Abstract

Precision time references in space are of major importance to satellite-based fundamental science, global satellite navigation, earth observation, and satellite formation flying. Here we report on the operation of a compact, rugged, and automated optical frequency comb setup on a sounding rocket in space under microgravity. The experiment compared two clocks, one based on the optical D2 transition in Rb, and another on hyperfine splitting in Cs. This represents the first frequency comb based optical clock operation in space, which is an important milestone for future satellite-based precision metrology. Based on the approach demonstrated here, future space-based precision metrology can be improved by orders of magnitude when referencing to state-of-the-art optical clock transitions.

© 2016 Optical Society of America

1. INTRODUCTION

The upcoming generation of optical atomic frequency references has shown an enormous increase in accuracy and stability compared to the present official atomic clock standard based on Cesium (see, e.g., [1,2]). These amazingly stable optical atomic clocks are based on energy transitions that have been carefully quantum engineered and controlled, and that are oscillating at frequencies of several hundred terahertz with a stability of 1018. Optical clocks have, for example, demonstrated a precision that is sensitive enough to detect a few centimeters of elevation change within the Earth’s gravitational potential, caused by the relativistic redshift. In addition, the recent discovery of gravitational waves [3] has triggered a growing interest in their advanced detection. Gravitational wave detectors are large Michelson interferometers that compare optical phases of a stable laser sent via the two orthogonal arms. Typical laser linewidths are 10Hz, and a strain sensitivity approaching 1023Hz1/2 has been reported [4]. Advanced gravitational wave detectors like LISA, which are designed as very large baseline interferometers between satellites, have been a long-lasting dream of the scientific community [5]. Such a space-based device would be important for the detection of low-frequency waves (<1Hz). A large-scale gravitational wave detector satellite mission called eLISA/NGO (see e.g., [6]) is currently being discussed.

Whenever it comes to the calibration and stabilization of lasers used for such precision metrology, it is often necessary to divide their optical frequency with an optical clockwork into a countable radio frequency, so that they can be referenced to an SI frequency standard. The established method of choice for this frequency division is using an optical frequency comb. Since its invention [7], the frequency comb has enabled various fundamental experiments and paved the way to groundbreaking applications [8], ranging from precision astronomy [9], femtosecond precision time transfer [10], nanometer ranging [11], fundamental physics [1215], and gravimetry [16] to laser stabilization and cooling [17]. Apart from the work in [18], however, the operation of combs has been limited to research laboratories providing well-controlled environmental conditions. For many reasons there exists fundamental interest in applying precision laser metrology and optical clocks in space. In this environment, an optically referenced comb with ultimate performance in terms of phase noise and stability could be used to investigate general relativity [19], provide low-noise microwaves for synthetic aperture radar, calibrate lidar lasers for an in-depth study of the planetary atmosphere [20], improve on global satellite navigation systems [21], enable fast precision inter-satellite laser ranging systems for swarm navigation [11], and transfer time and frequency over large grids with femtosecond jitter [10].

Here, we demonstrate that optical frequency combs referencing a selected optical atomic line to a radio frequency clock can be scaled down to a module with a volume below 20 l, having a mass of 22 kg, and operating under the conditions of a sounding rocket flight. A schematic of our experiment, where we compare the Rb87 D2 transition at 384 THz to a 10 MHz Cs-based atomic reference, is shown in Fig. 1(A). The assembled module is depicted in Fig. 1(B). Taking into account the actual flight data and currently ongoing developments, future satellite applications become well within reach. Low-bandwidth remote operation with a high degree of automation and environmental stability against accelerations >10g or shocks are demonstrated here. Precision thermal stabilization of the comb module with stabilities within ±30mK in a convection-limited microgravity environment has been achieved.

 figure: Fig. 1.

Fig. 1. (A) Schematic illustration of the clock comparison experiment performed for 360 s of microgravity during a sounding rocket flight. The frequency comb is phase stabilized to a Cs133-based atomic chip-scale clock providing 10 MHz radio frequency. A laser frequency is stabilized to an optical transition in Rb87 and compared to one comb line. (B) Picture of the experimental module including the frequency comb, the Rb spectroscopy, electronics, and a control computer, (C) picture of the launch of TEXUS 51 exiting the launch tower at ESRANGE, Sweden (23 April 2015, picture provided by Airbus D&S).

Download Full Size | PPT Slide | PDF

2. EXPERIMENT

Essentially, optical frequency combs are precision-controlled femtosecond lasers [7,8]. Phase-locked loops lock two radio frequencies, the pulse repetition rate frep and the carrier envelope offset frequency fceo of them. An optical spectrum is then generated with evenly spaced lines, following the comb equation fc=fceo+n·frep (with n being a natural number). Usually, such lasers are mechanically sensitive to vibrations and temperature variations. This environmental sensitivity can be reduced using polarization-maintaining fibers [18,22]. The laser robustness achieved in our work is further discussed in Section 2 of Supplement 1. Our frequency comb laser is based on a nonlinear amplified loop mirror, with erbium as the gain medium [23,24]. A recent comparative study has pointed out the superior performance of this technology [25]. The complete frep=100MHz comb fits into a small package of 220mm×142mm×25mm (see Fig. 2), including the laser oscillator, erbium-doped fiber amplifier (EDFA), ridge waveguide WG) periodically poled lithium niobate (PPLN) based f2f interferometer, and, for Rb optical beat generation at 780 nm, a 1560 nm PPLN second-harmonic generation (SHG) unit. The module has a mass of 1.65 kg, mostly due to the aluminum body, which also serves as a thermal mass. Efficient heat transport under microgravity was ensured by embedding the fiber components in space-grade silicon rubber (NUSIL CV-2500).

 figure: Fig. 2.

Fig. 2. (A) Unchanged. (B) Schematics of the frequency comb module shown in (A) with the subunit (Fig. 9) oscillator, amplifier (EDFA), f2f generation unit, and second harmonic generation (SHG) in the beat detection unit (BDU). WDM, wavelength division multiplexer; BS, beam splitter; PBS, polarizing beam splitter; PZT, piezo translator; HNLF, highly nonlinear fiber; FBG, fiber Bragg grating.

Download Full Size | PPT Slide | PDF

The comb receives 780 nm light from the atomic spectroscopy unit consisting of a micro-integrated and space-qualified diode laser locked to a Doppler-free Rb spectroscopy cell. The size of this module is 220mm×142mm×50mm, with a total weight of 2.1 kg. The diode laser is a ridge waveguide distributed feedback (DFB) diode laser with a cavity length of 1.5 mm, as described in [26] and shown in Fig. 3(A). It is mounted on aluminum nitride, omitting any movable parts, including an optical micro-isolator with 60 dB isolation and a fiber coupler [27] connecting the laser to the miniature Rb spectroscopy unit, shown in Fig. 3(B). The DFB laser emits 10 mW at 780 nm behind the micro-isolator [27] and is continuously tunable over 0.7 nm via injection current control with a side mode suppression ratio of >50dB at 10 pm resolution bandwidth. A short term laser linewidth (10 μs) of 1 MHz FWHM and a white noise floor based Lorentzian linewidth of 66 kHz has been observed. The Doppler-free spectroscopy for frequency stabilization of the DFB laser has been realized in a miniaturized optics unit situated on a Zerodur bench [28]. The Rb transition selected for the observation is the D2 transition from the 52S1/2 ground state to the 52P3/2 excited state. Using Doppler-free saturation spectroscopy absorption lines on the order of the natural linewidth of Rb (6 MHz) can be addressed [29,30]. Frequency modulation of the DFB laser is used for locking [31,32], shown schematically in Fig. 3(C).

 figure: Fig. 3.

Fig. 3. (A) Miniature space-qualified 780 nm DFB laser module mounted on an aluminum nitride platform, (B) miniature space-qualified Doppler-free Rb spectroscopy unit, (C) schematics of the comb-based precision spectroscopy generating a countable heterodyne between the Rb-stabilized DFB laser and the nearest comb line.

Download Full Size | PPT Slide | PDF

An automated procedure has been developed to achieve autonomous locking to a specific line during flight. The laser is first tuned in to the center between the Rb transition groups and locked to the smoothly varying error signal background in this region. There, the laser is localized within a 50 MHz window. Then, a predefined current jump is applied. This suffices to repeatedly tune the laser to the line of choice and lock to it.

The complete optics module is controlled by a compact mixed-signal electronics unit (170mm×197mm×310mm, 12 kg). The collected data are streamed to a pocket-sized microcomputer used for high-level data processing and interfacing to ground station equipment. Radio electronics and phase locks were referenced to a miniature chip-scale atomic clock (CSAC; Microsemi). Repetition rate, offset beat, and Rb beat are monitored using an advanced multichannel synchronous digital phase recording and counting system (K&K GmbH) [33]. During the microgravity mission it was possible to observe and control the experiment from the ground station equipment via a 9.6 kbaud radio link. The complete assembly, as shown in Fig. 1(B) with a size of 310mm×200mm×480mm, was integrated into an airtight vessel and pressurized to 1200 mbars to preserve constant pressure conditions during the space flight. During flight the pressure inside the vessel changed slowly by 1.6% due to an overall temperature increase of 2°C caused by heat dissipation of the device. The thermal load of the module is dumped into the baseplate of the vessel with five heatpipes and direct mechanical contact. Until 10 s before launch, the baseplate is water cooled to 15°C with a thermo-electrical chiller situated within the launch tower and connected to the payload with two removable hoses. Before launch the module was environmentally tested on a shaker table and in a climate chamber, which ensured full compliance with the expected rocket launch and reentry conditions (see Section 2 of Supplement 1). Furthermore, in an earlier work [34] we investigated fiber degradation due to cosmic radiation, which we can exclude for such short flight durations, as is discussed in more detail in Section 3 of Supplement 1. It should be mentioned in this context that an Er-based femtosecond fiber laser has been operated recently for a duration exceeding 1 year in outer space [35]. While radiation-induced fiber darkening caused an 8.6% reduction in laser output power after 1 year, stable mode locking was achieved over the complete mission.

3. RESULTS

Two successful flights on sounding rockets have been performed up to now, TEXUS 51 in April 2015 and TEXUS 53 in January 2016, both launched from the ESRANGE Space Center [TEXUS 51 launch shown in Fig. 1(C)]. Table 1 shows some of the flight parameters for both flights. In the following discussion we concentrate primarily on the flight data of TEXUS 51, because the clock comparison data for TEXUS 53 was affected by a thermally dependent etalon in the Rb spectroscopy module, which would require advanced numerical treatment of the data to be further considered. About 5 h before launch the unit was powered and allowed to thermalize. Comb and Rb spectroscopy were locked and ground station data were acquired for reference. At g=9.81m/s2 the selected Rb D2 line was determined to be 384.2279817(4) THz. A laser spectroscopy scan at ground is shown in Fig. 4(A). 10 s before rocket launch the system was switched into a secure state: while the Rb spectroscopy remained locked to the atomic line, the comb was unlocked in repetition rate and offset frequency to relax the servo actuators. The servo bandwidth and actuator strength are insufficient to cope with the accelerations during launch (this is discussed in more detail in Section 2 of Supplement 1).

 figure: Fig. 4.

Fig. 4. (A) Plot of the spectroscopy signals obtained with the Rb module. The Rb87 F=2F transition manifold is shown. Blue, DC photodiode signal; red, demodulated signal. The plot shows data obtained on the ground, where the dot marks the locking point of the clock at 384.2279817(4) THz. (B) Comparable dataset from a current scan collected during the microgravity flight.

Download Full Size | PPT Slide | PDF

Tables Icon

Table 1. Sounding Rocket Flight Parameters

Launch time t0 was followed by vertical accelerations reaching 12.5 g. The Rb spectroscopy unit stayed locked during such accelerations, and the comb oscillator remained mode locked. After motor separation, just before the beginning of the microgravity phase, the two servo locks of the comb were turned on and a lock of frep was reached within seconds. For TEXUS 51, the microgravity regime (<104g for all directions) started at t0+72s, and the carrier offset frequency fceo was locked at t0+84s. Such fast relocking of the comb was also achieved on the TEXUS 53 flight. The Rb beat note with the nearest comb line was counted until t0+330s [see Fig. 5(B)]. Then, for 120 s, a wavelength scan was initiated, resulting in the spectroscopy data shown in Fig. 4(B). To keep the duration of this scan short enough, a larger current step size was used compared to the precision scan in Fig. 4(A). From t0+450s on, the laser was locked again to the Rb line for 30 s. The microgravity phase ended at t0+442s, directly followed by reentry into Earth’s atmosphere. During re-entry, under decelerations of up to 12.5 g, the comb unit lost its phase locks, but the laser remained mode locked. The DFB laser module stayed locked to the Rb D2 transition during both flights for the full flight period. Touchdown of the unpowered payload occurred at t0+884s. The payload was recovered within a few hours and disassembled the same day. The comb module’s functionality was positively assured within 24 h after return to ground.

 figure: Fig. 5.

Fig. 5. (A) Time variation of the counted signal of the Rb spectroscopy over a period of 40,000 s on the ground, recorded at a gate time of 1 s. The resulting Allan deviation is plotted in the lower part of the figure. (B) Comparison of the frequency variation during the microgravity flight with respect to changes in the gravitational potential. The measurement sequence is indicated as follows: I, prelaunch data; II, launch; III, in microgravity locked to Rb D2; IV, spectroscopy scan; V, in microgravity locked to Rb D2; VI, re-entry.

Download Full Size | PPT Slide | PDF

The absolute clock comparison accuracy is limited by long-term drifts of the references, e.g., fluctuations of the locking point of the Rb laser, drifts of the CSAC, and some uncertainties due to light shift and Zeeman shift. Figure 5(A) shows a long-term dataset from ground. The systematic limits of our clock comparison are discussed in more detail in Section 4 of Supplement 1. However, for the relevant time scales below 1000 s, a relative frequency change can be measured with a precision approaching 1011 at 100 s. Figure 5(B) shows the relative change in frequencies throughout the TEXUS 51 flight, including the data taken immediately before launch, at payload apogee, and immediately before reentry into the atmosphere. A linear drift of 122 Hz/s, which was caused by a slight thermal drift within the spectroscopy module, has been subtracted from the flight data.

The clock comparison experiment can be evaluated with respect to the local position invariance (LPI), a cornerstone of general relativity, as it is one of the three postulates of Einstein’s equivalence principle. If two different types of clocks are operating at different frequencies f1 and f2, they can be compared in varying gravitational potentials ΔU, leading to (f1f2)/f=(β1β2)ΔU/c2, where βi are dimensionless parameters depending on the sensitivity of each clock on LPI. Present clock comparisons on Earth [36] have determined that Δβ=β1β2<106. Taking into account recent clock accuracies reaching 1018 [1,2], largely improved earthbound measurements are fundamentally limited by the gravitational variation given by the Earth’s trajectory in the solar system. Performing a least squares analysis of the observed optical frequency during the sounding rocket flight and comparing it to the gravity potential dataset, as shown in Fig. 5(B), we evaluate Δβ<0.19±0.26. While we acknowledge that the present result is 5 orders of magnitude less precise than state of the art based determinations of Δβ on Earth, we note that neither the measurement principle nor the frequency comb is limiting us. For example, by choosing an advanced space-compatible RF reference like PHARAO [37,38] and an optical clock based on Yb, Sr, Al, or I2 [39,40], a frequency comb based comparison on the level of 1015 or beyond is feasible with a space comb on a satellite. We note that Menlo Systems has recently demonstrated an ultralow noise comb performance with an Allan deviation better than 1016 at 1 s, dropping below 1018 within 500 s [41]. Apart from additional low-voltage-driven electro-optical actuators in the oscillator and advanced high-bandwidth phase-locked loops, the fiber design of such a comb is very comparable and fits into a similar volume to that presented here. Such an instrument, on a trajectory passing through a gravitational potential difference ΔU=1010m2/s2 (i.e., from Earth to Mercury), could allow for the determination of Δβ down to a level of 109, thereby improving present Earth-bound experiments by 3 orders of magnitude.

4. CONCLUSION AND OUTLOOK

In conclusion, we have reproducibly demonstrated space-based determination of an optical atomic transition frequency, making use of a compact and remotely controllable comb setup referenced to a cesium clock. Our prototype experiment involved microgravity on a sounding rocket flight for a duration of 360 s. With respect to LPI, the apparent experimental limitations are caused by the reference clock, the selected Rb transition monitored using frequency modulation spectroscopy, and the limited variation in the gravitational potential during this flight. Nevertheless, with our prototype experiment, the technology readiness of optical frequency combs and remotely controlled precision laser spectroscopy has been significantly advanced. We stress that the current weight and volume of the module can be further optimized. Most of the current mass is caused by the structure itself. Moreover, in the future, the application of advanced atomic spectroscopy techniques like modulation transfer spectroscopy, combined with cavity enhancement, is feasible. We note that such devices have been recently designed for space use [40]. Such a spectroscopy setup could already improve the optical clock by 4 orders of magnitude to a stability of 1015. Finally, the electronics package can be improved while reducing the number of modules, power consumption, and performance and interface complexity. The next generation of the space comb setup with a significantly reduced weight below 10 kg, an overall power consumption below 30 W, and an improved spectroscopy module is currently under development and has been scheduled for a rocket launch in 2017. This next-generation system will also be tested for operation under vacuum conditions, and, moreover, some critical fiber components will be more deeply inspected for radiation hardness. Based on our technology, we expect a promising future for various comb applications in space. Space combs could largely serve for clocks and frequency standards, microwave generation, ranging, and laser calibration out there.

Funding

Deutsches Zentrum für Luft- und Raumfahrt (DLR) (50WM0934, 50WM0937, 50WM0940, 50WM1237, 50WM1238, 50WM1343, 50WM1240); European Commission (EC) (607493).

Acknowledgment

This work has been supported by the German Space Agency (DLR) with funds by the Deutsche Bundestag under grant numbers 50WM0934, 50WM0937, 50WM0940, 50WM1237, 50WM1238, 50WM1343, 50WM1240. MG acknowledges support by the FP7-PEOPLE-2013-ITN program, grant number 607493.

 

See Supplement 1 for supporting content.

REFERENCES

1. I. Ushijima, M. Takamoto, M. Das, T. Ohkubo, and H. Katori, “Cryogenic optical lattice clocks,” Nat. Photonics 9, 185–189 (2015). [CrossRef]  

2. T. Nicholson, S. Campbell, R. Hutson, G. Marti, B. Bloom, R. McNally, W. Zhang, M. Barrett, M. Safronova, G. Strouse, W. Tew, and J. Ye, “Systematic evaluation of an atomic clock at total uncertainty,” Nat. Commun. 6, 6896 (2015). [CrossRef]  

3. B. Abbot, LIGO Scientific Collaboration and Virgo Collaboration, “Observation of gravitational waves from a binary black hole merger,” Phys. Rev. Lett. 116, 061102 (2016). [CrossRef]  

4. D. V. Martynov, LIGO Scientific Collaboration, “Sensitivity of the advanced LIGO detectors at the beginning of gravitational wave astronomy,” Phys. Rev. D 93, 112004 (2016). [CrossRef]  

5. K. Danzmann, “LISA—an ESA cornerstone mission for a gravitational wave observatory,” Classical Quantum Gravity 14, 1399–1404 (1997). [CrossRef]  

6. P. Amaro-Seoane, S. Aoudia, S. Babak, P. Binétruy, E. Berti, A. Bohé, C. Caprini, M. Colpi, N. J. Cornish, K. Danzmann, J.-F. Dufaux, J. Gair, O. Jennrich, P. Jetzer, A. Klein, R. N. Lang, A. Lobo, T. Littenberg, S. T. McWilliams, G. Nelemans, A. Petiteau, E. K. Porter, B. F. Schutz, A. Sesana, R. Stebbins, T. Sumner, M. Vallisneri, S. Vitale, M. Volonteri, and H. Ward, “Doing science with eLISA: astrophysics and cosmology in the millihertz regime,” arXiv: 1201.3621v1 (2012).

7. R. Holzwarth, T. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. St.J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85, 2264–2267 (2000). [CrossRef]  

8. T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416, 233–237 (2002). [CrossRef]  

9. T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science 321, 1335–1337 (2008). [CrossRef]  

10. F. R. Giorgetta, W. C. Swann, L. C. Sinclair, E. Baumann, I. Coddington, and N. R. Newbury, “Optical two-way time and frequency transfer over free space,” Nat. Photonics 7, 435–439 (2013). [CrossRef]  

11. I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3, 351–356 (2009). [CrossRef]  

12. P. Agostini and L. F. DiMauro, “The physics of attosecond light pulses,” Rep. Prog. Phys. 67, 813–855 (2004). [CrossRef]  

13. S. N. Lea, “Limits to time variation of fundamental constants from comparisons of atomic frequency standards,” Rep. Prog. Phys. 70, 1473–1523 (2007). [CrossRef]  

14. S. Blatt, A. D. Ludlow, G. K. Campbell, J. W. Thomsen, T. Zelevinsky, M. M. Boyd, J. Ye, X. Baillard, M. Fouche, R. Le Targat, A. Brusch, P. Lemonde, M. Takamoto, F. L. Hong, H. Katori, and V. V. Flambaum, “New limits on coupling of fundamental constants to gravity using 87Sr optical lattice clocks,” Phys. Rev. Lett. 100, 140801 (2008). [CrossRef]  

15. R. Pohl, A. Antognini, F. Nez, F. D. Amaro, F. Biraben, J. M. R. Cardoso, D. S. Covita, A. Dax, S. Dhawan, L. M. P. Fernandes, A. Giesen, T. Graf, T. W. Hänsch, P. Indelicato, L. Julien, C.-Y. Kao, P. Knowles, E.-O. Le Bigot, Y.-W. Liu, J. A. M. Lopes, L. Ludhova, C. M. B. Monteiro, F. Mulhauser, T. Nebel, P. Rabinowitz, J. M. F. dos Santos, L. A. Schaller, K. Schuhmann, C. Schwob, D. Taqqu, J. F. C. A. Veloso, and F. Kottmann, “The size of the proton,” Nature 466, 213–216 (2010). [CrossRef]  

16. S. Schiller, G. M. Tino, P. Gill, C. Salomon, U. Sterr, E. Peik, A. Nevsky, A. Goerlitz, D. Svehla, G. Ferrari, N. Poli, L. Lusanna, H. Klein, H. Margolis, P. Lemonde, P. Laurent, G. Santarelli, A. Clairon, W. Ertmer, E. Rasel, J. Mueller, L. Iorio, C. Laemmerzahl, H. Dittus, E. Gill, M. Rothacher, F. Flechner, U. Schreiber, V. Flambaum, W.-T. Ni, L. Liu, X. Chen, J. Chen, K. Gao, L. Cacciapuoti, R. Holzwarth, M. P. Hess, and W. Schaefer, “Einstein gravity explorer—a medium-class fundamental physics mission,” Exp. Astron. 23, 573–610 (2009). [CrossRef]  

17. S. Chu, “Cold atoms and quantum control,” Nature 416, 206–210 (2002). [CrossRef]  

18. L. C. Sinclair, I. Coddington, W. C. Swann, G. B. Rieker, A. Hati, K. Iwakuni, and N. R. Newbury, “Operation of an optically coherent frequency comb outside the metrology lab,” Opt. Express 22, 6996–7006 (2014). [CrossRef]  

19. M. E. Tobar, P. L. Stanwix, J. J. McFerran, J. Guena, M. Abgrall, S. Bize, A. Clairon, P. Laurent, P. Rosenbusch, D. Rovera, and G. Santarelli, “Testing local position and fundamental constant invariance due to periodic gravitational and boost using long-term comparison of the SYRTE atomic fountains and H-masers,” Phys. Rev. D 87, 122004 (2013). [CrossRef]  

20. C. Kiemle, M. Quatrevalet, G. Ehret, A. Amediek, A. Fix, and M. Wirth, “Sensitivity studies for a space-based methane lidar mission,” Atmos. Meas. Technol. 4, 2195–2211 (2011). [CrossRef]  

21. P. Gill, “Optical frequency standards,” Metrologia 42, S125–S137 (2005). [CrossRef]  

22. E. Baumann, F. R. Giorgetta, J. W. Nicholson, W. C. Swann, I. Coddington, and N. R. Newbury, “High-performance, vibration-immune, fiber-laser frequency comb,” Opt. Lett. 34, 638–640 (2009). [CrossRef]  

23. H. A. Haus, E. P. Ippen, and K. Tamura, “Additive-pulse modelocking in fiber lasers,” IEEE J. Quantum Electron. 30, 200–208 (1994). [CrossRef]  

24. W. Hänsel, R. Holzwarth, R. Doubek, and M. Mei, “Laser with non-linear optical loop mirror,” U.S. patent 8873601B2 (28 Oct. 2014).

25. N. Kuse, C.-C. Lee, T. Schibli, and M. Fermann, “All polarization-maintaining Er fiber-based optical frequency combs with nonlinear amplifying loop mirror,” Opt. Express 24, 250903 (2016).

26. O. Brox, F. Bugge, A. Mogilatenko, E. Luvsandamdin, A. Wicht, H. Wenzel, and G. Erbert, “Distributed feedback lasers in the 760 to 810 nm range and epitaxial grating design,” Semicond. Sci. Technol. 29, 095018 (2014). [CrossRef]  

27. A. Kohfeldt, C. Kürbis, E. Luvsandamdin, M. Schiemangk, A. Wicht, A. Peters, G. Erbert, and G. Tränkle, “Compact narrow linewidth diode laser modules for precision quantum optics experiments on board of sounding rockets,” Proc. SPIE 9900, 99001G (2016). [CrossRef]  

28. H. Duncker, O. Hellmig, A. Wenzlawski, A. Grote, A. J. Rafipoor, M. Rafipoor, K. Sengstock, and P. Windpassinger, “Ultrastable, Zerodur-based optical benches for quantum gas experiments,” Appl. Opt. 53, 4468–4474 (2014). [CrossRef]  

29. R. L. Barger and J. L. Hall, “Pressure shift and broadening of methane line at 3.39 μm studied by laser-saturated molecular absorption,” Phys. Rev. Lett. 22, 4–7 (1969). [CrossRef]  

30. T. W. Hänsch, M. D. Levenson, and A. L. Schawlow, “Complete hyperfine structure of a molecular iodine line,” Phys. Rev. Lett. 26, 946–948 (1971). [CrossRef]  

31. G. C. Bjorklund, “Frequency-modulation spectroscopy—new method for measuring weak absorptions and dispersions,” Opt. Lett. 5, 15–17 (1980). [CrossRef]  

32. J. M. Supplee, E. A. Whittaker, and W. Lenth, “Theoretical description of frequency-modulation and wavelength modulation spectroscopy,” Appl. Opt. 33, 6294–6302 (1994). [CrossRef]  

33. G. Kramer and W. Klische, “Multi-channel synchronous digital phase recorder,” in Proceedings of the IEEE International Frequency Control Symposium and PDA Exhibition (2001), pp. 144–151.

34. M. Lezius, K. Predehl, W. Stöwer, A. Türler, M. Greiter, C. Hoeschen, P. Thirolf, W. Assmann, D. Habs, A. Prokofiev, C. Ekström, T. W. Hänsch, and R. Holzwarth, “Radiation induced absorption in rare earth doped optical fibers,” IEEE Trans. Nucl. Sci. 59, 425–433 (2012). [CrossRef]  

35. J. Lee, K. Lee, Y.-S. Jang, H. Jang, S. Han, S.-H. Lee, K.-I. Kang, C.-W. Lim, Y.-J. Kim, and S.-W. Kim, “Testing of a femtosecond pulse laser in outer space,” Sci. Rep. 4, 5134 (2014).

36. T. M. Fortier, N. Ashby, J. C. Bergquist, M. J. Delaney, S. A. Diddams, T. P. Heavner, L. Hollberg, W. M. Itano, S. R. Jefferts, K. Kim, F. Levi, L. Lorini, W. H. Oskay, T. E. Parker, and J. E. Stalnaker, “Precision atomic spectroscopy for improved limits on variation of the fine structure constant and local position invariance,” Phys. Rev. Lett. 98, 070801 (2007). [CrossRef]  

37. T. Leveque, B. Faure, F. X. Esnault, C. Delaroche, D. Massonnet, O. Grosjean, F. Buffe, P. Torresi, T. Bomer, A. Pichon, P. Beraud, J. P. Lelay, S. Thomin, and P. Laurent, “PHARAO laser source flight model: design and performances,” Rev. Sci. Instrum. 86, 033104 (2015). [CrossRef]  

38. B. Altschul, Q. G. Bailey, L. Blanchet, K. Bongs, P. Bouyer, L. Cacciapuoti, S. Capozziello, N. Gaaloul, D. Giulini, J. Hartwig, L. Iess, P. Jetzer, A. Landragin, E. Rasel, S. Reynaud, S. Schiller, C. Schubert, F. Sorrentino, U. Sterr, J. D. Tasson, G. M. Tino, P. Tuckey, and P. Wolf, “Quantum tests of the Einstein equivalence principle with the STE-QUEST space mission,” Adv. Space Res. 55, 501–524 (2015). [CrossRef]  

39. K. Bongs, Y. Singh, L. Smith, W. He, O. Kock, D. Swierad, J. Hughes, S. Schiller, S. Alighanbari, S. Origlia, S. Vogt, U. Sterr, Ch. Lisdat, R. Le Targat, J. Lodewyck, D. Holleville, B. Venon, S. Bize, G. P. Barwood, P. Gill, I. R. Hill, Y. B. Ovchinnikov, N. Poli, G. M. Tino, J. Stuhler, and W. Kaenders, SOC2 Team, “Development of a strontium optical lattice clock for the SOC mission on the ISS,” C. R. Physique 16, 553–564 (2015). [CrossRef]  

40. T. Schuldt, K. Döringshoff, A. Milke, J. Sanjuan, M. Gohlke, E. Kovalchuk, N. Gürlebeck, A. Peters, and C. Braxmaier, “High-performance optical frequency references for space,” J. Phys. 723, 012047 (2016).

41. W. Hänsel, M. Giunta, M. Fischer, and R. Holzwarth, “Simultaneous direct spectral purity transfer at three optical clock transitions using an all-pm Er-doped fiber frequency comb,” in Proceedings of the 25th International Conference on Atomic Physics (ICAP), Seoul, Korea, 24 –29 July 2016, p. 97.

References

  • View by:

  1. I. Ushijima, M. Takamoto, M. Das, T. Ohkubo, and H. Katori, “Cryogenic optical lattice clocks,” Nat. Photonics 9, 185–189 (2015).
    [Crossref]
  2. T. Nicholson, S. Campbell, R. Hutson, G. Marti, B. Bloom, R. McNally, W. Zhang, M. Barrett, M. Safronova, G. Strouse, W. Tew, and J. Ye, “Systematic evaluation of an atomic clock at total uncertainty,” Nat. Commun. 6, 6896 (2015).
    [Crossref]
  3. B. Abbot, LIGO Scientific Collaboration and Virgo Collaboration, “Observation of gravitational waves from a binary black hole merger,” Phys. Rev. Lett. 116, 061102 (2016).
    [Crossref]
  4. D. V. Martynov, LIGO Scientific Collaboration, “Sensitivity of the advanced LIGO detectors at the beginning of gravitational wave astronomy,” Phys. Rev. D 93, 112004 (2016).
    [Crossref]
  5. K. Danzmann, “LISA—an ESA cornerstone mission for a gravitational wave observatory,” Classical Quantum Gravity 14, 1399–1404 (1997).
    [Crossref]
  6. P. Amaro-Seoane, S. Aoudia, S. Babak, P. Binétruy, E. Berti, A. Bohé, C. Caprini, M. Colpi, N. J. Cornish, K. Danzmann, J.-F. Dufaux, J. Gair, O. Jennrich, P. Jetzer, A. Klein, R. N. Lang, A. Lobo, T. Littenberg, S. T. McWilliams, G. Nelemans, A. Petiteau, E. K. Porter, B. F. Schutz, A. Sesana, R. Stebbins, T. Sumner, M. Vallisneri, S. Vitale, M. Volonteri, and H. Ward, “Doing science with eLISA: astrophysics and cosmology in the millihertz regime,” arXiv: 1201.3621v1 (2012).
  7. R. Holzwarth, T. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. St.J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85, 2264–2267 (2000).
    [Crossref]
  8. T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416, 233–237 (2002).
    [Crossref]
  9. T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science 321, 1335–1337 (2008).
    [Crossref]
  10. F. R. Giorgetta, W. C. Swann, L. C. Sinclair, E. Baumann, I. Coddington, and N. R. Newbury, “Optical two-way time and frequency transfer over free space,” Nat. Photonics 7, 435–439 (2013).
    [Crossref]
  11. I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3, 351–356 (2009).
    [Crossref]
  12. P. Agostini and L. F. DiMauro, “The physics of attosecond light pulses,” Rep. Prog. Phys. 67, 813–855 (2004).
    [Crossref]
  13. S. N. Lea, “Limits to time variation of fundamental constants from comparisons of atomic frequency standards,” Rep. Prog. Phys. 70, 1473–1523 (2007).
    [Crossref]
  14. S. Blatt, A. D. Ludlow, G. K. Campbell, J. W. Thomsen, T. Zelevinsky, M. M. Boyd, J. Ye, X. Baillard, M. Fouche, R. Le Targat, A. Brusch, P. Lemonde, M. Takamoto, F. L. Hong, H. Katori, and V. V. Flambaum, “New limits on coupling of fundamental constants to gravity using 87Sr optical lattice clocks,” Phys. Rev. Lett. 100, 140801 (2008).
    [Crossref]
  15. R. Pohl, A. Antognini, F. Nez, F. D. Amaro, F. Biraben, J. M. R. Cardoso, D. S. Covita, A. Dax, S. Dhawan, L. M. P. Fernandes, A. Giesen, T. Graf, T. W. Hänsch, P. Indelicato, L. Julien, C.-Y. Kao, P. Knowles, E.-O. Le Bigot, Y.-W. Liu, J. A. M. Lopes, L. Ludhova, C. M. B. Monteiro, F. Mulhauser, T. Nebel, P. Rabinowitz, J. M. F. dos Santos, L. A. Schaller, K. Schuhmann, C. Schwob, D. Taqqu, J. F. C. A. Veloso, and F. Kottmann, “The size of the proton,” Nature 466, 213–216 (2010).
    [Crossref]
  16. S. Schiller, G. M. Tino, P. Gill, C. Salomon, U. Sterr, E. Peik, A. Nevsky, A. Goerlitz, D. Svehla, G. Ferrari, N. Poli, L. Lusanna, H. Klein, H. Margolis, P. Lemonde, P. Laurent, G. Santarelli, A. Clairon, W. Ertmer, E. Rasel, J. Mueller, L. Iorio, C. Laemmerzahl, H. Dittus, E. Gill, M. Rothacher, F. Flechner, U. Schreiber, V. Flambaum, W.-T. Ni, L. Liu, X. Chen, J. Chen, K. Gao, L. Cacciapuoti, R. Holzwarth, M. P. Hess, and W. Schaefer, “Einstein gravity explorer—a medium-class fundamental physics mission,” Exp. Astron. 23, 573–610 (2009).
    [Crossref]
  17. S. Chu, “Cold atoms and quantum control,” Nature 416, 206–210 (2002).
    [Crossref]
  18. L. C. Sinclair, I. Coddington, W. C. Swann, G. B. Rieker, A. Hati, K. Iwakuni, and N. R. Newbury, “Operation of an optically coherent frequency comb outside the metrology lab,” Opt. Express 22, 6996–7006 (2014).
    [Crossref]
  19. M. E. Tobar, P. L. Stanwix, J. J. McFerran, J. Guena, M. Abgrall, S. Bize, A. Clairon, P. Laurent, P. Rosenbusch, D. Rovera, and G. Santarelli, “Testing local position and fundamental constant invariance due to periodic gravitational and boost using long-term comparison of the SYRTE atomic fountains and H-masers,” Phys. Rev. D 87, 122004 (2013).
    [Crossref]
  20. C. Kiemle, M. Quatrevalet, G. Ehret, A. Amediek, A. Fix, and M. Wirth, “Sensitivity studies for a space-based methane lidar mission,” Atmos. Meas. Technol. 4, 2195–2211 (2011).
    [Crossref]
  21. P. Gill, “Optical frequency standards,” Metrologia 42, S125–S137 (2005).
    [Crossref]
  22. E. Baumann, F. R. Giorgetta, J. W. Nicholson, W. C. Swann, I. Coddington, and N. R. Newbury, “High-performance, vibration-immune, fiber-laser frequency comb,” Opt. Lett. 34, 638–640 (2009).
    [Crossref]
  23. H. A. Haus, E. P. Ippen, and K. Tamura, “Additive-pulse modelocking in fiber lasers,” IEEE J. Quantum Electron. 30, 200–208 (1994).
    [Crossref]
  24. W. Hänsel, R. Holzwarth, R. Doubek, and M. Mei, “Laser with non-linear optical loop mirror,” U.S. patent8873601B2 (28Oct.2014).
  25. N. Kuse, C.-C. Lee, T. Schibli, and M. Fermann, “All polarization-maintaining Er fiber-based optical frequency combs with nonlinear amplifying loop mirror,” Opt. Express 24, 250903 (2016).
  26. O. Brox, F. Bugge, A. Mogilatenko, E. Luvsandamdin, A. Wicht, H. Wenzel, and G. Erbert, “Distributed feedback lasers in the 760 to 810  nm range and epitaxial grating design,” Semicond. Sci. Technol. 29, 095018 (2014).
    [Crossref]
  27. A. Kohfeldt, C. Kürbis, E. Luvsandamdin, M. Schiemangk, A. Wicht, A. Peters, G. Erbert, and G. Tränkle, “Compact narrow linewidth diode laser modules for precision quantum optics experiments on board of sounding rockets,” Proc. SPIE 9900, 99001G (2016).
    [Crossref]
  28. H. Duncker, O. Hellmig, A. Wenzlawski, A. Grote, A. J. Rafipoor, M. Rafipoor, K. Sengstock, and P. Windpassinger, “Ultrastable, Zerodur-based optical benches for quantum gas experiments,” Appl. Opt. 53, 4468–4474 (2014).
    [Crossref]
  29. R. L. Barger and J. L. Hall, “Pressure shift and broadening of methane line at 3.39  μm studied by laser-saturated molecular absorption,” Phys. Rev. Lett. 22, 4–7 (1969).
    [Crossref]
  30. T. W. Hänsch, M. D. Levenson, and A. L. Schawlow, “Complete hyperfine structure of a molecular iodine line,” Phys. Rev. Lett. 26, 946–948 (1971).
    [Crossref]
  31. G. C. Bjorklund, “Frequency-modulation spectroscopy—new method for measuring weak absorptions and dispersions,” Opt. Lett. 5, 15–17 (1980).
    [Crossref]
  32. J. M. Supplee, E. A. Whittaker, and W. Lenth, “Theoretical description of frequency-modulation and wavelength modulation spectroscopy,” Appl. Opt. 33, 6294–6302 (1994).
    [Crossref]
  33. G. Kramer and W. Klische, “Multi-channel synchronous digital phase recorder,” in Proceedings of the IEEE International Frequency Control Symposium and PDA Exhibition (2001), pp. 144–151.
  34. M. Lezius, K. Predehl, W. Stöwer, A. Türler, M. Greiter, C. Hoeschen, P. Thirolf, W. Assmann, D. Habs, A. Prokofiev, C. Ekström, T. W. Hänsch, and R. Holzwarth, “Radiation induced absorption in rare earth doped optical fibers,” IEEE Trans. Nucl. Sci. 59, 425–433 (2012).
    [Crossref]
  35. J. Lee, K. Lee, Y.-S. Jang, H. Jang, S. Han, S.-H. Lee, K.-I. Kang, C.-W. Lim, Y.-J. Kim, and S.-W. Kim, “Testing of a femtosecond pulse laser in outer space,” Sci. Rep. 4, 5134 (2014).
  36. T. M. Fortier, N. Ashby, J. C. Bergquist, M. J. Delaney, S. A. Diddams, T. P. Heavner, L. Hollberg, W. M. Itano, S. R. Jefferts, K. Kim, F. Levi, L. Lorini, W. H. Oskay, T. E. Parker, and J. E. Stalnaker, “Precision atomic spectroscopy for improved limits on variation of the fine structure constant and local position invariance,” Phys. Rev. Lett. 98, 070801 (2007).
    [Crossref]
  37. T. Leveque, B. Faure, F. X. Esnault, C. Delaroche, D. Massonnet, O. Grosjean, F. Buffe, P. Torresi, T. Bomer, A. Pichon, P. Beraud, J. P. Lelay, S. Thomin, and P. Laurent, “PHARAO laser source flight model: design and performances,” Rev. Sci. Instrum. 86, 033104 (2015).
    [Crossref]
  38. B. Altschul, Q. G. Bailey, L. Blanchet, K. Bongs, P. Bouyer, L. Cacciapuoti, S. Capozziello, N. Gaaloul, D. Giulini, J. Hartwig, L. Iess, P. Jetzer, A. Landragin, E. Rasel, S. Reynaud, S. Schiller, C. Schubert, F. Sorrentino, U. Sterr, J. D. Tasson, G. M. Tino, P. Tuckey, and P. Wolf, “Quantum tests of the Einstein equivalence principle with the STE-QUEST space mission,” Adv. Space Res. 55, 501–524 (2015).
    [Crossref]
  39. K. Bongs, Y. Singh, L. Smith, W. He, O. Kock, D. Swierad, J. Hughes, S. Schiller, S. Alighanbari, S. Origlia, S. Vogt, U. Sterr, Ch. Lisdat, R. Le Targat, J. Lodewyck, D. Holleville, B. Venon, S. Bize, G. P. Barwood, P. Gill, I. R. Hill, Y. B. Ovchinnikov, N. Poli, G. M. Tino, J. Stuhler, and W. Kaenders, SOC2 Team, “Development of a strontium optical lattice clock for the SOC mission on the ISS,” C. R. Physique 16, 553–564 (2015).
    [Crossref]
  40. T. Schuldt, K. Döringshoff, A. Milke, J. Sanjuan, M. Gohlke, E. Kovalchuk, N. Gürlebeck, A. Peters, and C. Braxmaier, “High-performance optical frequency references for space,” J. Phys. 723, 012047 (2016).
  41. W. Hänsel, M. Giunta, M. Fischer, and R. Holzwarth, “Simultaneous direct spectral purity transfer at three optical clock transitions using an all-pm Er-doped fiber frequency comb,” in Proceedings of the 25th International Conference on Atomic Physics (ICAP), Seoul, Korea, 24–29 July2016, p. 97.

2016 (5)

B. Abbot, LIGO Scientific Collaboration and Virgo Collaboration, “Observation of gravitational waves from a binary black hole merger,” Phys. Rev. Lett. 116, 061102 (2016).
[Crossref]

D. V. Martynov, LIGO Scientific Collaboration, “Sensitivity of the advanced LIGO detectors at the beginning of gravitational wave astronomy,” Phys. Rev. D 93, 112004 (2016).
[Crossref]

N. Kuse, C.-C. Lee, T. Schibli, and M. Fermann, “All polarization-maintaining Er fiber-based optical frequency combs with nonlinear amplifying loop mirror,” Opt. Express 24, 250903 (2016).

A. Kohfeldt, C. Kürbis, E. Luvsandamdin, M. Schiemangk, A. Wicht, A. Peters, G. Erbert, and G. Tränkle, “Compact narrow linewidth diode laser modules for precision quantum optics experiments on board of sounding rockets,” Proc. SPIE 9900, 99001G (2016).
[Crossref]

T. Schuldt, K. Döringshoff, A. Milke, J. Sanjuan, M. Gohlke, E. Kovalchuk, N. Gürlebeck, A. Peters, and C. Braxmaier, “High-performance optical frequency references for space,” J. Phys. 723, 012047 (2016).

2015 (5)

T. Leveque, B. Faure, F. X. Esnault, C. Delaroche, D. Massonnet, O. Grosjean, F. Buffe, P. Torresi, T. Bomer, A. Pichon, P. Beraud, J. P. Lelay, S. Thomin, and P. Laurent, “PHARAO laser source flight model: design and performances,” Rev. Sci. Instrum. 86, 033104 (2015).
[Crossref]

B. Altschul, Q. G. Bailey, L. Blanchet, K. Bongs, P. Bouyer, L. Cacciapuoti, S. Capozziello, N. Gaaloul, D. Giulini, J. Hartwig, L. Iess, P. Jetzer, A. Landragin, E. Rasel, S. Reynaud, S. Schiller, C. Schubert, F. Sorrentino, U. Sterr, J. D. Tasson, G. M. Tino, P. Tuckey, and P. Wolf, “Quantum tests of the Einstein equivalence principle with the STE-QUEST space mission,” Adv. Space Res. 55, 501–524 (2015).
[Crossref]

K. Bongs, Y. Singh, L. Smith, W. He, O. Kock, D. Swierad, J. Hughes, S. Schiller, S. Alighanbari, S. Origlia, S. Vogt, U. Sterr, Ch. Lisdat, R. Le Targat, J. Lodewyck, D. Holleville, B. Venon, S. Bize, G. P. Barwood, P. Gill, I. R. Hill, Y. B. Ovchinnikov, N. Poli, G. M. Tino, J. Stuhler, and W. Kaenders, SOC2 Team, “Development of a strontium optical lattice clock for the SOC mission on the ISS,” C. R. Physique 16, 553–564 (2015).
[Crossref]

I. Ushijima, M. Takamoto, M. Das, T. Ohkubo, and H. Katori, “Cryogenic optical lattice clocks,” Nat. Photonics 9, 185–189 (2015).
[Crossref]

T. Nicholson, S. Campbell, R. Hutson, G. Marti, B. Bloom, R. McNally, W. Zhang, M. Barrett, M. Safronova, G. Strouse, W. Tew, and J. Ye, “Systematic evaluation of an atomic clock at total uncertainty,” Nat. Commun. 6, 6896 (2015).
[Crossref]

2014 (4)

L. C. Sinclair, I. Coddington, W. C. Swann, G. B. Rieker, A. Hati, K. Iwakuni, and N. R. Newbury, “Operation of an optically coherent frequency comb outside the metrology lab,” Opt. Express 22, 6996–7006 (2014).
[Crossref]

J. Lee, K. Lee, Y.-S. Jang, H. Jang, S. Han, S.-H. Lee, K.-I. Kang, C.-W. Lim, Y.-J. Kim, and S.-W. Kim, “Testing of a femtosecond pulse laser in outer space,” Sci. Rep. 4, 5134 (2014).

H. Duncker, O. Hellmig, A. Wenzlawski, A. Grote, A. J. Rafipoor, M. Rafipoor, K. Sengstock, and P. Windpassinger, “Ultrastable, Zerodur-based optical benches for quantum gas experiments,” Appl. Opt. 53, 4468–4474 (2014).
[Crossref]

O. Brox, F. Bugge, A. Mogilatenko, E. Luvsandamdin, A. Wicht, H. Wenzel, and G. Erbert, “Distributed feedback lasers in the 760 to 810  nm range and epitaxial grating design,” Semicond. Sci. Technol. 29, 095018 (2014).
[Crossref]

2013 (2)

M. E. Tobar, P. L. Stanwix, J. J. McFerran, J. Guena, M. Abgrall, S. Bize, A. Clairon, P. Laurent, P. Rosenbusch, D. Rovera, and G. Santarelli, “Testing local position and fundamental constant invariance due to periodic gravitational and boost using long-term comparison of the SYRTE atomic fountains and H-masers,” Phys. Rev. D 87, 122004 (2013).
[Crossref]

F. R. Giorgetta, W. C. Swann, L. C. Sinclair, E. Baumann, I. Coddington, and N. R. Newbury, “Optical two-way time and frequency transfer over free space,” Nat. Photonics 7, 435–439 (2013).
[Crossref]

2012 (1)

M. Lezius, K. Predehl, W. Stöwer, A. Türler, M. Greiter, C. Hoeschen, P. Thirolf, W. Assmann, D. Habs, A. Prokofiev, C. Ekström, T. W. Hänsch, and R. Holzwarth, “Radiation induced absorption in rare earth doped optical fibers,” IEEE Trans. Nucl. Sci. 59, 425–433 (2012).
[Crossref]

2011 (1)

C. Kiemle, M. Quatrevalet, G. Ehret, A. Amediek, A. Fix, and M. Wirth, “Sensitivity studies for a space-based methane lidar mission,” Atmos. Meas. Technol. 4, 2195–2211 (2011).
[Crossref]

2010 (1)

R. Pohl, A. Antognini, F. Nez, F. D. Amaro, F. Biraben, J. M. R. Cardoso, D. S. Covita, A. Dax, S. Dhawan, L. M. P. Fernandes, A. Giesen, T. Graf, T. W. Hänsch, P. Indelicato, L. Julien, C.-Y. Kao, P. Knowles, E.-O. Le Bigot, Y.-W. Liu, J. A. M. Lopes, L. Ludhova, C. M. B. Monteiro, F. Mulhauser, T. Nebel, P. Rabinowitz, J. M. F. dos Santos, L. A. Schaller, K. Schuhmann, C. Schwob, D. Taqqu, J. F. C. A. Veloso, and F. Kottmann, “The size of the proton,” Nature 466, 213–216 (2010).
[Crossref]

2009 (3)

S. Schiller, G. M. Tino, P. Gill, C. Salomon, U. Sterr, E. Peik, A. Nevsky, A. Goerlitz, D. Svehla, G. Ferrari, N. Poli, L. Lusanna, H. Klein, H. Margolis, P. Lemonde, P. Laurent, G. Santarelli, A. Clairon, W. Ertmer, E. Rasel, J. Mueller, L. Iorio, C. Laemmerzahl, H. Dittus, E. Gill, M. Rothacher, F. Flechner, U. Schreiber, V. Flambaum, W.-T. Ni, L. Liu, X. Chen, J. Chen, K. Gao, L. Cacciapuoti, R. Holzwarth, M. P. Hess, and W. Schaefer, “Einstein gravity explorer—a medium-class fundamental physics mission,” Exp. Astron. 23, 573–610 (2009).
[Crossref]

I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3, 351–356 (2009).
[Crossref]

E. Baumann, F. R. Giorgetta, J. W. Nicholson, W. C. Swann, I. Coddington, and N. R. Newbury, “High-performance, vibration-immune, fiber-laser frequency comb,” Opt. Lett. 34, 638–640 (2009).
[Crossref]

2008 (2)

S. Blatt, A. D. Ludlow, G. K. Campbell, J. W. Thomsen, T. Zelevinsky, M. M. Boyd, J. Ye, X. Baillard, M. Fouche, R. Le Targat, A. Brusch, P. Lemonde, M. Takamoto, F. L. Hong, H. Katori, and V. V. Flambaum, “New limits on coupling of fundamental constants to gravity using 87Sr optical lattice clocks,” Phys. Rev. Lett. 100, 140801 (2008).
[Crossref]

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science 321, 1335–1337 (2008).
[Crossref]

2007 (2)

S. N. Lea, “Limits to time variation of fundamental constants from comparisons of atomic frequency standards,” Rep. Prog. Phys. 70, 1473–1523 (2007).
[Crossref]

T. M. Fortier, N. Ashby, J. C. Bergquist, M. J. Delaney, S. A. Diddams, T. P. Heavner, L. Hollberg, W. M. Itano, S. R. Jefferts, K. Kim, F. Levi, L. Lorini, W. H. Oskay, T. E. Parker, and J. E. Stalnaker, “Precision atomic spectroscopy for improved limits on variation of the fine structure constant and local position invariance,” Phys. Rev. Lett. 98, 070801 (2007).
[Crossref]

2005 (1)

P. Gill, “Optical frequency standards,” Metrologia 42, S125–S137 (2005).
[Crossref]

2004 (1)

P. Agostini and L. F. DiMauro, “The physics of attosecond light pulses,” Rep. Prog. Phys. 67, 813–855 (2004).
[Crossref]

2002 (2)

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416, 233–237 (2002).
[Crossref]

S. Chu, “Cold atoms and quantum control,” Nature 416, 206–210 (2002).
[Crossref]

2000 (1)

R. Holzwarth, T. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. St.J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85, 2264–2267 (2000).
[Crossref]

1997 (1)

K. Danzmann, “LISA—an ESA cornerstone mission for a gravitational wave observatory,” Classical Quantum Gravity 14, 1399–1404 (1997).
[Crossref]

1994 (2)

J. M. Supplee, E. A. Whittaker, and W. Lenth, “Theoretical description of frequency-modulation and wavelength modulation spectroscopy,” Appl. Opt. 33, 6294–6302 (1994).
[Crossref]

H. A. Haus, E. P. Ippen, and K. Tamura, “Additive-pulse modelocking in fiber lasers,” IEEE J. Quantum Electron. 30, 200–208 (1994).
[Crossref]

1980 (1)

1971 (1)

T. W. Hänsch, M. D. Levenson, and A. L. Schawlow, “Complete hyperfine structure of a molecular iodine line,” Phys. Rev. Lett. 26, 946–948 (1971).
[Crossref]

1969 (1)

R. L. Barger and J. L. Hall, “Pressure shift and broadening of methane line at 3.39  μm studied by laser-saturated molecular absorption,” Phys. Rev. Lett. 22, 4–7 (1969).
[Crossref]

Abbot, B.

B. Abbot, LIGO Scientific Collaboration and Virgo Collaboration, “Observation of gravitational waves from a binary black hole merger,” Phys. Rev. Lett. 116, 061102 (2016).
[Crossref]

Abgrall, M.

M. E. Tobar, P. L. Stanwix, J. J. McFerran, J. Guena, M. Abgrall, S. Bize, A. Clairon, P. Laurent, P. Rosenbusch, D. Rovera, and G. Santarelli, “Testing local position and fundamental constant invariance due to periodic gravitational and boost using long-term comparison of the SYRTE atomic fountains and H-masers,” Phys. Rev. D 87, 122004 (2013).
[Crossref]

Agostini, P.

P. Agostini and L. F. DiMauro, “The physics of attosecond light pulses,” Rep. Prog. Phys. 67, 813–855 (2004).
[Crossref]

Alighanbari, S.

K. Bongs, Y. Singh, L. Smith, W. He, O. Kock, D. Swierad, J. Hughes, S. Schiller, S. Alighanbari, S. Origlia, S. Vogt, U. Sterr, Ch. Lisdat, R. Le Targat, J. Lodewyck, D. Holleville, B. Venon, S. Bize, G. P. Barwood, P. Gill, I. R. Hill, Y. B. Ovchinnikov, N. Poli, G. M. Tino, J. Stuhler, and W. Kaenders, SOC2 Team, “Development of a strontium optical lattice clock for the SOC mission on the ISS,” C. R. Physique 16, 553–564 (2015).
[Crossref]

Altschul, B.

B. Altschul, Q. G. Bailey, L. Blanchet, K. Bongs, P. Bouyer, L. Cacciapuoti, S. Capozziello, N. Gaaloul, D. Giulini, J. Hartwig, L. Iess, P. Jetzer, A. Landragin, E. Rasel, S. Reynaud, S. Schiller, C. Schubert, F. Sorrentino, U. Sterr, J. D. Tasson, G. M. Tino, P. Tuckey, and P. Wolf, “Quantum tests of the Einstein equivalence principle with the STE-QUEST space mission,” Adv. Space Res. 55, 501–524 (2015).
[Crossref]

Amaro, F. D.

R. Pohl, A. Antognini, F. Nez, F. D. Amaro, F. Biraben, J. M. R. Cardoso, D. S. Covita, A. Dax, S. Dhawan, L. M. P. Fernandes, A. Giesen, T. Graf, T. W. Hänsch, P. Indelicato, L. Julien, C.-Y. Kao, P. Knowles, E.-O. Le Bigot, Y.-W. Liu, J. A. M. Lopes, L. Ludhova, C. M. B. Monteiro, F. Mulhauser, T. Nebel, P. Rabinowitz, J. M. F. dos Santos, L. A. Schaller, K. Schuhmann, C. Schwob, D. Taqqu, J. F. C. A. Veloso, and F. Kottmann, “The size of the proton,” Nature 466, 213–216 (2010).
[Crossref]

Amaro-Seoane, P.

P. Amaro-Seoane, S. Aoudia, S. Babak, P. Binétruy, E. Berti, A. Bohé, C. Caprini, M. Colpi, N. J. Cornish, K. Danzmann, J.-F. Dufaux, J. Gair, O. Jennrich, P. Jetzer, A. Klein, R. N. Lang, A. Lobo, T. Littenberg, S. T. McWilliams, G. Nelemans, A. Petiteau, E. K. Porter, B. F. Schutz, A. Sesana, R. Stebbins, T. Sumner, M. Vallisneri, S. Vitale, M. Volonteri, and H. Ward, “Doing science with eLISA: astrophysics and cosmology in the millihertz regime,” arXiv: 1201.3621v1 (2012).

Amediek, A.

C. Kiemle, M. Quatrevalet, G. Ehret, A. Amediek, A. Fix, and M. Wirth, “Sensitivity studies for a space-based methane lidar mission,” Atmos. Meas. Technol. 4, 2195–2211 (2011).
[Crossref]

Antognini, A.

R. Pohl, A. Antognini, F. Nez, F. D. Amaro, F. Biraben, J. M. R. Cardoso, D. S. Covita, A. Dax, S. Dhawan, L. M. P. Fernandes, A. Giesen, T. Graf, T. W. Hänsch, P. Indelicato, L. Julien, C.-Y. Kao, P. Knowles, E.-O. Le Bigot, Y.-W. Liu, J. A. M. Lopes, L. Ludhova, C. M. B. Monteiro, F. Mulhauser, T. Nebel, P. Rabinowitz, J. M. F. dos Santos, L. A. Schaller, K. Schuhmann, C. Schwob, D. Taqqu, J. F. C. A. Veloso, and F. Kottmann, “The size of the proton,” Nature 466, 213–216 (2010).
[Crossref]

Aoudia, S.

P. Amaro-Seoane, S. Aoudia, S. Babak, P. Binétruy, E. Berti, A. Bohé, C. Caprini, M. Colpi, N. J. Cornish, K. Danzmann, J.-F. Dufaux, J. Gair, O. Jennrich, P. Jetzer, A. Klein, R. N. Lang, A. Lobo, T. Littenberg, S. T. McWilliams, G. Nelemans, A. Petiteau, E. K. Porter, B. F. Schutz, A. Sesana, R. Stebbins, T. Sumner, M. Vallisneri, S. Vitale, M. Volonteri, and H. Ward, “Doing science with eLISA: astrophysics and cosmology in the millihertz regime,” arXiv: 1201.3621v1 (2012).

Araujo-Hauck, C.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science 321, 1335–1337 (2008).
[Crossref]

Ashby, N.

T. M. Fortier, N. Ashby, J. C. Bergquist, M. J. Delaney, S. A. Diddams, T. P. Heavner, L. Hollberg, W. M. Itano, S. R. Jefferts, K. Kim, F. Levi, L. Lorini, W. H. Oskay, T. E. Parker, and J. E. Stalnaker, “Precision atomic spectroscopy for improved limits on variation of the fine structure constant and local position invariance,” Phys. Rev. Lett. 98, 070801 (2007).
[Crossref]

Assmann, W.

M. Lezius, K. Predehl, W. Stöwer, A. Türler, M. Greiter, C. Hoeschen, P. Thirolf, W. Assmann, D. Habs, A. Prokofiev, C. Ekström, T. W. Hänsch, and R. Holzwarth, “Radiation induced absorption in rare earth doped optical fibers,” IEEE Trans. Nucl. Sci. 59, 425–433 (2012).
[Crossref]

Babak, S.

P. Amaro-Seoane, S. Aoudia, S. Babak, P. Binétruy, E. Berti, A. Bohé, C. Caprini, M. Colpi, N. J. Cornish, K. Danzmann, J.-F. Dufaux, J. Gair, O. Jennrich, P. Jetzer, A. Klein, R. N. Lang, A. Lobo, T. Littenberg, S. T. McWilliams, G. Nelemans, A. Petiteau, E. K. Porter, B. F. Schutz, A. Sesana, R. Stebbins, T. Sumner, M. Vallisneri, S. Vitale, M. Volonteri, and H. Ward, “Doing science with eLISA: astrophysics and cosmology in the millihertz regime,” arXiv: 1201.3621v1 (2012).

Bailey, Q. G.

B. Altschul, Q. G. Bailey, L. Blanchet, K. Bongs, P. Bouyer, L. Cacciapuoti, S. Capozziello, N. Gaaloul, D. Giulini, J. Hartwig, L. Iess, P. Jetzer, A. Landragin, E. Rasel, S. Reynaud, S. Schiller, C. Schubert, F. Sorrentino, U. Sterr, J. D. Tasson, G. M. Tino, P. Tuckey, and P. Wolf, “Quantum tests of the Einstein equivalence principle with the STE-QUEST space mission,” Adv. Space Res. 55, 501–524 (2015).
[Crossref]

Baillard, X.

S. Blatt, A. D. Ludlow, G. K. Campbell, J. W. Thomsen, T. Zelevinsky, M. M. Boyd, J. Ye, X. Baillard, M. Fouche, R. Le Targat, A. Brusch, P. Lemonde, M. Takamoto, F. L. Hong, H. Katori, and V. V. Flambaum, “New limits on coupling of fundamental constants to gravity using 87Sr optical lattice clocks,” Phys. Rev. Lett. 100, 140801 (2008).
[Crossref]

Barger, R. L.

R. L. Barger and J. L. Hall, “Pressure shift and broadening of methane line at 3.39  μm studied by laser-saturated molecular absorption,” Phys. Rev. Lett. 22, 4–7 (1969).
[Crossref]

Barrett, M.

T. Nicholson, S. Campbell, R. Hutson, G. Marti, B. Bloom, R. McNally, W. Zhang, M. Barrett, M. Safronova, G. Strouse, W. Tew, and J. Ye, “Systematic evaluation of an atomic clock at total uncertainty,” Nat. Commun. 6, 6896 (2015).
[Crossref]

Barwood, G. P.

K. Bongs, Y. Singh, L. Smith, W. He, O. Kock, D. Swierad, J. Hughes, S. Schiller, S. Alighanbari, S. Origlia, S. Vogt, U. Sterr, Ch. Lisdat, R. Le Targat, J. Lodewyck, D. Holleville, B. Venon, S. Bize, G. P. Barwood, P. Gill, I. R. Hill, Y. B. Ovchinnikov, N. Poli, G. M. Tino, J. Stuhler, and W. Kaenders, SOC2 Team, “Development of a strontium optical lattice clock for the SOC mission on the ISS,” C. R. Physique 16, 553–564 (2015).
[Crossref]

Baumann, E.

F. R. Giorgetta, W. C. Swann, L. C. Sinclair, E. Baumann, I. Coddington, and N. R. Newbury, “Optical two-way time and frequency transfer over free space,” Nat. Photonics 7, 435–439 (2013).
[Crossref]

E. Baumann, F. R. Giorgetta, J. W. Nicholson, W. C. Swann, I. Coddington, and N. R. Newbury, “High-performance, vibration-immune, fiber-laser frequency comb,” Opt. Lett. 34, 638–640 (2009).
[Crossref]

Beraud, P.

T. Leveque, B. Faure, F. X. Esnault, C. Delaroche, D. Massonnet, O. Grosjean, F. Buffe, P. Torresi, T. Bomer, A. Pichon, P. Beraud, J. P. Lelay, S. Thomin, and P. Laurent, “PHARAO laser source flight model: design and performances,” Rev. Sci. Instrum. 86, 033104 (2015).
[Crossref]

Bergquist, J. C.

T. M. Fortier, N. Ashby, J. C. Bergquist, M. J. Delaney, S. A. Diddams, T. P. Heavner, L. Hollberg, W. M. Itano, S. R. Jefferts, K. Kim, F. Levi, L. Lorini, W. H. Oskay, T. E. Parker, and J. E. Stalnaker, “Precision atomic spectroscopy for improved limits on variation of the fine structure constant and local position invariance,” Phys. Rev. Lett. 98, 070801 (2007).
[Crossref]

Berti, E.

P. Amaro-Seoane, S. Aoudia, S. Babak, P. Binétruy, E. Berti, A. Bohé, C. Caprini, M. Colpi, N. J. Cornish, K. Danzmann, J.-F. Dufaux, J. Gair, O. Jennrich, P. Jetzer, A. Klein, R. N. Lang, A. Lobo, T. Littenberg, S. T. McWilliams, G. Nelemans, A. Petiteau, E. K. Porter, B. F. Schutz, A. Sesana, R. Stebbins, T. Sumner, M. Vallisneri, S. Vitale, M. Volonteri, and H. Ward, “Doing science with eLISA: astrophysics and cosmology in the millihertz regime,” arXiv: 1201.3621v1 (2012).

Binétruy, P.

P. Amaro-Seoane, S. Aoudia, S. Babak, P. Binétruy, E. Berti, A. Bohé, C. Caprini, M. Colpi, N. J. Cornish, K. Danzmann, J.-F. Dufaux, J. Gair, O. Jennrich, P. Jetzer, A. Klein, R. N. Lang, A. Lobo, T. Littenberg, S. T. McWilliams, G. Nelemans, A. Petiteau, E. K. Porter, B. F. Schutz, A. Sesana, R. Stebbins, T. Sumner, M. Vallisneri, S. Vitale, M. Volonteri, and H. Ward, “Doing science with eLISA: astrophysics and cosmology in the millihertz regime,” arXiv: 1201.3621v1 (2012).

Biraben, F.

R. Pohl, A. Antognini, F. Nez, F. D. Amaro, F. Biraben, J. M. R. Cardoso, D. S. Covita, A. Dax, S. Dhawan, L. M. P. Fernandes, A. Giesen, T. Graf, T. W. Hänsch, P. Indelicato, L. Julien, C.-Y. Kao, P. Knowles, E.-O. Le Bigot, Y.-W. Liu, J. A. M. Lopes, L. Ludhova, C. M. B. Monteiro, F. Mulhauser, T. Nebel, P. Rabinowitz, J. M. F. dos Santos, L. A. Schaller, K. Schuhmann, C. Schwob, D. Taqqu, J. F. C. A. Veloso, and F. Kottmann, “The size of the proton,” Nature 466, 213–216 (2010).
[Crossref]

Bize, S.

K. Bongs, Y. Singh, L. Smith, W. He, O. Kock, D. Swierad, J. Hughes, S. Schiller, S. Alighanbari, S. Origlia, S. Vogt, U. Sterr, Ch. Lisdat, R. Le Targat, J. Lodewyck, D. Holleville, B. Venon, S. Bize, G. P. Barwood, P. Gill, I. R. Hill, Y. B. Ovchinnikov, N. Poli, G. M. Tino, J. Stuhler, and W. Kaenders, SOC2 Team, “Development of a strontium optical lattice clock for the SOC mission on the ISS,” C. R. Physique 16, 553–564 (2015).
[Crossref]

M. E. Tobar, P. L. Stanwix, J. J. McFerran, J. Guena, M. Abgrall, S. Bize, A. Clairon, P. Laurent, P. Rosenbusch, D. Rovera, and G. Santarelli, “Testing local position and fundamental constant invariance due to periodic gravitational and boost using long-term comparison of the SYRTE atomic fountains and H-masers,” Phys. Rev. D 87, 122004 (2013).
[Crossref]

Bjorklund, G. C.

Blanchet, L.

B. Altschul, Q. G. Bailey, L. Blanchet, K. Bongs, P. Bouyer, L. Cacciapuoti, S. Capozziello, N. Gaaloul, D. Giulini, J. Hartwig, L. Iess, P. Jetzer, A. Landragin, E. Rasel, S. Reynaud, S. Schiller, C. Schubert, F. Sorrentino, U. Sterr, J. D. Tasson, G. M. Tino, P. Tuckey, and P. Wolf, “Quantum tests of the Einstein equivalence principle with the STE-QUEST space mission,” Adv. Space Res. 55, 501–524 (2015).
[Crossref]

Blatt, S.

S. Blatt, A. D. Ludlow, G. K. Campbell, J. W. Thomsen, T. Zelevinsky, M. M. Boyd, J. Ye, X. Baillard, M. Fouche, R. Le Targat, A. Brusch, P. Lemonde, M. Takamoto, F. L. Hong, H. Katori, and V. V. Flambaum, “New limits on coupling of fundamental constants to gravity using 87Sr optical lattice clocks,” Phys. Rev. Lett. 100, 140801 (2008).
[Crossref]

Bloom, B.

T. Nicholson, S. Campbell, R. Hutson, G. Marti, B. Bloom, R. McNally, W. Zhang, M. Barrett, M. Safronova, G. Strouse, W. Tew, and J. Ye, “Systematic evaluation of an atomic clock at total uncertainty,” Nat. Commun. 6, 6896 (2015).
[Crossref]

Bohé, A.

P. Amaro-Seoane, S. Aoudia, S. Babak, P. Binétruy, E. Berti, A. Bohé, C. Caprini, M. Colpi, N. J. Cornish, K. Danzmann, J.-F. Dufaux, J. Gair, O. Jennrich, P. Jetzer, A. Klein, R. N. Lang, A. Lobo, T. Littenberg, S. T. McWilliams, G. Nelemans, A. Petiteau, E. K. Porter, B. F. Schutz, A. Sesana, R. Stebbins, T. Sumner, M. Vallisneri, S. Vitale, M. Volonteri, and H. Ward, “Doing science with eLISA: astrophysics and cosmology in the millihertz regime,” arXiv: 1201.3621v1 (2012).

Bomer, T.

T. Leveque, B. Faure, F. X. Esnault, C. Delaroche, D. Massonnet, O. Grosjean, F. Buffe, P. Torresi, T. Bomer, A. Pichon, P. Beraud, J. P. Lelay, S. Thomin, and P. Laurent, “PHARAO laser source flight model: design and performances,” Rev. Sci. Instrum. 86, 033104 (2015).
[Crossref]

Bongs, K.

B. Altschul, Q. G. Bailey, L. Blanchet, K. Bongs, P. Bouyer, L. Cacciapuoti, S. Capozziello, N. Gaaloul, D. Giulini, J. Hartwig, L. Iess, P. Jetzer, A. Landragin, E. Rasel, S. Reynaud, S. Schiller, C. Schubert, F. Sorrentino, U. Sterr, J. D. Tasson, G. M. Tino, P. Tuckey, and P. Wolf, “Quantum tests of the Einstein equivalence principle with the STE-QUEST space mission,” Adv. Space Res. 55, 501–524 (2015).
[Crossref]

K. Bongs, Y. Singh, L. Smith, W. He, O. Kock, D. Swierad, J. Hughes, S. Schiller, S. Alighanbari, S. Origlia, S. Vogt, U. Sterr, Ch. Lisdat, R. Le Targat, J. Lodewyck, D. Holleville, B. Venon, S. Bize, G. P. Barwood, P. Gill, I. R. Hill, Y. B. Ovchinnikov, N. Poli, G. M. Tino, J. Stuhler, and W. Kaenders, SOC2 Team, “Development of a strontium optical lattice clock for the SOC mission on the ISS,” C. R. Physique 16, 553–564 (2015).
[Crossref]

Bouyer, P.

B. Altschul, Q. G. Bailey, L. Blanchet, K. Bongs, P. Bouyer, L. Cacciapuoti, S. Capozziello, N. Gaaloul, D. Giulini, J. Hartwig, L. Iess, P. Jetzer, A. Landragin, E. Rasel, S. Reynaud, S. Schiller, C. Schubert, F. Sorrentino, U. Sterr, J. D. Tasson, G. M. Tino, P. Tuckey, and P. Wolf, “Quantum tests of the Einstein equivalence principle with the STE-QUEST space mission,” Adv. Space Res. 55, 501–524 (2015).
[Crossref]

Boyd, M. M.

S. Blatt, A. D. Ludlow, G. K. Campbell, J. W. Thomsen, T. Zelevinsky, M. M. Boyd, J. Ye, X. Baillard, M. Fouche, R. Le Targat, A. Brusch, P. Lemonde, M. Takamoto, F. L. Hong, H. Katori, and V. V. Flambaum, “New limits on coupling of fundamental constants to gravity using 87Sr optical lattice clocks,” Phys. Rev. Lett. 100, 140801 (2008).
[Crossref]

Braxmaier, C.

T. Schuldt, K. Döringshoff, A. Milke, J. Sanjuan, M. Gohlke, E. Kovalchuk, N. Gürlebeck, A. Peters, and C. Braxmaier, “High-performance optical frequency references for space,” J. Phys. 723, 012047 (2016).

Brox, O.

O. Brox, F. Bugge, A. Mogilatenko, E. Luvsandamdin, A. Wicht, H. Wenzel, and G. Erbert, “Distributed feedback lasers in the 760 to 810  nm range and epitaxial grating design,” Semicond. Sci. Technol. 29, 095018 (2014).
[Crossref]

Brusch, A.

S. Blatt, A. D. Ludlow, G. K. Campbell, J. W. Thomsen, T. Zelevinsky, M. M. Boyd, J. Ye, X. Baillard, M. Fouche, R. Le Targat, A. Brusch, P. Lemonde, M. Takamoto, F. L. Hong, H. Katori, and V. V. Flambaum, “New limits on coupling of fundamental constants to gravity using 87Sr optical lattice clocks,” Phys. Rev. Lett. 100, 140801 (2008).
[Crossref]

Buffe, F.

T. Leveque, B. Faure, F. X. Esnault, C. Delaroche, D. Massonnet, O. Grosjean, F. Buffe, P. Torresi, T. Bomer, A. Pichon, P. Beraud, J. P. Lelay, S. Thomin, and P. Laurent, “PHARAO laser source flight model: design and performances,” Rev. Sci. Instrum. 86, 033104 (2015).
[Crossref]

Bugge, F.

O. Brox, F. Bugge, A. Mogilatenko, E. Luvsandamdin, A. Wicht, H. Wenzel, and G. Erbert, “Distributed feedback lasers in the 760 to 810  nm range and epitaxial grating design,” Semicond. Sci. Technol. 29, 095018 (2014).
[Crossref]

Cacciapuoti, L.

B. Altschul, Q. G. Bailey, L. Blanchet, K. Bongs, P. Bouyer, L. Cacciapuoti, S. Capozziello, N. Gaaloul, D. Giulini, J. Hartwig, L. Iess, P. Jetzer, A. Landragin, E. Rasel, S. Reynaud, S. Schiller, C. Schubert, F. Sorrentino, U. Sterr, J. D. Tasson, G. M. Tino, P. Tuckey, and P. Wolf, “Quantum tests of the Einstein equivalence principle with the STE-QUEST space mission,” Adv. Space Res. 55, 501–524 (2015).
[Crossref]

S. Schiller, G. M. Tino, P. Gill, C. Salomon, U. Sterr, E. Peik, A. Nevsky, A. Goerlitz, D. Svehla, G. Ferrari, N. Poli, L. Lusanna, H. Klein, H. Margolis, P. Lemonde, P. Laurent, G. Santarelli, A. Clairon, W. Ertmer, E. Rasel, J. Mueller, L. Iorio, C. Laemmerzahl, H. Dittus, E. Gill, M. Rothacher, F. Flechner, U. Schreiber, V. Flambaum, W.-T. Ni, L. Liu, X. Chen, J. Chen, K. Gao, L. Cacciapuoti, R. Holzwarth, M. P. Hess, and W. Schaefer, “Einstein gravity explorer—a medium-class fundamental physics mission,” Exp. Astron. 23, 573–610 (2009).
[Crossref]

Campbell, G. K.

S. Blatt, A. D. Ludlow, G. K. Campbell, J. W. Thomsen, T. Zelevinsky, M. M. Boyd, J. Ye, X. Baillard, M. Fouche, R. Le Targat, A. Brusch, P. Lemonde, M. Takamoto, F. L. Hong, H. Katori, and V. V. Flambaum, “New limits on coupling of fundamental constants to gravity using 87Sr optical lattice clocks,” Phys. Rev. Lett. 100, 140801 (2008).
[Crossref]

Campbell, S.

T. Nicholson, S. Campbell, R. Hutson, G. Marti, B. Bloom, R. McNally, W. Zhang, M. Barrett, M. Safronova, G. Strouse, W. Tew, and J. Ye, “Systematic evaluation of an atomic clock at total uncertainty,” Nat. Commun. 6, 6896 (2015).
[Crossref]

Capozziello, S.

B. Altschul, Q. G. Bailey, L. Blanchet, K. Bongs, P. Bouyer, L. Cacciapuoti, S. Capozziello, N. Gaaloul, D. Giulini, J. Hartwig, L. Iess, P. Jetzer, A. Landragin, E. Rasel, S. Reynaud, S. Schiller, C. Schubert, F. Sorrentino, U. Sterr, J. D. Tasson, G. M. Tino, P. Tuckey, and P. Wolf, “Quantum tests of the Einstein equivalence principle with the STE-QUEST space mission,” Adv. Space Res. 55, 501–524 (2015).
[Crossref]

Caprini, C.

P. Amaro-Seoane, S. Aoudia, S. Babak, P. Binétruy, E. Berti, A. Bohé, C. Caprini, M. Colpi, N. J. Cornish, K. Danzmann, J.-F. Dufaux, J. Gair, O. Jennrich, P. Jetzer, A. Klein, R. N. Lang, A. Lobo, T. Littenberg, S. T. McWilliams, G. Nelemans, A. Petiteau, E. K. Porter, B. F. Schutz, A. Sesana, R. Stebbins, T. Sumner, M. Vallisneri, S. Vitale, M. Volonteri, and H. Ward, “Doing science with eLISA: astrophysics and cosmology in the millihertz regime,” arXiv: 1201.3621v1 (2012).

Cardoso, J. M. R.

R. Pohl, A. Antognini, F. Nez, F. D. Amaro, F. Biraben, J. M. R. Cardoso, D. S. Covita, A. Dax, S. Dhawan, L. M. P. Fernandes, A. Giesen, T. Graf, T. W. Hänsch, P. Indelicato, L. Julien, C.-Y. Kao, P. Knowles, E.-O. Le Bigot, Y.-W. Liu, J. A. M. Lopes, L. Ludhova, C. M. B. Monteiro, F. Mulhauser, T. Nebel, P. Rabinowitz, J. M. F. dos Santos, L. A. Schaller, K. Schuhmann, C. Schwob, D. Taqqu, J. F. C. A. Veloso, and F. Kottmann, “The size of the proton,” Nature 466, 213–216 (2010).
[Crossref]

Chen, J.

S. Schiller, G. M. Tino, P. Gill, C. Salomon, U. Sterr, E. Peik, A. Nevsky, A. Goerlitz, D. Svehla, G. Ferrari, N. Poli, L. Lusanna, H. Klein, H. Margolis, P. Lemonde, P. Laurent, G. Santarelli, A. Clairon, W. Ertmer, E. Rasel, J. Mueller, L. Iorio, C. Laemmerzahl, H. Dittus, E. Gill, M. Rothacher, F. Flechner, U. Schreiber, V. Flambaum, W.-T. Ni, L. Liu, X. Chen, J. Chen, K. Gao, L. Cacciapuoti, R. Holzwarth, M. P. Hess, and W. Schaefer, “Einstein gravity explorer—a medium-class fundamental physics mission,” Exp. Astron. 23, 573–610 (2009).
[Crossref]

Chen, X.

S. Schiller, G. M. Tino, P. Gill, C. Salomon, U. Sterr, E. Peik, A. Nevsky, A. Goerlitz, D. Svehla, G. Ferrari, N. Poli, L. Lusanna, H. Klein, H. Margolis, P. Lemonde, P. Laurent, G. Santarelli, A. Clairon, W. Ertmer, E. Rasel, J. Mueller, L. Iorio, C. Laemmerzahl, H. Dittus, E. Gill, M. Rothacher, F. Flechner, U. Schreiber, V. Flambaum, W.-T. Ni, L. Liu, X. Chen, J. Chen, K. Gao, L. Cacciapuoti, R. Holzwarth, M. P. Hess, and W. Schaefer, “Einstein gravity explorer—a medium-class fundamental physics mission,” Exp. Astron. 23, 573–610 (2009).
[Crossref]

Chu, S.

S. Chu, “Cold atoms and quantum control,” Nature 416, 206–210 (2002).
[Crossref]

Clairon, A.

M. E. Tobar, P. L. Stanwix, J. J. McFerran, J. Guena, M. Abgrall, S. Bize, A. Clairon, P. Laurent, P. Rosenbusch, D. Rovera, and G. Santarelli, “Testing local position and fundamental constant invariance due to periodic gravitational and boost using long-term comparison of the SYRTE atomic fountains and H-masers,” Phys. Rev. D 87, 122004 (2013).
[Crossref]

S. Schiller, G. M. Tino, P. Gill, C. Salomon, U. Sterr, E. Peik, A. Nevsky, A. Goerlitz, D. Svehla, G. Ferrari, N. Poli, L. Lusanna, H. Klein, H. Margolis, P. Lemonde, P. Laurent, G. Santarelli, A. Clairon, W. Ertmer, E. Rasel, J. Mueller, L. Iorio, C. Laemmerzahl, H. Dittus, E. Gill, M. Rothacher, F. Flechner, U. Schreiber, V. Flambaum, W.-T. Ni, L. Liu, X. Chen, J. Chen, K. Gao, L. Cacciapuoti, R. Holzwarth, M. P. Hess, and W. Schaefer, “Einstein gravity explorer—a medium-class fundamental physics mission,” Exp. Astron. 23, 573–610 (2009).
[Crossref]

Coddington, I.

L. C. Sinclair, I. Coddington, W. C. Swann, G. B. Rieker, A. Hati, K. Iwakuni, and N. R. Newbury, “Operation of an optically coherent frequency comb outside the metrology lab,” Opt. Express 22, 6996–7006 (2014).
[Crossref]

F. R. Giorgetta, W. C. Swann, L. C. Sinclair, E. Baumann, I. Coddington, and N. R. Newbury, “Optical two-way time and frequency transfer over free space,” Nat. Photonics 7, 435–439 (2013).
[Crossref]

I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3, 351–356 (2009).
[Crossref]

E. Baumann, F. R. Giorgetta, J. W. Nicholson, W. C. Swann, I. Coddington, and N. R. Newbury, “High-performance, vibration-immune, fiber-laser frequency comb,” Opt. Lett. 34, 638–640 (2009).
[Crossref]

Colpi, M.

P. Amaro-Seoane, S. Aoudia, S. Babak, P. Binétruy, E. Berti, A. Bohé, C. Caprini, M. Colpi, N. J. Cornish, K. Danzmann, J.-F. Dufaux, J. Gair, O. Jennrich, P. Jetzer, A. Klein, R. N. Lang, A. Lobo, T. Littenberg, S. T. McWilliams, G. Nelemans, A. Petiteau, E. K. Porter, B. F. Schutz, A. Sesana, R. Stebbins, T. Sumner, M. Vallisneri, S. Vitale, M. Volonteri, and H. Ward, “Doing science with eLISA: astrophysics and cosmology in the millihertz regime,” arXiv: 1201.3621v1 (2012).

Cornish, N. J.

P. Amaro-Seoane, S. Aoudia, S. Babak, P. Binétruy, E. Berti, A. Bohé, C. Caprini, M. Colpi, N. J. Cornish, K. Danzmann, J.-F. Dufaux, J. Gair, O. Jennrich, P. Jetzer, A. Klein, R. N. Lang, A. Lobo, T. Littenberg, S. T. McWilliams, G. Nelemans, A. Petiteau, E. K. Porter, B. F. Schutz, A. Sesana, R. Stebbins, T. Sumner, M. Vallisneri, S. Vitale, M. Volonteri, and H. Ward, “Doing science with eLISA: astrophysics and cosmology in the millihertz regime,” arXiv: 1201.3621v1 (2012).

Covita, D. S.

R. Pohl, A. Antognini, F. Nez, F. D. Amaro, F. Biraben, J. M. R. Cardoso, D. S. Covita, A. Dax, S. Dhawan, L. M. P. Fernandes, A. Giesen, T. Graf, T. W. Hänsch, P. Indelicato, L. Julien, C.-Y. Kao, P. Knowles, E.-O. Le Bigot, Y.-W. Liu, J. A. M. Lopes, L. Ludhova, C. M. B. Monteiro, F. Mulhauser, T. Nebel, P. Rabinowitz, J. M. F. dos Santos, L. A. Schaller, K. Schuhmann, C. Schwob, D. Taqqu, J. F. C. A. Veloso, and F. Kottmann, “The size of the proton,” Nature 466, 213–216 (2010).
[Crossref]

D’Odorico, S.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science 321, 1335–1337 (2008).
[Crossref]

Danzmann, K.

K. Danzmann, “LISA—an ESA cornerstone mission for a gravitational wave observatory,” Classical Quantum Gravity 14, 1399–1404 (1997).
[Crossref]

P. Amaro-Seoane, S. Aoudia, S. Babak, P. Binétruy, E. Berti, A. Bohé, C. Caprini, M. Colpi, N. J. Cornish, K. Danzmann, J.-F. Dufaux, J. Gair, O. Jennrich, P. Jetzer, A. Klein, R. N. Lang, A. Lobo, T. Littenberg, S. T. McWilliams, G. Nelemans, A. Petiteau, E. K. Porter, B. F. Schutz, A. Sesana, R. Stebbins, T. Sumner, M. Vallisneri, S. Vitale, M. Volonteri, and H. Ward, “Doing science with eLISA: astrophysics and cosmology in the millihertz regime,” arXiv: 1201.3621v1 (2012).

Das, M.

I. Ushijima, M. Takamoto, M. Das, T. Ohkubo, and H. Katori, “Cryogenic optical lattice clocks,” Nat. Photonics 9, 185–189 (2015).
[Crossref]

Dax, A.

R. Pohl, A. Antognini, F. Nez, F. D. Amaro, F. Biraben, J. M. R. Cardoso, D. S. Covita, A. Dax, S. Dhawan, L. M. P. Fernandes, A. Giesen, T. Graf, T. W. Hänsch, P. Indelicato, L. Julien, C.-Y. Kao, P. Knowles, E.-O. Le Bigot, Y.-W. Liu, J. A. M. Lopes, L. Ludhova, C. M. B. Monteiro, F. Mulhauser, T. Nebel, P. Rabinowitz, J. M. F. dos Santos, L. A. Schaller, K. Schuhmann, C. Schwob, D. Taqqu, J. F. C. A. Veloso, and F. Kottmann, “The size of the proton,” Nature 466, 213–216 (2010).
[Crossref]

Delaney, M. J.

T. M. Fortier, N. Ashby, J. C. Bergquist, M. J. Delaney, S. A. Diddams, T. P. Heavner, L. Hollberg, W. M. Itano, S. R. Jefferts, K. Kim, F. Levi, L. Lorini, W. H. Oskay, T. E. Parker, and J. E. Stalnaker, “Precision atomic spectroscopy for improved limits on variation of the fine structure constant and local position invariance,” Phys. Rev. Lett. 98, 070801 (2007).
[Crossref]

Delaroche, C.

T. Leveque, B. Faure, F. X. Esnault, C. Delaroche, D. Massonnet, O. Grosjean, F. Buffe, P. Torresi, T. Bomer, A. Pichon, P. Beraud, J. P. Lelay, S. Thomin, and P. Laurent, “PHARAO laser source flight model: design and performances,” Rev. Sci. Instrum. 86, 033104 (2015).
[Crossref]

Dhawan, S.

R. Pohl, A. Antognini, F. Nez, F. D. Amaro, F. Biraben, J. M. R. Cardoso, D. S. Covita, A. Dax, S. Dhawan, L. M. P. Fernandes, A. Giesen, T. Graf, T. W. Hänsch, P. Indelicato, L. Julien, C.-Y. Kao, P. Knowles, E.-O. Le Bigot, Y.-W. Liu, J. A. M. Lopes, L. Ludhova, C. M. B. Monteiro, F. Mulhauser, T. Nebel, P. Rabinowitz, J. M. F. dos Santos, L. A. Schaller, K. Schuhmann, C. Schwob, D. Taqqu, J. F. C. A. Veloso, and F. Kottmann, “The size of the proton,” Nature 466, 213–216 (2010).
[Crossref]

Diddams, S. A.

T. M. Fortier, N. Ashby, J. C. Bergquist, M. J. Delaney, S. A. Diddams, T. P. Heavner, L. Hollberg, W. M. Itano, S. R. Jefferts, K. Kim, F. Levi, L. Lorini, W. H. Oskay, T. E. Parker, and J. E. Stalnaker, “Precision atomic spectroscopy for improved limits on variation of the fine structure constant and local position invariance,” Phys. Rev. Lett. 98, 070801 (2007).
[Crossref]

DiMauro, L. F.

P. Agostini and L. F. DiMauro, “The physics of attosecond light pulses,” Rep. Prog. Phys. 67, 813–855 (2004).
[Crossref]

Dittus, H.

S. Schiller, G. M. Tino, P. Gill, C. Salomon, U. Sterr, E. Peik, A. Nevsky, A. Goerlitz, D. Svehla, G. Ferrari, N. Poli, L. Lusanna, H. Klein, H. Margolis, P. Lemonde, P. Laurent, G. Santarelli, A. Clairon, W. Ertmer, E. Rasel, J. Mueller, L. Iorio, C. Laemmerzahl, H. Dittus, E. Gill, M. Rothacher, F. Flechner, U. Schreiber, V. Flambaum, W.-T. Ni, L. Liu, X. Chen, J. Chen, K. Gao, L. Cacciapuoti, R. Holzwarth, M. P. Hess, and W. Schaefer, “Einstein gravity explorer—a medium-class fundamental physics mission,” Exp. Astron. 23, 573–610 (2009).
[Crossref]

Döringshoff, K.

T. Schuldt, K. Döringshoff, A. Milke, J. Sanjuan, M. Gohlke, E. Kovalchuk, N. Gürlebeck, A. Peters, and C. Braxmaier, “High-performance optical frequency references for space,” J. Phys. 723, 012047 (2016).

dos Santos, J. M. F.

R. Pohl, A. Antognini, F. Nez, F. D. Amaro, F. Biraben, J. M. R. Cardoso, D. S. Covita, A. Dax, S. Dhawan, L. M. P. Fernandes, A. Giesen, T. Graf, T. W. Hänsch, P. Indelicato, L. Julien, C.-Y. Kao, P. Knowles, E.-O. Le Bigot, Y.-W. Liu, J. A. M. Lopes, L. Ludhova, C. M. B. Monteiro, F. Mulhauser, T. Nebel, P. Rabinowitz, J. M. F. dos Santos, L. A. Schaller, K. Schuhmann, C. Schwob, D. Taqqu, J. F. C. A. Veloso, and F. Kottmann, “The size of the proton,” Nature 466, 213–216 (2010).
[Crossref]

Doubek, R.

W. Hänsel, R. Holzwarth, R. Doubek, and M. Mei, “Laser with non-linear optical loop mirror,” U.S. patent8873601B2 (28Oct.2014).

Dufaux, J.-F.

P. Amaro-Seoane, S. Aoudia, S. Babak, P. Binétruy, E. Berti, A. Bohé, C. Caprini, M. Colpi, N. J. Cornish, K. Danzmann, J.-F. Dufaux, J. Gair, O. Jennrich, P. Jetzer, A. Klein, R. N. Lang, A. Lobo, T. Littenberg, S. T. McWilliams, G. Nelemans, A. Petiteau, E. K. Porter, B. F. Schutz, A. Sesana, R. Stebbins, T. Sumner, M. Vallisneri, S. Vitale, M. Volonteri, and H. Ward, “Doing science with eLISA: astrophysics and cosmology in the millihertz regime,” arXiv: 1201.3621v1 (2012).

Duncker, H.

Ehret, G.

C. Kiemle, M. Quatrevalet, G. Ehret, A. Amediek, A. Fix, and M. Wirth, “Sensitivity studies for a space-based methane lidar mission,” Atmos. Meas. Technol. 4, 2195–2211 (2011).
[Crossref]

Ekström, C.

M. Lezius, K. Predehl, W. Stöwer, A. Türler, M. Greiter, C. Hoeschen, P. Thirolf, W. Assmann, D. Habs, A. Prokofiev, C. Ekström, T. W. Hänsch, and R. Holzwarth, “Radiation induced absorption in rare earth doped optical fibers,” IEEE Trans. Nucl. Sci. 59, 425–433 (2012).
[Crossref]

Erbert, G.

A. Kohfeldt, C. Kürbis, E. Luvsandamdin, M. Schiemangk, A. Wicht, A. Peters, G. Erbert, and G. Tränkle, “Compact narrow linewidth diode laser modules for precision quantum optics experiments on board of sounding rockets,” Proc. SPIE 9900, 99001G (2016).
[Crossref]

O. Brox, F. Bugge, A. Mogilatenko, E. Luvsandamdin, A. Wicht, H. Wenzel, and G. Erbert, “Distributed feedback lasers in the 760 to 810  nm range and epitaxial grating design,” Semicond. Sci. Technol. 29, 095018 (2014).
[Crossref]

Ertmer, W.

S. Schiller, G. M. Tino, P. Gill, C. Salomon, U. Sterr, E. Peik, A. Nevsky, A. Goerlitz, D. Svehla, G. Ferrari, N. Poli, L. Lusanna, H. Klein, H. Margolis, P. Lemonde, P. Laurent, G. Santarelli, A. Clairon, W. Ertmer, E. Rasel, J. Mueller, L. Iorio, C. Laemmerzahl, H. Dittus, E. Gill, M. Rothacher, F. Flechner, U. Schreiber, V. Flambaum, W.-T. Ni, L. Liu, X. Chen, J. Chen, K. Gao, L. Cacciapuoti, R. Holzwarth, M. P. Hess, and W. Schaefer, “Einstein gravity explorer—a medium-class fundamental physics mission,” Exp. Astron. 23, 573–610 (2009).
[Crossref]

Esnault, F. X.

T. Leveque, B. Faure, F. X. Esnault, C. Delaroche, D. Massonnet, O. Grosjean, F. Buffe, P. Torresi, T. Bomer, A. Pichon, P. Beraud, J. P. Lelay, S. Thomin, and P. Laurent, “PHARAO laser source flight model: design and performances,” Rev. Sci. Instrum. 86, 033104 (2015).
[Crossref]

Faure, B.

T. Leveque, B. Faure, F. X. Esnault, C. Delaroche, D. Massonnet, O. Grosjean, F. Buffe, P. Torresi, T. Bomer, A. Pichon, P. Beraud, J. P. Lelay, S. Thomin, and P. Laurent, “PHARAO laser source flight model: design and performances,” Rev. Sci. Instrum. 86, 033104 (2015).
[Crossref]

Fermann, M.

N. Kuse, C.-C. Lee, T. Schibli, and M. Fermann, “All polarization-maintaining Er fiber-based optical frequency combs with nonlinear amplifying loop mirror,” Opt. Express 24, 250903 (2016).

Fernandes, L. M. P.

R. Pohl, A. Antognini, F. Nez, F. D. Amaro, F. Biraben, J. M. R. Cardoso, D. S. Covita, A. Dax, S. Dhawan, L. M. P. Fernandes, A. Giesen, T. Graf, T. W. Hänsch, P. Indelicato, L. Julien, C.-Y. Kao, P. Knowles, E.-O. Le Bigot, Y.-W. Liu, J. A. M. Lopes, L. Ludhova, C. M. B. Monteiro, F. Mulhauser, T. Nebel, P. Rabinowitz, J. M. F. dos Santos, L. A. Schaller, K. Schuhmann, C. Schwob, D. Taqqu, J. F. C. A. Veloso, and F. Kottmann, “The size of the proton,” Nature 466, 213–216 (2010).
[Crossref]

Ferrari, G.

S. Schiller, G. M. Tino, P. Gill, C. Salomon, U. Sterr, E. Peik, A. Nevsky, A. Goerlitz, D. Svehla, G. Ferrari, N. Poli, L. Lusanna, H. Klein, H. Margolis, P. Lemonde, P. Laurent, G. Santarelli, A. Clairon, W. Ertmer, E. Rasel, J. Mueller, L. Iorio, C. Laemmerzahl, H. Dittus, E. Gill, M. Rothacher, F. Flechner, U. Schreiber, V. Flambaum, W.-T. Ni, L. Liu, X. Chen, J. Chen, K. Gao, L. Cacciapuoti, R. Holzwarth, M. P. Hess, and W. Schaefer, “Einstein gravity explorer—a medium-class fundamental physics mission,” Exp. Astron. 23, 573–610 (2009).
[Crossref]

Fischer, M.

W. Hänsel, M. Giunta, M. Fischer, and R. Holzwarth, “Simultaneous direct spectral purity transfer at three optical clock transitions using an all-pm Er-doped fiber frequency comb,” in Proceedings of the 25th International Conference on Atomic Physics (ICAP), Seoul, Korea, 24–29 July2016, p. 97.

Fix, A.

C. Kiemle, M. Quatrevalet, G. Ehret, A. Amediek, A. Fix, and M. Wirth, “Sensitivity studies for a space-based methane lidar mission,” Atmos. Meas. Technol. 4, 2195–2211 (2011).
[Crossref]

Flambaum, V.

S. Schiller, G. M. Tino, P. Gill, C. Salomon, U. Sterr, E. Peik, A. Nevsky, A. Goerlitz, D. Svehla, G. Ferrari, N. Poli, L. Lusanna, H. Klein, H. Margolis, P. Lemonde, P. Laurent, G. Santarelli, A. Clairon, W. Ertmer, E. Rasel, J. Mueller, L. Iorio, C. Laemmerzahl, H. Dittus, E. Gill, M. Rothacher, F. Flechner, U. Schreiber, V. Flambaum, W.-T. Ni, L. Liu, X. Chen, J. Chen, K. Gao, L. Cacciapuoti, R. Holzwarth, M. P. Hess, and W. Schaefer, “Einstein gravity explorer—a medium-class fundamental physics mission,” Exp. Astron. 23, 573–610 (2009).
[Crossref]

Flambaum, V. V.

S. Blatt, A. D. Ludlow, G. K. Campbell, J. W. Thomsen, T. Zelevinsky, M. M. Boyd, J. Ye, X. Baillard, M. Fouche, R. Le Targat, A. Brusch, P. Lemonde, M. Takamoto, F. L. Hong, H. Katori, and V. V. Flambaum, “New limits on coupling of fundamental constants to gravity using 87Sr optical lattice clocks,” Phys. Rev. Lett. 100, 140801 (2008).
[Crossref]

Flechner, F.

S. Schiller, G. M. Tino, P. Gill, C. Salomon, U. Sterr, E. Peik, A. Nevsky, A. Goerlitz, D. Svehla, G. Ferrari, N. Poli, L. Lusanna, H. Klein, H. Margolis, P. Lemonde, P. Laurent, G. Santarelli, A. Clairon, W. Ertmer, E. Rasel, J. Mueller, L. Iorio, C. Laemmerzahl, H. Dittus, E. Gill, M. Rothacher, F. Flechner, U. Schreiber, V. Flambaum, W.-T. Ni, L. Liu, X. Chen, J. Chen, K. Gao, L. Cacciapuoti, R. Holzwarth, M. P. Hess, and W. Schaefer, “Einstein gravity explorer—a medium-class fundamental physics mission,” Exp. Astron. 23, 573–610 (2009).
[Crossref]

Fortier, T. M.

T. M. Fortier, N. Ashby, J. C. Bergquist, M. J. Delaney, S. A. Diddams, T. P. Heavner, L. Hollberg, W. M. Itano, S. R. Jefferts, K. Kim, F. Levi, L. Lorini, W. H. Oskay, T. E. Parker, and J. E. Stalnaker, “Precision atomic spectroscopy for improved limits on variation of the fine structure constant and local position invariance,” Phys. Rev. Lett. 98, 070801 (2007).
[Crossref]

Fouche, M.

S. Blatt, A. D. Ludlow, G. K. Campbell, J. W. Thomsen, T. Zelevinsky, M. M. Boyd, J. Ye, X. Baillard, M. Fouche, R. Le Targat, A. Brusch, P. Lemonde, M. Takamoto, F. L. Hong, H. Katori, and V. V. Flambaum, “New limits on coupling of fundamental constants to gravity using 87Sr optical lattice clocks,” Phys. Rev. Lett. 100, 140801 (2008).
[Crossref]

Gaaloul, N.

B. Altschul, Q. G. Bailey, L. Blanchet, K. Bongs, P. Bouyer, L. Cacciapuoti, S. Capozziello, N. Gaaloul, D. Giulini, J. Hartwig, L. Iess, P. Jetzer, A. Landragin, E. Rasel, S. Reynaud, S. Schiller, C. Schubert, F. Sorrentino, U. Sterr, J. D. Tasson, G. M. Tino, P. Tuckey, and P. Wolf, “Quantum tests of the Einstein equivalence principle with the STE-QUEST space mission,” Adv. Space Res. 55, 501–524 (2015).
[Crossref]

Gair, J.

P. Amaro-Seoane, S. Aoudia, S. Babak, P. Binétruy, E. Berti, A. Bohé, C. Caprini, M. Colpi, N. J. Cornish, K. Danzmann, J.-F. Dufaux, J. Gair, O. Jennrich, P. Jetzer, A. Klein, R. N. Lang, A. Lobo, T. Littenberg, S. T. McWilliams, G. Nelemans, A. Petiteau, E. K. Porter, B. F. Schutz, A. Sesana, R. Stebbins, T. Sumner, M. Vallisneri, S. Vitale, M. Volonteri, and H. Ward, “Doing science with eLISA: astrophysics and cosmology in the millihertz regime,” arXiv: 1201.3621v1 (2012).

Gao, K.

S. Schiller, G. M. Tino, P. Gill, C. Salomon, U. Sterr, E. Peik, A. Nevsky, A. Goerlitz, D. Svehla, G. Ferrari, N. Poli, L. Lusanna, H. Klein, H. Margolis, P. Lemonde, P. Laurent, G. Santarelli, A. Clairon, W. Ertmer, E. Rasel, J. Mueller, L. Iorio, C. Laemmerzahl, H. Dittus, E. Gill, M. Rothacher, F. Flechner, U. Schreiber, V. Flambaum, W.-T. Ni, L. Liu, X. Chen, J. Chen, K. Gao, L. Cacciapuoti, R. Holzwarth, M. P. Hess, and W. Schaefer, “Einstein gravity explorer—a medium-class fundamental physics mission,” Exp. Astron. 23, 573–610 (2009).
[Crossref]

Giesen, A.

R. Pohl, A. Antognini, F. Nez, F. D. Amaro, F. Biraben, J. M. R. Cardoso, D. S. Covita, A. Dax, S. Dhawan, L. M. P. Fernandes, A. Giesen, T. Graf, T. W. Hänsch, P. Indelicato, L. Julien, C.-Y. Kao, P. Knowles, E.-O. Le Bigot, Y.-W. Liu, J. A. M. Lopes, L. Ludhova, C. M. B. Monteiro, F. Mulhauser, T. Nebel, P. Rabinowitz, J. M. F. dos Santos, L. A. Schaller, K. Schuhmann, C. Schwob, D. Taqqu, J. F. C. A. Veloso, and F. Kottmann, “The size of the proton,” Nature 466, 213–216 (2010).
[Crossref]

Gill, E.

S. Schiller, G. M. Tino, P. Gill, C. Salomon, U. Sterr, E. Peik, A. Nevsky, A. Goerlitz, D. Svehla, G. Ferrari, N. Poli, L. Lusanna, H. Klein, H. Margolis, P. Lemonde, P. Laurent, G. Santarelli, A. Clairon, W. Ertmer, E. Rasel, J. Mueller, L. Iorio, C. Laemmerzahl, H. Dittus, E. Gill, M. Rothacher, F. Flechner, U. Schreiber, V. Flambaum, W.-T. Ni, L. Liu, X. Chen, J. Chen, K. Gao, L. Cacciapuoti, R. Holzwarth, M. P. Hess, and W. Schaefer, “Einstein gravity explorer—a medium-class fundamental physics mission,” Exp. Astron. 23, 573–610 (2009).
[Crossref]

Gill, P.

K. Bongs, Y. Singh, L. Smith, W. He, O. Kock, D. Swierad, J. Hughes, S. Schiller, S. Alighanbari, S. Origlia, S. Vogt, U. Sterr, Ch. Lisdat, R. Le Targat, J. Lodewyck, D. Holleville, B. Venon, S. Bize, G. P. Barwood, P. Gill, I. R. Hill, Y. B. Ovchinnikov, N. Poli, G. M. Tino, J. Stuhler, and W. Kaenders, SOC2 Team, “Development of a strontium optical lattice clock for the SOC mission on the ISS,” C. R. Physique 16, 553–564 (2015).
[Crossref]

S. Schiller, G. M. Tino, P. Gill, C. Salomon, U. Sterr, E. Peik, A. Nevsky, A. Goerlitz, D. Svehla, G. Ferrari, N. Poli, L. Lusanna, H. Klein, H. Margolis, P. Lemonde, P. Laurent, G. Santarelli, A. Clairon, W. Ertmer, E. Rasel, J. Mueller, L. Iorio, C. Laemmerzahl, H. Dittus, E. Gill, M. Rothacher, F. Flechner, U. Schreiber, V. Flambaum, W.-T. Ni, L. Liu, X. Chen, J. Chen, K. Gao, L. Cacciapuoti, R. Holzwarth, M. P. Hess, and W. Schaefer, “Einstein gravity explorer—a medium-class fundamental physics mission,” Exp. Astron. 23, 573–610 (2009).
[Crossref]

P. Gill, “Optical frequency standards,” Metrologia 42, S125–S137 (2005).
[Crossref]

Giorgetta, F. R.

F. R. Giorgetta, W. C. Swann, L. C. Sinclair, E. Baumann, I. Coddington, and N. R. Newbury, “Optical two-way time and frequency transfer over free space,” Nat. Photonics 7, 435–439 (2013).
[Crossref]

E. Baumann, F. R. Giorgetta, J. W. Nicholson, W. C. Swann, I. Coddington, and N. R. Newbury, “High-performance, vibration-immune, fiber-laser frequency comb,” Opt. Lett. 34, 638–640 (2009).
[Crossref]

Giulini, D.

B. Altschul, Q. G. Bailey, L. Blanchet, K. Bongs, P. Bouyer, L. Cacciapuoti, S. Capozziello, N. Gaaloul, D. Giulini, J. Hartwig, L. Iess, P. Jetzer, A. Landragin, E. Rasel, S. Reynaud, S. Schiller, C. Schubert, F. Sorrentino, U. Sterr, J. D. Tasson, G. M. Tino, P. Tuckey, and P. Wolf, “Quantum tests of the Einstein equivalence principle with the STE-QUEST space mission,” Adv. Space Res. 55, 501–524 (2015).
[Crossref]

Giunta, M.

W. Hänsel, M. Giunta, M. Fischer, and R. Holzwarth, “Simultaneous direct spectral purity transfer at three optical clock transitions using an all-pm Er-doped fiber frequency comb,” in Proceedings of the 25th International Conference on Atomic Physics (ICAP), Seoul, Korea, 24–29 July2016, p. 97.

Goerlitz, A.

S. Schiller, G. M. Tino, P. Gill, C. Salomon, U. Sterr, E. Peik, A. Nevsky, A. Goerlitz, D. Svehla, G. Ferrari, N. Poli, L. Lusanna, H. Klein, H. Margolis, P. Lemonde, P. Laurent, G. Santarelli, A. Clairon, W. Ertmer, E. Rasel, J. Mueller, L. Iorio, C. Laemmerzahl, H. Dittus, E. Gill, M. Rothacher, F. Flechner, U. Schreiber, V. Flambaum, W.-T. Ni, L. Liu, X. Chen, J. Chen, K. Gao, L. Cacciapuoti, R. Holzwarth, M. P. Hess, and W. Schaefer, “Einstein gravity explorer—a medium-class fundamental physics mission,” Exp. Astron. 23, 573–610 (2009).
[Crossref]

Gohlke, M.

T. Schuldt, K. Döringshoff, A. Milke, J. Sanjuan, M. Gohlke, E. Kovalchuk, N. Gürlebeck, A. Peters, and C. Braxmaier, “High-performance optical frequency references for space,” J. Phys. 723, 012047 (2016).

Graf, T.

R. Pohl, A. Antognini, F. Nez, F. D. Amaro, F. Biraben, J. M. R. Cardoso, D. S. Covita, A. Dax, S. Dhawan, L. M. P. Fernandes, A. Giesen, T. Graf, T. W. Hänsch, P. Indelicato, L. Julien, C.-Y. Kao, P. Knowles, E.-O. Le Bigot, Y.-W. Liu, J. A. M. Lopes, L. Ludhova, C. M. B. Monteiro, F. Mulhauser, T. Nebel, P. Rabinowitz, J. M. F. dos Santos, L. A. Schaller, K. Schuhmann, C. Schwob, D. Taqqu, J. F. C. A. Veloso, and F. Kottmann, “The size of the proton,” Nature 466, 213–216 (2010).
[Crossref]

Greiter, M.

M. Lezius, K. Predehl, W. Stöwer, A. Türler, M. Greiter, C. Hoeschen, P. Thirolf, W. Assmann, D. Habs, A. Prokofiev, C. Ekström, T. W. Hänsch, and R. Holzwarth, “Radiation induced absorption in rare earth doped optical fibers,” IEEE Trans. Nucl. Sci. 59, 425–433 (2012).
[Crossref]

Grosjean, O.

T. Leveque, B. Faure, F. X. Esnault, C. Delaroche, D. Massonnet, O. Grosjean, F. Buffe, P. Torresi, T. Bomer, A. Pichon, P. Beraud, J. P. Lelay, S. Thomin, and P. Laurent, “PHARAO laser source flight model: design and performances,” Rev. Sci. Instrum. 86, 033104 (2015).
[Crossref]

Grote, A.

Guena, J.

M. E. Tobar, P. L. Stanwix, J. J. McFerran, J. Guena, M. Abgrall, S. Bize, A. Clairon, P. Laurent, P. Rosenbusch, D. Rovera, and G. Santarelli, “Testing local position and fundamental constant invariance due to periodic gravitational and boost using long-term comparison of the SYRTE atomic fountains and H-masers,” Phys. Rev. D 87, 122004 (2013).
[Crossref]

Gürlebeck, N.

T. Schuldt, K. Döringshoff, A. Milke, J. Sanjuan, M. Gohlke, E. Kovalchuk, N. Gürlebeck, A. Peters, and C. Braxmaier, “High-performance optical frequency references for space,” J. Phys. 723, 012047 (2016).

Habs, D.

M. Lezius, K. Predehl, W. Stöwer, A. Türler, M. Greiter, C. Hoeschen, P. Thirolf, W. Assmann, D. Habs, A. Prokofiev, C. Ekström, T. W. Hänsch, and R. Holzwarth, “Radiation induced absorption in rare earth doped optical fibers,” IEEE Trans. Nucl. Sci. 59, 425–433 (2012).
[Crossref]

Hall, J. L.

R. L. Barger and J. L. Hall, “Pressure shift and broadening of methane line at 3.39  μm studied by laser-saturated molecular absorption,” Phys. Rev. Lett. 22, 4–7 (1969).
[Crossref]

Han, S.

J. Lee, K. Lee, Y.-S. Jang, H. Jang, S. Han, S.-H. Lee, K.-I. Kang, C.-W. Lim, Y.-J. Kim, and S.-W. Kim, “Testing of a femtosecond pulse laser in outer space,” Sci. Rep. 4, 5134 (2014).

Hänsch, T. W.

M. Lezius, K. Predehl, W. Stöwer, A. Türler, M. Greiter, C. Hoeschen, P. Thirolf, W. Assmann, D. Habs, A. Prokofiev, C. Ekström, T. W. Hänsch, and R. Holzwarth, “Radiation induced absorption in rare earth doped optical fibers,” IEEE Trans. Nucl. Sci. 59, 425–433 (2012).
[Crossref]

R. Pohl, A. Antognini, F. Nez, F. D. Amaro, F. Biraben, J. M. R. Cardoso, D. S. Covita, A. Dax, S. Dhawan, L. M. P. Fernandes, A. Giesen, T. Graf, T. W. Hänsch, P. Indelicato, L. Julien, C.-Y. Kao, P. Knowles, E.-O. Le Bigot, Y.-W. Liu, J. A. M. Lopes, L. Ludhova, C. M. B. Monteiro, F. Mulhauser, T. Nebel, P. Rabinowitz, J. M. F. dos Santos, L. A. Schaller, K. Schuhmann, C. Schwob, D. Taqqu, J. F. C. A. Veloso, and F. Kottmann, “The size of the proton,” Nature 466, 213–216 (2010).
[Crossref]

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science 321, 1335–1337 (2008).
[Crossref]

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416, 233–237 (2002).
[Crossref]

R. Holzwarth, T. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. St.J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85, 2264–2267 (2000).
[Crossref]

T. W. Hänsch, M. D. Levenson, and A. L. Schawlow, “Complete hyperfine structure of a molecular iodine line,” Phys. Rev. Lett. 26, 946–948 (1971).
[Crossref]

Hänsel, W.

W. Hänsel, R. Holzwarth, R. Doubek, and M. Mei, “Laser with non-linear optical loop mirror,” U.S. patent8873601B2 (28Oct.2014).

W. Hänsel, M. Giunta, M. Fischer, and R. Holzwarth, “Simultaneous direct spectral purity transfer at three optical clock transitions using an all-pm Er-doped fiber frequency comb,” in Proceedings of the 25th International Conference on Atomic Physics (ICAP), Seoul, Korea, 24–29 July2016, p. 97.

Hartwig, J.

B. Altschul, Q. G. Bailey, L. Blanchet, K. Bongs, P. Bouyer, L. Cacciapuoti, S. Capozziello, N. Gaaloul, D. Giulini, J. Hartwig, L. Iess, P. Jetzer, A. Landragin, E. Rasel, S. Reynaud, S. Schiller, C. Schubert, F. Sorrentino, U. Sterr, J. D. Tasson, G. M. Tino, P. Tuckey, and P. Wolf, “Quantum tests of the Einstein equivalence principle with the STE-QUEST space mission,” Adv. Space Res. 55, 501–524 (2015).
[Crossref]

Hati, A.

Haus, H. A.

H. A. Haus, E. P. Ippen, and K. Tamura, “Additive-pulse modelocking in fiber lasers,” IEEE J. Quantum Electron. 30, 200–208 (1994).
[Crossref]

He, W.

K. Bongs, Y. Singh, L. Smith, W. He, O. Kock, D. Swierad, J. Hughes, S. Schiller, S. Alighanbari, S. Origlia, S. Vogt, U. Sterr, Ch. Lisdat, R. Le Targat, J. Lodewyck, D. Holleville, B. Venon, S. Bize, G. P. Barwood, P. Gill, I. R. Hill, Y. B. Ovchinnikov, N. Poli, G. M. Tino, J. Stuhler, and W. Kaenders, SOC2 Team, “Development of a strontium optical lattice clock for the SOC mission on the ISS,” C. R. Physique 16, 553–564 (2015).
[Crossref]

Heavner, T. P.

T. M. Fortier, N. Ashby, J. C. Bergquist, M. J. Delaney, S. A. Diddams, T. P. Heavner, L. Hollberg, W. M. Itano, S. R. Jefferts, K. Kim, F. Levi, L. Lorini, W. H. Oskay, T. E. Parker, and J. E. Stalnaker, “Precision atomic spectroscopy for improved limits on variation of the fine structure constant and local position invariance,” Phys. Rev. Lett. 98, 070801 (2007).
[Crossref]

Hellmig, O.

Hess, M. P.

S. Schiller, G. M. Tino, P. Gill, C. Salomon, U. Sterr, E. Peik, A. Nevsky, A. Goerlitz, D. Svehla, G. Ferrari, N. Poli, L. Lusanna, H. Klein, H. Margolis, P. Lemonde, P. Laurent, G. Santarelli, A. Clairon, W. Ertmer, E. Rasel, J. Mueller, L. Iorio, C. Laemmerzahl, H. Dittus, E. Gill, M. Rothacher, F. Flechner, U. Schreiber, V. Flambaum, W.-T. Ni, L. Liu, X. Chen, J. Chen, K. Gao, L. Cacciapuoti, R. Holzwarth, M. P. Hess, and W. Schaefer, “Einstein gravity explorer—a medium-class fundamental physics mission,” Exp. Astron. 23, 573–610 (2009).
[Crossref]

Hill, I. R.

K. Bongs, Y. Singh, L. Smith, W. He, O. Kock, D. Swierad, J. Hughes, S. Schiller, S. Alighanbari, S. Origlia, S. Vogt, U. Sterr, Ch. Lisdat, R. Le Targat, J. Lodewyck, D. Holleville, B. Venon, S. Bize, G. P. Barwood, P. Gill, I. R. Hill, Y. B. Ovchinnikov, N. Poli, G. M. Tino, J. Stuhler, and W. Kaenders, SOC2 Team, “Development of a strontium optical lattice clock for the SOC mission on the ISS,” C. R. Physique 16, 553–564 (2015).
[Crossref]

Hoeschen, C.

M. Lezius, K. Predehl, W. Stöwer, A. Türler, M. Greiter, C. Hoeschen, P. Thirolf, W. Assmann, D. Habs, A. Prokofiev, C. Ekström, T. W. Hänsch, and R. Holzwarth, “Radiation induced absorption in rare earth doped optical fibers,” IEEE Trans. Nucl. Sci. 59, 425–433 (2012).
[Crossref]

Hollberg, L.

T. M. Fortier, N. Ashby, J. C. Bergquist, M. J. Delaney, S. A. Diddams, T. P. Heavner, L. Hollberg, W. M. Itano, S. R. Jefferts, K. Kim, F. Levi, L. Lorini, W. H. Oskay, T. E. Parker, and J. E. Stalnaker, “Precision atomic spectroscopy for improved limits on variation of the fine structure constant and local position invariance,” Phys. Rev. Lett. 98, 070801 (2007).
[Crossref]

Holleville, D.

K. Bongs, Y. Singh, L. Smith, W. He, O. Kock, D. Swierad, J. Hughes, S. Schiller, S. Alighanbari, S. Origlia, S. Vogt, U. Sterr, Ch. Lisdat, R. Le Targat, J. Lodewyck, D. Holleville, B. Venon, S. Bize, G. P. Barwood, P. Gill, I. R. Hill, Y. B. Ovchinnikov, N. Poli, G. M. Tino, J. Stuhler, and W. Kaenders, SOC2 Team, “Development of a strontium optical lattice clock for the SOC mission on the ISS,” C. R. Physique 16, 553–564 (2015).
[Crossref]

Holzwarth, R.

M. Lezius, K. Predehl, W. Stöwer, A. Türler, M. Greiter, C. Hoeschen, P. Thirolf, W. Assmann, D. Habs, A. Prokofiev, C. Ekström, T. W. Hänsch, and R. Holzwarth, “Radiation induced absorption in rare earth doped optical fibers,” IEEE Trans. Nucl. Sci. 59, 425–433 (2012).
[Crossref]

S. Schiller, G. M. Tino, P. Gill, C. Salomon, U. Sterr, E. Peik, A. Nevsky, A. Goerlitz, D. Svehla, G. Ferrari, N. Poli, L. Lusanna, H. Klein, H. Margolis, P. Lemonde, P. Laurent, G. Santarelli, A. Clairon, W. Ertmer, E. Rasel, J. Mueller, L. Iorio, C. Laemmerzahl, H. Dittus, E. Gill, M. Rothacher, F. Flechner, U. Schreiber, V. Flambaum, W.-T. Ni, L. Liu, X. Chen, J. Chen, K. Gao, L. Cacciapuoti, R. Holzwarth, M. P. Hess, and W. Schaefer, “Einstein gravity explorer—a medium-class fundamental physics mission,” Exp. Astron. 23, 573–610 (2009).
[Crossref]

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science 321, 1335–1337 (2008).
[Crossref]

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416, 233–237 (2002).
[Crossref]

R. Holzwarth, T. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. St.J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85, 2264–2267 (2000).
[Crossref]

W. Hänsel, R. Holzwarth, R. Doubek, and M. Mei, “Laser with non-linear optical loop mirror,” U.S. patent8873601B2 (28Oct.2014).

W. Hänsel, M. Giunta, M. Fischer, and R. Holzwarth, “Simultaneous direct spectral purity transfer at three optical clock transitions using an all-pm Er-doped fiber frequency comb,” in Proceedings of the 25th International Conference on Atomic Physics (ICAP), Seoul, Korea, 24–29 July2016, p. 97.

Hong, F. L.

S. Blatt, A. D. Ludlow, G. K. Campbell, J. W. Thomsen, T. Zelevinsky, M. M. Boyd, J. Ye, X. Baillard, M. Fouche, R. Le Targat, A. Brusch, P. Lemonde, M. Takamoto, F. L. Hong, H. Katori, and V. V. Flambaum, “New limits on coupling of fundamental constants to gravity using 87Sr optical lattice clocks,” Phys. Rev. Lett. 100, 140801 (2008).
[Crossref]

Hughes, J.

K. Bongs, Y. Singh, L. Smith, W. He, O. Kock, D. Swierad, J. Hughes, S. Schiller, S. Alighanbari, S. Origlia, S. Vogt, U. Sterr, Ch. Lisdat, R. Le Targat, J. Lodewyck, D. Holleville, B. Venon, S. Bize, G. P. Barwood, P. Gill, I. R. Hill, Y. B. Ovchinnikov, N. Poli, G. M. Tino, J. Stuhler, and W. Kaenders, SOC2 Team, “Development of a strontium optical lattice clock for the SOC mission on the ISS,” C. R. Physique 16, 553–564 (2015).
[Crossref]

Hutson, R.

T. Nicholson, S. Campbell, R. Hutson, G. Marti, B. Bloom, R. McNally, W. Zhang, M. Barrett, M. Safronova, G. Strouse, W. Tew, and J. Ye, “Systematic evaluation of an atomic clock at total uncertainty,” Nat. Commun. 6, 6896 (2015).
[Crossref]

Iess, L.

B. Altschul, Q. G. Bailey, L. Blanchet, K. Bongs, P. Bouyer, L. Cacciapuoti, S. Capozziello, N. Gaaloul, D. Giulini, J. Hartwig, L. Iess, P. Jetzer, A. Landragin, E. Rasel, S. Reynaud, S. Schiller, C. Schubert, F. Sorrentino, U. Sterr, J. D. Tasson, G. M. Tino, P. Tuckey, and P. Wolf, “Quantum tests of the Einstein equivalence principle with the STE-QUEST space mission,” Adv. Space Res. 55, 501–524 (2015).
[Crossref]

Indelicato, P.

R. Pohl, A. Antognini, F. Nez, F. D. Amaro, F. Biraben, J. M. R. Cardoso, D. S. Covita, A. Dax, S. Dhawan, L. M. P. Fernandes, A. Giesen, T. Graf, T. W. Hänsch, P. Indelicato, L. Julien, C.-Y. Kao, P. Knowles, E.-O. Le Bigot, Y.-W. Liu, J. A. M. Lopes, L. Ludhova, C. M. B. Monteiro, F. Mulhauser, T. Nebel, P. Rabinowitz, J. M. F. dos Santos, L. A. Schaller, K. Schuhmann, C. Schwob, D. Taqqu, J. F. C. A. Veloso, and F. Kottmann, “The size of the proton,” Nature 466, 213–216 (2010).
[Crossref]

Iorio, L.

S. Schiller, G. M. Tino, P. Gill, C. Salomon, U. Sterr, E. Peik, A. Nevsky, A. Goerlitz, D. Svehla, G. Ferrari, N. Poli, L. Lusanna, H. Klein, H. Margolis, P. Lemonde, P. Laurent, G. Santarelli, A. Clairon, W. Ertmer, E. Rasel, J. Mueller, L. Iorio, C. Laemmerzahl, H. Dittus, E. Gill, M. Rothacher, F. Flechner, U. Schreiber, V. Flambaum, W.-T. Ni, L. Liu, X. Chen, J. Chen, K. Gao, L. Cacciapuoti, R. Holzwarth, M. P. Hess, and W. Schaefer, “Einstein gravity explorer—a medium-class fundamental physics mission,” Exp. Astron. 23, 573–610 (2009).
[Crossref]

Ippen, E. P.

H. A. Haus, E. P. Ippen, and K. Tamura, “Additive-pulse modelocking in fiber lasers,” IEEE J. Quantum Electron. 30, 200–208 (1994).
[Crossref]

Itano, W. M.

T. M. Fortier, N. Ashby, J. C. Bergquist, M. J. Delaney, S. A. Diddams, T. P. Heavner, L. Hollberg, W. M. Itano, S. R. Jefferts, K. Kim, F. Levi, L. Lorini, W. H. Oskay, T. E. Parker, and J. E. Stalnaker, “Precision atomic spectroscopy for improved limits on variation of the fine structure constant and local position invariance,” Phys. Rev. Lett. 98, 070801 (2007).
[Crossref]

Iwakuni, K.

Jang, H.

J. Lee, K. Lee, Y.-S. Jang, H. Jang, S. Han, S.-H. Lee, K.-I. Kang, C.-W. Lim, Y.-J. Kim, and S.-W. Kim, “Testing of a femtosecond pulse laser in outer space,” Sci. Rep. 4, 5134 (2014).

Jang, Y.-S.

J. Lee, K. Lee, Y.-S. Jang, H. Jang, S. Han, S.-H. Lee, K.-I. Kang, C.-W. Lim, Y.-J. Kim, and S.-W. Kim, “Testing of a femtosecond pulse laser in outer space,” Sci. Rep. 4, 5134 (2014).

Jefferts, S. R.

T. M. Fortier, N. Ashby, J. C. Bergquist, M. J. Delaney, S. A. Diddams, T. P. Heavner, L. Hollberg, W. M. Itano, S. R. Jefferts, K. Kim, F. Levi, L. Lorini, W. H. Oskay, T. E. Parker, and J. E. Stalnaker, “Precision atomic spectroscopy for improved limits on variation of the fine structure constant and local position invariance,” Phys. Rev. Lett. 98, 070801 (2007).
[Crossref]

Jennrich, O.

P. Amaro-Seoane, S. Aoudia, S. Babak, P. Binétruy, E. Berti, A. Bohé, C. Caprini, M. Colpi, N. J. Cornish, K. Danzmann, J.-F. Dufaux, J. Gair, O. Jennrich, P. Jetzer, A. Klein, R. N. Lang, A. Lobo, T. Littenberg, S. T. McWilliams, G. Nelemans, A. Petiteau, E. K. Porter, B. F. Schutz, A. Sesana, R. Stebbins, T. Sumner, M. Vallisneri, S. Vitale, M. Volonteri, and H. Ward, “Doing science with eLISA: astrophysics and cosmology in the millihertz regime,” arXiv: 1201.3621v1 (2012).

Jetzer, P.

B. Altschul, Q. G. Bailey, L. Blanchet, K. Bongs, P. Bouyer, L. Cacciapuoti, S. Capozziello, N. Gaaloul, D. Giulini, J. Hartwig, L. Iess, P. Jetzer, A. Landragin, E. Rasel, S. Reynaud, S. Schiller, C. Schubert, F. Sorrentino, U. Sterr, J. D. Tasson, G. M. Tino, P. Tuckey, and P. Wolf, “Quantum tests of the Einstein equivalence principle with the STE-QUEST space mission,” Adv. Space Res. 55, 501–524 (2015).
[Crossref]

P. Amaro-Seoane, S. Aoudia, S. Babak, P. Binétruy, E. Berti, A. Bohé, C. Caprini, M. Colpi, N. J. Cornish, K. Danzmann, J.-F. Dufaux, J. Gair, O. Jennrich, P. Jetzer, A. Klein, R. N. Lang, A. Lobo, T. Littenberg, S. T. McWilliams, G. Nelemans, A. Petiteau, E. K. Porter, B. F. Schutz, A. Sesana, R. Stebbins, T. Sumner, M. Vallisneri, S. Vitale, M. Volonteri, and H. Ward, “Doing science with eLISA: astrophysics and cosmology in the millihertz regime,” arXiv: 1201.3621v1 (2012).

Julien, L.

R. Pohl, A. Antognini, F. Nez, F. D. Amaro, F. Biraben, J. M. R. Cardoso, D. S. Covita, A. Dax, S. Dhawan, L. M. P. Fernandes, A. Giesen, T. Graf, T. W. Hänsch, P. Indelicato, L. Julien, C.-Y. Kao, P. Knowles, E.-O. Le Bigot, Y.-W. Liu, J. A. M. Lopes, L. Ludhova, C. M. B. Monteiro, F. Mulhauser, T. Nebel, P. Rabinowitz, J. M. F. dos Santos, L. A. Schaller, K. Schuhmann, C. Schwob, D. Taqqu, J. F. C. A. Veloso, and F. Kottmann, “The size of the proton,” Nature 466, 213–216 (2010).
[Crossref]

Kaenders, W.

K. Bongs, Y. Singh, L. Smith, W. He, O. Kock, D. Swierad, J. Hughes, S. Schiller, S. Alighanbari, S. Origlia, S. Vogt, U. Sterr, Ch. Lisdat, R. Le Targat, J. Lodewyck, D. Holleville, B. Venon, S. Bize, G. P. Barwood, P. Gill, I. R. Hill, Y. B. Ovchinnikov, N. Poli, G. M. Tino, J. Stuhler, and W. Kaenders, SOC2 Team, “Development of a strontium optical lattice clock for the SOC mission on the ISS,” C. R. Physique 16, 553–564 (2015).
[Crossref]

Kang, K.-I.

J. Lee, K. Lee, Y.-S. Jang, H. Jang, S. Han, S.-H. Lee, K.-I. Kang, C.-W. Lim, Y.-J. Kim, and S.-W. Kim, “Testing of a femtosecond pulse laser in outer space,” Sci. Rep. 4, 5134 (2014).

Kao, C.-Y.

R. Pohl, A. Antognini, F. Nez, F. D. Amaro, F. Biraben, J. M. R. Cardoso, D. S. Covita, A. Dax, S. Dhawan, L. M. P. Fernandes, A. Giesen, T. Graf, T. W. Hänsch, P. Indelicato, L. Julien, C.-Y. Kao, P. Knowles, E.-O. Le Bigot, Y.-W. Liu, J. A. M. Lopes, L. Ludhova, C. M. B. Monteiro, F. Mulhauser, T. Nebel, P. Rabinowitz, J. M. F. dos Santos, L. A. Schaller, K. Schuhmann, C. Schwob, D. Taqqu, J. F. C. A. Veloso, and F. Kottmann, “The size of the proton,” Nature 466, 213–216 (2010).
[Crossref]

Katori, H.

I. Ushijima, M. Takamoto, M. Das, T. Ohkubo, and H. Katori, “Cryogenic optical lattice clocks,” Nat. Photonics 9, 185–189 (2015).
[Crossref]

S. Blatt, A. D. Ludlow, G. K. Campbell, J. W. Thomsen, T. Zelevinsky, M. M. Boyd, J. Ye, X. Baillard, M. Fouche, R. Le Targat, A. Brusch, P. Lemonde, M. Takamoto, F. L. Hong, H. Katori, and V. V. Flambaum, “New limits on coupling of fundamental constants to gravity using 87Sr optical lattice clocks,” Phys. Rev. Lett. 100, 140801 (2008).
[Crossref]

Kentischer, T.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science 321, 1335–1337 (2008).
[Crossref]

Kiemle, C.

C. Kiemle, M. Quatrevalet, G. Ehret, A. Amediek, A. Fix, and M. Wirth, “Sensitivity studies for a space-based methane lidar mission,” Atmos. Meas. Technol. 4, 2195–2211 (2011).
[Crossref]

Kim, K.

T. M. Fortier, N. Ashby, J. C. Bergquist, M. J. Delaney, S. A. Diddams, T. P. Heavner, L. Hollberg, W. M. Itano, S. R. Jefferts, K. Kim, F. Levi, L. Lorini, W. H. Oskay, T. E. Parker, and J. E. Stalnaker, “Precision atomic spectroscopy for improved limits on variation of the fine structure constant and local position invariance,” Phys. Rev. Lett. 98, 070801 (2007).
[Crossref]

Kim, S.-W.

J. Lee, K. Lee, Y.-S. Jang, H. Jang, S. Han, S.-H. Lee, K.-I. Kang, C.-W. Lim, Y.-J. Kim, and S.-W. Kim, “Testing of a femtosecond pulse laser in outer space,” Sci. Rep. 4, 5134 (2014).

Kim, Y.-J.

J. Lee, K. Lee, Y.-S. Jang, H. Jang, S. Han, S.-H. Lee, K.-I. Kang, C.-W. Lim, Y.-J. Kim, and S.-W. Kim, “Testing of a femtosecond pulse laser in outer space,” Sci. Rep. 4, 5134 (2014).

Klein, A.

P. Amaro-Seoane, S. Aoudia, S. Babak, P. Binétruy, E. Berti, A. Bohé, C. Caprini, M. Colpi, N. J. Cornish, K. Danzmann, J.-F. Dufaux, J. Gair, O. Jennrich, P. Jetzer, A. Klein, R. N. Lang, A. Lobo, T. Littenberg, S. T. McWilliams, G. Nelemans, A. Petiteau, E. K. Porter, B. F. Schutz, A. Sesana, R. Stebbins, T. Sumner, M. Vallisneri, S. Vitale, M. Volonteri, and H. Ward, “Doing science with eLISA: astrophysics and cosmology in the millihertz regime,” arXiv: 1201.3621v1 (2012).

Klein, H.

S. Schiller, G. M. Tino, P. Gill, C. Salomon, U. Sterr, E. Peik, A. Nevsky, A. Goerlitz, D. Svehla, G. Ferrari, N. Poli, L. Lusanna, H. Klein, H. Margolis, P. Lemonde, P. Laurent, G. Santarelli, A. Clairon, W. Ertmer, E. Rasel, J. Mueller, L. Iorio, C. Laemmerzahl, H. Dittus, E. Gill, M. Rothacher, F. Flechner, U. Schreiber, V. Flambaum, W.-T. Ni, L. Liu, X. Chen, J. Chen, K. Gao, L. Cacciapuoti, R. Holzwarth, M. P. Hess, and W. Schaefer, “Einstein gravity explorer—a medium-class fundamental physics mission,” Exp. Astron. 23, 573–610 (2009).
[Crossref]

Klische, W.

G. Kramer and W. Klische, “Multi-channel synchronous digital phase recorder,” in Proceedings of the IEEE International Frequency Control Symposium and PDA Exhibition (2001), pp. 144–151.

Knight, J. C.

R. Holzwarth, T. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. St.J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85, 2264–2267 (2000).
[Crossref]

Knowles, P.

R. Pohl, A. Antognini, F. Nez, F. D. Amaro, F. Biraben, J. M. R. Cardoso, D. S. Covita, A. Dax, S. Dhawan, L. M. P. Fernandes, A. Giesen, T. Graf, T. W. Hänsch, P. Indelicato, L. Julien, C.-Y. Kao, P. Knowles, E.-O. Le Bigot, Y.-W. Liu, J. A. M. Lopes, L. Ludhova, C. M. B. Monteiro, F. Mulhauser, T. Nebel, P. Rabinowitz, J. M. F. dos Santos, L. A. Schaller, K. Schuhmann, C. Schwob, D. Taqqu, J. F. C. A. Veloso, and F. Kottmann, “The size of the proton,” Nature 466, 213–216 (2010).
[Crossref]

Kock, O.

K. Bongs, Y. Singh, L. Smith, W. He, O. Kock, D. Swierad, J. Hughes, S. Schiller, S. Alighanbari, S. Origlia, S. Vogt, U. Sterr, Ch. Lisdat, R. Le Targat, J. Lodewyck, D. Holleville, B. Venon, S. Bize, G. P. Barwood, P. Gill, I. R. Hill, Y. B. Ovchinnikov, N. Poli, G. M. Tino, J. Stuhler, and W. Kaenders, SOC2 Team, “Development of a strontium optical lattice clock for the SOC mission on the ISS,” C. R. Physique 16, 553–564 (2015).
[Crossref]

Kohfeldt, A.

A. Kohfeldt, C. Kürbis, E. Luvsandamdin, M. Schiemangk, A. Wicht, A. Peters, G. Erbert, and G. Tränkle, “Compact narrow linewidth diode laser modules for precision quantum optics experiments on board of sounding rockets,” Proc. SPIE 9900, 99001G (2016).
[Crossref]

Kottmann, F.

R. Pohl, A. Antognini, F. Nez, F. D. Amaro, F. Biraben, J. M. R. Cardoso, D. S. Covita, A. Dax, S. Dhawan, L. M. P. Fernandes, A. Giesen, T. Graf, T. W. Hänsch, P. Indelicato, L. Julien, C.-Y. Kao, P. Knowles, E.-O. Le Bigot, Y.-W. Liu, J. A. M. Lopes, L. Ludhova, C. M. B. Monteiro, F. Mulhauser, T. Nebel, P. Rabinowitz, J. M. F. dos Santos, L. A. Schaller, K. Schuhmann, C. Schwob, D. Taqqu, J. F. C. A. Veloso, and F. Kottmann, “The size of the proton,” Nature 466, 213–216 (2010).
[Crossref]

Kovalchuk, E.

T. Schuldt, K. Döringshoff, A. Milke, J. Sanjuan, M. Gohlke, E. Kovalchuk, N. Gürlebeck, A. Peters, and C. Braxmaier, “High-performance optical frequency references for space,” J. Phys. 723, 012047 (2016).

Kramer, G.

G. Kramer and W. Klische, “Multi-channel synchronous digital phase recorder,” in Proceedings of the IEEE International Frequency Control Symposium and PDA Exhibition (2001), pp. 144–151.

Kürbis, C.

A. Kohfeldt, C. Kürbis, E. Luvsandamdin, M. Schiemangk, A. Wicht, A. Peters, G. Erbert, and G. Tränkle, “Compact narrow linewidth diode laser modules for precision quantum optics experiments on board of sounding rockets,” Proc. SPIE 9900, 99001G (2016).
[Crossref]

Kuse, N.

N. Kuse, C.-C. Lee, T. Schibli, and M. Fermann, “All polarization-maintaining Er fiber-based optical frequency combs with nonlinear amplifying loop mirror,” Opt. Express 24, 250903 (2016).

Laemmerzahl, C.

S. Schiller, G. M. Tino, P. Gill, C. Salomon, U. Sterr, E. Peik, A. Nevsky, A. Goerlitz, D. Svehla, G. Ferrari, N. Poli, L. Lusanna, H. Klein, H. Margolis, P. Lemonde, P. Laurent, G. Santarelli, A. Clairon, W. Ertmer, E. Rasel, J. Mueller, L. Iorio, C. Laemmerzahl, H. Dittus, E. Gill, M. Rothacher, F. Flechner, U. Schreiber, V. Flambaum, W.-T. Ni, L. Liu, X. Chen, J. Chen, K. Gao, L. Cacciapuoti, R. Holzwarth, M. P. Hess, and W. Schaefer, “Einstein gravity explorer—a medium-class fundamental physics mission,” Exp. Astron. 23, 573–610 (2009).
[Crossref]

Landragin, A.

B. Altschul, Q. G. Bailey, L. Blanchet, K. Bongs, P. Bouyer, L. Cacciapuoti, S. Capozziello, N. Gaaloul, D. Giulini, J. Hartwig, L. Iess, P. Jetzer, A. Landragin, E. Rasel, S. Reynaud, S. Schiller, C. Schubert, F. Sorrentino, U. Sterr, J. D. Tasson, G. M. Tino, P. Tuckey, and P. Wolf, “Quantum tests of the Einstein equivalence principle with the STE-QUEST space mission,” Adv. Space Res. 55, 501–524 (2015).
[Crossref]

Lang, R. N.

P. Amaro-Seoane, S. Aoudia, S. Babak, P. Binétruy, E. Berti, A. Bohé, C. Caprini, M. Colpi, N. J. Cornish, K. Danzmann, J.-F. Dufaux, J. Gair, O. Jennrich, P. Jetzer, A. Klein, R. N. Lang, A. Lobo, T. Littenberg, S. T. McWilliams, G. Nelemans, A. Petiteau, E. K. Porter, B. F. Schutz, A. Sesana, R. Stebbins, T. Sumner, M. Vallisneri, S. Vitale, M. Volonteri, and H. Ward, “Doing science with eLISA: astrophysics and cosmology in the millihertz regime,” arXiv: 1201.3621v1 (2012).

Laurent, P.

T. Leveque, B. Faure, F. X. Esnault, C. Delaroche, D. Massonnet, O. Grosjean, F. Buffe, P. Torresi, T. Bomer, A. Pichon, P. Beraud, J. P. Lelay, S. Thomin, and P. Laurent, “PHARAO laser source flight model: design and performances,” Rev. Sci. Instrum. 86, 033104 (2015).
[Crossref]

M. E. Tobar, P. L. Stanwix, J. J. McFerran, J. Guena, M. Abgrall, S. Bize, A. Clairon, P. Laurent, P. Rosenbusch, D. Rovera, and G. Santarelli, “Testing local position and fundamental constant invariance due to periodic gravitational and boost using long-term comparison of the SYRTE atomic fountains and H-masers,” Phys. Rev. D 87, 122004 (2013).
[Crossref]

S. Schiller, G. M. Tino, P. Gill, C. Salomon, U. Sterr, E. Peik, A. Nevsky, A. Goerlitz, D. Svehla, G. Ferrari, N. Poli, L. Lusanna, H. Klein, H. Margolis, P. Lemonde, P. Laurent, G. Santarelli, A. Clairon, W. Ertmer, E. Rasel, J. Mueller, L. Iorio, C. Laemmerzahl, H. Dittus, E. Gill, M. Rothacher, F. Flechner, U. Schreiber, V. Flambaum, W.-T. Ni, L. Liu, X. Chen, J. Chen, K. Gao, L. Cacciapuoti, R. Holzwarth, M. P. Hess, and W. Schaefer, “Einstein gravity explorer—a medium-class fundamental physics mission,” Exp. Astron. 23, 573–610 (2009).
[Crossref]

Le Bigot, E.-O.

R. Pohl, A. Antognini, F. Nez, F. D. Amaro, F. Biraben, J. M. R. Cardoso, D. S. Covita, A. Dax, S. Dhawan, L. M. P. Fernandes, A. Giesen, T. Graf, T. W. Hänsch, P. Indelicato, L. Julien, C.-Y. Kao, P. Knowles, E.-O. Le Bigot, Y.-W. Liu, J. A. M. Lopes, L. Ludhova, C. M. B. Monteiro, F. Mulhauser, T. Nebel, P. Rabinowitz, J. M. F. dos Santos, L. A. Schaller, K. Schuhmann, C. Schwob, D. Taqqu, J. F. C. A. Veloso, and F. Kottmann, “The size of the proton,” Nature 466, 213–216 (2010).
[Crossref]

Le Targat, R.

K. Bongs, Y. Singh, L. Smith, W. He, O. Kock, D. Swierad, J. Hughes, S. Schiller, S. Alighanbari, S. Origlia, S. Vogt, U. Sterr, Ch. Lisdat, R. Le Targat, J. Lodewyck, D. Holleville, B. Venon, S. Bize, G. P. Barwood, P. Gill, I. R. Hill, Y. B. Ovchinnikov, N. Poli, G. M. Tino, J. Stuhler, and W. Kaenders, SOC2 Team, “Development of a strontium optical lattice clock for the SOC mission on the ISS,” C. R. Physique 16, 553–564 (2015).
[Crossref]

S. Blatt, A. D. Ludlow, G. K. Campbell, J. W. Thomsen, T. Zelevinsky, M. M. Boyd, J. Ye, X. Baillard, M. Fouche, R. Le Targat, A. Brusch, P. Lemonde, M. Takamoto, F. L. Hong, H. Katori, and V. V. Flambaum, “New limits on coupling of fundamental constants to gravity using 87Sr optical lattice clocks,” Phys. Rev. Lett. 100, 140801 (2008).
[Crossref]

Lea, S. N.

S. N. Lea, “Limits to time variation of fundamental constants from comparisons of atomic frequency standards,” Rep. Prog. Phys. 70, 1473–1523 (2007).
[Crossref]

Lee, C.-C.

N. Kuse, C.-C. Lee, T. Schibli, and M. Fermann, “All polarization-maintaining Er fiber-based optical frequency combs with nonlinear amplifying loop mirror,” Opt. Express 24, 250903 (2016).

Lee, J.

J. Lee, K. Lee, Y.-S. Jang, H. Jang, S. Han, S.-H. Lee, K.-I. Kang, C.-W. Lim, Y.-J. Kim, and S.-W. Kim, “Testing of a femtosecond pulse laser in outer space,” Sci. Rep. 4, 5134 (2014).

Lee, K.

J. Lee, K. Lee, Y.-S. Jang, H. Jang, S. Han, S.-H. Lee, K.-I. Kang, C.-W. Lim, Y.-J. Kim, and S.-W. Kim, “Testing of a femtosecond pulse laser in outer space,” Sci. Rep. 4, 5134 (2014).

Lee, S.-H.

J. Lee, K. Lee, Y.-S. Jang, H. Jang, S. Han, S.-H. Lee, K.-I. Kang, C.-W. Lim, Y.-J. Kim, and S.-W. Kim, “Testing of a femtosecond pulse laser in outer space,” Sci. Rep. 4, 5134 (2014).

Lelay, J. P.

T. Leveque, B. Faure, F. X. Esnault, C. Delaroche, D. Massonnet, O. Grosjean, F. Buffe, P. Torresi, T. Bomer, A. Pichon, P. Beraud, J. P. Lelay, S. Thomin, and P. Laurent, “PHARAO laser source flight model: design and performances,” Rev. Sci. Instrum. 86, 033104 (2015).
[Crossref]

Lemonde, P.

S. Schiller, G. M. Tino, P. Gill, C. Salomon, U. Sterr, E. Peik, A. Nevsky, A. Goerlitz, D. Svehla, G. Ferrari, N. Poli, L. Lusanna, H. Klein, H. Margolis, P. Lemonde, P. Laurent, G. Santarelli, A. Clairon, W. Ertmer, E. Rasel, J. Mueller, L. Iorio, C. Laemmerzahl, H. Dittus, E. Gill, M. Rothacher, F. Flechner, U. Schreiber, V. Flambaum, W.-T. Ni, L. Liu, X. Chen, J. Chen, K. Gao, L. Cacciapuoti, R. Holzwarth, M. P. Hess, and W. Schaefer, “Einstein gravity explorer—a medium-class fundamental physics mission,” Exp. Astron. 23, 573–610 (2009).
[Crossref]

S. Blatt, A. D. Ludlow, G. K. Campbell, J. W. Thomsen, T. Zelevinsky, M. M. Boyd, J. Ye, X. Baillard, M. Fouche, R. Le Targat, A. Brusch, P. Lemonde, M. Takamoto, F. L. Hong, H. Katori, and V. V. Flambaum, “New limits on coupling of fundamental constants to gravity using 87Sr optical lattice clocks,” Phys. Rev. Lett. 100, 140801 (2008).
[Crossref]

Lenth, W.

Levenson, M. D.

T. W. Hänsch, M. D. Levenson, and A. L. Schawlow, “Complete hyperfine structure of a molecular iodine line,” Phys. Rev. Lett. 26, 946–948 (1971).
[Crossref]

Leveque, T.

T. Leveque, B. Faure, F. X. Esnault, C. Delaroche, D. Massonnet, O. Grosjean, F. Buffe, P. Torresi, T. Bomer, A. Pichon, P. Beraud, J. P. Lelay, S. Thomin, and P. Laurent, “PHARAO laser source flight model: design and performances,” Rev. Sci. Instrum. 86, 033104 (2015).
[Crossref]

Levi, F.

T. M. Fortier, N. Ashby, J. C. Bergquist, M. J. Delaney, S. A. Diddams, T. P. Heavner, L. Hollberg, W. M. Itano, S. R. Jefferts, K. Kim, F. Levi, L. Lorini, W. H. Oskay, T. E. Parker, and J. E. Stalnaker, “Precision atomic spectroscopy for improved limits on variation of the fine structure constant and local position invariance,” Phys. Rev. Lett. 98, 070801 (2007).
[Crossref]

Lezius, M.

M. Lezius, K. Predehl, W. Stöwer, A. Türler, M. Greiter, C. Hoeschen, P. Thirolf, W. Assmann, D. Habs, A. Prokofiev, C. Ekström, T. W. Hänsch, and R. Holzwarth, “Radiation induced absorption in rare earth doped optical fibers,” IEEE Trans. Nucl. Sci. 59, 425–433 (2012).
[Crossref]

Lim, C.-W.

J. Lee, K. Lee, Y.-S. Jang, H. Jang, S. Han, S.-H. Lee, K.-I. Kang, C.-W. Lim, Y.-J. Kim, and S.-W. Kim, “Testing of a femtosecond pulse laser in outer space,” Sci. Rep. 4, 5134 (2014).

Lisdat, Ch.

K. Bongs, Y. Singh, L. Smith, W. He, O. Kock, D. Swierad, J. Hughes, S. Schiller, S. Alighanbari, S. Origlia, S. Vogt, U. Sterr, Ch. Lisdat, R. Le Targat, J. Lodewyck, D. Holleville, B. Venon, S. Bize, G. P. Barwood, P. Gill, I. R. Hill, Y. B. Ovchinnikov, N. Poli, G. M. Tino, J. Stuhler, and W. Kaenders, SOC2 Team, “Development of a strontium optical lattice clock for the SOC mission on the ISS,” C. R. Physique 16, 553–564 (2015).
[Crossref]

Littenberg, T.

P. Amaro-Seoane, S. Aoudia, S. Babak, P. Binétruy, E. Berti, A. Bohé, C. Caprini, M. Colpi, N. J. Cornish, K. Danzmann, J.-F. Dufaux, J. Gair, O. Jennrich, P. Jetzer, A. Klein, R. N. Lang, A. Lobo, T. Littenberg, S. T. McWilliams, G. Nelemans, A. Petiteau, E. K. Porter, B. F. Schutz, A. Sesana, R. Stebbins, T. Sumner, M. Vallisneri, S. Vitale, M. Volonteri, and H. Ward, “Doing science with eLISA: astrophysics and cosmology in the millihertz regime,” arXiv: 1201.3621v1 (2012).

Liu, L.

S. Schiller, G. M. Tino, P. Gill, C. Salomon, U. Sterr, E. Peik, A. Nevsky, A. Goerlitz, D. Svehla, G. Ferrari, N. Poli, L. Lusanna, H. Klein, H. Margolis, P. Lemonde, P. Laurent, G. Santarelli, A. Clairon, W. Ertmer, E. Rasel, J. Mueller, L. Iorio, C. Laemmerzahl, H. Dittus, E. Gill, M. Rothacher, F. Flechner, U. Schreiber, V. Flambaum, W.-T. Ni, L. Liu, X. Chen, J. Chen, K. Gao, L. Cacciapuoti, R. Holzwarth, M. P. Hess, and W. Schaefer, “Einstein gravity explorer—a medium-class fundamental physics mission,” Exp. Astron. 23, 573–610 (2009).
[Crossref]

Liu, Y.-W.

R. Pohl, A. Antognini, F. Nez, F. D. Amaro, F. Biraben, J. M. R. Cardoso, D. S. Covita, A. Dax, S. Dhawan, L. M. P. Fernandes, A. Giesen, T. Graf, T. W. Hänsch, P. Indelicato, L. Julien, C.-Y. Kao, P. Knowles, E.-O. Le Bigot, Y.-W. Liu, J. A. M. Lopes, L. Ludhova, C. M. B. Monteiro, F. Mulhauser, T. Nebel, P. Rabinowitz, J. M. F. dos Santos, L. A. Schaller, K. Schuhmann, C. Schwob, D. Taqqu, J. F. C. A. Veloso, and F. Kottmann, “The size of the proton,” Nature 466, 213–216 (2010).
[Crossref]

Lobo, A.

P. Amaro-Seoane, S. Aoudia, S. Babak, P. Binétruy, E. Berti, A. Bohé, C. Caprini, M. Colpi, N. J. Cornish, K. Danzmann, J.-F. Dufaux, J. Gair, O. Jennrich, P. Jetzer, A. Klein, R. N. Lang, A. Lobo, T. Littenberg, S. T. McWilliams, G. Nelemans, A. Petiteau, E. K. Porter, B. F. Schutz, A. Sesana, R. Stebbins, T. Sumner, M. Vallisneri, S. Vitale, M. Volonteri, and H. Ward, “Doing science with eLISA: astrophysics and cosmology in the millihertz regime,” arXiv: 1201.3621v1 (2012).

Lodewyck, J.

K. Bongs, Y. Singh, L. Smith, W. He, O. Kock, D. Swierad, J. Hughes, S. Schiller, S. Alighanbari, S. Origlia, S. Vogt, U. Sterr, Ch. Lisdat, R. Le Targat, J. Lodewyck, D. Holleville, B. Venon, S. Bize, G. P. Barwood, P. Gill, I. R. Hill, Y. B. Ovchinnikov, N. Poli, G. M. Tino, J. Stuhler, and W. Kaenders, SOC2 Team, “Development of a strontium optical lattice clock for the SOC mission on the ISS,” C. R. Physique 16, 553–564 (2015).
[Crossref]

Lopes, J. A. M.

R. Pohl, A. Antognini, F. Nez, F. D. Amaro, F. Biraben, J. M. R. Cardoso, D. S. Covita, A. Dax, S. Dhawan, L. M. P. Fernandes, A. Giesen, T. Graf, T. W. Hänsch, P. Indelicato, L. Julien, C.-Y. Kao, P. Knowles, E.-O. Le Bigot, Y.-W. Liu, J. A. M. Lopes, L. Ludhova, C. M. B. Monteiro, F. Mulhauser, T. Nebel, P. Rabinowitz, J. M. F. dos Santos, L. A. Schaller, K. Schuhmann, C. Schwob, D. Taqqu, J. F. C. A. Veloso, and F. Kottmann, “The size of the proton,” Nature 466, 213–216 (2010).
[Crossref]

Lorini, L.

T. M. Fortier, N. Ashby, J. C. Bergquist, M. J. Delaney, S. A. Diddams, T. P. Heavner, L. Hollberg, W. M. Itano, S. R. Jefferts, K. Kim, F. Levi, L. Lorini, W. H. Oskay, T. E. Parker, and J. E. Stalnaker, “Precision atomic spectroscopy for improved limits on variation of the fine structure constant and local position invariance,” Phys. Rev. Lett. 98, 070801 (2007).
[Crossref]

Ludhova, L.

R. Pohl, A. Antognini, F. Nez, F. D. Amaro, F. Biraben, J. M. R. Cardoso, D. S. Covita, A. Dax, S. Dhawan, L. M. P. Fernandes, A. Giesen, T. Graf, T. W. Hänsch, P. Indelicato, L. Julien, C.-Y. Kao, P. Knowles, E.-O. Le Bigot, Y.-W. Liu, J. A. M. Lopes, L. Ludhova, C. M. B. Monteiro, F. Mulhauser, T. Nebel, P. Rabinowitz, J. M. F. dos Santos, L. A. Schaller, K. Schuhmann, C. Schwob, D. Taqqu, J. F. C. A. Veloso, and F. Kottmann, “The size of the proton,” Nature 466, 213–216 (2010).
[Crossref]

Ludlow, A. D.

S. Blatt, A. D. Ludlow, G. K. Campbell, J. W. Thomsen, T. Zelevinsky, M. M. Boyd, J. Ye, X. Baillard, M. Fouche, R. Le Targat, A. Brusch, P. Lemonde, M. Takamoto, F. L. Hong, H. Katori, and V. V. Flambaum, “New limits on coupling of fundamental constants to gravity using 87Sr optical lattice clocks,” Phys. Rev. Lett. 100, 140801 (2008).
[Crossref]

Lusanna, L.

S. Schiller, G. M. Tino, P. Gill, C. Salomon, U. Sterr, E. Peik, A. Nevsky, A. Goerlitz, D. Svehla, G. Ferrari, N. Poli, L. Lusanna, H. Klein, H. Margolis, P. Lemonde, P. Laurent, G. Santarelli, A. Clairon, W. Ertmer, E. Rasel, J. Mueller, L. Iorio, C. Laemmerzahl, H. Dittus, E. Gill, M. Rothacher, F. Flechner, U. Schreiber, V. Flambaum, W.-T. Ni, L. Liu, X. Chen, J. Chen, K. Gao, L. Cacciapuoti, R. Holzwarth, M. P. Hess, and W. Schaefer, “Einstein gravity explorer—a medium-class fundamental physics mission,” Exp. Astron. 23, 573–610 (2009).
[Crossref]

Luvsandamdin, E.

A. Kohfeldt, C. Kürbis, E. Luvsandamdin, M. Schiemangk, A. Wicht, A. Peters, G. Erbert, and G. Tränkle, “Compact narrow linewidth diode laser modules for precision quantum optics experiments on board of sounding rockets,” Proc. SPIE 9900, 99001G (2016).
[Crossref]

O. Brox, F. Bugge, A. Mogilatenko, E. Luvsandamdin, A. Wicht, H. Wenzel, and G. Erbert, “Distributed feedback lasers in the 760 to 810  nm range and epitaxial grating design,” Semicond. Sci. Technol. 29, 095018 (2014).
[Crossref]

Manescau, A.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science 321, 1335–1337 (2008).
[Crossref]

Margolis, H.

S. Schiller, G. M. Tino, P. Gill, C. Salomon, U. Sterr, E. Peik, A. Nevsky, A. Goerlitz, D. Svehla, G. Ferrari, N. Poli, L. Lusanna, H. Klein, H. Margolis, P. Lemonde, P. Laurent, G. Santarelli, A. Clairon, W. Ertmer, E. Rasel, J. Mueller, L. Iorio, C. Laemmerzahl, H. Dittus, E. Gill, M. Rothacher, F. Flechner, U. Schreiber, V. Flambaum, W.-T. Ni, L. Liu, X. Chen, J. Chen, K. Gao, L. Cacciapuoti, R. Holzwarth, M. P. Hess, and W. Schaefer, “Einstein gravity explorer—a medium-class fundamental physics mission,” Exp. Astron. 23, 573–610 (2009).
[Crossref]

Marti, G.

T. Nicholson, S. Campbell, R. Hutson, G. Marti, B. Bloom, R. McNally, W. Zhang, M. Barrett, M. Safronova, G. Strouse, W. Tew, and J. Ye, “Systematic evaluation of an atomic clock at total uncertainty,” Nat. Commun. 6, 6896 (2015).
[Crossref]

Martynov, D. V.

D. V. Martynov, LIGO Scientific Collaboration, “Sensitivity of the advanced LIGO detectors at the beginning of gravitational wave astronomy,” Phys. Rev. D 93, 112004 (2016).
[Crossref]

Massonnet, D.

T. Leveque, B. Faure, F. X. Esnault, C. Delaroche, D. Massonnet, O. Grosjean, F. Buffe, P. Torresi, T. Bomer, A. Pichon, P. Beraud, J. P. Lelay, S. Thomin, and P. Laurent, “PHARAO laser source flight model: design and performances,” Rev. Sci. Instrum. 86, 033104 (2015).
[Crossref]

McFerran, J. J.

M. E. Tobar, P. L. Stanwix, J. J. McFerran, J. Guena, M. Abgrall, S. Bize, A. Clairon, P. Laurent, P. Rosenbusch, D. Rovera, and G. Santarelli, “Testing local position and fundamental constant invariance due to periodic gravitational and boost using long-term comparison of the SYRTE atomic fountains and H-masers,” Phys. Rev. D 87, 122004 (2013).
[Crossref]

McNally, R.

T. Nicholson, S. Campbell, R. Hutson, G. Marti, B. Bloom, R. McNally, W. Zhang, M. Barrett, M. Safronova, G. Strouse, W. Tew, and J. Ye, “Systematic evaluation of an atomic clock at total uncertainty,” Nat. Commun. 6, 6896 (2015).
[Crossref]

McWilliams, S. T.

P. Amaro-Seoane, S. Aoudia, S. Babak, P. Binétruy, E. Berti, A. Bohé, C. Caprini, M. Colpi, N. J. Cornish, K. Danzmann, J.-F. Dufaux, J. Gair, O. Jennrich, P. Jetzer, A. Klein, R. N. Lang, A. Lobo, T. Littenberg, S. T. McWilliams, G. Nelemans, A. Petiteau, E. K. Porter, B. F. Schutz, A. Sesana, R. Stebbins, T. Sumner, M. Vallisneri, S. Vitale, M. Volonteri, and H. Ward, “Doing science with eLISA: astrophysics and cosmology in the millihertz regime,” arXiv: 1201.3621v1 (2012).

Mei, M.

W. Hänsel, R. Holzwarth, R. Doubek, and M. Mei, “Laser with non-linear optical loop mirror,” U.S. patent8873601B2 (28Oct.2014).

Milke, A.

T. Schuldt, K. Döringshoff, A. Milke, J. Sanjuan, M. Gohlke, E. Kovalchuk, N. Gürlebeck, A. Peters, and C. Braxmaier, “High-performance optical frequency references for space,” J. Phys. 723, 012047 (2016).

Mogilatenko, A.

O. Brox, F. Bugge, A. Mogilatenko, E. Luvsandamdin, A. Wicht, H. Wenzel, and G. Erbert, “Distributed feedback lasers in the 760 to 810  nm range and epitaxial grating design,” Semicond. Sci. Technol. 29, 095018 (2014).
[Crossref]

Monteiro, C. M. B.

R. Pohl, A. Antognini, F. Nez, F. D. Amaro, F. Biraben, J. M. R. Cardoso, D. S. Covita, A. Dax, S. Dhawan, L. M. P. Fernandes, A. Giesen, T. Graf, T. W. Hänsch, P. Indelicato, L. Julien, C.-Y. Kao, P. Knowles, E.-O. Le Bigot, Y.-W. Liu, J. A. M. Lopes, L. Ludhova, C. M. B. Monteiro, F. Mulhauser, T. Nebel, P. Rabinowitz, J. M. F. dos Santos, L. A. Schaller, K. Schuhmann, C. Schwob, D. Taqqu, J. F. C. A. Veloso, and F. Kottmann, “The size of the proton,” Nature 466, 213–216 (2010).
[Crossref]

Mueller, J.

S. Schiller, G. M. Tino, P. Gill, C. Salomon, U. Sterr, E. Peik, A. Nevsky, A. Goerlitz, D. Svehla, G. Ferrari, N. Poli, L. Lusanna, H. Klein, H. Margolis, P. Lemonde, P. Laurent, G. Santarelli, A. Clairon, W. Ertmer, E. Rasel, J. Mueller, L. Iorio, C. Laemmerzahl, H. Dittus, E. Gill, M. Rothacher, F. Flechner, U. Schreiber, V. Flambaum, W.-T. Ni, L. Liu, X. Chen, J. Chen, K. Gao, L. Cacciapuoti, R. Holzwarth, M. P. Hess, and W. Schaefer, “Einstein gravity explorer—a medium-class fundamental physics mission,” Exp. Astron. 23, 573–610 (2009).
[Crossref]

Mulhauser, F.

R. Pohl, A. Antognini, F. Nez, F. D. Amaro, F. Biraben, J. M. R. Cardoso, D. S. Covita, A. Dax, S. Dhawan, L. M. P. Fernandes, A. Giesen, T. Graf, T. W. Hänsch, P. Indelicato, L. Julien, C.-Y. Kao, P. Knowles, E.-O. Le Bigot, Y.-W. Liu, J. A. M. Lopes, L. Ludhova, C. M. B. Monteiro, F. Mulhauser, T. Nebel, P. Rabinowitz, J. M. F. dos Santos, L. A. Schaller, K. Schuhmann, C. Schwob, D. Taqqu, J. F. C. A. Veloso, and F. Kottmann, “The size of the proton,” Nature 466, 213–216 (2010).
[Crossref]

Murphy, M. T.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science 321, 1335–1337 (2008).
[Crossref]

Nebel, T.

R. Pohl, A. Antognini, F. Nez, F. D. Amaro, F. Biraben, J. M. R. Cardoso, D. S. Covita, A. Dax, S. Dhawan, L. M. P. Fernandes, A. Giesen, T. Graf, T. W. Hänsch, P. Indelicato, L. Julien, C.-Y. Kao, P. Knowles, E.-O. Le Bigot, Y.-W. Liu, J. A. M. Lopes, L. Ludhova, C. M. B. Monteiro, F. Mulhauser, T. Nebel, P. Rabinowitz, J. M. F. dos Santos, L. A. Schaller, K. Schuhmann, C. Schwob, D. Taqqu, J. F. C. A. Veloso, and F. Kottmann, “The size of the proton,” Nature 466, 213–216 (2010).
[Crossref]

Nelemans, G.

P. Amaro-Seoane, S. Aoudia, S. Babak, P. Binétruy, E. Berti, A. Bohé, C. Caprini, M. Colpi, N. J. Cornish, K. Danzmann, J.-F. Dufaux, J. Gair, O. Jennrich, P. Jetzer, A. Klein, R. N. Lang, A. Lobo, T. Littenberg, S. T. McWilliams, G. Nelemans, A. Petiteau, E. K. Porter, B. F. Schutz, A. Sesana, R. Stebbins, T. Sumner, M. Vallisneri, S. Vitale, M. Volonteri, and H. Ward, “Doing science with eLISA: astrophysics and cosmology in the millihertz regime,” arXiv: 1201.3621v1 (2012).

Nenadovic, L.

I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3, 351–356 (2009).
[Crossref]

Nevsky, A.

S. Schiller, G. M. Tino, P. Gill, C. Salomon, U. Sterr, E. Peik, A. Nevsky, A. Goerlitz, D. Svehla, G. Ferrari, N. Poli, L. Lusanna, H. Klein, H. Margolis, P. Lemonde, P. Laurent, G. Santarelli, A. Clairon, W. Ertmer, E. Rasel, J. Mueller, L. Iorio, C. Laemmerzahl, H. Dittus, E. Gill, M. Rothacher, F. Flechner, U. Schreiber, V. Flambaum, W.-T. Ni, L. Liu, X. Chen, J. Chen, K. Gao, L. Cacciapuoti, R. Holzwarth, M. P. Hess, and W. Schaefer, “Einstein gravity explorer—a medium-class fundamental physics mission,” Exp. Astron. 23, 573–610 (2009).
[Crossref]

Newbury, N. R.

L. C. Sinclair, I. Coddington, W. C. Swann, G. B. Rieker, A. Hati, K. Iwakuni, and N. R. Newbury, “Operation of an optically coherent frequency comb outside the metrology lab,” Opt. Express 22, 6996–7006 (2014).
[Crossref]

F. R. Giorgetta, W. C. Swann, L. C. Sinclair, E. Baumann, I. Coddington, and N. R. Newbury, “Optical two-way time and frequency transfer over free space,” Nat. Photonics 7, 435–439 (2013).
[Crossref]

I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3, 351–356 (2009).
[Crossref]

E. Baumann, F. R. Giorgetta, J. W. Nicholson, W. C. Swann, I. Coddington, and N. R. Newbury, “High-performance, vibration-immune, fiber-laser frequency comb,” Opt. Lett. 34, 638–640 (2009).
[Crossref]

Nez, F.

R. Pohl, A. Antognini, F. Nez, F. D. Amaro, F. Biraben, J. M. R. Cardoso, D. S. Covita, A. Dax, S. Dhawan, L. M. P. Fernandes, A. Giesen, T. Graf, T. W. Hänsch, P. Indelicato, L. Julien, C.-Y. Kao, P. Knowles, E.-O. Le Bigot, Y.-W. Liu, J. A. M. Lopes, L. Ludhova, C. M. B. Monteiro, F. Mulhauser, T. Nebel, P. Rabinowitz, J. M. F. dos Santos, L. A. Schaller, K. Schuhmann, C. Schwob, D. Taqqu, J. F. C. A. Veloso, and F. Kottmann, “The size of the proton,” Nature 466, 213–216 (2010).
[Crossref]

Ni, W.-T.

S. Schiller, G. M. Tino, P. Gill, C. Salomon, U. Sterr, E. Peik, A. Nevsky, A. Goerlitz, D. Svehla, G. Ferrari, N. Poli, L. Lusanna, H. Klein, H. Margolis, P. Lemonde, P. Laurent, G. Santarelli, A. Clairon, W. Ertmer, E. Rasel, J. Mueller, L. Iorio, C. Laemmerzahl, H. Dittus, E. Gill, M. Rothacher, F. Flechner, U. Schreiber, V. Flambaum, W.-T. Ni, L. Liu, X. Chen, J. Chen, K. Gao, L. Cacciapuoti, R. Holzwarth, M. P. Hess, and W. Schaefer, “Einstein gravity explorer—a medium-class fundamental physics mission,” Exp. Astron. 23, 573–610 (2009).
[Crossref]

Nicholson, J. W.

Nicholson, T.

T. Nicholson, S. Campbell, R. Hutson, G. Marti, B. Bloom, R. McNally, W. Zhang, M. Barrett, M. Safronova, G. Strouse, W. Tew, and J. Ye, “Systematic evaluation of an atomic clock at total uncertainty,” Nat. Commun. 6, 6896 (2015).
[Crossref]

Ohkubo, T.

I. Ushijima, M. Takamoto, M. Das, T. Ohkubo, and H. Katori, “Cryogenic optical lattice clocks,” Nat. Photonics 9, 185–189 (2015).
[Crossref]

Origlia, S.

K. Bongs, Y. Singh, L. Smith, W. He, O. Kock, D. Swierad, J. Hughes, S. Schiller, S. Alighanbari, S. Origlia, S. Vogt, U. Sterr, Ch. Lisdat, R. Le Targat, J. Lodewyck, D. Holleville, B. Venon, S. Bize, G. P. Barwood, P. Gill, I. R. Hill, Y. B. Ovchinnikov, N. Poli, G. M. Tino, J. Stuhler, and W. Kaenders, SOC2 Team, “Development of a strontium optical lattice clock for the SOC mission on the ISS,” C. R. Physique 16, 553–564 (2015).
[Crossref]

Oskay, W. H.

T. M. Fortier, N. Ashby, J. C. Bergquist, M. J. Delaney, S. A. Diddams, T. P. Heavner, L. Hollberg, W. M. Itano, S. R. Jefferts, K. Kim, F. Levi, L. Lorini, W. H. Oskay, T. E. Parker, and J. E. Stalnaker, “Precision atomic spectroscopy for improved limits on variation of the fine structure constant and local position invariance,” Phys. Rev. Lett. 98, 070801 (2007).
[Crossref]

Ovchinnikov, Y. B.

K. Bongs, Y. Singh, L. Smith, W. He, O. Kock, D. Swierad, J. Hughes, S. Schiller, S. Alighanbari, S. Origlia, S. Vogt, U. Sterr, Ch. Lisdat, R. Le Targat, J. Lodewyck, D. Holleville, B. Venon, S. Bize, G. P. Barwood, P. Gill, I. R. Hill, Y. B. Ovchinnikov, N. Poli, G. M. Tino, J. Stuhler, and W. Kaenders, SOC2 Team, “Development of a strontium optical lattice clock for the SOC mission on the ISS,” C. R. Physique 16, 553–564 (2015).
[Crossref]

Parker, T. E.

T. M. Fortier, N. Ashby, J. C. Bergquist, M. J. Delaney, S. A. Diddams, T. P. Heavner, L. Hollberg, W. M. Itano, S. R. Jefferts, K. Kim, F. Levi, L. Lorini, W. H. Oskay, T. E. Parker, and J. E. Stalnaker, “Precision atomic spectroscopy for improved limits on variation of the fine structure constant and local position invariance,” Phys. Rev. Lett. 98, 070801 (2007).
[Crossref]

Pasquini, L.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science 321, 1335–1337 (2008).
[Crossref]

Peik, E.

S. Schiller, G. M. Tino, P. Gill, C. Salomon, U. Sterr, E. Peik, A. Nevsky, A. Goerlitz, D. Svehla, G. Ferrari, N. Poli, L. Lusanna, H. Klein, H. Margolis, P. Lemonde, P. Laurent, G. Santarelli, A. Clairon, W. Ertmer, E. Rasel, J. Mueller, L. Iorio, C. Laemmerzahl, H. Dittus, E. Gill, M. Rothacher, F. Flechner, U. Schreiber, V. Flambaum, W.-T. Ni, L. Liu, X. Chen, J. Chen, K. Gao, L. Cacciapuoti, R. Holzwarth, M. P. Hess, and W. Schaefer, “Einstein gravity explorer—a medium-class fundamental physics mission,” Exp. Astron. 23, 573–610 (2009).
[Crossref]

Peters, A.

A. Kohfeldt, C. Kürbis, E. Luvsandamdin, M. Schiemangk, A. Wicht, A. Peters, G. Erbert, and G. Tränkle, “Compact narrow linewidth diode laser modules for precision quantum optics experiments on board of sounding rockets,” Proc. SPIE 9900, 99001G (2016).
[Crossref]

T. Schuldt, K. Döringshoff, A. Milke, J. Sanjuan, M. Gohlke, E. Kovalchuk, N. Gürlebeck, A. Peters, and C. Braxmaier, “High-performance optical frequency references for space,” J. Phys. 723, 012047 (2016).

Petiteau, A.

P. Amaro-Seoane, S. Aoudia, S. Babak, P. Binétruy, E. Berti, A. Bohé, C. Caprini, M. Colpi, N. J. Cornish, K. Danzmann, J.-F. Dufaux, J. Gair, O. Jennrich, P. Jetzer, A. Klein, R. N. Lang, A. Lobo, T. Littenberg, S. T. McWilliams, G. Nelemans, A. Petiteau, E. K. Porter, B. F. Schutz, A. Sesana, R. Stebbins, T. Sumner, M. Vallisneri, S. Vitale, M. Volonteri, and H. Ward, “Doing science with eLISA: astrophysics and cosmology in the millihertz regime,” arXiv: 1201.3621v1 (2012).

Pichon, A.

T. Leveque, B. Faure, F. X. Esnault, C. Delaroche, D. Massonnet, O. Grosjean, F. Buffe, P. Torresi, T. Bomer, A. Pichon, P. Beraud, J. P. Lelay, S. Thomin, and P. Laurent, “PHARAO laser source flight model: design and performances,” Rev. Sci. Instrum. 86, 033104 (2015).
[Crossref]

Pohl, R.

R. Pohl, A. Antognini, F. Nez, F. D. Amaro, F. Biraben, J. M. R. Cardoso, D. S. Covita, A. Dax, S. Dhawan, L. M. P. Fernandes, A. Giesen, T. Graf, T. W. Hänsch, P. Indelicato, L. Julien, C.-Y. Kao, P. Knowles, E.-O. Le Bigot, Y.-W. Liu, J. A. M. Lopes, L. Ludhova, C. M. B. Monteiro, F. Mulhauser, T. Nebel, P. Rabinowitz, J. M. F. dos Santos, L. A. Schaller, K. Schuhmann, C. Schwob, D. Taqqu, J. F. C. A. Veloso, and F. Kottmann, “The size of the proton,” Nature 466, 213–216 (2010).
[Crossref]

Poli, N.

K. Bongs, Y. Singh, L. Smith, W. He, O. Kock, D. Swierad, J. Hughes, S. Schiller, S. Alighanbari, S. Origlia, S. Vogt, U. Sterr, Ch. Lisdat, R. Le Targat, J. Lodewyck, D. Holleville, B. Venon, S. Bize, G. P. Barwood, P. Gill, I. R. Hill, Y. B. Ovchinnikov, N. Poli, G. M. Tino, J. Stuhler, and W. Kaenders, SOC2 Team, “Development of a strontium optical lattice clock for the SOC mission on the ISS,” C. R. Physique 16, 553–564 (2015).
[Crossref]

S. Schiller, G. M. Tino, P. Gill, C. Salomon, U. Sterr, E. Peik, A. Nevsky, A. Goerlitz, D. Svehla, G. Ferrari, N. Poli, L. Lusanna, H. Klein, H. Margolis, P. Lemonde, P. Laurent, G. Santarelli, A. Clairon, W. Ertmer, E. Rasel, J. Mueller, L. Iorio, C. Laemmerzahl, H. Dittus, E. Gill, M. Rothacher, F. Flechner, U. Schreiber, V. Flambaum, W.-T. Ni, L. Liu, X. Chen, J. Chen, K. Gao, L. Cacciapuoti, R. Holzwarth, M. P. Hess, and W. Schaefer, “Einstein gravity explorer—a medium-class fundamental physics mission,” Exp. Astron. 23, 573–610 (2009).
[Crossref]

Porter, E. K.

P. Amaro-Seoane, S. Aoudia, S. Babak, P. Binétruy, E. Berti, A. Bohé, C. Caprini, M. Colpi, N. J. Cornish, K. Danzmann, J.-F. Dufaux, J. Gair, O. Jennrich, P. Jetzer, A. Klein, R. N. Lang, A. Lobo, T. Littenberg, S. T. McWilliams, G. Nelemans, A. Petiteau, E. K. Porter, B. F. Schutz, A. Sesana, R. Stebbins, T. Sumner, M. Vallisneri, S. Vitale, M. Volonteri, and H. Ward, “Doing science with eLISA: astrophysics and cosmology in the millihertz regime,” arXiv: 1201.3621v1 (2012).

Predehl, K.

M. Lezius, K. Predehl, W. Stöwer, A. Türler, M. Greiter, C. Hoeschen, P. Thirolf, W. Assmann, D. Habs, A. Prokofiev, C. Ekström, T. W. Hänsch, and R. Holzwarth, “Radiation induced absorption in rare earth doped optical fibers,” IEEE Trans. Nucl. Sci. 59, 425–433 (2012).
[Crossref]

Prokofiev, A.

M. Lezius, K. Predehl, W. Stöwer, A. Türler, M. Greiter, C. Hoeschen, P. Thirolf, W. Assmann, D. Habs, A. Prokofiev, C. Ekström, T. W. Hänsch, and R. Holzwarth, “Radiation induced absorption in rare earth doped optical fibers,” IEEE Trans. Nucl. Sci. 59, 425–433 (2012).
[Crossref]

Quatrevalet, M.

C. Kiemle, M. Quatrevalet, G. Ehret, A. Amediek, A. Fix, and M. Wirth, “Sensitivity studies for a space-based methane lidar mission,” Atmos. Meas. Technol. 4, 2195–2211 (2011).
[Crossref]

Rabinowitz, P.

R. Pohl, A. Antognini, F. Nez, F. D. Amaro, F. Biraben, J. M. R. Cardoso, D. S. Covita, A. Dax, S. Dhawan, L. M. P. Fernandes, A. Giesen, T. Graf, T. W. Hänsch, P. Indelicato, L. Julien, C.-Y. Kao, P. Knowles, E.-O. Le Bigot, Y.-W. Liu, J. A. M. Lopes, L. Ludhova, C. M. B. Monteiro, F. Mulhauser, T. Nebel, P. Rabinowitz, J. M. F. dos Santos, L. A. Schaller, K. Schuhmann, C. Schwob, D. Taqqu, J. F. C. A. Veloso, and F. Kottmann, “The size of the proton,” Nature 466, 213–216 (2010).
[Crossref]

Rafipoor, A. J.

Rafipoor, M.

Rasel, E.

B. Altschul, Q. G. Bailey, L. Blanchet, K. Bongs, P. Bouyer, L. Cacciapuoti, S. Capozziello, N. Gaaloul, D. Giulini, J. Hartwig, L. Iess, P. Jetzer, A. Landragin, E. Rasel, S. Reynaud, S. Schiller, C. Schubert, F. Sorrentino, U. Sterr, J. D. Tasson, G. M. Tino, P. Tuckey, and P. Wolf, “Quantum tests of the Einstein equivalence principle with the STE-QUEST space mission,” Adv. Space Res. 55, 501–524 (2015).
[Crossref]

S. Schiller, G. M. Tino, P. Gill, C. Salomon, U. Sterr, E. Peik, A. Nevsky, A. Goerlitz, D. Svehla, G. Ferrari, N. Poli, L. Lusanna, H. Klein, H. Margolis, P. Lemonde, P. Laurent, G. Santarelli, A. Clairon, W. Ertmer, E. Rasel, J. Mueller, L. Iorio, C. Laemmerzahl, H. Dittus, E. Gill, M. Rothacher, F. Flechner, U. Schreiber, V. Flambaum, W.-T. Ni, L. Liu, X. Chen, J. Chen, K. Gao, L. Cacciapuoti, R. Holzwarth, M. P. Hess, and W. Schaefer, “Einstein gravity explorer—a medium-class fundamental physics mission,” Exp. Astron. 23, 573–610 (2009).
[Crossref]

Reynaud, S.

B. Altschul, Q. G. Bailey, L. Blanchet, K. Bongs, P. Bouyer, L. Cacciapuoti, S. Capozziello, N. Gaaloul, D. Giulini, J. Hartwig, L. Iess, P. Jetzer, A. Landragin, E. Rasel, S. Reynaud, S. Schiller, C. Schubert, F. Sorrentino, U. Sterr, J. D. Tasson, G. M. Tino, P. Tuckey, and P. Wolf, “Quantum tests of the Einstein equivalence principle with the STE-QUEST space mission,” Adv. Space Res. 55, 501–524 (2015).
[Crossref]

Rieker, G. B.

Rosenbusch, P.

M. E. Tobar, P. L. Stanwix, J. J. McFerran, J. Guena, M. Abgrall, S. Bize, A. Clairon, P. Laurent, P. Rosenbusch, D. Rovera, and G. Santarelli, “Testing local position and fundamental constant invariance due to periodic gravitational and boost using long-term comparison of the SYRTE atomic fountains and H-masers,” Phys. Rev. D 87, 122004 (2013).
[Crossref]

Rothacher, M.

S. Schiller, G. M. Tino, P. Gill, C. Salomon, U. Sterr, E. Peik, A. Nevsky, A. Goerlitz, D. Svehla, G. Ferrari, N. Poli, L. Lusanna, H. Klein, H. Margolis, P. Lemonde, P. Laurent, G. Santarelli, A. Clairon, W. Ertmer, E. Rasel, J. Mueller, L. Iorio, C. Laemmerzahl, H. Dittus, E. Gill, M. Rothacher, F. Flechner, U. Schreiber, V. Flambaum, W.-T. Ni, L. Liu, X. Chen, J. Chen, K. Gao, L. Cacciapuoti, R. Holzwarth, M. P. Hess, and W. Schaefer, “Einstein gravity explorer—a medium-class fundamental physics mission,” Exp. Astron. 23, 573–610 (2009).
[Crossref]

Rovera, D.

M. E. Tobar, P. L. Stanwix, J. J. McFerran, J. Guena, M. Abgrall, S. Bize, A. Clairon, P. Laurent, P. Rosenbusch, D. Rovera, and G. Santarelli, “Testing local position and fundamental constant invariance due to periodic gravitational and boost using long-term comparison of the SYRTE atomic fountains and H-masers,” Phys. Rev. D 87, 122004 (2013).
[Crossref]

Safronova, M.

T. Nicholson, S. Campbell, R. Hutson, G. Marti, B. Bloom, R. McNally, W. Zhang, M. Barrett, M. Safronova, G. Strouse, W. Tew, and J. Ye, “Systematic evaluation of an atomic clock at total uncertainty,” Nat. Commun. 6, 6896 (2015).
[Crossref]

Salomon, C.

S. Schiller, G. M. Tino, P. Gill, C. Salomon, U. Sterr, E. Peik, A. Nevsky, A. Goerlitz, D. Svehla, G. Ferrari, N. Poli, L. Lusanna, H. Klein, H. Margolis, P. Lemonde, P. Laurent, G. Santarelli, A. Clairon, W. Ertmer, E. Rasel, J. Mueller, L. Iorio, C. Laemmerzahl, H. Dittus, E. Gill, M. Rothacher, F. Flechner, U. Schreiber, V. Flambaum, W.-T. Ni, L. Liu, X. Chen, J. Chen, K. Gao, L. Cacciapuoti, R. Holzwarth, M. P. Hess, and W. Schaefer, “Einstein gravity explorer—a medium-class fundamental physics mission,” Exp. Astron. 23, 573–610 (2009).
[Crossref]

Sanjuan, J.

T. Schuldt, K. Döringshoff, A. Milke, J. Sanjuan, M. Gohlke, E. Kovalchuk, N. Gürlebeck, A. Peters, and C. Braxmaier, “High-performance optical frequency references for space,” J. Phys. 723, 012047 (2016).

Santarelli, G.

M. E. Tobar, P. L. Stanwix, J. J. McFerran, J. Guena, M. Abgrall, S. Bize, A. Clairon, P. Laurent, P. Rosenbusch, D. Rovera, and G. Santarelli, “Testing local position and fundamental constant invariance due to periodic gravitational and boost using long-term comparison of the SYRTE atomic fountains and H-masers,” Phys. Rev. D 87, 122004 (2013).
[Crossref]

S. Schiller, G. M. Tino, P. Gill, C. Salomon, U. Sterr, E. Peik, A. Nevsky, A. Goerlitz, D. Svehla, G. Ferrari, N. Poli, L. Lusanna, H. Klein, H. Margolis, P. Lemonde, P. Laurent, G. Santarelli, A. Clairon, W. Ertmer, E. Rasel, J. Mueller, L. Iorio, C. Laemmerzahl, H. Dittus, E. Gill, M. Rothacher, F. Flechner, U. Schreiber, V. Flambaum, W.-T. Ni, L. Liu, X. Chen, J. Chen, K. Gao, L. Cacciapuoti, R. Holzwarth, M. P. Hess, and W. Schaefer, “Einstein gravity explorer—a medium-class fundamental physics mission,” Exp. Astron. 23, 573–610 (2009).
[Crossref]

Schaefer, W.

S. Schiller, G. M. Tino, P. Gill, C. Salomon, U. Sterr, E. Peik, A. Nevsky, A. Goerlitz, D. Svehla, G. Ferrari, N. Poli, L. Lusanna, H. Klein, H. Margolis, P. Lemonde, P. Laurent, G. Santarelli, A. Clairon, W. Ertmer, E. Rasel, J. Mueller, L. Iorio, C. Laemmerzahl, H. Dittus, E. Gill, M. Rothacher, F. Flechner, U. Schreiber, V. Flambaum, W.-T. Ni, L. Liu, X. Chen, J. Chen, K. Gao, L. Cacciapuoti, R. Holzwarth, M. P. Hess, and W. Schaefer, “Einstein gravity explorer—a medium-class fundamental physics mission,” Exp. Astron. 23, 573–610 (2009).
[Crossref]

Schaller, L. A.

R. Pohl, A. Antognini, F. Nez, F. D. Amaro, F. Biraben, J. M. R. Cardoso, D. S. Covita, A. Dax, S. Dhawan, L. M. P. Fernandes, A. Giesen, T. Graf, T. W. Hänsch, P. Indelicato, L. Julien, C.-Y. Kao, P. Knowles, E.-O. Le Bigot, Y.-W. Liu, J. A. M. Lopes, L. Ludhova, C. M. B. Monteiro, F. Mulhauser, T. Nebel, P. Rabinowitz, J. M. F. dos Santos, L. A. Schaller, K. Schuhmann, C. Schwob, D. Taqqu, J. F. C. A. Veloso, and F. Kottmann, “The size of the proton,” Nature 466, 213–216 (2010).
[Crossref]

Schawlow, A. L.

T. W. Hänsch, M. D. Levenson, and A. L. Schawlow, “Complete hyperfine structure of a molecular iodine line,” Phys. Rev. Lett. 26, 946–948 (1971).
[Crossref]

Schibli, T.

N. Kuse, C.-C. Lee, T. Schibli, and M. Fermann, “All polarization-maintaining Er fiber-based optical frequency combs with nonlinear amplifying loop mirror,” Opt. Express 24, 250903 (2016).

Schiemangk, M.

A. Kohfeldt, C. Kürbis, E. Luvsandamdin, M. Schiemangk, A. Wicht, A. Peters, G. Erbert, and G. Tränkle, “Compact narrow linewidth diode laser modules for precision quantum optics experiments on board of sounding rockets,” Proc. SPIE 9900, 99001G (2016).
[Crossref]

Schiller, S.

B. Altschul, Q. G. Bailey, L. Blanchet, K. Bongs, P. Bouyer, L. Cacciapuoti, S. Capozziello, N. Gaaloul, D. Giulini, J. Hartwig, L. Iess, P. Jetzer, A. Landragin, E. Rasel, S. Reynaud, S. Schiller, C. Schubert, F. Sorrentino, U. Sterr, J. D. Tasson, G. M. Tino, P. Tuckey, and P. Wolf, “Quantum tests of the Einstein equivalence principle with the STE-QUEST space mission,” Adv. Space Res. 55, 501–524 (2015).
[Crossref]

K. Bongs, Y. Singh, L. Smith, W. He, O. Kock, D. Swierad, J. Hughes, S. Schiller, S. Alighanbari, S. Origlia, S. Vogt, U. Sterr, Ch. Lisdat, R. Le Targat, J. Lodewyck, D. Holleville, B. Venon, S. Bize, G. P. Barwood, P. Gill, I. R. Hill, Y. B. Ovchinnikov, N. Poli, G. M. Tino, J. Stuhler, and W. Kaenders, SOC2 Team, “Development of a strontium optical lattice clock for the SOC mission on the ISS,” C. R. Physique 16, 553–564 (2015).
[Crossref]

S. Schiller, G. M. Tino, P. Gill, C. Salomon, U. Sterr, E. Peik, A. Nevsky, A. Goerlitz, D. Svehla, G. Ferrari, N. Poli, L. Lusanna, H. Klein, H. Margolis, P. Lemonde, P. Laurent, G. Santarelli, A. Clairon, W. Ertmer, E. Rasel, J. Mueller, L. Iorio, C. Laemmerzahl, H. Dittus, E. Gill, M. Rothacher, F. Flechner, U. Schreiber, V. Flambaum, W.-T. Ni, L. Liu, X. Chen, J. Chen, K. Gao, L. Cacciapuoti, R. Holzwarth, M. P. Hess, and W. Schaefer, “Einstein gravity explorer—a medium-class fundamental physics mission,” Exp. Astron. 23, 573–610 (2009).
[Crossref]

Schmidt, W.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science 321, 1335–1337 (2008).
[Crossref]

Schreiber, U.

S. Schiller, G. M. Tino, P. Gill, C. Salomon, U. Sterr, E. Peik, A. Nevsky, A. Goerlitz, D. Svehla, G. Ferrari, N. Poli, L. Lusanna, H. Klein, H. Margolis, P. Lemonde, P. Laurent, G. Santarelli, A. Clairon, W. Ertmer, E. Rasel, J. Mueller, L. Iorio, C. Laemmerzahl, H. Dittus, E. Gill, M. Rothacher, F. Flechner, U. Schreiber, V. Flambaum, W.-T. Ni, L. Liu, X. Chen, J. Chen, K. Gao, L. Cacciapuoti, R. Holzwarth, M. P. Hess, and W. Schaefer, “Einstein gravity explorer—a medium-class fundamental physics mission,” Exp. Astron. 23, 573–610 (2009).
[Crossref]

Schubert, C.

B. Altschul, Q. G. Bailey, L. Blanchet, K. Bongs, P. Bouyer, L. Cacciapuoti, S. Capozziello, N. Gaaloul, D. Giulini, J. Hartwig, L. Iess, P. Jetzer, A. Landragin, E. Rasel, S. Reynaud, S. Schiller, C. Schubert, F. Sorrentino, U. Sterr, J. D. Tasson, G. M. Tino, P. Tuckey, and P. Wolf, “Quantum tests of the Einstein equivalence principle with the STE-QUEST space mission,” Adv. Space Res. 55, 501–524 (2015).
[Crossref]

Schuhmann, K.

R. Pohl, A. Antognini, F. Nez, F. D. Amaro, F. Biraben, J. M. R. Cardoso, D. S. Covita, A. Dax, S. Dhawan, L. M. P. Fernandes, A. Giesen, T. Graf, T. W. Hänsch, P. Indelicato, L. Julien, C.-Y. Kao, P. Knowles, E.-O. Le Bigot, Y.-W. Liu, J. A. M. Lopes, L. Ludhova, C. M. B. Monteiro, F. Mulhauser, T. Nebel, P. Rabinowitz, J. M. F. dos Santos, L. A. Schaller, K. Schuhmann, C. Schwob, D. Taqqu, J. F. C. A. Veloso, and F. Kottmann, “The size of the proton,” Nature 466, 213–216 (2010).
[Crossref]

Schuldt, T.

T. Schuldt, K. Döringshoff, A. Milke, J. Sanjuan, M. Gohlke, E. Kovalchuk, N. Gürlebeck, A. Peters, and C. Braxmaier, “High-performance optical frequency references for space,” J. Phys. 723, 012047 (2016).

Schutz, B. F.

P. Amaro-Seoane, S. Aoudia, S. Babak, P. Binétruy, E. Berti, A. Bohé, C. Caprini, M. Colpi, N. J. Cornish, K. Danzmann, J.-F. Dufaux, J. Gair, O. Jennrich, P. Jetzer, A. Klein, R. N. Lang, A. Lobo, T. Littenberg, S. T. McWilliams, G. Nelemans, A. Petiteau, E. K. Porter, B. F. Schutz, A. Sesana, R. Stebbins, T. Sumner, M. Vallisneri, S. Vitale, M. Volonteri, and H. Ward, “Doing science with eLISA: astrophysics and cosmology in the millihertz regime,” arXiv: 1201.3621v1 (2012).

Schwob, C.

R. Pohl, A. Antognini, F. Nez, F. D. Amaro, F. Biraben, J. M. R. Cardoso, D. S. Covita, A. Dax, S. Dhawan, L. M. P. Fernandes, A. Giesen, T. Graf, T. W. Hänsch, P. Indelicato, L. Julien, C.-Y. Kao, P. Knowles, E.-O. Le Bigot, Y.-W. Liu, J. A. M. Lopes, L. Ludhova, C. M. B. Monteiro, F. Mulhauser, T. Nebel, P. Rabinowitz, J. M. F. dos Santos, L. A. Schaller, K. Schuhmann, C. Schwob, D. Taqqu, J. F. C. A. Veloso, and F. Kottmann, “The size of the proton,” Nature 466, 213–216 (2010).
[Crossref]

Sengstock, K.

Sesana, A.

P. Amaro-Seoane, S. Aoudia, S. Babak, P. Binétruy, E. Berti, A. Bohé, C. Caprini, M. Colpi, N. J. Cornish, K. Danzmann, J.-F. Dufaux, J. Gair, O. Jennrich, P. Jetzer, A. Klein, R. N. Lang, A. Lobo, T. Littenberg, S. T. McWilliams, G. Nelemans, A. Petiteau, E. K. Porter, B. F. Schutz, A. Sesana, R. Stebbins, T. Sumner, M. Vallisneri, S. Vitale, M. Volonteri, and H. Ward, “Doing science with eLISA: astrophysics and cosmology in the millihertz regime,” arXiv: 1201.3621v1 (2012).

Sinclair, L. C.

L. C. Sinclair, I. Coddington, W. C. Swann, G. B. Rieker, A. Hati, K. Iwakuni, and N. R. Newbury, “Operation of an optically coherent frequency comb outside the metrology lab,” Opt. Express 22, 6996–7006 (2014).
[Crossref]

F. R. Giorgetta, W. C. Swann, L. C. Sinclair, E. Baumann, I. Coddington, and N. R. Newbury, “Optical two-way time and frequency transfer over free space,” Nat. Photonics 7, 435–439 (2013).
[Crossref]

Singh, Y.

K. Bongs, Y. Singh, L. Smith, W. He, O. Kock, D. Swierad, J. Hughes, S. Schiller, S. Alighanbari, S. Origlia, S. Vogt, U. Sterr, Ch. Lisdat, R. Le Targat, J. Lodewyck, D. Holleville, B. Venon, S. Bize, G. P. Barwood, P. Gill, I. R. Hill, Y. B. Ovchinnikov, N. Poli, G. M. Tino, J. Stuhler, and W. Kaenders, SOC2 Team, “Development of a strontium optical lattice clock for the SOC mission on the ISS,” C. R. Physique 16, 553–564 (2015).
[Crossref]

Smith, L.

K. Bongs, Y. Singh, L. Smith, W. He, O. Kock, D. Swierad, J. Hughes, S. Schiller, S. Alighanbari, S. Origlia, S. Vogt, U. Sterr, Ch. Lisdat, R. Le Targat, J. Lodewyck, D. Holleville, B. Venon, S. Bize, G. P. Barwood, P. Gill, I. R. Hill, Y. B. Ovchinnikov, N. Poli, G. M. Tino, J. Stuhler, and W. Kaenders, SOC2 Team, “Development of a strontium optical lattice clock for the SOC mission on the ISS,” C. R. Physique 16, 553–564 (2015).
[Crossref]

Sorrentino, F.

B. Altschul, Q. G. Bailey, L. Blanchet, K. Bongs, P. Bouyer, L. Cacciapuoti, S. Capozziello, N. Gaaloul, D. Giulini, J. Hartwig, L. Iess, P. Jetzer, A. Landragin, E. Rasel, S. Reynaud, S. Schiller, C. Schubert, F. Sorrentino, U. Sterr, J. D. Tasson, G. M. Tino, P. Tuckey, and P. Wolf, “Quantum tests of the Einstein equivalence principle with the STE-QUEST space mission,” Adv. Space Res. 55, 501–524 (2015).
[Crossref]

St.J. Russell, P.

R. Holzwarth, T. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. St.J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85, 2264–2267 (2000).
[Crossref]

Stalnaker, J. E.

T. M. Fortier, N. Ashby, J. C. Bergquist, M. J. Delaney, S. A. Diddams, T. P. Heavner, L. Hollberg, W. M. Itano, S. R. Jefferts, K. Kim, F. Levi, L. Lorini, W. H. Oskay, T. E. Parker, and J. E. Stalnaker, “Precision atomic spectroscopy for improved limits on variation of the fine structure constant and local position invariance,” Phys. Rev. Lett. 98, 070801 (2007).
[Crossref]

Stanwix, P. L.

M. E. Tobar, P. L. Stanwix, J. J. McFerran, J. Guena, M. Abgrall, S. Bize, A. Clairon, P. Laurent, P. Rosenbusch, D. Rovera, and G. Santarelli, “Testing local position and fundamental constant invariance due to periodic gravitational and boost using long-term comparison of the SYRTE atomic fountains and H-masers,” Phys. Rev. D 87, 122004 (2013).
[Crossref]

Stebbins, R.

P. Amaro-Seoane, S. Aoudia, S. Babak, P. Binétruy, E. Berti, A. Bohé, C. Caprini, M. Colpi, N. J. Cornish, K. Danzmann, J.-F. Dufaux, J. Gair, O. Jennrich, P. Jetzer, A. Klein, R. N. Lang, A. Lobo, T. Littenberg, S. T. McWilliams, G. Nelemans, A. Petiteau, E. K. Porter, B. F. Schutz, A. Sesana, R. Stebbins, T. Sumner, M. Vallisneri, S. Vitale, M. Volonteri, and H. Ward, “Doing science with eLISA: astrophysics and cosmology in the millihertz regime,” arXiv: 1201.3621v1 (2012).

Steinmetz, T.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science 321, 1335–1337 (2008).
[Crossref]

Sterr, U.

B. Altschul, Q. G. Bailey, L. Blanchet, K. Bongs, P. Bouyer, L. Cacciapuoti, S. Capozziello, N. Gaaloul, D. Giulini, J. Hartwig, L. Iess, P. Jetzer, A. Landragin, E. Rasel, S. Reynaud, S. Schiller, C. Schubert, F. Sorrentino, U. Sterr, J. D. Tasson, G. M. Tino, P. Tuckey, and P. Wolf, “Quantum tests of the Einstein equivalence principle with the STE-QUEST space mission,” Adv. Space Res. 55, 501–524 (2015).
[Crossref]

K. Bongs, Y. Singh, L. Smith, W. He, O. Kock, D. Swierad, J. Hughes, S. Schiller, S. Alighanbari, S. Origlia, S. Vogt, U. Sterr, Ch. Lisdat, R. Le Targat, J. Lodewyck, D. Holleville, B. Venon, S. Bize, G. P. Barwood, P. Gill, I. R. Hill, Y. B. Ovchinnikov, N. Poli, G. M. Tino, J. Stuhler, and W. Kaenders, SOC2 Team, “Development of a strontium optical lattice clock for the SOC mission on the ISS,” C. R. Physique 16, 553–564 (2015).
[Crossref]

S. Schiller, G. M. Tino, P. Gill, C. Salomon, U. Sterr, E. Peik, A. Nevsky, A. Goerlitz, D. Svehla, G. Ferrari, N. Poli, L. Lusanna, H. Klein, H. Margolis, P. Lemonde, P. Laurent, G. Santarelli, A. Clairon, W. Ertmer, E. Rasel, J. Mueller, L. Iorio, C. Laemmerzahl, H. Dittus, E. Gill, M. Rothacher, F. Flechner, U. Schreiber, V. Flambaum, W.-T. Ni, L. Liu, X. Chen, J. Chen, K. Gao, L. Cacciapuoti, R. Holzwarth, M. P. Hess, and W. Schaefer, “Einstein gravity explorer—a medium-class fundamental physics mission,” Exp. Astron. 23, 573–610 (2009).
[Crossref]

Stöwer, W.

M. Lezius, K. Predehl, W. Stöwer, A. Türler, M. Greiter, C. Hoeschen, P. Thirolf, W. Assmann, D. Habs, A. Prokofiev, C. Ekström, T. W. Hänsch, and R. Holzwarth, “Radiation induced absorption in rare earth doped optical fibers,” IEEE Trans. Nucl. Sci. 59, 425–433 (2012).
[Crossref]

Strouse, G.

T. Nicholson, S. Campbell, R. Hutson, G. Marti, B. Bloom, R. McNally, W. Zhang, M. Barrett, M. Safronova, G. Strouse, W. Tew, and J. Ye, “Systematic evaluation of an atomic clock at total uncertainty,” Nat. Commun. 6, 6896 (2015).
[Crossref]

Stuhler, J.

K. Bongs, Y. Singh, L. Smith, W. He, O. Kock, D. Swierad, J. Hughes, S. Schiller, S. Alighanbari, S. Origlia, S. Vogt, U. Sterr, Ch. Lisdat, R. Le Targat, J. Lodewyck, D. Holleville, B. Venon, S. Bize, G. P. Barwood, P. Gill, I. R. Hill, Y. B. Ovchinnikov, N. Poli, G. M. Tino, J. Stuhler, and W. Kaenders, SOC2 Team, “Development of a strontium optical lattice clock for the SOC mission on the ISS,” C. R. Physique 16, 553–564 (2015).
[Crossref]

Sumner, T.

P. Amaro-Seoane, S. Aoudia, S. Babak, P. Binétruy, E. Berti, A. Bohé, C. Caprini, M. Colpi, N. J. Cornish, K. Danzmann, J.-F. Dufaux, J. Gair, O. Jennrich, P. Jetzer, A. Klein, R. N. Lang, A. Lobo, T. Littenberg, S. T. McWilliams, G. Nelemans, A. Petiteau, E. K. Porter, B. F. Schutz, A. Sesana, R. Stebbins, T. Sumner, M. Vallisneri, S. Vitale, M. Volonteri, and H. Ward, “Doing science with eLISA: astrophysics and cosmology in the millihertz regime,” arXiv: 1201.3621v1 (2012).

Supplee, J. M.

Svehla, D.

S. Schiller, G. M. Tino, P. Gill, C. Salomon, U. Sterr, E. Peik, A. Nevsky, A. Goerlitz, D. Svehla, G. Ferrari, N. Poli, L. Lusanna, H. Klein, H. Margolis, P. Lemonde, P. Laurent, G. Santarelli, A. Clairon, W. Ertmer, E. Rasel, J. Mueller, L. Iorio, C. Laemmerzahl, H. Dittus, E. Gill, M. Rothacher, F. Flechner, U. Schreiber, V. Flambaum, W.-T. Ni, L. Liu, X. Chen, J. Chen, K. Gao, L. Cacciapuoti, R. Holzwarth, M. P. Hess, and W. Schaefer, “Einstein gravity explorer—a medium-class fundamental physics mission,” Exp. Astron. 23, 573–610 (2009).
[Crossref]

Swann, W. C.

L. C. Sinclair, I. Coddington, W. C. Swann, G. B. Rieker, A. Hati, K. Iwakuni, and N. R. Newbury, “Operation of an optically coherent frequency comb outside the metrology lab,” Opt. Express 22, 6996–7006 (2014).
[Crossref]

F. R. Giorgetta, W. C. Swann, L. C. Sinclair, E. Baumann, I. Coddington, and N. R. Newbury, “Optical two-way time and frequency transfer over free space,” Nat. Photonics 7, 435–439 (2013).
[Crossref]

I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3, 351–356 (2009).
[Crossref]

E. Baumann, F. R. Giorgetta, J. W. Nicholson, W. C. Swann, I. Coddington, and N. R. Newbury, “High-performance, vibration-immune, fiber-laser frequency comb,” Opt. Lett. 34, 638–640 (2009).
[Crossref]

Swierad, D.

K. Bongs, Y. Singh, L. Smith, W. He, O. Kock, D. Swierad, J. Hughes, S. Schiller, S. Alighanbari, S. Origlia, S. Vogt, U. Sterr, Ch. Lisdat, R. Le Targat, J. Lodewyck, D. Holleville, B. Venon, S. Bize, G. P. Barwood, P. Gill, I. R. Hill, Y. B. Ovchinnikov, N. Poli, G. M. Tino, J. Stuhler, and W. Kaenders, SOC2 Team, “Development of a strontium optical lattice clock for the SOC mission on the ISS,” C. R. Physique 16, 553–564 (2015).
[Crossref]

Takamoto, M.

I. Ushijima, M. Takamoto, M. Das, T. Ohkubo, and H. Katori, “Cryogenic optical lattice clocks,” Nat. Photonics 9, 185–189 (2015).
[Crossref]

S. Blatt, A. D. Ludlow, G. K. Campbell, J. W. Thomsen, T. Zelevinsky, M. M. Boyd, J. Ye, X. Baillard, M. Fouche, R. Le Targat, A. Brusch, P. Lemonde, M. Takamoto, F. L. Hong, H. Katori, and V. V. Flambaum, “New limits on coupling of fundamental constants to gravity using 87Sr optical lattice clocks,” Phys. Rev. Lett. 100, 140801 (2008).
[Crossref]

Tamura, K.

H. A. Haus, E. P. Ippen, and K. Tamura, “Additive-pulse modelocking in fiber lasers,” IEEE J. Quantum Electron. 30, 200–208 (1994).
[Crossref]

Taqqu, D.

R. Pohl, A. Antognini, F. Nez, F. D. Amaro, F. Biraben, J. M. R. Cardoso, D. S. Covita, A. Dax, S. Dhawan, L. M. P. Fernandes, A. Giesen, T. Graf, T. W. Hänsch, P. Indelicato, L. Julien, C.-Y. Kao, P. Knowles, E.-O. Le Bigot, Y.-W. Liu, J. A. M. Lopes, L. Ludhova, C. M. B. Monteiro, F. Mulhauser, T. Nebel, P. Rabinowitz, J. M. F. dos Santos, L. A. Schaller, K. Schuhmann, C. Schwob, D. Taqqu, J. F. C. A. Veloso, and F. Kottmann, “The size of the proton,” Nature 466, 213–216 (2010).
[Crossref]

Tasson, J. D.

B. Altschul, Q. G. Bailey, L. Blanchet, K. Bongs, P. Bouyer, L. Cacciapuoti, S. Capozziello, N. Gaaloul, D. Giulini, J. Hartwig, L. Iess, P. Jetzer, A. Landragin, E. Rasel, S. Reynaud, S. Schiller, C. Schubert, F. Sorrentino, U. Sterr, J. D. Tasson, G. M. Tino, P. Tuckey, and P. Wolf, “Quantum tests of the Einstein equivalence principle with the STE-QUEST space mission,” Adv. Space Res. 55, 501–524 (2015).
[Crossref]

Tew, W.

T. Nicholson, S. Campbell, R. Hutson, G. Marti, B. Bloom, R. McNally, W. Zhang, M. Barrett, M. Safronova, G. Strouse, W. Tew, and J. Ye, “Systematic evaluation of an atomic clock at total uncertainty,” Nat. Commun. 6, 6896 (2015).
[Crossref]

Thirolf, P.

M. Lezius, K. Predehl, W. Stöwer, A. Türler, M. Greiter, C. Hoeschen, P. Thirolf, W. Assmann, D. Habs, A. Prokofiev, C. Ekström, T. W. Hänsch, and R. Holzwarth, “Radiation induced absorption in rare earth doped optical fibers,” IEEE Trans. Nucl. Sci. 59, 425–433 (2012).
[Crossref]

Thomin, S.

T. Leveque, B. Faure, F. X. Esnault, C. Delaroche, D. Massonnet, O. Grosjean, F. Buffe, P. Torresi, T. Bomer, A. Pichon, P. Beraud, J. P. Lelay, S. Thomin, and P. Laurent, “PHARAO laser source flight model: design and performances,” Rev. Sci. Instrum. 86, 033104 (2015).
[Crossref]

Thomsen, J. W.

S. Blatt, A. D. Ludlow, G. K. Campbell, J. W. Thomsen, T. Zelevinsky, M. M. Boyd, J. Ye, X. Baillard, M. Fouche, R. Le Targat, A. Brusch, P. Lemonde, M. Takamoto, F. L. Hong, H. Katori, and V. V. Flambaum, “New limits on coupling of fundamental constants to gravity using 87Sr optical lattice clocks,” Phys. Rev. Lett. 100, 140801 (2008).
[Crossref]

Tino, G. M.

B. Altschul, Q. G. Bailey, L. Blanchet, K. Bongs, P. Bouyer, L. Cacciapuoti, S. Capozziello, N. Gaaloul, D. Giulini, J. Hartwig, L. Iess, P. Jetzer, A. Landragin, E. Rasel, S. Reynaud, S. Schiller, C. Schubert, F. Sorrentino, U. Sterr, J. D. Tasson, G. M. Tino, P. Tuckey, and P. Wolf, “Quantum tests of the Einstein equivalence principle with the STE-QUEST space mission,” Adv. Space Res. 55, 501–524 (2015).
[Crossref]

K. Bongs, Y. Singh, L. Smith, W. He, O. Kock, D. Swierad, J. Hughes, S. Schiller, S. Alighanbari, S. Origlia, S. Vogt, U. Sterr, Ch. Lisdat, R. Le Targat, J. Lodewyck, D. Holleville, B. Venon, S. Bize, G. P. Barwood, P. Gill, I. R. Hill, Y. B. Ovchinnikov, N. Poli, G. M. Tino, J. Stuhler, and W. Kaenders, SOC2 Team, “Development of a strontium optical lattice clock for the SOC mission on the ISS,” C. R. Physique 16, 553–564 (2015).
[Crossref]

S. Schiller, G. M. Tino, P. Gill, C. Salomon, U. Sterr, E. Peik, A. Nevsky, A. Goerlitz, D. Svehla, G. Ferrari, N. Poli, L. Lusanna, H. Klein, H. Margolis, P. Lemonde, P. Laurent, G. Santarelli, A. Clairon, W. Ertmer, E. Rasel, J. Mueller, L. Iorio, C. Laemmerzahl, H. Dittus, E. Gill, M. Rothacher, F. Flechner, U. Schreiber, V. Flambaum, W.-T. Ni, L. Liu, X. Chen, J. Chen, K. Gao, L. Cacciapuoti, R. Holzwarth, M. P. Hess, and W. Schaefer, “Einstein gravity explorer—a medium-class fundamental physics mission,” Exp. Astron. 23, 573–610 (2009).
[Crossref]

Tobar, M. E.

M. E. Tobar, P. L. Stanwix, J. J. McFerran, J. Guena, M. Abgrall, S. Bize, A. Clairon, P. Laurent, P. Rosenbusch, D. Rovera, and G. Santarelli, “Testing local position and fundamental constant invariance due to periodic gravitational and boost using long-term comparison of the SYRTE atomic fountains and H-masers,” Phys. Rev. D 87, 122004 (2013).
[Crossref]

Torresi, P.

T. Leveque, B. Faure, F. X. Esnault, C. Delaroche, D. Massonnet, O. Grosjean, F. Buffe, P. Torresi, T. Bomer, A. Pichon, P. Beraud, J. P. Lelay, S. Thomin, and P. Laurent, “PHARAO laser source flight model: design and performances,” Rev. Sci. Instrum. 86, 033104 (2015).
[Crossref]

Tränkle, G.

A. Kohfeldt, C. Kürbis, E. Luvsandamdin, M. Schiemangk, A. Wicht, A. Peters, G. Erbert, and G. Tränkle, “Compact narrow linewidth diode laser modules for precision quantum optics experiments on board of sounding rockets,” Proc. SPIE 9900, 99001G (2016).
[Crossref]

Tuckey, P.

B. Altschul, Q. G. Bailey, L. Blanchet, K. Bongs, P. Bouyer, L. Cacciapuoti, S. Capozziello, N. Gaaloul, D. Giulini, J. Hartwig, L. Iess, P. Jetzer, A. Landragin, E. Rasel, S. Reynaud, S. Schiller, C. Schubert, F. Sorrentino, U. Sterr, J. D. Tasson, G. M. Tino, P. Tuckey, and P. Wolf, “Quantum tests of the Einstein equivalence principle with the STE-QUEST space mission,” Adv. Space Res. 55, 501–524 (2015).
[Crossref]

Türler, A.

M. Lezius, K. Predehl, W. Stöwer, A. Türler, M. Greiter, C. Hoeschen, P. Thirolf, W. Assmann, D. Habs, A. Prokofiev, C. Ekström, T. W. Hänsch, and R. Holzwarth, “Radiation induced absorption in rare earth doped optical fibers,” IEEE Trans. Nucl. Sci. 59, 425–433 (2012).
[Crossref]

Udem, T.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science 321, 1335–1337 (2008).
[Crossref]

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416, 233–237 (2002).
[Crossref]

R. Holzwarth, T. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. St.J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85, 2264–2267 (2000).
[Crossref]

Ushijima, I.

I. Ushijima, M. Takamoto, M. Das, T. Ohkubo, and H. Katori, “Cryogenic optical lattice clocks,” Nat. Photonics 9, 185–189 (2015).
[Crossref]

Vallisneri, M.

P. Amaro-Seoane, S. Aoudia, S. Babak, P. Binétruy, E. Berti, A. Bohé, C. Caprini, M. Colpi, N. J. Cornish, K. Danzmann, J.-F. Dufaux, J. Gair, O. Jennrich, P. Jetzer, A. Klein, R. N. Lang, A. Lobo, T. Littenberg, S. T. McWilliams, G. Nelemans, A. Petiteau, E. K. Porter, B. F. Schutz, A. Sesana, R. Stebbins, T. Sumner, M. Vallisneri, S. Vitale, M. Volonteri, and H. Ward, “Doing science with eLISA: astrophysics and cosmology in the millihertz regime,” arXiv: 1201.3621v1 (2012).

Veloso, J. F. C. A.

R. Pohl, A. Antognini, F. Nez, F. D. Amaro, F. Biraben, J. M. R. Cardoso, D. S. Covita, A. Dax, S. Dhawan, L. M. P. Fernandes, A. Giesen, T. Graf, T. W. Hänsch, P. Indelicato, L. Julien, C.-Y. Kao, P. Knowles, E.-O. Le Bigot, Y.-W. Liu, J. A. M. Lopes, L. Ludhova, C. M. B. Monteiro, F. Mulhauser, T. Nebel, P. Rabinowitz, J. M. F. dos Santos, L. A. Schaller, K. Schuhmann, C. Schwob, D. Taqqu, J. F. C. A. Veloso, and F. Kottmann, “The size of the proton,” Nature 466, 213–216 (2010).
[Crossref]

Venon, B.

K. Bongs, Y. Singh, L. Smith, W. He, O. Kock, D. Swierad, J. Hughes, S. Schiller, S. Alighanbari, S. Origlia, S. Vogt, U. Sterr, Ch. Lisdat, R. Le Targat, J. Lodewyck, D. Holleville, B. Venon, S. Bize, G. P. Barwood, P. Gill, I. R. Hill, Y. B. Ovchinnikov, N. Poli, G. M. Tino, J. Stuhler, and W. Kaenders, SOC2 Team, “Development of a strontium optical lattice clock for the SOC mission on the ISS,” C. R. Physique 16, 553–564 (2015).
[Crossref]

Vitale, S.

P. Amaro-Seoane, S. Aoudia, S. Babak, P. Binétruy, E. Berti, A. Bohé, C. Caprini, M. Colpi, N. J. Cornish, K. Danzmann, J.-F. Dufaux, J. Gair, O. Jennrich, P. Jetzer, A. Klein, R. N. Lang, A. Lobo, T. Littenberg, S. T. McWilliams, G. Nelemans, A. Petiteau, E. K. Porter, B. F. Schutz, A. Sesana, R. Stebbins, T. Sumner, M. Vallisneri, S. Vitale, M. Volonteri, and H. Ward, “Doing science with eLISA: astrophysics and cosmology in the millihertz regime,” arXiv: 1201.3621v1 (2012).

Vogt, S.

K. Bongs, Y. Singh, L. Smith, W. He, O. Kock, D. Swierad, J. Hughes, S. Schiller, S. Alighanbari, S. Origlia, S. Vogt, U. Sterr, Ch. Lisdat, R. Le Targat, J. Lodewyck, D. Holleville, B. Venon, S. Bize, G. P. Barwood, P. Gill, I. R. Hill, Y. B. Ovchinnikov, N. Poli, G. M. Tino, J. Stuhler, and W. Kaenders, SOC2 Team, “Development of a strontium optical lattice clock for the SOC mission on the ISS,” C. R. Physique 16, 553–564 (2015).
[Crossref]

Volonteri, M.

P. Amaro-Seoane, S. Aoudia, S. Babak, P. Binétruy, E. Berti, A. Bohé, C. Caprini, M. Colpi, N. J. Cornish, K. Danzmann, J.-F. Dufaux, J. Gair, O. Jennrich, P. Jetzer, A. Klein, R. N. Lang, A. Lobo, T. Littenberg, S. T. McWilliams, G. Nelemans, A. Petiteau, E. K. Porter, B. F. Schutz, A. Sesana, R. Stebbins, T. Sumner, M. Vallisneri, S. Vitale, M. Volonteri, and H. Ward, “Doing science with eLISA: astrophysics and cosmology in the millihertz regime,” arXiv: 1201.3621v1 (2012).

Wadsworth, W. J.

R. Holzwarth, T. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. St.J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85, 2264–2267 (2000).
[Crossref]

Ward, H.

P. Amaro-Seoane, S. Aoudia, S. Babak, P. Binétruy, E. Berti, A. Bohé, C. Caprini, M. Colpi, N. J. Cornish, K. Danzmann, J.-F. Dufaux, J. Gair, O. Jennrich, P. Jetzer, A. Klein, R. N. Lang, A. Lobo, T. Littenberg, S. T. McWilliams, G. Nelemans, A. Petiteau, E. K. Porter, B. F. Schutz, A. Sesana, R. Stebbins, T. Sumner, M. Vallisneri, S. Vitale, M. Volonteri, and H. Ward, “Doing science with eLISA: astrophysics and cosmology in the millihertz regime,” arXiv: 1201.3621v1 (2012).

Wenzel, H.

O. Brox, F. Bugge, A. Mogilatenko, E. Luvsandamdin, A. Wicht, H. Wenzel, and G. Erbert, “Distributed feedback lasers in the 760 to 810  nm range and epitaxial grating design,” Semicond. Sci. Technol. 29, 095018 (2014).
[Crossref]

Wenzlawski, A.

Whittaker, E. A.

Wicht, A.

A. Kohfeldt, C. Kürbis, E. Luvsandamdin, M. Schiemangk, A. Wicht, A. Peters, G. Erbert, and G. Tränkle, “Compact narrow linewidth diode laser modules for precision quantum optics experiments on board of sounding rockets,” Proc. SPIE 9900, 99001G (2016).
[Crossref]

O. Brox, F. Bugge, A. Mogilatenko, E. Luvsandamdin, A. Wicht, H. Wenzel, and G. Erbert, “Distributed feedback lasers in the 760 to 810  nm range and epitaxial grating design,” Semicond. Sci. Technol. 29, 095018 (2014).
[Crossref]

Wilken, T.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science 321, 1335–1337 (2008).
[Crossref]

Windpassinger, P.

Wirth, M.

C. Kiemle, M. Quatrevalet, G. Ehret, A. Amediek, A. Fix, and M. Wirth, “Sensitivity studies for a space-based methane lidar mission,” Atmos. Meas. Technol. 4, 2195–2211 (2011).
[Crossref]

Wolf, P.

B. Altschul, Q. G. Bailey, L. Blanchet, K. Bongs, P. Bouyer, L. Cacciapuoti, S. Capozziello, N. Gaaloul, D. Giulini, J. Hartwig, L. Iess, P. Jetzer, A. Landragin, E. Rasel, S. Reynaud, S. Schiller, C. Schubert, F. Sorrentino, U. Sterr, J. D. Tasson, G. M. Tino, P. Tuckey, and P. Wolf, “Quantum tests of the Einstein equivalence principle with the STE-QUEST space mission,” Adv. Space Res. 55, 501–524 (2015).
[Crossref]

Ye, J.

T. Nicholson, S. Campbell, R. Hutson, G. Marti, B. Bloom, R. McNally, W. Zhang, M. Barrett, M. Safronova, G. Strouse, W. Tew, and J. Ye, “Systematic evaluation of an atomic clock at total uncertainty,” Nat. Commun. 6, 6896 (2015).
[Crossref]

S. Blatt, A. D. Ludlow, G. K. Campbell, J. W. Thomsen, T. Zelevinsky, M. M. Boyd, J. Ye, X. Baillard, M. Fouche, R. Le Targat, A. Brusch, P. Lemonde, M. Takamoto, F. L. Hong, H. Katori, and V. V. Flambaum, “New limits on coupling of fundamental constants to gravity using 87Sr optical lattice clocks,” Phys. Rev. Lett. 100, 140801 (2008).
[Crossref]

Zelevinsky, T.

S. Blatt, A. D. Ludlow, G. K. Campbell, J. W. Thomsen, T. Zelevinsky, M. M. Boyd, J. Ye, X. Baillard, M. Fouche, R. Le Targat, A. Brusch, P. Lemonde, M. Takamoto, F. L. Hong, H. Katori, and V. V. Flambaum, “New limits on coupling of fundamental constants to gravity using 87Sr optical lattice clocks,” Phys. Rev. Lett. 100, 140801 (2008).
[Crossref]

Zhang, W.

T. Nicholson, S. Campbell, R. Hutson, G. Marti, B. Bloom, R. McNally, W. Zhang, M. Barrett, M. Safronova, G. Strouse, W. Tew, and J. Ye, “Systematic evaluation of an atomic clock at total uncertainty,” Nat. Commun. 6, 6896 (2015).
[Crossref]

Adv. Space Res. (1)

B. Altschul, Q. G. Bailey, L. Blanchet, K. Bongs, P. Bouyer, L. Cacciapuoti, S. Capozziello, N. Gaaloul, D. Giulini, J. Hartwig, L. Iess, P. Jetzer, A. Landragin, E. Rasel, S. Reynaud, S. Schiller, C. Schubert, F. Sorrentino, U. Sterr, J. D. Tasson, G. M. Tino, P. Tuckey, and P. Wolf, “Quantum tests of the Einstein equivalence principle with the STE-QUEST space mission,” Adv. Space Res. 55, 501–524 (2015).
[Crossref]

Appl. Opt. (2)

Atmos. Meas. Technol. (1)

C. Kiemle, M. Quatrevalet, G. Ehret, A. Amediek, A. Fix, and M. Wirth, “Sensitivity studies for a space-based methane lidar mission,” Atmos. Meas. Technol. 4, 2195–2211 (2011).
[Crossref]

C. R. Physique (1)

K. Bongs, Y. Singh, L. Smith, W. He, O. Kock, D. Swierad, J. Hughes, S. Schiller, S. Alighanbari, S. Origlia, S. Vogt, U. Sterr, Ch. Lisdat, R. Le Targat, J. Lodewyck, D. Holleville, B. Venon, S. Bize, G. P. Barwood, P. Gill, I. R. Hill, Y. B. Ovchinnikov, N. Poli, G. M. Tino, J. Stuhler, and W. Kaenders, SOC2 Team, “Development of a strontium optical lattice clock for the SOC mission on the ISS,” C. R. Physique 16, 553–564 (2015).
[Crossref]

Classical Quantum Gravity (1)

K. Danzmann, “LISA—an ESA cornerstone mission for a gravitational wave observatory,” Classical Quantum Gravity 14, 1399–1404 (1997).
[Crossref]

Exp. Astron. (1)

S. Schiller, G. M. Tino, P. Gill, C. Salomon, U. Sterr, E. Peik, A. Nevsky, A. Goerlitz, D. Svehla, G. Ferrari, N. Poli, L. Lusanna, H. Klein, H. Margolis, P. Lemonde, P. Laurent, G. Santarelli, A. Clairon, W. Ertmer, E. Rasel, J. Mueller, L. Iorio, C. Laemmerzahl, H. Dittus, E. Gill, M. Rothacher, F. Flechner, U. Schreiber, V. Flambaum, W.-T. Ni, L. Liu, X. Chen, J. Chen, K. Gao, L. Cacciapuoti, R. Holzwarth, M. P. Hess, and W. Schaefer, “Einstein gravity explorer—a medium-class fundamental physics mission,” Exp. Astron. 23, 573–610 (2009).
[Crossref]

IEEE J. Quantum Electron. (1)

H. A. Haus, E. P. Ippen, and K. Tamura, “Additive-pulse modelocking in fiber lasers,” IEEE J. Quantum Electron. 30, 200–208 (1994).
[Crossref]

IEEE Trans. Nucl. Sci. (1)

M. Lezius, K. Predehl, W. Stöwer, A. Türler, M. Greiter, C. Hoeschen, P. Thirolf, W. Assmann, D. Habs, A. Prokofiev, C. Ekström, T. W. Hänsch, and R. Holzwarth, “Radiation induced absorption in rare earth doped optical fibers,” IEEE Trans. Nucl. Sci. 59, 425–433 (2012).
[Crossref]

J. Phys. (1)

T. Schuldt, K. Döringshoff, A. Milke, J. Sanjuan, M. Gohlke, E. Kovalchuk, N. Gürlebeck, A. Peters, and C. Braxmaier, “High-performance optical frequency references for space,” J. Phys. 723, 012047 (2016).

Metrologia (1)

P. Gill, “Optical frequency standards,” Metrologia 42, S125–S137 (2005).
[Crossref]

Nat. Commun. (1)

T. Nicholson, S. Campbell, R. Hutson, G. Marti, B. Bloom, R. McNally, W. Zhang, M. Barrett, M. Safronova, G. Strouse, W. Tew, and J. Ye, “Systematic evaluation of an atomic clock at total uncertainty,” Nat. Commun. 6, 6896 (2015).
[Crossref]

Nat. Photonics (3)

I. Ushijima, M. Takamoto, M. Das, T. Ohkubo, and H. Katori, “Cryogenic optical lattice clocks,” Nat. Photonics 9, 185–189 (2015).
[Crossref]

F. R. Giorgetta, W. C. Swann, L. C. Sinclair, E. Baumann, I. Coddington, and N. R. Newbury, “Optical two-way time and frequency transfer over free space,” Nat. Photonics 7, 435–439 (2013).
[Crossref]

I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3, 351–356 (2009).
[Crossref]

Nature (3)

S. Chu, “Cold atoms and quantum control,” Nature 416, 206–210 (2002).
[Crossref]

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416, 233–237 (2002).
[Crossref]

R. Pohl, A. Antognini, F. Nez, F. D. Amaro, F. Biraben, J. M. R. Cardoso, D. S. Covita, A. Dax, S. Dhawan, L. M. P. Fernandes, A. Giesen, T. Graf, T. W. Hänsch, P. Indelicato, L. Julien, C.-Y. Kao, P. Knowles, E.-O. Le Bigot, Y.-W. Liu, J. A. M. Lopes, L. Ludhova, C. M. B. Monteiro, F. Mulhauser, T. Nebel, P. Rabinowitz, J. M. F. dos Santos, L. A. Schaller, K. Schuhmann, C. Schwob, D. Taqqu, J. F. C. A. Veloso, and F. Kottmann, “The size of the proton,” Nature 466, 213–216 (2010).
[Crossref]

Opt. Express (2)

N. Kuse, C.-C. Lee, T. Schibli, and M. Fermann, “All polarization-maintaining Er fiber-based optical frequency combs with nonlinear amplifying loop mirror,” Opt. Express 24, 250903 (2016).

L. C. Sinclair, I. Coddington, W. C. Swann, G. B. Rieker, A. Hati, K. Iwakuni, and N. R. Newbury, “Operation of an optically coherent frequency comb outside the metrology lab,” Opt. Express 22, 6996–7006 (2014).
[Crossref]

Opt. Lett. (2)

Phys. Rev. D (2)

M. E. Tobar, P. L. Stanwix, J. J. McFerran, J. Guena, M. Abgrall, S. Bize, A. Clairon, P. Laurent, P. Rosenbusch, D. Rovera, and G. Santarelli, “Testing local position and fundamental constant invariance due to periodic gravitational and boost using long-term comparison of the SYRTE atomic fountains and H-masers,” Phys. Rev. D 87, 122004 (2013).
[Crossref]

D. V. Martynov, LIGO Scientific Collaboration, “Sensitivity of the advanced LIGO detectors at the beginning of gravitational wave astronomy,” Phys. Rev. D 93, 112004 (2016).
[Crossref]

Phys. Rev. Lett. (6)

B. Abbot, LIGO Scientific Collaboration and Virgo Collaboration, “Observation of gravitational waves from a binary black hole merger,” Phys. Rev. Lett. 116, 061102 (2016).
[Crossref]

R. Holzwarth, T. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. St.J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85, 2264–2267 (2000).
[Crossref]

S. Blatt, A. D. Ludlow, G. K. Campbell, J. W. Thomsen, T. Zelevinsky, M. M. Boyd, J. Ye, X. Baillard, M. Fouche, R. Le Targat, A. Brusch, P. Lemonde, M. Takamoto, F. L. Hong, H. Katori, and V. V. Flambaum, “New limits on coupling of fundamental constants to gravity using 87Sr optical lattice clocks,” Phys. Rev. Lett. 100, 140801 (2008).
[Crossref]

R. L. Barger and J. L. Hall, “Pressure shift and broadening of methane line at 3.39  μm studied by laser-saturated molecular absorption,” Phys. Rev. Lett. 22, 4–7 (1969).
[Crossref]

T. W. Hänsch, M. D. Levenson, and A. L. Schawlow, “Complete hyperfine structure of a molecular iodine line,” Phys. Rev. Lett. 26, 946–948 (1971).
[Crossref]

T. M. Fortier, N. Ashby, J. C. Bergquist, M. J. Delaney, S. A. Diddams, T. P. Heavner, L. Hollberg, W. M. Itano, S. R. Jefferts, K. Kim, F. Levi, L. Lorini, W. H. Oskay, T. E. Parker, and J. E. Stalnaker, “Precision atomic spectroscopy for improved limits on variation of the fine structure constant and local position invariance,” Phys. Rev. Lett. 98, 070801 (2007).
[Crossref]

Proc. SPIE (1)

A. Kohfeldt, C. Kürbis, E. Luvsandamdin, M. Schiemangk, A. Wicht, A. Peters, G. Erbert, and G. Tränkle, “Compact narrow linewidth diode laser modules for precision quantum optics experiments on board of sounding rockets,” Proc. SPIE 9900, 99001G (2016).
[Crossref]

Rep. Prog. Phys. (2)

P. Agostini and L. F. DiMauro, “The physics of attosecond light pulses,” Rep. Prog. Phys. 67, 813–855 (2004).
[Crossref]

S. N. Lea, “Limits to time variation of fundamental constants from comparisons of atomic frequency standards,” Rep. Prog. Phys. 70, 1473–1523 (2007).
[Crossref]

Rev. Sci. Instrum. (1)

T. Leveque, B. Faure, F. X. Esnault, C. Delaroche, D. Massonnet, O. Grosjean, F. Buffe, P. Torresi, T. Bomer, A. Pichon, P. Beraud, J. P. Lelay, S. Thomin, and P. Laurent, “PHARAO laser source flight model: design and performances,” Rev. Sci. Instrum. 86, 033104 (2015).
[Crossref]

Sci. Rep. (1)

J. Lee, K. Lee, Y.-S. Jang, H. Jang, S. Han, S.-H. Lee, K.-I. Kang, C.-W. Lim, Y.-J. Kim, and S.-W. Kim, “Testing of a femtosecond pulse laser in outer space,” Sci. Rep. 4, 5134 (2014).

Science (1)

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science 321, 1335–1337 (2008).
[Crossref]

Semicond. Sci. Technol. (1)

O. Brox, F. Bugge, A. Mogilatenko, E. Luvsandamdin, A. Wicht, H. Wenzel, and G. Erbert, “Distributed feedback lasers in the 760 to 810  nm range and epitaxial grating design,” Semicond. Sci. Technol. 29, 095018 (2014).
[Crossref]

Other (4)

W. Hänsel, R. Holzwarth, R. Doubek, and M. Mei, “Laser with non-linear optical loop mirror,” U.S. patent8873601B2 (28Oct.2014).

G. Kramer and W. Klische, “Multi-channel synchronous digital phase recorder,” in Proceedings of the IEEE International Frequency Control Symposium and PDA Exhibition (2001), pp. 144–151.

P. Amaro-Seoane, S. Aoudia, S. Babak, P. Binétruy, E. Berti, A. Bohé, C. Caprini, M. Colpi, N. J. Cornish, K. Danzmann, J.-F. Dufaux, J. Gair, O. Jennrich, P. Jetzer, A. Klein, R. N. Lang, A. Lobo, T. Littenberg, S. T. McWilliams, G. Nelemans, A. Petiteau, E. K. Porter, B. F. Schutz, A. Sesana, R. Stebbins, T. Sumner, M. Vallisneri, S. Vitale, M. Volonteri, and H. Ward, “Doing science with eLISA: astrophysics and cosmology in the millihertz regime,” arXiv: 1201.3621v1 (2012).

W. Hänsel, M. Giunta, M. Fischer, and R. Holzwarth, “Simultaneous direct spectral purity transfer at three optical clock transitions using an all-pm Er-doped fiber frequency comb,” in Proceedings of the 25th International Conference on Atomic Physics (ICAP), Seoul, Korea, 24–29 July2016, p. 97.

Supplementary Material (1)

NameDescription
Supplement 1: PDF (1016 KB)      supplemental document

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. (A) Schematic illustration of the clock comparison experiment performed for 360 s of microgravity during a sounding rocket flight. The frequency comb is phase stabilized to a Cs133-based atomic chip-scale clock providing 10 MHz radio frequency. A laser frequency is stabilized to an optical transition in Rb87 and compared to one comb line. (B) Picture of the experimental module including the frequency comb, the Rb spectroscopy, electronics, and a control computer, (C) picture of the launch of TEXUS 51 exiting the launch tower at ESRANGE, Sweden (23 April 2015, picture provided by Airbus D&S).
Fig. 2.
Fig. 2. (A) Unchanged. (B) Schematics of the frequency comb module shown in (A) with the subunit (Fig. 9) oscillator, amplifier (EDFA), f2f generation unit, and second harmonic generation (SHG) in the beat detection unit (BDU). WDM, wavelength division multiplexer; BS, beam splitter; PBS, polarizing beam splitter; PZT, piezo translator; HNLF, highly nonlinear fiber; FBG, fiber Bragg grating.
Fig. 3.
Fig. 3. (A) Miniature space-qualified 780 nm DFB laser module mounted on an aluminum nitride platform, (B) miniature space-qualified Doppler-free Rb spectroscopy unit, (C) schematics of the comb-based precision spectroscopy generating a countable heterodyne between the Rb-stabilized DFB laser and the nearest comb line.
Fig. 4.
Fig. 4. (A) Plot of the spectroscopy signals obtained with the Rb module. The Rb87 F=2F transition manifold is shown. Blue, DC photodiode signal; red, demodulated signal. The plot shows data obtained on the ground, where the dot marks the locking point of the clock at 384.2279817(4) THz. (B) Comparable dataset from a current scan collected during the microgravity flight.
Fig. 5.
Fig. 5. (A) Time variation of the counted signal of the Rb spectroscopy over a period of 40,000 s on the ground, recorded at a gate time of 1 s. The resulting Allan deviation is plotted in the lower part of the figure. (B) Comparison of the frequency variation during the microgravity flight with respect to changes in the gravitational potential. The measurement sequence is indicated as follows: I, prelaunch data; II, launch; III, in microgravity locked to Rb D2; IV, spectroscopy scan; V, in microgravity locked to Rb D2; VI, re-entry.

Tables (1)

Tables Icon

Table 1. Sounding Rocket Flight Parameters

Metrics