Abstract

Nanoplasmonic antennas are well established for focusing light from the far field into subwavelength-sized dimensions, while simultaneously increasing strongly the local electromagnetic field—an important ingredient for boosting nonlinear optical effects. Here, we study both the optical and structural properties of gold bowtie nanoantennas under illumination with femtosecond laser pulses and observe a pronounced metamorphism of the antennas, while the upconverted incoherent nonlinear emission increases simultaneously. Scanning electron microscopy images recorded before and after illumination show a clear modification of the antenna feedgap, accompanied by an 100× increase of the nonlinear signal. This is caused by laser-induced electromigration of gold nanoparticles, a process that is feedgap-size-dependent, self-limiting, and irreversible. Moreover, it is identified as the root cause for the strong enhancement of the nonlinear conversion efficiency by a factor of 4×106 as compared with an unpatterned gold film. By experimentally quantifying the electric field enhancement inside the nanoantenna feedgap to be >2000×, we demonstrate consistency with the observed enhancement of the nonlinear signal. Complete switching off of the nonlinear response of such metamorphic nanoantennas with a degree of polarization >99% indicates their potential for novel, nonlinear all-optical devices. Furthermore, we envision the controlled, laser-induced modification of plasmonic nanoantennas may provide a promising route to realize antennas with even higher field enhancements and, moreover, might enable deterministic quantum plasmonic experiments that require sub-nanometer-sized feedgaps.

© 2016 Optical Society of America

1. INTRODUCTION

Plasmonic nanostructures [1] have gained much interest due to their nano-focusing capability [2], accompanied by local electric field enhancements 103× [3], which significantly enhance nonlinear optical effects [4]. Although nonlinear light conversion can already be achieved using bulk materials, plasmonic nanoparticles facilitate new regimes of light–matter interaction [510] due to downscaling to sub-10-nm dimensions, while the strong field localization relaxes phase-matching requirements [11]. Furthermore, the ultrafast response times of plasmonic antennas [12] make them highly attractive for novel nano-optical devices, such as all-optical switches [4,13,14] or frequency converters [15]. Numerous nonlinear effects, such as second- [8,9,16,17], third- [18,19], and higher- [20] harmonic generation, multi-photon luminescence [6,8,2124], and frequency mixing [25] have been demonstrated using various plasmonic nanostructures. Although nanoparticle dimers provide stronger maximum electromagnetic energy confinement compared to single particles, the nonlinear light conversion efficiencies remain relatively weak due to the relatively low electric field penetration into the metals [26].

In this paper, we investigate the enhanced nonlinear light upconversion of lithographically defined, metamorphic gold (Au) bowtie nanoantennas in both experiment and simulation. We observe a self-optimization behavior when exciting the antennas with 100 fs near-infrared optical pulses, resulting in a progressive enhancement of the nonlinear two-photon photoluminescence (TPPL) generation [6,8,2123,27] by factors of up to 100×. We attribute this enhancement to a combination of laser-induced electromigration [28] of Au nanoparticles into the feedgap and nanoparticle re-shaping [2931], and support this conclusion using both experiment and numerical simulations. We demonstrate that this self-optimization process is self-limiting, permanent, and strongly feedgap-size dependent. Moreover, we measure an enhancement of the nonlinear conversion efficiency by β4·106× as compared to a planar Au film, corresponding to an electromagnetic intensity enhancement inside the antenna feedgap of η>2000×. This effect can be completely switched off via control of the excitation polarization. Besides the strong enhancement of the nonlinear signal, the controlled optical metamorphosis of the nanoantennas is envisioned as a novel approach toward deterministic quantum plasmonic [32] studies in lithographically defined nanoplasmonic systems.

2. ENHANCED NONLINEAR RESPONSE AND METAMORPHOSIS

Single bowtie nanoantennas were realized on a glass substrate using electron beam lithography and thermal evaporation of a 35 nm Au film on top of a 5 nm titanium (Ti) adhesion layer. For further details on the nano-fabrication of bowtie nanoantennas, we refer to Section 1 of Supplement 1 and Ref. [33]. After fabrication, we determined the antenna size s and feedgap size g using high-resolution scanning electron microscopy (SEM). A representative SEM image of an individual antenna is shown in the inset of Fig. 1(a). Maximum nonlinear light generation efficiency requires spectral matching between the localized surface plasmon polariton (LSPP) resonance energy Eres and the fundamental pump laser energy EL. Therefore, we experimentally determined Eres of individual bowties with s=130140nm and g=530nm by measuring their differential reflectivity spectra ΔR/Roff=(RonRoff)/Roff using a broadband super-continuum white-light laser, where Ron and Roff denote the reflectivity signal recorded spatially on and off the bowtie, respectively [33]. Typical spectra for three different bowtie nanoantennas with g=6nm (black symbols), g=14nm (red symbols), and g=30nm (blue symbols) are presented in Fig. 1(a). We observe a clear resonance behavior, attributed to the dipolar mode of the bowtie [3436], and a redshift from Eres=1.54eV to Eres=1.39eV with decreasing g from 30 to 6 nm [34,36]. The solid lines show corresponding numerical finite-difference time-domain (FDTD) simulations [37] of the scattering cross sections, yielding good agreement with the experimental data.

 figure: Fig. 1.

Fig. 1. (a) Normalized differential reflectivity spectra and corresponding simulated scattering cross sections of pristine bowtie nanoantennas with s=140nm and g=6nm, g=14nm, and g=30nm in black, red, and blue, respectively. Inset: SEM image of pristine bowtie (scale bar=50nm). (b) Spectrally integrated nonlinear intensity of pristine bowties as a function of peak power density upon 1, first; 2, second; and 3, third illumination with fs laser light. Inset: schematic illustration of the experimental setup, where (1) and (2) denote a linear polarizer and short-pass filter, respectively. (c) SEM images of bowties before (top) and after (bottom) fs-illumination (scale bar=50nm).

Download Full Size | PPT Slide | PDF

To probe the nonlinear optical properties of the bowtie nanoantennas, we mounted the sample into a confocal luminescence microscope in vacuum (Pc106mbar), as depicted in Fig. 1(b), and resonantly excited (EL=1.48eV) individual antennas with linearly polarized, ultrashort (Δtp=100fs) laser pulses generated from a Ti:sapphire laser (repetition rate 82 MHz) at room temperature. For direct comparability and to achieve maximum field enhancement, we studied only resonant bowtie nanoantennas with 1.41eV<Eres<1.55eV [blue shaded region in Fig. 1(a)]. This corresponds to antennas with 130nm<s<140nm and 6nm<g<35nm. For further information on the experimental setup, we refer to Section 2 of Supplement 1.

In a first experiment, we spectrally integrated the nonlinear optical signal, generated by the bowtie nanoantenna, for energies E>Efil=1.65eV, where Efil denotes the cut-off energy of the employed short-pass filter, as indicated by the green hashed region in Fig. 1(a). During the first ramp-up of the laser peak power density (continuous wave equivalent) to PL100MW/cm2, we observe a quadratically increasing nonlinear optical intensity, indicated by the lower dashed line in Fig. 1(b). This quadratic dependence clearly indicates that we probe second-order nonlinear optical effects, such as incoherent TPPL and coherent second-harmonic generation (SHG). Surprisingly, the detected signal increases in a super-quadratic manner when exceeding this laser power threshold (i.e., PL>100MW/cm2) up to the maximum applied PL=312MW/cm2. Multiple additional repetitions of this power-dependent experiment [labeled 2 and 3 in Fig. 1(b)] clearly show that the initial quadratic behavior is established over the entire power range, but at a signal level that has increased by a factor of 100×. Moreover, we observe that those additional power sweeps preserve the generated nonlinear signal to much lower peak power densities. In total, we investigated 35 bowtie nanoantennas, each of which exhibited the unexpected super-quadratic increase during the first power ramp-up, while showing a stable quadratic trend accompanied with an increased signal level for all additional power sweeps.

To shed light on the origin of the 100× enhanced nonlinear response, we compare the morphology of the same bowtie nanoantennas before (denoted as a “pristine” antenna) and after (denoted as a “fs-illuminated” antenna) illumination with the femtosecond (fs)-pulsed laser excitation, by recording high-resolution SEM images. We observe a pronounced structural modification of the feedgap region of the fs-illuminated antennas, as shown in Fig. 1(c). This we attribute to accumulation of Au (nanoparticles) in the antenna hotspot due to electromigration [28], nanoparticle re-shaping [2931], and optical tweezing effects [38] triggered by the ultra-short (100fs) and high-intensity (102MW/cm2) laser illumination. Since we conducted all experiments in vacuum and due to the much higher melting point of Ti (TTi1940°C) as compared to Au (TAu1340°C), we assume trapping of other materials, such as dust particles from the air or Ti from the adhesion layer, as unlikely. However, we note that small amounts of residuals of electron beam resist and the organic solvents used might be found on the sample after the fabrication process, although the samples have been carefully cleaned prior to measurements. We observe that the spectrally dispersed nonlinear response of the fs-illuminated antennas (cf. Fig. 3) is in good agreement with the form of the TPPL generated from Au [8,2123]. Since we observe the material accumulating along the electric field distribution in the fs-illuminated antennas for larger feedgaps g=2030nm (cf. Fig. S2), we conclude that the observed structural modification of the antenna hotspots stems from the presence of the LSPP.

3. MATERIAL ACCUMULATION IN THE FEEDGAP: SIMULATION VERSUS EXPERIMENT

To test our hypothesis of Au accumulation in the antenna feedgap, we performed detailed numerical simulations of the plasmonic response for both pristine and fs-illuminated nanoantennas and compared our theoretical findings to differential reflectivity measurements ΔR/Roff. For reference, we plot the simulated scattering cross section of a pristine bowtie nanoantenna (s=140nm, g=10nm) in blue in Fig. 2(a). We observe a peak-like response, which is attributed to the dipolar resonance of the antenna with a resonance energy Eres=1.46eV, and find excellent agreement with the corresponding differential reflectivity measurements shown as the blue curve in Fig. 2(b). Turning our attention to fs-illuminated antennas, we notice that the detailed distribution of the material within the feedgap of the antenna cannot be resolved due to the limited spatial resolution of the SEM along with charging effects on the insulating substrate. Therefore, we discuss in the following two possible scenarios. In case (I), we assume a homogeneous Au film of thickness 8 nm, continuously connecting both triangles of the bowtie nanoantenna, as indicated in inset (i) of Fig. 2(a), while in case (II) we model the gap of fs-illuminated antennas with several Au nanoparticles [inset (ii) in Fig. 2(a)]. For case (I), the scattering cross section exhibits two energetically separated modes at EDsim=0.68eV and ECTPsim=1.82eV, as shown in green in Fig. 2(a). Deeper insights into the nature of both modes is gained from the corresponding charge carrier distribution, plotted in insets (iii) and (iv) of Fig. 2(a) for EDsim and ECTPsim, respectively. For the lower energy mode EDsim, we find that the negative and positive charges accumulate in opposing nanotriangles. Therefore, we interpret this mode as the dipolar resonance of the formed super-particle, since electrons can now freely move between the nanotriangles due to the connecting Au film. In strong contrast, the charge carrier distribution for the high-energy mode at ECTPsim indicates the formation of a so-called charge transfer plasmon [39], as recently observed in electron energy loss spectroscopy studies [40,41]. Additional simulations of varied Au-film thickness showed only a minor influence on both the resonance energy and intensity of the observed modes.

 figure: Fig. 2.

Fig. 2. (a) Simulated scattering cross sections for pristine bowtie, fs-illuminated, and intentionally connected antenna in blue, red, and green, respectively. Insets: (i, ii) SEM images of fs-illuminated antennas modeled with continuous film and spatially separated nanoparticles, respectively. Scale bar=50nm. (iii, iv) Simulated charge carrier distributions of the low and high energy mode of connected nanoantennas, respectively. (b) Differential reflectivity spectra for pristine, fs-illuminated, and intentionally connected antennas in blue, red, and green, respectively. Insets (i)–(iii) SEM images of the feedgap for pristine, fs-illuminated, and intentionally connected antennas, respectively. Scale bar=50nm. (c) Histogram of energy shifts ΔE=EresErespristine for fs-illuminated and intentionally connected antennas in red and green, respectively.

Download Full Size | PPT Slide | PDF

For case (II), we filled the feedgap with several (1<N<8) cylindrically shaped Au particles with diameter dNP=8nm and height hNP=8nm, taking special care that the particles do not short circuit the two nanotriangles forming the bowtie, as shown schematically in inset (ii) of Fig. 2(a). The corresponding scattering cross section [red curve in Fig. 2(a)] exhibits an energetic redshift of ΔEth=60meV as compared to the pristine antenna, which we attribute to an effective decrease of the feedgap size g and, thus, an increased near-field coupling between the two triangles [42]. We compare this result to the experimentally determined plasmonic response of the fs-illuminated antenna shown in red in Fig. 2(b). We also observe a redshift of the resonance of ΔEexp=70meV as compared to the pristine antenna (blue curve), in excellent agreement with the corresponding simulations. These findings strongly suggest that the modified region of the fs-illuminated antennas does not consist of a homogeneous Au film, but rather consists of several spatially separated Au particles. Further evidence is given by the optical study of intentionally connected bowties, as depicted in inset (iii) of Fig. 2(b), where the experimentally determined plasmonic response yields a resonance at ECTPexp=1.82eV. This is in good agreement with the simulation of a bowtie nanoantenna, where the gap is connected via a homogeneous Au film [green curve in Fig. 2(a)]. We support this finding by studying multiple intentionally connected and fs-illuminated nanoantennas and present a histogram of the corresponding energy shift ΔE=EresErespristine in Fig. 2(c). Here, Eres and Erespristine denote the resonance energy of the either intentionally connected or fs-illuminated antennas, and the corresponding pristine antennas, respectively. We observe a clearly distinct behavior for both types of antenna; while the fs-illuminated antennas (red) exhibit an average redshift of ΔEresfs-ill=50meV, the intentionally connected antennas (green) show a distribution that is blueshifted by ΔErescon=+330meV. This statistical analysis of intentionally connected and fs-illuminated antennas, in combination with our numerical simulations, strongly suggest that the accumulated material in the feedgap does not short circuit the triangles of the fs-illuminated nanoantennas. Our findings rather indicate the formation of ultra-small feedgap antennas due to laser excitation, which renders fs-illuminated bowtie nanoantennas promising candidates for future applications in quantum plasmonics [43,44]. In addition to the resonance position, we also analyzed the full width at half-maximum of ΔR/Roff after fs-illumination; however, we do not find a clear change, which would indicate, for example, annealing of the antennas [45]. Moreover, we note that the absolute intensity of ΔR/Roff increases slightly after fs-illumination for the same antennas. This might be due to small changes in the optical setup, e.g., improved collection efficiency or better focusing of the white-light laser and, thus, we refrain from correlating this intensity increase with the enhanced nonlinear signal in this study. We further note that the observation of the corresponding dipolar mode of the intentionally connected nanoantennas [39] was hindered by the limited quantum efficiency of the Si-CCD camera used.

4. PROPERTIES OF METAMORPHIC NANOANTENNAS: REPRODUCIBILITY, STABILITY, AND FIELD ENHANCEMENT

In the following, we consider the formation process and reproducibility of the fs-illuminated nanoantennas by studying their nonlinear optical response in a time-resolved experiment. In Fig. 3(a), we present the temporal evolution of the spectrally integrated nonlinear signal INL for five nominally identical bowties with g=1216nm. To adiabatically change the applied excitation conditions, we exponentially increase the peak power density PL from zero to a maximum value of PLmax=312MW/cm2, while simultaneously recording the generated INL from the antennas. During the power ramp-up phase (t<600s), we observe a rather complex increase of INL with time, changing from a quadratic (t=300400s, indicated by the gray dashed line) to an unexpected super-quadratic (t=400650s) behavior. After reaching PLmax at t=600s, the nonlinear signal saturates temporally delayed by Δt50s at a saturation intensity INLsat and stays constant afterward (t600s). The sudden change in INL at t400s from a quadratic to a clear super-quadratic dependence is attributed to the onset of the accumulation of Au particles inside the feedgap of the antennas. Assuming a strict quadratic signal increase up to PLmax at t=600s, as expected for a second-order nonlinear process such as TPPL, we would expect to reach a maximum signal of INLsat=0.5·103 cps [horizontal gray dashed line in Fig. 3(a)]. In our experiment, the laser-induced modification of the antenna feedgap results in INLsat=50·103 cps and, thus, an enhancement of the INL by 100×. Moreover, upon switching off and on the excitation laser at toff=1200s and ton=1300s, a full recovery of INLsat is observed, suggesting stable operation for P<PLmax after the initial fs-illumination. Due to the redshift of Eres after fs-illumination, as shown in Fig. 2(b), the fundamental laser at EL is slightly off-resonance with respect to the mode and, thus, the observed 100× enhancement of INLsat is only a lower bound, and fully resonant excitation could potentially lead to even higher enhancement factors.

 figure: Fig. 3.

Fig. 3. (a) Temporal evolution of the spectrally integrated nonlinear intensity INL of five nominally identical bowtie nanoantennas. (b) Two-photon photoluminescence spectra of fs-illuminated antennas for different excitation power densities. (c) Spectrally integrated nonlinear intensity as a function of peak power density for a fs-illuminated antenna and a planar Au film in blue and red, respectively. Dashed lines represent quadratic fits. (d) Spectrally integrated nonlinear intensity as a function of excitation polarization direction.

Download Full Size | PPT Slide | PDF

After the formation of the fs-illuminated antennas, we studied the spectral dependence of their nonlinear response as a function of increasing excitation power densities PL=15.5223MW/cm2<PLmax, as shown in Fig. 3(b). The spectra exhibit the typical shape expected for TPPL, and INL scales quadratically with PL over the whole emission energy range studied (cf. Fig. S4 in Supplement 1), in contrast to other reports found in the literature [5]. We note that these results clearly show that it is physically sound to study the antennas by spectrally integrating their nonlinear response, without any loss of information.

Next, we experimentally quantify the electromagnetic intensity enhancement (η) of a fs-illuminated antenna by studying INL as a function of PL and compare it to a planar Au film, as shown in blue and red in Fig. 3(c). For both the fs-illuminated antenna and planar Au film we observe a quadratic increase of the spectrally integrated INL with PL, according to INLPm, with m=2.03±0.02 for the bowtie nanoantenna and m=1.95±0.06 for a planar Au film. This observation supports our identification of the signal as arising from TPPL. We note that the filling factor of the bowtie nanoantenna has been taken into account and refer the reader to Supplement 1 for further details. We observe that the fs-illuminated nanoantenna yields comparable nonlinear emission as the planar Au film, but at a >2000× reduced PL. In other words, the fs-illuminated antenna exhibits a (4.3±0.4)·106× increase of the nonlinear light intensity with respect to the planar Au film at a comparable excitation level. This strong enhancement is attributed to the concentration of the electromagnetic field inside the modified antenna feedgap [35]. Our experimental findings enabled us to estimate a lower limit for the nonlinear optical light conversion efficiency of β=2.8·107% at PLmax (see Supplement 1), clearly demonstrating the superior frequency conversion efficiency of the studied self-optimized fs-illuminated nanoantennas and complementing the observation of an 100× nonlinear intensity enhancement.

We gain additional information about the precise spatial position at which the nonlinear optical signal INL is generated by investigating the spectrally integrated INL as a function of the linear excitation polarization angle Θ. In Fig. 3(d), we present a polar plot of INL as a function of Θ. We observe an enhanced signal for excitation along the principle axes of the antenna (i.e., Θ=0°/180°). In strong contrast, INL completely vanishes for the excitation polarization aligned perpendicular to the antenna (i.e., Θ=90°/270°), corresponding to a degree of linear polarization ρ=(IΘ=0°IΘ=90°)/(IΘ=0°+IΘ=90°)>99.9±0.1%, limited only by the detector noise. This high ρ confirms that the nonlinear signal stems from the antenna feedgap for the near-field coupled mode [42] and, thus, is strongly linked to the structurally modified region of the fs-illuminated antenna.

5. ORIGIN OF THE ENHANCED NONLINEAR RESPONSE

After demonstrating enhanced nonlinear light generation from the structurally modified feedgap of fs-illuminated antennas, we continue to interpret its origin by studying the nonlinear signal as a function of g. We present in Fig. 4(a) the saturation intensities INLsat for several fs-illuminated antennas as a function of g on a double-logarithmic scale. We observe a monotonic increase of INLsat with decreasing g, as indicated by the blue dashed line, which is approximated by INLsat=A·g6, where A denotes a constant. We attribute this g6 dependence to a combination of electric dipole coupling between the two adjacent nano-triangles [42] and the quadratic behavior of the studied second-order nonlinear process. Figure 4(b) shows a simulation of the intensity enhancement η=|E|2/|E0|2 for a pristine bowtie nanoantenna (s=140nm, g=10nm), where E and E0 denote the electric field of the scattered and incoming light, respectively, reaching ηg>3500 in the feedgap. In contrast, the intensity inside the Au nanotriangles, i.e., the area where TPPL is generated, is only of the order of ηAu=15.

 figure: Fig. 4.

Fig. 4. (a) Measured saturation intensity INLsat as a function of feedgap size g in black. Simulated additional intensity enhancements due to nanotriangle tips and nanoparticles in the feedgap are shown as squares and circles, respectively. (b, c) Simulation of the intensity enhancement η for a pristine bowtie and a fs-illuminated antenna, respectively. (d) Ratio of intensity enhancements ηfs-ill/ηpristine of a fs-illuminated antenna with respect to a pristine antenna..

Download Full Size | PPT Slide | PDF

Placing a cylindrically shaped Au particle into the center of the feedgap yields enhanced electric fields inside this particle [46] with ηNP35, as shown in Fig. 4(c). Moreover, the presence of the Au nanoparticle in the feedgap pushes the electric field deeper inside the adjacent tips of the nanotriangles composing the bowtie antenna, which is clearly shown in Fig. 4(d) as the ratio ηfs-ill for a fs-illuminated bowtie nanoantenna to ηpristine for a pristine antenna. This is a direct measure for the additional intensity enhancement Δη of the antennas after fs-illumination. The additional field inside the Au nanoparticle and the increased field inside the nanotriangle tips are interpreted to give rise to the observed enhancement of the nonlinear optical signal. To distinguish between the two effects and compare them with our experiments, we calculate the integral over the squared additional intensity enhancement ΔINL=V(Δη)2dV, for the volume of the Au particle VNP and the nanotriangle tips Vtips. The results are plotted as red symbols in Fig. 4(a), with circles and squares, respectively, for the Au nanoparticle and the nanotriangle tips. For both mechanisms, we obtain a monotonic increase with decreasing g, which follows a g6 dependence, in good agreement with the experimental data. The finding that ΔINLNP is 102× lower as compared to ΔINLtips strongly suggests that the dominating contribution leading to the enhanced nonlinear signal of fs-illuminated antennas is due to the additional electric field inside the tips of the nanotriangles forming the bowtie nanoantenna (additional numerical studies of the particle shape and number dependence are shown in Fig. S8 of Supplement 1). We conclude that our simple theoretical considerations provide a good qualitative understanding of the increased intensity enhancement Δη and, thus, the enhanced nonlinear optical intensity INL of the fs-illuminated antennas, although the coarse mesh size (1 nm) and the non-consideration of quantum mechanical effects does not allow quantitative predictions.

6. DISCUSSION AND CONCLUSIONS

Further insights on the type, shape, and size of the accumulated material might be gained by probing their vibrational dynamics by applying ultrafast transient pump–probe spectroscopy [47] or by realizing similar metamorphic antennas on few 10 nm thin SiN membranes for electron energy-loss spectroscopy (EELS) studies. Furthermore, a controlled transition from ultra-small feedgaps to kissing particles for quantum plasmonic applications [48] might become accessible by monitoring the dc conductivity via local electrical gates [49,50] while engineering the antenna morphology via fs-illumination. Last but not least, integration of metamorphic nanoantennas on substrates with high nonlinearities, such as GaAs (χGaAs(2)240pmV1) [51], LiNbO3 (χLiNbO3(2)580pmV1) [52], or even monolayer transition metal–dichalgonenides (χTMD(2)0.1100nmV1) [53], might significantly boost second-order nonlinear processes like SHG, in analogy to the strongly enhanced third-harmonic upconversion in indium–tin-oxide (ITO)-loaded dimer antennas [46,18].

In summary, we observed a 100-fold increase of TPPL generated from Au bowtie nanoantennas upon first fs-illumination. High-resolution SEM images and surface plasmon resonance spectroscopy before and after excitation suggest the accumulation of small (<g10nm) Au nanoparticles in the feedgap due to a combination of laser-induced electromigration [28], nanoparticle re-shaping [2931], and optical tweezer effects [38], rather than a continuous Au film. The process is found to be self-limiting and stable and can, therefore, be used to reach an effective reduction of g into the sub-10-nm regime. We determined the electric field intensity enhancement η of such fs-illuminated antennas to exceed 2000× by comparing its TPPL generation efficiency to a planar Au film. Furthermore, the nonlinear light generation can be controlled by turning the excitation polarization, giving rise to ρ>99.9%, clearly demonstrating that the enhanced nonlinear signal is generated from the antenna feedgap. Numerical simulations suggest that the strong enhancement of the nonlinear signal originates mainly from an increase of the electric field inside the tips of the nanotriangles composing the bowtie, induced by the presence of the Au nanoparticles in the feedgap. The presented metamorphic and self-optimized nanoantennas show high potential to optically tailor the nonlinear optical response at the nanoscale. Furthermore, the demonstrated concept of laser-induced electromigration promises a new route to study quantum plasmonic phenomena [43,44] in lithographically tailored plasmonic nanostructures by assembling particles below the spatial resolution amenable to electron beam lithography and without the need for electrical accessibility [54,55].

Funding

Deutsche Forschungsgemeinschaft (DFG) (SFB 631-B3); Nanosystems Initiative Munich (NIM); Institute for Advanced Study, Technical University of Munich (TUM-IAS); International Graduate School of Science and Engineering, Technical University of Munich (IGSSE).

 

See Supplement 1 for supporting content.

REFERENCES

1. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

2. D. K. Gramotnev and S. I. Bozhevolnyi, “Nanofocusing of electromagnetic radiation,” Nat. Photonics 8, 13–22 (2013). [CrossRef]  

3. J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010). [CrossRef]  

4. M. Kauranen and A. Zayats, “Nonlinear plasmonics,” Nat. Photonics 6, 737–748 (2012). [CrossRef]  

5. P. Mühlschlegel, H. Eisler, O. Martin, B. Hecht, and D. Pohl, “Resonant optical antennas,” Science 308, 1607–1609 (2005). [CrossRef]  

6. P. Schuck, D. Fromm, A. Sundaramurthy, G. Kino, and W. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94, 017402 (2005). [CrossRef]  

7. H. Fischer and O. J. Martin, “Engineering the optical response of plasmonic nanoantennas,” Opt. Express 16, 9144–9154 (2008). [CrossRef]  

8. K. Ko, A. Kumar, K. Fung, R. Ambekar, G. Liu, N. Fang, and K. Toussaint Jr., “Nonlinear optical response from arrays of Au bowtie nanoantennas,” Nano Lett. 11, 61–65 (2011). [CrossRef]  

9. T. Hanke, G. Krauss, D. Träutlein, B. Wild, R. Bratschitsch, and A. Leitenstorfer, “Efficient nonlinear light emission of single gold optical antennas driven by few-cycle near-infrared pulses,” Phys. Rev. Lett. 103, 257404 (2009). [CrossRef]  

10. H. Kollmann, X. Piao, M. Esmann, S. F. Becker, D. Hou, C. Huynh, L.-O. Kautschor, G. Bösker, H. Vieker, A. Beyer, A. Gölzhäuser, P. Namkyoo, R. Vogelgesang, M. Silies, and C. Lienau, “Toward plasmonics with nanometer precision: nonlinear optics of helium-ion milled gold nanoantennas,” Nano Lett. 14, 4778–4784 (2014). [CrossRef]  

11. M. Agio and A. Alù, Optical Antennas (Cambridge University, 2013).

12. P. Biagioni, B. Hecht, and J.-S. Huang, “Nanoantennas for visible and infrared radiation,” Rep. Prog. Phys. 75, 024402 (2012). [CrossRef]  

13. K. F. MacDonald, Z. L. Sámson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photonics 3, 55–58 (2008). [CrossRef]  

14. D. Brinks, M. Castro-Lopez, R. Hildner, and N. F. van Hulst, “Plasmonic antennas as design elements for coherent ultrafast nanophotonics,” Proc. Natl. Acad. Sci. USA 110, 18386–18390 (2013). [CrossRef]  

15. M. Celebrano, X. Wu, M. Baselli, S. Großmann, P. Biagioni, A. Locatelli, C. De Angelis, G. Cerullo, R. Osellame, B. Hecht, L. Duò, F. Ciccacci, and M. Finazzi, “Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation,” Nat. Nanotechnol. 10, 412–417 (2015). [CrossRef]  

16. C. Hubert, L. Billot, P.-M. Adam, R. Bachelot, P. Royer, J. Grand, D. Gindre, K. Dorkenoo, and A. Fort, “Role of surface plasmon in second harmonic generation from gold nanorods,” Appl. Phys. Lett. 90, 181105 (2007). [CrossRef]  

17. M. McMahon, R. Lopez, R. Haglund Jr., E. Ray, and P. Bunton, “Second-harmonic generation from arrays of symmetric gold nanoparticles,” Phys. Rev. B 73, 041401 (2006). [CrossRef]  

18. H. Aouani, M. Rahmani, M. Navarro-Ca, and S. A. Maier, “Third-harmonic-upconversion enhancement from a single semiconductor nanoparticle coupled to a plasmonic antenna,” Nat. Nanotechnol. 9, 290–294 (2014). [CrossRef]  

19. T. Hanke, J. Cesar, V. Knittel, A. Trügler, U. Hohenester, A. Leitenstorfer, and R. Bratschitsch, “Tailoring spatiotemporal light confinement in single plasmonic nanoantennas,” Nano Lett. 12, 992–996 (2012). [CrossRef]  

20. S. Kim, J. Jin, Y. Kim, I. Park, Y. Kim, and S. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453, 757–760 (2008).

21. M. R. Beversluis, A. Bouhelier, and L. Novotny, “Continuum generation from single gold nanostructures through near-field mediated intraband transitions,” Phys. Rev. B 68, 115433 (2003). [CrossRef]  

22. P. Biagioni, M. Celebrano, M. Savoini, G. Grancini, D. Brida, S. Mátéfi-Tempfli, M. Mátéfi-Tempfli, L. Duò, B. Hecht, G. Cerullo, and M. Finazzi, “Dependence of the two-photon photoluminescence yield of gold nanostructures on the laser pulse duration,” Phys. Rev. B 80, 045411 (2009). [CrossRef]  

23. A. Bouhelier, R. Bachelot, G. Lerondel, S. Kostcheev, P. Royer, and G. Wiederrecht, “Surface plasmon characteristics of tunable photoluminescence in single gold nanorods,” Phys. Rev. Lett. 95, 267405 (2005). [CrossRef]  

24. P. Biagioni, D. Brida, J.-S. Huang, J. Kern, L. Duò, B. Hecht, M. Finazzi, and G. Cerullo, “Dynamics of four-photon photoluminescence in gold nanoantennas,” Nano Lett. 12, 2941–2947 (2012). [CrossRef]  

25. M. Danckwerts and L. Novotny, “Optical frequency mixing at coupled gold nanoparticles,” Phys. Rev. Lett. 98, 026104 (2007). [CrossRef]  

26. O. Marti, H. Bielefeldt, B. Hecht, S. Herminghaus, P. Leiderer, and J. Mlynek, “Near-field optical measurement of the surface plasmon field,” Opt. Commun. 96, 225–228 (1993). [CrossRef]  

27. V. Knittel, M. Fischer, T. de Roo, S. Mecking, A. Leitenstorfer, and D. Brida, “Nonlinear photoluminescence spectrum of single gold nanostructures,” ACS Nano 9, 894–900 (2015). [CrossRef]  

28. H. Park, A. K. L. Lim, A. P. Alivisatos, J. Park, and P. L. McEuen, “Fabrication of metallic electrodes with nanometer separation by electromigration,” Appl. Phys. Lett. 75, 301 (1999). [CrossRef]  

29. C. M. Aguirre, C. E. Moran, J. F. Young, and N. J. Halas, “Laser-induced reshaping of metallodielectric nanoshells under femtosecond and nanosecond plasmon resonant illumination,” J. Phys. Chem. B 108, 7040–7045 (2004). [CrossRef]  

30. J. Wang, Y. Chen, X. Chen, J. Hao, M. Yan, and M. Qiu, “Photothermal reshaping of gold nanoparticles in a plasmonic absorber,” Opt. Express 19, 14726–14734 (2011). [CrossRef]  

31. X. Zhu, C. Vannahme, E. Højlund-Nielsen, N. A. Mortensen, and A. Kristensen, “Plasmonic colour laser printing,” Nat. Nanotechnol. 11, 325–329 (2015). [CrossRef]  

32. M. S. Tame, K. R. McEnery, K. Özdemir, J. Lee, S. A. Maier, and M. S. Kim, “Quantum plasmonics,” Nat. Phys. 9, 329–340 (2013). [CrossRef]  

33. M. Kaniber, K. Schraml, A. Regler, J. Bartl, G. Glashagen, F. Flassig, J. Wierzbowski, and J. J. Finley, “Surface plasmon resonance spectroscopy of single bowtie nano-antennas using a differential reflectivity method,” Sci. Rep. 6, 23203 (2016). [CrossRef]  

34. D. Fromm, A. Sundaramurthy, P. Schuck, G. Kino, and W. E. Moerner, “Gap-dependent optical coupling of single bowtie nanoantennas resonant in the visible,” Nano Lett. 4, 957–961 (2004). [CrossRef]  

35. A. Sundaramurthy, K. B. Crozier, G. S. Kino, D. P. Fromm, P. J. Schuck, and W. E. Moerner, “Field enhancement and gap-dependent resonance in a system of two opposing tip-to-tip Au nanotriangles,” Phys. Rev. B 72, 1–6 (2005). [CrossRef]  

36. K. Schraml, M. Spiegl, M. Kammerlocher, G. Bracher, J. Bartl, T. Campbell, J. Finley, and M. Kaniber, “Optical properties and interparticle coupling of plasmonic bowtie nanoantennas on a semiconducting substrate,” Phys. Rev. B 90, 035435 (2014). [CrossRef]  

37. Lumerical Solutions, Inc., 2013, http://www.lumerical.com/tcad-products/fdtd/.

38. O. M. Maragò, P. H. Jones, P. G. Gucciardi, G. Volpe, and A. C. Ferrari, “Optical trapping and manipulation of nanostructures,” Nat. Nanotechnol. 8, 807–819 (2013). [CrossRef]  

39. F. Wen, Y. Zhang, S. Gottheim, N. S. King, Y. Zhang, P. Nordlander, and N. J. Halas, “Charge transfer plasmons: optical frequency conductances and tunable infrared resonances,” ACS Nano 9, 6428–6435 (2015). [CrossRef]  

40. A. L. Koh, K. Bao, I. Khan, W. E. Smith, G. Kothleitner, P. Nordlander, S. A. Maier, and D. W. McComb, “Electron energy-loss spectroscopy (EELS) of surface plasmons in single silver nanoparticles and dimers: influence of beam damage and mapping of dark modes,” ACS Nano 3, 3015–3022 (2009). [CrossRef]  

41. A. L. Koh, A. I. Fernández-Domínguez, D. W. McComb, S. A. Maier, and J. K. Yang, “High-resolution mapping of electron-beam-excited plasmon modes in lithographically defined gold nanostructures,” Nano Lett. 11, 1323–1330 (2011). [CrossRef]  

42. P. Nordlander, C. Oubre, E. Prodan, K. Li, and I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4, 899–903 (2004). [CrossRef]  

43. D. Marinica, A. Kazansky, P. Nordlander, J. Aizpurua, and A. G. Borisov, “Quantum plasmonics: nonlinear effects in the field enhancement of a plasmonic nanoparticle dimer,” Nano Lett. 12, 1333–1339 (2012). [CrossRef]  

44. J. A. Scholl, A. L. Koh, and J. A. Dionne, “Quantum plasmon resonances of individual metallic nanoparticles,” Nature 483, 421–427 (2012).

45. K.-P. Chen, V. P. Drachev, J. D. Borneman, A. V. Kildishev, and V. M. Shalaev, “Drude relaxation rate in grained gold nanoantennas,” Nano Lett. 10, 916–922 (2010). [CrossRef]  

46. N. Liu, F. Wen, Y. Zhao, Y. Wang, P. Nordlander, N. J. Halas, and A. Aluì, “Individual nanoantennas loaded with three-dimensional optical nanocircuits,” Nano Lett. 13, 142–147 (2013). [CrossRef]  

47. T. Schumacher, K. Kratzer, D. Molnar, M. Hentschel, H. Giessen, and M. Lippitz, “Nanoantenna-enhanced ultrafast nonlinear spectroscopy of a single gold nanoparticle,” Nat. Commun. 2, 333 (2011). [CrossRef]  

48. R. Esteban, A. G. Borisov, P. Nordlander, and J. Aizpurua, “Bridging quantum and classical plasmonics with a quantum-corrected model,” Nat. Commun. 3, 825 (2012). [CrossRef]  

49. J. C. Prangsma, J. Kern, A. G. Knapp, S. Grossmann, M. Emmerling, M. Kamp, and B. Hecht, “Electrically connected resonant optical antennas,” Nano Lett. 12, 3915–3919 (2012). [CrossRef]  

50. K. J. Savage, M. M. Hawkeye, R. Esteban, A. G. Borisov, J. Aizpurua, and J. J. Baumberg, “Revealing the quantum regime in tunnelling plasmonics,” Nature 491, 574–577 (2012).

51. A. Fiore, V. Berger, E. Rosencher, P. Bravetti, and J. Nagle, “Phase matching using an isotropic nonlinear optical material,” Nature 391, 463–466 (1998).

52. R. J. Pressley, Handbook of Lasers (Chemical Rubber, 1971).

53. M. L. Trolle, G. Seifert, and T. G. Pedersen, “Theory of excitonic second-harmonic generation in monolayer MoS2,” Phys. Rev. B 89, 1–8 (2014). [CrossRef]  

54. D. R. Ward, N. K. Grady, C. S. Levin, N. J. Halas, Y. Wu, P. Nordlander, and D. Natelson, “Electromigrated nanoscale gaps for surface-enhanced Raman spectroscopy,” Nano Lett. 7, 1396–1400 (2007). [CrossRef]  

55. A. Stolz, J. Berthelot, M. M. Mennemanteuil, G. Colas Des Francs, L. Markey, V. Meunier, and A. Bouhelier, “Nonlinear photon-assisted tunneling transport in optical gap antennas,” Nano Lett. 14, 2330–2338 (2014). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  2. D. K. Gramotnev and S. I. Bozhevolnyi, “Nanofocusing of electromagnetic radiation,” Nat. Photonics 8, 13–22 (2013).
    [Crossref]
  3. J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
    [Crossref]
  4. M. Kauranen and A. Zayats, “Nonlinear plasmonics,” Nat. Photonics 6, 737–748 (2012).
    [Crossref]
  5. P. Mühlschlegel, H. Eisler, O. Martin, B. Hecht, and D. Pohl, “Resonant optical antennas,” Science 308, 1607–1609 (2005).
    [Crossref]
  6. P. Schuck, D. Fromm, A. Sundaramurthy, G. Kino, and W. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94, 017402 (2005).
    [Crossref]
  7. H. Fischer and O. J. Martin, “Engineering the optical response of plasmonic nanoantennas,” Opt. Express 16, 9144–9154 (2008).
    [Crossref]
  8. K. Ko, A. Kumar, K. Fung, R. Ambekar, G. Liu, N. Fang, and K. Toussaint, “Nonlinear optical response from arrays of Au bowtie nanoantennas,” Nano Lett. 11, 61–65 (2011).
    [Crossref]
  9. T. Hanke, G. Krauss, D. Träutlein, B. Wild, R. Bratschitsch, and A. Leitenstorfer, “Efficient nonlinear light emission of single gold optical antennas driven by few-cycle near-infrared pulses,” Phys. Rev. Lett. 103, 257404 (2009).
    [Crossref]
  10. H. Kollmann, X. Piao, M. Esmann, S. F. Becker, D. Hou, C. Huynh, L.-O. Kautschor, G. Bösker, H. Vieker, A. Beyer, A. Gölzhäuser, P. Namkyoo, R. Vogelgesang, M. Silies, and C. Lienau, “Toward plasmonics with nanometer precision: nonlinear optics of helium-ion milled gold nanoantennas,” Nano Lett. 14, 4778–4784 (2014).
    [Crossref]
  11. M. Agio and A. Alù, Optical Antennas (Cambridge University, 2013).
  12. P. Biagioni, B. Hecht, and J.-S. Huang, “Nanoantennas for visible and infrared radiation,” Rep. Prog. Phys. 75, 024402 (2012).
    [Crossref]
  13. K. F. MacDonald, Z. L. Sámson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photonics 3, 55–58 (2008).
    [Crossref]
  14. D. Brinks, M. Castro-Lopez, R. Hildner, and N. F. van Hulst, “Plasmonic antennas as design elements for coherent ultrafast nanophotonics,” Proc. Natl. Acad. Sci. USA 110, 18386–18390 (2013).
    [Crossref]
  15. M. Celebrano, X. Wu, M. Baselli, S. Großmann, P. Biagioni, A. Locatelli, C. De Angelis, G. Cerullo, R. Osellame, B. Hecht, L. Duò, F. Ciccacci, and M. Finazzi, “Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation,” Nat. Nanotechnol. 10, 412–417 (2015).
    [Crossref]
  16. C. Hubert, L. Billot, P.-M. Adam, R. Bachelot, P. Royer, J. Grand, D. Gindre, K. Dorkenoo, and A. Fort, “Role of surface plasmon in second harmonic generation from gold nanorods,” Appl. Phys. Lett. 90, 181105 (2007).
    [Crossref]
  17. M. McMahon, R. Lopez, R. Haglund, E. Ray, and P. Bunton, “Second-harmonic generation from arrays of symmetric gold nanoparticles,” Phys. Rev. B 73, 041401 (2006).
    [Crossref]
  18. H. Aouani, M. Rahmani, M. Navarro-Ca, and S. A. Maier, “Third-harmonic-upconversion enhancement from a single semiconductor nanoparticle coupled to a plasmonic antenna,” Nat. Nanotechnol. 9, 290–294 (2014).
    [Crossref]
  19. T. Hanke, J. Cesar, V. Knittel, A. Trügler, U. Hohenester, A. Leitenstorfer, and R. Bratschitsch, “Tailoring spatiotemporal light confinement in single plasmonic nanoantennas,” Nano Lett. 12, 992–996 (2012).
    [Crossref]
  20. S. Kim, J. Jin, Y. Kim, I. Park, Y. Kim, and S. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453, 757–760 (2008).
  21. M. R. Beversluis, A. Bouhelier, and L. Novotny, “Continuum generation from single gold nanostructures through near-field mediated intraband transitions,” Phys. Rev. B 68, 115433 (2003).
    [Crossref]
  22. P. Biagioni, M. Celebrano, M. Savoini, G. Grancini, D. Brida, S. Mátéfi-Tempfli, M. Mátéfi-Tempfli, L. Duò, B. Hecht, G. Cerullo, and M. Finazzi, “Dependence of the two-photon photoluminescence yield of gold nanostructures on the laser pulse duration,” Phys. Rev. B 80, 045411 (2009).
    [Crossref]
  23. A. Bouhelier, R. Bachelot, G. Lerondel, S. Kostcheev, P. Royer, and G. Wiederrecht, “Surface plasmon characteristics of tunable photoluminescence in single gold nanorods,” Phys. Rev. Lett. 95, 267405 (2005).
    [Crossref]
  24. P. Biagioni, D. Brida, J.-S. Huang, J. Kern, L. Duò, B. Hecht, M. Finazzi, and G. Cerullo, “Dynamics of four-photon photoluminescence in gold nanoantennas,” Nano Lett. 12, 2941–2947 (2012).
    [Crossref]
  25. M. Danckwerts and L. Novotny, “Optical frequency mixing at coupled gold nanoparticles,” Phys. Rev. Lett. 98, 026104 (2007).
    [Crossref]
  26. O. Marti, H. Bielefeldt, B. Hecht, S. Herminghaus, P. Leiderer, and J. Mlynek, “Near-field optical measurement of the surface plasmon field,” Opt. Commun. 96, 225–228 (1993).
    [Crossref]
  27. V. Knittel, M. Fischer, T. de Roo, S. Mecking, A. Leitenstorfer, and D. Brida, “Nonlinear photoluminescence spectrum of single gold nanostructures,” ACS Nano 9, 894–900 (2015).
    [Crossref]
  28. H. Park, A. K. L. Lim, A. P. Alivisatos, J. Park, and P. L. McEuen, “Fabrication of metallic electrodes with nanometer separation by electromigration,” Appl. Phys. Lett. 75, 301 (1999).
    [Crossref]
  29. C. M. Aguirre, C. E. Moran, J. F. Young, and N. J. Halas, “Laser-induced reshaping of metallodielectric nanoshells under femtosecond and nanosecond plasmon resonant illumination,” J. Phys. Chem. B 108, 7040–7045 (2004).
    [Crossref]
  30. J. Wang, Y. Chen, X. Chen, J. Hao, M. Yan, and M. Qiu, “Photothermal reshaping of gold nanoparticles in a plasmonic absorber,” Opt. Express 19, 14726–14734 (2011).
    [Crossref]
  31. X. Zhu, C. Vannahme, E. Højlund-Nielsen, N. A. Mortensen, and A. Kristensen, “Plasmonic colour laser printing,” Nat. Nanotechnol. 11, 325–329 (2015).
    [Crossref]
  32. M. S. Tame, K. R. McEnery, K. Özdemir, J. Lee, S. A. Maier, and M. S. Kim, “Quantum plasmonics,” Nat. Phys. 9, 329–340 (2013).
    [Crossref]
  33. M. Kaniber, K. Schraml, A. Regler, J. Bartl, G. Glashagen, F. Flassig, J. Wierzbowski, and J. J. Finley, “Surface plasmon resonance spectroscopy of single bowtie nano-antennas using a differential reflectivity method,” Sci. Rep. 6, 23203 (2016).
    [Crossref]
  34. D. Fromm, A. Sundaramurthy, P. Schuck, G. Kino, and W. E. Moerner, “Gap-dependent optical coupling of single bowtie nanoantennas resonant in the visible,” Nano Lett. 4, 957–961 (2004).
    [Crossref]
  35. A. Sundaramurthy, K. B. Crozier, G. S. Kino, D. P. Fromm, P. J. Schuck, and W. E. Moerner, “Field enhancement and gap-dependent resonance in a system of two opposing tip-to-tip Au nanotriangles,” Phys. Rev. B 72, 1–6 (2005).
    [Crossref]
  36. K. Schraml, M. Spiegl, M. Kammerlocher, G. Bracher, J. Bartl, T. Campbell, J. Finley, and M. Kaniber, “Optical properties and interparticle coupling of plasmonic bowtie nanoantennas on a semiconducting substrate,” Phys. Rev. B 90, 035435 (2014).
    [Crossref]
  37. Lumerical Solutions, Inc., 2013, http://www.lumerical.com/tcad-products/fdtd/ .
  38. O. M. Maragò, P. H. Jones, P. G. Gucciardi, G. Volpe, and A. C. Ferrari, “Optical trapping and manipulation of nanostructures,” Nat. Nanotechnol. 8, 807–819 (2013).
    [Crossref]
  39. F. Wen, Y. Zhang, S. Gottheim, N. S. King, Y. Zhang, P. Nordlander, and N. J. Halas, “Charge transfer plasmons: optical frequency conductances and tunable infrared resonances,” ACS Nano 9, 6428–6435 (2015).
    [Crossref]
  40. A. L. Koh, K. Bao, I. Khan, W. E. Smith, G. Kothleitner, P. Nordlander, S. A. Maier, and D. W. McComb, “Electron energy-loss spectroscopy (EELS) of surface plasmons in single silver nanoparticles and dimers: influence of beam damage and mapping of dark modes,” ACS Nano 3, 3015–3022 (2009).
    [Crossref]
  41. A. L. Koh, A. I. Fernández-Domínguez, D. W. McComb, S. A. Maier, and J. K. Yang, “High-resolution mapping of electron-beam-excited plasmon modes in lithographically defined gold nanostructures,” Nano Lett. 11, 1323–1330 (2011).
    [Crossref]
  42. P. Nordlander, C. Oubre, E. Prodan, K. Li, and I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4, 899–903 (2004).
    [Crossref]
  43. D. Marinica, A. Kazansky, P. Nordlander, J. Aizpurua, and A. G. Borisov, “Quantum plasmonics: nonlinear effects in the field enhancement of a plasmonic nanoparticle dimer,” Nano Lett. 12, 1333–1339 (2012).
    [Crossref]
  44. J. A. Scholl, A. L. Koh, and J. A. Dionne, “Quantum plasmon resonances of individual metallic nanoparticles,” Nature 483, 421–427 (2012).
  45. K.-P. Chen, V. P. Drachev, J. D. Borneman, A. V. Kildishev, and V. M. Shalaev, “Drude relaxation rate in grained gold nanoantennas,” Nano Lett. 10, 916–922 (2010).
    [Crossref]
  46. N. Liu, F. Wen, Y. Zhao, Y. Wang, P. Nordlander, N. J. Halas, and A. Aluì, “Individual nanoantennas loaded with three-dimensional optical nanocircuits,” Nano Lett. 13, 142–147 (2013).
    [Crossref]
  47. T. Schumacher, K. Kratzer, D. Molnar, M. Hentschel, H. Giessen, and M. Lippitz, “Nanoantenna-enhanced ultrafast nonlinear spectroscopy of a single gold nanoparticle,” Nat. Commun. 2, 333 (2011).
    [Crossref]
  48. R. Esteban, A. G. Borisov, P. Nordlander, and J. Aizpurua, “Bridging quantum and classical plasmonics with a quantum-corrected model,” Nat. Commun. 3, 825 (2012).
    [Crossref]
  49. J. C. Prangsma, J. Kern, A. G. Knapp, S. Grossmann, M. Emmerling, M. Kamp, and B. Hecht, “Electrically connected resonant optical antennas,” Nano Lett. 12, 3915–3919 (2012).
    [Crossref]
  50. K. J. Savage, M. M. Hawkeye, R. Esteban, A. G. Borisov, J. Aizpurua, and J. J. Baumberg, “Revealing the quantum regime in tunnelling plasmonics,” Nature 491, 574–577 (2012).
  51. A. Fiore, V. Berger, E. Rosencher, P. Bravetti, and J. Nagle, “Phase matching using an isotropic nonlinear optical material,” Nature 391, 463–466 (1998).
  52. R. J. Pressley, Handbook of Lasers (Chemical Rubber, 1971).
  53. M. L. Trolle, G. Seifert, and T. G. Pedersen, “Theory of excitonic second-harmonic generation in monolayer MoS2,” Phys. Rev. B 89, 1–8 (2014).
    [Crossref]
  54. D. R. Ward, N. K. Grady, C. S. Levin, N. J. Halas, Y. Wu, P. Nordlander, and D. Natelson, “Electromigrated nanoscale gaps for surface-enhanced Raman spectroscopy,” Nano Lett. 7, 1396–1400 (2007).
    [Crossref]
  55. A. Stolz, J. Berthelot, M. M. Mennemanteuil, G. Colas Des Francs, L. Markey, V. Meunier, and A. Bouhelier, “Nonlinear photon-assisted tunneling transport in optical gap antennas,” Nano Lett. 14, 2330–2338 (2014).
    [Crossref]

2016 (1)

M. Kaniber, K. Schraml, A. Regler, J. Bartl, G. Glashagen, F. Flassig, J. Wierzbowski, and J. J. Finley, “Surface plasmon resonance spectroscopy of single bowtie nano-antennas using a differential reflectivity method,” Sci. Rep. 6, 23203 (2016).
[Crossref]

2015 (4)

X. Zhu, C. Vannahme, E. Højlund-Nielsen, N. A. Mortensen, and A. Kristensen, “Plasmonic colour laser printing,” Nat. Nanotechnol. 11, 325–329 (2015).
[Crossref]

F. Wen, Y. Zhang, S. Gottheim, N. S. King, Y. Zhang, P. Nordlander, and N. J. Halas, “Charge transfer plasmons: optical frequency conductances and tunable infrared resonances,” ACS Nano 9, 6428–6435 (2015).
[Crossref]

V. Knittel, M. Fischer, T. de Roo, S. Mecking, A. Leitenstorfer, and D. Brida, “Nonlinear photoluminescence spectrum of single gold nanostructures,” ACS Nano 9, 894–900 (2015).
[Crossref]

M. Celebrano, X. Wu, M. Baselli, S. Großmann, P. Biagioni, A. Locatelli, C. De Angelis, G. Cerullo, R. Osellame, B. Hecht, L. Duò, F. Ciccacci, and M. Finazzi, “Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation,” Nat. Nanotechnol. 10, 412–417 (2015).
[Crossref]

2014 (5)

H. Aouani, M. Rahmani, M. Navarro-Ca, and S. A. Maier, “Third-harmonic-upconversion enhancement from a single semiconductor nanoparticle coupled to a plasmonic antenna,” Nat. Nanotechnol. 9, 290–294 (2014).
[Crossref]

H. Kollmann, X. Piao, M. Esmann, S. F. Becker, D. Hou, C. Huynh, L.-O. Kautschor, G. Bösker, H. Vieker, A. Beyer, A. Gölzhäuser, P. Namkyoo, R. Vogelgesang, M. Silies, and C. Lienau, “Toward plasmonics with nanometer precision: nonlinear optics of helium-ion milled gold nanoantennas,” Nano Lett. 14, 4778–4784 (2014).
[Crossref]

K. Schraml, M. Spiegl, M. Kammerlocher, G. Bracher, J. Bartl, T. Campbell, J. Finley, and M. Kaniber, “Optical properties and interparticle coupling of plasmonic bowtie nanoantennas on a semiconducting substrate,” Phys. Rev. B 90, 035435 (2014).
[Crossref]

M. L. Trolle, G. Seifert, and T. G. Pedersen, “Theory of excitonic second-harmonic generation in monolayer MoS2,” Phys. Rev. B 89, 1–8 (2014).
[Crossref]

A. Stolz, J. Berthelot, M. M. Mennemanteuil, G. Colas Des Francs, L. Markey, V. Meunier, and A. Bouhelier, “Nonlinear photon-assisted tunneling transport in optical gap antennas,” Nano Lett. 14, 2330–2338 (2014).
[Crossref]

2013 (5)

N. Liu, F. Wen, Y. Zhao, Y. Wang, P. Nordlander, N. J. Halas, and A. Aluì, “Individual nanoantennas loaded with three-dimensional optical nanocircuits,” Nano Lett. 13, 142–147 (2013).
[Crossref]

O. M. Maragò, P. H. Jones, P. G. Gucciardi, G. Volpe, and A. C. Ferrari, “Optical trapping and manipulation of nanostructures,” Nat. Nanotechnol. 8, 807–819 (2013).
[Crossref]

M. S. Tame, K. R. McEnery, K. Özdemir, J. Lee, S. A. Maier, and M. S. Kim, “Quantum plasmonics,” Nat. Phys. 9, 329–340 (2013).
[Crossref]

D. K. Gramotnev and S. I. Bozhevolnyi, “Nanofocusing of electromagnetic radiation,” Nat. Photonics 8, 13–22 (2013).
[Crossref]

D. Brinks, M. Castro-Lopez, R. Hildner, and N. F. van Hulst, “Plasmonic antennas as design elements for coherent ultrafast nanophotonics,” Proc. Natl. Acad. Sci. USA 110, 18386–18390 (2013).
[Crossref]

2012 (9)

T. Hanke, J. Cesar, V. Knittel, A. Trügler, U. Hohenester, A. Leitenstorfer, and R. Bratschitsch, “Tailoring spatiotemporal light confinement in single plasmonic nanoantennas,” Nano Lett. 12, 992–996 (2012).
[Crossref]

M. Kauranen and A. Zayats, “Nonlinear plasmonics,” Nat. Photonics 6, 737–748 (2012).
[Crossref]

P. Biagioni, B. Hecht, and J.-S. Huang, “Nanoantennas for visible and infrared radiation,” Rep. Prog. Phys. 75, 024402 (2012).
[Crossref]

P. Biagioni, D. Brida, J.-S. Huang, J. Kern, L. Duò, B. Hecht, M. Finazzi, and G. Cerullo, “Dynamics of four-photon photoluminescence in gold nanoantennas,” Nano Lett. 12, 2941–2947 (2012).
[Crossref]

D. Marinica, A. Kazansky, P. Nordlander, J. Aizpurua, and A. G. Borisov, “Quantum plasmonics: nonlinear effects in the field enhancement of a plasmonic nanoparticle dimer,” Nano Lett. 12, 1333–1339 (2012).
[Crossref]

J. A. Scholl, A. L. Koh, and J. A. Dionne, “Quantum plasmon resonances of individual metallic nanoparticles,” Nature 483, 421–427 (2012).

R. Esteban, A. G. Borisov, P. Nordlander, and J. Aizpurua, “Bridging quantum and classical plasmonics with a quantum-corrected model,” Nat. Commun. 3, 825 (2012).
[Crossref]

J. C. Prangsma, J. Kern, A. G. Knapp, S. Grossmann, M. Emmerling, M. Kamp, and B. Hecht, “Electrically connected resonant optical antennas,” Nano Lett. 12, 3915–3919 (2012).
[Crossref]

K. J. Savage, M. M. Hawkeye, R. Esteban, A. G. Borisov, J. Aizpurua, and J. J. Baumberg, “Revealing the quantum regime in tunnelling plasmonics,” Nature 491, 574–577 (2012).

2011 (4)

A. L. Koh, A. I. Fernández-Domínguez, D. W. McComb, S. A. Maier, and J. K. Yang, “High-resolution mapping of electron-beam-excited plasmon modes in lithographically defined gold nanostructures,” Nano Lett. 11, 1323–1330 (2011).
[Crossref]

T. Schumacher, K. Kratzer, D. Molnar, M. Hentschel, H. Giessen, and M. Lippitz, “Nanoantenna-enhanced ultrafast nonlinear spectroscopy of a single gold nanoparticle,” Nat. Commun. 2, 333 (2011).
[Crossref]

J. Wang, Y. Chen, X. Chen, J. Hao, M. Yan, and M. Qiu, “Photothermal reshaping of gold nanoparticles in a plasmonic absorber,” Opt. Express 19, 14726–14734 (2011).
[Crossref]

K. Ko, A. Kumar, K. Fung, R. Ambekar, G. Liu, N. Fang, and K. Toussaint, “Nonlinear optical response from arrays of Au bowtie nanoantennas,” Nano Lett. 11, 61–65 (2011).
[Crossref]

2010 (2)

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
[Crossref]

K.-P. Chen, V. P. Drachev, J. D. Borneman, A. V. Kildishev, and V. M. Shalaev, “Drude relaxation rate in grained gold nanoantennas,” Nano Lett. 10, 916–922 (2010).
[Crossref]

2009 (3)

T. Hanke, G. Krauss, D. Träutlein, B. Wild, R. Bratschitsch, and A. Leitenstorfer, “Efficient nonlinear light emission of single gold optical antennas driven by few-cycle near-infrared pulses,” Phys. Rev. Lett. 103, 257404 (2009).
[Crossref]

P. Biagioni, M. Celebrano, M. Savoini, G. Grancini, D. Brida, S. Mátéfi-Tempfli, M. Mátéfi-Tempfli, L. Duò, B. Hecht, G. Cerullo, and M. Finazzi, “Dependence of the two-photon photoluminescence yield of gold nanostructures on the laser pulse duration,” Phys. Rev. B 80, 045411 (2009).
[Crossref]

A. L. Koh, K. Bao, I. Khan, W. E. Smith, G. Kothleitner, P. Nordlander, S. A. Maier, and D. W. McComb, “Electron energy-loss spectroscopy (EELS) of surface plasmons in single silver nanoparticles and dimers: influence of beam damage and mapping of dark modes,” ACS Nano 3, 3015–3022 (2009).
[Crossref]

2008 (3)

K. F. MacDonald, Z. L. Sámson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photonics 3, 55–58 (2008).
[Crossref]

S. Kim, J. Jin, Y. Kim, I. Park, Y. Kim, and S. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453, 757–760 (2008).

H. Fischer and O. J. Martin, “Engineering the optical response of plasmonic nanoantennas,” Opt. Express 16, 9144–9154 (2008).
[Crossref]

2007 (3)

C. Hubert, L. Billot, P.-M. Adam, R. Bachelot, P. Royer, J. Grand, D. Gindre, K. Dorkenoo, and A. Fort, “Role of surface plasmon in second harmonic generation from gold nanorods,” Appl. Phys. Lett. 90, 181105 (2007).
[Crossref]

M. Danckwerts and L. Novotny, “Optical frequency mixing at coupled gold nanoparticles,” Phys. Rev. Lett. 98, 026104 (2007).
[Crossref]

D. R. Ward, N. K. Grady, C. S. Levin, N. J. Halas, Y. Wu, P. Nordlander, and D. Natelson, “Electromigrated nanoscale gaps for surface-enhanced Raman spectroscopy,” Nano Lett. 7, 1396–1400 (2007).
[Crossref]

2006 (1)

M. McMahon, R. Lopez, R. Haglund, E. Ray, and P. Bunton, “Second-harmonic generation from arrays of symmetric gold nanoparticles,” Phys. Rev. B 73, 041401 (2006).
[Crossref]

2005 (4)

P. Mühlschlegel, H. Eisler, O. Martin, B. Hecht, and D. Pohl, “Resonant optical antennas,” Science 308, 1607–1609 (2005).
[Crossref]

P. Schuck, D. Fromm, A. Sundaramurthy, G. Kino, and W. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94, 017402 (2005).
[Crossref]

A. Bouhelier, R. Bachelot, G. Lerondel, S. Kostcheev, P. Royer, and G. Wiederrecht, “Surface plasmon characteristics of tunable photoluminescence in single gold nanorods,” Phys. Rev. Lett. 95, 267405 (2005).
[Crossref]

A. Sundaramurthy, K. B. Crozier, G. S. Kino, D. P. Fromm, P. J. Schuck, and W. E. Moerner, “Field enhancement and gap-dependent resonance in a system of two opposing tip-to-tip Au nanotriangles,” Phys. Rev. B 72, 1–6 (2005).
[Crossref]

2004 (3)

P. Nordlander, C. Oubre, E. Prodan, K. Li, and I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4, 899–903 (2004).
[Crossref]

C. M. Aguirre, C. E. Moran, J. F. Young, and N. J. Halas, “Laser-induced reshaping of metallodielectric nanoshells under femtosecond and nanosecond plasmon resonant illumination,” J. Phys. Chem. B 108, 7040–7045 (2004).
[Crossref]

D. Fromm, A. Sundaramurthy, P. Schuck, G. Kino, and W. E. Moerner, “Gap-dependent optical coupling of single bowtie nanoantennas resonant in the visible,” Nano Lett. 4, 957–961 (2004).
[Crossref]

2003 (1)

M. R. Beversluis, A. Bouhelier, and L. Novotny, “Continuum generation from single gold nanostructures through near-field mediated intraband transitions,” Phys. Rev. B 68, 115433 (2003).
[Crossref]

1999 (1)

H. Park, A. K. L. Lim, A. P. Alivisatos, J. Park, and P. L. McEuen, “Fabrication of metallic electrodes with nanometer separation by electromigration,” Appl. Phys. Lett. 75, 301 (1999).
[Crossref]

1998 (1)

A. Fiore, V. Berger, E. Rosencher, P. Bravetti, and J. Nagle, “Phase matching using an isotropic nonlinear optical material,” Nature 391, 463–466 (1998).

1993 (1)

O. Marti, H. Bielefeldt, B. Hecht, S. Herminghaus, P. Leiderer, and J. Mlynek, “Near-field optical measurement of the surface plasmon field,” Opt. Commun. 96, 225–228 (1993).
[Crossref]

Adam, P.-M.

C. Hubert, L. Billot, P.-M. Adam, R. Bachelot, P. Royer, J. Grand, D. Gindre, K. Dorkenoo, and A. Fort, “Role of surface plasmon in second harmonic generation from gold nanorods,” Appl. Phys. Lett. 90, 181105 (2007).
[Crossref]

Agio, M.

M. Agio and A. Alù, Optical Antennas (Cambridge University, 2013).

Aguirre, C. M.

C. M. Aguirre, C. E. Moran, J. F. Young, and N. J. Halas, “Laser-induced reshaping of metallodielectric nanoshells under femtosecond and nanosecond plasmon resonant illumination,” J. Phys. Chem. B 108, 7040–7045 (2004).
[Crossref]

Aizpurua, J.

D. Marinica, A. Kazansky, P. Nordlander, J. Aizpurua, and A. G. Borisov, “Quantum plasmonics: nonlinear effects in the field enhancement of a plasmonic nanoparticle dimer,” Nano Lett. 12, 1333–1339 (2012).
[Crossref]

R. Esteban, A. G. Borisov, P. Nordlander, and J. Aizpurua, “Bridging quantum and classical plasmonics with a quantum-corrected model,” Nat. Commun. 3, 825 (2012).
[Crossref]

K. J. Savage, M. M. Hawkeye, R. Esteban, A. G. Borisov, J. Aizpurua, and J. J. Baumberg, “Revealing the quantum regime in tunnelling plasmonics,” Nature 491, 574–577 (2012).

Alivisatos, A. P.

H. Park, A. K. L. Lim, A. P. Alivisatos, J. Park, and P. L. McEuen, “Fabrication of metallic electrodes with nanometer separation by electromigration,” Appl. Phys. Lett. 75, 301 (1999).
[Crossref]

Alù, A.

M. Agio and A. Alù, Optical Antennas (Cambridge University, 2013).

Aluì, A.

N. Liu, F. Wen, Y. Zhao, Y. Wang, P. Nordlander, N. J. Halas, and A. Aluì, “Individual nanoantennas loaded with three-dimensional optical nanocircuits,” Nano Lett. 13, 142–147 (2013).
[Crossref]

Ambekar, R.

K. Ko, A. Kumar, K. Fung, R. Ambekar, G. Liu, N. Fang, and K. Toussaint, “Nonlinear optical response from arrays of Au bowtie nanoantennas,” Nano Lett. 11, 61–65 (2011).
[Crossref]

Aouani, H.

H. Aouani, M. Rahmani, M. Navarro-Ca, and S. A. Maier, “Third-harmonic-upconversion enhancement from a single semiconductor nanoparticle coupled to a plasmonic antenna,” Nat. Nanotechnol. 9, 290–294 (2014).
[Crossref]

Bachelot, R.

C. Hubert, L. Billot, P.-M. Adam, R. Bachelot, P. Royer, J. Grand, D. Gindre, K. Dorkenoo, and A. Fort, “Role of surface plasmon in second harmonic generation from gold nanorods,” Appl. Phys. Lett. 90, 181105 (2007).
[Crossref]

A. Bouhelier, R. Bachelot, G. Lerondel, S. Kostcheev, P. Royer, and G. Wiederrecht, “Surface plasmon characteristics of tunable photoluminescence in single gold nanorods,” Phys. Rev. Lett. 95, 267405 (2005).
[Crossref]

Bao, K.

A. L. Koh, K. Bao, I. Khan, W. E. Smith, G. Kothleitner, P. Nordlander, S. A. Maier, and D. W. McComb, “Electron energy-loss spectroscopy (EELS) of surface plasmons in single silver nanoparticles and dimers: influence of beam damage and mapping of dark modes,” ACS Nano 3, 3015–3022 (2009).
[Crossref]

Barnard, E. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
[Crossref]

Bartl, J.

M. Kaniber, K. Schraml, A. Regler, J. Bartl, G. Glashagen, F. Flassig, J. Wierzbowski, and J. J. Finley, “Surface plasmon resonance spectroscopy of single bowtie nano-antennas using a differential reflectivity method,” Sci. Rep. 6, 23203 (2016).
[Crossref]

K. Schraml, M. Spiegl, M. Kammerlocher, G. Bracher, J. Bartl, T. Campbell, J. Finley, and M. Kaniber, “Optical properties and interparticle coupling of plasmonic bowtie nanoantennas on a semiconducting substrate,” Phys. Rev. B 90, 035435 (2014).
[Crossref]

Baselli, M.

M. Celebrano, X. Wu, M. Baselli, S. Großmann, P. Biagioni, A. Locatelli, C. De Angelis, G. Cerullo, R. Osellame, B. Hecht, L. Duò, F. Ciccacci, and M. Finazzi, “Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation,” Nat. Nanotechnol. 10, 412–417 (2015).
[Crossref]

Baumberg, J. J.

K. J. Savage, M. M. Hawkeye, R. Esteban, A. G. Borisov, J. Aizpurua, and J. J. Baumberg, “Revealing the quantum regime in tunnelling plasmonics,” Nature 491, 574–577 (2012).

Becker, S. F.

H. Kollmann, X. Piao, M. Esmann, S. F. Becker, D. Hou, C. Huynh, L.-O. Kautschor, G. Bösker, H. Vieker, A. Beyer, A. Gölzhäuser, P. Namkyoo, R. Vogelgesang, M. Silies, and C. Lienau, “Toward plasmonics with nanometer precision: nonlinear optics of helium-ion milled gold nanoantennas,” Nano Lett. 14, 4778–4784 (2014).
[Crossref]

Berger, V.

A. Fiore, V. Berger, E. Rosencher, P. Bravetti, and J. Nagle, “Phase matching using an isotropic nonlinear optical material,” Nature 391, 463–466 (1998).

Berthelot, J.

A. Stolz, J. Berthelot, M. M. Mennemanteuil, G. Colas Des Francs, L. Markey, V. Meunier, and A. Bouhelier, “Nonlinear photon-assisted tunneling transport in optical gap antennas,” Nano Lett. 14, 2330–2338 (2014).
[Crossref]

Beversluis, M. R.

M. R. Beversluis, A. Bouhelier, and L. Novotny, “Continuum generation from single gold nanostructures through near-field mediated intraband transitions,” Phys. Rev. B 68, 115433 (2003).
[Crossref]

Beyer, A.

H. Kollmann, X. Piao, M. Esmann, S. F. Becker, D. Hou, C. Huynh, L.-O. Kautschor, G. Bösker, H. Vieker, A. Beyer, A. Gölzhäuser, P. Namkyoo, R. Vogelgesang, M. Silies, and C. Lienau, “Toward plasmonics with nanometer precision: nonlinear optics of helium-ion milled gold nanoantennas,” Nano Lett. 14, 4778–4784 (2014).
[Crossref]

Biagioni, P.

M. Celebrano, X. Wu, M. Baselli, S. Großmann, P. Biagioni, A. Locatelli, C. De Angelis, G. Cerullo, R. Osellame, B. Hecht, L. Duò, F. Ciccacci, and M. Finazzi, “Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation,” Nat. Nanotechnol. 10, 412–417 (2015).
[Crossref]

P. Biagioni, D. Brida, J.-S. Huang, J. Kern, L. Duò, B. Hecht, M. Finazzi, and G. Cerullo, “Dynamics of four-photon photoluminescence in gold nanoantennas,” Nano Lett. 12, 2941–2947 (2012).
[Crossref]

P. Biagioni, B. Hecht, and J.-S. Huang, “Nanoantennas for visible and infrared radiation,” Rep. Prog. Phys. 75, 024402 (2012).
[Crossref]

P. Biagioni, M. Celebrano, M. Savoini, G. Grancini, D. Brida, S. Mátéfi-Tempfli, M. Mátéfi-Tempfli, L. Duò, B. Hecht, G. Cerullo, and M. Finazzi, “Dependence of the two-photon photoluminescence yield of gold nanostructures on the laser pulse duration,” Phys. Rev. B 80, 045411 (2009).
[Crossref]

Bielefeldt, H.

O. Marti, H. Bielefeldt, B. Hecht, S. Herminghaus, P. Leiderer, and J. Mlynek, “Near-field optical measurement of the surface plasmon field,” Opt. Commun. 96, 225–228 (1993).
[Crossref]

Billot, L.

C. Hubert, L. Billot, P.-M. Adam, R. Bachelot, P. Royer, J. Grand, D. Gindre, K. Dorkenoo, and A. Fort, “Role of surface plasmon in second harmonic generation from gold nanorods,” Appl. Phys. Lett. 90, 181105 (2007).
[Crossref]

Borisov, A. G.

K. J. Savage, M. M. Hawkeye, R. Esteban, A. G. Borisov, J. Aizpurua, and J. J. Baumberg, “Revealing the quantum regime in tunnelling plasmonics,” Nature 491, 574–577 (2012).

R. Esteban, A. G. Borisov, P. Nordlander, and J. Aizpurua, “Bridging quantum and classical plasmonics with a quantum-corrected model,” Nat. Commun. 3, 825 (2012).
[Crossref]

D. Marinica, A. Kazansky, P. Nordlander, J. Aizpurua, and A. G. Borisov, “Quantum plasmonics: nonlinear effects in the field enhancement of a plasmonic nanoparticle dimer,” Nano Lett. 12, 1333–1339 (2012).
[Crossref]

Borneman, J. D.

K.-P. Chen, V. P. Drachev, J. D. Borneman, A. V. Kildishev, and V. M. Shalaev, “Drude relaxation rate in grained gold nanoantennas,” Nano Lett. 10, 916–922 (2010).
[Crossref]

Bösker, G.

H. Kollmann, X. Piao, M. Esmann, S. F. Becker, D. Hou, C. Huynh, L.-O. Kautschor, G. Bösker, H. Vieker, A. Beyer, A. Gölzhäuser, P. Namkyoo, R. Vogelgesang, M. Silies, and C. Lienau, “Toward plasmonics with nanometer precision: nonlinear optics of helium-ion milled gold nanoantennas,” Nano Lett. 14, 4778–4784 (2014).
[Crossref]

Bouhelier, A.

A. Stolz, J. Berthelot, M. M. Mennemanteuil, G. Colas Des Francs, L. Markey, V. Meunier, and A. Bouhelier, “Nonlinear photon-assisted tunneling transport in optical gap antennas,” Nano Lett. 14, 2330–2338 (2014).
[Crossref]

A. Bouhelier, R. Bachelot, G. Lerondel, S. Kostcheev, P. Royer, and G. Wiederrecht, “Surface plasmon characteristics of tunable photoluminescence in single gold nanorods,” Phys. Rev. Lett. 95, 267405 (2005).
[Crossref]

M. R. Beversluis, A. Bouhelier, and L. Novotny, “Continuum generation from single gold nanostructures through near-field mediated intraband transitions,” Phys. Rev. B 68, 115433 (2003).
[Crossref]

Bozhevolnyi, S. I.

D. K. Gramotnev and S. I. Bozhevolnyi, “Nanofocusing of electromagnetic radiation,” Nat. Photonics 8, 13–22 (2013).
[Crossref]

Bracher, G.

K. Schraml, M. Spiegl, M. Kammerlocher, G. Bracher, J. Bartl, T. Campbell, J. Finley, and M. Kaniber, “Optical properties and interparticle coupling of plasmonic bowtie nanoantennas on a semiconducting substrate,” Phys. Rev. B 90, 035435 (2014).
[Crossref]

Bratschitsch, R.

T. Hanke, J. Cesar, V. Knittel, A. Trügler, U. Hohenester, A. Leitenstorfer, and R. Bratschitsch, “Tailoring spatiotemporal light confinement in single plasmonic nanoantennas,” Nano Lett. 12, 992–996 (2012).
[Crossref]

T. Hanke, G. Krauss, D. Träutlein, B. Wild, R. Bratschitsch, and A. Leitenstorfer, “Efficient nonlinear light emission of single gold optical antennas driven by few-cycle near-infrared pulses,” Phys. Rev. Lett. 103, 257404 (2009).
[Crossref]

Bravetti, P.

A. Fiore, V. Berger, E. Rosencher, P. Bravetti, and J. Nagle, “Phase matching using an isotropic nonlinear optical material,” Nature 391, 463–466 (1998).

Brida, D.

V. Knittel, M. Fischer, T. de Roo, S. Mecking, A. Leitenstorfer, and D. Brida, “Nonlinear photoluminescence spectrum of single gold nanostructures,” ACS Nano 9, 894–900 (2015).
[Crossref]

P. Biagioni, D. Brida, J.-S. Huang, J. Kern, L. Duò, B. Hecht, M. Finazzi, and G. Cerullo, “Dynamics of four-photon photoluminescence in gold nanoantennas,” Nano Lett. 12, 2941–2947 (2012).
[Crossref]

P. Biagioni, M. Celebrano, M. Savoini, G. Grancini, D. Brida, S. Mátéfi-Tempfli, M. Mátéfi-Tempfli, L. Duò, B. Hecht, G. Cerullo, and M. Finazzi, “Dependence of the two-photon photoluminescence yield of gold nanostructures on the laser pulse duration,” Phys. Rev. B 80, 045411 (2009).
[Crossref]

Brinks, D.

D. Brinks, M. Castro-Lopez, R. Hildner, and N. F. van Hulst, “Plasmonic antennas as design elements for coherent ultrafast nanophotonics,” Proc. Natl. Acad. Sci. USA 110, 18386–18390 (2013).
[Crossref]

Brongersma, M. L.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
[Crossref]

Bunton, P.

M. McMahon, R. Lopez, R. Haglund, E. Ray, and P. Bunton, “Second-harmonic generation from arrays of symmetric gold nanoparticles,” Phys. Rev. B 73, 041401 (2006).
[Crossref]

Cai, W.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
[Crossref]

Campbell, T.

K. Schraml, M. Spiegl, M. Kammerlocher, G. Bracher, J. Bartl, T. Campbell, J. Finley, and M. Kaniber, “Optical properties and interparticle coupling of plasmonic bowtie nanoantennas on a semiconducting substrate,” Phys. Rev. B 90, 035435 (2014).
[Crossref]

Castro-Lopez, M.

D. Brinks, M. Castro-Lopez, R. Hildner, and N. F. van Hulst, “Plasmonic antennas as design elements for coherent ultrafast nanophotonics,” Proc. Natl. Acad. Sci. USA 110, 18386–18390 (2013).
[Crossref]

Celebrano, M.

M. Celebrano, X. Wu, M. Baselli, S. Großmann, P. Biagioni, A. Locatelli, C. De Angelis, G. Cerullo, R. Osellame, B. Hecht, L. Duò, F. Ciccacci, and M. Finazzi, “Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation,” Nat. Nanotechnol. 10, 412–417 (2015).
[Crossref]

P. Biagioni, M. Celebrano, M. Savoini, G. Grancini, D. Brida, S. Mátéfi-Tempfli, M. Mátéfi-Tempfli, L. Duò, B. Hecht, G. Cerullo, and M. Finazzi, “Dependence of the two-photon photoluminescence yield of gold nanostructures on the laser pulse duration,” Phys. Rev. B 80, 045411 (2009).
[Crossref]

Cerullo, G.

M. Celebrano, X. Wu, M. Baselli, S. Großmann, P. Biagioni, A. Locatelli, C. De Angelis, G. Cerullo, R. Osellame, B. Hecht, L. Duò, F. Ciccacci, and M. Finazzi, “Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation,” Nat. Nanotechnol. 10, 412–417 (2015).
[Crossref]

P. Biagioni, D. Brida, J.-S. Huang, J. Kern, L. Duò, B. Hecht, M. Finazzi, and G. Cerullo, “Dynamics of four-photon photoluminescence in gold nanoantennas,” Nano Lett. 12, 2941–2947 (2012).
[Crossref]

P. Biagioni, M. Celebrano, M. Savoini, G. Grancini, D. Brida, S. Mátéfi-Tempfli, M. Mátéfi-Tempfli, L. Duò, B. Hecht, G. Cerullo, and M. Finazzi, “Dependence of the two-photon photoluminescence yield of gold nanostructures on the laser pulse duration,” Phys. Rev. B 80, 045411 (2009).
[Crossref]

Cesar, J.

T. Hanke, J. Cesar, V. Knittel, A. Trügler, U. Hohenester, A. Leitenstorfer, and R. Bratschitsch, “Tailoring spatiotemporal light confinement in single plasmonic nanoantennas,” Nano Lett. 12, 992–996 (2012).
[Crossref]

Chen, K.-P.

K.-P. Chen, V. P. Drachev, J. D. Borneman, A. V. Kildishev, and V. M. Shalaev, “Drude relaxation rate in grained gold nanoantennas,” Nano Lett. 10, 916–922 (2010).
[Crossref]

Chen, X.

Chen, Y.

Ciccacci, F.

M. Celebrano, X. Wu, M. Baselli, S. Großmann, P. Biagioni, A. Locatelli, C. De Angelis, G. Cerullo, R. Osellame, B. Hecht, L. Duò, F. Ciccacci, and M. Finazzi, “Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation,” Nat. Nanotechnol. 10, 412–417 (2015).
[Crossref]

Colas Des Francs, G.

A. Stolz, J. Berthelot, M. M. Mennemanteuil, G. Colas Des Francs, L. Markey, V. Meunier, and A. Bouhelier, “Nonlinear photon-assisted tunneling transport in optical gap antennas,” Nano Lett. 14, 2330–2338 (2014).
[Crossref]

Crozier, K. B.

A. Sundaramurthy, K. B. Crozier, G. S. Kino, D. P. Fromm, P. J. Schuck, and W. E. Moerner, “Field enhancement and gap-dependent resonance in a system of two opposing tip-to-tip Au nanotriangles,” Phys. Rev. B 72, 1–6 (2005).
[Crossref]

Danckwerts, M.

M. Danckwerts and L. Novotny, “Optical frequency mixing at coupled gold nanoparticles,” Phys. Rev. Lett. 98, 026104 (2007).
[Crossref]

De Angelis, C.

M. Celebrano, X. Wu, M. Baselli, S. Großmann, P. Biagioni, A. Locatelli, C. De Angelis, G. Cerullo, R. Osellame, B. Hecht, L. Duò, F. Ciccacci, and M. Finazzi, “Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation,” Nat. Nanotechnol. 10, 412–417 (2015).
[Crossref]

de Roo, T.

V. Knittel, M. Fischer, T. de Roo, S. Mecking, A. Leitenstorfer, and D. Brida, “Nonlinear photoluminescence spectrum of single gold nanostructures,” ACS Nano 9, 894–900 (2015).
[Crossref]

Dionne, J. A.

J. A. Scholl, A. L. Koh, and J. A. Dionne, “Quantum plasmon resonances of individual metallic nanoparticles,” Nature 483, 421–427 (2012).

Dorkenoo, K.

C. Hubert, L. Billot, P.-M. Adam, R. Bachelot, P. Royer, J. Grand, D. Gindre, K. Dorkenoo, and A. Fort, “Role of surface plasmon in second harmonic generation from gold nanorods,” Appl. Phys. Lett. 90, 181105 (2007).
[Crossref]

Drachev, V. P.

K.-P. Chen, V. P. Drachev, J. D. Borneman, A. V. Kildishev, and V. M. Shalaev, “Drude relaxation rate in grained gold nanoantennas,” Nano Lett. 10, 916–922 (2010).
[Crossref]

Duò, L.

M. Celebrano, X. Wu, M. Baselli, S. Großmann, P. Biagioni, A. Locatelli, C. De Angelis, G. Cerullo, R. Osellame, B. Hecht, L. Duò, F. Ciccacci, and M. Finazzi, “Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation,” Nat. Nanotechnol. 10, 412–417 (2015).
[Crossref]

P. Biagioni, D. Brida, J.-S. Huang, J. Kern, L. Duò, B. Hecht, M. Finazzi, and G. Cerullo, “Dynamics of four-photon photoluminescence in gold nanoantennas,” Nano Lett. 12, 2941–2947 (2012).
[Crossref]

P. Biagioni, M. Celebrano, M. Savoini, G. Grancini, D. Brida, S. Mátéfi-Tempfli, M. Mátéfi-Tempfli, L. Duò, B. Hecht, G. Cerullo, and M. Finazzi, “Dependence of the two-photon photoluminescence yield of gold nanostructures on the laser pulse duration,” Phys. Rev. B 80, 045411 (2009).
[Crossref]

Eisler, H.

P. Mühlschlegel, H. Eisler, O. Martin, B. Hecht, and D. Pohl, “Resonant optical antennas,” Science 308, 1607–1609 (2005).
[Crossref]

Emmerling, M.

J. C. Prangsma, J. Kern, A. G. Knapp, S. Grossmann, M. Emmerling, M. Kamp, and B. Hecht, “Electrically connected resonant optical antennas,” Nano Lett. 12, 3915–3919 (2012).
[Crossref]

Esmann, M.

H. Kollmann, X. Piao, M. Esmann, S. F. Becker, D. Hou, C. Huynh, L.-O. Kautschor, G. Bösker, H. Vieker, A. Beyer, A. Gölzhäuser, P. Namkyoo, R. Vogelgesang, M. Silies, and C. Lienau, “Toward plasmonics with nanometer precision: nonlinear optics of helium-ion milled gold nanoantennas,” Nano Lett. 14, 4778–4784 (2014).
[Crossref]

Esteban, R.

K. J. Savage, M. M. Hawkeye, R. Esteban, A. G. Borisov, J. Aizpurua, and J. J. Baumberg, “Revealing the quantum regime in tunnelling plasmonics,” Nature 491, 574–577 (2012).

R. Esteban, A. G. Borisov, P. Nordlander, and J. Aizpurua, “Bridging quantum and classical plasmonics with a quantum-corrected model,” Nat. Commun. 3, 825 (2012).
[Crossref]

Fang, N.

K. Ko, A. Kumar, K. Fung, R. Ambekar, G. Liu, N. Fang, and K. Toussaint, “Nonlinear optical response from arrays of Au bowtie nanoantennas,” Nano Lett. 11, 61–65 (2011).
[Crossref]

Fernández-Domínguez, A. I.

A. L. Koh, A. I. Fernández-Domínguez, D. W. McComb, S. A. Maier, and J. K. Yang, “High-resolution mapping of electron-beam-excited plasmon modes in lithographically defined gold nanostructures,” Nano Lett. 11, 1323–1330 (2011).
[Crossref]

Ferrari, A. C.

O. M. Maragò, P. H. Jones, P. G. Gucciardi, G. Volpe, and A. C. Ferrari, “Optical trapping and manipulation of nanostructures,” Nat. Nanotechnol. 8, 807–819 (2013).
[Crossref]

Finazzi, M.

M. Celebrano, X. Wu, M. Baselli, S. Großmann, P. Biagioni, A. Locatelli, C. De Angelis, G. Cerullo, R. Osellame, B. Hecht, L. Duò, F. Ciccacci, and M. Finazzi, “Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation,” Nat. Nanotechnol. 10, 412–417 (2015).
[Crossref]

P. Biagioni, D. Brida, J.-S. Huang, J. Kern, L. Duò, B. Hecht, M. Finazzi, and G. Cerullo, “Dynamics of four-photon photoluminescence in gold nanoantennas,” Nano Lett. 12, 2941–2947 (2012).
[Crossref]

P. Biagioni, M. Celebrano, M. Savoini, G. Grancini, D. Brida, S. Mátéfi-Tempfli, M. Mátéfi-Tempfli, L. Duò, B. Hecht, G. Cerullo, and M. Finazzi, “Dependence of the two-photon photoluminescence yield of gold nanostructures on the laser pulse duration,” Phys. Rev. B 80, 045411 (2009).
[Crossref]

Finley, J.

K. Schraml, M. Spiegl, M. Kammerlocher, G. Bracher, J. Bartl, T. Campbell, J. Finley, and M. Kaniber, “Optical properties and interparticle coupling of plasmonic bowtie nanoantennas on a semiconducting substrate,” Phys. Rev. B 90, 035435 (2014).
[Crossref]

Finley, J. J.

M. Kaniber, K. Schraml, A. Regler, J. Bartl, G. Glashagen, F. Flassig, J. Wierzbowski, and J. J. Finley, “Surface plasmon resonance spectroscopy of single bowtie nano-antennas using a differential reflectivity method,” Sci. Rep. 6, 23203 (2016).
[Crossref]

Fiore, A.

A. Fiore, V. Berger, E. Rosencher, P. Bravetti, and J. Nagle, “Phase matching using an isotropic nonlinear optical material,” Nature 391, 463–466 (1998).

Fischer, H.

Fischer, M.

V. Knittel, M. Fischer, T. de Roo, S. Mecking, A. Leitenstorfer, and D. Brida, “Nonlinear photoluminescence spectrum of single gold nanostructures,” ACS Nano 9, 894–900 (2015).
[Crossref]

Flassig, F.

M. Kaniber, K. Schraml, A. Regler, J. Bartl, G. Glashagen, F. Flassig, J. Wierzbowski, and J. J. Finley, “Surface plasmon resonance spectroscopy of single bowtie nano-antennas using a differential reflectivity method,” Sci. Rep. 6, 23203 (2016).
[Crossref]

Fort, A.

C. Hubert, L. Billot, P.-M. Adam, R. Bachelot, P. Royer, J. Grand, D. Gindre, K. Dorkenoo, and A. Fort, “Role of surface plasmon in second harmonic generation from gold nanorods,” Appl. Phys. Lett. 90, 181105 (2007).
[Crossref]

Fromm, D.

P. Schuck, D. Fromm, A. Sundaramurthy, G. Kino, and W. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94, 017402 (2005).
[Crossref]

D. Fromm, A. Sundaramurthy, P. Schuck, G. Kino, and W. E. Moerner, “Gap-dependent optical coupling of single bowtie nanoantennas resonant in the visible,” Nano Lett. 4, 957–961 (2004).
[Crossref]

Fromm, D. P.

A. Sundaramurthy, K. B. Crozier, G. S. Kino, D. P. Fromm, P. J. Schuck, and W. E. Moerner, “Field enhancement and gap-dependent resonance in a system of two opposing tip-to-tip Au nanotriangles,” Phys. Rev. B 72, 1–6 (2005).
[Crossref]

Fung, K.

K. Ko, A. Kumar, K. Fung, R. Ambekar, G. Liu, N. Fang, and K. Toussaint, “Nonlinear optical response from arrays of Au bowtie nanoantennas,” Nano Lett. 11, 61–65 (2011).
[Crossref]

Giessen, H.

T. Schumacher, K. Kratzer, D. Molnar, M. Hentschel, H. Giessen, and M. Lippitz, “Nanoantenna-enhanced ultrafast nonlinear spectroscopy of a single gold nanoparticle,” Nat. Commun. 2, 333 (2011).
[Crossref]

Gindre, D.

C. Hubert, L. Billot, P.-M. Adam, R. Bachelot, P. Royer, J. Grand, D. Gindre, K. Dorkenoo, and A. Fort, “Role of surface plasmon in second harmonic generation from gold nanorods,” Appl. Phys. Lett. 90, 181105 (2007).
[Crossref]

Glashagen, G.

M. Kaniber, K. Schraml, A. Regler, J. Bartl, G. Glashagen, F. Flassig, J. Wierzbowski, and J. J. Finley, “Surface plasmon resonance spectroscopy of single bowtie nano-antennas using a differential reflectivity method,” Sci. Rep. 6, 23203 (2016).
[Crossref]

Gölzhäuser, A.

H. Kollmann, X. Piao, M. Esmann, S. F. Becker, D. Hou, C. Huynh, L.-O. Kautschor, G. Bösker, H. Vieker, A. Beyer, A. Gölzhäuser, P. Namkyoo, R. Vogelgesang, M. Silies, and C. Lienau, “Toward plasmonics with nanometer precision: nonlinear optics of helium-ion milled gold nanoantennas,” Nano Lett. 14, 4778–4784 (2014).
[Crossref]

Gottheim, S.

F. Wen, Y. Zhang, S. Gottheim, N. S. King, Y. Zhang, P. Nordlander, and N. J. Halas, “Charge transfer plasmons: optical frequency conductances and tunable infrared resonances,” ACS Nano 9, 6428–6435 (2015).
[Crossref]

Grady, N. K.

D. R. Ward, N. K. Grady, C. S. Levin, N. J. Halas, Y. Wu, P. Nordlander, and D. Natelson, “Electromigrated nanoscale gaps for surface-enhanced Raman spectroscopy,” Nano Lett. 7, 1396–1400 (2007).
[Crossref]

Gramotnev, D. K.

D. K. Gramotnev and S. I. Bozhevolnyi, “Nanofocusing of electromagnetic radiation,” Nat. Photonics 8, 13–22 (2013).
[Crossref]

Grancini, G.

P. Biagioni, M. Celebrano, M. Savoini, G. Grancini, D. Brida, S. Mátéfi-Tempfli, M. Mátéfi-Tempfli, L. Duò, B. Hecht, G. Cerullo, and M. Finazzi, “Dependence of the two-photon photoluminescence yield of gold nanostructures on the laser pulse duration,” Phys. Rev. B 80, 045411 (2009).
[Crossref]

Grand, J.

C. Hubert, L. Billot, P.-M. Adam, R. Bachelot, P. Royer, J. Grand, D. Gindre, K. Dorkenoo, and A. Fort, “Role of surface plasmon in second harmonic generation from gold nanorods,” Appl. Phys. Lett. 90, 181105 (2007).
[Crossref]

Großmann, S.

M. Celebrano, X. Wu, M. Baselli, S. Großmann, P. Biagioni, A. Locatelli, C. De Angelis, G. Cerullo, R. Osellame, B. Hecht, L. Duò, F. Ciccacci, and M. Finazzi, “Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation,” Nat. Nanotechnol. 10, 412–417 (2015).
[Crossref]

Grossmann, S.

J. C. Prangsma, J. Kern, A. G. Knapp, S. Grossmann, M. Emmerling, M. Kamp, and B. Hecht, “Electrically connected resonant optical antennas,” Nano Lett. 12, 3915–3919 (2012).
[Crossref]

Gucciardi, P. G.

O. M. Maragò, P. H. Jones, P. G. Gucciardi, G. Volpe, and A. C. Ferrari, “Optical trapping and manipulation of nanostructures,” Nat. Nanotechnol. 8, 807–819 (2013).
[Crossref]

Haglund, R.

M. McMahon, R. Lopez, R. Haglund, E. Ray, and P. Bunton, “Second-harmonic generation from arrays of symmetric gold nanoparticles,” Phys. Rev. B 73, 041401 (2006).
[Crossref]

Halas, N. J.

F. Wen, Y. Zhang, S. Gottheim, N. S. King, Y. Zhang, P. Nordlander, and N. J. Halas, “Charge transfer plasmons: optical frequency conductances and tunable infrared resonances,” ACS Nano 9, 6428–6435 (2015).
[Crossref]

N. Liu, F. Wen, Y. Zhao, Y. Wang, P. Nordlander, N. J. Halas, and A. Aluì, “Individual nanoantennas loaded with three-dimensional optical nanocircuits,” Nano Lett. 13, 142–147 (2013).
[Crossref]

D. R. Ward, N. K. Grady, C. S. Levin, N. J. Halas, Y. Wu, P. Nordlander, and D. Natelson, “Electromigrated nanoscale gaps for surface-enhanced Raman spectroscopy,” Nano Lett. 7, 1396–1400 (2007).
[Crossref]

C. M. Aguirre, C. E. Moran, J. F. Young, and N. J. Halas, “Laser-induced reshaping of metallodielectric nanoshells under femtosecond and nanosecond plasmon resonant illumination,” J. Phys. Chem. B 108, 7040–7045 (2004).
[Crossref]

Hanke, T.

T. Hanke, J. Cesar, V. Knittel, A. Trügler, U. Hohenester, A. Leitenstorfer, and R. Bratschitsch, “Tailoring spatiotemporal light confinement in single plasmonic nanoantennas,” Nano Lett. 12, 992–996 (2012).
[Crossref]

T. Hanke, G. Krauss, D. Träutlein, B. Wild, R. Bratschitsch, and A. Leitenstorfer, “Efficient nonlinear light emission of single gold optical antennas driven by few-cycle near-infrared pulses,” Phys. Rev. Lett. 103, 257404 (2009).
[Crossref]

Hao, J.

Hawkeye, M. M.

K. J. Savage, M. M. Hawkeye, R. Esteban, A. G. Borisov, J. Aizpurua, and J. J. Baumberg, “Revealing the quantum regime in tunnelling plasmonics,” Nature 491, 574–577 (2012).

Hecht, B.

M. Celebrano, X. Wu, M. Baselli, S. Großmann, P. Biagioni, A. Locatelli, C. De Angelis, G. Cerullo, R. Osellame, B. Hecht, L. Duò, F. Ciccacci, and M. Finazzi, “Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation,” Nat. Nanotechnol. 10, 412–417 (2015).
[Crossref]

P. Biagioni, D. Brida, J.-S. Huang, J. Kern, L. Duò, B. Hecht, M. Finazzi, and G. Cerullo, “Dynamics of four-photon photoluminescence in gold nanoantennas,” Nano Lett. 12, 2941–2947 (2012).
[Crossref]

P. Biagioni, B. Hecht, and J.-S. Huang, “Nanoantennas for visible and infrared radiation,” Rep. Prog. Phys. 75, 024402 (2012).
[Crossref]

J. C. Prangsma, J. Kern, A. G. Knapp, S. Grossmann, M. Emmerling, M. Kamp, and B. Hecht, “Electrically connected resonant optical antennas,” Nano Lett. 12, 3915–3919 (2012).
[Crossref]

P. Biagioni, M. Celebrano, M. Savoini, G. Grancini, D. Brida, S. Mátéfi-Tempfli, M. Mátéfi-Tempfli, L. Duò, B. Hecht, G. Cerullo, and M. Finazzi, “Dependence of the two-photon photoluminescence yield of gold nanostructures on the laser pulse duration,” Phys. Rev. B 80, 045411 (2009).
[Crossref]

P. Mühlschlegel, H. Eisler, O. Martin, B. Hecht, and D. Pohl, “Resonant optical antennas,” Science 308, 1607–1609 (2005).
[Crossref]

O. Marti, H. Bielefeldt, B. Hecht, S. Herminghaus, P. Leiderer, and J. Mlynek, “Near-field optical measurement of the surface plasmon field,” Opt. Commun. 96, 225–228 (1993).
[Crossref]

Hentschel, M.

T. Schumacher, K. Kratzer, D. Molnar, M. Hentschel, H. Giessen, and M. Lippitz, “Nanoantenna-enhanced ultrafast nonlinear spectroscopy of a single gold nanoparticle,” Nat. Commun. 2, 333 (2011).
[Crossref]

Herminghaus, S.

O. Marti, H. Bielefeldt, B. Hecht, S. Herminghaus, P. Leiderer, and J. Mlynek, “Near-field optical measurement of the surface plasmon field,” Opt. Commun. 96, 225–228 (1993).
[Crossref]

Hildner, R.

D. Brinks, M. Castro-Lopez, R. Hildner, and N. F. van Hulst, “Plasmonic antennas as design elements for coherent ultrafast nanophotonics,” Proc. Natl. Acad. Sci. USA 110, 18386–18390 (2013).
[Crossref]

Hohenester, U.

T. Hanke, J. Cesar, V. Knittel, A. Trügler, U. Hohenester, A. Leitenstorfer, and R. Bratschitsch, “Tailoring spatiotemporal light confinement in single plasmonic nanoantennas,” Nano Lett. 12, 992–996 (2012).
[Crossref]

Højlund-Nielsen, E.

X. Zhu, C. Vannahme, E. Højlund-Nielsen, N. A. Mortensen, and A. Kristensen, “Plasmonic colour laser printing,” Nat. Nanotechnol. 11, 325–329 (2015).
[Crossref]

Hou, D.

H. Kollmann, X. Piao, M. Esmann, S. F. Becker, D. Hou, C. Huynh, L.-O. Kautschor, G. Bösker, H. Vieker, A. Beyer, A. Gölzhäuser, P. Namkyoo, R. Vogelgesang, M. Silies, and C. Lienau, “Toward plasmonics with nanometer precision: nonlinear optics of helium-ion milled gold nanoantennas,” Nano Lett. 14, 4778–4784 (2014).
[Crossref]

Huang, J.-S.

P. Biagioni, B. Hecht, and J.-S. Huang, “Nanoantennas for visible and infrared radiation,” Rep. Prog. Phys. 75, 024402 (2012).
[Crossref]

P. Biagioni, D. Brida, J.-S. Huang, J. Kern, L. Duò, B. Hecht, M. Finazzi, and G. Cerullo, “Dynamics of four-photon photoluminescence in gold nanoantennas,” Nano Lett. 12, 2941–2947 (2012).
[Crossref]

Hubert, C.

C. Hubert, L. Billot, P.-M. Adam, R. Bachelot, P. Royer, J. Grand, D. Gindre, K. Dorkenoo, and A. Fort, “Role of surface plasmon in second harmonic generation from gold nanorods,” Appl. Phys. Lett. 90, 181105 (2007).
[Crossref]

Huynh, C.

H. Kollmann, X. Piao, M. Esmann, S. F. Becker, D. Hou, C. Huynh, L.-O. Kautschor, G. Bösker, H. Vieker, A. Beyer, A. Gölzhäuser, P. Namkyoo, R. Vogelgesang, M. Silies, and C. Lienau, “Toward plasmonics with nanometer precision: nonlinear optics of helium-ion milled gold nanoantennas,” Nano Lett. 14, 4778–4784 (2014).
[Crossref]

Jin, J.

S. Kim, J. Jin, Y. Kim, I. Park, Y. Kim, and S. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453, 757–760 (2008).

Jones, P. H.

O. M. Maragò, P. H. Jones, P. G. Gucciardi, G. Volpe, and A. C. Ferrari, “Optical trapping and manipulation of nanostructures,” Nat. Nanotechnol. 8, 807–819 (2013).
[Crossref]

Jun, Y. C.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
[Crossref]

Kammerlocher, M.

K. Schraml, M. Spiegl, M. Kammerlocher, G. Bracher, J. Bartl, T. Campbell, J. Finley, and M. Kaniber, “Optical properties and interparticle coupling of plasmonic bowtie nanoantennas on a semiconducting substrate,” Phys. Rev. B 90, 035435 (2014).
[Crossref]

Kamp, M.

J. C. Prangsma, J. Kern, A. G. Knapp, S. Grossmann, M. Emmerling, M. Kamp, and B. Hecht, “Electrically connected resonant optical antennas,” Nano Lett. 12, 3915–3919 (2012).
[Crossref]

Kaniber, M.

M. Kaniber, K. Schraml, A. Regler, J. Bartl, G. Glashagen, F. Flassig, J. Wierzbowski, and J. J. Finley, “Surface plasmon resonance spectroscopy of single bowtie nano-antennas using a differential reflectivity method,” Sci. Rep. 6, 23203 (2016).
[Crossref]

K. Schraml, M. Spiegl, M. Kammerlocher, G. Bracher, J. Bartl, T. Campbell, J. Finley, and M. Kaniber, “Optical properties and interparticle coupling of plasmonic bowtie nanoantennas on a semiconducting substrate,” Phys. Rev. B 90, 035435 (2014).
[Crossref]

Kauranen, M.

M. Kauranen and A. Zayats, “Nonlinear plasmonics,” Nat. Photonics 6, 737–748 (2012).
[Crossref]

Kautschor, L.-O.

H. Kollmann, X. Piao, M. Esmann, S. F. Becker, D. Hou, C. Huynh, L.-O. Kautschor, G. Bösker, H. Vieker, A. Beyer, A. Gölzhäuser, P. Namkyoo, R. Vogelgesang, M. Silies, and C. Lienau, “Toward plasmonics with nanometer precision: nonlinear optics of helium-ion milled gold nanoantennas,” Nano Lett. 14, 4778–4784 (2014).
[Crossref]

Kazansky, A.

D. Marinica, A. Kazansky, P. Nordlander, J. Aizpurua, and A. G. Borisov, “Quantum plasmonics: nonlinear effects in the field enhancement of a plasmonic nanoparticle dimer,” Nano Lett. 12, 1333–1339 (2012).
[Crossref]

Kern, J.

J. C. Prangsma, J. Kern, A. G. Knapp, S. Grossmann, M. Emmerling, M. Kamp, and B. Hecht, “Electrically connected resonant optical antennas,” Nano Lett. 12, 3915–3919 (2012).
[Crossref]

P. Biagioni, D. Brida, J.-S. Huang, J. Kern, L. Duò, B. Hecht, M. Finazzi, and G. Cerullo, “Dynamics of four-photon photoluminescence in gold nanoantennas,” Nano Lett. 12, 2941–2947 (2012).
[Crossref]

Khan, I.

A. L. Koh, K. Bao, I. Khan, W. E. Smith, G. Kothleitner, P. Nordlander, S. A. Maier, and D. W. McComb, “Electron energy-loss spectroscopy (EELS) of surface plasmons in single silver nanoparticles and dimers: influence of beam damage and mapping of dark modes,” ACS Nano 3, 3015–3022 (2009).
[Crossref]

Kildishev, A. V.

K.-P. Chen, V. P. Drachev, J. D. Borneman, A. V. Kildishev, and V. M. Shalaev, “Drude relaxation rate in grained gold nanoantennas,” Nano Lett. 10, 916–922 (2010).
[Crossref]

Kim, M. S.

M. S. Tame, K. R. McEnery, K. Özdemir, J. Lee, S. A. Maier, and M. S. Kim, “Quantum plasmonics,” Nat. Phys. 9, 329–340 (2013).
[Crossref]

Kim, S.

S. Kim, J. Jin, Y. Kim, I. Park, Y. Kim, and S. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453, 757–760 (2008).

S. Kim, J. Jin, Y. Kim, I. Park, Y. Kim, and S. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453, 757–760 (2008).

Kim, Y.

S. Kim, J. Jin, Y. Kim, I. Park, Y. Kim, and S. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453, 757–760 (2008).

S. Kim, J. Jin, Y. Kim, I. Park, Y. Kim, and S. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453, 757–760 (2008).

King, N. S.

F. Wen, Y. Zhang, S. Gottheim, N. S. King, Y. Zhang, P. Nordlander, and N. J. Halas, “Charge transfer plasmons: optical frequency conductances and tunable infrared resonances,” ACS Nano 9, 6428–6435 (2015).
[Crossref]

Kino, G.

P. Schuck, D. Fromm, A. Sundaramurthy, G. Kino, and W. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94, 017402 (2005).
[Crossref]

D. Fromm, A. Sundaramurthy, P. Schuck, G. Kino, and W. E. Moerner, “Gap-dependent optical coupling of single bowtie nanoantennas resonant in the visible,” Nano Lett. 4, 957–961 (2004).
[Crossref]

Kino, G. S.

A. Sundaramurthy, K. B. Crozier, G. S. Kino, D. P. Fromm, P. J. Schuck, and W. E. Moerner, “Field enhancement and gap-dependent resonance in a system of two opposing tip-to-tip Au nanotriangles,” Phys. Rev. B 72, 1–6 (2005).
[Crossref]

Knapp, A. G.

J. C. Prangsma, J. Kern, A. G. Knapp, S. Grossmann, M. Emmerling, M. Kamp, and B. Hecht, “Electrically connected resonant optical antennas,” Nano Lett. 12, 3915–3919 (2012).
[Crossref]

Knittel, V.

V. Knittel, M. Fischer, T. de Roo, S. Mecking, A. Leitenstorfer, and D. Brida, “Nonlinear photoluminescence spectrum of single gold nanostructures,” ACS Nano 9, 894–900 (2015).
[Crossref]

T. Hanke, J. Cesar, V. Knittel, A. Trügler, U. Hohenester, A. Leitenstorfer, and R. Bratschitsch, “Tailoring spatiotemporal light confinement in single plasmonic nanoantennas,” Nano Lett. 12, 992–996 (2012).
[Crossref]

Ko, K.

K. Ko, A. Kumar, K. Fung, R. Ambekar, G. Liu, N. Fang, and K. Toussaint, “Nonlinear optical response from arrays of Au bowtie nanoantennas,” Nano Lett. 11, 61–65 (2011).
[Crossref]

Koh, A. L.

J. A. Scholl, A. L. Koh, and J. A. Dionne, “Quantum plasmon resonances of individual metallic nanoparticles,” Nature 483, 421–427 (2012).

A. L. Koh, A. I. Fernández-Domínguez, D. W. McComb, S. A. Maier, and J. K. Yang, “High-resolution mapping of electron-beam-excited plasmon modes in lithographically defined gold nanostructures,” Nano Lett. 11, 1323–1330 (2011).
[Crossref]

A. L. Koh, K. Bao, I. Khan, W. E. Smith, G. Kothleitner, P. Nordlander, S. A. Maier, and D. W. McComb, “Electron energy-loss spectroscopy (EELS) of surface plasmons in single silver nanoparticles and dimers: influence of beam damage and mapping of dark modes,” ACS Nano 3, 3015–3022 (2009).
[Crossref]

Kollmann, H.

H. Kollmann, X. Piao, M. Esmann, S. F. Becker, D. Hou, C. Huynh, L.-O. Kautschor, G. Bösker, H. Vieker, A. Beyer, A. Gölzhäuser, P. Namkyoo, R. Vogelgesang, M. Silies, and C. Lienau, “Toward plasmonics with nanometer precision: nonlinear optics of helium-ion milled gold nanoantennas,” Nano Lett. 14, 4778–4784 (2014).
[Crossref]

Kostcheev, S.

A. Bouhelier, R. Bachelot, G. Lerondel, S. Kostcheev, P. Royer, and G. Wiederrecht, “Surface plasmon characteristics of tunable photoluminescence in single gold nanorods,” Phys. Rev. Lett. 95, 267405 (2005).
[Crossref]

Kothleitner, G.

A. L. Koh, K. Bao, I. Khan, W. E. Smith, G. Kothleitner, P. Nordlander, S. A. Maier, and D. W. McComb, “Electron energy-loss spectroscopy (EELS) of surface plasmons in single silver nanoparticles and dimers: influence of beam damage and mapping of dark modes,” ACS Nano 3, 3015–3022 (2009).
[Crossref]

Kratzer, K.

T. Schumacher, K. Kratzer, D. Molnar, M. Hentschel, H. Giessen, and M. Lippitz, “Nanoantenna-enhanced ultrafast nonlinear spectroscopy of a single gold nanoparticle,” Nat. Commun. 2, 333 (2011).
[Crossref]

Krauss, G.

T. Hanke, G. Krauss, D. Träutlein, B. Wild, R. Bratschitsch, and A. Leitenstorfer, “Efficient nonlinear light emission of single gold optical antennas driven by few-cycle near-infrared pulses,” Phys. Rev. Lett. 103, 257404 (2009).
[Crossref]

Kristensen, A.

X. Zhu, C. Vannahme, E. Højlund-Nielsen, N. A. Mortensen, and A. Kristensen, “Plasmonic colour laser printing,” Nat. Nanotechnol. 11, 325–329 (2015).
[Crossref]

Kumar, A.

K. Ko, A. Kumar, K. Fung, R. Ambekar, G. Liu, N. Fang, and K. Toussaint, “Nonlinear optical response from arrays of Au bowtie nanoantennas,” Nano Lett. 11, 61–65 (2011).
[Crossref]

Lee, J.

M. S. Tame, K. R. McEnery, K. Özdemir, J. Lee, S. A. Maier, and M. S. Kim, “Quantum plasmonics,” Nat. Phys. 9, 329–340 (2013).
[Crossref]

Leiderer, P.

O. Marti, H. Bielefeldt, B. Hecht, S. Herminghaus, P. Leiderer, and J. Mlynek, “Near-field optical measurement of the surface plasmon field,” Opt. Commun. 96, 225–228 (1993).
[Crossref]

Leitenstorfer, A.

V. Knittel, M. Fischer, T. de Roo, S. Mecking, A. Leitenstorfer, and D. Brida, “Nonlinear photoluminescence spectrum of single gold nanostructures,” ACS Nano 9, 894–900 (2015).
[Crossref]

T. Hanke, J. Cesar, V. Knittel, A. Trügler, U. Hohenester, A. Leitenstorfer, and R. Bratschitsch, “Tailoring spatiotemporal light confinement in single plasmonic nanoantennas,” Nano Lett. 12, 992–996 (2012).
[Crossref]

T. Hanke, G. Krauss, D. Träutlein, B. Wild, R. Bratschitsch, and A. Leitenstorfer, “Efficient nonlinear light emission of single gold optical antennas driven by few-cycle near-infrared pulses,” Phys. Rev. Lett. 103, 257404 (2009).
[Crossref]

Lerondel, G.

A. Bouhelier, R. Bachelot, G. Lerondel, S. Kostcheev, P. Royer, and G. Wiederrecht, “Surface plasmon characteristics of tunable photoluminescence in single gold nanorods,” Phys. Rev. Lett. 95, 267405 (2005).
[Crossref]

Levin, C. S.

D. R. Ward, N. K. Grady, C. S. Levin, N. J. Halas, Y. Wu, P. Nordlander, and D. Natelson, “Electromigrated nanoscale gaps for surface-enhanced Raman spectroscopy,” Nano Lett. 7, 1396–1400 (2007).
[Crossref]

Li, K.

P. Nordlander, C. Oubre, E. Prodan, K. Li, and I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4, 899–903 (2004).
[Crossref]

Lienau, C.

H. Kollmann, X. Piao, M. Esmann, S. F. Becker, D. Hou, C. Huynh, L.-O. Kautschor, G. Bösker, H. Vieker, A. Beyer, A. Gölzhäuser, P. Namkyoo, R. Vogelgesang, M. Silies, and C. Lienau, “Toward plasmonics with nanometer precision: nonlinear optics of helium-ion milled gold nanoantennas,” Nano Lett. 14, 4778–4784 (2014).
[Crossref]

Lim, A. K. L.

H. Park, A. K. L. Lim, A. P. Alivisatos, J. Park, and P. L. McEuen, “Fabrication of metallic electrodes with nanometer separation by electromigration,” Appl. Phys. Lett. 75, 301 (1999).
[Crossref]

Lippitz, M.

T. Schumacher, K. Kratzer, D. Molnar, M. Hentschel, H. Giessen, and M. Lippitz, “Nanoantenna-enhanced ultrafast nonlinear spectroscopy of a single gold nanoparticle,” Nat. Commun. 2, 333 (2011).
[Crossref]

Liu, G.

K. Ko, A. Kumar, K. Fung, R. Ambekar, G. Liu, N. Fang, and K. Toussaint, “Nonlinear optical response from arrays of Au bowtie nanoantennas,” Nano Lett. 11, 61–65 (2011).
[Crossref]

Liu, N.

N. Liu, F. Wen, Y. Zhao, Y. Wang, P. Nordlander, N. J. Halas, and A. Aluì, “Individual nanoantennas loaded with three-dimensional optical nanocircuits,” Nano Lett. 13, 142–147 (2013).
[Crossref]

Locatelli, A.

M. Celebrano, X. Wu, M. Baselli, S. Großmann, P. Biagioni, A. Locatelli, C. De Angelis, G. Cerullo, R. Osellame, B. Hecht, L. Duò, F. Ciccacci, and M. Finazzi, “Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation,” Nat. Nanotechnol. 10, 412–417 (2015).
[Crossref]

Lopez, R.

M. McMahon, R. Lopez, R. Haglund, E. Ray, and P. Bunton, “Second-harmonic generation from arrays of symmetric gold nanoparticles,” Phys. Rev. B 73, 041401 (2006).
[Crossref]

MacDonald, K. F.

K. F. MacDonald, Z. L. Sámson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photonics 3, 55–58 (2008).
[Crossref]

Maier, S. A.

H. Aouani, M. Rahmani, M. Navarro-Ca, and S. A. Maier, “Third-harmonic-upconversion enhancement from a single semiconductor nanoparticle coupled to a plasmonic antenna,” Nat. Nanotechnol. 9, 290–294 (2014).
[Crossref]

M. S. Tame, K. R. McEnery, K. Özdemir, J. Lee, S. A. Maier, and M. S. Kim, “Quantum plasmonics,” Nat. Phys. 9, 329–340 (2013).
[Crossref]

A. L. Koh, A. I. Fernández-Domínguez, D. W. McComb, S. A. Maier, and J. K. Yang, “High-resolution mapping of electron-beam-excited plasmon modes in lithographically defined gold nanostructures,” Nano Lett. 11, 1323–1330 (2011).
[Crossref]

A. L. Koh, K. Bao, I. Khan, W. E. Smith, G. Kothleitner, P. Nordlander, S. A. Maier, and D. W. McComb, “Electron energy-loss spectroscopy (EELS) of surface plasmons in single silver nanoparticles and dimers: influence of beam damage and mapping of dark modes,” ACS Nano 3, 3015–3022 (2009).
[Crossref]

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

Maragò, O. M.

O. M. Maragò, P. H. Jones, P. G. Gucciardi, G. Volpe, and A. C. Ferrari, “Optical trapping and manipulation of nanostructures,” Nat. Nanotechnol. 8, 807–819 (2013).
[Crossref]

Marinica, D.

D. Marinica, A. Kazansky, P. Nordlander, J. Aizpurua, and A. G. Borisov, “Quantum plasmonics: nonlinear effects in the field enhancement of a plasmonic nanoparticle dimer,” Nano Lett. 12, 1333–1339 (2012).
[Crossref]

Markey, L.

A. Stolz, J. Berthelot, M. M. Mennemanteuil, G. Colas Des Francs, L. Markey, V. Meunier, and A. Bouhelier, “Nonlinear photon-assisted tunneling transport in optical gap antennas,” Nano Lett. 14, 2330–2338 (2014).
[Crossref]

Marti, O.

O. Marti, H. Bielefeldt, B. Hecht, S. Herminghaus, P. Leiderer, and J. Mlynek, “Near-field optical measurement of the surface plasmon field,” Opt. Commun. 96, 225–228 (1993).
[Crossref]

Martin, O.

P. Mühlschlegel, H. Eisler, O. Martin, B. Hecht, and D. Pohl, “Resonant optical antennas,” Science 308, 1607–1609 (2005).
[Crossref]

Martin, O. J.

Mátéfi-Tempfli, M.

P. Biagioni, M. Celebrano, M. Savoini, G. Grancini, D. Brida, S. Mátéfi-Tempfli, M. Mátéfi-Tempfli, L. Duò, B. Hecht, G. Cerullo, and M. Finazzi, “Dependence of the two-photon photoluminescence yield of gold nanostructures on the laser pulse duration,” Phys. Rev. B 80, 045411 (2009).
[Crossref]

Mátéfi-Tempfli, S.

P. Biagioni, M. Celebrano, M. Savoini, G. Grancini, D. Brida, S. Mátéfi-Tempfli, M. Mátéfi-Tempfli, L. Duò, B. Hecht, G. Cerullo, and M. Finazzi, “Dependence of the two-photon photoluminescence yield of gold nanostructures on the laser pulse duration,” Phys. Rev. B 80, 045411 (2009).
[Crossref]

McComb, D. W.

A. L. Koh, A. I. Fernández-Domínguez, D. W. McComb, S. A. Maier, and J. K. Yang, “High-resolution mapping of electron-beam-excited plasmon modes in lithographically defined gold nanostructures,” Nano Lett. 11, 1323–1330 (2011).
[Crossref]

A. L. Koh, K. Bao, I. Khan, W. E. Smith, G. Kothleitner, P. Nordlander, S. A. Maier, and D. W. McComb, “Electron energy-loss spectroscopy (EELS) of surface plasmons in single silver nanoparticles and dimers: influence of beam damage and mapping of dark modes,” ACS Nano 3, 3015–3022 (2009).
[Crossref]

McEnery, K. R.

M. S. Tame, K. R. McEnery, K. Özdemir, J. Lee, S. A. Maier, and M. S. Kim, “Quantum plasmonics,” Nat. Phys. 9, 329–340 (2013).
[Crossref]

McEuen, P. L.

H. Park, A. K. L. Lim, A. P. Alivisatos, J. Park, and P. L. McEuen, “Fabrication of metallic electrodes with nanometer separation by electromigration,” Appl. Phys. Lett. 75, 301 (1999).
[Crossref]

McMahon, M.

M. McMahon, R. Lopez, R. Haglund, E. Ray, and P. Bunton, “Second-harmonic generation from arrays of symmetric gold nanoparticles,” Phys. Rev. B 73, 041401 (2006).
[Crossref]

Mecking, S.

V. Knittel, M. Fischer, T. de Roo, S. Mecking, A. Leitenstorfer, and D. Brida, “Nonlinear photoluminescence spectrum of single gold nanostructures,” ACS Nano 9, 894–900 (2015).
[Crossref]

Mennemanteuil, M. M.

A. Stolz, J. Berthelot, M. M. Mennemanteuil, G. Colas Des Francs, L. Markey, V. Meunier, and A. Bouhelier, “Nonlinear photon-assisted tunneling transport in optical gap antennas,” Nano Lett. 14, 2330–2338 (2014).
[Crossref]

Meunier, V.

A. Stolz, J. Berthelot, M. M. Mennemanteuil, G. Colas Des Francs, L. Markey, V. Meunier, and A. Bouhelier, “Nonlinear photon-assisted tunneling transport in optical gap antennas,” Nano Lett. 14, 2330–2338 (2014).
[Crossref]

Mlynek, J.

O. Marti, H. Bielefeldt, B. Hecht, S. Herminghaus, P. Leiderer, and J. Mlynek, “Near-field optical measurement of the surface plasmon field,” Opt. Commun. 96, 225–228 (1993).
[Crossref]

Moerner, W.

P. Schuck, D. Fromm, A. Sundaramurthy, G. Kino, and W. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94, 017402 (2005).
[Crossref]

Moerner, W. E.

A. Sundaramurthy, K. B. Crozier, G. S. Kino, D. P. Fromm, P. J. Schuck, and W. E. Moerner, “Field enhancement and gap-dependent resonance in a system of two opposing tip-to-tip Au nanotriangles,” Phys. Rev. B 72, 1–6 (2005).
[Crossref]

D. Fromm, A. Sundaramurthy, P. Schuck, G. Kino, and W. E. Moerner, “Gap-dependent optical coupling of single bowtie nanoantennas resonant in the visible,” Nano Lett. 4, 957–961 (2004).
[Crossref]

Molnar, D.

T. Schumacher, K. Kratzer, D. Molnar, M. Hentschel, H. Giessen, and M. Lippitz, “Nanoantenna-enhanced ultrafast nonlinear spectroscopy of a single gold nanoparticle,” Nat. Commun. 2, 333 (2011).
[Crossref]

Moran, C. E.

C. M. Aguirre, C. E. Moran, J. F. Young, and N. J. Halas, “Laser-induced reshaping of metallodielectric nanoshells under femtosecond and nanosecond plasmon resonant illumination,” J. Phys. Chem. B 108, 7040–7045 (2004).
[Crossref]

Mortensen, N. A.

X. Zhu, C. Vannahme, E. Højlund-Nielsen, N. A. Mortensen, and A. Kristensen, “Plasmonic colour laser printing,” Nat. Nanotechnol. 11, 325–329 (2015).
[Crossref]

Mühlschlegel, P.

P. Mühlschlegel, H. Eisler, O. Martin, B. Hecht, and D. Pohl, “Resonant optical antennas,” Science 308, 1607–1609 (2005).
[Crossref]

Nagle, J.

A. Fiore, V. Berger, E. Rosencher, P. Bravetti, and J. Nagle, “Phase matching using an isotropic nonlinear optical material,” Nature 391, 463–466 (1998).

Namkyoo, P.

H. Kollmann, X. Piao, M. Esmann, S. F. Becker, D. Hou, C. Huynh, L.-O. Kautschor, G. Bösker, H. Vieker, A. Beyer, A. Gölzhäuser, P. Namkyoo, R. Vogelgesang, M. Silies, and C. Lienau, “Toward plasmonics with nanometer precision: nonlinear optics of helium-ion milled gold nanoantennas,” Nano Lett. 14, 4778–4784 (2014).
[Crossref]

Natelson, D.

D. R. Ward, N. K. Grady, C. S. Levin, N. J. Halas, Y. Wu, P. Nordlander, and D. Natelson, “Electromigrated nanoscale gaps for surface-enhanced Raman spectroscopy,” Nano Lett. 7, 1396–1400 (2007).
[Crossref]

Navarro-Ca, M.

H. Aouani, M. Rahmani, M. Navarro-Ca, and S. A. Maier, “Third-harmonic-upconversion enhancement from a single semiconductor nanoparticle coupled to a plasmonic antenna,” Nat. Nanotechnol. 9, 290–294 (2014).
[Crossref]

Nordlander, P.

F. Wen, Y. Zhang, S. Gottheim, N. S. King, Y. Zhang, P. Nordlander, and N. J. Halas, “Charge transfer plasmons: optical frequency conductances and tunable infrared resonances,” ACS Nano 9, 6428–6435 (2015).
[Crossref]

N. Liu, F. Wen, Y. Zhao, Y. Wang, P. Nordlander, N. J. Halas, and A. Aluì, “Individual nanoantennas loaded with three-dimensional optical nanocircuits,” Nano Lett. 13, 142–147 (2013).
[Crossref]

R. Esteban, A. G. Borisov, P. Nordlander, and J. Aizpurua, “Bridging quantum and classical plasmonics with a quantum-corrected model,” Nat. Commun. 3, 825 (2012).
[Crossref]

D. Marinica, A. Kazansky, P. Nordlander, J. Aizpurua, and A. G. Borisov, “Quantum plasmonics: nonlinear effects in the field enhancement of a plasmonic nanoparticle dimer,” Nano Lett. 12, 1333–1339 (2012).
[Crossref]

A. L. Koh, K. Bao, I. Khan, W. E. Smith, G. Kothleitner, P. Nordlander, S. A. Maier, and D. W. McComb, “Electron energy-loss spectroscopy (EELS) of surface plasmons in single silver nanoparticles and dimers: influence of beam damage and mapping of dark modes,” ACS Nano 3, 3015–3022 (2009).
[Crossref]

D. R. Ward, N. K. Grady, C. S. Levin, N. J. Halas, Y. Wu, P. Nordlander, and D. Natelson, “Electromigrated nanoscale gaps for surface-enhanced Raman spectroscopy,” Nano Lett. 7, 1396–1400 (2007).
[Crossref]

P. Nordlander, C. Oubre, E. Prodan, K. Li, and I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4, 899–903 (2004).
[Crossref]

Novotny, L.

M. Danckwerts and L. Novotny, “Optical frequency mixing at coupled gold nanoparticles,” Phys. Rev. Lett. 98, 026104 (2007).
[Crossref]

M. R. Beversluis, A. Bouhelier, and L. Novotny, “Continuum generation from single gold nanostructures through near-field mediated intraband transitions,” Phys. Rev. B 68, 115433 (2003).
[Crossref]

Osellame, R.

M. Celebrano, X. Wu, M. Baselli, S. Großmann, P. Biagioni, A. Locatelli, C. De Angelis, G. Cerullo, R. Osellame, B. Hecht, L. Duò, F. Ciccacci, and M. Finazzi, “Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation,” Nat. Nanotechnol. 10, 412–417 (2015).
[Crossref]

Oubre, C.

P. Nordlander, C. Oubre, E. Prodan, K. Li, and I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4, 899–903 (2004).
[Crossref]

Özdemir, K.

M. S. Tame, K. R. McEnery, K. Özdemir, J. Lee, S. A. Maier, and M. S. Kim, “Quantum plasmonics,” Nat. Phys. 9, 329–340 (2013).
[Crossref]

Park, H.

H. Park, A. K. L. Lim, A. P. Alivisatos, J. Park, and P. L. McEuen, “Fabrication of metallic electrodes with nanometer separation by electromigration,” Appl. Phys. Lett. 75, 301 (1999).
[Crossref]

Park, I.

S. Kim, J. Jin, Y. Kim, I. Park, Y. Kim, and S. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453, 757–760 (2008).

Park, J.

H. Park, A. K. L. Lim, A. P. Alivisatos, J. Park, and P. L. McEuen, “Fabrication of metallic electrodes with nanometer separation by electromigration,” Appl. Phys. Lett. 75, 301 (1999).
[Crossref]

Pedersen, T. G.

M. L. Trolle, G. Seifert, and T. G. Pedersen, “Theory of excitonic second-harmonic generation in monolayer MoS2,” Phys. Rev. B 89, 1–8 (2014).
[Crossref]

Piao, X.

H. Kollmann, X. Piao, M. Esmann, S. F. Becker, D. Hou, C. Huynh, L.-O. Kautschor, G. Bösker, H. Vieker, A. Beyer, A. Gölzhäuser, P. Namkyoo, R. Vogelgesang, M. Silies, and C. Lienau, “Toward plasmonics with nanometer precision: nonlinear optics of helium-ion milled gold nanoantennas,” Nano Lett. 14, 4778–4784 (2014).
[Crossref]

Pohl, D.

P. Mühlschlegel, H. Eisler, O. Martin, B. Hecht, and D. Pohl, “Resonant optical antennas,” Science 308, 1607–1609 (2005).
[Crossref]

Prangsma, J. C.

J. C. Prangsma, J. Kern, A. G. Knapp, S. Grossmann, M. Emmerling, M. Kamp, and B. Hecht, “Electrically connected resonant optical antennas,” Nano Lett. 12, 3915–3919 (2012).
[Crossref]

Pressley, R. J.

R. J. Pressley, Handbook of Lasers (Chemical Rubber, 1971).

Prodan, E.

P. Nordlander, C. Oubre, E. Prodan, K. Li, and I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4, 899–903 (2004).
[Crossref]

Qiu, M.

Rahmani, M.

H. Aouani, M. Rahmani, M. Navarro-Ca, and S. A. Maier, “Third-harmonic-upconversion enhancement from a single semiconductor nanoparticle coupled to a plasmonic antenna,” Nat. Nanotechnol. 9, 290–294 (2014).
[Crossref]

Ray, E.

M. McMahon, R. Lopez, R. Haglund, E. Ray, and P. Bunton, “Second-harmonic generation from arrays of symmetric gold nanoparticles,” Phys. Rev. B 73, 041401 (2006).
[Crossref]

Regler, A.

M. Kaniber, K. Schraml, A. Regler, J. Bartl, G. Glashagen, F. Flassig, J. Wierzbowski, and J. J. Finley, “Surface plasmon resonance spectroscopy of single bowtie nano-antennas using a differential reflectivity method,” Sci. Rep. 6, 23203 (2016).
[Crossref]

Rosencher, E.

A. Fiore, V. Berger, E. Rosencher, P. Bravetti, and J. Nagle, “Phase matching using an isotropic nonlinear optical material,” Nature 391, 463–466 (1998).

Royer, P.

C. Hubert, L. Billot, P.-M. Adam, R. Bachelot, P. Royer, J. Grand, D. Gindre, K. Dorkenoo, and A. Fort, “Role of surface plasmon in second harmonic generation from gold nanorods,” Appl. Phys. Lett. 90, 181105 (2007).
[Crossref]

A. Bouhelier, R. Bachelot, G. Lerondel, S. Kostcheev, P. Royer, and G. Wiederrecht, “Surface plasmon characteristics of tunable photoluminescence in single gold nanorods,” Phys. Rev. Lett. 95, 267405 (2005).
[Crossref]

Sámson, Z. L.

K. F. MacDonald, Z. L. Sámson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photonics 3, 55–58 (2008).
[Crossref]

Savage, K. J.

K. J. Savage, M. M. Hawkeye, R. Esteban, A. G. Borisov, J. Aizpurua, and J. J. Baumberg, “Revealing the quantum regime in tunnelling plasmonics,” Nature 491, 574–577 (2012).

Savoini, M.

P. Biagioni, M. Celebrano, M. Savoini, G. Grancini, D. Brida, S. Mátéfi-Tempfli, M. Mátéfi-Tempfli, L. Duò, B. Hecht, G. Cerullo, and M. Finazzi, “Dependence of the two-photon photoluminescence yield of gold nanostructures on the laser pulse duration,” Phys. Rev. B 80, 045411 (2009).
[Crossref]

Scholl, J. A.

J. A. Scholl, A. L. Koh, and J. A. Dionne, “Quantum plasmon resonances of individual metallic nanoparticles,” Nature 483, 421–427 (2012).

Schraml, K.

M. Kaniber, K. Schraml, A. Regler, J. Bartl, G. Glashagen, F. Flassig, J. Wierzbowski, and J. J. Finley, “Surface plasmon resonance spectroscopy of single bowtie nano-antennas using a differential reflectivity method,” Sci. Rep. 6, 23203 (2016).
[Crossref]

K. Schraml, M. Spiegl, M. Kammerlocher, G. Bracher, J. Bartl, T. Campbell, J. Finley, and M. Kaniber, “Optical properties and interparticle coupling of plasmonic bowtie nanoantennas on a semiconducting substrate,” Phys. Rev. B 90, 035435 (2014).
[Crossref]

Schuck, P.

P. Schuck, D. Fromm, A. Sundaramurthy, G. Kino, and W. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94, 017402 (2005).
[Crossref]

D. Fromm, A. Sundaramurthy, P. Schuck, G. Kino, and W. E. Moerner, “Gap-dependent optical coupling of single bowtie nanoantennas resonant in the visible,” Nano Lett. 4, 957–961 (2004).
[Crossref]

Schuck, P. J.

A. Sundaramurthy, K. B. Crozier, G. S. Kino, D. P. Fromm, P. J. Schuck, and W. E. Moerner, “Field enhancement and gap-dependent resonance in a system of two opposing tip-to-tip Au nanotriangles,” Phys. Rev. B 72, 1–6 (2005).
[Crossref]

Schuller, J. A.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
[Crossref]

Schumacher, T.

T. Schumacher, K. Kratzer, D. Molnar, M. Hentschel, H. Giessen, and M. Lippitz, “Nanoantenna-enhanced ultrafast nonlinear spectroscopy of a single gold nanoparticle,” Nat. Commun. 2, 333 (2011).
[Crossref]

Seifert, G.

M. L. Trolle, G. Seifert, and T. G. Pedersen, “Theory of excitonic second-harmonic generation in monolayer MoS2,” Phys. Rev. B 89, 1–8 (2014).
[Crossref]

Shalaev, V. M.

K.-P. Chen, V. P. Drachev, J. D. Borneman, A. V. Kildishev, and V. M. Shalaev, “Drude relaxation rate in grained gold nanoantennas,” Nano Lett. 10, 916–922 (2010).
[Crossref]

Silies, M.

H. Kollmann, X. Piao, M. Esmann, S. F. Becker, D. Hou, C. Huynh, L.-O. Kautschor, G. Bösker, H. Vieker, A. Beyer, A. Gölzhäuser, P. Namkyoo, R. Vogelgesang, M. Silies, and C. Lienau, “Toward plasmonics with nanometer precision: nonlinear optics of helium-ion milled gold nanoantennas,” Nano Lett. 14, 4778–4784 (2014).
[Crossref]

Smith, W. E.

A. L. Koh, K. Bao, I. Khan, W. E. Smith, G. Kothleitner, P. Nordlander, S. A. Maier, and D. W. McComb, “Electron energy-loss spectroscopy (EELS) of surface plasmons in single silver nanoparticles and dimers: influence of beam damage and mapping of dark modes,” ACS Nano 3, 3015–3022 (2009).
[Crossref]

Spiegl, M.

K. Schraml, M. Spiegl, M. Kammerlocher, G. Bracher, J. Bartl, T. Campbell, J. Finley, and M. Kaniber, “Optical properties and interparticle coupling of plasmonic bowtie nanoantennas on a semiconducting substrate,” Phys. Rev. B 90, 035435 (2014).
[Crossref]

Stockman, I.

P. Nordlander, C. Oubre, E. Prodan, K. Li, and I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4, 899–903 (2004).
[Crossref]

Stockman, M. I.

K. F. MacDonald, Z. L. Sámson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photonics 3, 55–58 (2008).
[Crossref]

Stolz, A.

A. Stolz, J. Berthelot, M. M. Mennemanteuil, G. Colas Des Francs, L. Markey, V. Meunier, and A. Bouhelier, “Nonlinear photon-assisted tunneling transport in optical gap antennas,” Nano Lett. 14, 2330–2338 (2014).
[Crossref]

Sundaramurthy, A.

P. Schuck, D. Fromm, A. Sundaramurthy, G. Kino, and W. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94, 017402 (2005).
[Crossref]

A. Sundaramurthy, K. B. Crozier, G. S. Kino, D. P. Fromm, P. J. Schuck, and W. E. Moerner, “Field enhancement and gap-dependent resonance in a system of two opposing tip-to-tip Au nanotriangles,” Phys. Rev. B 72, 1–6 (2005).
[Crossref]

D. Fromm, A. Sundaramurthy, P. Schuck, G. Kino, and W. E. Moerner, “Gap-dependent optical coupling of single bowtie nanoantennas resonant in the visible,” Nano Lett. 4, 957–961 (2004).
[Crossref]

Tame, M. S.

M. S. Tame, K. R. McEnery, K. Özdemir, J. Lee, S. A. Maier, and M. S. Kim, “Quantum plasmonics,” Nat. Phys. 9, 329–340 (2013).
[Crossref]

Toussaint, K.

K. Ko, A. Kumar, K. Fung, R. Ambekar, G. Liu, N. Fang, and K. Toussaint, “Nonlinear optical response from arrays of Au bowtie nanoantennas,” Nano Lett. 11, 61–65 (2011).
[Crossref]

Träutlein, D.

T. Hanke, G. Krauss, D. Träutlein, B. Wild, R. Bratschitsch, and A. Leitenstorfer, “Efficient nonlinear light emission of single gold optical antennas driven by few-cycle near-infrared pulses,” Phys. Rev. Lett. 103, 257404 (2009).
[Crossref]

Trolle, M. L.

M. L. Trolle, G. Seifert, and T. G. Pedersen, “Theory of excitonic second-harmonic generation in monolayer MoS2,” Phys. Rev. B 89, 1–8 (2014).
[Crossref]

Trügler, A.

T. Hanke, J. Cesar, V. Knittel, A. Trügler, U. Hohenester, A. Leitenstorfer, and R. Bratschitsch, “Tailoring spatiotemporal light confinement in single plasmonic nanoantennas,” Nano Lett. 12, 992–996 (2012).
[Crossref]

van Hulst, N. F.

D. Brinks, M. Castro-Lopez, R. Hildner, and N. F. van Hulst, “Plasmonic antennas as design elements for coherent ultrafast nanophotonics,” Proc. Natl. Acad. Sci. USA 110, 18386–18390 (2013).
[Crossref]

Vannahme, C.

X. Zhu, C. Vannahme, E. Højlund-Nielsen, N. A. Mortensen, and A. Kristensen, “Plasmonic colour laser printing,” Nat. Nanotechnol. 11, 325–329 (2015).
[Crossref]

Vieker, H.

H. Kollmann, X. Piao, M. Esmann, S. F. Becker, D. Hou, C. Huynh, L.-O. Kautschor, G. Bösker, H. Vieker, A. Beyer, A. Gölzhäuser, P. Namkyoo, R. Vogelgesang, M. Silies, and C. Lienau, “Toward plasmonics with nanometer precision: nonlinear optics of helium-ion milled gold nanoantennas,” Nano Lett. 14, 4778–4784 (2014).
[Crossref]

Vogelgesang, R.

H. Kollmann, X. Piao, M. Esmann, S. F. Becker, D. Hou, C. Huynh, L.-O. Kautschor, G. Bösker, H. Vieker, A. Beyer, A. Gölzhäuser, P. Namkyoo, R. Vogelgesang, M. Silies, and C. Lienau, “Toward plasmonics with nanometer precision: nonlinear optics of helium-ion milled gold nanoantennas,” Nano Lett. 14, 4778–4784 (2014).
[Crossref]

Volpe, G.

O. M. Maragò, P. H. Jones, P. G. Gucciardi, G. Volpe, and A. C. Ferrari, “Optical trapping and manipulation of nanostructures,” Nat. Nanotechnol. 8, 807–819 (2013).
[Crossref]

Wang, J.

Wang, Y.

N. Liu, F. Wen, Y. Zhao, Y. Wang, P. Nordlander, N. J. Halas, and A. Aluì, “Individual nanoantennas loaded with three-dimensional optical nanocircuits,” Nano Lett. 13, 142–147 (2013).
[Crossref]

Ward, D. R.

D. R. Ward, N. K. Grady, C. S. Levin, N. J. Halas, Y. Wu, P. Nordlander, and D. Natelson, “Electromigrated nanoscale gaps for surface-enhanced Raman spectroscopy,” Nano Lett. 7, 1396–1400 (2007).
[Crossref]

Wen, F.

F. Wen, Y. Zhang, S. Gottheim, N. S. King, Y. Zhang, P. Nordlander, and N. J. Halas, “Charge transfer plasmons: optical frequency conductances and tunable infrared resonances,” ACS Nano 9, 6428–6435 (2015).
[Crossref]

N. Liu, F. Wen, Y. Zhao, Y. Wang, P. Nordlander, N. J. Halas, and A. Aluì, “Individual nanoantennas loaded with three-dimensional optical nanocircuits,” Nano Lett. 13, 142–147 (2013).
[Crossref]

White, J. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
[Crossref]

Wiederrecht, G.

A. Bouhelier, R. Bachelot, G. Lerondel, S. Kostcheev, P. Royer, and G. Wiederrecht, “Surface plasmon characteristics of tunable photoluminescence in single gold nanorods,” Phys. Rev. Lett. 95, 267405 (2005).
[Crossref]

Wierzbowski, J.

M. Kaniber, K. Schraml, A. Regler, J. Bartl, G. Glashagen, F. Flassig, J. Wierzbowski, and J. J. Finley, “Surface plasmon resonance spectroscopy of single bowtie nano-antennas using a differential reflectivity method,” Sci. Rep. 6, 23203 (2016).
[Crossref]

Wild, B.

T. Hanke, G. Krauss, D. Träutlein, B. Wild, R. Bratschitsch, and A. Leitenstorfer, “Efficient nonlinear light emission of single gold optical antennas driven by few-cycle near-infrared pulses,” Phys. Rev. Lett. 103, 257404 (2009).
[Crossref]

Wu, X.

M. Celebrano, X. Wu, M. Baselli, S. Großmann, P. Biagioni, A. Locatelli, C. De Angelis, G. Cerullo, R. Osellame, B. Hecht, L. Duò, F. Ciccacci, and M. Finazzi, “Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation,” Nat. Nanotechnol. 10, 412–417 (2015).
[Crossref]

Wu, Y.

D. R. Ward, N. K. Grady, C. S. Levin, N. J. Halas, Y. Wu, P. Nordlander, and D. Natelson, “Electromigrated nanoscale gaps for surface-enhanced Raman spectroscopy,” Nano Lett. 7, 1396–1400 (2007).
[Crossref]

Yan, M.

Yang, J. K.

A. L. Koh, A. I. Fernández-Domínguez, D. W. McComb, S. A. Maier, and J. K. Yang, “High-resolution mapping of electron-beam-excited plasmon modes in lithographically defined gold nanostructures,” Nano Lett. 11, 1323–1330 (2011).
[Crossref]

Young, J. F.

C. M. Aguirre, C. E. Moran, J. F. Young, and N. J. Halas, “Laser-induced reshaping of metallodielectric nanoshells under femtosecond and nanosecond plasmon resonant illumination,” J. Phys. Chem. B 108, 7040–7045 (2004).
[Crossref]

Zayats, A.

M. Kauranen and A. Zayats, “Nonlinear plasmonics,” Nat. Photonics 6, 737–748 (2012).
[Crossref]

Zhang, Y.

F. Wen, Y. Zhang, S. Gottheim, N. S. King, Y. Zhang, P. Nordlander, and N. J. Halas, “Charge transfer plasmons: optical frequency conductances and tunable infrared resonances,” ACS Nano 9, 6428–6435 (2015).
[Crossref]

F. Wen, Y. Zhang, S. Gottheim, N. S. King, Y. Zhang, P. Nordlander, and N. J. Halas, “Charge transfer plasmons: optical frequency conductances and tunable infrared resonances,” ACS Nano 9, 6428–6435 (2015).
[Crossref]

Zhao, Y.

N. Liu, F. Wen, Y. Zhao, Y. Wang, P. Nordlander, N. J. Halas, and A. Aluì, “Individual nanoantennas loaded with three-dimensional optical nanocircuits,” Nano Lett. 13, 142–147 (2013).
[Crossref]

Zheludev, N. I.

K. F. MacDonald, Z. L. Sámson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photonics 3, 55–58 (2008).
[Crossref]

Zhu, X.

X. Zhu, C. Vannahme, E. Højlund-Nielsen, N. A. Mortensen, and A. Kristensen, “Plasmonic colour laser printing,” Nat. Nanotechnol. 11, 325–329 (2015).
[Crossref]

ACS Nano (3)

V. Knittel, M. Fischer, T. de Roo, S. Mecking, A. Leitenstorfer, and D. Brida, “Nonlinear photoluminescence spectrum of single gold nanostructures,” ACS Nano 9, 894–900 (2015).
[Crossref]

F. Wen, Y. Zhang, S. Gottheim, N. S. King, Y. Zhang, P. Nordlander, and N. J. Halas, “Charge transfer plasmons: optical frequency conductances and tunable infrared resonances,” ACS Nano 9, 6428–6435 (2015).
[Crossref]

A. L. Koh, K. Bao, I. Khan, W. E. Smith, G. Kothleitner, P. Nordlander, S. A. Maier, and D. W. McComb, “Electron energy-loss spectroscopy (EELS) of surface plasmons in single silver nanoparticles and dimers: influence of beam damage and mapping of dark modes,” ACS Nano 3, 3015–3022 (2009).
[Crossref]

Appl. Phys. Lett. (2)

H. Park, A. K. L. Lim, A. P. Alivisatos, J. Park, and P. L. McEuen, “Fabrication of metallic electrodes with nanometer separation by electromigration,” Appl. Phys. Lett. 75, 301 (1999).
[Crossref]

C. Hubert, L. Billot, P.-M. Adam, R. Bachelot, P. Royer, J. Grand, D. Gindre, K. Dorkenoo, and A. Fort, “Role of surface plasmon in second harmonic generation from gold nanorods,” Appl. Phys. Lett. 90, 181105 (2007).
[Crossref]

J. Phys. Chem. B (1)

C. M. Aguirre, C. E. Moran, J. F. Young, and N. J. Halas, “Laser-induced reshaping of metallodielectric nanoshells under femtosecond and nanosecond plasmon resonant illumination,” J. Phys. Chem. B 108, 7040–7045 (2004).
[Crossref]

Nano Lett. (13)

D. Fromm, A. Sundaramurthy, P. Schuck, G. Kino, and W. E. Moerner, “Gap-dependent optical coupling of single bowtie nanoantennas resonant in the visible,” Nano Lett. 4, 957–961 (2004).
[Crossref]

T. Hanke, J. Cesar, V. Knittel, A. Trügler, U. Hohenester, A. Leitenstorfer, and R. Bratschitsch, “Tailoring spatiotemporal light confinement in single plasmonic nanoantennas,” Nano Lett. 12, 992–996 (2012).
[Crossref]

P. Biagioni, D. Brida, J.-S. Huang, J. Kern, L. Duò, B. Hecht, M. Finazzi, and G. Cerullo, “Dynamics of four-photon photoluminescence in gold nanoantennas,” Nano Lett. 12, 2941–2947 (2012).
[Crossref]

H. Kollmann, X. Piao, M. Esmann, S. F. Becker, D. Hou, C. Huynh, L.-O. Kautschor, G. Bösker, H. Vieker, A. Beyer, A. Gölzhäuser, P. Namkyoo, R. Vogelgesang, M. Silies, and C. Lienau, “Toward plasmonics with nanometer precision: nonlinear optics of helium-ion milled gold nanoantennas,” Nano Lett. 14, 4778–4784 (2014).
[Crossref]

K. Ko, A. Kumar, K. Fung, R. Ambekar, G. Liu, N. Fang, and K. Toussaint, “Nonlinear optical response from arrays of Au bowtie nanoantennas,” Nano Lett. 11, 61–65 (2011).
[Crossref]

A. L. Koh, A. I. Fernández-Domínguez, D. W. McComb, S. A. Maier, and J. K. Yang, “High-resolution mapping of electron-beam-excited plasmon modes in lithographically defined gold nanostructures,” Nano Lett. 11, 1323–1330 (2011).
[Crossref]

P. Nordlander, C. Oubre, E. Prodan, K. Li, and I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4, 899–903 (2004).
[Crossref]

D. Marinica, A. Kazansky, P. Nordlander, J. Aizpurua, and A. G. Borisov, “Quantum plasmonics: nonlinear effects in the field enhancement of a plasmonic nanoparticle dimer,” Nano Lett. 12, 1333–1339 (2012).
[Crossref]

K.-P. Chen, V. P. Drachev, J. D. Borneman, A. V. Kildishev, and V. M. Shalaev, “Drude relaxation rate in grained gold nanoantennas,” Nano Lett. 10, 916–922 (2010).
[Crossref]

N. Liu, F. Wen, Y. Zhao, Y. Wang, P. Nordlander, N. J. Halas, and A. Aluì, “Individual nanoantennas loaded with three-dimensional optical nanocircuits,” Nano Lett. 13, 142–147 (2013).
[Crossref]

J. C. Prangsma, J. Kern, A. G. Knapp, S. Grossmann, M. Emmerling, M. Kamp, and B. Hecht, “Electrically connected resonant optical antennas,” Nano Lett. 12, 3915–3919 (2012).
[Crossref]

D. R. Ward, N. K. Grady, C. S. Levin, N. J. Halas, Y. Wu, P. Nordlander, and D. Natelson, “Electromigrated nanoscale gaps for surface-enhanced Raman spectroscopy,” Nano Lett. 7, 1396–1400 (2007).
[Crossref]

A. Stolz, J. Berthelot, M. M. Mennemanteuil, G. Colas Des Francs, L. Markey, V. Meunier, and A. Bouhelier, “Nonlinear photon-assisted tunneling transport in optical gap antennas,” Nano Lett. 14, 2330–2338 (2014).
[Crossref]

Nat. Commun. (2)

T. Schumacher, K. Kratzer, D. Molnar, M. Hentschel, H. Giessen, and M. Lippitz, “Nanoantenna-enhanced ultrafast nonlinear spectroscopy of a single gold nanoparticle,” Nat. Commun. 2, 333 (2011).
[Crossref]

R. Esteban, A. G. Borisov, P. Nordlander, and J. Aizpurua, “Bridging quantum and classical plasmonics with a quantum-corrected model,” Nat. Commun. 3, 825 (2012).
[Crossref]

Nat. Mater. (1)

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
[Crossref]

Nat. Nanotechnol. (4)

M. Celebrano, X. Wu, M. Baselli, S. Großmann, P. Biagioni, A. Locatelli, C. De Angelis, G. Cerullo, R. Osellame, B. Hecht, L. Duò, F. Ciccacci, and M. Finazzi, “Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation,” Nat. Nanotechnol. 10, 412–417 (2015).
[Crossref]

H. Aouani, M. Rahmani, M. Navarro-Ca, and S. A. Maier, “Third-harmonic-upconversion enhancement from a single semiconductor nanoparticle coupled to a plasmonic antenna,” Nat. Nanotechnol. 9, 290–294 (2014).
[Crossref]

X. Zhu, C. Vannahme, E. Højlund-Nielsen, N. A. Mortensen, and A. Kristensen, “Plasmonic colour laser printing,” Nat. Nanotechnol. 11, 325–329 (2015).
[Crossref]

O. M. Maragò, P. H. Jones, P. G. Gucciardi, G. Volpe, and A. C. Ferrari, “Optical trapping and manipulation of nanostructures,” Nat. Nanotechnol. 8, 807–819 (2013).
[Crossref]

Nat. Photonics (3)

K. F. MacDonald, Z. L. Sámson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photonics 3, 55–58 (2008).
[Crossref]

M. Kauranen and A. Zayats, “Nonlinear plasmonics,” Nat. Photonics 6, 737–748 (2012).
[Crossref]

D. K. Gramotnev and S. I. Bozhevolnyi, “Nanofocusing of electromagnetic radiation,” Nat. Photonics 8, 13–22 (2013).
[Crossref]

Nat. Phys. (1)

M. S. Tame, K. R. McEnery, K. Özdemir, J. Lee, S. A. Maier, and M. S. Kim, “Quantum plasmonics,” Nat. Phys. 9, 329–340 (2013).
[Crossref]

Nature (4)

K. J. Savage, M. M. Hawkeye, R. Esteban, A. G. Borisov, J. Aizpurua, and J. J. Baumberg, “Revealing the quantum regime in tunnelling plasmonics,” Nature 491, 574–577 (2012).

A. Fiore, V. Berger, E. Rosencher, P. Bravetti, and J. Nagle, “Phase matching using an isotropic nonlinear optical material,” Nature 391, 463–466 (1998).

J. A. Scholl, A. L. Koh, and J. A. Dionne, “Quantum plasmon resonances of individual metallic nanoparticles,” Nature 483, 421–427 (2012).

S. Kim, J. Jin, Y. Kim, I. Park, Y. Kim, and S. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453, 757–760 (2008).

Opt. Commun. (1)

O. Marti, H. Bielefeldt, B. Hecht, S. Herminghaus, P. Leiderer, and J. Mlynek, “Near-field optical measurement of the surface plasmon field,” Opt. Commun. 96, 225–228 (1993).
[Crossref]

Opt. Express (2)

Phys. Rev. B (6)

M. McMahon, R. Lopez, R. Haglund, E. Ray, and P. Bunton, “Second-harmonic generation from arrays of symmetric gold nanoparticles,” Phys. Rev. B 73, 041401 (2006).
[Crossref]

A. Sundaramurthy, K. B. Crozier, G. S. Kino, D. P. Fromm, P. J. Schuck, and W. E. Moerner, “Field enhancement and gap-dependent resonance in a system of two opposing tip-to-tip Au nanotriangles,” Phys. Rev. B 72, 1–6 (2005).
[Crossref]

K. Schraml, M. Spiegl, M. Kammerlocher, G. Bracher, J. Bartl, T. Campbell, J. Finley, and M. Kaniber, “Optical properties and interparticle coupling of plasmonic bowtie nanoantennas on a semiconducting substrate,” Phys. Rev. B 90, 035435 (2014).
[Crossref]

M. R. Beversluis, A. Bouhelier, and L. Novotny, “Continuum generation from single gold nanostructures through near-field mediated intraband transitions,” Phys. Rev. B 68, 115433 (2003).
[Crossref]

P. Biagioni, M. Celebrano, M. Savoini, G. Grancini, D. Brida, S. Mátéfi-Tempfli, M. Mátéfi-Tempfli, L. Duò, B. Hecht, G. Cerullo, and M. Finazzi, “Dependence of the two-photon photoluminescence yield of gold nanostructures on the laser pulse duration,” Phys. Rev. B 80, 045411 (2009).
[Crossref]

M. L. Trolle, G. Seifert, and T. G. Pedersen, “Theory of excitonic second-harmonic generation in monolayer MoS2,” Phys. Rev. B 89, 1–8 (2014).
[Crossref]

Phys. Rev. Lett. (4)

A. Bouhelier, R. Bachelot, G. Lerondel, S. Kostcheev, P. Royer, and G. Wiederrecht, “Surface plasmon characteristics of tunable photoluminescence in single gold nanorods,” Phys. Rev. Lett. 95, 267405 (2005).
[Crossref]

M. Danckwerts and L. Novotny, “Optical frequency mixing at coupled gold nanoparticles,” Phys. Rev. Lett. 98, 026104 (2007).
[Crossref]

P. Schuck, D. Fromm, A. Sundaramurthy, G. Kino, and W. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94, 017402 (2005).
[Crossref]

T. Hanke, G. Krauss, D. Träutlein, B. Wild, R. Bratschitsch, and A. Leitenstorfer, “Efficient nonlinear light emission of single gold optical antennas driven by few-cycle near-infrared pulses,” Phys. Rev. Lett. 103, 257404 (2009).
[Crossref]

Proc. Natl. Acad. Sci. USA (1)

D. Brinks, M. Castro-Lopez, R. Hildner, and N. F. van Hulst, “Plasmonic antennas as design elements for coherent ultrafast nanophotonics,” Proc. Natl. Acad. Sci. USA 110, 18386–18390 (2013).
[Crossref]

Rep. Prog. Phys. (1)

P. Biagioni, B. Hecht, and J.-S. Huang, “Nanoantennas for visible and infrared radiation,” Rep. Prog. Phys. 75, 024402 (2012).
[Crossref]

Sci. Rep. (1)

M. Kaniber, K. Schraml, A. Regler, J. Bartl, G. Glashagen, F. Flassig, J. Wierzbowski, and J. J. Finley, “Surface plasmon resonance spectroscopy of single bowtie nano-antennas using a differential reflectivity method,” Sci. Rep. 6, 23203 (2016).
[Crossref]

Science (1)

P. Mühlschlegel, H. Eisler, O. Martin, B. Hecht, and D. Pohl, “Resonant optical antennas,” Science 308, 1607–1609 (2005).
[Crossref]

Other (4)

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

M. Agio and A. Alù, Optical Antennas (Cambridge University, 2013).

Lumerical Solutions, Inc., 2013, http://www.lumerical.com/tcad-products/fdtd/ .

R. J. Pressley, Handbook of Lasers (Chemical Rubber, 1971).

Supplementary Material (1)

NameDescription
» Supplement 1: PDF (3286 KB)      Supplemental Document 1

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. (a) Normalized differential reflectivity spectra and corresponding simulated scattering cross sections of pristine bowtie nanoantennas with s=140nm and g=6nm, g=14nm, and g=30nm in black, red, and blue, respectively. Inset: SEM image of pristine bowtie (scale bar=50nm). (b) Spectrally integrated nonlinear intensity of pristine bowties as a function of peak power density upon 1, first; 2, second; and 3, third illumination with fs laser light. Inset: schematic illustration of the experimental setup, where (1) and (2) denote a linear polarizer and short-pass filter, respectively. (c) SEM images of bowties before (top) and after (bottom) fs-illumination (scale bar=50nm).
Fig. 2.
Fig. 2. (a) Simulated scattering cross sections for pristine bowtie, fs-illuminated, and intentionally connected antenna in blue, red, and green, respectively. Insets: (i, ii) SEM images of fs-illuminated antennas modeled with continuous film and spatially separated nanoparticles, respectively. Scale bar=50nm. (iii, iv) Simulated charge carrier distributions of the low and high energy mode of connected nanoantennas, respectively. (b) Differential reflectivity spectra for pristine, fs-illuminated, and intentionally connected antennas in blue, red, and green, respectively. Insets (i)–(iii) SEM images of the feedgap for pristine, fs-illuminated, and intentionally connected antennas, respectively. Scale bar=50nm. (c) Histogram of energy shifts ΔE=EresErespristine for fs-illuminated and intentionally connected antennas in red and green, respectively.
Fig. 3.
Fig. 3. (a) Temporal evolution of the spectrally integrated nonlinear intensity INL of five nominally identical bowtie nanoantennas. (b) Two-photon photoluminescence spectra of fs-illuminated antennas for different excitation power densities. (c) Spectrally integrated nonlinear intensity as a function of peak power density for a fs-illuminated antenna and a planar Au film in blue and red, respectively. Dashed lines represent quadratic fits. (d) Spectrally integrated nonlinear intensity as a function of excitation polarization direction.
Fig. 4.
Fig. 4. (a) Measured saturation intensity INLsat as a function of feedgap size g in black. Simulated additional intensity enhancements due to nanotriangle tips and nanoparticles in the feedgap are shown as squares and circles, respectively. (b, c) Simulation of the intensity enhancement η for a pristine bowtie and a fs-illuminated antenna, respectively. (d) Ratio of intensity enhancements ηfs-ill/ηpristine of a fs-illuminated antenna with respect to a pristine antenna..

Metrics