Abstract

Silicon photonics promises to address the challenges for next-generation short-reach optical interconnects. Growing bandwidth demand in hyper-scale data centers and high-performance computing motivates the development of faster and more efficient silicon photonics links. While it is challenging to raise the serial line rate, further scaling of the data rate can be realized by, for example, increasing the number of parallel fibers, increasing the number of wavelengths per fiber, and using multilevel pulse-amplitude modulation (PAM). Among these approaches, PAM has a unique advantage because it does not require extra lasers or a costly overhaul of optical fiber cablings within the existing infrastructure. Here, we demonstrate, to our knowledge, the first fully monolithically integrated silicon photonic four-level PAM (PAM-4) transmitter operating at 56 Gb/s and demonstrate error-free transmission (bit-error rate <1012) up to 50 Gb/s without forward-error correction. The superior PAM-4 waveform is enabled by co-design and co-optimization of the silicon traveling-wave modulators with the monolithic CMOS driver circuits. Our results show that monolithic silicon photonics technology is a promising platform for future ultrahigh data rate optical interconnects.

© 2016 Optical Society of America

1. INTRODUCTION

Traditional optical interconnects, implemented using parallel multimode fiber coupled to vertical cavity surface emitting laser arrays, face modal dispersion-induced limitations in satisfying longer reach (>100m) requirements within massively parallel data center and high-performance computing systems [1,2]. On the other hand, silicon photonics links offer a scalable solution using wavelength division multiplexing, which can be implemented using compact single-mode silicon photonic modulators [3,4] and on-chip Ge photodetectors [5]. As data centers require ever higher data rates, continued multiplexing of wavelengths can be limited by the cost and power consumption of the additional lasers. It is also increasingly challenging to increase the serial line rate of a non-return-to-zero (NRZ) link because of the physical limitation of the electro-optic bandwidth of modulators and photodiodes. An alternative solution is to use multilevel signaling formats such as pulse-amplitude modulation (PAM-m), where multiple digital bits per symbol are encoded into m different signal amplitude levels. In PAM-4 modulation, two binary bits are encoded into four signal levels, which therefore doubles the data rate at the same symbol rate compared to conventional NRZ links.

The PAM-4 modulation format is receiving significant attention because of its relative ease of implementation compared to higher order modulation. PAM-4 modulation has been explored with traditional electrical links [68] and directly modulated vertical cavity surface emitting lasers [9,10]. In the case of directly modulated lasers, the PAM-4 signal applied to the laser is generated by summing two NRZ signals followed by amplification with a linear driver. A similar scheme using an electrically generated PAM-4 signal to drive the silicon photonic modulator has been demonstrated [11]. Recently it has been demonstrated that a PAM-4 optical waveform can be created by using a silicon photonic modulator with two electrode segments [12] and thus equivalently performing the digital-to-analog conversion (DAC) in the optical domain. Using photonic DAC eliminates the power consumption associated with electrical DAC circuits. On the receiver side, the PAM-4 signals can be decoded into two separate NRZ streams using an analog-to-digital converter. Using this approach, a recent demonstration has shown a bit-error rate (BER) of 109 at 25.6 Gbaud using a commercial chip with embedded 2311 bit pseudo-random bit sequence (PRBS) generators and error checkers [13]. The driver circuits for these demonstrations, however, are implemented using discrete components or hybrid chips, and the parasitics from the packaging can severely degrade the RF signal quality and limit further scaling of data rate.

Here, we demonstrate a two-segment traveling-wave Mach–Zehnder modulator (MZM) silicon photonic PAM-4 transmitter having monolithically integrated current-mode CMOS driver circuits. Monolithic integration of the optical modulator side-by-side with CMOS driver circuits minimizes interconnect and packaging parasitics between the electronics and the photonic device, and allows for minimal performance degradation. In addition, monolithic integration facilitates precision electrical connections and helps, for example, to systematically design for and minimize synchronization issues between the differential drive signals into the two arms of the MZM. Furthermore, monolithic integration facilitates wafer level electro-optic testing, as well as minimizes packaging steps, which can reduce the overall cost. The reported PAM-4 modulator is optimized for high-speed performance up to 28 Gbaud (56 Gb/s). We directly measure the BER of the PAM-4 signal using a standard commercial bit-error tester without postprocessing and demonstrate error-free (BER<1012) PAM-4 transmission at 25 Gbaud with 271 bit PRBS without forward-error correction.

2. DEVICE DESIGN AND CHARACTERIZATION

A. Design of the Monolithic Transmitter

The PAM-4 transmitter is designed and fabricated using IBM’s sub-100-nm CMOS integrated nanophotonics technology, CMOS9WG [14]. This platform is targeted toward multichannel short reach O-band (1310 nm) optical interconnects operating at up to 25 Gbaud symbol rates, with the optical components monolithically integrated into the front end CMOS electronics process with a manufacturable low-loss packaging technology [15,16]. A micrograph of the monolithic PAM-4 transmitter is shown in Fig. 1. The same CMOS driver has recently enabled an error-free demonstration of a silicon photonic traveling-wave MZM transmitter up to 32 Gb/s [17]. The MZM’s phase shifter segments have balanced lengths and hence are insensitive to global temperature fluctuations. Each arm of the MZM is divided into two segments, with lengths of 1 and 2 mm, respectively. Both segments are designed to operate in the traveling-wave mode, and make use of PN junction free carrier depletion-mode electro-optic phase shifters. The Most Significant Bit (MSB) data drives the 2 mm segment and the Least Significant Bit (LSB) drives the 1 mm segment, enabling electro-optic DAC. Each traveling-wave electrode is terminated by a network of resistors that can be trimmed by focused-ion beam post-fabrication. In this prototype PAM-4 transmitter, this editable termination network provides flexibility to incrementally alter the termination impedance for better matching to the characteristic impedance of the transmission line, which is crucial for optimizing the PAM-4 waveform (see Supplement 1). A fixed-value non-trimmable termination resistance can be realized by simply modifying the final metal mask, which is straightforward to implement once all transmission line parameters are finalized in a production-ready design.

 figure: Fig. 1.

Fig. 1. Optical micrograph of the monolithically integrated PAM-4 transmitter. Two directional couplers with thermo-optically tunable phase shifters serve as input and output couplers for the Mach–Zehnder modulator (MZM). The layout of the silicon photonic waveguides is overlaid on top of the micrograph. The magnified waveguide sections in the inset show the thermally tunable input couplers and MZM phase control. Yellow squares are drawn around the CMOS drivers.

Download Full Size | PPT Slide | PDF

The drivers for the MSB and LSB data streams are identical and consist of a three-stage preamplifier followed by a nominal open drain driver. The circuit power supply voltage (VDD) is 1.2 V and the modulator termination resistors RTERM are terminated at a 1.5 V termination power supply (AVTT). The top level circuit diagram is shown in Fig. 2(a). The three preamplifier stages are inductively peaked current mode logic (CML) differential amplifiers and scale up 2×per stage to drive the open drain driver. With a 30Ω termination impedance, single-ended output drive swing Vo of the CMOS driver is 1.08 Vpp (2.16 Vpp differentially). Figure 2(b) shows transistor level circuit schematics of the three-stage predriver and the open drain driver for one MZM segment. As shown in the dashed box, the current bias circuit creates a bias current proportional to 1/R, so that the voltage drop across all resistors is independent of process variations in sheet resistance. This allows us to maintain a constant voltage swing for CML stages. The current is set by the reference voltage (VREF), which establishes the voltage drop across the reference resistor R. The nominal open drain driver’s output amplitude is designed to be adjustable using a three-bit digital control (TX_reg) to enable a PAM-4 waveform with equal spacing between each symbolic level. In addition, the VREF can be used to finely adjust the output swing. Operating at 25 Gbaud, VREF of 0.5 V and maximum TX_reg setting of 7, the VDD supply draws 66 mA current and AVTT draws 36 mA, which amounts to a power consumption of 135 mW. Accordingly, the power consumption is 5.4 pJ/bit at 50 Gb/s and 4.8 pJ/bit at 56 Gb/s.

 figure: Fig. 2.

Fig. 2. (a) Top-level circuit diagram for the CMOS transmitter driver, which consists of a three-stage inductively peaked current mode logic differential preamplifier followed by a nominal open drain driver. The circuit power supply voltage (VDD) is 1.2 V and the modulator termination resistors RTERM are terminated at a 1.5 V termination power supply (AVTT). The open drain driver’s output amplitude is adjustable using a three-bit digital register (TX_reg) to offset the MZM’s nonlinear transfer function. (b) Transistor-level circuit schematics of the three-stage predriver and the open drain driver for one MZM segment. The current bias of the driver is set by a reference voltage (VREF), as shown in the dashed box. With a 30Ω termination impedance, single-ended output drive swing Vo of the CMOS driver is 1.08 Vpp (2.16 Vpp differentially).

Download Full Size | PPT Slide | PDF

The traveling-wave MZM is designed for single-mode operation at 1310 nm wavelength and employs PN junction phase shifters embedded within a 145 nm thick silicon-on-insulator (SOI) waveguide layer. The buried oxide beneath the silicon waveguides is 2 μm thick. The phase shifter is based on an interleaved PN junction design similar to that described in [18] with 300 nm interdigitated feature size and a nominal peak p and n doping of 3.8×1017cm3. The phase shifter has a measured VπL of 1.47V·cm at a PN junction reverse bias of 0.5V. The CMOS driver differential output is coupled directly into the MZM. Characteristic impedance of the transmission line is extracted from an RF S-parameters test site, which has a design identical to the transmission lines in the MZM in Fig. 1, but is equipped with input/output RF probe pads. We measure the characteristic impedance of the loaded transmission line to be approximately 30Ω across the RF frequency range of interest.

The MZM has nominal 3 dB directional couplers at both the input and output, each designed using smaller tunable Mach–Zehnder interferometers (MZIs). Thermo-optic phase shifters, which can be used to offset fabrication drift, are embedded within these directional couplers. In this experiment, the input thermo-optic phase shifter draws 6.5 mA at 1.72 V bias and the output thermo-optic phase shifter draws 1.5 mA at 0.31 V. Accordingly, the total power consumption of the input and output thermo-optic phase shifters is 11.6 mW. This power consumption is not intrinsic to device operation since, in the newer generation of devices, we have replaced the thermally tunable directional couplers with wavelength-independent 3 dB couplers [19], which maintain 3 dB splitting ratio over a broad wavelength spectrum without active tuning. An additional thermo-optic phase shifter is used to bias the MZM to the quadrature point of its transfer function. Wafer-level testing results separately show that the propagation loss of the modulator’s PN junction phase shifter waveguide is 10.2 dB/cm.

B. High-speed Transmission

The electro-optic response of the two modulator segments is characterized using a breakout PAM-4 modulator site without the CMOS drivers, using a 25 GHz lightwave component analyzer (LCA). The electro-optic measurement has been calibrated up to the tip of the high-speed RF probes. The modulator is adjusted to be at quadrature, and a 100mVpp sinusoidal small signal was applied to the long and short sections of the PAM-4 modulator. The transmitted signal at the output of the photoreceiver inside the LCA is reported in units of electrical power. As shown in Fig. 3, the 3 dB electro-optic bandwidth of the long MZM segment is measured to be 21 GHz. The 3 dB bandwidth for the short MZM segment is greater than 25 GHz, which is the bandwidth limit of the analyzer. The long segment has a lower bandwidth because of the larger frequency-dependent RF loss associated with the longer loaded transmission line. Following the rule of thumb that the transmitter’s bandwidth needs to be at least 0.75 times the baud rate [20], the 21 GHz bandwidth is sufficient to support 28 Gbaud PAM-4 operation. The termination resistors have been trimmed to be 30Ω to match closely with the characteristic impedance of the MZM transmission line, to minimize RF signal reflections as a possible source of signal quality impairment.

 figure: Fig. 3.

Fig. 3. Normalized electro-optic response of the two Mach–Zehnder segments measured on a breakout MZM site without the CMOS drivers. The measurement is taken with a PN junction reverse bias of 0.8V, which is the DC offset supplied by the CMOS drivers. The long segment has a 3 dB electro-optic bandwidth of 21 GHz. The short segment’s 3 dB bandwidth is beyond the maximum frequency limit of our lightwave component analyzer.

Download Full Size | PPT Slide | PDF

Experimentally, to generate PAM-4 optical waveforms, the MSB and LSB data are drawn from the outputs of two NRZ PRBS pattern generators (Anritsu MP1800A and Centellax SSB16000J), which are triggered by the same external clock. A 1310 nm distributed feedback diode laser with 14 dBm optical output power is coupled onto the chip via a lensed fiber and an on-chip spot-size converter. The typical fiber-to-chip coupling loss per facet is 2.5 dB. An off-chip polarization controller is used to change the polarization of the launched light to transverse electric (TE). Two multicontact RF probes are used to provide high-speed signals and power to the CMOS circuits. The bit sequences for MSB and LSB data are skewed with respect to each other to reach all possible transitions. High-speed optical eye diagrams at data rates of 25 and 28 Gbaud, shown in Fig. 4, are measured using a 30 GHz bandwidth digital sampling oscilloscope (Agilent DCA-86100D), with both MSB and LSB being driven with 2311 PRBS patterns. Here the extinction ratio (ER) for the PAM-4 waveform is defined as the ratio of the average power level of data 11 to the average power level 00, ER=10log10(11/00). The ERs are approximately 6.0 dB at both symbol rates. The eyes show clear openings between all amplitude levels. The measured optical insertion loss of the PAM-4 modulator is 5.0 dB with the CMOS-supplied 0.8V reverse bias applied to the PN junction phase shifters under PAM-4 operation.

 figure: Fig. 4.

Fig. 4. Experimental PAM-4 waveforms at (a) 25 Gbaud (50 Gb/s) and (b) 28 Gbaud (56 Gb/s) measured with 2311 bit PRBS. The ERs between average power level 11 and 00 are measured to be approximately 6.0 dB for both data rates.

Download Full Size | PPT Slide | PDF

C. Bit-error Rate Characterization

While PAM-4 transmission doubles the data rate, it requires more optical power to achieve the same eye openings (or signal-to-noise ratio) when compared with the NRZ transmission format. A figure of merit to quantify the transmitter performance is the optical modulation amplitude (OMA) needed to obtain error-free operation, which is usually defined as a BER of less than 1012. For the NRZ waveform, the OMA is defined as the difference between the average power level 1 and 0. For a PAM-4 waveform, we focus on the outer OMA (OMAouter), which is defined as the difference between the average power level 11 and 00. The three inner OMA values are given by the difference of high and low power for each eye: OMA01=P01P00, OMA12=P10P01, and OMA23=P11P10. The inner OMA, which has the greatest effect on the BER, is defined as the minimum of OMA01, OMA12, and OMA23, i.e., OMAinner=min(OMA01,OMA12,OMA23). If the three eye openings have perfectly equal distribution, OMAinner=1/3·OMAouter, i.e., the OMAouter of the PAM-4 waveform will need to be 3 times the OMAouter of a NRZ waveform at the same symbol rate to yield the same BER. In other words, the theoretical power penalty of a PAM-4 waveform compared to a NRZ waveform at the same symbol rate is 10log103=4.8dB.

To quantify the performance of our PAM-4 transmitter against this theoretical prediction, BER measurements are performed on the PAM-4 transmitter and a reference single-segment Mach–Zehnder NRZ monolithic silicon photonic transmitter with 2.8 mm long phase shifters per arm [17]. We first compare the OMA needed to achieve error-free signaling of the PAM-4 and NRZ transmitters at a relatively lower data rate of 12.5 Gbaud. The BERs of both transmitters are measured using a 40 Gb/s optical receiver (Discovery Semiconductor R411) and a BER tester (Anritsu MP1800A). The optical power into the receiver is kept low to ensure linear operation and, thus, an accurate characterization of the multilevel PAM-4 eye diagrams. The measurement of the NRZ BER is straightforward. To measure the PAM-4 BER, however, we treat the three eye openings of the PAM-4 waveforms as three separate NRZ waveforms and check the BER of the upper (BERupper), middle (BERmid), and lower eyes (BERlow) against programmed bit patterns: MSBLSB (Boolean AND between MSB and LSB), MSB, MSBLSB (Boolean OR between MSB and LSB), respectively. The aggregate BER of the PAM-4 waveform is then calculated as BER=1/2·BERupper+BERmid+1/2·BERlow. The BERs of the upper and lower eye need to be divided by two because the two bits need to be equally distributed between the upper and lower eyes for error checking, assuming “1” and “0” bits occur with equal probability in the MSB and LSB streams [9]. Because the length of the programmable bit pattern is limited by the memory size of the error detector used, we focus on 271 PRBS patterns in our experiments. The input MSB and LSB bit streams are phase skewed by half of a word length to ensure full decorrelation.

As shown in Fig. 5(a), the OMAs needed to achieve error-free operation (BER<1012) for the 12.5 Gbaud NRZ waveform and the PAM-4 waveform are 15.3 and 9.8dBm, respectively. In other words, the PAM-4 transmitter shows a 5.5 dB power penalty compared to the NRZ transmitter running at the same symbol rate to achieve equivalent BER. This penalty is thus 0.7 dB greater than the theoretically predicted 4.8 dB power penalty. Part of the excess penalty likely originates from unequal eye openings, because the BER is determined by the smallest eye openings of the three eyes (OMAinner). Although the amplitude control of the driver circuit can precisely control the eye spacing, the adjustment is currently done manually, which makes it subject to inaccuracy and drift. In Fig. 5(a), the eye with the smallest opening is the upper one, which is measured to have an OMA of 93 percent of 1/3·OMAouter. As a result, a linearity penalty of 0.3 dB can be estimated. An output waveform tap and linearity feedback circuit can be implemented in the future to minimize the linearity penalty. The residual 0.4 dB excess penalty can be attributed to PAM-4 implementation penalties, as it has been shown that multilevel formats are more susceptible to implementation imperfections including intersymbol interference due to impedance mismatching, phase skew between MSB and LSB data streams, timing jitter, and so forth [9,21].

 figure: Fig. 5.

Fig. 5. (a) BER (log10 BER plotted in logarithmic scale) as a function of OMAouter for PAM-4 and NRZ transmitters operating at 12.5 Gbaud with 271 bit PRBS patterns. The PAM-4 transmitter shows a 5.5 dB power penalty at BER=1012 relative to the NRZ transmitter. The PAM-4 transmitter tested with 2231 bit PRBS shows an additional 0.3 dB power penalty. The insets show the 12.5 Gbaud PAM-4 and NRZ eye diagrams, which were recorded at a BER<1012. The lines are linear fits to the raw BER data (diamond and circle symbols). (b) BER as a function of OMA for PAM-4 and NRZ transmitters operating at 25 Gbaud with 271 bit PRBS patterns. The PAM-4 transmitter shows a 6.0 dB power penalty relative to the NRZ transmitter at BER=1012. The insets show the 25 Gbaud PAM-4 and NRZ eye diagrams, which were recorded at a BER<1012.

Download Full Size | PPT Slide | PDF

Longer PRBS patterns have more low-frequency spectral content and thus are interesting for characterizing the wideband response of the PAM-4 transmitter. As a result, we measure the BER of the PAM-4 transmitter using a 2231 bit long PRBS pattern, which is the maximum programmable pattern length that can be stored within the 8 Mbit memory of the error detector. A modest additional power penalty of 0.3 dB is measured using 2231 PRBS compared with 271 PRBS.

The BERs for the PAM-4 and NRZ transmitters, both running at 25 Gbaud, are measured using a similar high-speed electro-optic setup. However, achieving error-free operation at 25 Gbaud requires much higher optical power than is needed at 12.5 Gbaud. To minimize the nonlinearity at the photoreceiver due to high input optical power, we keep the input optical power at the photoreceiver low while adding a low-noise 40 Gb/s RF amplifier (Picosecond Pulse Labs 5882) after the photoreceiver to boost the RF signal into the error detector. This effectively improves the input sensitivity of the error detector while minimizing the receiver nonlinearity. As shown in Fig. 5(b), the PAM-4 transmitter operates error free (BER<1012) with an OMA greater than 5.8dBm, with a 271 bit PRBS pattern. This is, to the best of our knowledge, the first demonstration of error-free operation of a silicon photonic PAM-4 transmitter at a data rate of 25 Gbaud. We also characterize the reference monolithic silicon photonic NRZ transmitter at 25 Gbaud, and obtain an error-free OMA sensitivity of 11.8dBm. In other words, the PAM-4 transmitter exhibits a 6.0 dB power penalty relative to the NRZ transmitter at an equivalent BER, with both operating at 25 Gbaud. The excess power penalty compared to theory is 1.2 dB, of which 0.4 dB can be attributed to linearity penalty estimated from the smallest PAM-4 eye opening (middle eye) in Fig. 5(b). The remaining 0.8 dB penalty, which is 0.4 dB higher than that at 12.5 Gbaud, could be due to the increased impact of implementation imperfections such as impedance mismatching at 25 Gbaud.

3. CONCLUSION

In conclusion, we have demonstrated a monolithic silicon photonic PAM-4 transmitter in IBM CMOS9WG technology, operating up to 56 Gb/s (28 Gbaud). We directly measure the BER of the PAM-4 transmitter and compare the relative power penalty with a reference silicon photonic NRZ transmitter. The optimized traveling-wave modulators and monolithic integration of the CMOS drivers enable error-free operation (BER<1012) without forward-error correction at 50 Gb/s with an extinction ratio of 6.0 dB.

For a PAM-4 waveform, the optimization of phase alignment between MSB and LSB is important to maximize the horizontal eye opening. In the current experiment, the phase alignment is adjusted using the phase setting in the pattern generators. In future implementations, we can take advantage of the fully monolithic platform to enable a complete on-chip signal distribution network, including both the modulator driver and tunable RF delay line on-chip [22]. To optimize the vertical eye opening, the monolithic CMOS drivers providing tunable output levels could be used with on-chip germanium power taps and integrated feedback circuitry to actively compensate for drift of the PAM-4 waveform linearity. In addition, the performance of the PAM-4 modulator can be further improved by using phase shifter designs with maximized capacitance per unit volume. For example, interleaved junctions with highly scaled pitch have demonstrated smaller VπL and smaller insertion loss [23,24]. On a system level, the PAM format can be combined with other available techniques for scaling aggregate bandwidth on the silicon photonics platform, including the use of parallel single-mode fibers and wavelength division multiplexing, to enable ultrahigh data rate optical interconnects.

Acknowledgment

The authors acknowledge Marwan Khater, Andreas Stricker, Chris Breslin, Jessie Rosenberg, Edward Kiewra, Tymon Barwicz, Yves Martin, John Ellis−Monaghan, Frederick Anderson, Scott Chilstedt, Michael Nicewicz, Carol Reinholm, Yan Ding, Kate McLean, Michel Paradis, Crystal Hedges, Bruce Porth, Chip Whiting, Mounir Meghelli, Natalie Feilchenfeld, and the rest of the IBM Research and IBM Microelectronics Division (currently GlobalFoundries) teams for their important contributions to this work and the development of CMOS9WG Silicon Photonics technology.

 

See Supplement 1 for supporting content.

REFERENCES

1. I. Young, E. Mohammed, J. T. Liao, A. M. Kern, S. Palermo, B. Block, M. R. Reshotko, and P. L. Chang, “Optical I/O technology for tera-scale computing,” IEEE J. Solid-State Circuits 45, 235–248 (2010). [CrossRef]  

2. D. A. Miller, “Rationale and challenges for optical interconnects to electronic chips,” Proc. IEEE 88, 728–749 (2000). [CrossRef]  

3. G. T. Reed, G. Mashanovich, F. Gardes, and D. Thomson, “Silicon optical modulators,” Nat. Photonics 4, 518–526 (2010). [CrossRef]  

4. Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435, 325–327 (2005).

5. J. Michel, J. Liu, and L. C. Kimerling, “High-performance Ge-on-Si photodetectors,” Nat. Photonics 4, 527–534 (2010). [CrossRef]  

6. A. Nazemi, H. Kangmin, B. Catli, C. Delong, U. Singh, T. He, H. Zhi, Z. Bo, A. Momtaz, and C. Jun, “A 36 Gb/s PAM4 transmitter using an 8b 18 GS/s DAC in 28 nm CMOS,” in IEEE International Conference on Solid-State Circuits (ISSCC) (IEEE, 2015), pp. 1–3.

7. C. Menolfi, T. Toifl, R. Reutemann, M. Ruegg, P. Buchmann, M. Kossel, T. Morf, and M. Schmatz, “A 25 Gb/s PAM4 transmitter in 90 nm CMOS SOI,” in IEEE International Conference on Solid-State Circuits (ISSCC) (IEEE, 2005), pp. 72–73.

8. A. Amirkhany, A. Abbasfar, J. Savoj, M. Jeeradit, B. Garlepp, R. T. Kollipara, V. Stojanovic, and M. Horowitz, “A 24 Gb/s software programmable analog multi-tone transmitter,” IEEE J. Solid-State Circuits 43, 999–1009 (2008). [CrossRef]  

9. K. Szczerba, P. Westbergh, E. Agrell, M. Karlsson, P. Andrekson, and A. Larsson, “Comparison of intersymbol interference power penalties for OOK and 4-PAM in short-range optical links,” J. Lightwave Technol. 31, 3525–3534 (2013). [CrossRef]  

10. R. Rodes, M. Mueller, B. Li, J. Estaran, J. B. Jensen, T. Gruendl, M. Ortsiefer, C. Neumeyr, J. Rosskopf, and K. J. Larsen, “High-speed 1550 nm VCSEL data transmission link employing 25 Gbd 4-PAM modulation and hard decision forward error correction,” J. Lightwave Technol. 31, 689–695 (2013). [CrossRef]  

11. M. Chagnon, M. Osman, M. Poulin, C. Latrasse, J.-F. Gagné, Y. Painchaud, C. Paquet, S. Lessard, and D. Plant, “Experimental study of 112 Gb/s short reach transmission employing PAM formats and SiP intensity modulator at 1.3 μm,” Opt. Express 22, 21018–21036 (2014). [CrossRef]  

12. X. Wu, B. Dama, P. Gothoskar, P. Metz, K. Shastri, S. Sunder, J. Van der Spiegel, Y. Wang, M. Webster, and W. Wilson, “A 20 Gb/s NRZ/PAM-4 1 V transmitter in 40 nm CMOS driving a Si-photonic modulator in 0.13 μm CMOS,” in IEEE International Conference on Solid-State Circuits Digest of Technical Papers (ISSCC) (IEEE, 2013), pp. 128–129.

13. M. Traverso, M. Mazzini, M. Webster, S. Anderson, P.-C. Sun, D. Siadat, D. Conti, A. Cervasio, S. Pfnuer, and J. Stayt, “25 Gbaud PAM-4 error free transmission over both single mode fiber and multimode fiber in a QSFP form factor based on silicon photonics,” in Optical Fiber Communication Conference (Optical Society of America, 2015), paper Th5B.3.

14. N. B. Feilchenfeld, F. G. Anderson, T. Barwicz, S. Chilstedt, Y. Ding, J. Ellis-Monaghan, D. M. Gill, C. Hedges, J. Hofrichter, F. Horst, M. Khater, E. Kiewra, R. Leidy, Y. Martin, K. McLean, M. Nicewicz, J. S. Orcutt, B. Porth, J. Proesel, C. Reinholm, J. C. Rosenberg, W. D. Sacher, A. D. Stricker, C. Whiting, C. Xiong, A. Agrawal, F. Baker, C. W. Baks, B. Cucci, D. Dang, T. Doan, F. Doany, S. Engelmann, M. Gordon, E. Joseph, J. Maling, S. Shank, X. Tian, C. Willets, J. Ferrario, M. Meghelli, F. Libsch, B. Offrein, W. M. J. Green, and W. Haensch, “An integrated silicon photonics technology for O-band datacom,” in IEEE International Electron Devices Meeting (IEDM) (IEEE, 2015), p. 25.7.

15. T. Barwicz, Y. Taira, T. W. Lichoulas, N. Boyer, H. Numata, Y. Martin, J.-W. Nah, S. Takenobu, A. Janta-Polczynski, and E. L. Kimbrell, “Enabling large-scale deployment of photonics through cost-efficient and scalable packaging,” in IEEE 12th International Conference on Group IV Photonics (GFP) (IEEE, 2015), pp. 155–156.

16. T. Barwicz and Y. Taira, “Low-cost interfacing of fibers to nanophotonic waveguides: design for fabrication and assembly tolerances,” IEEE Photon. J. 6, 1–18 (2014). [CrossRef]  

17. D. M. Gill, C. Xiong, J. E. Proesel, J. C. Rosenberg, J. Orcutt, M. Khater, J. Ellis-Monaghan, A. Stricker, E. Kiewra, Y. Martin, Y. Vlasov, W. Haensch, and W. M. J. Green, “Demonstration of error-free 32-Gb/s operation from monolithic CMOS nanophotonic transmitters,” IEEE Photon. Technol. Lett. 28, 1410–1413 (2016). [CrossRef]  

18. J. Rosenberg, W. Green, S. Assefa, D. Gill, T. Barwicz, M. Yang, S. Shank, and Y. Vlasov, “A 25 Gbps silicon microring modulator based on an interleaved junction,” Opt. Express 20, 26411–26423 (2012). [CrossRef]  

19. K. Jinguji, N. Takato, A. Sugita, and M. Kawachi, “Mach-Zehnder interferometer type optical waveguide coupler with wavelength-flattened coupling ratio,” Electron. Lett. 26, 1326–1327 (1990). [CrossRef]  

20. A. M. T. Pedretti, “Monolithic separate absorption and modulation Mach-Zehnder wavelength converters,” Ph.D. dissertation (University of California, 2007).

21. S. Kumar, Impact of Nonlinearities on Fiber Optic Communications, Vol. 7 of Optical and Fiber Communications Reports (Springer, 2011).

22. P. Rito, I. G. López, D. Petousi, L. Zimmermann, M. Kroh, S. Lischke, D. Knoll, D. Kissinger, and A. C. Ulusoy, “A monolithically integrated segmented driver and modulator in 0.25 μm SiGe:C BiCMOS with 13 dB extinction ratio at 28 Gb/s,” in IEEE MTT-S International Microwave Symposium (IMS) (IEEE, 2016), pp. 1–4.

23. I. Goykhman, B. Desiatov, S. Ben-Ezra, J. Shappir, and U. Levy, “Optimization of efficiency-loss figure of merit in carrier-depletion silicon Mach-Zehnder optical modulator,” Opt. Express 21, 19518–19529 (2013). [CrossRef]  

24. E. Timurdogan, C. M. Sorace-Agaskar, E. S. Hosseini, and M. R. Watts, “An interior-ridge silicon microring modulator,” J. Lightwave Technol. 31, 3907–3914 (2013). [CrossRef]  

References

  • View by:

  1. I. Young, E. Mohammed, J. T. Liao, A. M. Kern, S. Palermo, B. Block, M. R. Reshotko, and P. L. Chang, “Optical I/O technology for tera-scale computing,” IEEE J. Solid-State Circuits 45, 235–248 (2010).
    [Crossref]
  2. D. A. Miller, “Rationale and challenges for optical interconnects to electronic chips,” Proc. IEEE 88, 728–749 (2000).
    [Crossref]
  3. G. T. Reed, G. Mashanovich, F. Gardes, and D. Thomson, “Silicon optical modulators,” Nat. Photonics 4, 518–526 (2010).
    [Crossref]
  4. Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435, 325–327 (2005).
  5. J. Michel, J. Liu, and L. C. Kimerling, “High-performance Ge-on-Si photodetectors,” Nat. Photonics 4, 527–534 (2010).
    [Crossref]
  6. A. Nazemi, H. Kangmin, B. Catli, C. Delong, U. Singh, T. He, H. Zhi, Z. Bo, A. Momtaz, and C. Jun, “A 36 Gb/s PAM4 transmitter using an 8b 18 GS/s DAC in 28 nm CMOS,” in IEEE International Conference on Solid-State Circuits (ISSCC) (IEEE, 2015), pp. 1–3.
  7. C. Menolfi, T. Toifl, R. Reutemann, M. Ruegg, P. Buchmann, M. Kossel, T. Morf, and M. Schmatz, “A 25 Gb/s PAM4 transmitter in 90 nm CMOS SOI,” in IEEE International Conference on Solid-State Circuits (ISSCC) (IEEE, 2005), pp. 72–73.
  8. A. Amirkhany, A. Abbasfar, J. Savoj, M. Jeeradit, B. Garlepp, R. T. Kollipara, V. Stojanovic, and M. Horowitz, “A 24 Gb/s software programmable analog multi-tone transmitter,” IEEE J. Solid-State Circuits 43, 999–1009 (2008).
    [Crossref]
  9. K. Szczerba, P. Westbergh, E. Agrell, M. Karlsson, P. Andrekson, and A. Larsson, “Comparison of intersymbol interference power penalties for OOK and 4-PAM in short-range optical links,” J. Lightwave Technol. 31, 3525–3534 (2013).
    [Crossref]
  10. R. Rodes, M. Mueller, B. Li, J. Estaran, J. B. Jensen, T. Gruendl, M. Ortsiefer, C. Neumeyr, J. Rosskopf, and K. J. Larsen, “High-speed 1550 nm VCSEL data transmission link employing 25 Gbd 4-PAM modulation and hard decision forward error correction,” J. Lightwave Technol. 31, 689–695 (2013).
    [Crossref]
  11. M. Chagnon, M. Osman, M. Poulin, C. Latrasse, J.-F. Gagné, Y. Painchaud, C. Paquet, S. Lessard, and D. Plant, “Experimental study of 112 Gb/s short reach transmission employing PAM formats and SiP intensity modulator at 1.3 μm,” Opt. Express 22, 21018–21036 (2014).
    [Crossref]
  12. X. Wu, B. Dama, P. Gothoskar, P. Metz, K. Shastri, S. Sunder, J. Van der Spiegel, Y. Wang, M. Webster, and W. Wilson, “A 20 Gb/s NRZ/PAM-4 1 V transmitter in 40 nm CMOS driving a Si-photonic modulator in 0.13 μm CMOS,” in IEEE International Conference on Solid-State Circuits Digest of Technical Papers (ISSCC) (IEEE, 2013), pp. 128–129.
  13. M. Traverso, M. Mazzini, M. Webster, S. Anderson, P.-C. Sun, D. Siadat, D. Conti, A. Cervasio, S. Pfnuer, and J. Stayt, “25 Gbaud PAM-4 error free transmission over both single mode fiber and multimode fiber in a QSFP form factor based on silicon photonics,” in Optical Fiber Communication Conference (Optical Society of America, 2015), paper Th5B.3.
  14. N. B. Feilchenfeld, F. G. Anderson, T. Barwicz, S. Chilstedt, Y. Ding, J. Ellis-Monaghan, D. M. Gill, C. Hedges, J. Hofrichter, F. Horst, M. Khater, E. Kiewra, R. Leidy, Y. Martin, K. McLean, M. Nicewicz, J. S. Orcutt, B. Porth, J. Proesel, C. Reinholm, J. C. Rosenberg, W. D. Sacher, A. D. Stricker, C. Whiting, C. Xiong, A. Agrawal, F. Baker, C. W. Baks, B. Cucci, D. Dang, T. Doan, F. Doany, S. Engelmann, M. Gordon, E. Joseph, J. Maling, S. Shank, X. Tian, C. Willets, J. Ferrario, M. Meghelli, F. Libsch, B. Offrein, W. M. J. Green, and W. Haensch, “An integrated silicon photonics technology for O-band datacom,” in IEEE International Electron Devices Meeting (IEDM) (IEEE, 2015), p. 25.7.
  15. T. Barwicz, Y. Taira, T. W. Lichoulas, N. Boyer, H. Numata, Y. Martin, J.-W. Nah, S. Takenobu, A. Janta-Polczynski, and E. L. Kimbrell, “Enabling large-scale deployment of photonics through cost-efficient and scalable packaging,” in IEEE 12th International Conference on Group IV Photonics (GFP) (IEEE, 2015), pp. 155–156.
  16. T. Barwicz and Y. Taira, “Low-cost interfacing of fibers to nanophotonic waveguides: design for fabrication and assembly tolerances,” IEEE Photon. J. 6, 1–18 (2014).
    [Crossref]
  17. D. M. Gill, C. Xiong, J. E. Proesel, J. C. Rosenberg, J. Orcutt, M. Khater, J. Ellis-Monaghan, A. Stricker, E. Kiewra, Y. Martin, Y. Vlasov, W. Haensch, and W. M. J. Green, “Demonstration of error-free 32-Gb/s operation from monolithic CMOS nanophotonic transmitters,” IEEE Photon. Technol. Lett. 28, 1410–1413 (2016).
    [Crossref]
  18. J. Rosenberg, W. Green, S. Assefa, D. Gill, T. Barwicz, M. Yang, S. Shank, and Y. Vlasov, “A 25 Gbps silicon microring modulator based on an interleaved junction,” Opt. Express 20, 26411–26423 (2012).
    [Crossref]
  19. K. Jinguji, N. Takato, A. Sugita, and M. Kawachi, “Mach-Zehnder interferometer type optical waveguide coupler with wavelength-flattened coupling ratio,” Electron. Lett. 26, 1326–1327 (1990).
    [Crossref]
  20. A. M. T. Pedretti, “Monolithic separate absorption and modulation Mach-Zehnder wavelength converters,” Ph.D. dissertation (University of California, 2007).
  21. S. Kumar, Impact of Nonlinearities on Fiber Optic Communications, Vol. 7 of Optical and Fiber Communications Reports (Springer, 2011).
  22. P. Rito, I. G. López, D. Petousi, L. Zimmermann, M. Kroh, S. Lischke, D. Knoll, D. Kissinger, and A. C. Ulusoy, “A monolithically integrated segmented driver and modulator in 0.25 μm SiGe:C BiCMOS with 13 dB extinction ratio at 28 Gb/s,” in IEEE MTT-S International Microwave Symposium (IMS) (IEEE, 2016), pp. 1–4.
  23. I. Goykhman, B. Desiatov, S. Ben-Ezra, J. Shappir, and U. Levy, “Optimization of efficiency-loss figure of merit in carrier-depletion silicon Mach-Zehnder optical modulator,” Opt. Express 21, 19518–19529 (2013).
    [Crossref]
  24. E. Timurdogan, C. M. Sorace-Agaskar, E. S. Hosseini, and M. R. Watts, “An interior-ridge silicon microring modulator,” J. Lightwave Technol. 31, 3907–3914 (2013).
    [Crossref]

2016 (1)

D. M. Gill, C. Xiong, J. E. Proesel, J. C. Rosenberg, J. Orcutt, M. Khater, J. Ellis-Monaghan, A. Stricker, E. Kiewra, Y. Martin, Y. Vlasov, W. Haensch, and W. M. J. Green, “Demonstration of error-free 32-Gb/s operation from monolithic CMOS nanophotonic transmitters,” IEEE Photon. Technol. Lett. 28, 1410–1413 (2016).
[Crossref]

2014 (2)

2013 (4)

2012 (1)

2010 (3)

J. Michel, J. Liu, and L. C. Kimerling, “High-performance Ge-on-Si photodetectors,” Nat. Photonics 4, 527–534 (2010).
[Crossref]

I. Young, E. Mohammed, J. T. Liao, A. M. Kern, S. Palermo, B. Block, M. R. Reshotko, and P. L. Chang, “Optical I/O technology for tera-scale computing,” IEEE J. Solid-State Circuits 45, 235–248 (2010).
[Crossref]

G. T. Reed, G. Mashanovich, F. Gardes, and D. Thomson, “Silicon optical modulators,” Nat. Photonics 4, 518–526 (2010).
[Crossref]

2008 (1)

A. Amirkhany, A. Abbasfar, J. Savoj, M. Jeeradit, B. Garlepp, R. T. Kollipara, V. Stojanovic, and M. Horowitz, “A 24 Gb/s software programmable analog multi-tone transmitter,” IEEE J. Solid-State Circuits 43, 999–1009 (2008).
[Crossref]

2005 (1)

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435, 325–327 (2005).

2000 (1)

D. A. Miller, “Rationale and challenges for optical interconnects to electronic chips,” Proc. IEEE 88, 728–749 (2000).
[Crossref]

1990 (1)

K. Jinguji, N. Takato, A. Sugita, and M. Kawachi, “Mach-Zehnder interferometer type optical waveguide coupler with wavelength-flattened coupling ratio,” Electron. Lett. 26, 1326–1327 (1990).
[Crossref]

Abbasfar, A.

A. Amirkhany, A. Abbasfar, J. Savoj, M. Jeeradit, B. Garlepp, R. T. Kollipara, V. Stojanovic, and M. Horowitz, “A 24 Gb/s software programmable analog multi-tone transmitter,” IEEE J. Solid-State Circuits 43, 999–1009 (2008).
[Crossref]

Agrawal, A.

N. B. Feilchenfeld, F. G. Anderson, T. Barwicz, S. Chilstedt, Y. Ding, J. Ellis-Monaghan, D. M. Gill, C. Hedges, J. Hofrichter, F. Horst, M. Khater, E. Kiewra, R. Leidy, Y. Martin, K. McLean, M. Nicewicz, J. S. Orcutt, B. Porth, J. Proesel, C. Reinholm, J. C. Rosenberg, W. D. Sacher, A. D. Stricker, C. Whiting, C. Xiong, A. Agrawal, F. Baker, C. W. Baks, B. Cucci, D. Dang, T. Doan, F. Doany, S. Engelmann, M. Gordon, E. Joseph, J. Maling, S. Shank, X. Tian, C. Willets, J. Ferrario, M. Meghelli, F. Libsch, B. Offrein, W. M. J. Green, and W. Haensch, “An integrated silicon photonics technology for O-band datacom,” in IEEE International Electron Devices Meeting (IEDM) (IEEE, 2015), p. 25.7.

Agrell, E.

Amirkhany, A.

A. Amirkhany, A. Abbasfar, J. Savoj, M. Jeeradit, B. Garlepp, R. T. Kollipara, V. Stojanovic, and M. Horowitz, “A 24 Gb/s software programmable analog multi-tone transmitter,” IEEE J. Solid-State Circuits 43, 999–1009 (2008).
[Crossref]

Anderson, F. G.

N. B. Feilchenfeld, F. G. Anderson, T. Barwicz, S. Chilstedt, Y. Ding, J. Ellis-Monaghan, D. M. Gill, C. Hedges, J. Hofrichter, F. Horst, M. Khater, E. Kiewra, R. Leidy, Y. Martin, K. McLean, M. Nicewicz, J. S. Orcutt, B. Porth, J. Proesel, C. Reinholm, J. C. Rosenberg, W. D. Sacher, A. D. Stricker, C. Whiting, C. Xiong, A. Agrawal, F. Baker, C. W. Baks, B. Cucci, D. Dang, T. Doan, F. Doany, S. Engelmann, M. Gordon, E. Joseph, J. Maling, S. Shank, X. Tian, C. Willets, J. Ferrario, M. Meghelli, F. Libsch, B. Offrein, W. M. J. Green, and W. Haensch, “An integrated silicon photonics technology for O-band datacom,” in IEEE International Electron Devices Meeting (IEDM) (IEEE, 2015), p. 25.7.

Anderson, S.

M. Traverso, M. Mazzini, M. Webster, S. Anderson, P.-C. Sun, D. Siadat, D. Conti, A. Cervasio, S. Pfnuer, and J. Stayt, “25 Gbaud PAM-4 error free transmission over both single mode fiber and multimode fiber in a QSFP form factor based on silicon photonics,” in Optical Fiber Communication Conference (Optical Society of America, 2015), paper Th5B.3.

Andrekson, P.

Assefa, S.

Baker, F.

N. B. Feilchenfeld, F. G. Anderson, T. Barwicz, S. Chilstedt, Y. Ding, J. Ellis-Monaghan, D. M. Gill, C. Hedges, J. Hofrichter, F. Horst, M. Khater, E. Kiewra, R. Leidy, Y. Martin, K. McLean, M. Nicewicz, J. S. Orcutt, B. Porth, J. Proesel, C. Reinholm, J. C. Rosenberg, W. D. Sacher, A. D. Stricker, C. Whiting, C. Xiong, A. Agrawal, F. Baker, C. W. Baks, B. Cucci, D. Dang, T. Doan, F. Doany, S. Engelmann, M. Gordon, E. Joseph, J. Maling, S. Shank, X. Tian, C. Willets, J. Ferrario, M. Meghelli, F. Libsch, B. Offrein, W. M. J. Green, and W. Haensch, “An integrated silicon photonics technology for O-band datacom,” in IEEE International Electron Devices Meeting (IEDM) (IEEE, 2015), p. 25.7.

Baks, C. W.

N. B. Feilchenfeld, F. G. Anderson, T. Barwicz, S. Chilstedt, Y. Ding, J. Ellis-Monaghan, D. M. Gill, C. Hedges, J. Hofrichter, F. Horst, M. Khater, E. Kiewra, R. Leidy, Y. Martin, K. McLean, M. Nicewicz, J. S. Orcutt, B. Porth, J. Proesel, C. Reinholm, J. C. Rosenberg, W. D. Sacher, A. D. Stricker, C. Whiting, C. Xiong, A. Agrawal, F. Baker, C. W. Baks, B. Cucci, D. Dang, T. Doan, F. Doany, S. Engelmann, M. Gordon, E. Joseph, J. Maling, S. Shank, X. Tian, C. Willets, J. Ferrario, M. Meghelli, F. Libsch, B. Offrein, W. M. J. Green, and W. Haensch, “An integrated silicon photonics technology for O-band datacom,” in IEEE International Electron Devices Meeting (IEDM) (IEEE, 2015), p. 25.7.

Barwicz, T.

T. Barwicz and Y. Taira, “Low-cost interfacing of fibers to nanophotonic waveguides: design for fabrication and assembly tolerances,” IEEE Photon. J. 6, 1–18 (2014).
[Crossref]

J. Rosenberg, W. Green, S. Assefa, D. Gill, T. Barwicz, M. Yang, S. Shank, and Y. Vlasov, “A 25 Gbps silicon microring modulator based on an interleaved junction,” Opt. Express 20, 26411–26423 (2012).
[Crossref]

T. Barwicz, Y. Taira, T. W. Lichoulas, N. Boyer, H. Numata, Y. Martin, J.-W. Nah, S. Takenobu, A. Janta-Polczynski, and E. L. Kimbrell, “Enabling large-scale deployment of photonics through cost-efficient and scalable packaging,” in IEEE 12th International Conference on Group IV Photonics (GFP) (IEEE, 2015), pp. 155–156.

N. B. Feilchenfeld, F. G. Anderson, T. Barwicz, S. Chilstedt, Y. Ding, J. Ellis-Monaghan, D. M. Gill, C. Hedges, J. Hofrichter, F. Horst, M. Khater, E. Kiewra, R. Leidy, Y. Martin, K. McLean, M. Nicewicz, J. S. Orcutt, B. Porth, J. Proesel, C. Reinholm, J. C. Rosenberg, W. D. Sacher, A. D. Stricker, C. Whiting, C. Xiong, A. Agrawal, F. Baker, C. W. Baks, B. Cucci, D. Dang, T. Doan, F. Doany, S. Engelmann, M. Gordon, E. Joseph, J. Maling, S. Shank, X. Tian, C. Willets, J. Ferrario, M. Meghelli, F. Libsch, B. Offrein, W. M. J. Green, and W. Haensch, “An integrated silicon photonics technology for O-band datacom,” in IEEE International Electron Devices Meeting (IEDM) (IEEE, 2015), p. 25.7.

Ben-Ezra, S.

Block, B.

I. Young, E. Mohammed, J. T. Liao, A. M. Kern, S. Palermo, B. Block, M. R. Reshotko, and P. L. Chang, “Optical I/O technology for tera-scale computing,” IEEE J. Solid-State Circuits 45, 235–248 (2010).
[Crossref]

Bo, Z.

A. Nazemi, H. Kangmin, B. Catli, C. Delong, U. Singh, T. He, H. Zhi, Z. Bo, A. Momtaz, and C. Jun, “A 36 Gb/s PAM4 transmitter using an 8b 18 GS/s DAC in 28 nm CMOS,” in IEEE International Conference on Solid-State Circuits (ISSCC) (IEEE, 2015), pp. 1–3.

Boyer, N.

T. Barwicz, Y. Taira, T. W. Lichoulas, N. Boyer, H. Numata, Y. Martin, J.-W. Nah, S. Takenobu, A. Janta-Polczynski, and E. L. Kimbrell, “Enabling large-scale deployment of photonics through cost-efficient and scalable packaging,” in IEEE 12th International Conference on Group IV Photonics (GFP) (IEEE, 2015), pp. 155–156.

Buchmann, P.

C. Menolfi, T. Toifl, R. Reutemann, M. Ruegg, P. Buchmann, M. Kossel, T. Morf, and M. Schmatz, “A 25 Gb/s PAM4 transmitter in 90 nm CMOS SOI,” in IEEE International Conference on Solid-State Circuits (ISSCC) (IEEE, 2005), pp. 72–73.

Catli, B.

A. Nazemi, H. Kangmin, B. Catli, C. Delong, U. Singh, T. He, H. Zhi, Z. Bo, A. Momtaz, and C. Jun, “A 36 Gb/s PAM4 transmitter using an 8b 18 GS/s DAC in 28 nm CMOS,” in IEEE International Conference on Solid-State Circuits (ISSCC) (IEEE, 2015), pp. 1–3.

Cervasio, A.

M. Traverso, M. Mazzini, M. Webster, S. Anderson, P.-C. Sun, D. Siadat, D. Conti, A. Cervasio, S. Pfnuer, and J. Stayt, “25 Gbaud PAM-4 error free transmission over both single mode fiber and multimode fiber in a QSFP form factor based on silicon photonics,” in Optical Fiber Communication Conference (Optical Society of America, 2015), paper Th5B.3.

Chagnon, M.

Chang, P. L.

I. Young, E. Mohammed, J. T. Liao, A. M. Kern, S. Palermo, B. Block, M. R. Reshotko, and P. L. Chang, “Optical I/O technology for tera-scale computing,” IEEE J. Solid-State Circuits 45, 235–248 (2010).
[Crossref]

Chilstedt, S.

N. B. Feilchenfeld, F. G. Anderson, T. Barwicz, S. Chilstedt, Y. Ding, J. Ellis-Monaghan, D. M. Gill, C. Hedges, J. Hofrichter, F. Horst, M. Khater, E. Kiewra, R. Leidy, Y. Martin, K. McLean, M. Nicewicz, J. S. Orcutt, B. Porth, J. Proesel, C. Reinholm, J. C. Rosenberg, W. D. Sacher, A. D. Stricker, C. Whiting, C. Xiong, A. Agrawal, F. Baker, C. W. Baks, B. Cucci, D. Dang, T. Doan, F. Doany, S. Engelmann, M. Gordon, E. Joseph, J. Maling, S. Shank, X. Tian, C. Willets, J. Ferrario, M. Meghelli, F. Libsch, B. Offrein, W. M. J. Green, and W. Haensch, “An integrated silicon photonics technology for O-band datacom,” in IEEE International Electron Devices Meeting (IEDM) (IEEE, 2015), p. 25.7.

Conti, D.

M. Traverso, M. Mazzini, M. Webster, S. Anderson, P.-C. Sun, D. Siadat, D. Conti, A. Cervasio, S. Pfnuer, and J. Stayt, “25 Gbaud PAM-4 error free transmission over both single mode fiber and multimode fiber in a QSFP form factor based on silicon photonics,” in Optical Fiber Communication Conference (Optical Society of America, 2015), paper Th5B.3.

Cucci, B.

N. B. Feilchenfeld, F. G. Anderson, T. Barwicz, S. Chilstedt, Y. Ding, J. Ellis-Monaghan, D. M. Gill, C. Hedges, J. Hofrichter, F. Horst, M. Khater, E. Kiewra, R. Leidy, Y. Martin, K. McLean, M. Nicewicz, J. S. Orcutt, B. Porth, J. Proesel, C. Reinholm, J. C. Rosenberg, W. D. Sacher, A. D. Stricker, C. Whiting, C. Xiong, A. Agrawal, F. Baker, C. W. Baks, B. Cucci, D. Dang, T. Doan, F. Doany, S. Engelmann, M. Gordon, E. Joseph, J. Maling, S. Shank, X. Tian, C. Willets, J. Ferrario, M. Meghelli, F. Libsch, B. Offrein, W. M. J. Green, and W. Haensch, “An integrated silicon photonics technology for O-band datacom,” in IEEE International Electron Devices Meeting (IEDM) (IEEE, 2015), p. 25.7.

Dama, B.

X. Wu, B. Dama, P. Gothoskar, P. Metz, K. Shastri, S. Sunder, J. Van der Spiegel, Y. Wang, M. Webster, and W. Wilson, “A 20 Gb/s NRZ/PAM-4 1 V transmitter in 40 nm CMOS driving a Si-photonic modulator in 0.13 μm CMOS,” in IEEE International Conference on Solid-State Circuits Digest of Technical Papers (ISSCC) (IEEE, 2013), pp. 128–129.

Dang, D.

N. B. Feilchenfeld, F. G. Anderson, T. Barwicz, S. Chilstedt, Y. Ding, J. Ellis-Monaghan, D. M. Gill, C. Hedges, J. Hofrichter, F. Horst, M. Khater, E. Kiewra, R. Leidy, Y. Martin, K. McLean, M. Nicewicz, J. S. Orcutt, B. Porth, J. Proesel, C. Reinholm, J. C. Rosenberg, W. D. Sacher, A. D. Stricker, C. Whiting, C. Xiong, A. Agrawal, F. Baker, C. W. Baks, B. Cucci, D. Dang, T. Doan, F. Doany, S. Engelmann, M. Gordon, E. Joseph, J. Maling, S. Shank, X. Tian, C. Willets, J. Ferrario, M. Meghelli, F. Libsch, B. Offrein, W. M. J. Green, and W. Haensch, “An integrated silicon photonics technology for O-band datacom,” in IEEE International Electron Devices Meeting (IEDM) (IEEE, 2015), p. 25.7.

Delong, C.

A. Nazemi, H. Kangmin, B. Catli, C. Delong, U. Singh, T. He, H. Zhi, Z. Bo, A. Momtaz, and C. Jun, “A 36 Gb/s PAM4 transmitter using an 8b 18 GS/s DAC in 28 nm CMOS,” in IEEE International Conference on Solid-State Circuits (ISSCC) (IEEE, 2015), pp. 1–3.

Desiatov, B.

Ding, Y.

N. B. Feilchenfeld, F. G. Anderson, T. Barwicz, S. Chilstedt, Y. Ding, J. Ellis-Monaghan, D. M. Gill, C. Hedges, J. Hofrichter, F. Horst, M. Khater, E. Kiewra, R. Leidy, Y. Martin, K. McLean, M. Nicewicz, J. S. Orcutt, B. Porth, J. Proesel, C. Reinholm, J. C. Rosenberg, W. D. Sacher, A. D. Stricker, C. Whiting, C. Xiong, A. Agrawal, F. Baker, C. W. Baks, B. Cucci, D. Dang, T. Doan, F. Doany, S. Engelmann, M. Gordon, E. Joseph, J. Maling, S. Shank, X. Tian, C. Willets, J. Ferrario, M. Meghelli, F. Libsch, B. Offrein, W. M. J. Green, and W. Haensch, “An integrated silicon photonics technology for O-band datacom,” in IEEE International Electron Devices Meeting (IEDM) (IEEE, 2015), p. 25.7.

Doan, T.

N. B. Feilchenfeld, F. G. Anderson, T. Barwicz, S. Chilstedt, Y. Ding, J. Ellis-Monaghan, D. M. Gill, C. Hedges, J. Hofrichter, F. Horst, M. Khater, E. Kiewra, R. Leidy, Y. Martin, K. McLean, M. Nicewicz, J. S. Orcutt, B. Porth, J. Proesel, C. Reinholm, J. C. Rosenberg, W. D. Sacher, A. D. Stricker, C. Whiting, C. Xiong, A. Agrawal, F. Baker, C. W. Baks, B. Cucci, D. Dang, T. Doan, F. Doany, S. Engelmann, M. Gordon, E. Joseph, J. Maling, S. Shank, X. Tian, C. Willets, J. Ferrario, M. Meghelli, F. Libsch, B. Offrein, W. M. J. Green, and W. Haensch, “An integrated silicon photonics technology for O-band datacom,” in IEEE International Electron Devices Meeting (IEDM) (IEEE, 2015), p. 25.7.

Doany, F.

N. B. Feilchenfeld, F. G. Anderson, T. Barwicz, S. Chilstedt, Y. Ding, J. Ellis-Monaghan, D. M. Gill, C. Hedges, J. Hofrichter, F. Horst, M. Khater, E. Kiewra, R. Leidy, Y. Martin, K. McLean, M. Nicewicz, J. S. Orcutt, B. Porth, J. Proesel, C. Reinholm, J. C. Rosenberg, W. D. Sacher, A. D. Stricker, C. Whiting, C. Xiong, A. Agrawal, F. Baker, C. W. Baks, B. Cucci, D. Dang, T. Doan, F. Doany, S. Engelmann, M. Gordon, E. Joseph, J. Maling, S. Shank, X. Tian, C. Willets, J. Ferrario, M. Meghelli, F. Libsch, B. Offrein, W. M. J. Green, and W. Haensch, “An integrated silicon photonics technology for O-band datacom,” in IEEE International Electron Devices Meeting (IEDM) (IEEE, 2015), p. 25.7.

Ellis-Monaghan, J.

D. M. Gill, C. Xiong, J. E. Proesel, J. C. Rosenberg, J. Orcutt, M. Khater, J. Ellis-Monaghan, A. Stricker, E. Kiewra, Y. Martin, Y. Vlasov, W. Haensch, and W. M. J. Green, “Demonstration of error-free 32-Gb/s operation from monolithic CMOS nanophotonic transmitters,” IEEE Photon. Technol. Lett. 28, 1410–1413 (2016).
[Crossref]

N. B. Feilchenfeld, F. G. Anderson, T. Barwicz, S. Chilstedt, Y. Ding, J. Ellis-Monaghan, D. M. Gill, C. Hedges, J. Hofrichter, F. Horst, M. Khater, E. Kiewra, R. Leidy, Y. Martin, K. McLean, M. Nicewicz, J. S. Orcutt, B. Porth, J. Proesel, C. Reinholm, J. C. Rosenberg, W. D. Sacher, A. D. Stricker, C. Whiting, C. Xiong, A. Agrawal, F. Baker, C. W. Baks, B. Cucci, D. Dang, T. Doan, F. Doany, S. Engelmann, M. Gordon, E. Joseph, J. Maling, S. Shank, X. Tian, C. Willets, J. Ferrario, M. Meghelli, F. Libsch, B. Offrein, W. M. J. Green, and W. Haensch, “An integrated silicon photonics technology for O-band datacom,” in IEEE International Electron Devices Meeting (IEDM) (IEEE, 2015), p. 25.7.

Engelmann, S.

N. B. Feilchenfeld, F. G. Anderson, T. Barwicz, S. Chilstedt, Y. Ding, J. Ellis-Monaghan, D. M. Gill, C. Hedges, J. Hofrichter, F. Horst, M. Khater, E. Kiewra, R. Leidy, Y. Martin, K. McLean, M. Nicewicz, J. S. Orcutt, B. Porth, J. Proesel, C. Reinholm, J. C. Rosenberg, W. D. Sacher, A. D. Stricker, C. Whiting, C. Xiong, A. Agrawal, F. Baker, C. W. Baks, B. Cucci, D. Dang, T. Doan, F. Doany, S. Engelmann, M. Gordon, E. Joseph, J. Maling, S. Shank, X. Tian, C. Willets, J. Ferrario, M. Meghelli, F. Libsch, B. Offrein, W. M. J. Green, and W. Haensch, “An integrated silicon photonics technology for O-band datacom,” in IEEE International Electron Devices Meeting (IEDM) (IEEE, 2015), p. 25.7.

Estaran, J.

Feilchenfeld, N. B.

N. B. Feilchenfeld, F. G. Anderson, T. Barwicz, S. Chilstedt, Y. Ding, J. Ellis-Monaghan, D. M. Gill, C. Hedges, J. Hofrichter, F. Horst, M. Khater, E. Kiewra, R. Leidy, Y. Martin, K. McLean, M. Nicewicz, J. S. Orcutt, B. Porth, J. Proesel, C. Reinholm, J. C. Rosenberg, W. D. Sacher, A. D. Stricker, C. Whiting, C. Xiong, A. Agrawal, F. Baker, C. W. Baks, B. Cucci, D. Dang, T. Doan, F. Doany, S. Engelmann, M. Gordon, E. Joseph, J. Maling, S. Shank, X. Tian, C. Willets, J. Ferrario, M. Meghelli, F. Libsch, B. Offrein, W. M. J. Green, and W. Haensch, “An integrated silicon photonics technology for O-band datacom,” in IEEE International Electron Devices Meeting (IEDM) (IEEE, 2015), p. 25.7.

Ferrario, J.

N. B. Feilchenfeld, F. G. Anderson, T. Barwicz, S. Chilstedt, Y. Ding, J. Ellis-Monaghan, D. M. Gill, C. Hedges, J. Hofrichter, F. Horst, M. Khater, E. Kiewra, R. Leidy, Y. Martin, K. McLean, M. Nicewicz, J. S. Orcutt, B. Porth, J. Proesel, C. Reinholm, J. C. Rosenberg, W. D. Sacher, A. D. Stricker, C. Whiting, C. Xiong, A. Agrawal, F. Baker, C. W. Baks, B. Cucci, D. Dang, T. Doan, F. Doany, S. Engelmann, M. Gordon, E. Joseph, J. Maling, S. Shank, X. Tian, C. Willets, J. Ferrario, M. Meghelli, F. Libsch, B. Offrein, W. M. J. Green, and W. Haensch, “An integrated silicon photonics technology for O-band datacom,” in IEEE International Electron Devices Meeting (IEDM) (IEEE, 2015), p. 25.7.

Gagné, J.-F.

Gardes, F.

G. T. Reed, G. Mashanovich, F. Gardes, and D. Thomson, “Silicon optical modulators,” Nat. Photonics 4, 518–526 (2010).
[Crossref]

Garlepp, B.

A. Amirkhany, A. Abbasfar, J. Savoj, M. Jeeradit, B. Garlepp, R. T. Kollipara, V. Stojanovic, and M. Horowitz, “A 24 Gb/s software programmable analog multi-tone transmitter,” IEEE J. Solid-State Circuits 43, 999–1009 (2008).
[Crossref]

Gill, D.

Gill, D. M.

D. M. Gill, C. Xiong, J. E. Proesel, J. C. Rosenberg, J. Orcutt, M. Khater, J. Ellis-Monaghan, A. Stricker, E. Kiewra, Y. Martin, Y. Vlasov, W. Haensch, and W. M. J. Green, “Demonstration of error-free 32-Gb/s operation from monolithic CMOS nanophotonic transmitters,” IEEE Photon. Technol. Lett. 28, 1410–1413 (2016).
[Crossref]

N. B. Feilchenfeld, F. G. Anderson, T. Barwicz, S. Chilstedt, Y. Ding, J. Ellis-Monaghan, D. M. Gill, C. Hedges, J. Hofrichter, F. Horst, M. Khater, E. Kiewra, R. Leidy, Y. Martin, K. McLean, M. Nicewicz, J. S. Orcutt, B. Porth, J. Proesel, C. Reinholm, J. C. Rosenberg, W. D. Sacher, A. D. Stricker, C. Whiting, C. Xiong, A. Agrawal, F. Baker, C. W. Baks, B. Cucci, D. Dang, T. Doan, F. Doany, S. Engelmann, M. Gordon, E. Joseph, J. Maling, S. Shank, X. Tian, C. Willets, J. Ferrario, M. Meghelli, F. Libsch, B. Offrein, W. M. J. Green, and W. Haensch, “An integrated silicon photonics technology for O-band datacom,” in IEEE International Electron Devices Meeting (IEDM) (IEEE, 2015), p. 25.7.

Gordon, M.

N. B. Feilchenfeld, F. G. Anderson, T. Barwicz, S. Chilstedt, Y. Ding, J. Ellis-Monaghan, D. M. Gill, C. Hedges, J. Hofrichter, F. Horst, M. Khater, E. Kiewra, R. Leidy, Y. Martin, K. McLean, M. Nicewicz, J. S. Orcutt, B. Porth, J. Proesel, C. Reinholm, J. C. Rosenberg, W. D. Sacher, A. D. Stricker, C. Whiting, C. Xiong, A. Agrawal, F. Baker, C. W. Baks, B. Cucci, D. Dang, T. Doan, F. Doany, S. Engelmann, M. Gordon, E. Joseph, J. Maling, S. Shank, X. Tian, C. Willets, J. Ferrario, M. Meghelli, F. Libsch, B. Offrein, W. M. J. Green, and W. Haensch, “An integrated silicon photonics technology for O-band datacom,” in IEEE International Electron Devices Meeting (IEDM) (IEEE, 2015), p. 25.7.

Gothoskar, P.

X. Wu, B. Dama, P. Gothoskar, P. Metz, K. Shastri, S. Sunder, J. Van der Spiegel, Y. Wang, M. Webster, and W. Wilson, “A 20 Gb/s NRZ/PAM-4 1 V transmitter in 40 nm CMOS driving a Si-photonic modulator in 0.13 μm CMOS,” in IEEE International Conference on Solid-State Circuits Digest of Technical Papers (ISSCC) (IEEE, 2013), pp. 128–129.

Goykhman, I.

Green, W.

Green, W. M. J.

D. M. Gill, C. Xiong, J. E. Proesel, J. C. Rosenberg, J. Orcutt, M. Khater, J. Ellis-Monaghan, A. Stricker, E. Kiewra, Y. Martin, Y. Vlasov, W. Haensch, and W. M. J. Green, “Demonstration of error-free 32-Gb/s operation from monolithic CMOS nanophotonic transmitters,” IEEE Photon. Technol. Lett. 28, 1410–1413 (2016).
[Crossref]

N. B. Feilchenfeld, F. G. Anderson, T. Barwicz, S. Chilstedt, Y. Ding, J. Ellis-Monaghan, D. M. Gill, C. Hedges, J. Hofrichter, F. Horst, M. Khater, E. Kiewra, R. Leidy, Y. Martin, K. McLean, M. Nicewicz, J. S. Orcutt, B. Porth, J. Proesel, C. Reinholm, J. C. Rosenberg, W. D. Sacher, A. D. Stricker, C. Whiting, C. Xiong, A. Agrawal, F. Baker, C. W. Baks, B. Cucci, D. Dang, T. Doan, F. Doany, S. Engelmann, M. Gordon, E. Joseph, J. Maling, S. Shank, X. Tian, C. Willets, J. Ferrario, M. Meghelli, F. Libsch, B. Offrein, W. M. J. Green, and W. Haensch, “An integrated silicon photonics technology for O-band datacom,” in IEEE International Electron Devices Meeting (IEDM) (IEEE, 2015), p. 25.7.

Gruendl, T.

Haensch, W.

D. M. Gill, C. Xiong, J. E. Proesel, J. C. Rosenberg, J. Orcutt, M. Khater, J. Ellis-Monaghan, A. Stricker, E. Kiewra, Y. Martin, Y. Vlasov, W. Haensch, and W. M. J. Green, “Demonstration of error-free 32-Gb/s operation from monolithic CMOS nanophotonic transmitters,” IEEE Photon. Technol. Lett. 28, 1410–1413 (2016).
[Crossref]

N. B. Feilchenfeld, F. G. Anderson, T. Barwicz, S. Chilstedt, Y. Ding, J. Ellis-Monaghan, D. M. Gill, C. Hedges, J. Hofrichter, F. Horst, M. Khater, E. Kiewra, R. Leidy, Y. Martin, K. McLean, M. Nicewicz, J. S. Orcutt, B. Porth, J. Proesel, C. Reinholm, J. C. Rosenberg, W. D. Sacher, A. D. Stricker, C. Whiting, C. Xiong, A. Agrawal, F. Baker, C. W. Baks, B. Cucci, D. Dang, T. Doan, F. Doany, S. Engelmann, M. Gordon, E. Joseph, J. Maling, S. Shank, X. Tian, C. Willets, J. Ferrario, M. Meghelli, F. Libsch, B. Offrein, W. M. J. Green, and W. Haensch, “An integrated silicon photonics technology for O-band datacom,” in IEEE International Electron Devices Meeting (IEDM) (IEEE, 2015), p. 25.7.

He, T.

A. Nazemi, H. Kangmin, B. Catli, C. Delong, U. Singh, T. He, H. Zhi, Z. Bo, A. Momtaz, and C. Jun, “A 36 Gb/s PAM4 transmitter using an 8b 18 GS/s DAC in 28 nm CMOS,” in IEEE International Conference on Solid-State Circuits (ISSCC) (IEEE, 2015), pp. 1–3.

Hedges, C.

N. B. Feilchenfeld, F. G. Anderson, T. Barwicz, S. Chilstedt, Y. Ding, J. Ellis-Monaghan, D. M. Gill, C. Hedges, J. Hofrichter, F. Horst, M. Khater, E. Kiewra, R. Leidy, Y. Martin, K. McLean, M. Nicewicz, J. S. Orcutt, B. Porth, J. Proesel, C. Reinholm, J. C. Rosenberg, W. D. Sacher, A. D. Stricker, C. Whiting, C. Xiong, A. Agrawal, F. Baker, C. W. Baks, B. Cucci, D. Dang, T. Doan, F. Doany, S. Engelmann, M. Gordon, E. Joseph, J. Maling, S. Shank, X. Tian, C. Willets, J. Ferrario, M. Meghelli, F. Libsch, B. Offrein, W. M. J. Green, and W. Haensch, “An integrated silicon photonics technology for O-band datacom,” in IEEE International Electron Devices Meeting (IEDM) (IEEE, 2015), p. 25.7.

Hofrichter, J.

N. B. Feilchenfeld, F. G. Anderson, T. Barwicz, S. Chilstedt, Y. Ding, J. Ellis-Monaghan, D. M. Gill, C. Hedges, J. Hofrichter, F. Horst, M. Khater, E. Kiewra, R. Leidy, Y. Martin, K. McLean, M. Nicewicz, J. S. Orcutt, B. Porth, J. Proesel, C. Reinholm, J. C. Rosenberg, W. D. Sacher, A. D. Stricker, C. Whiting, C. Xiong, A. Agrawal, F. Baker, C. W. Baks, B. Cucci, D. Dang, T. Doan, F. Doany, S. Engelmann, M. Gordon, E. Joseph, J. Maling, S. Shank, X. Tian, C. Willets, J. Ferrario, M. Meghelli, F. Libsch, B. Offrein, W. M. J. Green, and W. Haensch, “An integrated silicon photonics technology for O-band datacom,” in IEEE International Electron Devices Meeting (IEDM) (IEEE, 2015), p. 25.7.

Horowitz, M.

A. Amirkhany, A. Abbasfar, J. Savoj, M. Jeeradit, B. Garlepp, R. T. Kollipara, V. Stojanovic, and M. Horowitz, “A 24 Gb/s software programmable analog multi-tone transmitter,” IEEE J. Solid-State Circuits 43, 999–1009 (2008).
[Crossref]

Horst, F.

N. B. Feilchenfeld, F. G. Anderson, T. Barwicz, S. Chilstedt, Y. Ding, J. Ellis-Monaghan, D. M. Gill, C. Hedges, J. Hofrichter, F. Horst, M. Khater, E. Kiewra, R. Leidy, Y. Martin, K. McLean, M. Nicewicz, J. S. Orcutt, B. Porth, J. Proesel, C. Reinholm, J. C. Rosenberg, W. D. Sacher, A. D. Stricker, C. Whiting, C. Xiong, A. Agrawal, F. Baker, C. W. Baks, B. Cucci, D. Dang, T. Doan, F. Doany, S. Engelmann, M. Gordon, E. Joseph, J. Maling, S. Shank, X. Tian, C. Willets, J. Ferrario, M. Meghelli, F. Libsch, B. Offrein, W. M. J. Green, and W. Haensch, “An integrated silicon photonics technology for O-band datacom,” in IEEE International Electron Devices Meeting (IEDM) (IEEE, 2015), p. 25.7.

Hosseini, E. S.

Janta-Polczynski, A.

T. Barwicz, Y. Taira, T. W. Lichoulas, N. Boyer, H. Numata, Y. Martin, J.-W. Nah, S. Takenobu, A. Janta-Polczynski, and E. L. Kimbrell, “Enabling large-scale deployment of photonics through cost-efficient and scalable packaging,” in IEEE 12th International Conference on Group IV Photonics (GFP) (IEEE, 2015), pp. 155–156.

Jeeradit, M.

A. Amirkhany, A. Abbasfar, J. Savoj, M. Jeeradit, B. Garlepp, R. T. Kollipara, V. Stojanovic, and M. Horowitz, “A 24 Gb/s software programmable analog multi-tone transmitter,” IEEE J. Solid-State Circuits 43, 999–1009 (2008).
[Crossref]

Jensen, J. B.

Jinguji, K.

K. Jinguji, N. Takato, A. Sugita, and M. Kawachi, “Mach-Zehnder interferometer type optical waveguide coupler with wavelength-flattened coupling ratio,” Electron. Lett. 26, 1326–1327 (1990).
[Crossref]

Joseph, E.

N. B. Feilchenfeld, F. G. Anderson, T. Barwicz, S. Chilstedt, Y. Ding, J. Ellis-Monaghan, D. M. Gill, C. Hedges, J. Hofrichter, F. Horst, M. Khater, E. Kiewra, R. Leidy, Y. Martin, K. McLean, M. Nicewicz, J. S. Orcutt, B. Porth, J. Proesel, C. Reinholm, J. C. Rosenberg, W. D. Sacher, A. D. Stricker, C. Whiting, C. Xiong, A. Agrawal, F. Baker, C. W. Baks, B. Cucci, D. Dang, T. Doan, F. Doany, S. Engelmann, M. Gordon, E. Joseph, J. Maling, S. Shank, X. Tian, C. Willets, J. Ferrario, M. Meghelli, F. Libsch, B. Offrein, W. M. J. Green, and W. Haensch, “An integrated silicon photonics technology for O-band datacom,” in IEEE International Electron Devices Meeting (IEDM) (IEEE, 2015), p. 25.7.

Jun, C.

A. Nazemi, H. Kangmin, B. Catli, C. Delong, U. Singh, T. He, H. Zhi, Z. Bo, A. Momtaz, and C. Jun, “A 36 Gb/s PAM4 transmitter using an 8b 18 GS/s DAC in 28 nm CMOS,” in IEEE International Conference on Solid-State Circuits (ISSCC) (IEEE, 2015), pp. 1–3.

Kangmin, H.

A. Nazemi, H. Kangmin, B. Catli, C. Delong, U. Singh, T. He, H. Zhi, Z. Bo, A. Momtaz, and C. Jun, “A 36 Gb/s PAM4 transmitter using an 8b 18 GS/s DAC in 28 nm CMOS,” in IEEE International Conference on Solid-State Circuits (ISSCC) (IEEE, 2015), pp. 1–3.

Karlsson, M.

Kawachi, M.

K. Jinguji, N. Takato, A. Sugita, and M. Kawachi, “Mach-Zehnder interferometer type optical waveguide coupler with wavelength-flattened coupling ratio,” Electron. Lett. 26, 1326–1327 (1990).
[Crossref]

Kern, A. M.

I. Young, E. Mohammed, J. T. Liao, A. M. Kern, S. Palermo, B. Block, M. R. Reshotko, and P. L. Chang, “Optical I/O technology for tera-scale computing,” IEEE J. Solid-State Circuits 45, 235–248 (2010).
[Crossref]

Khater, M.

D. M. Gill, C. Xiong, J. E. Proesel, J. C. Rosenberg, J. Orcutt, M. Khater, J. Ellis-Monaghan, A. Stricker, E. Kiewra, Y. Martin, Y. Vlasov, W. Haensch, and W. M. J. Green, “Demonstration of error-free 32-Gb/s operation from monolithic CMOS nanophotonic transmitters,” IEEE Photon. Technol. Lett. 28, 1410–1413 (2016).
[Crossref]

N. B. Feilchenfeld, F. G. Anderson, T. Barwicz, S. Chilstedt, Y. Ding, J. Ellis-Monaghan, D. M. Gill, C. Hedges, J. Hofrichter, F. Horst, M. Khater, E. Kiewra, R. Leidy, Y. Martin, K. McLean, M. Nicewicz, J. S. Orcutt, B. Porth, J. Proesel, C. Reinholm, J. C. Rosenberg, W. D. Sacher, A. D. Stricker, C. Whiting, C. Xiong, A. Agrawal, F. Baker, C. W. Baks, B. Cucci, D. Dang, T. Doan, F. Doany, S. Engelmann, M. Gordon, E. Joseph, J. Maling, S. Shank, X. Tian, C. Willets, J. Ferrario, M. Meghelli, F. Libsch, B. Offrein, W. M. J. Green, and W. Haensch, “An integrated silicon photonics technology for O-band datacom,” in IEEE International Electron Devices Meeting (IEDM) (IEEE, 2015), p. 25.7.

Kiewra, E.

D. M. Gill, C. Xiong, J. E. Proesel, J. C. Rosenberg, J. Orcutt, M. Khater, J. Ellis-Monaghan, A. Stricker, E. Kiewra, Y. Martin, Y. Vlasov, W. Haensch, and W. M. J. Green, “Demonstration of error-free 32-Gb/s operation from monolithic CMOS nanophotonic transmitters,” IEEE Photon. Technol. Lett. 28, 1410–1413 (2016).
[Crossref]

N. B. Feilchenfeld, F. G. Anderson, T. Barwicz, S. Chilstedt, Y. Ding, J. Ellis-Monaghan, D. M. Gill, C. Hedges, J. Hofrichter, F. Horst, M. Khater, E. Kiewra, R. Leidy, Y. Martin, K. McLean, M. Nicewicz, J. S. Orcutt, B. Porth, J. Proesel, C. Reinholm, J. C. Rosenberg, W. D. Sacher, A. D. Stricker, C. Whiting, C. Xiong, A. Agrawal, F. Baker, C. W. Baks, B. Cucci, D. Dang, T. Doan, F. Doany, S. Engelmann, M. Gordon, E. Joseph, J. Maling, S. Shank, X. Tian, C. Willets, J. Ferrario, M. Meghelli, F. Libsch, B. Offrein, W. M. J. Green, and W. Haensch, “An integrated silicon photonics technology for O-band datacom,” in IEEE International Electron Devices Meeting (IEDM) (IEEE, 2015), p. 25.7.

Kimbrell, E. L.

T. Barwicz, Y. Taira, T. W. Lichoulas, N. Boyer, H. Numata, Y. Martin, J.-W. Nah, S. Takenobu, A. Janta-Polczynski, and E. L. Kimbrell, “Enabling large-scale deployment of photonics through cost-efficient and scalable packaging,” in IEEE 12th International Conference on Group IV Photonics (GFP) (IEEE, 2015), pp. 155–156.

Kimerling, L. C.

J. Michel, J. Liu, and L. C. Kimerling, “High-performance Ge-on-Si photodetectors,” Nat. Photonics 4, 527–534 (2010).
[Crossref]

Kissinger, D.

P. Rito, I. G. López, D. Petousi, L. Zimmermann, M. Kroh, S. Lischke, D. Knoll, D. Kissinger, and A. C. Ulusoy, “A monolithically integrated segmented driver and modulator in 0.25 μm SiGe:C BiCMOS with 13 dB extinction ratio at 28 Gb/s,” in IEEE MTT-S International Microwave Symposium (IMS) (IEEE, 2016), pp. 1–4.

Knoll, D.

P. Rito, I. G. López, D. Petousi, L. Zimmermann, M. Kroh, S. Lischke, D. Knoll, D. Kissinger, and A. C. Ulusoy, “A monolithically integrated segmented driver and modulator in 0.25 μm SiGe:C BiCMOS with 13 dB extinction ratio at 28 Gb/s,” in IEEE MTT-S International Microwave Symposium (IMS) (IEEE, 2016), pp. 1–4.

Kollipara, R. T.

A. Amirkhany, A. Abbasfar, J. Savoj, M. Jeeradit, B. Garlepp, R. T. Kollipara, V. Stojanovic, and M. Horowitz, “A 24 Gb/s software programmable analog multi-tone transmitter,” IEEE J. Solid-State Circuits 43, 999–1009 (2008).
[Crossref]

Kossel, M.

C. Menolfi, T. Toifl, R. Reutemann, M. Ruegg, P. Buchmann, M. Kossel, T. Morf, and M. Schmatz, “A 25 Gb/s PAM4 transmitter in 90 nm CMOS SOI,” in IEEE International Conference on Solid-State Circuits (ISSCC) (IEEE, 2005), pp. 72–73.

Kroh, M.

P. Rito, I. G. López, D. Petousi, L. Zimmermann, M. Kroh, S. Lischke, D. Knoll, D. Kissinger, and A. C. Ulusoy, “A monolithically integrated segmented driver and modulator in 0.25 μm SiGe:C BiCMOS with 13 dB extinction ratio at 28 Gb/s,” in IEEE MTT-S International Microwave Symposium (IMS) (IEEE, 2016), pp. 1–4.

Kumar, S.

S. Kumar, Impact of Nonlinearities on Fiber Optic Communications, Vol. 7 of Optical and Fiber Communications Reports (Springer, 2011).

Larsen, K. J.

Larsson, A.

Latrasse, C.

Leidy, R.

N. B. Feilchenfeld, F. G. Anderson, T. Barwicz, S. Chilstedt, Y. Ding, J. Ellis-Monaghan, D. M. Gill, C. Hedges, J. Hofrichter, F. Horst, M. Khater, E. Kiewra, R. Leidy, Y. Martin, K. McLean, M. Nicewicz, J. S. Orcutt, B. Porth, J. Proesel, C. Reinholm, J. C. Rosenberg, W. D. Sacher, A. D. Stricker, C. Whiting, C. Xiong, A. Agrawal, F. Baker, C. W. Baks, B. Cucci, D. Dang, T. Doan, F. Doany, S. Engelmann, M. Gordon, E. Joseph, J. Maling, S. Shank, X. Tian, C. Willets, J. Ferrario, M. Meghelli, F. Libsch, B. Offrein, W. M. J. Green, and W. Haensch, “An integrated silicon photonics technology for O-band datacom,” in IEEE International Electron Devices Meeting (IEDM) (IEEE, 2015), p. 25.7.

Lessard, S.

Levy, U.

Li, B.

Liao, J. T.

I. Young, E. Mohammed, J. T. Liao, A. M. Kern, S. Palermo, B. Block, M. R. Reshotko, and P. L. Chang, “Optical I/O technology for tera-scale computing,” IEEE J. Solid-State Circuits 45, 235–248 (2010).
[Crossref]

Libsch, F.

N. B. Feilchenfeld, F. G. Anderson, T. Barwicz, S. Chilstedt, Y. Ding, J. Ellis-Monaghan, D. M. Gill, C. Hedges, J. Hofrichter, F. Horst, M. Khater, E. Kiewra, R. Leidy, Y. Martin, K. McLean, M. Nicewicz, J. S. Orcutt, B. Porth, J. Proesel, C. Reinholm, J. C. Rosenberg, W. D. Sacher, A. D. Stricker, C. Whiting, C. Xiong, A. Agrawal, F. Baker, C. W. Baks, B. Cucci, D. Dang, T. Doan, F. Doany, S. Engelmann, M. Gordon, E. Joseph, J. Maling, S. Shank, X. Tian, C. Willets, J. Ferrario, M. Meghelli, F. Libsch, B. Offrein, W. M. J. Green, and W. Haensch, “An integrated silicon photonics technology for O-band datacom,” in IEEE International Electron Devices Meeting (IEDM) (IEEE, 2015), p. 25.7.

Lichoulas, T. W.

T. Barwicz, Y. Taira, T. W. Lichoulas, N. Boyer, H. Numata, Y. Martin, J.-W. Nah, S. Takenobu, A. Janta-Polczynski, and E. L. Kimbrell, “Enabling large-scale deployment of photonics through cost-efficient and scalable packaging,” in IEEE 12th International Conference on Group IV Photonics (GFP) (IEEE, 2015), pp. 155–156.

Lipson, M.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435, 325–327 (2005).

Lischke, S.

P. Rito, I. G. López, D. Petousi, L. Zimmermann, M. Kroh, S. Lischke, D. Knoll, D. Kissinger, and A. C. Ulusoy, “A monolithically integrated segmented driver and modulator in 0.25 μm SiGe:C BiCMOS with 13 dB extinction ratio at 28 Gb/s,” in IEEE MTT-S International Microwave Symposium (IMS) (IEEE, 2016), pp. 1–4.

Liu, J.

J. Michel, J. Liu, and L. C. Kimerling, “High-performance Ge-on-Si photodetectors,” Nat. Photonics 4, 527–534 (2010).
[Crossref]

López, I. G.

P. Rito, I. G. López, D. Petousi, L. Zimmermann, M. Kroh, S. Lischke, D. Knoll, D. Kissinger, and A. C. Ulusoy, “A monolithically integrated segmented driver and modulator in 0.25 μm SiGe:C BiCMOS with 13 dB extinction ratio at 28 Gb/s,” in IEEE MTT-S International Microwave Symposium (IMS) (IEEE, 2016), pp. 1–4.

Maling, J.

N. B. Feilchenfeld, F. G. Anderson, T. Barwicz, S. Chilstedt, Y. Ding, J. Ellis-Monaghan, D. M. Gill, C. Hedges, J. Hofrichter, F. Horst, M. Khater, E. Kiewra, R. Leidy, Y. Martin, K. McLean, M. Nicewicz, J. S. Orcutt, B. Porth, J. Proesel, C. Reinholm, J. C. Rosenberg, W. D. Sacher, A. D. Stricker, C. Whiting, C. Xiong, A. Agrawal, F. Baker, C. W. Baks, B. Cucci, D. Dang, T. Doan, F. Doany, S. Engelmann, M. Gordon, E. Joseph, J. Maling, S. Shank, X. Tian, C. Willets, J. Ferrario, M. Meghelli, F. Libsch, B. Offrein, W. M. J. Green, and W. Haensch, “An integrated silicon photonics technology for O-band datacom,” in IEEE International Electron Devices Meeting (IEDM) (IEEE, 2015), p. 25.7.

Martin, Y.

D. M. Gill, C. Xiong, J. E. Proesel, J. C. Rosenberg, J. Orcutt, M. Khater, J. Ellis-Monaghan, A. Stricker, E. Kiewra, Y. Martin, Y. Vlasov, W. Haensch, and W. M. J. Green, “Demonstration of error-free 32-Gb/s operation from monolithic CMOS nanophotonic transmitters,” IEEE Photon. Technol. Lett. 28, 1410–1413 (2016).
[Crossref]

T. Barwicz, Y. Taira, T. W. Lichoulas, N. Boyer, H. Numata, Y. Martin, J.-W. Nah, S. Takenobu, A. Janta-Polczynski, and E. L. Kimbrell, “Enabling large-scale deployment of photonics through cost-efficient and scalable packaging,” in IEEE 12th International Conference on Group IV Photonics (GFP) (IEEE, 2015), pp. 155–156.

N. B. Feilchenfeld, F. G. Anderson, T. Barwicz, S. Chilstedt, Y. Ding, J. Ellis-Monaghan, D. M. Gill, C. Hedges, J. Hofrichter, F. Horst, M. Khater, E. Kiewra, R. Leidy, Y. Martin, K. McLean, M. Nicewicz, J. S. Orcutt, B. Porth, J. Proesel, C. Reinholm, J. C. Rosenberg, W. D. Sacher, A. D. Stricker, C. Whiting, C. Xiong, A. Agrawal, F. Baker, C. W. Baks, B. Cucci, D. Dang, T. Doan, F. Doany, S. Engelmann, M. Gordon, E. Joseph, J. Maling, S. Shank, X. Tian, C. Willets, J. Ferrario, M. Meghelli, F. Libsch, B. Offrein, W. M. J. Green, and W. Haensch, “An integrated silicon photonics technology for O-band datacom,” in IEEE International Electron Devices Meeting (IEDM) (IEEE, 2015), p. 25.7.

Mashanovich, G.

G. T. Reed, G. Mashanovich, F. Gardes, and D. Thomson, “Silicon optical modulators,” Nat. Photonics 4, 518–526 (2010).
[Crossref]

Mazzini, M.

M. Traverso, M. Mazzini, M. Webster, S. Anderson, P.-C. Sun, D. Siadat, D. Conti, A. Cervasio, S. Pfnuer, and J. Stayt, “25 Gbaud PAM-4 error free transmission over both single mode fiber and multimode fiber in a QSFP form factor based on silicon photonics,” in Optical Fiber Communication Conference (Optical Society of America, 2015), paper Th5B.3.

McLean, K.

N. B. Feilchenfeld, F. G. Anderson, T. Barwicz, S. Chilstedt, Y. Ding, J. Ellis-Monaghan, D. M. Gill, C. Hedges, J. Hofrichter, F. Horst, M. Khater, E. Kiewra, R. Leidy, Y. Martin, K. McLean, M. Nicewicz, J. S. Orcutt, B. Porth, J. Proesel, C. Reinholm, J. C. Rosenberg, W. D. Sacher, A. D. Stricker, C. Whiting, C. Xiong, A. Agrawal, F. Baker, C. W. Baks, B. Cucci, D. Dang, T. Doan, F. Doany, S. Engelmann, M. Gordon, E. Joseph, J. Maling, S. Shank, X. Tian, C. Willets, J. Ferrario, M. Meghelli, F. Libsch, B. Offrein, W. M. J. Green, and W. Haensch, “An integrated silicon photonics technology for O-band datacom,” in IEEE International Electron Devices Meeting (IEDM) (IEEE, 2015), p. 25.7.

Meghelli, M.

N. B. Feilchenfeld, F. G. Anderson, T. Barwicz, S. Chilstedt, Y. Ding, J. Ellis-Monaghan, D. M. Gill, C. Hedges, J. Hofrichter, F. Horst, M. Khater, E. Kiewra, R. Leidy, Y. Martin, K. McLean, M. Nicewicz, J. S. Orcutt, B. Porth, J. Proesel, C. Reinholm, J. C. Rosenberg, W. D. Sacher, A. D. Stricker, C. Whiting, C. Xiong, A. Agrawal, F. Baker, C. W. Baks, B. Cucci, D. Dang, T. Doan, F. Doany, S. Engelmann, M. Gordon, E. Joseph, J. Maling, S. Shank, X. Tian, C. Willets, J. Ferrario, M. Meghelli, F. Libsch, B. Offrein, W. M. J. Green, and W. Haensch, “An integrated silicon photonics technology for O-band datacom,” in IEEE International Electron Devices Meeting (IEDM) (IEEE, 2015), p. 25.7.

Menolfi, C.

C. Menolfi, T. Toifl, R. Reutemann, M. Ruegg, P. Buchmann, M. Kossel, T. Morf, and M. Schmatz, “A 25 Gb/s PAM4 transmitter in 90 nm CMOS SOI,” in IEEE International Conference on Solid-State Circuits (ISSCC) (IEEE, 2005), pp. 72–73.

Metz, P.

X. Wu, B. Dama, P. Gothoskar, P. Metz, K. Shastri, S. Sunder, J. Van der Spiegel, Y. Wang, M. Webster, and W. Wilson, “A 20 Gb/s NRZ/PAM-4 1 V transmitter in 40 nm CMOS driving a Si-photonic modulator in 0.13 μm CMOS,” in IEEE International Conference on Solid-State Circuits Digest of Technical Papers (ISSCC) (IEEE, 2013), pp. 128–129.

Michel, J.

J. Michel, J. Liu, and L. C. Kimerling, “High-performance Ge-on-Si photodetectors,” Nat. Photonics 4, 527–534 (2010).
[Crossref]

Miller, D. A.

D. A. Miller, “Rationale and challenges for optical interconnects to electronic chips,” Proc. IEEE 88, 728–749 (2000).
[Crossref]

Mohammed, E.

I. Young, E. Mohammed, J. T. Liao, A. M. Kern, S. Palermo, B. Block, M. R. Reshotko, and P. L. Chang, “Optical I/O technology for tera-scale computing,” IEEE J. Solid-State Circuits 45, 235–248 (2010).
[Crossref]

Momtaz, A.

A. Nazemi, H. Kangmin, B. Catli, C. Delong, U. Singh, T. He, H. Zhi, Z. Bo, A. Momtaz, and C. Jun, “A 36 Gb/s PAM4 transmitter using an 8b 18 GS/s DAC in 28 nm CMOS,” in IEEE International Conference on Solid-State Circuits (ISSCC) (IEEE, 2015), pp. 1–3.

Morf, T.

C. Menolfi, T. Toifl, R. Reutemann, M. Ruegg, P. Buchmann, M. Kossel, T. Morf, and M. Schmatz, “A 25 Gb/s PAM4 transmitter in 90 nm CMOS SOI,” in IEEE International Conference on Solid-State Circuits (ISSCC) (IEEE, 2005), pp. 72–73.

Mueller, M.

Nah, J.-W.

T. Barwicz, Y. Taira, T. W. Lichoulas, N. Boyer, H. Numata, Y. Martin, J.-W. Nah, S. Takenobu, A. Janta-Polczynski, and E. L. Kimbrell, “Enabling large-scale deployment of photonics through cost-efficient and scalable packaging,” in IEEE 12th International Conference on Group IV Photonics (GFP) (IEEE, 2015), pp. 155–156.

Nazemi, A.

A. Nazemi, H. Kangmin, B. Catli, C. Delong, U. Singh, T. He, H. Zhi, Z. Bo, A. Momtaz, and C. Jun, “A 36 Gb/s PAM4 transmitter using an 8b 18 GS/s DAC in 28 nm CMOS,” in IEEE International Conference on Solid-State Circuits (ISSCC) (IEEE, 2015), pp. 1–3.

Neumeyr, C.

Nicewicz, M.

N. B. Feilchenfeld, F. G. Anderson, T. Barwicz, S. Chilstedt, Y. Ding, J. Ellis-Monaghan, D. M. Gill, C. Hedges, J. Hofrichter, F. Horst, M. Khater, E. Kiewra, R. Leidy, Y. Martin, K. McLean, M. Nicewicz, J. S. Orcutt, B. Porth, J. Proesel, C. Reinholm, J. C. Rosenberg, W. D. Sacher, A. D. Stricker, C. Whiting, C. Xiong, A. Agrawal, F. Baker, C. W. Baks, B. Cucci, D. Dang, T. Doan, F. Doany, S. Engelmann, M. Gordon, E. Joseph, J. Maling, S. Shank, X. Tian, C. Willets, J. Ferrario, M. Meghelli, F. Libsch, B. Offrein, W. M. J. Green, and W. Haensch, “An integrated silicon photonics technology for O-band datacom,” in IEEE International Electron Devices Meeting (IEDM) (IEEE, 2015), p. 25.7.

Numata, H.

T. Barwicz, Y. Taira, T. W. Lichoulas, N. Boyer, H. Numata, Y. Martin, J.-W. Nah, S. Takenobu, A. Janta-Polczynski, and E. L. Kimbrell, “Enabling large-scale deployment of photonics through cost-efficient and scalable packaging,” in IEEE 12th International Conference on Group IV Photonics (GFP) (IEEE, 2015), pp. 155–156.

Offrein, B.

N. B. Feilchenfeld, F. G. Anderson, T. Barwicz, S. Chilstedt, Y. Ding, J. Ellis-Monaghan, D. M. Gill, C. Hedges, J. Hofrichter, F. Horst, M. Khater, E. Kiewra, R. Leidy, Y. Martin, K. McLean, M. Nicewicz, J. S. Orcutt, B. Porth, J. Proesel, C. Reinholm, J. C. Rosenberg, W. D. Sacher, A. D. Stricker, C. Whiting, C. Xiong, A. Agrawal, F. Baker, C. W. Baks, B. Cucci, D. Dang, T. Doan, F. Doany, S. Engelmann, M. Gordon, E. Joseph, J. Maling, S. Shank, X. Tian, C. Willets, J. Ferrario, M. Meghelli, F. Libsch, B. Offrein, W. M. J. Green, and W. Haensch, “An integrated silicon photonics technology for O-band datacom,” in IEEE International Electron Devices Meeting (IEDM) (IEEE, 2015), p. 25.7.

Orcutt, J.

D. M. Gill, C. Xiong, J. E. Proesel, J. C. Rosenberg, J. Orcutt, M. Khater, J. Ellis-Monaghan, A. Stricker, E. Kiewra, Y. Martin, Y. Vlasov, W. Haensch, and W. M. J. Green, “Demonstration of error-free 32-Gb/s operation from monolithic CMOS nanophotonic transmitters,” IEEE Photon. Technol. Lett. 28, 1410–1413 (2016).
[Crossref]

Orcutt, J. S.

N. B. Feilchenfeld, F. G. Anderson, T. Barwicz, S. Chilstedt, Y. Ding, J. Ellis-Monaghan, D. M. Gill, C. Hedges, J. Hofrichter, F. Horst, M. Khater, E. Kiewra, R. Leidy, Y. Martin, K. McLean, M. Nicewicz, J. S. Orcutt, B. Porth, J. Proesel, C. Reinholm, J. C. Rosenberg, W. D. Sacher, A. D. Stricker, C. Whiting, C. Xiong, A. Agrawal, F. Baker, C. W. Baks, B. Cucci, D. Dang, T. Doan, F. Doany, S. Engelmann, M. Gordon, E. Joseph, J. Maling, S. Shank, X. Tian, C. Willets, J. Ferrario, M. Meghelli, F. Libsch, B. Offrein, W. M. J. Green, and W. Haensch, “An integrated silicon photonics technology for O-band datacom,” in IEEE International Electron Devices Meeting (IEDM) (IEEE, 2015), p. 25.7.

Ortsiefer, M.

Osman, M.

Painchaud, Y.

Palermo, S.

I. Young, E. Mohammed, J. T. Liao, A. M. Kern, S. Palermo, B. Block, M. R. Reshotko, and P. L. Chang, “Optical I/O technology for tera-scale computing,” IEEE J. Solid-State Circuits 45, 235–248 (2010).
[Crossref]

Paquet, C.

Pedretti, A. M. T.

A. M. T. Pedretti, “Monolithic separate absorption and modulation Mach-Zehnder wavelength converters,” Ph.D. dissertation (University of California, 2007).

Petousi, D.

P. Rito, I. G. López, D. Petousi, L. Zimmermann, M. Kroh, S. Lischke, D. Knoll, D. Kissinger, and A. C. Ulusoy, “A monolithically integrated segmented driver and modulator in 0.25 μm SiGe:C BiCMOS with 13 dB extinction ratio at 28 Gb/s,” in IEEE MTT-S International Microwave Symposium (IMS) (IEEE, 2016), pp. 1–4.

Pfnuer, S.

M. Traverso, M. Mazzini, M. Webster, S. Anderson, P.-C. Sun, D. Siadat, D. Conti, A. Cervasio, S. Pfnuer, and J. Stayt, “25 Gbaud PAM-4 error free transmission over both single mode fiber and multimode fiber in a QSFP form factor based on silicon photonics,” in Optical Fiber Communication Conference (Optical Society of America, 2015), paper Th5B.3.

Plant, D.

Porth, B.

N. B. Feilchenfeld, F. G. Anderson, T. Barwicz, S. Chilstedt, Y. Ding, J. Ellis-Monaghan, D. M. Gill, C. Hedges, J. Hofrichter, F. Horst, M. Khater, E. Kiewra, R. Leidy, Y. Martin, K. McLean, M. Nicewicz, J. S. Orcutt, B. Porth, J. Proesel, C. Reinholm, J. C. Rosenberg, W. D. Sacher, A. D. Stricker, C. Whiting, C. Xiong, A. Agrawal, F. Baker, C. W. Baks, B. Cucci, D. Dang, T. Doan, F. Doany, S. Engelmann, M. Gordon, E. Joseph, J. Maling, S. Shank, X. Tian, C. Willets, J. Ferrario, M. Meghelli, F. Libsch, B. Offrein, W. M. J. Green, and W. Haensch, “An integrated silicon photonics technology for O-band datacom,” in IEEE International Electron Devices Meeting (IEDM) (IEEE, 2015), p. 25.7.

Poulin, M.

Pradhan, S.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435, 325–327 (2005).

Proesel, J.

N. B. Feilchenfeld, F. G. Anderson, T. Barwicz, S. Chilstedt, Y. Ding, J. Ellis-Monaghan, D. M. Gill, C. Hedges, J. Hofrichter, F. Horst, M. Khater, E. Kiewra, R. Leidy, Y. Martin, K. McLean, M. Nicewicz, J. S. Orcutt, B. Porth, J. Proesel, C. Reinholm, J. C. Rosenberg, W. D. Sacher, A. D. Stricker, C. Whiting, C. Xiong, A. Agrawal, F. Baker, C. W. Baks, B. Cucci, D. Dang, T. Doan, F. Doany, S. Engelmann, M. Gordon, E. Joseph, J. Maling, S. Shank, X. Tian, C. Willets, J. Ferrario, M. Meghelli, F. Libsch, B. Offrein, W. M. J. Green, and W. Haensch, “An integrated silicon photonics technology for O-band datacom,” in IEEE International Electron Devices Meeting (IEDM) (IEEE, 2015), p. 25.7.

Proesel, J. E.

D. M. Gill, C. Xiong, J. E. Proesel, J. C. Rosenberg, J. Orcutt, M. Khater, J. Ellis-Monaghan, A. Stricker, E. Kiewra, Y. Martin, Y. Vlasov, W. Haensch, and W. M. J. Green, “Demonstration of error-free 32-Gb/s operation from monolithic CMOS nanophotonic transmitters,” IEEE Photon. Technol. Lett. 28, 1410–1413 (2016).
[Crossref]

Reed, G. T.

G. T. Reed, G. Mashanovich, F. Gardes, and D. Thomson, “Silicon optical modulators,” Nat. Photonics 4, 518–526 (2010).
[Crossref]

Reinholm, C.

N. B. Feilchenfeld, F. G. Anderson, T. Barwicz, S. Chilstedt, Y. Ding, J. Ellis-Monaghan, D. M. Gill, C. Hedges, J. Hofrichter, F. Horst, M. Khater, E. Kiewra, R. Leidy, Y. Martin, K. McLean, M. Nicewicz, J. S. Orcutt, B. Porth, J. Proesel, C. Reinholm, J. C. Rosenberg, W. D. Sacher, A. D. Stricker, C. Whiting, C. Xiong, A. Agrawal, F. Baker, C. W. Baks, B. Cucci, D. Dang, T. Doan, F. Doany, S. Engelmann, M. Gordon, E. Joseph, J. Maling, S. Shank, X. Tian, C. Willets, J. Ferrario, M. Meghelli, F. Libsch, B. Offrein, W. M. J. Green, and W. Haensch, “An integrated silicon photonics technology for O-band datacom,” in IEEE International Electron Devices Meeting (IEDM) (IEEE, 2015), p. 25.7.

Reshotko, M. R.

I. Young, E. Mohammed, J. T. Liao, A. M. Kern, S. Palermo, B. Block, M. R. Reshotko, and P. L. Chang, “Optical I/O technology for tera-scale computing,” IEEE J. Solid-State Circuits 45, 235–248 (2010).
[Crossref]

Reutemann, R.

C. Menolfi, T. Toifl, R. Reutemann, M. Ruegg, P. Buchmann, M. Kossel, T. Morf, and M. Schmatz, “A 25 Gb/s PAM4 transmitter in 90 nm CMOS SOI,” in IEEE International Conference on Solid-State Circuits (ISSCC) (IEEE, 2005), pp. 72–73.

Rito, P.

P. Rito, I. G. López, D. Petousi, L. Zimmermann, M. Kroh, S. Lischke, D. Knoll, D. Kissinger, and A. C. Ulusoy, “A monolithically integrated segmented driver and modulator in 0.25 μm SiGe:C BiCMOS with 13 dB extinction ratio at 28 Gb/s,” in IEEE MTT-S International Microwave Symposium (IMS) (IEEE, 2016), pp. 1–4.

Rodes, R.

Rosenberg, J.

Rosenberg, J. C.

D. M. Gill, C. Xiong, J. E. Proesel, J. C. Rosenberg, J. Orcutt, M. Khater, J. Ellis-Monaghan, A. Stricker, E. Kiewra, Y. Martin, Y. Vlasov, W. Haensch, and W. M. J. Green, “Demonstration of error-free 32-Gb/s operation from monolithic CMOS nanophotonic transmitters,” IEEE Photon. Technol. Lett. 28, 1410–1413 (2016).
[Crossref]

N. B. Feilchenfeld, F. G. Anderson, T. Barwicz, S. Chilstedt, Y. Ding, J. Ellis-Monaghan, D. M. Gill, C. Hedges, J. Hofrichter, F. Horst, M. Khater, E. Kiewra, R. Leidy, Y. Martin, K. McLean, M. Nicewicz, J. S. Orcutt, B. Porth, J. Proesel, C. Reinholm, J. C. Rosenberg, W. D. Sacher, A. D. Stricker, C. Whiting, C. Xiong, A. Agrawal, F. Baker, C. W. Baks, B. Cucci, D. Dang, T. Doan, F. Doany, S. Engelmann, M. Gordon, E. Joseph, J. Maling, S. Shank, X. Tian, C. Willets, J. Ferrario, M. Meghelli, F. Libsch, B. Offrein, W. M. J. Green, and W. Haensch, “An integrated silicon photonics technology for O-band datacom,” in IEEE International Electron Devices Meeting (IEDM) (IEEE, 2015), p. 25.7.

Rosskopf, J.

Ruegg, M.

C. Menolfi, T. Toifl, R. Reutemann, M. Ruegg, P. Buchmann, M. Kossel, T. Morf, and M. Schmatz, “A 25 Gb/s PAM4 transmitter in 90 nm CMOS SOI,” in IEEE International Conference on Solid-State Circuits (ISSCC) (IEEE, 2005), pp. 72–73.

Sacher, W. D.

N. B. Feilchenfeld, F. G. Anderson, T. Barwicz, S. Chilstedt, Y. Ding, J. Ellis-Monaghan, D. M. Gill, C. Hedges, J. Hofrichter, F. Horst, M. Khater, E. Kiewra, R. Leidy, Y. Martin, K. McLean, M. Nicewicz, J. S. Orcutt, B. Porth, J. Proesel, C. Reinholm, J. C. Rosenberg, W. D. Sacher, A. D. Stricker, C. Whiting, C. Xiong, A. Agrawal, F. Baker, C. W. Baks, B. Cucci, D. Dang, T. Doan, F. Doany, S. Engelmann, M. Gordon, E. Joseph, J. Maling, S. Shank, X. Tian, C. Willets, J. Ferrario, M. Meghelli, F. Libsch, B. Offrein, W. M. J. Green, and W. Haensch, “An integrated silicon photonics technology for O-band datacom,” in IEEE International Electron Devices Meeting (IEDM) (IEEE, 2015), p. 25.7.

Savoj, J.

A. Amirkhany, A. Abbasfar, J. Savoj, M. Jeeradit, B. Garlepp, R. T. Kollipara, V. Stojanovic, and M. Horowitz, “A 24 Gb/s software programmable analog multi-tone transmitter,” IEEE J. Solid-State Circuits 43, 999–1009 (2008).
[Crossref]

Schmatz, M.

C. Menolfi, T. Toifl, R. Reutemann, M. Ruegg, P. Buchmann, M. Kossel, T. Morf, and M. Schmatz, “A 25 Gb/s PAM4 transmitter in 90 nm CMOS SOI,” in IEEE International Conference on Solid-State Circuits (ISSCC) (IEEE, 2005), pp. 72–73.

Schmidt, B.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435, 325–327 (2005).

Shank, S.

J. Rosenberg, W. Green, S. Assefa, D. Gill, T. Barwicz, M. Yang, S. Shank, and Y. Vlasov, “A 25 Gbps silicon microring modulator based on an interleaved junction,” Opt. Express 20, 26411–26423 (2012).
[Crossref]

N. B. Feilchenfeld, F. G. Anderson, T. Barwicz, S. Chilstedt, Y. Ding, J. Ellis-Monaghan, D. M. Gill, C. Hedges, J. Hofrichter, F. Horst, M. Khater, E. Kiewra, R. Leidy, Y. Martin, K. McLean, M. Nicewicz, J. S. Orcutt, B. Porth, J. Proesel, C. Reinholm, J. C. Rosenberg, W. D. Sacher, A. D. Stricker, C. Whiting, C. Xiong, A. Agrawal, F. Baker, C. W. Baks, B. Cucci, D. Dang, T. Doan, F. Doany, S. Engelmann, M. Gordon, E. Joseph, J. Maling, S. Shank, X. Tian, C. Willets, J. Ferrario, M. Meghelli, F. Libsch, B. Offrein, W. M. J. Green, and W. Haensch, “An integrated silicon photonics technology for O-band datacom,” in IEEE International Electron Devices Meeting (IEDM) (IEEE, 2015), p. 25.7.

Shappir, J.

Shastri, K.

X. Wu, B. Dama, P. Gothoskar, P. Metz, K. Shastri, S. Sunder, J. Van der Spiegel, Y. Wang, M. Webster, and W. Wilson, “A 20 Gb/s NRZ/PAM-4 1 V transmitter in 40 nm CMOS driving a Si-photonic modulator in 0.13 μm CMOS,” in IEEE International Conference on Solid-State Circuits Digest of Technical Papers (ISSCC) (IEEE, 2013), pp. 128–129.

Siadat, D.

M. Traverso, M. Mazzini, M. Webster, S. Anderson, P.-C. Sun, D. Siadat, D. Conti, A. Cervasio, S. Pfnuer, and J. Stayt, “25 Gbaud PAM-4 error free transmission over both single mode fiber and multimode fiber in a QSFP form factor based on silicon photonics,” in Optical Fiber Communication Conference (Optical Society of America, 2015), paper Th5B.3.

Singh, U.

A. Nazemi, H. Kangmin, B. Catli, C. Delong, U. Singh, T. He, H. Zhi, Z. Bo, A. Momtaz, and C. Jun, “A 36 Gb/s PAM4 transmitter using an 8b 18 GS/s DAC in 28 nm CMOS,” in IEEE International Conference on Solid-State Circuits (ISSCC) (IEEE, 2015), pp. 1–3.

Sorace-Agaskar, C. M.

Stayt, J.

M. Traverso, M. Mazzini, M. Webster, S. Anderson, P.-C. Sun, D. Siadat, D. Conti, A. Cervasio, S. Pfnuer, and J. Stayt, “25 Gbaud PAM-4 error free transmission over both single mode fiber and multimode fiber in a QSFP form factor based on silicon photonics,” in Optical Fiber Communication Conference (Optical Society of America, 2015), paper Th5B.3.

Stojanovic, V.

A. Amirkhany, A. Abbasfar, J. Savoj, M. Jeeradit, B. Garlepp, R. T. Kollipara, V. Stojanovic, and M. Horowitz, “A 24 Gb/s software programmable analog multi-tone transmitter,” IEEE J. Solid-State Circuits 43, 999–1009 (2008).
[Crossref]

Stricker, A.

D. M. Gill, C. Xiong, J. E. Proesel, J. C. Rosenberg, J. Orcutt, M. Khater, J. Ellis-Monaghan, A. Stricker, E. Kiewra, Y. Martin, Y. Vlasov, W. Haensch, and W. M. J. Green, “Demonstration of error-free 32-Gb/s operation from monolithic CMOS nanophotonic transmitters,” IEEE Photon. Technol. Lett. 28, 1410–1413 (2016).
[Crossref]

Stricker, A. D.

N. B. Feilchenfeld, F. G. Anderson, T. Barwicz, S. Chilstedt, Y. Ding, J. Ellis-Monaghan, D. M. Gill, C. Hedges, J. Hofrichter, F. Horst, M. Khater, E. Kiewra, R. Leidy, Y. Martin, K. McLean, M. Nicewicz, J. S. Orcutt, B. Porth, J. Proesel, C. Reinholm, J. C. Rosenberg, W. D. Sacher, A. D. Stricker, C. Whiting, C. Xiong, A. Agrawal, F. Baker, C. W. Baks, B. Cucci, D. Dang, T. Doan, F. Doany, S. Engelmann, M. Gordon, E. Joseph, J. Maling, S. Shank, X. Tian, C. Willets, J. Ferrario, M. Meghelli, F. Libsch, B. Offrein, W. M. J. Green, and W. Haensch, “An integrated silicon photonics technology for O-band datacom,” in IEEE International Electron Devices Meeting (IEDM) (IEEE, 2015), p. 25.7.

Sugita, A.

K. Jinguji, N. Takato, A. Sugita, and M. Kawachi, “Mach-Zehnder interferometer type optical waveguide coupler with wavelength-flattened coupling ratio,” Electron. Lett. 26, 1326–1327 (1990).
[Crossref]

Sun, P.-C.

M. Traverso, M. Mazzini, M. Webster, S. Anderson, P.-C. Sun, D. Siadat, D. Conti, A. Cervasio, S. Pfnuer, and J. Stayt, “25 Gbaud PAM-4 error free transmission over both single mode fiber and multimode fiber in a QSFP form factor based on silicon photonics,” in Optical Fiber Communication Conference (Optical Society of America, 2015), paper Th5B.3.

Sunder, S.

X. Wu, B. Dama, P. Gothoskar, P. Metz, K. Shastri, S. Sunder, J. Van der Spiegel, Y. Wang, M. Webster, and W. Wilson, “A 20 Gb/s NRZ/PAM-4 1 V transmitter in 40 nm CMOS driving a Si-photonic modulator in 0.13 μm CMOS,” in IEEE International Conference on Solid-State Circuits Digest of Technical Papers (ISSCC) (IEEE, 2013), pp. 128–129.

Szczerba, K.

Taira, Y.

T. Barwicz and Y. Taira, “Low-cost interfacing of fibers to nanophotonic waveguides: design for fabrication and assembly tolerances,” IEEE Photon. J. 6, 1–18 (2014).
[Crossref]

T. Barwicz, Y. Taira, T. W. Lichoulas, N. Boyer, H. Numata, Y. Martin, J.-W. Nah, S. Takenobu, A. Janta-Polczynski, and E. L. Kimbrell, “Enabling large-scale deployment of photonics through cost-efficient and scalable packaging,” in IEEE 12th International Conference on Group IV Photonics (GFP) (IEEE, 2015), pp. 155–156.

Takato, N.

K. Jinguji, N. Takato, A. Sugita, and M. Kawachi, “Mach-Zehnder interferometer type optical waveguide coupler with wavelength-flattened coupling ratio,” Electron. Lett. 26, 1326–1327 (1990).
[Crossref]

Takenobu, S.

T. Barwicz, Y. Taira, T. W. Lichoulas, N. Boyer, H. Numata, Y. Martin, J.-W. Nah, S. Takenobu, A. Janta-Polczynski, and E. L. Kimbrell, “Enabling large-scale deployment of photonics through cost-efficient and scalable packaging,” in IEEE 12th International Conference on Group IV Photonics (GFP) (IEEE, 2015), pp. 155–156.

Thomson, D.

G. T. Reed, G. Mashanovich, F. Gardes, and D. Thomson, “Silicon optical modulators,” Nat. Photonics 4, 518–526 (2010).
[Crossref]

Tian, X.

N. B. Feilchenfeld, F. G. Anderson, T. Barwicz, S. Chilstedt, Y. Ding, J. Ellis-Monaghan, D. M. Gill, C. Hedges, J. Hofrichter, F. Horst, M. Khater, E. Kiewra, R. Leidy, Y. Martin, K. McLean, M. Nicewicz, J. S. Orcutt, B. Porth, J. Proesel, C. Reinholm, J. C. Rosenberg, W. D. Sacher, A. D. Stricker, C. Whiting, C. Xiong, A. Agrawal, F. Baker, C. W. Baks, B. Cucci, D. Dang, T. Doan, F. Doany, S. Engelmann, M. Gordon, E. Joseph, J. Maling, S. Shank, X. Tian, C. Willets, J. Ferrario, M. Meghelli, F. Libsch, B. Offrein, W. M. J. Green, and W. Haensch, “An integrated silicon photonics technology for O-band datacom,” in IEEE International Electron Devices Meeting (IEDM) (IEEE, 2015), p. 25.7.

Timurdogan, E.

Toifl, T.

C. Menolfi, T. Toifl, R. Reutemann, M. Ruegg, P. Buchmann, M. Kossel, T. Morf, and M. Schmatz, “A 25 Gb/s PAM4 transmitter in 90 nm CMOS SOI,” in IEEE International Conference on Solid-State Circuits (ISSCC) (IEEE, 2005), pp. 72–73.

Traverso, M.

M. Traverso, M. Mazzini, M. Webster, S. Anderson, P.-C. Sun, D. Siadat, D. Conti, A. Cervasio, S. Pfnuer, and J. Stayt, “25 Gbaud PAM-4 error free transmission over both single mode fiber and multimode fiber in a QSFP form factor based on silicon photonics,” in Optical Fiber Communication Conference (Optical Society of America, 2015), paper Th5B.3.

Ulusoy, A. C.

P. Rito, I. G. López, D. Petousi, L. Zimmermann, M. Kroh, S. Lischke, D. Knoll, D. Kissinger, and A. C. Ulusoy, “A monolithically integrated segmented driver and modulator in 0.25 μm SiGe:C BiCMOS with 13 dB extinction ratio at 28 Gb/s,” in IEEE MTT-S International Microwave Symposium (IMS) (IEEE, 2016), pp. 1–4.

Van der Spiegel, J.

X. Wu, B. Dama, P. Gothoskar, P. Metz, K. Shastri, S. Sunder, J. Van der Spiegel, Y. Wang, M. Webster, and W. Wilson, “A 20 Gb/s NRZ/PAM-4 1 V transmitter in 40 nm CMOS driving a Si-photonic modulator in 0.13 μm CMOS,” in IEEE International Conference on Solid-State Circuits Digest of Technical Papers (ISSCC) (IEEE, 2013), pp. 128–129.

Vlasov, Y.

D. M. Gill, C. Xiong, J. E. Proesel, J. C. Rosenberg, J. Orcutt, M. Khater, J. Ellis-Monaghan, A. Stricker, E. Kiewra, Y. Martin, Y. Vlasov, W. Haensch, and W. M. J. Green, “Demonstration of error-free 32-Gb/s operation from monolithic CMOS nanophotonic transmitters,” IEEE Photon. Technol. Lett. 28, 1410–1413 (2016).
[Crossref]

J. Rosenberg, W. Green, S. Assefa, D. Gill, T. Barwicz, M. Yang, S. Shank, and Y. Vlasov, “A 25 Gbps silicon microring modulator based on an interleaved junction,” Opt. Express 20, 26411–26423 (2012).
[Crossref]

Wang, Y.

X. Wu, B. Dama, P. Gothoskar, P. Metz, K. Shastri, S. Sunder, J. Van der Spiegel, Y. Wang, M. Webster, and W. Wilson, “A 20 Gb/s NRZ/PAM-4 1 V transmitter in 40 nm CMOS driving a Si-photonic modulator in 0.13 μm CMOS,” in IEEE International Conference on Solid-State Circuits Digest of Technical Papers (ISSCC) (IEEE, 2013), pp. 128–129.

Watts, M. R.

Webster, M.

X. Wu, B. Dama, P. Gothoskar, P. Metz, K. Shastri, S. Sunder, J. Van der Spiegel, Y. Wang, M. Webster, and W. Wilson, “A 20 Gb/s NRZ/PAM-4 1 V transmitter in 40 nm CMOS driving a Si-photonic modulator in 0.13 μm CMOS,” in IEEE International Conference on Solid-State Circuits Digest of Technical Papers (ISSCC) (IEEE, 2013), pp. 128–129.

M. Traverso, M. Mazzini, M. Webster, S. Anderson, P.-C. Sun, D. Siadat, D. Conti, A. Cervasio, S. Pfnuer, and J. Stayt, “25 Gbaud PAM-4 error free transmission over both single mode fiber and multimode fiber in a QSFP form factor based on silicon photonics,” in Optical Fiber Communication Conference (Optical Society of America, 2015), paper Th5B.3.

Westbergh, P.

Whiting, C.

N. B. Feilchenfeld, F. G. Anderson, T. Barwicz, S. Chilstedt, Y. Ding, J. Ellis-Monaghan, D. M. Gill, C. Hedges, J. Hofrichter, F. Horst, M. Khater, E. Kiewra, R. Leidy, Y. Martin, K. McLean, M. Nicewicz, J. S. Orcutt, B. Porth, J. Proesel, C. Reinholm, J. C. Rosenberg, W. D. Sacher, A. D. Stricker, C. Whiting, C. Xiong, A. Agrawal, F. Baker, C. W. Baks, B. Cucci, D. Dang, T. Doan, F. Doany, S. Engelmann, M. Gordon, E. Joseph, J. Maling, S. Shank, X. Tian, C. Willets, J. Ferrario, M. Meghelli, F. Libsch, B. Offrein, W. M. J. Green, and W. Haensch, “An integrated silicon photonics technology for O-band datacom,” in IEEE International Electron Devices Meeting (IEDM) (IEEE, 2015), p. 25.7.

Willets, C.

N. B. Feilchenfeld, F. G. Anderson, T. Barwicz, S. Chilstedt, Y. Ding, J. Ellis-Monaghan, D. M. Gill, C. Hedges, J. Hofrichter, F. Horst, M. Khater, E. Kiewra, R. Leidy, Y. Martin, K. McLean, M. Nicewicz, J. S. Orcutt, B. Porth, J. Proesel, C. Reinholm, J. C. Rosenberg, W. D. Sacher, A. D. Stricker, C. Whiting, C. Xiong, A. Agrawal, F. Baker, C. W. Baks, B. Cucci, D. Dang, T. Doan, F. Doany, S. Engelmann, M. Gordon, E. Joseph, J. Maling, S. Shank, X. Tian, C. Willets, J. Ferrario, M. Meghelli, F. Libsch, B. Offrein, W. M. J. Green, and W. Haensch, “An integrated silicon photonics technology for O-band datacom,” in IEEE International Electron Devices Meeting (IEDM) (IEEE, 2015), p. 25.7.

Wilson, W.

X. Wu, B. Dama, P. Gothoskar, P. Metz, K. Shastri, S. Sunder, J. Van der Spiegel, Y. Wang, M. Webster, and W. Wilson, “A 20 Gb/s NRZ/PAM-4 1 V transmitter in 40 nm CMOS driving a Si-photonic modulator in 0.13 μm CMOS,” in IEEE International Conference on Solid-State Circuits Digest of Technical Papers (ISSCC) (IEEE, 2013), pp. 128–129.

Wu, X.

X. Wu, B. Dama, P. Gothoskar, P. Metz, K. Shastri, S. Sunder, J. Van der Spiegel, Y. Wang, M. Webster, and W. Wilson, “A 20 Gb/s NRZ/PAM-4 1 V transmitter in 40 nm CMOS driving a Si-photonic modulator in 0.13 μm CMOS,” in IEEE International Conference on Solid-State Circuits Digest of Technical Papers (ISSCC) (IEEE, 2013), pp. 128–129.

Xiong, C.

D. M. Gill, C. Xiong, J. E. Proesel, J. C. Rosenberg, J. Orcutt, M. Khater, J. Ellis-Monaghan, A. Stricker, E. Kiewra, Y. Martin, Y. Vlasov, W. Haensch, and W. M. J. Green, “Demonstration of error-free 32-Gb/s operation from monolithic CMOS nanophotonic transmitters,” IEEE Photon. Technol. Lett. 28, 1410–1413 (2016).
[Crossref]

N. B. Feilchenfeld, F. G. Anderson, T. Barwicz, S. Chilstedt, Y. Ding, J. Ellis-Monaghan, D. M. Gill, C. Hedges, J. Hofrichter, F. Horst, M. Khater, E. Kiewra, R. Leidy, Y. Martin, K. McLean, M. Nicewicz, J. S. Orcutt, B. Porth, J. Proesel, C. Reinholm, J. C. Rosenberg, W. D. Sacher, A. D. Stricker, C. Whiting, C. Xiong, A. Agrawal, F. Baker, C. W. Baks, B. Cucci, D. Dang, T. Doan, F. Doany, S. Engelmann, M. Gordon, E. Joseph, J. Maling, S. Shank, X. Tian, C. Willets, J. Ferrario, M. Meghelli, F. Libsch, B. Offrein, W. M. J. Green, and W. Haensch, “An integrated silicon photonics technology for O-band datacom,” in IEEE International Electron Devices Meeting (IEDM) (IEEE, 2015), p. 25.7.

Xu, Q.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435, 325–327 (2005).

Yang, M.

Young, I.

I. Young, E. Mohammed, J. T. Liao, A. M. Kern, S. Palermo, B. Block, M. R. Reshotko, and P. L. Chang, “Optical I/O technology for tera-scale computing,” IEEE J. Solid-State Circuits 45, 235–248 (2010).
[Crossref]

Zhi, H.

A. Nazemi, H. Kangmin, B. Catli, C. Delong, U. Singh, T. He, H. Zhi, Z. Bo, A. Momtaz, and C. Jun, “A 36 Gb/s PAM4 transmitter using an 8b 18 GS/s DAC in 28 nm CMOS,” in IEEE International Conference on Solid-State Circuits (ISSCC) (IEEE, 2015), pp. 1–3.

Zimmermann, L.

P. Rito, I. G. López, D. Petousi, L. Zimmermann, M. Kroh, S. Lischke, D. Knoll, D. Kissinger, and A. C. Ulusoy, “A monolithically integrated segmented driver and modulator in 0.25 μm SiGe:C BiCMOS with 13 dB extinction ratio at 28 Gb/s,” in IEEE MTT-S International Microwave Symposium (IMS) (IEEE, 2016), pp. 1–4.

Electron. Lett. (1)

K. Jinguji, N. Takato, A. Sugita, and M. Kawachi, “Mach-Zehnder interferometer type optical waveguide coupler with wavelength-flattened coupling ratio,” Electron. Lett. 26, 1326–1327 (1990).
[Crossref]

IEEE J. Solid-State Circuits (2)

A. Amirkhany, A. Abbasfar, J. Savoj, M. Jeeradit, B. Garlepp, R. T. Kollipara, V. Stojanovic, and M. Horowitz, “A 24 Gb/s software programmable analog multi-tone transmitter,” IEEE J. Solid-State Circuits 43, 999–1009 (2008).
[Crossref]

I. Young, E. Mohammed, J. T. Liao, A. M. Kern, S. Palermo, B. Block, M. R. Reshotko, and P. L. Chang, “Optical I/O technology for tera-scale computing,” IEEE J. Solid-State Circuits 45, 235–248 (2010).
[Crossref]

IEEE Photon. J. (1)

T. Barwicz and Y. Taira, “Low-cost interfacing of fibers to nanophotonic waveguides: design for fabrication and assembly tolerances,” IEEE Photon. J. 6, 1–18 (2014).
[Crossref]

IEEE Photon. Technol. Lett. (1)

D. M. Gill, C. Xiong, J. E. Proesel, J. C. Rosenberg, J. Orcutt, M. Khater, J. Ellis-Monaghan, A. Stricker, E. Kiewra, Y. Martin, Y. Vlasov, W. Haensch, and W. M. J. Green, “Demonstration of error-free 32-Gb/s operation from monolithic CMOS nanophotonic transmitters,” IEEE Photon. Technol. Lett. 28, 1410–1413 (2016).
[Crossref]

J. Lightwave Technol. (3)

Nat. Photonics (2)

J. Michel, J. Liu, and L. C. Kimerling, “High-performance Ge-on-Si photodetectors,” Nat. Photonics 4, 527–534 (2010).
[Crossref]

G. T. Reed, G. Mashanovich, F. Gardes, and D. Thomson, “Silicon optical modulators,” Nat. Photonics 4, 518–526 (2010).
[Crossref]

Nature (1)

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435, 325–327 (2005).

Opt. Express (3)

Proc. IEEE (1)

D. A. Miller, “Rationale and challenges for optical interconnects to electronic chips,” Proc. IEEE 88, 728–749 (2000).
[Crossref]

Other (9)

A. Nazemi, H. Kangmin, B. Catli, C. Delong, U. Singh, T. He, H. Zhi, Z. Bo, A. Momtaz, and C. Jun, “A 36 Gb/s PAM4 transmitter using an 8b 18 GS/s DAC in 28 nm CMOS,” in IEEE International Conference on Solid-State Circuits (ISSCC) (IEEE, 2015), pp. 1–3.

C. Menolfi, T. Toifl, R. Reutemann, M. Ruegg, P. Buchmann, M. Kossel, T. Morf, and M. Schmatz, “A 25 Gb/s PAM4 transmitter in 90 nm CMOS SOI,” in IEEE International Conference on Solid-State Circuits (ISSCC) (IEEE, 2005), pp. 72–73.

X. Wu, B. Dama, P. Gothoskar, P. Metz, K. Shastri, S. Sunder, J. Van der Spiegel, Y. Wang, M. Webster, and W. Wilson, “A 20 Gb/s NRZ/PAM-4 1 V transmitter in 40 nm CMOS driving a Si-photonic modulator in 0.13 μm CMOS,” in IEEE International Conference on Solid-State Circuits Digest of Technical Papers (ISSCC) (IEEE, 2013), pp. 128–129.

M. Traverso, M. Mazzini, M. Webster, S. Anderson, P.-C. Sun, D. Siadat, D. Conti, A. Cervasio, S. Pfnuer, and J. Stayt, “25 Gbaud PAM-4 error free transmission over both single mode fiber and multimode fiber in a QSFP form factor based on silicon photonics,” in Optical Fiber Communication Conference (Optical Society of America, 2015), paper Th5B.3.

N. B. Feilchenfeld, F. G. Anderson, T. Barwicz, S. Chilstedt, Y. Ding, J. Ellis-Monaghan, D. M. Gill, C. Hedges, J. Hofrichter, F. Horst, M. Khater, E. Kiewra, R. Leidy, Y. Martin, K. McLean, M. Nicewicz, J. S. Orcutt, B. Porth, J. Proesel, C. Reinholm, J. C. Rosenberg, W. D. Sacher, A. D. Stricker, C. Whiting, C. Xiong, A. Agrawal, F. Baker, C. W. Baks, B. Cucci, D. Dang, T. Doan, F. Doany, S. Engelmann, M. Gordon, E. Joseph, J. Maling, S. Shank, X. Tian, C. Willets, J. Ferrario, M. Meghelli, F. Libsch, B. Offrein, W. M. J. Green, and W. Haensch, “An integrated silicon photonics technology for O-band datacom,” in IEEE International Electron Devices Meeting (IEDM) (IEEE, 2015), p. 25.7.

T. Barwicz, Y. Taira, T. W. Lichoulas, N. Boyer, H. Numata, Y. Martin, J.-W. Nah, S. Takenobu, A. Janta-Polczynski, and E. L. Kimbrell, “Enabling large-scale deployment of photonics through cost-efficient and scalable packaging,” in IEEE 12th International Conference on Group IV Photonics (GFP) (IEEE, 2015), pp. 155–156.

A. M. T. Pedretti, “Monolithic separate absorption and modulation Mach-Zehnder wavelength converters,” Ph.D. dissertation (University of California, 2007).

S. Kumar, Impact of Nonlinearities on Fiber Optic Communications, Vol. 7 of Optical and Fiber Communications Reports (Springer, 2011).

P. Rito, I. G. López, D. Petousi, L. Zimmermann, M. Kroh, S. Lischke, D. Knoll, D. Kissinger, and A. C. Ulusoy, “A monolithically integrated segmented driver and modulator in 0.25 μm SiGe:C BiCMOS with 13 dB extinction ratio at 28 Gb/s,” in IEEE MTT-S International Microwave Symposium (IMS) (IEEE, 2016), pp. 1–4.

Supplementary Material (1)

NameDescription
Supplement 1: PDF (3739 KB)      Supplemental Material

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Optical micrograph of the monolithically integrated PAM-4 transmitter. Two directional couplers with thermo-optically tunable phase shifters serve as input and output couplers for the Mach–Zehnder modulator (MZM). The layout of the silicon photonic waveguides is overlaid on top of the micrograph. The magnified waveguide sections in the inset show the thermally tunable input couplers and MZM phase control. Yellow squares are drawn around the CMOS drivers.
Fig. 2.
Fig. 2. (a) Top-level circuit diagram for the CMOS transmitter driver, which consists of a three-stage inductively peaked current mode logic differential preamplifier followed by a nominal open drain driver. The circuit power supply voltage (VDD) is 1.2 V and the modulator termination resistors RTERM are terminated at a 1.5 V termination power supply (AVTT). The open drain driver’s output amplitude is adjustable using a three-bit digital register (TX_reg) to offset the MZM’s nonlinear transfer function. (b) Transistor-level circuit schematics of the three-stage predriver and the open drain driver for one MZM segment. The current bias of the driver is set by a reference voltage (VREF), as shown in the dashed box. With a 30Ω termination impedance, single-ended output drive swing Vo of the CMOS driver is 1.08 Vpp (2.16 Vpp differentially).
Fig. 3.
Fig. 3. Normalized electro-optic response of the two Mach–Zehnder segments measured on a breakout MZM site without the CMOS drivers. The measurement is taken with a PN junction reverse bias of 0.8V, which is the DC offset supplied by the CMOS drivers. The long segment has a 3 dB electro-optic bandwidth of 21 GHz. The short segment’s 3 dB bandwidth is beyond the maximum frequency limit of our lightwave component analyzer.
Fig. 4.
Fig. 4. Experimental PAM-4 waveforms at (a) 25 Gbaud (50 Gb/s) and (b) 28 Gbaud (56 Gb/s) measured with 2311 bit PRBS. The ERs between average power level 11 and 00 are measured to be approximately 6.0 dB for both data rates.
Fig. 5.
Fig. 5. (a) BER (log10 BER plotted in logarithmic scale) as a function of OMAouter for PAM-4 and NRZ transmitters operating at 12.5 Gbaud with 271 bit PRBS patterns. The PAM-4 transmitter shows a 5.5 dB power penalty at BER=1012 relative to the NRZ transmitter. The PAM-4 transmitter tested with 2231 bit PRBS shows an additional 0.3 dB power penalty. The insets show the 12.5 Gbaud PAM-4 and NRZ eye diagrams, which were recorded at a BER<1012. The lines are linear fits to the raw BER data (diamond and circle symbols). (b) BER as a function of OMA for PAM-4 and NRZ transmitters operating at 25 Gbaud with 271 bit PRBS patterns. The PAM-4 transmitter shows a 6.0 dB power penalty relative to the NRZ transmitter at BER=1012. The insets show the 25 Gbaud PAM-4 and NRZ eye diagrams, which were recorded at a BER<1012.

Metrics