Abstract

Silicon has attracted great interest as a platform for both linear and nonlinear integrated photonics for over 15 years. While its primary applications have been in the telecom window (near 1.5 μm), the capability of exploiting its full transparency window to 8 μm in the mid-IR is highly attractive, since this will open it up to entirely new applications in fields such as spectroscopy, chemical and biological sensing, and free-space communications. However, while silicon-on-insulator has shown great promise just beyond the telecommunications window [to the shortwave IR band (2.5 μm)], its wavelength range has been limited to < 4 μm by absorption in the silica cladding layer. Here, we demonstrate octave-spanning supercontinuum generation in silicon, covering a continuous spectral range from 1.9 to beyond 6 μm in dispersion-engineered silicon-on-sapphire (SOS) nanowires. This represents both the widest spectrum and longest wavelength generated to date in any silicon platform, and establishes SOS as a promising new platform for integrated nonlinear photonics in the mid-IR.

© 2015 Optical Society of America

1. INTRODUCTION

The midinfrared (mid-IR) is an important spectral range for a wide range of applications in medicine, security, food production, and telecommunications that impact almost all aspects of our society. One application that has received a lot of interest is on-chip sensing of molecules using a broadband source in the mid-IR (>2.5μm). In this range, molecules that are important for health, security screening, and environmental sensing have fundamental rotational–vibrational absorption lines. Probing with mid-IR light allows them to be detected with high sensitivity (at levels of parts per billion or even trillion) due to the strong photon–molecule interaction. Sensing devices in integrated form would offer the greatest benefits in cost, footprint, and performance, and this has motivated the search for efficient platforms for integrated photonics in the mid-IR.

Both silicon and chalcogenide glass have shown great promise as platforms for the mid-IR, since their transparency in the mid-IR extends to more than 8 μm for silicon and beyond 10 μm for chalcogenide glasses. Chalcogenide glass has demonstrated many linear and even nonlinear optical functions including broadband supercontinuum generation (SCG) out to 13 μm [1,2]. On the other hand, silicon offers significant advantages over many other materials for its compatibility with electronic integrated circuit manufacturing (CMOS) as well as extremely high material stability and reliability. Its successes include signal processing [3], optical interconnects [4,5], fundamental optical physics [6], and quantum optical applications such as photon pair sources [7,8], as well as uses in the shortwave IR (SWIR) band near 2.5 μm, where the well-known problem of two-photon absorption (TPA) prevents very high parametric gain [9,10].

However, silicon—in its common embodiment of silicon-on-insulator (SOI)—has struggled to operate much beyond the SWIR band (centered at 2.5 μm), despite some promising reports of nonlinear optics out to 3.5 μm [1114], due primarily to absorption of the silica cladding layers. Among the new platforms proposed for the mid-IR [15,16], silicon-on-sapphire (SOS) has attracted significant interest [1722] because of the transparency of the sapphire substrate to beyond 5 μm, and high-quality optical waveguides have been reported out to this wavelength. SOS was, in fact, the first SOI technology to be developed and has been used commercially for over 50 years for electronics; the excellent insulator properties of sapphire yield low parasitic capacitance, which makes SOS the platform of choice for high-speed electronics, and in particular rf electronics [23].

The first SOS-based waveguides reported in 2010 had propagation losses of 4.3 dB/cm at 4.5 μm [17]. This work was soon followed by the demonstration of various devices including ring resonators [1820], grating couplers, and slot waveguides [21,22].

However, the nonlinear optical performance of SOS—critical for many functions such as broadband spectrum generation—has remained unproven. Indeed, the recent discovery [2426] that significant multiphoton absorption (three- and four-photon) exists in silicon even beyond 2.5 μm, where TPA vanishes, has raised some doubts about silicon as a viable nonlinear optical platform for the mid-IR.

Here, we report the first continuous octave-spanning supercontinuum, as well as the longest wavelength produced to date in the mid-IR, in a silicon platform. We achieve this by exploiting low-loss dispersion-engineered SOS nanowires. These results not only firmly establish silicon, and SOS in particular, as a viable platform for integrated nonlinear photonics in the mid-IR but also achieve the critical milestone of continuous octave-spanning SCG directly in silicon.

This result is a clear demonstration that the observed high-order multiphoton absorption in silicon in the mid-IR does not pose an insurmountable barrier to exploiting nonlinear effects in this wavelength range. Furthermore, we show theoretically that silicon is capable of generating light as far out as 8 μm [27].

2. EXPERIMENTS AND RESULTS

We designed and fabricated SOS nanowires in order to achieve optimal dispersion (low and anomalous) at the pump wavelength in the region where multiphoton absorption and linear propagation losses are low. The dispersion and effective index profile along with the fundamental mode for a 2.4 μm by 0.48 μm nanowire is shown in Fig. 1. Although the nanowire supports a second mode, its group velocity dispersion is quite different from that of the fundamental mode, so intermodal coupling has a negligible effect on the soliton fission process [28].

 figure: Fig. 1.

Fig. 1. Top: Calculated dispersion (D) and effective index (Neff) curve for the SOS nanowire with a cross section of 2400 nm by 480 nm shown in inset, having zero dispersion wavelengths at 3.3 and 7.1 μm (see Methods section). Bottom: Experimental setup. a, gold mirror; b, Geltech BD2 chalcogenide lens, NA (= 0.85); c, chip; d, reflective microscope objective, NA (= 0.5); e, beam splitter, which was replaced by gold mirror during measurements.

Download Full Size | PPT Slide | PDF

To minimize propagation loss, the nanowires were treated with chemical oxidation and oxide stripping to reduce surface roughness (see Supplement 1) [2931]. This reduced the losses to 1±0.3dB/cm at 4 μm. The use of a relatively wide nanowire, to obtain appropriate dispersion for soliton-based SCG, also had the benefit of improving the mode confinement, thereby reducing the contribution from the surface roughness to the loss. The measured loss spectrum is shown in Fig. 2, where the peak between 3.3 and 3.4 μm represents C-H absorption due to contaminants on the nanowire surface. We note that tapered or grating couplers were not employed to reduce end-fire coupling loss, and therefore we incurred 9 dB/facet loss, with 20 dB total insertion loss. [18].

 figure: Fig. 2.

Fig. 2. SOS propagation loss obtained with a low-power tunable OPA source to avoid any nonlinear effects. The peak between 3.3 and 3.4 μm represents C-H absorption. Error bars include uncertainty in streak analysis, coupling coefficient, and detectivity of the detector.

Download Full Size | PPT Slide | PDF

The SCG experiments, shown in Fig. 1, were performed by coupling the output of a tunable optical parametric amplifier [2], producing 320 fs wide pulses at 3.7 μm at a repetition rate (Rp) of 20 MHz, into the TE mode of the nanowire. The output was collimated and passed through a monochromator (see Supplement 1) and detected with two mid-IR detectors with different operating ranges (PbSe at 1.5–4.8 μm and MCT at 4–6.5 μm).

Figure 3(a) shows the experimentally observed output spectra for different coupled input peak powers, from 200 W to 2.5 kW, as well as the results of simulations [Fig. 3(b)]. The widest continuous spectrum at the 30dB signal level is 1.53 octaves, achieved with 1.82 kW input power, as shown in Table 1. Furthermore, at 45dB, which is still well above the noise floor, light is generated beyond 6 μm. (Note that the slight offset of the noise floor at the short and long wavelength edges was due to dissimilar noise levels of the two detectors, arising from their different active areas.) We also measured the nonlinear transmission, shown in Fig. 4, since this is expected to be appreciable at such high peak intensities in this wavelength range [24]. The observed trend is similar to that reported for SOI waveguides [24], with the onset of nonlinear loss occurring near 1GW/cm2 and strong saturation of the transmission occurring near 10GW/cm2. The maximum fluence reached was just over 0.04J/cm2—well under the damage threshold of silicon, and thus no input facet damage was observed, unlike in SOI [24,32,33]. The experimental results are in reasonable agreement with modeling using the absorption coefficients from [24], suggesting that four-photon absorption (4PA) is the main cause of the nonlinear reduction in transmission. The slight discrepancy could be accounted for by the uncertainty in free carrier absorption due to variation in the free carrier lifetime from nanowire surface effects and defects at the silicon–sapphire interface.

Tables Icon

Table 1. Supercontinuum Results

 figure: Fig. 3.

Fig. 3. (a) Experimental data with input peak power ranging from 200 W to 2.5 kW and (b) simulation results. Here, the pump corresponds to 7 W.

Download Full Size | PPT Slide | PDF

 figure: Fig. 4.

Fig. 4. Transmission versus coupled intensity at the input of a 5 μm by 0.5 μm SOS waveguide. (a)–(d) Experimental and calculated transmission at (a) 3.5 μm, (b) 3.7 μm, (c) 3.9 μm, and (d) 4.1 μm. Error bars include uncertainty in coupling coefficient, detectivity, calibration, and nonlinear power response error of the detector.

Download Full Size | PPT Slide | PDF

3. NUMERICAL MODELING AND DISCUSSION

To model the SCG, we use the nonlinear Schrödinger equation:

Ez=α(ω)2E+m2im+1βmm!mEtm+i(γ(ω0)+iγt)E×tR(tt)|E|2dt(γ4pa2Aeff3|E|63pa(ω)|E|4σ2(1+iμ)Nc)E.
Here, E is the electric field envelope, α(ω) is the linear propagation loss, Aeff=|(E×H*)·z^dA|2/|(E×H*)·z^|2dA [34] is the effective mode area at the pump wavelength, βm is the mth dispersion order, and R(t) includes instantaneous electronic and delayed Raman responses (negligible in silicon); σ(=8.26×1021m2), μ(=3.16), and Nc, where Nct=γ4pa|E|84hνAeff4Ncτ, are free carrier parameters, and γ4pa is the 4PA coefficient [24,25]. For such a broad supercontinuum, the frequency dependence of the nonlinearity parameter γ(ω) is accounted for by γ(ω0)γ(ω0)=1ω0+1n2n2ω1AeffAeffω, where n2ω is negligible for silicon in the operating wavelength range and the last term is 2×1015s [35].

Since the signal generation is prominent in the region where three-photon absorption is dominant (2.2–3.2 μm), we included its frequency dependence, denoted by 3pa(ω). Here, 3pa(ω)=3pa(ω0)+i3pat, where 3pa(ω0) is zero and 3pa=12Aeff2(γ3paωγ3paAeffAeffω), where the last term is zero as γ3pa at ω0 is negligible, and γ3paω is 7×1042m3sW2.

We neglected any nonlinear contribution from sapphire, because only 13% of the total power of the pump wave was propagating in the substrate and sapphire’s Kerr index (n2) is much smaller than silicon [36]. The higher linear losses on the short wavelength side in Fig. 2 are accounted for by the frequency-dependent loss parameter, α(ω)=α(ω0)+α/ω(ωω0), causing less than 2 dB signal reduction due to the continuous feedback from the pump into the dispersive wave following soliton fission [shown in Fig. 5(b)]. We used 320 fs pulses with peak power levels consistent with the experiment, with waveguide parameter α(ω0)=1dB/cm, Aeff=1.15μm2, and n2=6×105cm2/GW [24].

 figure: Fig. 5.

Fig. 5. Simulated (a) temporal evolution and (b) spectral evolution along the waveguide at a peak power of 2.5 kW.

Download Full Size | PPT Slide | PDF

The spectral broadening shown in Fig. 3 is chiefly governed by higher-order soliton propagation, which broadens the spectrum around the pump wavelength via the soliton fission process [35], while at the same time generating phase-matched dispersive waves in the normal dispersion region below 3.3 μm [37,38]. The dispersive waves were phase matched with the soliton waves generated with 3.7 μm pump, satisfying m=2βm(ωs)m!Ωdm=12γPs, where Ωd=ωdωs, ωs and ωd [39] are frequencies of soliton and dispersive waves, respectively, and Ps is the peak power of soliton after fission. The calculated soliton fission length is 8 mm, in agreement with Fig. 5, and the soliton number is 143 at a peak power of 2.5 kW.

In order to investigate the dependence of the nanowire’s nonlinear response to pump wavelength over the range where the SOS displays the combination of low linear propagation loss, lower nonlinear transmission loss, and smaller mode area, the optical parametric amplifier (OPA) was scanned from 3.5 to 4 μm. Only a 5% improvement in γ was gained by tuning the pump from 3.7 μm to over 3.5 μm.

The SCG was mainly limited by 4PA, causing high loss as well as narrowing of the spectrum, while free carrier effects were not as significant, since Rpτ<0.06 and the generated carriers lagged behind the pulse (unlike picosecond pulses). We note that the gradual decline in signal at the long wavelength side (5–6 μm) is expected regardless of nonlinear absorption (as confirmed by turning off the 4PA component in the modeling [35]) or attenuation due to the intrinsic multiphoton edge of sapphire in the mid-IR [15,40]. With further improvement in the design, it would be possible to exploit the long wavelength dispersive wave, as we demonstrate below. In addition, the calculated degree of first-order spectral coherence |g12(1)|>0.5 was obtained from 3.6 to 4.7 μm, which can be improved with shorter input pulses and waveguide [41].

The residual discrepancy between theory and experiment below 2.25 μm can be attributed to fabrication uncertainty in the nanowire dimensions. This has a strong effect on the dispersion profile, which in turn can substantially change the soliton dynamics that affect phase matching for the dispersive waves. Including other effects such as input pulse chirp and the frequency dependence of both n2 and Aeff in the model did not produce any significant spectral shift and can be ruled out as a possible source of the discrepancy. The mismatch in signal drop <3.2μm could be due to uncertainty in high propagation losses at shorter wavelengths (Fig. 2), water, and C-H absorption. At low power, however, uncertainty in the coupled peak power may be responsible for the discrepancy.

To determine the sensitivity of the dispersion parameters to variations in the nanowire dimensions, we calculated them [β2, β3, and zero dispersion wavelength (ZDW) for the first zero of β2] for various heights and widths for TE polarization. Figure 6 shows the results, where we observed a large shift of 0.8 μm in the ZDW for a change in height of only 20 nm, which was the difference between the measured height of our nanowire and the designed 500 nm. Moreover, the analysis illustrates a slightly nonlinear dependence of the ZDW on nanowire width, suggesting that a tighter tolerance is expected for any variation in height. For example, a single-mode nanowire operating at a pump wavelength of 3.7 μm would experience a shift of 400 nm in ZDW from just a 2% change in height compared to a 25% change in the width. This is because the aspect ratio of mid-IR nanowires tends to be higher than those designed for the near-IR [42]. Hence, slight variations in height can change the mode confinement significantly. As a result, a high precision in fabrication is required, particularly in height, for nonlinear processes such as SCG in high index contrast mid-IR waveguides.

 figure: Fig. 6.

Fig. 6. Calculation of the dependence of SOS dispersion on nanowire dimension. Here, the width is varied from 2.4 μm for a constant height of 500 nm, while the height is varied from 500 nm for a constant width of 2.4 μm. (a) β2, (b) β3 (at 3.7 μm), and (c) ZDW dependence on width and height variations.

Download Full Size | PPT Slide | PDF

In this work the supercontinuum-generated spectrum covered over 60% of silicon’s transparency window. To access the remaining long wavelength region, one would need to exploit dispersive waves, just as in the short wavelength side (below 3.5 μm) in Fig. 3. In Fig. 7 we show one of the possible structures of a suspended silicon rib nanowire designed to avoid any substrate-related multiphonon losses, which has flat dispersion over a 1 μm range with the second ZDW around 5 μm.

 figure: Fig. 7.

Fig. 7. Simulated spectral broadening of silicon rib nanowire (inset) with pumping at 4 μm generating a dispersive wave beyond the second ZDW at 5 μm.

Download Full Size | PPT Slide | PDF

We modeled SCG in a 1.6 cm long suspended nanowire with a coupled peak power of 1 kW at 4 μm (to minimize multiphoton absorption) with a 320 fs pulse. To include the linear propagation loss for a suspended structure, we used a conservative estimate of 4 dB/cm based on [43]. The generated spectrum, with a dispersive wave beyond 6 μm, is shown in Fig. 7. Nevertheless, no signal was observed for wavelengths shorter than the first ZDW. This could be due to the extreme sensitivity of phase matching for the dispersive waves on the nanowire dimensions (shown in Fig. 6).

Although suspended structures avoid substrate-related absorption, they tend to be fragile. Thus an SOS based pillar waveguide can be employed to confine modes away from the substrate while achieving a flat dispersion across a wide bandwidth [44]. Additionally, further improvement in epitaxial growth methods would minimize the near-IR linear losses (by reducing lattice mismatch effects (e.g., dislocations) at the silicon and sapphire interface [45]). This should enable SCG coverage over the full transparency of silicon with a single nanowire.

4. CONCLUSION

In conclusion, we demonstrate continuous octave-spanning SCG in a silicon nanowire, covering the mid-IR wavelength range of 2–6 μm. This was achieved by pumping the dispersion-engineered SOS nanowire in the low linear and nonlinear loss mid-IR region. Theoretical calculations show that, in principle, spectral generation via SCG to beyond 8 μm is possible in silicon. This work opens the door for many new applications for CMOS-compatible silicon-based on-chip photonic signal processing, sensing, and broadband spectral emission in the mid-IR for a wide range of applications.

Funding

ARC, Laureate Fellowship (FL120100029); CUDOS (CE110001018); Discovery Early Career Researcher Award (DE130101033); Marie-Curie FP7 REA grant (PCIG-GA-2013-631543 MIRCOMB).

 

See Supplement 1 for supporting content.

REFERENCES

1. C. R. Petersen, U. Moller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. A. Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014). [CrossRef]  

2. Y. Yu, X. Gai, P. Ma, D.-Y. Choi, Z. Yang, R. Wang, S. Debbarma, S. J. Madden, and B. Luther-Davies, “A broadband, quasi-continuous, mid-infrared supercontinuum generated in a chalcogenide glass waveguide,” Laser Photon. Rev. 8, 792–798 (2014). [CrossRef]  

3. C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3, 216–219 (2009). [CrossRef]  

4. B. Jalali and S. Fathpour, “Silicon photonics,” J. Lightwave Technol. 24, 4600–4615 (2006). [CrossRef]  

5. M. J. R. Heck, H. W. Chen, A. W. Fang, B. R. Koch, D. Lang, M. N. Sysak, and J. E. Bowers, “Hybrid silicon photonics for optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 17, 333–346 (2011). [CrossRef]  

6. A. B. Redondo, C. Husko, D. Eades, Y. Zhang, J. Li, T. F. Krauss, and B. J. Eggleton, “Observation of soliton compression in silicon photonic crystals,” Nat. Commun. 5, 3160 (2011).

7. Q. Lin and G. P. Agrawal, “A silicon waveguides for creating quantum-correlated photon pairs,” Opt. Lett. 31, 3140–3142 (2006). [CrossRef]  

8. J. E. Sharping, K. F. Lee, M. A. Foster, A. C. Turner, B. S. Schmidt, M. Lipson, A. L. Gaeta, and P. Kumar, “Generation of correlated photons in nanoscale silicon waveguides,” Opt. Express 14, 12388–12393 (2006). [CrossRef]  

9. X. Liu, R. M. Osgood Jr., Y. A. Vlasov, and W. M. J. Green, “Mid-infrared optical parametric amplifier using silicon nanophotonic waveguides,” Nat. Photonics 4, 557–560 (2010). [CrossRef]  

10. S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photonics 4, 561–564 (2010). [CrossRef]  

11. B. Kuyken, X. Liu, R. M. Osgood, R. Baets, G. Roelkens, and W. M. J. Green, “Mid-infrared to telecom-band supercontinuum generation in highly nonlinear silicon-on-insulator wire waveguides,” Opt. Express 19, 20172–20181 (2011). [CrossRef]  

12. R. K. W. Lau, M. R. E. Lamont, A. G. Griffith, Y. Okawachi, M. Lipson, and A. L. Gaeta, “Octave-spanning mid infrared supercontinuum generation in silicon nanowaveguides,” Opt. Lett. 39, 4518–4521 (2014). [CrossRef]  

13. B. Kuyken, T. Ideguchi, S. Holzner, M. Yan, T. W. Hansch, J. V. Campenhout, P. Verheyen, S. Coen, F. Leo, R. Baets, G. Roelkens, and N. Picque, “An octave-spanning mid-infrared frequency comb generated in a silicon nanophotonic wire waveguide,” Nat. Commun. 6, 6310 (2015). [CrossRef]  

14. A. G. Griffith, R. K. W. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. Yu, C. T. Phare, C. B. Poitras, A. L. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 6299 (2015). [CrossRef]  

15. R. A. Soref, S. J. Emelett, and W. R. Buchwald, “Silicon waveguided components for the long-wave infrared region,” J. Opt. A 8, 840–848 (2006). [CrossRef]  

16. M. Brun, P. Labeye, G. Grand, J. M. Hartmann, F. Boulila, M. Carras, and S. Nicoletti, “Low loss SiGe graded index waveguides in mid-IR application,” Opt. Express 22, 508–518 (2014). [CrossRef]  

17. T. B. Jones, A. Spott, R. Ilic, A. Spott, B. Penkov, W. Asher, and M. Hochberg, “Silicon-on-sapphire integrated waveguides for the mid-infrared,” Opt. Express 18, 12127–12135 (2010). [CrossRef]  

18. R. J. Shankar, B. Irfan, and M. Loncar, “Integrated high-quality factor silicon-on-sapphire ring resonators for the mid-infrared,” Appl. Phys. Lett. 102, 051108 (2013). [CrossRef]  

19. A. L. Spott, Y. Liu, T. B. Jones, R. Ilic, and M. Hochberg, “Silicon waveguides and ring resonators at 5.5 μm,” Appl. Phys. Lett. 97, 213501 (2010). [CrossRef]  

20. C. Y. Wong, Z. Cheng, X. Chen, K. Ku, C. K. Y. Fung, Y. M. Chen, and H. K. Tsang, “Characterization of mid-infrared silicon-on-sapphire microring resonators with thermal tuning,” IEEE Photon. J. 4, 1095–1102 (2012). [CrossRef]  

21. Y. Zou, H. Subbaraman, S. Chakravarty, X. Xu, A. Hosseini, W. C. Lai, P. Wray, and R. T. Chen, “Grating-coupled silicon-on-sapphire integrated slot waveguides operating at mid-infrared wavelengths,” Opt. Lett. 39, 3070–3073 (2014). [CrossRef]  

22. F. Li, S. D. Jackson, C. Grillet, E. Magi, D. Hudson, S. J. Madden, Y. Moghe, C. O’Brien, A. Read, S. G. Duvall, P. Atanackovic, B. J. Eggleton, and D. J. Moss, “Low propagation loss silicon-on-sapphire waveguides for the mid-infrared,” Opt. Express 19, 15212–15220 (2011). [CrossRef]  

23. G. Imthurn, “The History of Silicon-on-Sapphire,” Peregrine Semiconductor white paper, 2006.

24. X. Gai, Y. Yu, B. Kuyken, P. Ma, S. J. Madden, J. V. Campenhout, P. Verheyen, G. Roelkens, R. Baets, and B. L. Davies, “Nonlinear absorption and refraction in crystalline silicon in the mid-infrared,” Laser Photon. Rev. 7, 1054–1064 (2013). [CrossRef]  

25. T. Wang, N. Venkatram, J. Gosciniak, Y. Cui, G. Qian, W. Ji, and D. T. H. Tan, “Multi-photon absorption and third-order nonlinearity in silicon at mid-infrared wavelengths,” Opt. Express 21, 32192–32198 (2013). [CrossRef]  

26. S. Pearl, N. Rotenberg, and H. M. van Driel, “Three photon absorption in silicon for 2300-3300 nm,” Appl. Phys. Lett. 93, 131102 (2008). [CrossRef]  

27. R. Soref, “Mid-infrared photonics in silicon and germanium,” Nat. Photonics 4, 495–497 (2010). [CrossRef]  

28. L. Yin, Q. Lin, and G. P. Agrawal, “Soliton fission and supercontinuum generation in silicon waveguides,” Opt. Lett. 32, 391–393 (2007). [CrossRef]  

29. L. L. Lee, D. R. Lim, L. C. Kimerling, J. Shin, and C. Franco, “Fabrication of ultralow-loss Si/SiO2 waveguides by roughness reduction,” Opt. Lett. 26, 1888–1890 (2001). [CrossRef]  

30. D. K. Sparacin, S. J. Spector, and L. C. Kimerling, “Silicon waveguide sidewall smoothing by wet chemical oxidation,” J. Lightwave Technol. 23, 2455–2461 (2005). [CrossRef]  

31. M. Borselli, T. J. Johnson, and O. Painter, “Measuring the role of surface chemistry in silicon microphotonics,” Appl. Phys. Lett. 88, 131114 (2006). [CrossRef]  

32. P. O. Pronko, P. A. VanRompay, C. Horvath, F. Loesel, T. Juhasz, X. Liu, and G. Mourou, “Avalanche ionization and dielectric breakdown in silicon with ultrafast laser pulses,” Phys. Rev. B 58, 2387–2390 (1998). [CrossRef]  

33. A. Vaidyanathan, T. Walker, and A. H. Guenther, “The relative roles of avalanche multiplication and multiphoton absorption in laser-induced damage of dielectrics,” IEEE J. Sel. Top. Quantum Electron. 16, 89–93 (1980). [CrossRef]  

34. S. Afshar and T. M. Monro, “A full vectorial model for pulse propagation in emerging waveguides with subwavelength structures part I: Kerr nonlinearity,” Opt. Express 17, 2298–2318 (2009). [CrossRef]  

35. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006). [CrossRef]  

36. A. Major, F. Yoshino, I. Nikolakakos, J. S. Aitchison, and P. W. E. Smith, “Dispersion of the nonlinear refractive index in sapphire,” Opt. Lett. 29, 602–604 (2004). [CrossRef]  

37. A. Husakou and J. Herrmann, “Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers,” Phys. Rev. Lett. 87, 203901 (2001). [CrossRef]  

38. J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn, “Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers,” Phys. Rev. Lett. 88, 173901 (2002). [CrossRef]  

39. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2012), Chap. 12.

40. M. Pradhan, R. Garg, and M. Arora, “Multiphonon infrared absorption in silicon,” Phys. Rev. Lett. 27, 25–30 (1987).

41. J. M. Dudley and S. Coen, “Coherence properties of supercontinuum spectra generated in photonic crystal and tapered optical fibers,” Opt. Lett. 27, 1180–1182 (2002). [CrossRef]  

42. J. I. Dadap, N. C. Panoiu, X. Chen, I. W. Hsieh, X. Liu, C. Y. Chou, E. Dulkeith, S. J. McNab, F. Xia, W. M. J. Green, L. Sekaric, Y. A. Vlasov, and R. M. Osgood, “Nonlinear-optical phase modification in dispersion-engineered Si photonic wires,” Opt. Express 16, 1280–1299 (2008). [CrossRef]  

43. Z. Cheng, X. Chen, C. Y. Wong, K. Xu, and H. K. Sang, “Mid-infrared suspended membrane waveguide and ring resonator on silicon-on-insulator,” IEEE Photon. Technol. Lett. 4, 1510–1519 (2012). [CrossRef]  

44. N. Singh, D. D. Hudson, and B. J. Eggleton, “Silicon-on-sapphire pillar waveguides for Mid-IR supercontinuum generation,” Opt. Express 23, 17345–17354 (2015).

45. Y. H. Lo, R. J. Deri, J. Harbison, B. J. Skromme, M. Seto, D. M. Hwang, and T. P. Lee, “GaAs-on-InP heteroepitaxial waveguides grown by molecular beam epitaxy,” Appl. Phys. Lett. 53, 1242–1244 (1988). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. C. R. Petersen, U. Moller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. A. Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3  μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
    [Crossref]
  2. Y. Yu, X. Gai, P. Ma, D.-Y. Choi, Z. Yang, R. Wang, S. Debbarma, S. J. Madden, and B. Luther-Davies, “A broadband, quasi-continuous, mid-infrared supercontinuum generated in a chalcogenide glass waveguide,” Laser Photon. Rev. 8, 792–798 (2014).
    [Crossref]
  3. C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3, 216–219 (2009).
    [Crossref]
  4. B. Jalali and S. Fathpour, “Silicon photonics,” J. Lightwave Technol. 24, 4600–4615 (2006).
    [Crossref]
  5. M. J. R. Heck, H. W. Chen, A. W. Fang, B. R. Koch, D. Lang, M. N. Sysak, and J. E. Bowers, “Hybrid silicon photonics for optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 17, 333–346 (2011).
    [Crossref]
  6. A. B. Redondo, C. Husko, D. Eades, Y. Zhang, J. Li, T. F. Krauss, and B. J. Eggleton, “Observation of soliton compression in silicon photonic crystals,” Nat. Commun. 5, 3160 (2011).
  7. Q. Lin and G. P. Agrawal, “A silicon waveguides for creating quantum-correlated photon pairs,” Opt. Lett. 31, 3140–3142 (2006).
    [Crossref]
  8. J. E. Sharping, K. F. Lee, M. A. Foster, A. C. Turner, B. S. Schmidt, M. Lipson, A. L. Gaeta, and P. Kumar, “Generation of correlated photons in nanoscale silicon waveguides,” Opt. Express 14, 12388–12393 (2006).
    [Crossref]
  9. X. Liu, R. M. Osgood, Y. A. Vlasov, and W. M. J. Green, “Mid-infrared optical parametric amplifier using silicon nanophotonic waveguides,” Nat. Photonics 4, 557–560 (2010).
    [Crossref]
  10. S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photonics 4, 561–564 (2010).
    [Crossref]
  11. B. Kuyken, X. Liu, R. M. Osgood, R. Baets, G. Roelkens, and W. M. J. Green, “Mid-infrared to telecom-band supercontinuum generation in highly nonlinear silicon-on-insulator wire waveguides,” Opt. Express 19, 20172–20181 (2011).
    [Crossref]
  12. R. K. W. Lau, M. R. E. Lamont, A. G. Griffith, Y. Okawachi, M. Lipson, and A. L. Gaeta, “Octave-spanning mid infrared supercontinuum generation in silicon nanowaveguides,” Opt. Lett. 39, 4518–4521 (2014).
    [Crossref]
  13. B. Kuyken, T. Ideguchi, S. Holzner, M. Yan, T. W. Hansch, J. V. Campenhout, P. Verheyen, S. Coen, F. Leo, R. Baets, G. Roelkens, and N. Picque, “An octave-spanning mid-infrared frequency comb generated in a silicon nanophotonic wire waveguide,” Nat. Commun. 6, 6310 (2015).
    [Crossref]
  14. A. G. Griffith, R. K. W. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. Yu, C. T. Phare, C. B. Poitras, A. L. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 6299 (2015).
    [Crossref]
  15. R. A. Soref, S. J. Emelett, and W. R. Buchwald, “Silicon waveguided components for the long-wave infrared region,” J. Opt. A 8, 840–848 (2006).
    [Crossref]
  16. M. Brun, P. Labeye, G. Grand, J. M. Hartmann, F. Boulila, M. Carras, and S. Nicoletti, “Low loss SiGe graded index waveguides in mid-IR application,” Opt. Express 22, 508–518 (2014).
    [Crossref]
  17. T. B. Jones, A. Spott, R. Ilic, A. Spott, B. Penkov, W. Asher, and M. Hochberg, “Silicon-on-sapphire integrated waveguides for the mid-infrared,” Opt. Express 18, 12127–12135 (2010).
    [Crossref]
  18. R. J. Shankar, B. Irfan, and M. Loncar, “Integrated high-quality factor silicon-on-sapphire ring resonators for the mid-infrared,” Appl. Phys. Lett. 102, 051108 (2013).
    [Crossref]
  19. A. L. Spott, Y. Liu, T. B. Jones, R. Ilic, and M. Hochberg, “Silicon waveguides and ring resonators at 5.5  μm,” Appl. Phys. Lett. 97, 213501 (2010).
    [Crossref]
  20. C. Y. Wong, Z. Cheng, X. Chen, K. Ku, C. K. Y. Fung, Y. M. Chen, and H. K. Tsang, “Characterization of mid-infrared silicon-on-sapphire microring resonators with thermal tuning,” IEEE Photon. J. 4, 1095–1102 (2012).
    [Crossref]
  21. Y. Zou, H. Subbaraman, S. Chakravarty, X. Xu, A. Hosseini, W. C. Lai, P. Wray, and R. T. Chen, “Grating-coupled silicon-on-sapphire integrated slot waveguides operating at mid-infrared wavelengths,” Opt. Lett. 39, 3070–3073 (2014).
    [Crossref]
  22. F. Li, S. D. Jackson, C. Grillet, E. Magi, D. Hudson, S. J. Madden, Y. Moghe, C. O’Brien, A. Read, S. G. Duvall, P. Atanackovic, B. J. Eggleton, and D. J. Moss, “Low propagation loss silicon-on-sapphire waveguides for the mid-infrared,” Opt. Express 19, 15212–15220 (2011).
    [Crossref]
  23. G. Imthurn, “The History of Silicon-on-Sapphire,” Peregrine Semiconductor white paper, 2006.
  24. X. Gai, Y. Yu, B. Kuyken, P. Ma, S. J. Madden, J. V. Campenhout, P. Verheyen, G. Roelkens, R. Baets, and B. L. Davies, “Nonlinear absorption and refraction in crystalline silicon in the mid-infrared,” Laser Photon. Rev. 7, 1054–1064 (2013).
    [Crossref]
  25. T. Wang, N. Venkatram, J. Gosciniak, Y. Cui, G. Qian, W. Ji, and D. T. H. Tan, “Multi-photon absorption and third-order nonlinearity in silicon at mid-infrared wavelengths,” Opt. Express 21, 32192–32198 (2013).
    [Crossref]
  26. S. Pearl, N. Rotenberg, and H. M. van Driel, “Three photon absorption in silicon for 2300-3300 nm,” Appl. Phys. Lett. 93, 131102 (2008).
    [Crossref]
  27. R. Soref, “Mid-infrared photonics in silicon and germanium,” Nat. Photonics 4, 495–497 (2010).
    [Crossref]
  28. L. Yin, Q. Lin, and G. P. Agrawal, “Soliton fission and supercontinuum generation in silicon waveguides,” Opt. Lett. 32, 391–393 (2007).
    [Crossref]
  29. L. L. Lee, D. R. Lim, L. C. Kimerling, J. Shin, and C. Franco, “Fabrication of ultralow-loss Si/SiO2 waveguides by roughness reduction,” Opt. Lett. 26, 1888–1890 (2001).
    [Crossref]
  30. D. K. Sparacin, S. J. Spector, and L. C. Kimerling, “Silicon waveguide sidewall smoothing by wet chemical oxidation,” J. Lightwave Technol. 23, 2455–2461 (2005).
    [Crossref]
  31. M. Borselli, T. J. Johnson, and O. Painter, “Measuring the role of surface chemistry in silicon microphotonics,” Appl. Phys. Lett. 88, 131114 (2006).
    [Crossref]
  32. P. O. Pronko, P. A. VanRompay, C. Horvath, F. Loesel, T. Juhasz, X. Liu, and G. Mourou, “Avalanche ionization and dielectric breakdown in silicon with ultrafast laser pulses,” Phys. Rev. B 58, 2387–2390 (1998).
    [Crossref]
  33. A. Vaidyanathan, T. Walker, and A. H. Guenther, “The relative roles of avalanche multiplication and multiphoton absorption in laser-induced damage of dielectrics,” IEEE J. Sel. Top. Quantum Electron. 16, 89–93 (1980).
    [Crossref]
  34. S. Afshar and T. M. Monro, “A full vectorial model for pulse propagation in emerging waveguides with subwavelength structures part I: Kerr nonlinearity,” Opt. Express 17, 2298–2318 (2009).
    [Crossref]
  35. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
    [Crossref]
  36. A. Major, F. Yoshino, I. Nikolakakos, J. S. Aitchison, and P. W. E. Smith, “Dispersion of the nonlinear refractive index in sapphire,” Opt. Lett. 29, 602–604 (2004).
    [Crossref]
  37. A. Husakou and J. Herrmann, “Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers,” Phys. Rev. Lett. 87, 203901 (2001).
    [Crossref]
  38. J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn, “Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers,” Phys. Rev. Lett. 88, 173901 (2002).
    [Crossref]
  39. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2012), Chap. 12.
  40. M. Pradhan, R. Garg, and M. Arora, “Multiphonon infrared absorption in silicon,” Phys. Rev. Lett. 27, 25–30 (1987).
  41. J. M. Dudley and S. Coen, “Coherence properties of supercontinuum spectra generated in photonic crystal and tapered optical fibers,” Opt. Lett. 27, 1180–1182 (2002).
    [Crossref]
  42. J. I. Dadap, N. C. Panoiu, X. Chen, I. W. Hsieh, X. Liu, C. Y. Chou, E. Dulkeith, S. J. McNab, F. Xia, W. M. J. Green, L. Sekaric, Y. A. Vlasov, and R. M. Osgood, “Nonlinear-optical phase modification in dispersion-engineered Si photonic wires,” Opt. Express 16, 1280–1299 (2008).
    [Crossref]
  43. Z. Cheng, X. Chen, C. Y. Wong, K. Xu, and H. K. Sang, “Mid-infrared suspended membrane waveguide and ring resonator on silicon-on-insulator,” IEEE Photon. Technol. Lett. 4, 1510–1519 (2012).
    [Crossref]
  44. N. Singh, D. D. Hudson, and B. J. Eggleton, “Silicon-on-sapphire pillar waveguides for Mid-IR supercontinuum generation,” Opt. Express 23, 17345–17354 (2015).
  45. Y. H. Lo, R. J. Deri, J. Harbison, B. J. Skromme, M. Seto, D. M. Hwang, and T. P. Lee, “GaAs-on-InP heteroepitaxial waveguides grown by molecular beam epitaxy,” Appl. Phys. Lett. 53, 1242–1244 (1988).
    [Crossref]

2015 (3)

B. Kuyken, T. Ideguchi, S. Holzner, M. Yan, T. W. Hansch, J. V. Campenhout, P. Verheyen, S. Coen, F. Leo, R. Baets, G. Roelkens, and N. Picque, “An octave-spanning mid-infrared frequency comb generated in a silicon nanophotonic wire waveguide,” Nat. Commun. 6, 6310 (2015).
[Crossref]

A. G. Griffith, R. K. W. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. Yu, C. T. Phare, C. B. Poitras, A. L. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 6299 (2015).
[Crossref]

N. Singh, D. D. Hudson, and B. J. Eggleton, “Silicon-on-sapphire pillar waveguides for Mid-IR supercontinuum generation,” Opt. Express 23, 17345–17354 (2015).

2014 (5)

M. Brun, P. Labeye, G. Grand, J. M. Hartmann, F. Boulila, M. Carras, and S. Nicoletti, “Low loss SiGe graded index waveguides in mid-IR application,” Opt. Express 22, 508–518 (2014).
[Crossref]

R. K. W. Lau, M. R. E. Lamont, A. G. Griffith, Y. Okawachi, M. Lipson, and A. L. Gaeta, “Octave-spanning mid infrared supercontinuum generation in silicon nanowaveguides,” Opt. Lett. 39, 4518–4521 (2014).
[Crossref]

C. R. Petersen, U. Moller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. A. Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3  μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Y. Yu, X. Gai, P. Ma, D.-Y. Choi, Z. Yang, R. Wang, S. Debbarma, S. J. Madden, and B. Luther-Davies, “A broadband, quasi-continuous, mid-infrared supercontinuum generated in a chalcogenide glass waveguide,” Laser Photon. Rev. 8, 792–798 (2014).
[Crossref]

Y. Zou, H. Subbaraman, S. Chakravarty, X. Xu, A. Hosseini, W. C. Lai, P. Wray, and R. T. Chen, “Grating-coupled silicon-on-sapphire integrated slot waveguides operating at mid-infrared wavelengths,” Opt. Lett. 39, 3070–3073 (2014).
[Crossref]

2013 (3)

R. J. Shankar, B. Irfan, and M. Loncar, “Integrated high-quality factor silicon-on-sapphire ring resonators for the mid-infrared,” Appl. Phys. Lett. 102, 051108 (2013).
[Crossref]

X. Gai, Y. Yu, B. Kuyken, P. Ma, S. J. Madden, J. V. Campenhout, P. Verheyen, G. Roelkens, R. Baets, and B. L. Davies, “Nonlinear absorption and refraction in crystalline silicon in the mid-infrared,” Laser Photon. Rev. 7, 1054–1064 (2013).
[Crossref]

T. Wang, N. Venkatram, J. Gosciniak, Y. Cui, G. Qian, W. Ji, and D. T. H. Tan, “Multi-photon absorption and third-order nonlinearity in silicon at mid-infrared wavelengths,” Opt. Express 21, 32192–32198 (2013).
[Crossref]

2012 (2)

C. Y. Wong, Z. Cheng, X. Chen, K. Ku, C. K. Y. Fung, Y. M. Chen, and H. K. Tsang, “Characterization of mid-infrared silicon-on-sapphire microring resonators with thermal tuning,” IEEE Photon. J. 4, 1095–1102 (2012).
[Crossref]

Z. Cheng, X. Chen, C. Y. Wong, K. Xu, and H. K. Sang, “Mid-infrared suspended membrane waveguide and ring resonator on silicon-on-insulator,” IEEE Photon. Technol. Lett. 4, 1510–1519 (2012).
[Crossref]

2011 (4)

F. Li, S. D. Jackson, C. Grillet, E. Magi, D. Hudson, S. J. Madden, Y. Moghe, C. O’Brien, A. Read, S. G. Duvall, P. Atanackovic, B. J. Eggleton, and D. J. Moss, “Low propagation loss silicon-on-sapphire waveguides for the mid-infrared,” Opt. Express 19, 15212–15220 (2011).
[Crossref]

M. J. R. Heck, H. W. Chen, A. W. Fang, B. R. Koch, D. Lang, M. N. Sysak, and J. E. Bowers, “Hybrid silicon photonics for optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 17, 333–346 (2011).
[Crossref]

A. B. Redondo, C. Husko, D. Eades, Y. Zhang, J. Li, T. F. Krauss, and B. J. Eggleton, “Observation of soliton compression in silicon photonic crystals,” Nat. Commun. 5, 3160 (2011).

B. Kuyken, X. Liu, R. M. Osgood, R. Baets, G. Roelkens, and W. M. J. Green, “Mid-infrared to telecom-band supercontinuum generation in highly nonlinear silicon-on-insulator wire waveguides,” Opt. Express 19, 20172–20181 (2011).
[Crossref]

2010 (5)

X. Liu, R. M. Osgood, Y. A. Vlasov, and W. M. J. Green, “Mid-infrared optical parametric amplifier using silicon nanophotonic waveguides,” Nat. Photonics 4, 557–560 (2010).
[Crossref]

S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photonics 4, 561–564 (2010).
[Crossref]

T. B. Jones, A. Spott, R. Ilic, A. Spott, B. Penkov, W. Asher, and M. Hochberg, “Silicon-on-sapphire integrated waveguides for the mid-infrared,” Opt. Express 18, 12127–12135 (2010).
[Crossref]

A. L. Spott, Y. Liu, T. B. Jones, R. Ilic, and M. Hochberg, “Silicon waveguides and ring resonators at 5.5  μm,” Appl. Phys. Lett. 97, 213501 (2010).
[Crossref]

R. Soref, “Mid-infrared photonics in silicon and germanium,” Nat. Photonics 4, 495–497 (2010).
[Crossref]

2009 (2)

S. Afshar and T. M. Monro, “A full vectorial model for pulse propagation in emerging waveguides with subwavelength structures part I: Kerr nonlinearity,” Opt. Express 17, 2298–2318 (2009).
[Crossref]

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3, 216–219 (2009).
[Crossref]

2008 (2)

2007 (1)

2006 (6)

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[Crossref]

M. Borselli, T. J. Johnson, and O. Painter, “Measuring the role of surface chemistry in silicon microphotonics,” Appl. Phys. Lett. 88, 131114 (2006).
[Crossref]

B. Jalali and S. Fathpour, “Silicon photonics,” J. Lightwave Technol. 24, 4600–4615 (2006).
[Crossref]

Q. Lin and G. P. Agrawal, “A silicon waveguides for creating quantum-correlated photon pairs,” Opt. Lett. 31, 3140–3142 (2006).
[Crossref]

J. E. Sharping, K. F. Lee, M. A. Foster, A. C. Turner, B. S. Schmidt, M. Lipson, A. L. Gaeta, and P. Kumar, “Generation of correlated photons in nanoscale silicon waveguides,” Opt. Express 14, 12388–12393 (2006).
[Crossref]

R. A. Soref, S. J. Emelett, and W. R. Buchwald, “Silicon waveguided components for the long-wave infrared region,” J. Opt. A 8, 840–848 (2006).
[Crossref]

2005 (1)

2004 (1)

2002 (2)

J. M. Dudley and S. Coen, “Coherence properties of supercontinuum spectra generated in photonic crystal and tapered optical fibers,” Opt. Lett. 27, 1180–1182 (2002).
[Crossref]

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn, “Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers,” Phys. Rev. Lett. 88, 173901 (2002).
[Crossref]

2001 (2)

A. Husakou and J. Herrmann, “Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers,” Phys. Rev. Lett. 87, 203901 (2001).
[Crossref]

L. L. Lee, D. R. Lim, L. C. Kimerling, J. Shin, and C. Franco, “Fabrication of ultralow-loss Si/SiO2 waveguides by roughness reduction,” Opt. Lett. 26, 1888–1890 (2001).
[Crossref]

1998 (1)

P. O. Pronko, P. A. VanRompay, C. Horvath, F. Loesel, T. Juhasz, X. Liu, and G. Mourou, “Avalanche ionization and dielectric breakdown in silicon with ultrafast laser pulses,” Phys. Rev. B 58, 2387–2390 (1998).
[Crossref]

1988 (1)

Y. H. Lo, R. J. Deri, J. Harbison, B. J. Skromme, M. Seto, D. M. Hwang, and T. P. Lee, “GaAs-on-InP heteroepitaxial waveguides grown by molecular beam epitaxy,” Appl. Phys. Lett. 53, 1242–1244 (1988).
[Crossref]

1987 (1)

M. Pradhan, R. Garg, and M. Arora, “Multiphonon infrared absorption in silicon,” Phys. Rev. Lett. 27, 25–30 (1987).

1980 (1)

A. Vaidyanathan, T. Walker, and A. H. Guenther, “The relative roles of avalanche multiplication and multiphoton absorption in laser-induced damage of dielectrics,” IEEE J. Sel. Top. Quantum Electron. 16, 89–93 (1980).
[Crossref]

Afshar, S.

Agrawal, G. P.

Aitchison, J. S.

Alic, N.

S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photonics 4, 561–564 (2010).
[Crossref]

Arora, M.

M. Pradhan, R. Garg, and M. Arora, “Multiphonon infrared absorption in silicon,” Phys. Rev. Lett. 27, 25–30 (1987).

Asher, W.

Atanackovic, P.

Baets, R.

B. Kuyken, T. Ideguchi, S. Holzner, M. Yan, T. W. Hansch, J. V. Campenhout, P. Verheyen, S. Coen, F. Leo, R. Baets, G. Roelkens, and N. Picque, “An octave-spanning mid-infrared frequency comb generated in a silicon nanophotonic wire waveguide,” Nat. Commun. 6, 6310 (2015).
[Crossref]

X. Gai, Y. Yu, B. Kuyken, P. Ma, S. J. Madden, J. V. Campenhout, P. Verheyen, G. Roelkens, R. Baets, and B. L. Davies, “Nonlinear absorption and refraction in crystalline silicon in the mid-infrared,” Laser Photon. Rev. 7, 1054–1064 (2013).
[Crossref]

B. Kuyken, X. Liu, R. M. Osgood, R. Baets, G. Roelkens, and W. M. J. Green, “Mid-infrared to telecom-band supercontinuum generation in highly nonlinear silicon-on-insulator wire waveguides,” Opt. Express 19, 20172–20181 (2011).
[Crossref]

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3, 216–219 (2009).
[Crossref]

Bang, O.

C. R. Petersen, U. Moller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. A. Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3  μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Benson, T.

C. R. Petersen, U. Moller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. A. Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3  μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Biaggio, I.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3, 216–219 (2009).
[Crossref]

Bogaerts, W.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3, 216–219 (2009).
[Crossref]

Boggio, J. M. C.

S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photonics 4, 561–564 (2010).
[Crossref]

Borselli, M.

M. Borselli, T. J. Johnson, and O. Painter, “Measuring the role of surface chemistry in silicon microphotonics,” Appl. Phys. Lett. 88, 131114 (2006).
[Crossref]

Boulila, F.

Bowers, J. E.

M. J. R. Heck, H. W. Chen, A. W. Fang, B. R. Koch, D. Lang, M. N. Sysak, and J. E. Bowers, “Hybrid silicon photonics for optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 17, 333–346 (2011).
[Crossref]

Brun, M.

Buchwald, W. R.

R. A. Soref, S. J. Emelett, and W. R. Buchwald, “Silicon waveguided components for the long-wave infrared region,” J. Opt. A 8, 840–848 (2006).
[Crossref]

Campenhout, J. V.

B. Kuyken, T. Ideguchi, S. Holzner, M. Yan, T. W. Hansch, J. V. Campenhout, P. Verheyen, S. Coen, F. Leo, R. Baets, G. Roelkens, and N. Picque, “An octave-spanning mid-infrared frequency comb generated in a silicon nanophotonic wire waveguide,” Nat. Commun. 6, 6310 (2015).
[Crossref]

X. Gai, Y. Yu, B. Kuyken, P. Ma, S. J. Madden, J. V. Campenhout, P. Verheyen, G. Roelkens, R. Baets, and B. L. Davies, “Nonlinear absorption and refraction in crystalline silicon in the mid-infrared,” Laser Photon. Rev. 7, 1054–1064 (2013).
[Crossref]

Cardenas, J.

A. G. Griffith, R. K. W. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. Yu, C. T. Phare, C. B. Poitras, A. L. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 6299 (2015).
[Crossref]

Carras, M.

Chakravarty, S.

Chen, H. W.

M. J. R. Heck, H. W. Chen, A. W. Fang, B. R. Koch, D. Lang, M. N. Sysak, and J. E. Bowers, “Hybrid silicon photonics for optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 17, 333–346 (2011).
[Crossref]

Chen, R. T.

Chen, X.

Z. Cheng, X. Chen, C. Y. Wong, K. Xu, and H. K. Sang, “Mid-infrared suspended membrane waveguide and ring resonator on silicon-on-insulator,” IEEE Photon. Technol. Lett. 4, 1510–1519 (2012).
[Crossref]

C. Y. Wong, Z. Cheng, X. Chen, K. Ku, C. K. Y. Fung, Y. M. Chen, and H. K. Tsang, “Characterization of mid-infrared silicon-on-sapphire microring resonators with thermal tuning,” IEEE Photon. J. 4, 1095–1102 (2012).
[Crossref]

J. I. Dadap, N. C. Panoiu, X. Chen, I. W. Hsieh, X. Liu, C. Y. Chou, E. Dulkeith, S. J. McNab, F. Xia, W. M. J. Green, L. Sekaric, Y. A. Vlasov, and R. M. Osgood, “Nonlinear-optical phase modification in dispersion-engineered Si photonic wires,” Opt. Express 16, 1280–1299 (2008).
[Crossref]

Chen, Y. M.

C. Y. Wong, Z. Cheng, X. Chen, K. Ku, C. K. Y. Fung, Y. M. Chen, and H. K. Tsang, “Characterization of mid-infrared silicon-on-sapphire microring resonators with thermal tuning,” IEEE Photon. J. 4, 1095–1102 (2012).
[Crossref]

Cheng, Z.

Z. Cheng, X. Chen, C. Y. Wong, K. Xu, and H. K. Sang, “Mid-infrared suspended membrane waveguide and ring resonator on silicon-on-insulator,” IEEE Photon. Technol. Lett. 4, 1510–1519 (2012).
[Crossref]

C. Y. Wong, Z. Cheng, X. Chen, K. Ku, C. K. Y. Fung, Y. M. Chen, and H. K. Tsang, “Characterization of mid-infrared silicon-on-sapphire microring resonators with thermal tuning,” IEEE Photon. J. 4, 1095–1102 (2012).
[Crossref]

Choi, D.-Y.

Y. Yu, X. Gai, P. Ma, D.-Y. Choi, Z. Yang, R. Wang, S. Debbarma, S. J. Madden, and B. Luther-Davies, “A broadband, quasi-continuous, mid-infrared supercontinuum generated in a chalcogenide glass waveguide,” Laser Photon. Rev. 8, 792–798 (2014).
[Crossref]

Chou, C. Y.

Coen, S.

B. Kuyken, T. Ideguchi, S. Holzner, M. Yan, T. W. Hansch, J. V. Campenhout, P. Verheyen, S. Coen, F. Leo, R. Baets, G. Roelkens, and N. Picque, “An octave-spanning mid-infrared frequency comb generated in a silicon nanophotonic wire waveguide,” Nat. Commun. 6, 6310 (2015).
[Crossref]

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[Crossref]

J. M. Dudley and S. Coen, “Coherence properties of supercontinuum spectra generated in photonic crystal and tapered optical fibers,” Opt. Lett. 27, 1180–1182 (2002).
[Crossref]

Cui, Y.

Dadap, J. I.

Davies, B. L.

X. Gai, Y. Yu, B. Kuyken, P. Ma, S. J. Madden, J. V. Campenhout, P. Verheyen, G. Roelkens, R. Baets, and B. L. Davies, “Nonlinear absorption and refraction in crystalline silicon in the mid-infrared,” Laser Photon. Rev. 7, 1054–1064 (2013).
[Crossref]

Debbarma, S.

Y. Yu, X. Gai, P. Ma, D.-Y. Choi, Z. Yang, R. Wang, S. Debbarma, S. J. Madden, and B. Luther-Davies, “A broadband, quasi-continuous, mid-infrared supercontinuum generated in a chalcogenide glass waveguide,” Laser Photon. Rev. 8, 792–798 (2014).
[Crossref]

Deri, R. J.

Y. H. Lo, R. J. Deri, J. Harbison, B. J. Skromme, M. Seto, D. M. Hwang, and T. P. Lee, “GaAs-on-InP heteroepitaxial waveguides grown by molecular beam epitaxy,” Appl. Phys. Lett. 53, 1242–1244 (1988).
[Crossref]

Diederich, F.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3, 216–219 (2009).
[Crossref]

Divliansky, I. B.

S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photonics 4, 561–564 (2010).
[Crossref]

Dudley, J. M.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[Crossref]

J. M. Dudley and S. Coen, “Coherence properties of supercontinuum spectra generated in photonic crystal and tapered optical fibers,” Opt. Lett. 27, 1180–1182 (2002).
[Crossref]

Dulkeith, E.

Dumon, P.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3, 216–219 (2009).
[Crossref]

Dupont, S.

C. R. Petersen, U. Moller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. A. Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3  μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Duvall, S. G.

Eades, D.

A. B. Redondo, C. Husko, D. Eades, Y. Zhang, J. Li, T. F. Krauss, and B. J. Eggleton, “Observation of soliton compression in silicon photonic crystals,” Nat. Commun. 5, 3160 (2011).

Eggleton, B. J.

Emelett, S. J.

R. A. Soref, S. J. Emelett, and W. R. Buchwald, “Silicon waveguided components for the long-wave infrared region,” J. Opt. A 8, 840–848 (2006).
[Crossref]

Esembeson, B.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3, 216–219 (2009).
[Crossref]

Fain, R.

A. G. Griffith, R. K. W. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. Yu, C. T. Phare, C. B. Poitras, A. L. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 6299 (2015).
[Crossref]

Fang, A. W.

M. J. R. Heck, H. W. Chen, A. W. Fang, B. R. Koch, D. Lang, M. N. Sysak, and J. E. Bowers, “Hybrid silicon photonics for optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 17, 333–346 (2011).
[Crossref]

Fathpour, S.

Foster, M. A.

Franco, C.

Freude, W.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3, 216–219 (2009).
[Crossref]

Fung, C. K. Y.

C. Y. Wong, Z. Cheng, X. Chen, K. Ku, C. K. Y. Fung, Y. M. Chen, and H. K. Tsang, “Characterization of mid-infrared silicon-on-sapphire microring resonators with thermal tuning,” IEEE Photon. J. 4, 1095–1102 (2012).
[Crossref]

Furniss, D.

C. R. Petersen, U. Moller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. A. Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3  μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Gaeta, A. L.

Gai, X.

Y. Yu, X. Gai, P. Ma, D.-Y. Choi, Z. Yang, R. Wang, S. Debbarma, S. J. Madden, and B. Luther-Davies, “A broadband, quasi-continuous, mid-infrared supercontinuum generated in a chalcogenide glass waveguide,” Laser Photon. Rev. 8, 792–798 (2014).
[Crossref]

X. Gai, Y. Yu, B. Kuyken, P. Ma, S. J. Madden, J. V. Campenhout, P. Verheyen, G. Roelkens, R. Baets, and B. L. Davies, “Nonlinear absorption and refraction in crystalline silicon in the mid-infrared,” Laser Photon. Rev. 7, 1054–1064 (2013).
[Crossref]

Garg, R.

M. Pradhan, R. Garg, and M. Arora, “Multiphonon infrared absorption in silicon,” Phys. Rev. Lett. 27, 25–30 (1987).

Genty, G.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[Crossref]

Gosciniak, J.

Grand, G.

Green, W. M. J.

Griebner, U.

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn, “Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers,” Phys. Rev. Lett. 88, 173901 (2002).
[Crossref]

Griffith, A. G.

A. G. Griffith, R. K. W. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. Yu, C. T. Phare, C. B. Poitras, A. L. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 6299 (2015).
[Crossref]

R. K. W. Lau, M. R. E. Lamont, A. G. Griffith, Y. Okawachi, M. Lipson, and A. L. Gaeta, “Octave-spanning mid infrared supercontinuum generation in silicon nanowaveguides,” Opt. Lett. 39, 4518–4521 (2014).
[Crossref]

Grillet, C.

Guenther, A. H.

A. Vaidyanathan, T. Walker, and A. H. Guenther, “The relative roles of avalanche multiplication and multiphoton absorption in laser-induced damage of dielectrics,” IEEE J. Sel. Top. Quantum Electron. 16, 89–93 (1980).
[Crossref]

Hansch, T. W.

B. Kuyken, T. Ideguchi, S. Holzner, M. Yan, T. W. Hansch, J. V. Campenhout, P. Verheyen, S. Coen, F. Leo, R. Baets, G. Roelkens, and N. Picque, “An octave-spanning mid-infrared frequency comb generated in a silicon nanophotonic wire waveguide,” Nat. Commun. 6, 6310 (2015).
[Crossref]

Harbison, J.

Y. H. Lo, R. J. Deri, J. Harbison, B. J. Skromme, M. Seto, D. M. Hwang, and T. P. Lee, “GaAs-on-InP heteroepitaxial waveguides grown by molecular beam epitaxy,” Appl. Phys. Lett. 53, 1242–1244 (1988).
[Crossref]

Hartmann, J. M.

Heck, M. J. R.

M. J. R. Heck, H. W. Chen, A. W. Fang, B. R. Koch, D. Lang, M. N. Sysak, and J. E. Bowers, “Hybrid silicon photonics for optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 17, 333–346 (2011).
[Crossref]

Herrmann, J.

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn, “Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers,” Phys. Rev. Lett. 88, 173901 (2002).
[Crossref]

A. Husakou and J. Herrmann, “Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers,” Phys. Rev. Lett. 87, 203901 (2001).
[Crossref]

Hochberg, M.

A. L. Spott, Y. Liu, T. B. Jones, R. Ilic, and M. Hochberg, “Silicon waveguides and ring resonators at 5.5  μm,” Appl. Phys. Lett. 97, 213501 (2010).
[Crossref]

T. B. Jones, A. Spott, R. Ilic, A. Spott, B. Penkov, W. Asher, and M. Hochberg, “Silicon-on-sapphire integrated waveguides for the mid-infrared,” Opt. Express 18, 12127–12135 (2010).
[Crossref]

Holzner, S.

B. Kuyken, T. Ideguchi, S. Holzner, M. Yan, T. W. Hansch, J. V. Campenhout, P. Verheyen, S. Coen, F. Leo, R. Baets, G. Roelkens, and N. Picque, “An octave-spanning mid-infrared frequency comb generated in a silicon nanophotonic wire waveguide,” Nat. Commun. 6, 6310 (2015).
[Crossref]

Horvath, C.

P. O. Pronko, P. A. VanRompay, C. Horvath, F. Loesel, T. Juhasz, X. Liu, and G. Mourou, “Avalanche ionization and dielectric breakdown in silicon with ultrafast laser pulses,” Phys. Rev. B 58, 2387–2390 (1998).
[Crossref]

Hosseini, A.

Hsieh, I. W.

Hudson, D.

Hudson, D. D.

Husakou, A.

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn, “Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers,” Phys. Rev. Lett. 88, 173901 (2002).
[Crossref]

A. Husakou and J. Herrmann, “Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers,” Phys. Rev. Lett. 87, 203901 (2001).
[Crossref]

Husko, C.

A. B. Redondo, C. Husko, D. Eades, Y. Zhang, J. Li, T. F. Krauss, and B. J. Eggleton, “Observation of soliton compression in silicon photonic crystals,” Nat. Commun. 5, 3160 (2011).

Hwang, D. M.

Y. H. Lo, R. J. Deri, J. Harbison, B. J. Skromme, M. Seto, D. M. Hwang, and T. P. Lee, “GaAs-on-InP heteroepitaxial waveguides grown by molecular beam epitaxy,” Appl. Phys. Lett. 53, 1242–1244 (1988).
[Crossref]

Ideguchi, T.

B. Kuyken, T. Ideguchi, S. Holzner, M. Yan, T. W. Hansch, J. V. Campenhout, P. Verheyen, S. Coen, F. Leo, R. Baets, G. Roelkens, and N. Picque, “An octave-spanning mid-infrared frequency comb generated in a silicon nanophotonic wire waveguide,” Nat. Commun. 6, 6310 (2015).
[Crossref]

Ilic, R.

T. B. Jones, A. Spott, R. Ilic, A. Spott, B. Penkov, W. Asher, and M. Hochberg, “Silicon-on-sapphire integrated waveguides for the mid-infrared,” Opt. Express 18, 12127–12135 (2010).
[Crossref]

A. L. Spott, Y. Liu, T. B. Jones, R. Ilic, and M. Hochberg, “Silicon waveguides and ring resonators at 5.5  μm,” Appl. Phys. Lett. 97, 213501 (2010).
[Crossref]

Imthurn, G.

G. Imthurn, “The History of Silicon-on-Sapphire,” Peregrine Semiconductor white paper, 2006.

Irfan, B.

R. J. Shankar, B. Irfan, and M. Loncar, “Integrated high-quality factor silicon-on-sapphire ring resonators for the mid-infrared,” Appl. Phys. Lett. 102, 051108 (2013).
[Crossref]

Jackson, S. D.

Jalali, B.

Ji, W.

Johnson, T. J.

M. Borselli, T. J. Johnson, and O. Painter, “Measuring the role of surface chemistry in silicon microphotonics,” Appl. Phys. Lett. 88, 131114 (2006).
[Crossref]

Jones, T. B.

A. L. Spott, Y. Liu, T. B. Jones, R. Ilic, and M. Hochberg, “Silicon waveguides and ring resonators at 5.5  μm,” Appl. Phys. Lett. 97, 213501 (2010).
[Crossref]

T. B. Jones, A. Spott, R. Ilic, A. Spott, B. Penkov, W. Asher, and M. Hochberg, “Silicon-on-sapphire integrated waveguides for the mid-infrared,” Opt. Express 18, 12127–12135 (2010).
[Crossref]

Juhasz, T.

P. O. Pronko, P. A. VanRompay, C. Horvath, F. Loesel, T. Juhasz, X. Liu, and G. Mourou, “Avalanche ionization and dielectric breakdown in silicon with ultrafast laser pulses,” Phys. Rev. B 58, 2387–2390 (1998).
[Crossref]

Kimerling, L. C.

Knight, J. C.

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn, “Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers,” Phys. Rev. Lett. 88, 173901 (2002).
[Crossref]

Koch, B. R.

M. J. R. Heck, H. W. Chen, A. W. Fang, B. R. Koch, D. Lang, M. N. Sysak, and J. E. Bowers, “Hybrid silicon photonics for optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 17, 333–346 (2011).
[Crossref]

Koos, C.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3, 216–219 (2009).
[Crossref]

Korn, G.

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn, “Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers,” Phys. Rev. Lett. 88, 173901 (2002).
[Crossref]

Krauss, T. F.

A. B. Redondo, C. Husko, D. Eades, Y. Zhang, J. Li, T. F. Krauss, and B. J. Eggleton, “Observation of soliton compression in silicon photonic crystals,” Nat. Commun. 5, 3160 (2011).

Ku, K.

C. Y. Wong, Z. Cheng, X. Chen, K. Ku, C. K. Y. Fung, Y. M. Chen, and H. K. Tsang, “Characterization of mid-infrared silicon-on-sapphire microring resonators with thermal tuning,” IEEE Photon. J. 4, 1095–1102 (2012).
[Crossref]

Kubat, I.

C. R. Petersen, U. Moller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. A. Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3  μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Kumar, P.

Kuyken, B.

B. Kuyken, T. Ideguchi, S. Holzner, M. Yan, T. W. Hansch, J. V. Campenhout, P. Verheyen, S. Coen, F. Leo, R. Baets, G. Roelkens, and N. Picque, “An octave-spanning mid-infrared frequency comb generated in a silicon nanophotonic wire waveguide,” Nat. Commun. 6, 6310 (2015).
[Crossref]

X. Gai, Y. Yu, B. Kuyken, P. Ma, S. J. Madden, J. V. Campenhout, P. Verheyen, G. Roelkens, R. Baets, and B. L. Davies, “Nonlinear absorption and refraction in crystalline silicon in the mid-infrared,” Laser Photon. Rev. 7, 1054–1064 (2013).
[Crossref]

B. Kuyken, X. Liu, R. M. Osgood, R. Baets, G. Roelkens, and W. M. J. Green, “Mid-infrared to telecom-band supercontinuum generation in highly nonlinear silicon-on-insulator wire waveguides,” Opt. Express 19, 20172–20181 (2011).
[Crossref]

Labeye, P.

Lai, W. C.

Lamont, M. R. E.

Lang, D.

M. J. R. Heck, H. W. Chen, A. W. Fang, B. R. Koch, D. Lang, M. N. Sysak, and J. E. Bowers, “Hybrid silicon photonics for optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 17, 333–346 (2011).
[Crossref]

Lau, R. K. W.

A. G. Griffith, R. K. W. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. Yu, C. T. Phare, C. B. Poitras, A. L. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 6299 (2015).
[Crossref]

R. K. W. Lau, M. R. E. Lamont, A. G. Griffith, Y. Okawachi, M. Lipson, and A. L. Gaeta, “Octave-spanning mid infrared supercontinuum generation in silicon nanowaveguides,” Opt. Lett. 39, 4518–4521 (2014).
[Crossref]

Lee, K. F.

Lee, L. L.

Lee, T. P.

Y. H. Lo, R. J. Deri, J. Harbison, B. J. Skromme, M. Seto, D. M. Hwang, and T. P. Lee, “GaAs-on-InP heteroepitaxial waveguides grown by molecular beam epitaxy,” Appl. Phys. Lett. 53, 1242–1244 (1988).
[Crossref]

Lee, Y. H. D.

A. G. Griffith, R. K. W. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. Yu, C. T. Phare, C. B. Poitras, A. L. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 6299 (2015).
[Crossref]

Leo, F.

B. Kuyken, T. Ideguchi, S. Holzner, M. Yan, T. W. Hansch, J. V. Campenhout, P. Verheyen, S. Coen, F. Leo, R. Baets, G. Roelkens, and N. Picque, “An octave-spanning mid-infrared frequency comb generated in a silicon nanophotonic wire waveguide,” Nat. Commun. 6, 6310 (2015).
[Crossref]

Leuthold, J.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3, 216–219 (2009).
[Crossref]

Li, F.

Li, J.

A. B. Redondo, C. Husko, D. Eades, Y. Zhang, J. Li, T. F. Krauss, and B. J. Eggleton, “Observation of soliton compression in silicon photonic crystals,” Nat. Commun. 5, 3160 (2011).

Lim, D. R.

Lin, Q.

Lipson, M.

Liu, X.

B. Kuyken, X. Liu, R. M. Osgood, R. Baets, G. Roelkens, and W. M. J. Green, “Mid-infrared to telecom-band supercontinuum generation in highly nonlinear silicon-on-insulator wire waveguides,” Opt. Express 19, 20172–20181 (2011).
[Crossref]

X. Liu, R. M. Osgood, Y. A. Vlasov, and W. M. J. Green, “Mid-infrared optical parametric amplifier using silicon nanophotonic waveguides,” Nat. Photonics 4, 557–560 (2010).
[Crossref]

J. I. Dadap, N. C. Panoiu, X. Chen, I. W. Hsieh, X. Liu, C. Y. Chou, E. Dulkeith, S. J. McNab, F. Xia, W. M. J. Green, L. Sekaric, Y. A. Vlasov, and R. M. Osgood, “Nonlinear-optical phase modification in dispersion-engineered Si photonic wires,” Opt. Express 16, 1280–1299 (2008).
[Crossref]

P. O. Pronko, P. A. VanRompay, C. Horvath, F. Loesel, T. Juhasz, X. Liu, and G. Mourou, “Avalanche ionization and dielectric breakdown in silicon with ultrafast laser pulses,” Phys. Rev. B 58, 2387–2390 (1998).
[Crossref]

Liu, Y.

A. L. Spott, Y. Liu, T. B. Jones, R. Ilic, and M. Hochberg, “Silicon waveguides and ring resonators at 5.5  μm,” Appl. Phys. Lett. 97, 213501 (2010).
[Crossref]

Lo, Y. H.

Y. H. Lo, R. J. Deri, J. Harbison, B. J. Skromme, M. Seto, D. M. Hwang, and T. P. Lee, “GaAs-on-InP heteroepitaxial waveguides grown by molecular beam epitaxy,” Appl. Phys. Lett. 53, 1242–1244 (1988).
[Crossref]

Loesel, F.

P. O. Pronko, P. A. VanRompay, C. Horvath, F. Loesel, T. Juhasz, X. Liu, and G. Mourou, “Avalanche ionization and dielectric breakdown in silicon with ultrafast laser pulses,” Phys. Rev. B 58, 2387–2390 (1998).
[Crossref]

Loncar, M.

R. J. Shankar, B. Irfan, and M. Loncar, “Integrated high-quality factor silicon-on-sapphire ring resonators for the mid-infrared,” Appl. Phys. Lett. 102, 051108 (2013).
[Crossref]

Luther-Davies, B.

Y. Yu, X. Gai, P. Ma, D.-Y. Choi, Z. Yang, R. Wang, S. Debbarma, S. J. Madden, and B. Luther-Davies, “A broadband, quasi-continuous, mid-infrared supercontinuum generated in a chalcogenide glass waveguide,” Laser Photon. Rev. 8, 792–798 (2014).
[Crossref]

Ma, P.

Y. Yu, X. Gai, P. Ma, D.-Y. Choi, Z. Yang, R. Wang, S. Debbarma, S. J. Madden, and B. Luther-Davies, “A broadband, quasi-continuous, mid-infrared supercontinuum generated in a chalcogenide glass waveguide,” Laser Photon. Rev. 8, 792–798 (2014).
[Crossref]

X. Gai, Y. Yu, B. Kuyken, P. Ma, S. J. Madden, J. V. Campenhout, P. Verheyen, G. Roelkens, R. Baets, and B. L. Davies, “Nonlinear absorption and refraction in crystalline silicon in the mid-infrared,” Laser Photon. Rev. 7, 1054–1064 (2013).
[Crossref]

Madden, S. J.

Y. Yu, X. Gai, P. Ma, D.-Y. Choi, Z. Yang, R. Wang, S. Debbarma, S. J. Madden, and B. Luther-Davies, “A broadband, quasi-continuous, mid-infrared supercontinuum generated in a chalcogenide glass waveguide,” Laser Photon. Rev. 8, 792–798 (2014).
[Crossref]

X. Gai, Y. Yu, B. Kuyken, P. Ma, S. J. Madden, J. V. Campenhout, P. Verheyen, G. Roelkens, R. Baets, and B. L. Davies, “Nonlinear absorption and refraction in crystalline silicon in the mid-infrared,” Laser Photon. Rev. 7, 1054–1064 (2013).
[Crossref]

F. Li, S. D. Jackson, C. Grillet, E. Magi, D. Hudson, S. J. Madden, Y. Moghe, C. O’Brien, A. Read, S. G. Duvall, P. Atanackovic, B. J. Eggleton, and D. J. Moss, “Low propagation loss silicon-on-sapphire waveguides for the mid-infrared,” Opt. Express 19, 15212–15220 (2011).
[Crossref]

Magi, E.

Major, A.

McNab, S. J.

Michinobu, T.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3, 216–219 (2009).
[Crossref]

Moghe, Y.

Mohanty, A.

A. G. Griffith, R. K. W. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. Yu, C. T. Phare, C. B. Poitras, A. L. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 6299 (2015).
[Crossref]

Moller, U.

C. R. Petersen, U. Moller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. A. Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3  μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Moneim, N. A.

C. R. Petersen, U. Moller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. A. Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3  μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Monro, T. M.

Mookherjea, S.

S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photonics 4, 561–564 (2010).
[Crossref]

Moro, S.

S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photonics 4, 561–564 (2010).
[Crossref]

Moss, D. J.

Mourou, G.

P. O. Pronko, P. A. VanRompay, C. Horvath, F. Loesel, T. Juhasz, X. Liu, and G. Mourou, “Avalanche ionization and dielectric breakdown in silicon with ultrafast laser pulses,” Phys. Rev. B 58, 2387–2390 (1998).
[Crossref]

Nickel, D.

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn, “Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers,” Phys. Rev. Lett. 88, 173901 (2002).
[Crossref]

Nicoletti, S.

Nikolakakos, I.

O’Brien, C.

Okawachi, Y.

A. G. Griffith, R. K. W. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. Yu, C. T. Phare, C. B. Poitras, A. L. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 6299 (2015).
[Crossref]

R. K. W. Lau, M. R. E. Lamont, A. G. Griffith, Y. Okawachi, M. Lipson, and A. L. Gaeta, “Octave-spanning mid infrared supercontinuum generation in silicon nanowaveguides,” Opt. Lett. 39, 4518–4521 (2014).
[Crossref]

Osgood, R. M.

Painter, O.

M. Borselli, T. J. Johnson, and O. Painter, “Measuring the role of surface chemistry in silicon microphotonics,” Appl. Phys. Lett. 88, 131114 (2006).
[Crossref]

Panoiu, N. C.

Park, J. S.

S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photonics 4, 561–564 (2010).
[Crossref]

Pearl, S.

S. Pearl, N. Rotenberg, and H. M. van Driel, “Three photon absorption in silicon for 2300-3300 nm,” Appl. Phys. Lett. 93, 131102 (2008).
[Crossref]

Penkov, B.

Petersen, C. R.

C. R. Petersen, U. Moller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. A. Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3  μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Phare, C. T.

A. G. Griffith, R. K. W. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. Yu, C. T. Phare, C. B. Poitras, A. L. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 6299 (2015).
[Crossref]

Picque, N.

B. Kuyken, T. Ideguchi, S. Holzner, M. Yan, T. W. Hansch, J. V. Campenhout, P. Verheyen, S. Coen, F. Leo, R. Baets, G. Roelkens, and N. Picque, “An octave-spanning mid-infrared frequency comb generated in a silicon nanophotonic wire waveguide,” Nat. Commun. 6, 6310 (2015).
[Crossref]

Poitras, C. B.

A. G. Griffith, R. K. W. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. Yu, C. T. Phare, C. B. Poitras, A. L. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 6299 (2015).
[Crossref]

Pradhan, M.

M. Pradhan, R. Garg, and M. Arora, “Multiphonon infrared absorption in silicon,” Phys. Rev. Lett. 27, 25–30 (1987).

Pronko, P. O.

P. O. Pronko, P. A. VanRompay, C. Horvath, F. Loesel, T. Juhasz, X. Liu, and G. Mourou, “Avalanche ionization and dielectric breakdown in silicon with ultrafast laser pulses,” Phys. Rev. B 58, 2387–2390 (1998).
[Crossref]

Qian, G.

Radic, S.

S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photonics 4, 561–564 (2010).
[Crossref]

Ramsay, J.

C. R. Petersen, U. Moller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. A. Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3  μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Read, A.

Redondo, A. B.

A. B. Redondo, C. Husko, D. Eades, Y. Zhang, J. Li, T. F. Krauss, and B. J. Eggleton, “Observation of soliton compression in silicon photonic crystals,” Nat. Commun. 5, 3160 (2011).

Roelkens, G.

B. Kuyken, T. Ideguchi, S. Holzner, M. Yan, T. W. Hansch, J. V. Campenhout, P. Verheyen, S. Coen, F. Leo, R. Baets, G. Roelkens, and N. Picque, “An octave-spanning mid-infrared frequency comb generated in a silicon nanophotonic wire waveguide,” Nat. Commun. 6, 6310 (2015).
[Crossref]

X. Gai, Y. Yu, B. Kuyken, P. Ma, S. J. Madden, J. V. Campenhout, P. Verheyen, G. Roelkens, R. Baets, and B. L. Davies, “Nonlinear absorption and refraction in crystalline silicon in the mid-infrared,” Laser Photon. Rev. 7, 1054–1064 (2013).
[Crossref]

B. Kuyken, X. Liu, R. M. Osgood, R. Baets, G. Roelkens, and W. M. J. Green, “Mid-infrared to telecom-band supercontinuum generation in highly nonlinear silicon-on-insulator wire waveguides,” Opt. Express 19, 20172–20181 (2011).
[Crossref]

Rotenberg, N.

S. Pearl, N. Rotenberg, and H. M. van Driel, “Three photon absorption in silicon for 2300-3300 nm,” Appl. Phys. Lett. 93, 131102 (2008).
[Crossref]

Russell, P. St. J.

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn, “Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers,” Phys. Rev. Lett. 88, 173901 (2002).
[Crossref]

Sang, H. K.

Z. Cheng, X. Chen, C. Y. Wong, K. Xu, and H. K. Sang, “Mid-infrared suspended membrane waveguide and ring resonator on silicon-on-insulator,” IEEE Photon. Technol. Lett. 4, 1510–1519 (2012).
[Crossref]

Schmidt, B. S.

Seddon, A.

C. R. Petersen, U. Moller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. A. Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3  μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Sekaric, L.

Seto, M.

Y. H. Lo, R. J. Deri, J. Harbison, B. J. Skromme, M. Seto, D. M. Hwang, and T. P. Lee, “GaAs-on-InP heteroepitaxial waveguides grown by molecular beam epitaxy,” Appl. Phys. Lett. 53, 1242–1244 (1988).
[Crossref]

Shankar, R. J.

R. J. Shankar, B. Irfan, and M. Loncar, “Integrated high-quality factor silicon-on-sapphire ring resonators for the mid-infrared,” Appl. Phys. Lett. 102, 051108 (2013).
[Crossref]

Sharping, J. E.

Shin, J.

Singh, N.

Skromme, B. J.

Y. H. Lo, R. J. Deri, J. Harbison, B. J. Skromme, M. Seto, D. M. Hwang, and T. P. Lee, “GaAs-on-InP heteroepitaxial waveguides grown by molecular beam epitaxy,” Appl. Phys. Lett. 53, 1242–1244 (1988).
[Crossref]

Smith, P. W. E.

Soref, R.

R. Soref, “Mid-infrared photonics in silicon and germanium,” Nat. Photonics 4, 495–497 (2010).
[Crossref]

Soref, R. A.

R. A. Soref, S. J. Emelett, and W. R. Buchwald, “Silicon waveguided components for the long-wave infrared region,” J. Opt. A 8, 840–848 (2006).
[Crossref]

Sparacin, D. K.

Spector, S. J.

Spott, A.

Spott, A. L.

A. L. Spott, Y. Liu, T. B. Jones, R. Ilic, and M. Hochberg, “Silicon waveguides and ring resonators at 5.5  μm,” Appl. Phys. Lett. 97, 213501 (2010).
[Crossref]

Subbaraman, H.

Sujecki, S.

C. R. Petersen, U. Moller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. A. Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3  μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Sysak, M. N.

M. J. R. Heck, H. W. Chen, A. W. Fang, B. R. Koch, D. Lang, M. N. Sysak, and J. E. Bowers, “Hybrid silicon photonics for optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 17, 333–346 (2011).
[Crossref]

Tan, D. T. H.

Tang, Z.

C. R. Petersen, U. Moller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. A. Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3  μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Tsang, H. K.

C. Y. Wong, Z. Cheng, X. Chen, K. Ku, C. K. Y. Fung, Y. M. Chen, and H. K. Tsang, “Characterization of mid-infrared silicon-on-sapphire microring resonators with thermal tuning,” IEEE Photon. J. 4, 1095–1102 (2012).
[Crossref]

Turner, A. C.

Vaidyanathan, A.

A. Vaidyanathan, T. Walker, and A. H. Guenther, “The relative roles of avalanche multiplication and multiphoton absorption in laser-induced damage of dielectrics,” IEEE J. Sel. Top. Quantum Electron. 16, 89–93 (1980).
[Crossref]

Vallaitis, T.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3, 216–219 (2009).
[Crossref]

van Driel, H. M.

S. Pearl, N. Rotenberg, and H. M. van Driel, “Three photon absorption in silicon for 2300-3300 nm,” Appl. Phys. Lett. 93, 131102 (2008).
[Crossref]

VanRompay, P. A.

P. O. Pronko, P. A. VanRompay, C. Horvath, F. Loesel, T. Juhasz, X. Liu, and G. Mourou, “Avalanche ionization and dielectric breakdown in silicon with ultrafast laser pulses,” Phys. Rev. B 58, 2387–2390 (1998).
[Crossref]

Venkatram, N.

Verheyen, P.

B. Kuyken, T. Ideguchi, S. Holzner, M. Yan, T. W. Hansch, J. V. Campenhout, P. Verheyen, S. Coen, F. Leo, R. Baets, G. Roelkens, and N. Picque, “An octave-spanning mid-infrared frequency comb generated in a silicon nanophotonic wire waveguide,” Nat. Commun. 6, 6310 (2015).
[Crossref]

X. Gai, Y. Yu, B. Kuyken, P. Ma, S. J. Madden, J. V. Campenhout, P. Verheyen, G. Roelkens, R. Baets, and B. L. Davies, “Nonlinear absorption and refraction in crystalline silicon in the mid-infrared,” Laser Photon. Rev. 7, 1054–1064 (2013).
[Crossref]

Vlasov, Y. A.

Vorreau, P.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3, 216–219 (2009).
[Crossref]

Wadsworth, W. J.

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn, “Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers,” Phys. Rev. Lett. 88, 173901 (2002).
[Crossref]

Walker, T.

A. Vaidyanathan, T. Walker, and A. H. Guenther, “The relative roles of avalanche multiplication and multiphoton absorption in laser-induced damage of dielectrics,” IEEE J. Sel. Top. Quantum Electron. 16, 89–93 (1980).
[Crossref]

Wang, R.

Y. Yu, X. Gai, P. Ma, D.-Y. Choi, Z. Yang, R. Wang, S. Debbarma, S. J. Madden, and B. Luther-Davies, “A broadband, quasi-continuous, mid-infrared supercontinuum generated in a chalcogenide glass waveguide,” Laser Photon. Rev. 8, 792–798 (2014).
[Crossref]

Wang, T.

Wong, C. Y.

Z. Cheng, X. Chen, C. Y. Wong, K. Xu, and H. K. Sang, “Mid-infrared suspended membrane waveguide and ring resonator on silicon-on-insulator,” IEEE Photon. Technol. Lett. 4, 1510–1519 (2012).
[Crossref]

C. Y. Wong, Z. Cheng, X. Chen, K. Ku, C. K. Y. Fung, Y. M. Chen, and H. K. Tsang, “Characterization of mid-infrared silicon-on-sapphire microring resonators with thermal tuning,” IEEE Photon. J. 4, 1095–1102 (2012).
[Crossref]

Wray, P.

Xia, F.

Xu, K.

Z. Cheng, X. Chen, C. Y. Wong, K. Xu, and H. K. Sang, “Mid-infrared suspended membrane waveguide and ring resonator on silicon-on-insulator,” IEEE Photon. Technol. Lett. 4, 1510–1519 (2012).
[Crossref]

Xu, X.

Yan, M.

B. Kuyken, T. Ideguchi, S. Holzner, M. Yan, T. W. Hansch, J. V. Campenhout, P. Verheyen, S. Coen, F. Leo, R. Baets, G. Roelkens, and N. Picque, “An octave-spanning mid-infrared frequency comb generated in a silicon nanophotonic wire waveguide,” Nat. Commun. 6, 6310 (2015).
[Crossref]

Yang, Z.

Y. Yu, X. Gai, P. Ma, D.-Y. Choi, Z. Yang, R. Wang, S. Debbarma, S. J. Madden, and B. Luther-Davies, “A broadband, quasi-continuous, mid-infrared supercontinuum generated in a chalcogenide glass waveguide,” Laser Photon. Rev. 8, 792–798 (2014).
[Crossref]

Yin, L.

Yoshino, F.

Yu, M.

A. G. Griffith, R. K. W. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. Yu, C. T. Phare, C. B. Poitras, A. L. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 6299 (2015).
[Crossref]

Yu, Y.

Y. Yu, X. Gai, P. Ma, D.-Y. Choi, Z. Yang, R. Wang, S. Debbarma, S. J. Madden, and B. Luther-Davies, “A broadband, quasi-continuous, mid-infrared supercontinuum generated in a chalcogenide glass waveguide,” Laser Photon. Rev. 8, 792–798 (2014).
[Crossref]

X. Gai, Y. Yu, B. Kuyken, P. Ma, S. J. Madden, J. V. Campenhout, P. Verheyen, G. Roelkens, R. Baets, and B. L. Davies, “Nonlinear absorption and refraction in crystalline silicon in the mid-infrared,” Laser Photon. Rev. 7, 1054–1064 (2013).
[Crossref]

Zhang, Y.

A. B. Redondo, C. Husko, D. Eades, Y. Zhang, J. Li, T. F. Krauss, and B. J. Eggleton, “Observation of soliton compression in silicon photonic crystals,” Nat. Commun. 5, 3160 (2011).

Zhavoronkov, N.

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn, “Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers,” Phys. Rev. Lett. 88, 173901 (2002).
[Crossref]

Zhou, B.

C. R. Petersen, U. Moller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. A. Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3  μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Zlatanovic, S.

S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photonics 4, 561–564 (2010).
[Crossref]

Zou, Y.

Appl. Phys. Lett. (5)

R. J. Shankar, B. Irfan, and M. Loncar, “Integrated high-quality factor silicon-on-sapphire ring resonators for the mid-infrared,” Appl. Phys. Lett. 102, 051108 (2013).
[Crossref]

A. L. Spott, Y. Liu, T. B. Jones, R. Ilic, and M. Hochberg, “Silicon waveguides and ring resonators at 5.5  μm,” Appl. Phys. Lett. 97, 213501 (2010).
[Crossref]

S. Pearl, N. Rotenberg, and H. M. van Driel, “Three photon absorption in silicon for 2300-3300 nm,” Appl. Phys. Lett. 93, 131102 (2008).
[Crossref]

M. Borselli, T. J. Johnson, and O. Painter, “Measuring the role of surface chemistry in silicon microphotonics,” Appl. Phys. Lett. 88, 131114 (2006).
[Crossref]

Y. H. Lo, R. J. Deri, J. Harbison, B. J. Skromme, M. Seto, D. M. Hwang, and T. P. Lee, “GaAs-on-InP heteroepitaxial waveguides grown by molecular beam epitaxy,” Appl. Phys. Lett. 53, 1242–1244 (1988).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

A. Vaidyanathan, T. Walker, and A. H. Guenther, “The relative roles of avalanche multiplication and multiphoton absorption in laser-induced damage of dielectrics,” IEEE J. Sel. Top. Quantum Electron. 16, 89–93 (1980).
[Crossref]

M. J. R. Heck, H. W. Chen, A. W. Fang, B. R. Koch, D. Lang, M. N. Sysak, and J. E. Bowers, “Hybrid silicon photonics for optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 17, 333–346 (2011).
[Crossref]

IEEE Photon. J. (1)

C. Y. Wong, Z. Cheng, X. Chen, K. Ku, C. K. Y. Fung, Y. M. Chen, and H. K. Tsang, “Characterization of mid-infrared silicon-on-sapphire microring resonators with thermal tuning,” IEEE Photon. J. 4, 1095–1102 (2012).
[Crossref]

IEEE Photon. Technol. Lett. (1)

Z. Cheng, X. Chen, C. Y. Wong, K. Xu, and H. K. Sang, “Mid-infrared suspended membrane waveguide and ring resonator on silicon-on-insulator,” IEEE Photon. Technol. Lett. 4, 1510–1519 (2012).
[Crossref]

J. Lightwave Technol. (2)

J. Opt. A (1)

R. A. Soref, S. J. Emelett, and W. R. Buchwald, “Silicon waveguided components for the long-wave infrared region,” J. Opt. A 8, 840–848 (2006).
[Crossref]

Laser Photon. Rev. (2)

X. Gai, Y. Yu, B. Kuyken, P. Ma, S. J. Madden, J. V. Campenhout, P. Verheyen, G. Roelkens, R. Baets, and B. L. Davies, “Nonlinear absorption and refraction in crystalline silicon in the mid-infrared,” Laser Photon. Rev. 7, 1054–1064 (2013).
[Crossref]

Y. Yu, X. Gai, P. Ma, D.-Y. Choi, Z. Yang, R. Wang, S. Debbarma, S. J. Madden, and B. Luther-Davies, “A broadband, quasi-continuous, mid-infrared supercontinuum generated in a chalcogenide glass waveguide,” Laser Photon. Rev. 8, 792–798 (2014).
[Crossref]

Nat. Commun. (3)

A. B. Redondo, C. Husko, D. Eades, Y. Zhang, J. Li, T. F. Krauss, and B. J. Eggleton, “Observation of soliton compression in silicon photonic crystals,” Nat. Commun. 5, 3160 (2011).

B. Kuyken, T. Ideguchi, S. Holzner, M. Yan, T. W. Hansch, J. V. Campenhout, P. Verheyen, S. Coen, F. Leo, R. Baets, G. Roelkens, and N. Picque, “An octave-spanning mid-infrared frequency comb generated in a silicon nanophotonic wire waveguide,” Nat. Commun. 6, 6310 (2015).
[Crossref]

A. G. Griffith, R. K. W. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. Yu, C. T. Phare, C. B. Poitras, A. L. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 6299 (2015).
[Crossref]

Nat. Photonics (5)

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3, 216–219 (2009).
[Crossref]

C. R. Petersen, U. Moller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. A. Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3  μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

X. Liu, R. M. Osgood, Y. A. Vlasov, and W. M. J. Green, “Mid-infrared optical parametric amplifier using silicon nanophotonic waveguides,” Nat. Photonics 4, 557–560 (2010).
[Crossref]

S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photonics 4, 561–564 (2010).
[Crossref]

R. Soref, “Mid-infrared photonics in silicon and germanium,” Nat. Photonics 4, 495–497 (2010).
[Crossref]

Opt. Express (9)

M. Brun, P. Labeye, G. Grand, J. M. Hartmann, F. Boulila, M. Carras, and S. Nicoletti, “Low loss SiGe graded index waveguides in mid-IR application,” Opt. Express 22, 508–518 (2014).
[Crossref]

T. B. Jones, A. Spott, R. Ilic, A. Spott, B. Penkov, W. Asher, and M. Hochberg, “Silicon-on-sapphire integrated waveguides for the mid-infrared,” Opt. Express 18, 12127–12135 (2010).
[Crossref]

F. Li, S. D. Jackson, C. Grillet, E. Magi, D. Hudson, S. J. Madden, Y. Moghe, C. O’Brien, A. Read, S. G. Duvall, P. Atanackovic, B. J. Eggleton, and D. J. Moss, “Low propagation loss silicon-on-sapphire waveguides for the mid-infrared,” Opt. Express 19, 15212–15220 (2011).
[Crossref]

T. Wang, N. Venkatram, J. Gosciniak, Y. Cui, G. Qian, W. Ji, and D. T. H. Tan, “Multi-photon absorption and third-order nonlinearity in silicon at mid-infrared wavelengths,” Opt. Express 21, 32192–32198 (2013).
[Crossref]

J. E. Sharping, K. F. Lee, M. A. Foster, A. C. Turner, B. S. Schmidt, M. Lipson, A. L. Gaeta, and P. Kumar, “Generation of correlated photons in nanoscale silicon waveguides,” Opt. Express 14, 12388–12393 (2006).
[Crossref]

S. Afshar and T. M. Monro, “A full vectorial model for pulse propagation in emerging waveguides with subwavelength structures part I: Kerr nonlinearity,” Opt. Express 17, 2298–2318 (2009).
[Crossref]

B. Kuyken, X. Liu, R. M. Osgood, R. Baets, G. Roelkens, and W. M. J. Green, “Mid-infrared to telecom-band supercontinuum generation in highly nonlinear silicon-on-insulator wire waveguides,” Opt. Express 19, 20172–20181 (2011).
[Crossref]

N. Singh, D. D. Hudson, and B. J. Eggleton, “Silicon-on-sapphire pillar waveguides for Mid-IR supercontinuum generation,” Opt. Express 23, 17345–17354 (2015).

J. I. Dadap, N. C. Panoiu, X. Chen, I. W. Hsieh, X. Liu, C. Y. Chou, E. Dulkeith, S. J. McNab, F. Xia, W. M. J. Green, L. Sekaric, Y. A. Vlasov, and R. M. Osgood, “Nonlinear-optical phase modification in dispersion-engineered Si photonic wires,” Opt. Express 16, 1280–1299 (2008).
[Crossref]

Opt. Lett. (7)

Phys. Rev. B (1)

P. O. Pronko, P. A. VanRompay, C. Horvath, F. Loesel, T. Juhasz, X. Liu, and G. Mourou, “Avalanche ionization and dielectric breakdown in silicon with ultrafast laser pulses,” Phys. Rev. B 58, 2387–2390 (1998).
[Crossref]

Phys. Rev. Lett. (3)

A. Husakou and J. Herrmann, “Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers,” Phys. Rev. Lett. 87, 203901 (2001).
[Crossref]

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn, “Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers,” Phys. Rev. Lett. 88, 173901 (2002).
[Crossref]

M. Pradhan, R. Garg, and M. Arora, “Multiphonon infrared absorption in silicon,” Phys. Rev. Lett. 27, 25–30 (1987).

Rev. Mod. Phys. (1)

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[Crossref]

Other (2)

G. Imthurn, “The History of Silicon-on-Sapphire,” Peregrine Semiconductor white paper, 2006.

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2012), Chap. 12.

Supplementary Material (1)

NameDescription
» Supplement 1: PDF (1121 KB)      Supplemental document

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. Top: Calculated dispersion (D) and effective index ( N eff ) curve for the SOS nanowire with a cross section of 2400 nm by 480 nm shown in inset, having zero dispersion wavelengths at 3.3 and 7.1 μm (see Methods section). Bottom: Experimental setup. a, gold mirror; b, Geltech BD2 chalcogenide lens, NA (= 0.85); c, chip; d, reflective microscope objective, NA (= 0.5); e, beam splitter, which was replaced by gold mirror during measurements.
Fig. 2.
Fig. 2. SOS propagation loss obtained with a low-power tunable OPA source to avoid any nonlinear effects. The peak between 3.3 and 3.4 μm represents C-H absorption. Error bars include uncertainty in streak analysis, coupling coefficient, and detectivity of the detector.
Fig. 3.
Fig. 3. (a) Experimental data with input peak power ranging from 200 W to 2.5 kW and (b) simulation results. Here, the pump corresponds to 7 W.
Fig. 4.
Fig. 4. Transmission versus coupled intensity at the input of a 5 μm by 0.5 μm SOS waveguide. (a)–(d) Experimental and calculated transmission at (a) 3.5 μm, (b) 3.7 μm, (c) 3.9 μm, and (d) 4.1 μm. Error bars include uncertainty in coupling coefficient, detectivity, calibration, and nonlinear power response error of the detector.
Fig. 5.
Fig. 5. Simulated (a) temporal evolution and (b) spectral evolution along the waveguide at a peak power of 2.5 kW.
Fig. 6.
Fig. 6. Calculation of the dependence of SOS dispersion on nanowire dimension. Here, the width is varied from 2.4 μm for a constant height of 500 nm, while the height is varied from 500 nm for a constant width of 2.4 μm. (a)  β 2 , (b)  β 3 (at 3.7 μm), and (c) ZDW dependence on width and height variations.
Fig. 7.
Fig. 7. Simulated spectral broadening of silicon rib nanowire (inset) with pumping at 4 μm generating a dispersive wave beyond the second ZDW at 5 μm.

Tables (1)

Tables Icon

Table 1. Supercontinuum Results

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

E z = α ( ω ) 2 E + m 2 i m + 1 β m m ! m E t m + i ( γ ( ω 0 ) + i γ t ) E × t R ( t t ) | E | 2 d t ( γ 4 p a 2 A eff 3 | E | 6 3 p a ( ω ) | E | 4 σ 2 ( 1 + i μ ) N c ) E .

Metrics