frequency transfer over a single-span 1840 km fiber link,” Phys. Rev. Lett. 111, 110801 (2013).
[Crossref]

Publ. Astron. Soc. Pac. (1)

S. Doeleman, T. Mai, A. E. E. Rogers, J. G. Hartnett, M. E. Tobar, and N. Nand, “Adapting a cryogenic sapphire oscillator for very long baseline interferometry,” Publ. Astron. Soc. Pac. 123, 582–595 (2011).
[Crossref]

Rev. Sci. Instrum. (1)

L. C. Sinclair, J.-D. Deschênes, L. Sonderhouse, W. C. Swann, I. H. Khader, E. Baumann, N. R. Newbury, and I. Coddington, “Invited Article: A compact optically coherent fiber frequency comb,” Rev. Sci. Instrum. 86, 081301 (2015).
[Crossref]

Trans. ASME J. Basic Eng. (1)

R. E. Kalman, “A new approach to linear filtering and prediction problems,” Trans. ASME J. Basic Eng. 82, 35–45 (1960).
[Crossref]

Other (5)

Symmetricom Model 5125A. The use of trade names is necessary to specify the experimental results and cannot imply endorsement by the National Institute of Standards and Technology.

L. C. Andrews, R. L. Phillips, and C. Y. Hopen, Laser Beam Scintillation with Applications (SPIE, 2001).

J.-D. Deschênes, L. C. Sinclair, F. R. Giorgetta, W. C. Swann, E. Baumann, H. Bergeron, M. Cermak, I. Coddington, and N. R. Newbury, “Synchronization of distant optical clocks at the femtosecond level,” Phys. Rev. X (in press).

G. Lutes and A. Kirk, “Reference frequency transmission over optical fiber,” in The Telecommunications and Data Acquisition Report (Jet Propulsion Laboratory, 1986).

E. Samain, P. Exertier, P. Guillemot, F. Pierron, D. Albanese, J. Paris, J.-M. Torre, I. Petitbon, and S. Leon, “Time transfer by laser link T2L2 first results,” in Joint Meeting of the European Frequency and Time Forum (EFTF) and the IEEE International Frequency Control Symposium (FCS), Besancon, France, 2009, pp. 194–198.

Supplementary Material (1)

NameDescription
» Supplement 1: PDF (594 KB)      Description and figure detailing stabilization architecture for the microwave clock.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. (a) Conceptual multistatic synthetic aperture radar where an array of microwave oscillators are synchronized to a single master optical oscillator; LO, local oscillator. (b) The master site’s clock is based on a laser stabilized to an optical cavity (optical oscillator). The remote site’s clock is based on a combined quartz oscillator and DRO. This remote microwave clock is tightly synchronized to the optical clock over a folded 4 km long air path via O-TWTFT. The time and the frequency outputs from each clock are compared in a separate measurement to verify femtosecond time offsets and high phase coherence of the synchronized signals.
Fig. 2.
Fig. 2. Schematic of the experimental setup. A master optical clock (blue shaded region) consists of a frequency comb phase-locked to a 195 THz cavity-stabilized laser. A remote synchronized microwave-based clock (red shaded region) consists of a frequency comb phase-locked to a 10 GHz oscillator. Each site produces a 10.037 GHz frequency output. At the master optical clock site, this 10 GHz signal corresponds to the 50th harmonic of the 200 MHz repetition rate frequency comb and is generated by optical frequency division. At the microwave clock site, it is the direct output of a quartz/DRO microwave oscillator. At both sites, the time output is defined by the arrival of the labeled optical pulses from the respective frequency combs at a common reference plane. (This step requires a separate calibration with a shorted link.) The two clocks are synchronized by a Kalman-filter-based loop filter that uses the input time offset, as measured through O-TWTFT, to steer the frequency of the DRO. DDS, direct digital synthesizer; f r , repetition frequency of the frequency comb.
Fig. 3.
Fig. 3. System operation during dropouts. (a) Schematic of the Kalman-filter-based loop filter; PI, proportional and integral. (b) Measured out-of-loop time offset (black trace), in-loop time offset measured via the O-TWTFT system (red circles), and predicted in-loop timing offset from the loop filter (orange trace). During the shaded gray regions, the received power over the single-mode link was below threshold, leading to a dropout in the measured in-loop time offset. (c) Correction applied to the frequency of the 10 GHz signal (blue trace).
Fig. 4.
Fig. 4. (a) Time offset (gated operation) between the optical and microwave clocks. (b) Link availability. (c) Turbulence strength as measured by the turbulence structure function C n 2 . All data is averaged over a 1 s window.
Fig. 5.
Fig. 5. Time deviation calculated from the measured time offset between the microwave and optical clock for gated operation (light blue curve) and for continuous operation (dark blue curve). The data for gated operation agrees with previous optical-to-optical synchronization (dashed green curve) [11] out to 100 s.
Fig. 6.
Fig. 6. Single-sideband PSD for differential phase noise of the 10 GHz outputs from the optical and microwave clocks without synchronization (purple curve), while synchronized over the 4 km link (red curve), and while synchronized over a shorted link (gray curve). The integrated phase noise is 375 μrad (6 fs) for the red curve from 100 μHz out to the synchronization bandwidth of 100 Hz. In addition, the PSD calculated from the optical time outputs is shown (in blue).
Fig. 7.
Fig. 7. Fractional instability (modified Allan deviation) of the frequency difference between the remote site and master site clocks during continuous operation for the synchronized 10 GHz microwave outputs (red trace) and for the optical time offsets (blue trace).

Metrics