Abstract

We describe a novel approach based on topology optimization that enables automatic discovery of wavelength-scale photonic structures for achieving high-efficiency second-harmonic generation (SHG). A key distinction from previous formulation and designs that seek to maximize Purcell factors at individual frequencies is that our method aims to not only achieve frequency matching (across an entire octave) and large radiative lifetimes, but also optimizes the equally important nonlinear-coupling figure of merit β¯, involving a complicated spatial overlap-integral between modes. We apply this method to the particular problem of optimizing micropost and grating-slab cavities (one-dimensional multilayered structures) and demonstrate that a variety of material platforms can support modes with the requisite frequencies, large lifetimes Q>104, small modal volumes (λ/n)3, and extremely large β¯102, leading to orders of magnitude enhancements in SHG efficiency compared to state-of-the-art photonic designs. Such giant β¯ alleviate the need for ultranarrow linewidths and thus pave the way for wavelength-scale SHG devices with faster operating timescales and higher tolerance to fabrication imperfections.

© 2016 Optical Society of America

Corrections

7 April 2016: A correction was made to the funding section.

1. INTRODUCTION

Nonlinear optical processes mediated by second-order (χ(2)) nonlinearities play a crucial role in many photonic applications, including ultrashort-pulse shaping [1,2], spectroscopy [3], generating novel states of light [46], and quantum information processing [79]. Because nonlinearities are generally weak in bulk media, a well-known approach for lowering the power requirements of devices is to enhance nonlinear interactions by employing optical resonators that confine light for long times (larger quality factors Q) in small volumes V [1019]. Microcavity resonators designed for on-chip, infrared applications offer some of the smallest confinement factors available, but their implementation in practical devices has been largely hampered by the difficult task of identifying wavelength-scale (Vλ3) structures supporting long-lived, resonant modes at widely separated wavelengths and satisfying rigid frequency-matching and mode-overlap constraints [15,20].

In this article, we extend a recently proposed formulation for the scalable topology optimization of microcavities, where every pixel of the geometry is a degree of freedom, to the problem of designing wavelength-scale photonic structures for second-harmonic generation (SHG). We apply this approach to obtain novel micropost and grating microcavity designs supporting strongly coupled fundamental and harmonic modes at infrared and visible wavelengths with relatively large lifetimes Q1,Q2>104. In contrast to recently proposed designs based on known, linear cavity structures hand tailored to maximize the Purcell factors or minimize mode volumes of individual resonances, e.g., ring resonators [17,2123] and nanobeam cavities [19,24], our designs ensure frequency matching and small confinement factors, while simultaneously maximizing the SHG enhancement factor Q12Q2|β¯|2 to yield orders of magnitude improvements in the nonlinear coupling β¯ described by Eq. (3) and determined by a special overlap integral between the modes. These particular optimizations of multilayer stacks illustrate the benefits of our formalism in an approachable and experimentally feasible setting, laying the framework for future topology optimization of 2D/3D slab structures that are sure to yield even further improvements. In what follows, although we will primarily focus on the problem of SHG as a concrete demonstration of our technique, the proposed formulation can be extended to many other problems of interest. For instance, in the area of quantum science and technology, where quantum information carried by photons needs to be communicated over long distance, our technique can be used to realize efficient quantum frequency conversion over the widest range, including that from visible to telecommunication wavelengths [25]. In fact, any nonlinear frequency conversion problem that can stand to benefit from a chip-scale nanophotonic platform can potentially benefit from this approach. Our work constitutes a new approach to nonlinear photonic design based on specially tailored aperiodic structures rather than conventional hand designs.

Most experimental demonstrations of SHG in chip-based photonic systems [16,17,23,2629] operate in the so-called small-signal regime, where the lack of pump depletion leads to the well-known quadratic scaling of harmonic output with incident power [30]. In situations involving all-resonant conversion, where confinement and long interaction times lead to strong nonlinearities and non-negligible downconversion [12,20], the maximum achievable conversion efficiency (ηP2outP1in),

ηmax=(1Q1Q1rad)(1Q2Q2rad),
occurs at a critical input power [20],
P1crit=2ω1ϵ0λ13(χeff(2))2|β¯|2Q12Q2(1Q1Q1rad)1,
where χeff(2) is the effective nonlinear susceptibility of the medium (Supplement 1), and Q=(1Qrad+1Qc)1 is the dimensionless quality factor (ignoring material absorption) incorporating radiative decay 1Qrad and coupling to an input/output channel 1Qc. The dimensionless coupling coefficient β¯ is given by a complicated, spatial-overlap integral involving the fundamental and harmonic modes (see Supplement 1 for details):
β¯=drϵ¯(r)E2*E12(drϵ1|E1|2)(drϵ2|E2|2)λ13,
where ϵ¯(r)=1 inside the nonlinear medium and zero elsewhere. Based on the above expressions, one can define the following dimensionless figures of merit:
FOM1=Q12Q2|β¯|2(1Q1Q1rad)2(1Q2Q2rad),
FOM2=(Q1rad)2Q2rad|β¯|2,
where FOM1 represents the efficiency per power, often quoted in the so-called undepleted regime of low-power conversion [30], and FOM2 represents an intrinsic upper bound that depends only on the uncoupled cavity parameters, e.g., the intrinsic radiative lifetimes Qrad. In particular, given a set of radiation loss rates, FOM1 is maximized when the modes are critically coupled, Q=Qrad2, in which case FOM1max=FOM2/64, whereas the absolute maximum occurs in the absence of radiative losses, Qrad, or equivalently, when FOM2 is maximized. From either FOM, it is clear that, apart from frequency matching and lifetime engineering, the design of optimal SHG cavities rests on achieving a large nonlinear coupling β¯.

2. OPTIMIZATION FORMULATION

Optimization techniques have been regularly employed by the photonic device community, primarily for fine-tuning the characteristics of a predetermined geometry; the majority of these techniques involve probabilistic Monte Carlo algorithms, such as particle swarms, simulated annealing, and genetic algorithms [3133]. While some of these gradient-free methods have been used to uncover a few unexpected results out of a limited number of degrees of freedom (DOFs) [34], gradient-based topology optimization methods efficiently handle a far larger design space, typically considering every pixel or voxel as a DOF in an extensive 2D or 3D computational domain, giving rise to novel topologies and geometries that might have been difficult to conceive from conventional intuition alone. The early applications of topology optimization were primarily focused on mechanical problems [35] and only recently were expanded to encompass photonic systems, though largely limited to linear devices [34,3642].

Recent work [37] considered topology optimization of the cavity Purcell factor by exploiting the concept of local density of states (LDOS). In particular, the equivalence between the LDOS and power radiated by a point dipole can be exploited to reduce Purcell-factor maximization problems to a series of small scattering calculations. Defining the objective function maxϵ¯f(ϵ¯(r);ω)=Re[drJ*·E], it follows that E can be found by solving the frequency domain Maxwell’s equations ME=iωJ, where M is the Maxwell operator (Supplement 1) and J=δ(rr0)e^j. The maximization is then performed over a discretized domain defined by the normalized dielectric function, {ϵ¯α=ϵ¯(rα),α(iΔx,jΔy,kΔz)}. A key realization in [37] is that, instead of maximizing the LDOS at a single discrete frequency ω, a better-posed problem is that of maximizing the frequency-averaged f in the vicinity of ω, denoted by f=dωW(ω;ω,Γ)f(ω), where W is some weight function defined over a specified bandwidth Γ. Using contour integration techniques, the frequency integral can be conveniently replaced by a single evaluation of f at a complex frequency ω+iΓ [37]. For a fixed Γ, the frequency average effectively forces the algorithm to favor minimizing V over maximizing Q; the latter can be enhanced over the course of the optimization by gradually winding down Γ [37]. A major merit of this formulation is that it features a mathematically well-posed objective as opposed to a direct maximization of the cavity Purcell factor QV, allowing rapid convergence into extremal solutions.

A simple extension of the optimization problem from single-mode to multimode cavities maximizes the minimum of a collection of LDOS at different frequencies, while the objective becomes: maxϵ¯αmin[LDOS(ω1),LDOS(2ω1)], which requires solving two separate scattering problems, M1E1=J1 and M2E2=J2, for the two distinct point sources J1, J2 at ω1 and ω2=2ω1, respectively. However, as discussed before, rather than maximizing the Purcell factor at individual resonances, the key to realizing optimal SHG is to maximize the overlap integral β¯ between E1 and E2, described by Eq. (3). Here, we suggest an elegant way to incorporate β¯ by coupling the two scattering problems. We consider not a point dipole but an extended source J2E12 at ω2 and optimize a single combined radiated power f=Re[drJ2*·E2] instead of two otherwise unrelated LDOS calculations. Hence, f yields precisely the β¯ parameter along with any resonant enhancement factors (Q/V) in E1 and E2. Intuitively, J2 can be thought of as a nonlinear polarization current induced by E1 in the presence of the second-order susceptibility tensor χ(2), and, in particular, is given by J2i=ϵ¯(r)jkχijk(2)E1jE1k where the indices i,j,k run over the Cartesian coordinates. In general, χijk(2) mixes polarizations, and f is a sum of different contributions from various polarization combinations. In what follows, we focus on the simplest case in which E1 and E2 have the same polarization, corresponding to a diagonal χ(2) tensor determined by a scalar χeff(2). Such an arrangement can be obtained by, for example, proper alignment of the crystal orientation axes [18,30]. With this simplification, the generalization of the linear topology-optimization problem to the case of SHG becomes

maxϵ¯αf(ϵ¯α;ω1)=Re[J2*·E2dr],M1E1=iω1J1,M2E2=iω2J2,ω2=2ω1
where
J1=δ(rαr0)e^j,j{x,y,z}J2=ϵ¯(rα)E1j2e^j,Ml=×1μ×ϵl(rα)ωl2,l=1,2ϵl(rα)=ϵm+ϵ¯α(ϵdlϵm),ϵ¯α[0,1],
and where ϵd denotes the dielectric contrast of the nonlinear medium and ϵm is that of the surrounding linear medium. Note that ϵ¯α is allowed to vary continuously between 0 and 1; intermediate values are penalized by threshold projection filters [43]. The scattering framework makes it straightforward to calculate the derivatives of f with respect to ϵ¯α via the adjoint variable method [3537]. The optimization problem can then be solved by any gradient-based algorithm, such as the method of moving asymptotes [44].

Figure 1 describes the work flow of our optimization procedure. For computational convenience, the optimization is carried out using a 2D computational cell (in the xz plane), though the resulting optimized structures are given a finite transverse extension hy (along the y direction) to make realistic 3D devices (see Fig. 3). In principle, the wider the transverse dimension, the better the cavity quality factors since they are closer to their 2D limit, which consists only of radiation loss in the z direction; however, as hy increases, β¯ decreases due to increasing mode volumes. In practice, we chose hy of the order of a few vacuum wavelengths so as not to greatly compromise either Q or β¯. We then analyze the 3D structures via rigorous finite-difference time-domain (FDTD) simulations to determine the resonant lifetimes and modal overlaps. By virtue of our optimization scheme, we invariably find that frequency matching is satisfied to within the mode linewidths.

 figure: Fig. 1.

Fig. 1. Work flow of the design process. The DOFs in our problem consist of all of the pixels along the x direction of a 2D computational domain. Starting from a vacuum or uniform-dielectric slab, the optimization seeks to develop an optimal pattern of material layers (with a fixed thickness in the z direction) that can tightly confine light at the desired frequencies while ensuring maximal spatial overlap between the confined modes. The developed 2D cross-sectional pattern is truncated at a finite width in the y direction to produce a fully 3D micropost or grating cavity that is then simulated by FDTD methods to extract the resonant frequencies, quality factors, eigenmodes, and corresponding modal overlaps. Here, it must be emphasized that we merely performed 1D optimization (within a 2D computational problem) because of limited computational resources; consequently, our design space is severely constrained.

Download Full Size | PPT Slide | PDF

3. OPTIMAL DESIGNS

Table 1 characterizes the FOMs of some of our newly discovered microcavity designs, involving simple micropost and gratings structures of various χ(2) materials, including GaAs, AlGaAs, and LiNbO3. The low-index material layers of the microposts consist of alumina (Al2O3), while gratings are embedded in either silica or air (see Supplement 1 for details). Note that, in addition to their performance characteristics, these structures significantly differ from those obtained by conventional methods in that traditional designs often involve rings [17,18], periodic structures, or tapered defects [24], which tend to ignore or sacrifice β¯ in favor of increased lifetimes, and for which it is also difficult to obtain widely separated modes [19]. Figure 2 illustrates one of the optimized structures—a doubly resonant rectangular micropost cavity with alternating AlGaAs/Al2O3 layers—along with spatial profiles of the fundamental and harmonic modes. For convenience, we consider modes with the same polarization (major field component Ey): although AlGaAs (similar to GaAs) has a non-vanishing off-diagonal tensor element χxyz(2), it can couple the Ey components of fundamental and second-harmonic modes if the crystal plane is appropriately oriented in the (111) direction [19]. The cavity designed by our approach differs from conventional microposts in that it does not consist of periodic bilayers, yet it supports two localized modes at precisely λ1=1.5μm and λ2=λ1/2. In addition to having large Qrad105 and small V(λ1/n)3, the structure exhibits an ultralarge nonlinear coupling β¯0.018 that is almost 1 order of magnitude larger than the best overlap found in the literature (see Fig. 3).

Tables Icon

Table 1. SHG Figures of Merit, Including Frequencies λ, Overall and Radiative Quality Factors Q; Qrad, and Nonlinear Coupling β Corresponding to the Fundamental and Harmonic Modes of Topology-Optimized Micropost and Grating Cavities of Different Material Systems

 figure: Fig. 2.

Fig. 2. (a) Schematic illustration of a topology-optimized micropost cavity with alternating AlGaAs/Al2O3 layers and dimensions hx×hy×hz=8.4×3.5×0.84(λ13). For structural details, please refer to Supplement 1. (b) xz cross section of the Ey components of two localized modes of frequencies λ1=1.5μm and λ2=λ1/2.

Download Full Size | PPT Slide | PDF

 figure: Fig. 3.

Fig. 3. Scatter plot of (Q1rad)2Q2rad versus nonlinear overlap |β¯|2 for representative geometries, including WGMRs [26], microring and nanoring resonators [17,18], photonic crystal slabs, and nanobeam cavities [16,19]. A trend toward decreasing lifetimes and increasing overlaps is observed as devices become increasingly smaller. Meanwhile, it remains an open problem to discover structures with high Q, small V, and large |β¯| (shaded region).

Download Full Size | PPT Slide | PDF

An interesting aspect of the optimized structures is the appearance of deeply subwavelength features 1%5% of λ1n, leading to a kind of metamaterial geometry in the optimization direction; we surmise that these arise regardless of starting conditions in order to accommodate a delicate cancellation of the out-going radiation (resulting in high Q) and constructive nonlinear overlap (large β) at the precise designated frequencies. In particular, we find that these features are not easily removable, as their absence greatly perturbs the quality factors and frequency matching. Here, it is worth mentioning that this level of structural sensitivity is typically absent in modes confined by traditional bandgap mechanisms via Bragg scattering [10]. However, to the best of our knowledge, no structure exists that possesses multiple bandgaps with strongly confined modes (Q>104) at vastly disparate frequency regimes, not to mention modes that exhibit a large nonlinear overlap. In contrast, topology optimization suggests that one needs very careful interference cancellations enabled by aperiodic arrangement and subwavelength features to simultaneously achieve precise frequency matching and optimal nonlinear overlap.

To understand the mechanism of improvement in β¯, it is instructive to consider the spatial profiles of interacting modes. Figure 2(b) plots the y components of the electric fields in the xz plane against the background structure. Since β¯ is a net total of positive and negative contributions coming from the local overlap factor E12E2 in the presence of nonlinearity, not all local contributions are useful for SHG conversion. Most notably, one observes that the positions of negative anti-nodes of E2 (light red regions) coincide with either the nodes of E1 or alumina layers (where χ(2)=0), minimizing negative contributions to the integrated overlap. In other words, improvements in β¯ do not arise purely due to tight modal confinement, but also from the constructive overlap of the modes enabled by the strategic positioning of field extrema along the structure.

From an experimental point of view, the realization of the multilayer stack is well documented in the literature [45,46]: (i) stacks of AlxGa1xAs/AlyGa1y As layers can be readily grown (metal organic chemical vapor deposition or molecular beam epitaxy), where x and y are chosen so that the layers are lattice matched and also x1 and y0; (ii) the pillar can be defined using electron beam lithography and reactive ion etching (e.g., using Cl-based chemistry); (iii) the structure is placed in the oxidation furnace: then high Al content layers (AlxGa1x As) are oxidized and turned into Al2O3 (AlOx, to be precise), whereas low Al content layers are intact. This takes advantage of the well-known fact that large Al content AlGaAs layers can be oxidized much faster than low Al content ones. Additionally, the micropost cavity can be naturally integrated with quantum dots and quantum wells for cavity QED applications [47]. Similar to other wavelength-scale structures, the operational bandwidths of these structures are limited by radiative losses in the lateral direction [10,48,49], but their ultralarge overlap factors more than compensate for the increased bandwidth, which ultimately may prove beneficial in experiments subject to fabrication imperfections and for large-bandwidth applications [1,2,6,50].

Based on the tabulated FOMs (Table 1), the efficiencies and power requirements of realistic devices can be directly calculated. For example, assuming χeff(2)(AlGaAs)100pm/V [18], the AlGaAs/Al2O3 micropost cavity (Fig. 2) yields an efficiency of P2,outP12=2.7×104/W in the undepleted regime when the modes are critically coupled, Q=Qrad2. For larger operational bandwidths, e.g., Q1=5000 and Q2=1000, we find that P2,outP12=16/W. When the system is in the depleted regime and critically coupled, we find that a maximum efficiency of 25% can be achieved at P1crit0.15mW, whereas, when assuming smaller Q1=5000 and Q2=1000, a maximum efficiency of 96% can be achieved at P1crit0.96W.

4. COMPARISON AGAINST PREVIOUS DESIGNS

Table 2 summarizes various performance characteristics, including the aforementioned FOM, for a handful of previously studied geometries with length scales spanning from millimeters to a few micrometers. Figure 3 demonstrates a trend among these geometries toward increasing β¯ and decreasing Qrad as device sizes decrease. Maximizing β¯ in millimeter-to-centimeter scale bulky media translates to the well-known problem of phase matching the momenta or propagation constants of the modes [30]. In this category, traditional whispering gallery mode resonators (WGMRs) offer a viable platform for achieving high-efficiency conversion [26]; however, their ultralarge lifetimes (critically dependent upon material-specific polishing techniques), large sizes (millimeter length scales), and extremely weak nonlinear coupling (large mode volumes) render them far from optimal chip-scale devices. Although miniature WGMRs, such as microdisk and microring resonators [17,27,29], show increased promise due to their smaller mode volumes, improvements in β¯ are still hardly sufficient for achieving high efficiencies at low powers. Ultracompact nanophotonic resonators, such as the recently proposed nanorings [18], 2D photonic crystal defects [16], and nanobeam cavities [19], possess even smaller mode volumes but prove challenging for design due to the difficulty of finding well-confined modes at both the fundamental and second-harmonic frequencies [16]. Even when two such resonances can be found by fine-tuning a limited set of geometric parameters [18,19], the frequency-matching constraint invariably leads to suboptimal spatial overlaps, which severely limits the maximal achievable β¯.

Tables Icon

Table 2. SHG Figures of Merit (see Table 1) of Representative, Hand-designed Geometries based on Bang-gap or Index-guided Confinementa

Our optimization method seeks to maximize intrinsic geometric parameters of an unloaded cavity, e.g., Qrad and β¯, whereas the loaded cavity lifetime Q depends on the choice of coupling mechanism, e.g., free-space, fiber, or waveguide coupling, and is therefore an external parameter that can be considered independently of the optimization. When evaluating the performance characteristics, such as FOM1, we assume total operational lifetimes Q1=5000,Q2=1000. In comparing Tables 1 and 2, one observes that, for a comparable Q, the topology-optimized structures perform significantly better in both FOM1 and FOM2 than any conventional geometry, with the exception of the lithium niobate (LN) gratings, whose low Qrad lead to slightly lower FOM2. Generally, the optimized microposts and gratings perform better by virtue of a large and robust β¯ which, notably, is significantly larger than that of existing designs. Here, we have not included in our comparison those structures that achieve non-negligible SHG by special poling techniques and/or quasi-phase-matching methods [29,30,51], though their performance is still suboptimal compared to the topology-optimized designs. Such methods are highly material-dependent and are thus not readily applicable to other material platforms; instead, ours is a purely geometrical topology optimization technique applicable to any material system.

5. CONCLUDING REMARKS

In conclusion, we have presented a formulation that allows for large-scale optimization of SHG. Applied to simple micropost and grating structures, our approach yields new classes of microcavities with stronger performance metrics over existing designs. One potentially challenging aspect for fabrication in the case of gratings is the presence of deeply subwavelength features, which would require difficult high-aspect-ratio etching or growth techniques. Another caveat about wavelength-scale cavities is that they are sensitive to structural perturbations near the cavity center, where most of the field resides. In our optimized structures, the FOMs are robust to within ±20nm variations (approximately one computational pixel). One possible way to constrain the optimization to ensure some minimum spatial feature and robustness is to exploit so-called regularization filters and worst-case optimization techniques [43], which we will consider in future work. However, subwavelength features and structural sensitivity should not be an issue for the micropost cavities since each material layer can be grown/deposited to a nearly arbitrary thickness with angstrom precision [47,48].

Our micropost cavities represent fundamentally new photonic designs obtained by a novel design process—arguably, they could not have been designed from intuition alone. Furthermore, the proposed optimization framework provides a natural versatile tool to tackle various challenging scenarios and exotic applications in nonlinear photonics including, for example, higher-order frequency conversion processes with more than two modes, as well as problems that require conversion of single photons and quantum states of light.

Funding

Air Force Office of Scientific Research (AFOSR) (FA9550-14-1-0389); Army Research Office through the Institute for Soldier Nanotechnologies (W911NF-13-D-0001); National Science Foundation (NSF) (DGE-1144152, DMR-1454836).

 

See Supplement 1 for supporting content.

REFERENCES

1. K. W. DeLong, R. Trebino, J. Hunter, and W. E. White, “Frequency-resolved optical gating with the use of second-harmonic generation,” J. Opt. Soc. Am. B 11, 2206–2215 (1994). [CrossRef]  

2. M. A. Arbore, A. Galvanauskas, D. Harter, M. H. Chou, and M. M. Fejer, “Engineerable compression of ultrashort pulses by use of second-harmonic generation in chirped-period-poled lithium niobate,” Opt. Lett. 22, 1341–1343 (1997). [CrossRef]  

3. T. F. Heinz, C. K. Chen, D. Ricard, and Y. R. Shen, “Spectroscopy of molecular monolayers by resonant second-harmonic generation,” Phys. Rev. Lett. 48, 478–481 (1982). [CrossRef]  

4. P. S. Kuo, K. L. Vodopyanov, M. M. Fejer, D. M. Simanovskii, X. Yu, J. S. Harris, D. Bliss, and D. Weyburne, “Optical parametric generation of a mid-infrared continuum in orientation-patterned GaAs,” Opt. Lett. 31, 71–73 (2006). [CrossRef]  

5. K. L. Vodopyanov, M. M. Fejer, X. Yu, J. S. Harris, Y.-S. Lee, W. C. Hurlbut, V. G. Kozlov, D. Bliss, and C. Lynch, “Terahertz-wave generation in quasi-phase-matched GaAs,” Appl. Phys. Lett. 89, 141119 (2006). [CrossRef]  

6. R. Krischek, W. Wieczorek, A. Ozawa, N. Kiesel, P. Michelberger, T. Udem, and H. Weinfurter, “Ultraviolet enhancement cavity for ultrafast nonlinear optics and high-rate multiphoton entanglement experiments,” Nat. Photonics 4, 170–173 (2010). [CrossRef]  

7. A. Vaziri, G. Weihs, and A. Zeilinger, “Experimental two-photon, three-dimensional entanglement for quantum communication,” Phys. Rev. Lett. 89, 240401 (2002). [CrossRef]  

8. S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, and H. Zbinden, “A photonic quantum information interface,” Nature 437, 116–120 (2005). [CrossRef]  

9. S. Zaske, A. Lenhard, C. A. Keßler, J. Kettler, C. Hepp, C. Arend, R. Albrecht, W.-M. Schulz, M. Jetter, P. Michler, and C. Becher, “Visible-to-telecom quantum frequency conversion of light from a single quantum emitter,” Phys. Rev. Lett. 109, 147404 (2012). [CrossRef]  

10. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, 2nd Ed. (Princeton University, 2008).

11. M. Soljačić, M. Ibanescu, S. G. Johnson, Y. Fink, and J. D. Joannopoulos, “Optimal bistable switching in non-linear photonic crystals,” Phys. Rev. E 66, 055601(R) (2002).

12. M. Soljacic, C. Luo, J. D. Joannopoulos, and S. Fan, “Nonlinear photonic crystal microdevices for optical integration,” Opt. Lett. 28, 637–639 (2003). [CrossRef]  

13. M. F. Yanik, S. Fan, and M. Soljacic, “High-contrast all-optical bistable switching in photonic crystal microcavities,” Appl. Phys. Lett. 83, 2739–2741 (2003). [CrossRef]  

14. M. F. Yanik, S. Fan, M. Soljačić, and J. D. Joannopoulos, “All-optical transistor action with bistable switching in a photonic crystal cross-waveguide geometry,” Opt. Lett. 28, 2506 (2004). [CrossRef]  

15. J. Bravo-Abad, A. W. Rodriguez, J. D. Joannopoulos, P. T. Rakich, S. G. Johnson, and M. Soljacic, “Efficient low-power terahertz generation via on-chip triply-resonant nonlinear frequency mixing,” Appl. Phys. Lett. 96, 101110 (2010). [CrossRef]  

16. K. Rivoire, Z. Lin, F. Hatami, W. T. Masselink, and J. Vučković, “Second harmonic generation in gallium phosphide photonic crystal nanocavities with ultralow continuous wave pump power,” Opt. Express 17, 22609–22615 (2009). [CrossRef]  

17. W. H. P. Pernice, C. Xiong, C. Schuck, and H. X. Tang, “Second harmonic generation in phase matched aluminum nitride waveguides and micro-ring resonators,” Appl. Phys. Lett. 100, 223501 (2012). [CrossRef]  

18. Z.-F. Bi, A. W. Rodriguez, H. Hashemi, D. Duchesne, M. Lončar, K.-M. Wang, and S. G. Johnson, “High-efficiency second-harmonic generation in doubly-resonant X(2) microring resonators,” Opt. Express 20, 7526–7543 (2012). [CrossRef]  

19. S. Buckley, M. Radulaski, J. L. Zhang, J. Petykiewicz, K. Biermann, and J. Vučković, “Multimode nanobeam cavities for nonlinear optics: high quality resonances separated by an octave,” Opt. Express 22, 26498–26509 (2014). [CrossRef]  

20. A. Rodriguez, M. Soljačić, J. D. Joannopoulos, and S. G. Johnson, “X(2) and X(3) harmonic generation at a critical power in inhomogeneous doubly resonant cavities,” Opt. Express 15, 7303–7318 (2007). [CrossRef]  

21. V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431, 1081–1084 (2004). [CrossRef]  

22. Q. Xu and M. Lipson, “Carrier-induced optical bistability in silicon ring resonators,” Opt. Lett. 31, 341–343 (2005). [CrossRef]  

23. J. S. Levy, M. A. Foster, A. L. Gaeta, and M. Lipson, “Harmonic generation in silicon nitride ring resonators,” Opt. Express 19, 11415–11421 (2011). [CrossRef]  

24. P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Lončar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 94, 121106 (2009). [CrossRef]  

25. Z. Lin, S. G. Johnson, A. W. Rodriguez, and M. Lončar, “Design of diamond microcavities for single photon frequency down-conversion,” Opt. Express 23, 25279–25294 (2015). [CrossRef]  

26. J. U. Fürst, D. V. Strekalov, D. Elser, M. Lassen, U. L. Andersen, C. Marquardt, and G. Leuchs, “Naturally phase-matched second-harmonic generation in a whispering-gallery-mode resonator,” Phys. Rev. Lett. 104, 153901 (2010). [CrossRef]  

27. S. Diziain, R. Geiss, M. Zilk, F. Schrempel, E.-B. Kley, A. Tunnermann, and T. Pertsch, “Second harmonic generation in free-standing lithium niobate photonic crystal l3 cavity,” Appl. Phys. Lett. 103, 051117 (2013). [CrossRef]  

28. C. Wang, M. J. Burek, Z. Lin, H. A. Atikian, V. Venkataraman, I.-C. Huang, P. Stark, and M. Lončar, “Integrated high quality factor lithium niobate microdisk resonators,” Opt. Express 22, 30924–30933 (2014). [CrossRef]  

29. P. S. Kuo, J. Bravo-Abad, and S. G. Solomon, “Second-harmonic generation using quasi-phasematching in a GaAs whispering-gallery-mode microcavity,” Nat. Commun. 5, 3109 (2014). [CrossRef]  

30. R. W. Boyd, Nonlinear Optics (Academic, 1992).

31. W. J. Kim and J. D. O’Brien, “Optimization of a two-dimensional photonic-crystal waveguide branch by simulated annealing and the finite-element method,” J. Opt. Soc. Am. B 21, 289–295 (2004). [CrossRef]  

32. B. S. Darki and N. Granpayeh, “Improving the performance of a photonic crystal ring-resonator-based channel drop filter using particle swarm optimization method,” Opt. Commun. 283, 4099–4103 (2010). [CrossRef]  

33. M. Minkov and V. Savona, “Automated optimization of photonic crystal slab cavities,” Sci. Rep. 4, 5124 (2014). [CrossRef]  

34. A. Gondarenko, S. Preble, J. Robinson, L. Chen, H. Lipson, and M. Lipson, “Spontaneous emergence of periodic patterns in a biologically inspired simulation of photonic structures,” Phys. Rev. Lett. 96, 143904 (2006). [CrossRef]  

35. M. P. Bendose and O. Sigmund, Topology Optimization (Springer, 2004).

36. J. Jensen and O. Sigmund, “Topology optimization for nano-photonics,” Laser Photon. Rev. 5, 308–321 (2011). [CrossRef]  

37. X. Liang and S. G. Johnson, “Formulation for scalable optimization of microcavities via the frequency-averaged local density of states,” Opt. Express 21, 30812–30841 (2013). [CrossRef]  

38. D. Liu, L. H. Gabrielli, M. Lipson, and S. G. Johnson, “Transformation inverse design,” Opt. Express 21, 14223–14243 (2013). [CrossRef]  

39. A. Y. Piggott, J. Lu, T. M. Babinec, K. G. Lagoudakis, J. Petykiewicz, and J. Vuckovic, “Inverse design and implementation of a wavelength demultiplexing grating coupler,” Sci. Rep. 4, 7210 (2014). [CrossRef]  

40. H. Men, K. Y. K. Lee, R. M. Freund, J. Peraire, and S. G. Johnson, “Robust topology optimization of three-dimensional photonic-crystal band-gap structures,” Opt. Express 22, 22632–22648 (2014). [CrossRef]  

41. A. Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vuckovic, “Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” Nat. Photonics 9, 374–377 (2015). [CrossRef]  

42. B. Shen, P. Wang, and R. Menon, “An integrated-nanophotonics polarization beamsplitter with 2.4 × 2.4 μm2 footprint,” Nat. Photonics 9, 378–382 (2015). [CrossRef]  

43. F. Wang, B. Lazarov, and O. Sigmund, “On projection methods, convergence and robust formulations in topology optimization,” Struct. Multidiscip. Optim. 43, 767–784 (2011). [CrossRef]  

44. K. Svanberg, “A class of globally convergent optimization methods based on conservative convex separable approximations,” SIAM J. Optim. 12, 555–573 (2002). [CrossRef]  

45. M. H. MacDougal, P. D. Dapkus, A. E. Bond, C.-K. Lin, and J. Geske, “Design and fabrication of VCSELs with AlxOy-GaAs DBRs,” IEEE J. Sel. Top. Quantum Electron. 3, 905–915 (1997). [CrossRef]  

46. M. Wu, G. Li, W. Yuen, and C. Chang-Hasnain, “Widely tunable 1.5 μm micromechanical optical filter using AlOx/AlGaAs DBR,” Electron. Lett. 33, 1702–1704 (1997). [CrossRef]  

47. M. Lermer, N. Gregersen, F. Dunzer, S. Reitzenstein, S. Hofling, J. Mork, L. Worschech, M. Kamp, and A. Forchel, “Bloch-wave engineering of quantum dot micropillars for cavity quantum electrodynamics experiments,” Phys. Rev. Lett. 108, 057402 (2012). [CrossRef]  

48. K. Vahala, Optical Microcavities (World Scientific, 2004).

49. Y. Zhang and M. Lončar, “Sub-micron diameter micropillar cavities with high quality factors and ultra-small mode volumes,” arXiv:0902.2553 (2009).

50. M. Scalora, M. J. Bloemer, A. S. Manka, J. P. Dowling, C. M. Bowden, R. Viswanathan, and J. W. Haus, “Pulsed second-harmonic generation in nonlinear, one-dimensional, periodic structures,” Phys. Rev. A 56, 3166–3174 (1997). [CrossRef]  

51. G. D. Miller, R. G. Batchko, W. M. Tulloch, D. R. Weise, M. M. Fejer, and R. L. Byer, “42%-efficient single-pass cw second-harmonic generation in periodically poled lithium niobate,” Opt. Lett. 22, 1834–1836 (1997). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. K. W. DeLong, R. Trebino, J. Hunter, and W. E. White, “Frequency-resolved optical gating with the use of second-harmonic generation,” J. Opt. Soc. Am. B 11, 2206–2215 (1994).
    [Crossref]
  2. M. A. Arbore, A. Galvanauskas, D. Harter, M. H. Chou, and M. M. Fejer, “Engineerable compression of ultrashort pulses by use of second-harmonic generation in chirped-period-poled lithium niobate,” Opt. Lett. 22, 1341–1343 (1997).
    [Crossref]
  3. T. F. Heinz, C. K. Chen, D. Ricard, and Y. R. Shen, “Spectroscopy of molecular monolayers by resonant second-harmonic generation,” Phys. Rev. Lett. 48, 478–481 (1982).
    [Crossref]
  4. P. S. Kuo, K. L. Vodopyanov, M. M. Fejer, D. M. Simanovskii, X. Yu, J. S. Harris, D. Bliss, and D. Weyburne, “Optical parametric generation of a mid-infrared continuum in orientation-patterned GaAs,” Opt. Lett. 31, 71–73 (2006).
    [Crossref]
  5. K. L. Vodopyanov, M. M. Fejer, X. Yu, J. S. Harris, Y.-S. Lee, W. C. Hurlbut, V. G. Kozlov, D. Bliss, and C. Lynch, “Terahertz-wave generation in quasi-phase-matched GaAs,” Appl. Phys. Lett. 89, 141119 (2006).
    [Crossref]
  6. R. Krischek, W. Wieczorek, A. Ozawa, N. Kiesel, P. Michelberger, T. Udem, and H. Weinfurter, “Ultraviolet enhancement cavity for ultrafast nonlinear optics and high-rate multiphoton entanglement experiments,” Nat. Photonics 4, 170–173 (2010).
    [Crossref]
  7. A. Vaziri, G. Weihs, and A. Zeilinger, “Experimental two-photon, three-dimensional entanglement for quantum communication,” Phys. Rev. Lett. 89, 240401 (2002).
    [Crossref]
  8. S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, and H. Zbinden, “A photonic quantum information interface,” Nature 437, 116–120 (2005).
    [Crossref]
  9. S. Zaske, A. Lenhard, C. A. Keßler, J. Kettler, C. Hepp, C. Arend, R. Albrecht, W.-M. Schulz, M. Jetter, P. Michler, and C. Becher, “Visible-to-telecom quantum frequency conversion of light from a single quantum emitter,” Phys. Rev. Lett. 109, 147404 (2012).
    [Crossref]
  10. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, 2nd Ed. (Princeton University, 2008).
  11. M. Soljačić, M. Ibanescu, S. G. Johnson, Y. Fink, and J. D. Joannopoulos, “Optimal bistable switching in non-linear photonic crystals,” Phys. Rev. E 66, 055601(R) (2002).
  12. M. Soljacic, C. Luo, J. D. Joannopoulos, and S. Fan, “Nonlinear photonic crystal microdevices for optical integration,” Opt. Lett. 28, 637–639 (2003).
    [Crossref]
  13. M. F. Yanik, S. Fan, and M. Soljacic, “High-contrast all-optical bistable switching in photonic crystal microcavities,” Appl. Phys. Lett. 83, 2739–2741 (2003).
    [Crossref]
  14. M. F. Yanik, S. Fan, M. Soljačić, and J. D. Joannopoulos, “All-optical transistor action with bistable switching in a photonic crystal cross-waveguide geometry,” Opt. Lett. 28, 2506 (2004).
    [Crossref]
  15. J. Bravo-Abad, A. W. Rodriguez, J. D. Joannopoulos, P. T. Rakich, S. G. Johnson, and M. Soljacic, “Efficient low-power terahertz generation via on-chip triply-resonant nonlinear frequency mixing,” Appl. Phys. Lett. 96, 101110 (2010).
    [Crossref]
  16. K. Rivoire, Z. Lin, F. Hatami, W. T. Masselink, and J. Vučković, “Second harmonic generation in gallium phosphide photonic crystal nanocavities with ultralow continuous wave pump power,” Opt. Express 17, 22609–22615 (2009).
    [Crossref]
  17. W. H. P. Pernice, C. Xiong, C. Schuck, and H. X. Tang, “Second harmonic generation in phase matched aluminum nitride waveguides and micro-ring resonators,” Appl. Phys. Lett. 100, 223501 (2012).
    [Crossref]
  18. Z.-F. Bi, A. W. Rodriguez, H. Hashemi, D. Duchesne, M. Lončar, K.-M. Wang, and S. G. Johnson, “High-efficiency second-harmonic generation in doubly-resonant X(2) microring resonators,” Opt. Express 20, 7526–7543 (2012).
    [Crossref]
  19. S. Buckley, M. Radulaski, J. L. Zhang, J. Petykiewicz, K. Biermann, and J. Vučković, “Multimode nanobeam cavities for nonlinear optics: high quality resonances separated by an octave,” Opt. Express 22, 26498–26509 (2014).
    [Crossref]
  20. A. Rodriguez, M. Soljačić, J. D. Joannopoulos, and S. G. Johnson, “X(2) and X(3) harmonic generation at a critical power in inhomogeneous doubly resonant cavities,” Opt. Express 15, 7303–7318 (2007).
    [Crossref]
  21. V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431, 1081–1084 (2004).
    [Crossref]
  22. Q. Xu and M. Lipson, “Carrier-induced optical bistability in silicon ring resonators,” Opt. Lett. 31, 341–343 (2005).
    [Crossref]
  23. J. S. Levy, M. A. Foster, A. L. Gaeta, and M. Lipson, “Harmonic generation in silicon nitride ring resonators,” Opt. Express 19, 11415–11421 (2011).
    [Crossref]
  24. P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Lončar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 94, 121106 (2009).
    [Crossref]
  25. Z. Lin, S. G. Johnson, A. W. Rodriguez, and M. Lončar, “Design of diamond microcavities for single photon frequency down-conversion,” Opt. Express 23, 25279–25294 (2015).
    [Crossref]
  26. J. U. Fürst, D. V. Strekalov, D. Elser, M. Lassen, U. L. Andersen, C. Marquardt, and G. Leuchs, “Naturally phase-matched second-harmonic generation in a whispering-gallery-mode resonator,” Phys. Rev. Lett. 104, 153901 (2010).
    [Crossref]
  27. S. Diziain, R. Geiss, M. Zilk, F. Schrempel, E.-B. Kley, A. Tunnermann, and T. Pertsch, “Second harmonic generation in free-standing lithium niobate photonic crystal l3 cavity,” Appl. Phys. Lett. 103, 051117 (2013).
    [Crossref]
  28. C. Wang, M. J. Burek, Z. Lin, H. A. Atikian, V. Venkataraman, I.-C. Huang, P. Stark, and M. Lončar, “Integrated high quality factor lithium niobate microdisk resonators,” Opt. Express 22, 30924–30933 (2014).
    [Crossref]
  29. P. S. Kuo, J. Bravo-Abad, and S. G. Solomon, “Second-harmonic generation using quasi-phasematching in a GaAs whispering-gallery-mode microcavity,” Nat. Commun. 5, 3109 (2014).
    [Crossref]
  30. R. W. Boyd, Nonlinear Optics (Academic, 1992).
  31. W. J. Kim and J. D. O’Brien, “Optimization of a two-dimensional photonic-crystal waveguide branch by simulated annealing and the finite-element method,” J. Opt. Soc. Am. B 21, 289–295 (2004).
    [Crossref]
  32. B. S. Darki and N. Granpayeh, “Improving the performance of a photonic crystal ring-resonator-based channel drop filter using particle swarm optimization method,” Opt. Commun. 283, 4099–4103 (2010).
    [Crossref]
  33. M. Minkov and V. Savona, “Automated optimization of photonic crystal slab cavities,” Sci. Rep. 4, 5124 (2014).
    [Crossref]
  34. A. Gondarenko, S. Preble, J. Robinson, L. Chen, H. Lipson, and M. Lipson, “Spontaneous emergence of periodic patterns in a biologically inspired simulation of photonic structures,” Phys. Rev. Lett. 96, 143904 (2006).
    [Crossref]
  35. M. P. Bendose and O. Sigmund, Topology Optimization (Springer, 2004).
  36. J. Jensen and O. Sigmund, “Topology optimization for nano-photonics,” Laser Photon. Rev. 5, 308–321 (2011).
    [Crossref]
  37. X. Liang and S. G. Johnson, “Formulation for scalable optimization of microcavities via the frequency-averaged local density of states,” Opt. Express 21, 30812–30841 (2013).
    [Crossref]
  38. D. Liu, L. H. Gabrielli, M. Lipson, and S. G. Johnson, “Transformation inverse design,” Opt. Express 21, 14223–14243 (2013).
    [Crossref]
  39. A. Y. Piggott, J. Lu, T. M. Babinec, K. G. Lagoudakis, J. Petykiewicz, and J. Vuckovic, “Inverse design and implementation of a wavelength demultiplexing grating coupler,” Sci. Rep. 4, 7210 (2014).
    [Crossref]
  40. H. Men, K. Y. K. Lee, R. M. Freund, J. Peraire, and S. G. Johnson, “Robust topology optimization of three-dimensional photonic-crystal band-gap structures,” Opt. Express 22, 22632–22648 (2014).
    [Crossref]
  41. A. Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vuckovic, “Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” Nat. Photonics 9, 374–377 (2015).
    [Crossref]
  42. B. Shen, P. Wang, and R. Menon, “An integrated-nanophotonics polarization beamsplitter with 2.4 × 2.4 μm2 footprint,” Nat. Photonics 9, 378–382 (2015).
    [Crossref]
  43. F. Wang, B. Lazarov, and O. Sigmund, “On projection methods, convergence and robust formulations in topology optimization,” Struct. Multidiscip. Optim. 43, 767–784 (2011).
    [Crossref]
  44. K. Svanberg, “A class of globally convergent optimization methods based on conservative convex separable approximations,” SIAM J. Optim. 12, 555–573 (2002).
    [Crossref]
  45. M. H. MacDougal, P. D. Dapkus, A. E. Bond, C.-K. Lin, and J. Geske, “Design and fabrication of VCSELs with AlxOy-GaAs DBRs,” IEEE J. Sel. Top. Quantum Electron. 3, 905–915 (1997).
    [Crossref]
  46. M. Wu, G. Li, W. Yuen, and C. Chang-Hasnain, “Widely tunable 1.5 μm micromechanical optical filter using AlOx/AlGaAs DBR,” Electron. Lett. 33, 1702–1704 (1997).
    [Crossref]
  47. M. Lermer, N. Gregersen, F. Dunzer, S. Reitzenstein, S. Hofling, J. Mork, L. Worschech, M. Kamp, and A. Forchel, “Bloch-wave engineering of quantum dot micropillars for cavity quantum electrodynamics experiments,” Phys. Rev. Lett. 108, 057402 (2012).
    [Crossref]
  48. K. Vahala, Optical Microcavities (World Scientific, 2004).
  49. Y. Zhang and M. Lončar, “Sub-micron diameter micropillar cavities with high quality factors and ultra-small mode volumes,” arXiv:0902.2553 (2009).
  50. M. Scalora, M. J. Bloemer, A. S. Manka, J. P. Dowling, C. M. Bowden, R. Viswanathan, and J. W. Haus, “Pulsed second-harmonic generation in nonlinear, one-dimensional, periodic structures,” Phys. Rev. A 56, 3166–3174 (1997).
    [Crossref]
  51. G. D. Miller, R. G. Batchko, W. M. Tulloch, D. R. Weise, M. M. Fejer, and R. L. Byer, “42%-efficient single-pass cw second-harmonic generation in periodically poled lithium niobate,” Opt. Lett. 22, 1834–1836 (1997).
    [Crossref]

2015 (3)

Z. Lin, S. G. Johnson, A. W. Rodriguez, and M. Lončar, “Design of diamond microcavities for single photon frequency down-conversion,” Opt. Express 23, 25279–25294 (2015).
[Crossref]

A. Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vuckovic, “Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” Nat. Photonics 9, 374–377 (2015).
[Crossref]

B. Shen, P. Wang, and R. Menon, “An integrated-nanophotonics polarization beamsplitter with 2.4 × 2.4 μm2 footprint,” Nat. Photonics 9, 378–382 (2015).
[Crossref]

2014 (6)

A. Y. Piggott, J. Lu, T. M. Babinec, K. G. Lagoudakis, J. Petykiewicz, and J. Vuckovic, “Inverse design and implementation of a wavelength demultiplexing grating coupler,” Sci. Rep. 4, 7210 (2014).
[Crossref]

H. Men, K. Y. K. Lee, R. M. Freund, J. Peraire, and S. G. Johnson, “Robust topology optimization of three-dimensional photonic-crystal band-gap structures,” Opt. Express 22, 22632–22648 (2014).
[Crossref]

S. Buckley, M. Radulaski, J. L. Zhang, J. Petykiewicz, K. Biermann, and J. Vučković, “Multimode nanobeam cavities for nonlinear optics: high quality resonances separated by an octave,” Opt. Express 22, 26498–26509 (2014).
[Crossref]

C. Wang, M. J. Burek, Z. Lin, H. A. Atikian, V. Venkataraman, I.-C. Huang, P. Stark, and M. Lončar, “Integrated high quality factor lithium niobate microdisk resonators,” Opt. Express 22, 30924–30933 (2014).
[Crossref]

P. S. Kuo, J. Bravo-Abad, and S. G. Solomon, “Second-harmonic generation using quasi-phasematching in a GaAs whispering-gallery-mode microcavity,” Nat. Commun. 5, 3109 (2014).
[Crossref]

M. Minkov and V. Savona, “Automated optimization of photonic crystal slab cavities,” Sci. Rep. 4, 5124 (2014).
[Crossref]

2013 (3)

2012 (4)

S. Zaske, A. Lenhard, C. A. Keßler, J. Kettler, C. Hepp, C. Arend, R. Albrecht, W.-M. Schulz, M. Jetter, P. Michler, and C. Becher, “Visible-to-telecom quantum frequency conversion of light from a single quantum emitter,” Phys. Rev. Lett. 109, 147404 (2012).
[Crossref]

W. H. P. Pernice, C. Xiong, C. Schuck, and H. X. Tang, “Second harmonic generation in phase matched aluminum nitride waveguides and micro-ring resonators,” Appl. Phys. Lett. 100, 223501 (2012).
[Crossref]

Z.-F. Bi, A. W. Rodriguez, H. Hashemi, D. Duchesne, M. Lončar, K.-M. Wang, and S. G. Johnson, “High-efficiency second-harmonic generation in doubly-resonant X(2) microring resonators,” Opt. Express 20, 7526–7543 (2012).
[Crossref]

M. Lermer, N. Gregersen, F. Dunzer, S. Reitzenstein, S. Hofling, J. Mork, L. Worschech, M. Kamp, and A. Forchel, “Bloch-wave engineering of quantum dot micropillars for cavity quantum electrodynamics experiments,” Phys. Rev. Lett. 108, 057402 (2012).
[Crossref]

2011 (3)

F. Wang, B. Lazarov, and O. Sigmund, “On projection methods, convergence and robust formulations in topology optimization,” Struct. Multidiscip. Optim. 43, 767–784 (2011).
[Crossref]

J. Jensen and O. Sigmund, “Topology optimization for nano-photonics,” Laser Photon. Rev. 5, 308–321 (2011).
[Crossref]

J. S. Levy, M. A. Foster, A. L. Gaeta, and M. Lipson, “Harmonic generation in silicon nitride ring resonators,” Opt. Express 19, 11415–11421 (2011).
[Crossref]

2010 (4)

J. U. Fürst, D. V. Strekalov, D. Elser, M. Lassen, U. L. Andersen, C. Marquardt, and G. Leuchs, “Naturally phase-matched second-harmonic generation in a whispering-gallery-mode resonator,” Phys. Rev. Lett. 104, 153901 (2010).
[Crossref]

B. S. Darki and N. Granpayeh, “Improving the performance of a photonic crystal ring-resonator-based channel drop filter using particle swarm optimization method,” Opt. Commun. 283, 4099–4103 (2010).
[Crossref]

J. Bravo-Abad, A. W. Rodriguez, J. D. Joannopoulos, P. T. Rakich, S. G. Johnson, and M. Soljacic, “Efficient low-power terahertz generation via on-chip triply-resonant nonlinear frequency mixing,” Appl. Phys. Lett. 96, 101110 (2010).
[Crossref]

R. Krischek, W. Wieczorek, A. Ozawa, N. Kiesel, P. Michelberger, T. Udem, and H. Weinfurter, “Ultraviolet enhancement cavity for ultrafast nonlinear optics and high-rate multiphoton entanglement experiments,” Nat. Photonics 4, 170–173 (2010).
[Crossref]

2009 (2)

K. Rivoire, Z. Lin, F. Hatami, W. T. Masselink, and J. Vučković, “Second harmonic generation in gallium phosphide photonic crystal nanocavities with ultralow continuous wave pump power,” Opt. Express 17, 22609–22615 (2009).
[Crossref]

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Lončar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 94, 121106 (2009).
[Crossref]

2007 (1)

2006 (3)

A. Gondarenko, S. Preble, J. Robinson, L. Chen, H. Lipson, and M. Lipson, “Spontaneous emergence of periodic patterns in a biologically inspired simulation of photonic structures,” Phys. Rev. Lett. 96, 143904 (2006).
[Crossref]

P. S. Kuo, K. L. Vodopyanov, M. M. Fejer, D. M. Simanovskii, X. Yu, J. S. Harris, D. Bliss, and D. Weyburne, “Optical parametric generation of a mid-infrared continuum in orientation-patterned GaAs,” Opt. Lett. 31, 71–73 (2006).
[Crossref]

K. L. Vodopyanov, M. M. Fejer, X. Yu, J. S. Harris, Y.-S. Lee, W. C. Hurlbut, V. G. Kozlov, D. Bliss, and C. Lynch, “Terahertz-wave generation in quasi-phase-matched GaAs,” Appl. Phys. Lett. 89, 141119 (2006).
[Crossref]

2005 (2)

S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, and H. Zbinden, “A photonic quantum information interface,” Nature 437, 116–120 (2005).
[Crossref]

Q. Xu and M. Lipson, “Carrier-induced optical bistability in silicon ring resonators,” Opt. Lett. 31, 341–343 (2005).
[Crossref]

2004 (3)

2003 (2)

M. Soljacic, C. Luo, J. D. Joannopoulos, and S. Fan, “Nonlinear photonic crystal microdevices for optical integration,” Opt. Lett. 28, 637–639 (2003).
[Crossref]

M. F. Yanik, S. Fan, and M. Soljacic, “High-contrast all-optical bistable switching in photonic crystal microcavities,” Appl. Phys. Lett. 83, 2739–2741 (2003).
[Crossref]

2002 (3)

M. Soljačić, M. Ibanescu, S. G. Johnson, Y. Fink, and J. D. Joannopoulos, “Optimal bistable switching in non-linear photonic crystals,” Phys. Rev. E 66, 055601(R) (2002).

A. Vaziri, G. Weihs, and A. Zeilinger, “Experimental two-photon, three-dimensional entanglement for quantum communication,” Phys. Rev. Lett. 89, 240401 (2002).
[Crossref]

K. Svanberg, “A class of globally convergent optimization methods based on conservative convex separable approximations,” SIAM J. Optim. 12, 555–573 (2002).
[Crossref]

1997 (5)

M. H. MacDougal, P. D. Dapkus, A. E. Bond, C.-K. Lin, and J. Geske, “Design and fabrication of VCSELs with AlxOy-GaAs DBRs,” IEEE J. Sel. Top. Quantum Electron. 3, 905–915 (1997).
[Crossref]

M. Wu, G. Li, W. Yuen, and C. Chang-Hasnain, “Widely tunable 1.5 μm micromechanical optical filter using AlOx/AlGaAs DBR,” Electron. Lett. 33, 1702–1704 (1997).
[Crossref]

M. Scalora, M. J. Bloemer, A. S. Manka, J. P. Dowling, C. M. Bowden, R. Viswanathan, and J. W. Haus, “Pulsed second-harmonic generation in nonlinear, one-dimensional, periodic structures,” Phys. Rev. A 56, 3166–3174 (1997).
[Crossref]

G. D. Miller, R. G. Batchko, W. M. Tulloch, D. R. Weise, M. M. Fejer, and R. L. Byer, “42%-efficient single-pass cw second-harmonic generation in periodically poled lithium niobate,” Opt. Lett. 22, 1834–1836 (1997).
[Crossref]

M. A. Arbore, A. Galvanauskas, D. Harter, M. H. Chou, and M. M. Fejer, “Engineerable compression of ultrashort pulses by use of second-harmonic generation in chirped-period-poled lithium niobate,” Opt. Lett. 22, 1341–1343 (1997).
[Crossref]

1994 (1)

1982 (1)

T. F. Heinz, C. K. Chen, D. Ricard, and Y. R. Shen, “Spectroscopy of molecular monolayers by resonant second-harmonic generation,” Phys. Rev. Lett. 48, 478–481 (1982).
[Crossref]

Albrecht, R.

S. Zaske, A. Lenhard, C. A. Keßler, J. Kettler, C. Hepp, C. Arend, R. Albrecht, W.-M. Schulz, M. Jetter, P. Michler, and C. Becher, “Visible-to-telecom quantum frequency conversion of light from a single quantum emitter,” Phys. Rev. Lett. 109, 147404 (2012).
[Crossref]

Alibart, O.

S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, and H. Zbinden, “A photonic quantum information interface,” Nature 437, 116–120 (2005).
[Crossref]

Almeida, V. R.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431, 1081–1084 (2004).
[Crossref]

Andersen, U. L.

J. U. Fürst, D. V. Strekalov, D. Elser, M. Lassen, U. L. Andersen, C. Marquardt, and G. Leuchs, “Naturally phase-matched second-harmonic generation in a whispering-gallery-mode resonator,” Phys. Rev. Lett. 104, 153901 (2010).
[Crossref]

Arbore, M. A.

Arend, C.

S. Zaske, A. Lenhard, C. A. Keßler, J. Kettler, C. Hepp, C. Arend, R. Albrecht, W.-M. Schulz, M. Jetter, P. Michler, and C. Becher, “Visible-to-telecom quantum frequency conversion of light from a single quantum emitter,” Phys. Rev. Lett. 109, 147404 (2012).
[Crossref]

Atikian, H. A.

Babinec, T. M.

A. Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vuckovic, “Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” Nat. Photonics 9, 374–377 (2015).
[Crossref]

A. Y. Piggott, J. Lu, T. M. Babinec, K. G. Lagoudakis, J. Petykiewicz, and J. Vuckovic, “Inverse design and implementation of a wavelength demultiplexing grating coupler,” Sci. Rep. 4, 7210 (2014).
[Crossref]

Baldi, P.

S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, and H. Zbinden, “A photonic quantum information interface,” Nature 437, 116–120 (2005).
[Crossref]

Barrios, C. A.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431, 1081–1084 (2004).
[Crossref]

Batchko, R. G.

Becher, C.

S. Zaske, A. Lenhard, C. A. Keßler, J. Kettler, C. Hepp, C. Arend, R. Albrecht, W.-M. Schulz, M. Jetter, P. Michler, and C. Becher, “Visible-to-telecom quantum frequency conversion of light from a single quantum emitter,” Phys. Rev. Lett. 109, 147404 (2012).
[Crossref]

Bendose, M. P.

M. P. Bendose and O. Sigmund, Topology Optimization (Springer, 2004).

Bi, Z.-F.

Biermann, K.

Bliss, D.

P. S. Kuo, K. L. Vodopyanov, M. M. Fejer, D. M. Simanovskii, X. Yu, J. S. Harris, D. Bliss, and D. Weyburne, “Optical parametric generation of a mid-infrared continuum in orientation-patterned GaAs,” Opt. Lett. 31, 71–73 (2006).
[Crossref]

K. L. Vodopyanov, M. M. Fejer, X. Yu, J. S. Harris, Y.-S. Lee, W. C. Hurlbut, V. G. Kozlov, D. Bliss, and C. Lynch, “Terahertz-wave generation in quasi-phase-matched GaAs,” Appl. Phys. Lett. 89, 141119 (2006).
[Crossref]

Bloemer, M. J.

M. Scalora, M. J. Bloemer, A. S. Manka, J. P. Dowling, C. M. Bowden, R. Viswanathan, and J. W. Haus, “Pulsed second-harmonic generation in nonlinear, one-dimensional, periodic structures,” Phys. Rev. A 56, 3166–3174 (1997).
[Crossref]

Bond, A. E.

M. H. MacDougal, P. D. Dapkus, A. E. Bond, C.-K. Lin, and J. Geske, “Design and fabrication of VCSELs with AlxOy-GaAs DBRs,” IEEE J. Sel. Top. Quantum Electron. 3, 905–915 (1997).
[Crossref]

Bowden, C. M.

M. Scalora, M. J. Bloemer, A. S. Manka, J. P. Dowling, C. M. Bowden, R. Viswanathan, and J. W. Haus, “Pulsed second-harmonic generation in nonlinear, one-dimensional, periodic structures,” Phys. Rev. A 56, 3166–3174 (1997).
[Crossref]

Boyd, R. W.

R. W. Boyd, Nonlinear Optics (Academic, 1992).

Bravo-Abad, J.

P. S. Kuo, J. Bravo-Abad, and S. G. Solomon, “Second-harmonic generation using quasi-phasematching in a GaAs whispering-gallery-mode microcavity,” Nat. Commun. 5, 3109 (2014).
[Crossref]

J. Bravo-Abad, A. W. Rodriguez, J. D. Joannopoulos, P. T. Rakich, S. G. Johnson, and M. Soljacic, “Efficient low-power terahertz generation via on-chip triply-resonant nonlinear frequency mixing,” Appl. Phys. Lett. 96, 101110 (2010).
[Crossref]

Buckley, S.

Burek, M. J.

Byer, R. L.

Chang-Hasnain, C.

M. Wu, G. Li, W. Yuen, and C. Chang-Hasnain, “Widely tunable 1.5 μm micromechanical optical filter using AlOx/AlGaAs DBR,” Electron. Lett. 33, 1702–1704 (1997).
[Crossref]

Chen, C. K.

T. F. Heinz, C. K. Chen, D. Ricard, and Y. R. Shen, “Spectroscopy of molecular monolayers by resonant second-harmonic generation,” Phys. Rev. Lett. 48, 478–481 (1982).
[Crossref]

Chen, L.

A. Gondarenko, S. Preble, J. Robinson, L. Chen, H. Lipson, and M. Lipson, “Spontaneous emergence of periodic patterns in a biologically inspired simulation of photonic structures,” Phys. Rev. Lett. 96, 143904 (2006).
[Crossref]

Chou, M. H.

Dapkus, P. D.

M. H. MacDougal, P. D. Dapkus, A. E. Bond, C.-K. Lin, and J. Geske, “Design and fabrication of VCSELs with AlxOy-GaAs DBRs,” IEEE J. Sel. Top. Quantum Electron. 3, 905–915 (1997).
[Crossref]

Darki, B. S.

B. S. Darki and N. Granpayeh, “Improving the performance of a photonic crystal ring-resonator-based channel drop filter using particle swarm optimization method,” Opt. Commun. 283, 4099–4103 (2010).
[Crossref]

DeLong, K. W.

Deotare, P. B.

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Lončar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 94, 121106 (2009).
[Crossref]

Diziain, S.

S. Diziain, R. Geiss, M. Zilk, F. Schrempel, E.-B. Kley, A. Tunnermann, and T. Pertsch, “Second harmonic generation in free-standing lithium niobate photonic crystal l3 cavity,” Appl. Phys. Lett. 103, 051117 (2013).
[Crossref]

Dowling, J. P.

M. Scalora, M. J. Bloemer, A. S. Manka, J. P. Dowling, C. M. Bowden, R. Viswanathan, and J. W. Haus, “Pulsed second-harmonic generation in nonlinear, one-dimensional, periodic structures,” Phys. Rev. A 56, 3166–3174 (1997).
[Crossref]

Duchesne, D.

Dunzer, F.

M. Lermer, N. Gregersen, F. Dunzer, S. Reitzenstein, S. Hofling, J. Mork, L. Worschech, M. Kamp, and A. Forchel, “Bloch-wave engineering of quantum dot micropillars for cavity quantum electrodynamics experiments,” Phys. Rev. Lett. 108, 057402 (2012).
[Crossref]

Elser, D.

J. U. Fürst, D. V. Strekalov, D. Elser, M. Lassen, U. L. Andersen, C. Marquardt, and G. Leuchs, “Naturally phase-matched second-harmonic generation in a whispering-gallery-mode resonator,” Phys. Rev. Lett. 104, 153901 (2010).
[Crossref]

Fan, S.

Fejer, M. M.

Fink, Y.

M. Soljačić, M. Ibanescu, S. G. Johnson, Y. Fink, and J. D. Joannopoulos, “Optimal bistable switching in non-linear photonic crystals,” Phys. Rev. E 66, 055601(R) (2002).

Forchel, A.

M. Lermer, N. Gregersen, F. Dunzer, S. Reitzenstein, S. Hofling, J. Mork, L. Worschech, M. Kamp, and A. Forchel, “Bloch-wave engineering of quantum dot micropillars for cavity quantum electrodynamics experiments,” Phys. Rev. Lett. 108, 057402 (2012).
[Crossref]

Foster, M. A.

Frank, I. W.

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Lončar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 94, 121106 (2009).
[Crossref]

Freund, R. M.

Fürst, J. U.

J. U. Fürst, D. V. Strekalov, D. Elser, M. Lassen, U. L. Andersen, C. Marquardt, and G. Leuchs, “Naturally phase-matched second-harmonic generation in a whispering-gallery-mode resonator,” Phys. Rev. Lett. 104, 153901 (2010).
[Crossref]

Gabrielli, L. H.

Gaeta, A. L.

Galvanauskas, A.

Geiss, R.

S. Diziain, R. Geiss, M. Zilk, F. Schrempel, E.-B. Kley, A. Tunnermann, and T. Pertsch, “Second harmonic generation in free-standing lithium niobate photonic crystal l3 cavity,” Appl. Phys. Lett. 103, 051117 (2013).
[Crossref]

Geske, J.

M. H. MacDougal, P. D. Dapkus, A. E. Bond, C.-K. Lin, and J. Geske, “Design and fabrication of VCSELs with AlxOy-GaAs DBRs,” IEEE J. Sel. Top. Quantum Electron. 3, 905–915 (1997).
[Crossref]

Gisin, N.

S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, and H. Zbinden, “A photonic quantum information interface,” Nature 437, 116–120 (2005).
[Crossref]

Gondarenko, A.

A. Gondarenko, S. Preble, J. Robinson, L. Chen, H. Lipson, and M. Lipson, “Spontaneous emergence of periodic patterns in a biologically inspired simulation of photonic structures,” Phys. Rev. Lett. 96, 143904 (2006).
[Crossref]

Granpayeh, N.

B. S. Darki and N. Granpayeh, “Improving the performance of a photonic crystal ring-resonator-based channel drop filter using particle swarm optimization method,” Opt. Commun. 283, 4099–4103 (2010).
[Crossref]

Gregersen, N.

M. Lermer, N. Gregersen, F. Dunzer, S. Reitzenstein, S. Hofling, J. Mork, L. Worschech, M. Kamp, and A. Forchel, “Bloch-wave engineering of quantum dot micropillars for cavity quantum electrodynamics experiments,” Phys. Rev. Lett. 108, 057402 (2012).
[Crossref]

Halder, M.

S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, and H. Zbinden, “A photonic quantum information interface,” Nature 437, 116–120 (2005).
[Crossref]

Harris, J. S.

P. S. Kuo, K. L. Vodopyanov, M. M. Fejer, D. M. Simanovskii, X. Yu, J. S. Harris, D. Bliss, and D. Weyburne, “Optical parametric generation of a mid-infrared continuum in orientation-patterned GaAs,” Opt. Lett. 31, 71–73 (2006).
[Crossref]

K. L. Vodopyanov, M. M. Fejer, X. Yu, J. S. Harris, Y.-S. Lee, W. C. Hurlbut, V. G. Kozlov, D. Bliss, and C. Lynch, “Terahertz-wave generation in quasi-phase-matched GaAs,” Appl. Phys. Lett. 89, 141119 (2006).
[Crossref]

Harter, D.

Hashemi, H.

Hatami, F.

Haus, J. W.

M. Scalora, M. J. Bloemer, A. S. Manka, J. P. Dowling, C. M. Bowden, R. Viswanathan, and J. W. Haus, “Pulsed second-harmonic generation in nonlinear, one-dimensional, periodic structures,” Phys. Rev. A 56, 3166–3174 (1997).
[Crossref]

Heinz, T. F.

T. F. Heinz, C. K. Chen, D. Ricard, and Y. R. Shen, “Spectroscopy of molecular monolayers by resonant second-harmonic generation,” Phys. Rev. Lett. 48, 478–481 (1982).
[Crossref]

Hepp, C.

S. Zaske, A. Lenhard, C. A. Keßler, J. Kettler, C. Hepp, C. Arend, R. Albrecht, W.-M. Schulz, M. Jetter, P. Michler, and C. Becher, “Visible-to-telecom quantum frequency conversion of light from a single quantum emitter,” Phys. Rev. Lett. 109, 147404 (2012).
[Crossref]

Hofling, S.

M. Lermer, N. Gregersen, F. Dunzer, S. Reitzenstein, S. Hofling, J. Mork, L. Worschech, M. Kamp, and A. Forchel, “Bloch-wave engineering of quantum dot micropillars for cavity quantum electrodynamics experiments,” Phys. Rev. Lett. 108, 057402 (2012).
[Crossref]

Huang, I.-C.

Hunter, J.

Hurlbut, W. C.

K. L. Vodopyanov, M. M. Fejer, X. Yu, J. S. Harris, Y.-S. Lee, W. C. Hurlbut, V. G. Kozlov, D. Bliss, and C. Lynch, “Terahertz-wave generation in quasi-phase-matched GaAs,” Appl. Phys. Lett. 89, 141119 (2006).
[Crossref]

Ibanescu, M.

M. Soljačić, M. Ibanescu, S. G. Johnson, Y. Fink, and J. D. Joannopoulos, “Optimal bistable switching in non-linear photonic crystals,” Phys. Rev. E 66, 055601(R) (2002).

Jensen, J.

J. Jensen and O. Sigmund, “Topology optimization for nano-photonics,” Laser Photon. Rev. 5, 308–321 (2011).
[Crossref]

Jetter, M.

S. Zaske, A. Lenhard, C. A. Keßler, J. Kettler, C. Hepp, C. Arend, R. Albrecht, W.-M. Schulz, M. Jetter, P. Michler, and C. Becher, “Visible-to-telecom quantum frequency conversion of light from a single quantum emitter,” Phys. Rev. Lett. 109, 147404 (2012).
[Crossref]

Joannopoulos, J. D.

J. Bravo-Abad, A. W. Rodriguez, J. D. Joannopoulos, P. T. Rakich, S. G. Johnson, and M. Soljacic, “Efficient low-power terahertz generation via on-chip triply-resonant nonlinear frequency mixing,” Appl. Phys. Lett. 96, 101110 (2010).
[Crossref]

A. Rodriguez, M. Soljačić, J. D. Joannopoulos, and S. G. Johnson, “X(2) and X(3) harmonic generation at a critical power in inhomogeneous doubly resonant cavities,” Opt. Express 15, 7303–7318 (2007).
[Crossref]

M. F. Yanik, S. Fan, M. Soljačić, and J. D. Joannopoulos, “All-optical transistor action with bistable switching in a photonic crystal cross-waveguide geometry,” Opt. Lett. 28, 2506 (2004).
[Crossref]

M. Soljacic, C. Luo, J. D. Joannopoulos, and S. Fan, “Nonlinear photonic crystal microdevices for optical integration,” Opt. Lett. 28, 637–639 (2003).
[Crossref]

M. Soljačić, M. Ibanescu, S. G. Johnson, Y. Fink, and J. D. Joannopoulos, “Optimal bistable switching in non-linear photonic crystals,” Phys. Rev. E 66, 055601(R) (2002).

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, 2nd Ed. (Princeton University, 2008).

Johnson, S. G.

Z. Lin, S. G. Johnson, A. W. Rodriguez, and M. Lončar, “Design of diamond microcavities for single photon frequency down-conversion,” Opt. Express 23, 25279–25294 (2015).
[Crossref]

H. Men, K. Y. K. Lee, R. M. Freund, J. Peraire, and S. G. Johnson, “Robust topology optimization of three-dimensional photonic-crystal band-gap structures,” Opt. Express 22, 22632–22648 (2014).
[Crossref]

X. Liang and S. G. Johnson, “Formulation for scalable optimization of microcavities via the frequency-averaged local density of states,” Opt. Express 21, 30812–30841 (2013).
[Crossref]

D. Liu, L. H. Gabrielli, M. Lipson, and S. G. Johnson, “Transformation inverse design,” Opt. Express 21, 14223–14243 (2013).
[Crossref]

Z.-F. Bi, A. W. Rodriguez, H. Hashemi, D. Duchesne, M. Lončar, K.-M. Wang, and S. G. Johnson, “High-efficiency second-harmonic generation in doubly-resonant X(2) microring resonators,” Opt. Express 20, 7526–7543 (2012).
[Crossref]

J. Bravo-Abad, A. W. Rodriguez, J. D. Joannopoulos, P. T. Rakich, S. G. Johnson, and M. Soljacic, “Efficient low-power terahertz generation via on-chip triply-resonant nonlinear frequency mixing,” Appl. Phys. Lett. 96, 101110 (2010).
[Crossref]

A. Rodriguez, M. Soljačić, J. D. Joannopoulos, and S. G. Johnson, “X(2) and X(3) harmonic generation at a critical power in inhomogeneous doubly resonant cavities,” Opt. Express 15, 7303–7318 (2007).
[Crossref]

M. Soljačić, M. Ibanescu, S. G. Johnson, Y. Fink, and J. D. Joannopoulos, “Optimal bistable switching in non-linear photonic crystals,” Phys. Rev. E 66, 055601(R) (2002).

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, 2nd Ed. (Princeton University, 2008).

Kamp, M.

M. Lermer, N. Gregersen, F. Dunzer, S. Reitzenstein, S. Hofling, J. Mork, L. Worschech, M. Kamp, and A. Forchel, “Bloch-wave engineering of quantum dot micropillars for cavity quantum electrodynamics experiments,” Phys. Rev. Lett. 108, 057402 (2012).
[Crossref]

Keßler, C. A.

S. Zaske, A. Lenhard, C. A. Keßler, J. Kettler, C. Hepp, C. Arend, R. Albrecht, W.-M. Schulz, M. Jetter, P. Michler, and C. Becher, “Visible-to-telecom quantum frequency conversion of light from a single quantum emitter,” Phys. Rev. Lett. 109, 147404 (2012).
[Crossref]

Kettler, J.

S. Zaske, A. Lenhard, C. A. Keßler, J. Kettler, C. Hepp, C. Arend, R. Albrecht, W.-M. Schulz, M. Jetter, P. Michler, and C. Becher, “Visible-to-telecom quantum frequency conversion of light from a single quantum emitter,” Phys. Rev. Lett. 109, 147404 (2012).
[Crossref]

Khan, M.

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Lončar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 94, 121106 (2009).
[Crossref]

Kiesel, N.

R. Krischek, W. Wieczorek, A. Ozawa, N. Kiesel, P. Michelberger, T. Udem, and H. Weinfurter, “Ultraviolet enhancement cavity for ultrafast nonlinear optics and high-rate multiphoton entanglement experiments,” Nat. Photonics 4, 170–173 (2010).
[Crossref]

Kim, W. J.

Kley, E.-B.

S. Diziain, R. Geiss, M. Zilk, F. Schrempel, E.-B. Kley, A. Tunnermann, and T. Pertsch, “Second harmonic generation in free-standing lithium niobate photonic crystal l3 cavity,” Appl. Phys. Lett. 103, 051117 (2013).
[Crossref]

Kozlov, V. G.

K. L. Vodopyanov, M. M. Fejer, X. Yu, J. S. Harris, Y.-S. Lee, W. C. Hurlbut, V. G. Kozlov, D. Bliss, and C. Lynch, “Terahertz-wave generation in quasi-phase-matched GaAs,” Appl. Phys. Lett. 89, 141119 (2006).
[Crossref]

Krischek, R.

R. Krischek, W. Wieczorek, A. Ozawa, N. Kiesel, P. Michelberger, T. Udem, and H. Weinfurter, “Ultraviolet enhancement cavity for ultrafast nonlinear optics and high-rate multiphoton entanglement experiments,” Nat. Photonics 4, 170–173 (2010).
[Crossref]

Kuo, P. S.

P. S. Kuo, J. Bravo-Abad, and S. G. Solomon, “Second-harmonic generation using quasi-phasematching in a GaAs whispering-gallery-mode microcavity,” Nat. Commun. 5, 3109 (2014).
[Crossref]

P. S. Kuo, K. L. Vodopyanov, M. M. Fejer, D. M. Simanovskii, X. Yu, J. S. Harris, D. Bliss, and D. Weyburne, “Optical parametric generation of a mid-infrared continuum in orientation-patterned GaAs,” Opt. Lett. 31, 71–73 (2006).
[Crossref]

Lagoudakis, K. G.

A. Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vuckovic, “Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” Nat. Photonics 9, 374–377 (2015).
[Crossref]

A. Y. Piggott, J. Lu, T. M. Babinec, K. G. Lagoudakis, J. Petykiewicz, and J. Vuckovic, “Inverse design and implementation of a wavelength demultiplexing grating coupler,” Sci. Rep. 4, 7210 (2014).
[Crossref]

Lassen, M.

J. U. Fürst, D. V. Strekalov, D. Elser, M. Lassen, U. L. Andersen, C. Marquardt, and G. Leuchs, “Naturally phase-matched second-harmonic generation in a whispering-gallery-mode resonator,” Phys. Rev. Lett. 104, 153901 (2010).
[Crossref]

Lazarov, B.

F. Wang, B. Lazarov, and O. Sigmund, “On projection methods, convergence and robust formulations in topology optimization,” Struct. Multidiscip. Optim. 43, 767–784 (2011).
[Crossref]

Lee, K. Y. K.

Lee, Y.-S.

K. L. Vodopyanov, M. M. Fejer, X. Yu, J. S. Harris, Y.-S. Lee, W. C. Hurlbut, V. G. Kozlov, D. Bliss, and C. Lynch, “Terahertz-wave generation in quasi-phase-matched GaAs,” Appl. Phys. Lett. 89, 141119 (2006).
[Crossref]

Lenhard, A.

S. Zaske, A. Lenhard, C. A. Keßler, J. Kettler, C. Hepp, C. Arend, R. Albrecht, W.-M. Schulz, M. Jetter, P. Michler, and C. Becher, “Visible-to-telecom quantum frequency conversion of light from a single quantum emitter,” Phys. Rev. Lett. 109, 147404 (2012).
[Crossref]

Lermer, M.

M. Lermer, N. Gregersen, F. Dunzer, S. Reitzenstein, S. Hofling, J. Mork, L. Worschech, M. Kamp, and A. Forchel, “Bloch-wave engineering of quantum dot micropillars for cavity quantum electrodynamics experiments,” Phys. Rev. Lett. 108, 057402 (2012).
[Crossref]

Leuchs, G.

J. U. Fürst, D. V. Strekalov, D. Elser, M. Lassen, U. L. Andersen, C. Marquardt, and G. Leuchs, “Naturally phase-matched second-harmonic generation in a whispering-gallery-mode resonator,” Phys. Rev. Lett. 104, 153901 (2010).
[Crossref]

Levy, J. S.

Li, G.

M. Wu, G. Li, W. Yuen, and C. Chang-Hasnain, “Widely tunable 1.5 μm micromechanical optical filter using AlOx/AlGaAs DBR,” Electron. Lett. 33, 1702–1704 (1997).
[Crossref]

Liang, X.

Lin, C.-K.

M. H. MacDougal, P. D. Dapkus, A. E. Bond, C.-K. Lin, and J. Geske, “Design and fabrication of VCSELs with AlxOy-GaAs DBRs,” IEEE J. Sel. Top. Quantum Electron. 3, 905–915 (1997).
[Crossref]

Lin, Z.

Lipson, H.

A. Gondarenko, S. Preble, J. Robinson, L. Chen, H. Lipson, and M. Lipson, “Spontaneous emergence of periodic patterns in a biologically inspired simulation of photonic structures,” Phys. Rev. Lett. 96, 143904 (2006).
[Crossref]

Lipson, M.

D. Liu, L. H. Gabrielli, M. Lipson, and S. G. Johnson, “Transformation inverse design,” Opt. Express 21, 14223–14243 (2013).
[Crossref]

J. S. Levy, M. A. Foster, A. L. Gaeta, and M. Lipson, “Harmonic generation in silicon nitride ring resonators,” Opt. Express 19, 11415–11421 (2011).
[Crossref]

A. Gondarenko, S. Preble, J. Robinson, L. Chen, H. Lipson, and M. Lipson, “Spontaneous emergence of periodic patterns in a biologically inspired simulation of photonic structures,” Phys. Rev. Lett. 96, 143904 (2006).
[Crossref]

Q. Xu and M. Lipson, “Carrier-induced optical bistability in silicon ring resonators,” Opt. Lett. 31, 341–343 (2005).
[Crossref]

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431, 1081–1084 (2004).
[Crossref]

Liu, D.

Loncar, M.

Lu, J.

A. Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vuckovic, “Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” Nat. Photonics 9, 374–377 (2015).
[Crossref]

A. Y. Piggott, J. Lu, T. M. Babinec, K. G. Lagoudakis, J. Petykiewicz, and J. Vuckovic, “Inverse design and implementation of a wavelength demultiplexing grating coupler,” Sci. Rep. 4, 7210 (2014).
[Crossref]

Luo, C.

Lynch, C.

K. L. Vodopyanov, M. M. Fejer, X. Yu, J. S. Harris, Y.-S. Lee, W. C. Hurlbut, V. G. Kozlov, D. Bliss, and C. Lynch, “Terahertz-wave generation in quasi-phase-matched GaAs,” Appl. Phys. Lett. 89, 141119 (2006).
[Crossref]

MacDougal, M. H.

M. H. MacDougal, P. D. Dapkus, A. E. Bond, C.-K. Lin, and J. Geske, “Design and fabrication of VCSELs with AlxOy-GaAs DBRs,” IEEE J. Sel. Top. Quantum Electron. 3, 905–915 (1997).
[Crossref]

Manka, A. S.

M. Scalora, M. J. Bloemer, A. S. Manka, J. P. Dowling, C. M. Bowden, R. Viswanathan, and J. W. Haus, “Pulsed second-harmonic generation in nonlinear, one-dimensional, periodic structures,” Phys. Rev. A 56, 3166–3174 (1997).
[Crossref]

Marquardt, C.

J. U. Fürst, D. V. Strekalov, D. Elser, M. Lassen, U. L. Andersen, C. Marquardt, and G. Leuchs, “Naturally phase-matched second-harmonic generation in a whispering-gallery-mode resonator,” Phys. Rev. Lett. 104, 153901 (2010).
[Crossref]

Masselink, W. T.

McCutcheon, M. W.

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Lončar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 94, 121106 (2009).
[Crossref]

Meade, R. D.

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, 2nd Ed. (Princeton University, 2008).

Men, H.

Menon, R.

B. Shen, P. Wang, and R. Menon, “An integrated-nanophotonics polarization beamsplitter with 2.4 × 2.4 μm2 footprint,” Nat. Photonics 9, 378–382 (2015).
[Crossref]

Michelberger, P.

R. Krischek, W. Wieczorek, A. Ozawa, N. Kiesel, P. Michelberger, T. Udem, and H. Weinfurter, “Ultraviolet enhancement cavity for ultrafast nonlinear optics and high-rate multiphoton entanglement experiments,” Nat. Photonics 4, 170–173 (2010).
[Crossref]

Michler, P.

S. Zaske, A. Lenhard, C. A. Keßler, J. Kettler, C. Hepp, C. Arend, R. Albrecht, W.-M. Schulz, M. Jetter, P. Michler, and C. Becher, “Visible-to-telecom quantum frequency conversion of light from a single quantum emitter,” Phys. Rev. Lett. 109, 147404 (2012).
[Crossref]

Miller, G. D.

Minkov, M.

M. Minkov and V. Savona, “Automated optimization of photonic crystal slab cavities,” Sci. Rep. 4, 5124 (2014).
[Crossref]

Mork, J.

M. Lermer, N. Gregersen, F. Dunzer, S. Reitzenstein, S. Hofling, J. Mork, L. Worschech, M. Kamp, and A. Forchel, “Bloch-wave engineering of quantum dot micropillars for cavity quantum electrodynamics experiments,” Phys. Rev. Lett. 108, 057402 (2012).
[Crossref]

O’Brien, J. D.

Ozawa, A.

R. Krischek, W. Wieczorek, A. Ozawa, N. Kiesel, P. Michelberger, T. Udem, and H. Weinfurter, “Ultraviolet enhancement cavity for ultrafast nonlinear optics and high-rate multiphoton entanglement experiments,” Nat. Photonics 4, 170–173 (2010).
[Crossref]

Panepucci, R. R.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431, 1081–1084 (2004).
[Crossref]

Peraire, J.

Pernice, W. H. P.

W. H. P. Pernice, C. Xiong, C. Schuck, and H. X. Tang, “Second harmonic generation in phase matched aluminum nitride waveguides and micro-ring resonators,” Appl. Phys. Lett. 100, 223501 (2012).
[Crossref]

Pertsch, T.

S. Diziain, R. Geiss, M. Zilk, F. Schrempel, E.-B. Kley, A. Tunnermann, and T. Pertsch, “Second harmonic generation in free-standing lithium niobate photonic crystal l3 cavity,” Appl. Phys. Lett. 103, 051117 (2013).
[Crossref]

Petykiewicz, J.

A. Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vuckovic, “Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” Nat. Photonics 9, 374–377 (2015).
[Crossref]

A. Y. Piggott, J. Lu, T. M. Babinec, K. G. Lagoudakis, J. Petykiewicz, and J. Vuckovic, “Inverse design and implementation of a wavelength demultiplexing grating coupler,” Sci. Rep. 4, 7210 (2014).
[Crossref]

S. Buckley, M. Radulaski, J. L. Zhang, J. Petykiewicz, K. Biermann, and J. Vučković, “Multimode nanobeam cavities for nonlinear optics: high quality resonances separated by an octave,” Opt. Express 22, 26498–26509 (2014).
[Crossref]

Piggott, A. Y.

A. Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vuckovic, “Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” Nat. Photonics 9, 374–377 (2015).
[Crossref]

A. Y. Piggott, J. Lu, T. M. Babinec, K. G. Lagoudakis, J. Petykiewicz, and J. Vuckovic, “Inverse design and implementation of a wavelength demultiplexing grating coupler,” Sci. Rep. 4, 7210 (2014).
[Crossref]

Preble, S.

A. Gondarenko, S. Preble, J. Robinson, L. Chen, H. Lipson, and M. Lipson, “Spontaneous emergence of periodic patterns in a biologically inspired simulation of photonic structures,” Phys. Rev. Lett. 96, 143904 (2006).
[Crossref]

Radulaski, M.

Rakich, P. T.

J. Bravo-Abad, A. W. Rodriguez, J. D. Joannopoulos, P. T. Rakich, S. G. Johnson, and M. Soljacic, “Efficient low-power terahertz generation via on-chip triply-resonant nonlinear frequency mixing,” Appl. Phys. Lett. 96, 101110 (2010).
[Crossref]

Reitzenstein, S.

M. Lermer, N. Gregersen, F. Dunzer, S. Reitzenstein, S. Hofling, J. Mork, L. Worschech, M. Kamp, and A. Forchel, “Bloch-wave engineering of quantum dot micropillars for cavity quantum electrodynamics experiments,” Phys. Rev. Lett. 108, 057402 (2012).
[Crossref]

Ricard, D.

T. F. Heinz, C. K. Chen, D. Ricard, and Y. R. Shen, “Spectroscopy of molecular monolayers by resonant second-harmonic generation,” Phys. Rev. Lett. 48, 478–481 (1982).
[Crossref]

Rivoire, K.

Robinson, J.

A. Gondarenko, S. Preble, J. Robinson, L. Chen, H. Lipson, and M. Lipson, “Spontaneous emergence of periodic patterns in a biologically inspired simulation of photonic structures,” Phys. Rev. Lett. 96, 143904 (2006).
[Crossref]

Rodriguez, A.

Rodriguez, A. W.

Savona, V.

M. Minkov and V. Savona, “Automated optimization of photonic crystal slab cavities,” Sci. Rep. 4, 5124 (2014).
[Crossref]

Scalora, M.

M. Scalora, M. J. Bloemer, A. S. Manka, J. P. Dowling, C. M. Bowden, R. Viswanathan, and J. W. Haus, “Pulsed second-harmonic generation in nonlinear, one-dimensional, periodic structures,” Phys. Rev. A 56, 3166–3174 (1997).
[Crossref]

Schrempel, F.

S. Diziain, R. Geiss, M. Zilk, F. Schrempel, E.-B. Kley, A. Tunnermann, and T. Pertsch, “Second harmonic generation in free-standing lithium niobate photonic crystal l3 cavity,” Appl. Phys. Lett. 103, 051117 (2013).
[Crossref]

Schuck, C.

W. H. P. Pernice, C. Xiong, C. Schuck, and H. X. Tang, “Second harmonic generation in phase matched aluminum nitride waveguides and micro-ring resonators,” Appl. Phys. Lett. 100, 223501 (2012).
[Crossref]

Schulz, W.-M.

S. Zaske, A. Lenhard, C. A. Keßler, J. Kettler, C. Hepp, C. Arend, R. Albrecht, W.-M. Schulz, M. Jetter, P. Michler, and C. Becher, “Visible-to-telecom quantum frequency conversion of light from a single quantum emitter,” Phys. Rev. Lett. 109, 147404 (2012).
[Crossref]

Shen, B.

B. Shen, P. Wang, and R. Menon, “An integrated-nanophotonics polarization beamsplitter with 2.4 × 2.4 μm2 footprint,” Nat. Photonics 9, 378–382 (2015).
[Crossref]

Shen, Y. R.

T. F. Heinz, C. K. Chen, D. Ricard, and Y. R. Shen, “Spectroscopy of molecular monolayers by resonant second-harmonic generation,” Phys. Rev. Lett. 48, 478–481 (1982).
[Crossref]

Sigmund, O.

F. Wang, B. Lazarov, and O. Sigmund, “On projection methods, convergence and robust formulations in topology optimization,” Struct. Multidiscip. Optim. 43, 767–784 (2011).
[Crossref]

J. Jensen and O. Sigmund, “Topology optimization for nano-photonics,” Laser Photon. Rev. 5, 308–321 (2011).
[Crossref]

M. P. Bendose and O. Sigmund, Topology Optimization (Springer, 2004).

Simanovskii, D. M.

Soljacic, M.

J. Bravo-Abad, A. W. Rodriguez, J. D. Joannopoulos, P. T. Rakich, S. G. Johnson, and M. Soljacic, “Efficient low-power terahertz generation via on-chip triply-resonant nonlinear frequency mixing,” Appl. Phys. Lett. 96, 101110 (2010).
[Crossref]

A. Rodriguez, M. Soljačić, J. D. Joannopoulos, and S. G. Johnson, “X(2) and X(3) harmonic generation at a critical power in inhomogeneous doubly resonant cavities,” Opt. Express 15, 7303–7318 (2007).
[Crossref]

M. F. Yanik, S. Fan, M. Soljačić, and J. D. Joannopoulos, “All-optical transistor action with bistable switching in a photonic crystal cross-waveguide geometry,” Opt. Lett. 28, 2506 (2004).
[Crossref]

M. F. Yanik, S. Fan, and M. Soljacic, “High-contrast all-optical bistable switching in photonic crystal microcavities,” Appl. Phys. Lett. 83, 2739–2741 (2003).
[Crossref]

M. Soljacic, C. Luo, J. D. Joannopoulos, and S. Fan, “Nonlinear photonic crystal microdevices for optical integration,” Opt. Lett. 28, 637–639 (2003).
[Crossref]

M. Soljačić, M. Ibanescu, S. G. Johnson, Y. Fink, and J. D. Joannopoulos, “Optimal bistable switching in non-linear photonic crystals,” Phys. Rev. E 66, 055601(R) (2002).

Solomon, S. G.

P. S. Kuo, J. Bravo-Abad, and S. G. Solomon, “Second-harmonic generation using quasi-phasematching in a GaAs whispering-gallery-mode microcavity,” Nat. Commun. 5, 3109 (2014).
[Crossref]

Stark, P.

Strekalov, D. V.

J. U. Fürst, D. V. Strekalov, D. Elser, M. Lassen, U. L. Andersen, C. Marquardt, and G. Leuchs, “Naturally phase-matched second-harmonic generation in a whispering-gallery-mode resonator,” Phys. Rev. Lett. 104, 153901 (2010).
[Crossref]

Svanberg, K.

K. Svanberg, “A class of globally convergent optimization methods based on conservative convex separable approximations,” SIAM J. Optim. 12, 555–573 (2002).
[Crossref]

Tang, H. X.

W. H. P. Pernice, C. Xiong, C. Schuck, and H. X. Tang, “Second harmonic generation in phase matched aluminum nitride waveguides and micro-ring resonators,” Appl. Phys. Lett. 100, 223501 (2012).
[Crossref]

Tanzilli, S.

S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, and H. Zbinden, “A photonic quantum information interface,” Nature 437, 116–120 (2005).
[Crossref]

Tittel, W.

S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, and H. Zbinden, “A photonic quantum information interface,” Nature 437, 116–120 (2005).
[Crossref]

Trebino, R.

Tulloch, W. M.

Tunnermann, A.

S. Diziain, R. Geiss, M. Zilk, F. Schrempel, E.-B. Kley, A. Tunnermann, and T. Pertsch, “Second harmonic generation in free-standing lithium niobate photonic crystal l3 cavity,” Appl. Phys. Lett. 103, 051117 (2013).
[Crossref]

Udem, T.

R. Krischek, W. Wieczorek, A. Ozawa, N. Kiesel, P. Michelberger, T. Udem, and H. Weinfurter, “Ultraviolet enhancement cavity for ultrafast nonlinear optics and high-rate multiphoton entanglement experiments,” Nat. Photonics 4, 170–173 (2010).
[Crossref]

Vahala, K.

K. Vahala, Optical Microcavities (World Scientific, 2004).

Vaziri, A.

A. Vaziri, G. Weihs, and A. Zeilinger, “Experimental two-photon, three-dimensional entanglement for quantum communication,” Phys. Rev. Lett. 89, 240401 (2002).
[Crossref]

Venkataraman, V.

Viswanathan, R.

M. Scalora, M. J. Bloemer, A. S. Manka, J. P. Dowling, C. M. Bowden, R. Viswanathan, and J. W. Haus, “Pulsed second-harmonic generation in nonlinear, one-dimensional, periodic structures,” Phys. Rev. A 56, 3166–3174 (1997).
[Crossref]

Vodopyanov, K. L.

K. L. Vodopyanov, M. M. Fejer, X. Yu, J. S. Harris, Y.-S. Lee, W. C. Hurlbut, V. G. Kozlov, D. Bliss, and C. Lynch, “Terahertz-wave generation in quasi-phase-matched GaAs,” Appl. Phys. Lett. 89, 141119 (2006).
[Crossref]

P. S. Kuo, K. L. Vodopyanov, M. M. Fejer, D. M. Simanovskii, X. Yu, J. S. Harris, D. Bliss, and D. Weyburne, “Optical parametric generation of a mid-infrared continuum in orientation-patterned GaAs,” Opt. Lett. 31, 71–73 (2006).
[Crossref]

Vuckovic, J.

A. Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vuckovic, “Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” Nat. Photonics 9, 374–377 (2015).
[Crossref]

A. Y. Piggott, J. Lu, T. M. Babinec, K. G. Lagoudakis, J. Petykiewicz, and J. Vuckovic, “Inverse design and implementation of a wavelength demultiplexing grating coupler,” Sci. Rep. 4, 7210 (2014).
[Crossref]

S. Buckley, M. Radulaski, J. L. Zhang, J. Petykiewicz, K. Biermann, and J. Vučković, “Multimode nanobeam cavities for nonlinear optics: high quality resonances separated by an octave,” Opt. Express 22, 26498–26509 (2014).
[Crossref]

K. Rivoire, Z. Lin, F. Hatami, W. T. Masselink, and J. Vučković, “Second harmonic generation in gallium phosphide photonic crystal nanocavities with ultralow continuous wave pump power,” Opt. Express 17, 22609–22615 (2009).
[Crossref]

Wang, C.

Wang, F.

F. Wang, B. Lazarov, and O. Sigmund, “On projection methods, convergence and robust formulations in topology optimization,” Struct. Multidiscip. Optim. 43, 767–784 (2011).
[Crossref]

Wang, K.-M.

Wang, P.

B. Shen, P. Wang, and R. Menon, “An integrated-nanophotonics polarization beamsplitter with 2.4 × 2.4 μm2 footprint,” Nat. Photonics 9, 378–382 (2015).
[Crossref]

Weihs, G.

A. Vaziri, G. Weihs, and A. Zeilinger, “Experimental two-photon, three-dimensional entanglement for quantum communication,” Phys. Rev. Lett. 89, 240401 (2002).
[Crossref]

Weinfurter, H.

R. Krischek, W. Wieczorek, A. Ozawa, N. Kiesel, P. Michelberger, T. Udem, and H. Weinfurter, “Ultraviolet enhancement cavity for ultrafast nonlinear optics and high-rate multiphoton entanglement experiments,” Nat. Photonics 4, 170–173 (2010).
[Crossref]

Weise, D. R.

Weyburne, D.

White, W. E.

Wieczorek, W.

R. Krischek, W. Wieczorek, A. Ozawa, N. Kiesel, P. Michelberger, T. Udem, and H. Weinfurter, “Ultraviolet enhancement cavity for ultrafast nonlinear optics and high-rate multiphoton entanglement experiments,” Nat. Photonics 4, 170–173 (2010).
[Crossref]

Winn, J. N.

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, 2nd Ed. (Princeton University, 2008).

Worschech, L.

M. Lermer, N. Gregersen, F. Dunzer, S. Reitzenstein, S. Hofling, J. Mork, L. Worschech, M. Kamp, and A. Forchel, “Bloch-wave engineering of quantum dot micropillars for cavity quantum electrodynamics experiments,” Phys. Rev. Lett. 108, 057402 (2012).
[Crossref]

Wu, M.

M. Wu, G. Li, W. Yuen, and C. Chang-Hasnain, “Widely tunable 1.5 μm micromechanical optical filter using AlOx/AlGaAs DBR,” Electron. Lett. 33, 1702–1704 (1997).
[Crossref]

Xiong, C.

W. H. P. Pernice, C. Xiong, C. Schuck, and H. X. Tang, “Second harmonic generation in phase matched aluminum nitride waveguides and micro-ring resonators,” Appl. Phys. Lett. 100, 223501 (2012).
[Crossref]

Xu, Q.

Yanik, M. F.

M. F. Yanik, S. Fan, M. Soljačić, and J. D. Joannopoulos, “All-optical transistor action with bistable switching in a photonic crystal cross-waveguide geometry,” Opt. Lett. 28, 2506 (2004).
[Crossref]

M. F. Yanik, S. Fan, and M. Soljacic, “High-contrast all-optical bistable switching in photonic crystal microcavities,” Appl. Phys. Lett. 83, 2739–2741 (2003).
[Crossref]

Yu, X.

K. L. Vodopyanov, M. M. Fejer, X. Yu, J. S. Harris, Y.-S. Lee, W. C. Hurlbut, V. G. Kozlov, D. Bliss, and C. Lynch, “Terahertz-wave generation in quasi-phase-matched GaAs,” Appl. Phys. Lett. 89, 141119 (2006).
[Crossref]

P. S. Kuo, K. L. Vodopyanov, M. M. Fejer, D. M. Simanovskii, X. Yu, J. S. Harris, D. Bliss, and D. Weyburne, “Optical parametric generation of a mid-infrared continuum in orientation-patterned GaAs,” Opt. Lett. 31, 71–73 (2006).
[Crossref]

Yuen, W.

M. Wu, G. Li, W. Yuen, and C. Chang-Hasnain, “Widely tunable 1.5 μm micromechanical optical filter using AlOx/AlGaAs DBR,” Electron. Lett. 33, 1702–1704 (1997).
[Crossref]

Zaske, S.

S. Zaske, A. Lenhard, C. A. Keßler, J. Kettler, C. Hepp, C. Arend, R. Albrecht, W.-M. Schulz, M. Jetter, P. Michler, and C. Becher, “Visible-to-telecom quantum frequency conversion of light from a single quantum emitter,” Phys. Rev. Lett. 109, 147404 (2012).
[Crossref]

Zbinden, H.

S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, and H. Zbinden, “A photonic quantum information interface,” Nature 437, 116–120 (2005).
[Crossref]

Zeilinger, A.

A. Vaziri, G. Weihs, and A. Zeilinger, “Experimental two-photon, three-dimensional entanglement for quantum communication,” Phys. Rev. Lett. 89, 240401 (2002).
[Crossref]

Zhang, J. L.

Zhang, Y.

Y. Zhang and M. Lončar, “Sub-micron diameter micropillar cavities with high quality factors and ultra-small mode volumes,” arXiv:0902.2553 (2009).

Zilk, M.

S. Diziain, R. Geiss, M. Zilk, F. Schrempel, E.-B. Kley, A. Tunnermann, and T. Pertsch, “Second harmonic generation in free-standing lithium niobate photonic crystal l3 cavity,” Appl. Phys. Lett. 103, 051117 (2013).
[Crossref]

Appl. Phys. Lett. (6)

K. L. Vodopyanov, M. M. Fejer, X. Yu, J. S. Harris, Y.-S. Lee, W. C. Hurlbut, V. G. Kozlov, D. Bliss, and C. Lynch, “Terahertz-wave generation in quasi-phase-matched GaAs,” Appl. Phys. Lett. 89, 141119 (2006).
[Crossref]

M. F. Yanik, S. Fan, and M. Soljacic, “High-contrast all-optical bistable switching in photonic crystal microcavities,” Appl. Phys. Lett. 83, 2739–2741 (2003).
[Crossref]

J. Bravo-Abad, A. W. Rodriguez, J. D. Joannopoulos, P. T. Rakich, S. G. Johnson, and M. Soljacic, “Efficient low-power terahertz generation via on-chip triply-resonant nonlinear frequency mixing,” Appl. Phys. Lett. 96, 101110 (2010).
[Crossref]

W. H. P. Pernice, C. Xiong, C. Schuck, and H. X. Tang, “Second harmonic generation in phase matched aluminum nitride waveguides and micro-ring resonators,” Appl. Phys. Lett. 100, 223501 (2012).
[Crossref]

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Lončar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 94, 121106 (2009).
[Crossref]

S. Diziain, R. Geiss, M. Zilk, F. Schrempel, E.-B. Kley, A. Tunnermann, and T. Pertsch, “Second harmonic generation in free-standing lithium niobate photonic crystal l3 cavity,” Appl. Phys. Lett. 103, 051117 (2013).
[Crossref]

Electron. Lett. (1)

M. Wu, G. Li, W. Yuen, and C. Chang-Hasnain, “Widely tunable 1.5 μm micromechanical optical filter using AlOx/AlGaAs DBR,” Electron. Lett. 33, 1702–1704 (1997).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

M. H. MacDougal, P. D. Dapkus, A. E. Bond, C.-K. Lin, and J. Geske, “Design and fabrication of VCSELs with AlxOy-GaAs DBRs,” IEEE J. Sel. Top. Quantum Electron. 3, 905–915 (1997).
[Crossref]

J. Opt. Soc. Am. B (2)

Laser Photon. Rev. (1)

J. Jensen and O. Sigmund, “Topology optimization for nano-photonics,” Laser Photon. Rev. 5, 308–321 (2011).
[Crossref]

Nat. Commun. (1)

P. S. Kuo, J. Bravo-Abad, and S. G. Solomon, “Second-harmonic generation using quasi-phasematching in a GaAs whispering-gallery-mode microcavity,” Nat. Commun. 5, 3109 (2014).
[Crossref]

Nat. Photonics (3)

R. Krischek, W. Wieczorek, A. Ozawa, N. Kiesel, P. Michelberger, T. Udem, and H. Weinfurter, “Ultraviolet enhancement cavity for ultrafast nonlinear optics and high-rate multiphoton entanglement experiments,” Nat. Photonics 4, 170–173 (2010).
[Crossref]

A. Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vuckovic, “Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” Nat. Photonics 9, 374–377 (2015).
[Crossref]

B. Shen, P. Wang, and R. Menon, “An integrated-nanophotonics polarization beamsplitter with 2.4 × 2.4 μm2 footprint,” Nat. Photonics 9, 378–382 (2015).
[Crossref]

Nature (2)

S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, and H. Zbinden, “A photonic quantum information interface,” Nature 437, 116–120 (2005).
[Crossref]

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431, 1081–1084 (2004).
[Crossref]

Opt. Commun. (1)

B. S. Darki and N. Granpayeh, “Improving the performance of a photonic crystal ring-resonator-based channel drop filter using particle swarm optimization method,” Opt. Commun. 283, 4099–4103 (2010).
[Crossref]

Opt. Express (10)

X. Liang and S. G. Johnson, “Formulation for scalable optimization of microcavities via the frequency-averaged local density of states,” Opt. Express 21, 30812–30841 (2013).
[Crossref]

D. Liu, L. H. Gabrielli, M. Lipson, and S. G. Johnson, “Transformation inverse design,” Opt. Express 21, 14223–14243 (2013).
[Crossref]

J. S. Levy, M. A. Foster, A. L. Gaeta, and M. Lipson, “Harmonic generation in silicon nitride ring resonators,” Opt. Express 19, 11415–11421 (2011).
[Crossref]

C. Wang, M. J. Burek, Z. Lin, H. A. Atikian, V. Venkataraman, I.-C. Huang, P. Stark, and M. Lončar, “Integrated high quality factor lithium niobate microdisk resonators,” Opt. Express 22, 30924–30933 (2014).
[Crossref]

Z. Lin, S. G. Johnson, A. W. Rodriguez, and M. Lončar, “Design of diamond microcavities for single photon frequency down-conversion,” Opt. Express 23, 25279–25294 (2015).
[Crossref]

Z.-F. Bi, A. W. Rodriguez, H. Hashemi, D. Duchesne, M. Lončar, K.-M. Wang, and S. G. Johnson, “High-efficiency second-harmonic generation in doubly-resonant X(2) microring resonators,” Opt. Express 20, 7526–7543 (2012).
[Crossref]

S. Buckley, M. Radulaski, J. L. Zhang, J. Petykiewicz, K. Biermann, and J. Vučković, “Multimode nanobeam cavities for nonlinear optics: high quality resonances separated by an octave,” Opt. Express 22, 26498–26509 (2014).
[Crossref]

A. Rodriguez, M. Soljačić, J. D. Joannopoulos, and S. G. Johnson, “X(2) and X(3) harmonic generation at a critical power in inhomogeneous doubly resonant cavities,” Opt. Express 15, 7303–7318 (2007).
[Crossref]

K. Rivoire, Z. Lin, F. Hatami, W. T. Masselink, and J. Vučković, “Second harmonic generation in gallium phosphide photonic crystal nanocavities with ultralow continuous wave pump power,” Opt. Express 17, 22609–22615 (2009).
[Crossref]

H. Men, K. Y. K. Lee, R. M. Freund, J. Peraire, and S. G. Johnson, “Robust topology optimization of three-dimensional photonic-crystal band-gap structures,” Opt. Express 22, 22632–22648 (2014).
[Crossref]

Opt. Lett. (6)

Phys. Rev. A (1)

M. Scalora, M. J. Bloemer, A. S. Manka, J. P. Dowling, C. M. Bowden, R. Viswanathan, and J. W. Haus, “Pulsed second-harmonic generation in nonlinear, one-dimensional, periodic structures,” Phys. Rev. A 56, 3166–3174 (1997).
[Crossref]

Phys. Rev. E (1)

M. Soljačić, M. Ibanescu, S. G. Johnson, Y. Fink, and J. D. Joannopoulos, “Optimal bistable switching in non-linear photonic crystals,” Phys. Rev. E 66, 055601(R) (2002).

Phys. Rev. Lett. (6)

S. Zaske, A. Lenhard, C. A. Keßler, J. Kettler, C. Hepp, C. Arend, R. Albrecht, W.-M. Schulz, M. Jetter, P. Michler, and C. Becher, “Visible-to-telecom quantum frequency conversion of light from a single quantum emitter,” Phys. Rev. Lett. 109, 147404 (2012).
[Crossref]

T. F. Heinz, C. K. Chen, D. Ricard, and Y. R. Shen, “Spectroscopy of molecular monolayers by resonant second-harmonic generation,” Phys. Rev. Lett. 48, 478–481 (1982).
[Crossref]

A. Vaziri, G. Weihs, and A. Zeilinger, “Experimental two-photon, three-dimensional entanglement for quantum communication,” Phys. Rev. Lett. 89, 240401 (2002).
[Crossref]

J. U. Fürst, D. V. Strekalov, D. Elser, M. Lassen, U. L. Andersen, C. Marquardt, and G. Leuchs, “Naturally phase-matched second-harmonic generation in a whispering-gallery-mode resonator,” Phys. Rev. Lett. 104, 153901 (2010).
[Crossref]

A. Gondarenko, S. Preble, J. Robinson, L. Chen, H. Lipson, and M. Lipson, “Spontaneous emergence of periodic patterns in a biologically inspired simulation of photonic structures,” Phys. Rev. Lett. 96, 143904 (2006).
[Crossref]

M. Lermer, N. Gregersen, F. Dunzer, S. Reitzenstein, S. Hofling, J. Mork, L. Worschech, M. Kamp, and A. Forchel, “Bloch-wave engineering of quantum dot micropillars for cavity quantum electrodynamics experiments,” Phys. Rev. Lett. 108, 057402 (2012).
[Crossref]

Sci. Rep. (2)

A. Y. Piggott, J. Lu, T. M. Babinec, K. G. Lagoudakis, J. Petykiewicz, and J. Vuckovic, “Inverse design and implementation of a wavelength demultiplexing grating coupler,” Sci. Rep. 4, 7210 (2014).
[Crossref]

M. Minkov and V. Savona, “Automated optimization of photonic crystal slab cavities,” Sci. Rep. 4, 5124 (2014).
[Crossref]

SIAM J. Optim. (1)

K. Svanberg, “A class of globally convergent optimization methods based on conservative convex separable approximations,” SIAM J. Optim. 12, 555–573 (2002).
[Crossref]

Struct. Multidiscip. Optim. (1)

F. Wang, B. Lazarov, and O. Sigmund, “On projection methods, convergence and robust formulations in topology optimization,” Struct. Multidiscip. Optim. 43, 767–784 (2011).
[Crossref]

Other (5)

M. P. Bendose and O. Sigmund, Topology Optimization (Springer, 2004).

K. Vahala, Optical Microcavities (World Scientific, 2004).

Y. Zhang and M. Lončar, “Sub-micron diameter micropillar cavities with high quality factors and ultra-small mode volumes,” arXiv:0902.2553 (2009).

R. W. Boyd, Nonlinear Optics (Academic, 1992).

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, 2nd Ed. (Princeton University, 2008).

Supplementary Material (1)

NameDescription
» Supplement 1: PDF (1084 KB)      Supplemental Document

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1. Work flow of the design process. The DOFs in our problem consist of all of the pixels along the x direction of a 2D computational domain. Starting from a vacuum or uniform-dielectric slab, the optimization seeks to develop an optimal pattern of material layers (with a fixed thickness in the z direction) that can tightly confine light at the desired frequencies while ensuring maximal spatial overlap between the confined modes. The developed 2D cross-sectional pattern is truncated at a finite width in the y direction to produce a fully 3D micropost or grating cavity that is then simulated by FDTD methods to extract the resonant frequencies, quality factors, eigenmodes, and corresponding modal overlaps. Here, it must be emphasized that we merely performed 1D optimization (within a 2D computational problem) because of limited computational resources; consequently, our design space is severely constrained.
Fig. 2.
Fig. 2. (a) Schematic illustration of a topology-optimized micropost cavity with alternating AlGaAs / Al 2 O 3 layers and dimensions h x × h y × h z = 8.4 × 3.5 × 0.84 ( λ 1 3 ) . For structural details, please refer to Supplement 1. (b)  x z cross section of the E y components of two localized modes of frequencies λ 1 = 1.5 μm and λ 2 = λ 1 / 2 .
Fig. 3.
Fig. 3. Scatter plot of ( Q 1 rad ) 2 Q 2 rad versus nonlinear overlap | β ¯ | 2 for representative geometries, including WGMRs [26], microring and nanoring resonators [17,18], photonic crystal slabs, and nanobeam cavities [16,19]. A trend toward decreasing lifetimes and increasing overlaps is observed as devices become increasingly smaller. Meanwhile, it remains an open problem to discover structures with high Q , small V , and large | β ¯ | (shaded region).

Tables (2)

Tables Icon

Table 1. SHG Figures of Merit, Including Frequencies λ , Overall and Radiative Quality Factors Q ; Q r a d , and Nonlinear Coupling β Corresponding to the Fundamental and Harmonic Modes of Topology-Optimized Micropost and Grating Cavities of Different Material Systems

Tables Icon

Table 2. SHG Figures of Merit (see Table 1) of Representative, Hand-designed Geometries based on Bang-gap or Index-guided Confinementa

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

η max = ( 1 Q 1 Q 1 rad ) ( 1 Q 2 Q 2 rad ) ,
P 1 crit = 2 ω 1 ϵ 0 λ 1 3 ( χ eff ( 2 ) ) 2 | β ¯ | 2 Q 1 2 Q 2 ( 1 Q 1 Q 1 rad ) 1 ,
β ¯ = d r ϵ ¯ ( r ) E 2 * E 1 2 ( d r ϵ 1 | E 1 | 2 ) ( d r ϵ 2 | E 2 | 2 ) λ 1 3 ,
FOM 1 = Q 1 2 Q 2 | β ¯ | 2 ( 1 Q 1 Q 1 rad ) 2 ( 1 Q 2 Q 2 rad ) ,
FOM 2 = ( Q 1 rad ) 2 Q 2 rad | β ¯ | 2 ,
max ϵ ¯ α f ( ϵ ¯ α ; ω 1 ) = Re [ J 2 * · E 2 d r ] , M 1 E 1 = i ω 1 J 1 , M 2 E 2 = i ω 2 J 2 , ω 2 = 2 ω 1
J 1 = δ ( r α r 0 ) e ^ j , j { x , y , z } J 2 = ϵ ¯ ( r α ) E 1 j 2 e ^ j , M l = × 1 μ × ϵ l ( r α ) ω l 2 , l = 1,2 ϵ l ( r α ) = ϵ m + ϵ ¯ α ( ϵ d l ϵ m ) , ϵ ¯ α [ 0,1 ] ,

Metrics