Abstract

We demonstrate that one can directly measure the time evolution of light–matter interaction in a semiconductor microcavity by tracking how the optical response is changed by strong single-cycle terahertz (THz) pulses. A short THz pulse transiently interrupts the interaction of the quantum-well microcavity with the light mode and resets the polaritonic light–matter oscillations at THz frequencies. This THz-reset protocol can provide novel insights into the light–matter coupling dynamics in a wide range of photonic materials such as plasmonic and organic systems.

© 2014 Optical Society of America

1. INTRODUCTION

Understanding the dynamics of light–matter coupling in semiconductors is not only of fundamental interest but also of great importance for the development of ultra-high-speed communication [1] and computing [2]. State-of-the-art electronics have already reached 100 GHz switching rates [36], and further improvements challenge the fundamental limitations. Whereas light–matter interactions are widely studied in many different systems, the detailed coupling dynamics in semiconductor heterostructures is poorly understood, because it involves ultrafast many-body interactions. We directly measure the time evolution of light–matter interaction in a quantum-well (QW) microcavity, employing transient terahertz (THz) excitations in the light–matter coupled system.

QWs embedded in an optical microcavity are widely utilized to explore how light–matter coupling can be harnessed in condensed-matter systems [7] and to understand quantum-optical effects in semiconductors [815]. In such configurations, the light–matter coupling proceeds as a polariton with the periodic exchange of energy between the QW polarization and the intracavity field, in analogy with two coupled harmonic oscillators. Figure 1 schematically shows such a periodic evolution; the shaded areas represent the polarization P (gray) and the light components E (yellow) of the polariton. As a principal idea of our measurement scheme, we use two distinctly different excitation pulses, where the first (pump) pulse creates the polariton and the second (reset) pulse destroys its polarization component, i.e., it eliminates one of the two coupled oscillators. The solid lines in Fig. 1 illustrate how the reset pulse modifies P (blue) and E (red) for two different arrival times indicated by the dashed lines. When the polariton is dominantly polarization-like (upper part), the reset pulse removes most of the polarization. Since the polariton was essentially “stored” in the P component at the moment of reset, the subsequent polariton dynamics is strongly modified. When the reset acts on a polariton at a moment in time where it is predominantly light-like (lower part), the polariton dynamics remains basically unchanged. Therefore, the effect of the reset pulse on the polariton dynamics depends directly on the time evolution of the light–matter coupling as a polariton; the evolution time is simply defined by the delay between the pump and reset pulses. Since the polariton oscillations produce two normal-mode resonances in the pump-reflection spectrum R, the light–matter dynamics can be directly recorded in the changes of R as a function of the pump–reset delay.

 

Fig. 1. Pump–reset protocol for a cavity polariton. The microcavity (disks) is irradiated with an optical pump pulse (arrow, left) to generate a cavity polariton. Subsequently, the QW polarization (P) and the cavity field (E) periodically exchange energy. A reset pulse (wave symbols) removes the polarization at two exemplary times (dashed lines). The reset-induced changes are revealed in modulations of the pump-reflection spectrum (1R, solid red lines), where the shaded areas correspond to the spectra without the reset.

Download Full Size | PPT Slide | PDF

2. METHODS

To realize the pump–reset protocol, we use a combination of optical and THz spectroscopy, where the optical pulse creates the polariton and a single-cycle THz pulse [16] resets the QW polarization. During the past decade, similar schemes have been used successfully to characterize many-body physics ranging from dynamical buildup of Coulomb screening [17] on the femtosecond time scale to exciton-formation dynamics [18] on the nanosecond time scale. In our recent study [19], we demonstrated that only the polarization part of the polariton can be efficiently converted into optically dark 2p-exciton states when the sample is subjected to THz fields. In this work, we apply a THz π pulse to move an s-like polarization into an optically dark p-like state. This process essentially resets, i.e., switches off, the optical light–matter coupling, because the p-like states cannot couple to the cavity. By using a strong single-cycle THz pulse, the corresponding reset proceeds on a subpicosecond time scale [20].

In our sample, QWs are positioned within an optical cavity. Therefore, the optical pulse couples into the cavity and the cavity photons interact with the QWs, which generates the polaritons. At the same time, the THz pulse propagates nearly freely to reset the polarization to optically dark states at a desired moment tTHz. We control the pump–reset delay Δt=tTHztopt, where tTHz and topt refer to the arrival times of the peak THz and optical fields, respectively, to the QW. The optical and THz pulses have average photon energies of 1.49 eV and 4.2 meV, respectively. We will demonstrate that by adjusting the pump–reset delay Δt, we can directly characterize the time evolution of the polaritonic light–matter interaction.

We generated the optical-pump and THz-reset pulses using 800 nm, 80 fs, 1 mJ pulses from a 1 kHz Ti:sapphire amplifier (Coherent Inc., Legend). The optical beam was split into two components: the major portion for THz-reset pulses and the minor portion for the optical-pump pulses. Using a small portion of the pulse energy (10 μJ), we produced weak 830 nm, 100 fs optical pulses by white-light continuum generation in a 1 mm quartz crystal with a bandpass filter (central wavelength, 830 nm; bandwidth, 10 nm). The major portion of the optical beam was used to generate single-cycle THz pulses via optical rectification in a 1 mm ZnTe crystal. The incident optical pulse energy was 0.8 mJ, irradiated on a 3 mm spot in the ZnTe crystal. The THz pulses were collimated with an off-axis parabolic mirror, and the THz beam diameter was measured as 1.5 mm at the focus. The THz pulses were measured using electro-optical sampling in a 1 mm ZnTe crystal. We also measured THz pulse energy using a Si bolometer at liquid helium (L-He) temperature. The THz electric field amplitude at the peak was estimated as 10kV/cm when the optical pump pulse energy was 0.8 mJ. The QW microcavity sample consisted of 10 In0.04Ga0.96As QWs in a 11λ/2 microcavity with distributed Bragg reflectors designed for 99.4% reflectivity. The cavity was wedged so that we could tune the cavity resonance by scanning the optical beam across the sample. The sample temperature was maintained at 5 K in a L-He cryostat.

3. RESULTS AND DISCUSSION

Figure 2 shows the experimental reflectivity R at zero detuning measured with (solid lines) and without (shaded area) additional THz pulses. Without the THz reset, 1R shows two resonances, the low-energy peak (LEP) and the high-energy peak (HEP), resulting from the polariton splitting between the uncoupled exciton and cavity resonances. The high splitting-to-linewidth ratio indicates that the microcavity is in the nonperturbative regime of normal-mode coupling. This splitting amounts to 6.3 meV in our sample, which corresponds to an oscillation period of 0.66 ps. In order to clearly resolve these polariton oscillations, the reset process has to be shorter than half of this period (see Fig. 1). For this purpose, we use the shortest possible single-cycle THz pulse, which is frequency matched to convert the polarization part of the polariton from the excitonic 1s into the dark exciton states. The temporal profile of the THz pulse is shown in the inset of Fig. 2. The reset time is expected to be much shorter than the reset-pulse duration, because the THz-induced reset is an extreme nonlinear process and hence most efficient near the main peak. To characterize the THz-reset capabilities of our setup, Fig. 2 shows the 1R spectra measured at a 5 K sample temperature. Here, we employ THz resets at delays of Δt=0.4ps (red line) and Δt=0.73ps (black line) with respect to the optical pump. The delay difference was chosen to match the light-to-polarization conversion time 0.33 ps. As we can see in Fig. 2, the high-energy polariton peak shows a 1.8 times higher 1R resonance for the 0.4 ps than for the 0.73 ps pump–THz delay. Even though the 0.4 ps pump–reset delay corresponds to the weak reset, the 1R changes are still appreciable due to the relatively long overall THz pulse duration (0.9 ps). Nonetheless, the strong reset at 0.73 ps yields much larger changes, indicating that the THz-reset time is shorter than 0.33 ps. This confirms that we may indeed directly resolve the polariton interaction dynamics with the proposed protocol.

 

Fig. 2. Demonstration of pump–reset protocol. The measured optical reflection spectra (1R) at zero detuning without additional THz excitation (shaded) are compared to those with THz pulses at time delays of 0.4 ps (red line) and 0.73 ps (black line) between optical and THz excitation. The inset shows the experimental single-cycle THz-reset pulse. Figure S2 in Supplement 1 shows the THz power spectrum.

Download Full Size | PPT Slide | PDF

In order to resolve the polariton dynamics in the time domain, we measure the reflectivity difference ΔR=R0Rreset with (Rreset) and without (R0) the THz-reset pulse. The measured ΔR spectra at zero detuning are shown in Fig. 3(a) as a function of pump–reset delay Δt. Here, the pump–reset delay is counted as positive when the THz-reset pulse arrives at the sample after the optical pulse. The short rising time of the peaks, 0.3ps, indicates that the light–matter coupling in the microcavity is turned off within less than one cycle of the THz pulse [8] and the light–matter interaction is in the regime of carrier-wave Rabi flopping [21]. We observe that both peaks decrease with increasing time delay due to the finite coherence lifetime in the system [22]. Additionally, ΔR exhibits pronounced polariton oscillations as a function of pump–reset delay, just as the ideal operation of Fig. 1 suggests. To examine the oscillations in more detail, Fig. 3(b) shows a temporal slice of the ΔR data, measured at the LEP. We observe that the oscillation period 0.66 ps (gray-shaded area) perfectly matches the behavior predicted by the reset protocol. These results strongly suggest that we have directly measured the temporal evolution of the light–matter interaction.

 

Fig. 3. Direct measurement of polariton oscillations. (a) The experimentally measured differential reflectivity ΔR=R0Rreset at zero detuning is plotted as a function of energy and time delay between the optical pump and the THz-reset pulses with ETHz=10kV/cm; (b) slice through the low-energy peak. The oscillation period is 0.66 ps (shaded area), corresponding to the LEP–HEP energy splitting of 6.3 meV.

Download Full Size | PPT Slide | PDF

To verify this intriguing prospect, we use our fully microscopic theory [2224] to simulate the experimental results of Fig. 3. The theoretical analysis determines the light–matter interaction microscopically and self-consistently using the Maxwell–semiconductor Bloch equations extended to THz fields [22,23]. In Supplement 1, we show that excitation-induced effects play an important role in the microscopic analysis. The computed ΔR spectra are presented in Fig. 4(a) as a function of pump–reset delay. Our theory explains the experimental observations concerning the polariton-peak position, the decay of ΔR, and the oscillation structure very well. Most important, the oscillations exhibit the same period (0.66 ps) as the experimental data. The LEP oscillations, in both experiment and theory, are larger than the HEP oscillations because the higher-lying exciton resonances damp mainly the HEP oscillations, which is verified by a switch-off analysis in Supplement 1. The experiment includes the well-known disorder effects in the sample [25], which explains the more pronounced oscillations of the computed HEP compared with the experiment.

 

Fig. 4. Computed polariton oscillations in pump–reset protocol. (a) The computed differential reflectivity ΔR=R0Rreset at zero detuning is plotted as a function of energy and time delay between the optical pump and the THz-reset pulses; (b) slice through the low-energy peak (red solid line), polarization (blue-shaded area), and optical field (yellow-shaded area) at the QW position. The oscillation period is 0.66 ps (gray-shaded areas).

Download Full Size | PPT Slide | PDF

Both experiment and theory ΔR show a pronounced spectrotemporal interference pattern between the HEP and LEP for the positive pump–reset time delay. The THz reset pulse simultaneously drives the LEP-to-2p and HEP-to-2p transitions in the Λ system and gives rise to quantum interference between the two transition pathways. This observation confirms that the light–matter interaction in the microcavity is a coherent dynamics. Our computations assign the reset processes to extreme nonlinear effects, because a significant portion of the optically induced 1s polarization is transferred to higher states by the THz-reset pulse.

A detailed analysis verifies that the measured ΔR directly detects the polariton dynamics. Figure 4(b) compares the polarization (blue-shaded area) and optical field (yellow–shaded area) at the QW position with ΔR at the LEP. We find that polarization and optical field show alternating maxima and minima, oscillating with the corresponding oscillation period 0.66 ps (gray-shaded areas). At the same time, the maxima of ΔR exactly coincide with the maxima of the polarization part of the polariton. These results confirm that the THz pulse resets the pure polarization component, resulting in direct detection of the polariton, as described in Fig. 1.

We confirm next that the reset protocol is also valid at nonzero cavity detunings. Figure 5(a) shows that the temporal evolution of the measured ΔR at the LEP exhibits clear polariton oscillations for different cavity detunings at δc=1.9, 0.3, and 0.4 meV. In particular, the largest and the smallest detunings produce oscillations that are out of phase already after two oscillations. To confirm that the oscillation period matches the polariton splitting, we have determined the splitting from the energy difference of the LEP and HEP and converted this number to the predicted oscillation period Tosc. The measured reset period (squares) and the computed Tosc (gray solid line) are shown in Fig. 5(b) as function of the cavity detuning. We conclude that the oscillation period is consistent with the polariton mode splitting, establishing a complementary verification for the reset protocol. As precise numbers, the oscillation period changes little in the anticrossing region between δc=1.0 and +1.0meV and undergoes a small reduction at a relatively large detuning (e.g., 0.63 ps at δc=2.0meV). Nevertheless, this change is large enough to produced clear changes in the measurements, as discussed above.

 

Fig. 5. Cavity-detuning-dependent polariton oscillation. (a) Time slices of polariton oscillation through the low-energy peak at δc=1.9, 0.3, and 0.4 meV. The curves are vertically offset for clarity. (b) Polariton oscillation period versus cavity detuning. The red squares indicate experimental data, and the gray line is a theoretical curve obtained from calculated polariton mode splitting.

Download Full Size | PPT Slide | PDF

4. SUMMARY

In summary, our theory–experiment comparison demonstrates that one can directly measure the time evolution of the light–matter interaction with the proposed pump–reset protocol. The protocol is based on a sequence where a pump transiently creates the polaritons of both modes inside a QW microcavity and a single-cycle THz pulse resets the polarization components of the polaritons. The time evolution of the polaritons shows up as distinct oscillations in the pump-reflection spectrum. The optical-pump/THz-reset protocol is widely applicable to studying light–matter interaction in photonic materials. In most of the photonic systems, the optical pump excites band-to-band transitions and the THz-reset pulse induces intraband transitions, involving very different energy ranges and final states, analogous to the semiconductor microcavity studied in this work. An immediate application of the protocol would be to study the light–matter coupling dynamics in plasmonic [2629] and organic [30,31] devices.

FUNDING INFORMATION

Air Force Office of Scientific Research (AFOSR) (FA9550-10-1-0003); Army Research Office (ARO) (W911NF-10-1-0344); Deutsche Forschungsgemeinschaft (DFG) (KI917/2-1); Directorate for Engineering (ENG) (0757975, 0812072); Directorate for Mathematical and Physical Sciences (MPS) (0757707, 1063632).

 

See Supplement 1 for supporting content.

REFERENCES

1. D. Powell, “Lasers boost space communications,” Nature 499, 266–267 (2013). [CrossRef]  

2. T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien, “Quantum computers,” Nature 464, 45–53 (2010). [CrossRef]  

3. R. J. Warburton, C. Schäflein, D. Haft, F. Bickel, A. Lorke, K. Karrai, J. M. Garcia, W. Schoenfeld, and P. M. Petroff, “Optical emission from a charge-tunable quantum ring,” Nature 405, 926–929 (2000). [CrossRef]  

4. F. N. Xia, M. Steiner, Y. M. Lin, and P. Avouris, “A microcavity-controlled, current-driven, on-chip nanotube emitter at infrared wavelengths,” Nat. Nanotechnol. 3, 609–613 (2008). [CrossRef]  

5. N. M. Gabor, Z. H. Zhong, K. Bosnick, J. Park, and P. L. McEuen, “Extremely efficient multiple electron-hole pair generation in carbon nanotube photodiodes,” Science 325, 1367–1371 (2009). [CrossRef]  

6. S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7, 977–981 (2013). [CrossRef]  

7. G. Khitrova, H. M. Gibbs, F. Jahnke, M. Kira, and S. W. Koch, “Nonlinear optics of normal-mode-coupling semiconductor microcavities,” Rev. Mod. Phys. 71, 1591–1639 (1999). [CrossRef]  

8. G. Günter, A. A. Anappara, J. Hees, A. Sell, G. Biasiol, L. Sorba, S. de Liberato, C. Ciuti, A. Tredicucci, A. Leitenstorfer, and R. Huber, “Sub-cycle switch-on of ultrastrong light–matter interaction,” Nature 458, 178–181 (2009). [CrossRef]  

9. Y.-S. Lee, T. B. Norris, M. Kira, F. Jahnke, S. W. Koch, G. Khitrova, and H. M. Gibbs, “Quantum correlations and intraband coherences in semiconductor cavity QED,” Phys. Rev. Lett. 83, 5338–5341 (1999). [CrossRef]  

10. J. P. Reithmaier, G. Sęk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432, 197–200 (2004). [CrossRef]  

11. T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200–203 (2004). [CrossRef]  

12. K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445, 896–899 (2007). [CrossRef]  

13. H. Deng, G. Weihs, C. Santori, J. Bloch, and Y. Yamamoto, “Condensation of semiconductor microcavity exciton polaritons,” Science 298, 199–202 (2002). [CrossRef]  

14. J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymańska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and L. S. Dang, “Bose–Einstein condensation of exciton polaritons,” Nature 443, 409–414 (2006). [CrossRef]  

15. R. Balili, V. Hartwell, D. Snoke, L. Pfeiffer, and K. West, “Bose–Einstein condensation of microcavity polaritons in a trap,” Science 316, 1007–1010 (2007). [CrossRef]  

16. J. R. Danielson, Y.-S. Lee, J. P. Prineas, J. T. Steiner, M. Kira, and S. W. Koch, “Interaction of strong single-cycle terahertz pulses with semiconductor quantum wells,” Phys. Rev. Lett. 99, 237401 (2007). [CrossRef]  

17. R. Huber, F. Tauser, A. Brodschelm, M. Bichler, G. Abstreiter, and A. Leitenstorfer, “Femtosecond buildup of Coulomb screening in photoexcited GaAs probed via ultrabroadband THz spectroscopy,” J. Lumin. 94–95, 555–558 (2001). [CrossRef]  

18. R. A. Kaindl, M. A. Carnahan, D. Hägele, R. Lövenich, and D. S. Chemla, “Ultrafast terahertz probes of transient conducting and insulating phases in an electron–hole gas,” Nature 423, 734–738 (2003). [CrossRef]  

19. J. L. Tomaino, A. D. Jameson, Y.-S. Lee, G. Khitrova, H. M. Gibbs, A. C. Klettke, M. Kira, and S. W. Koch, “Terahertz excitation of a coherent Λ-type three-level system of exciton-polariton modes in a quantum-well microcavity,” Phys. Rev. Lett. 108, 267402 (2012). [CrossRef]  

20. A. D. Jameson, J. L. Tomaino, Y. Lee, J. P. Prineas, J. T. Steiner, M. Kira, and S. W. Koch, “Transient optical response of quantum well excitons to intense narrowband terahertz pulses,” Appl. Phys. Lett. 95, 201107 (2009). [CrossRef]  

21. O. D. Mücke, T. Tritschler, M. Wegener, U. Morgner, and F. X. Kärtner, “Signatures of carrier-wave Rabi flopping in GaAs,” Phys. Rev. Lett. 87, 057401 (2001). [CrossRef]  

22. M. Kira and S. W. Koch, “Many-body correlations and excitonic effects in semiconductor spectroscopy,” Prog. Quantum Electron. 30, 155–296 (2006). [CrossRef]  

23. J. T. Steiner, M. Kira, and S. W. Koch, “Optical nonlinearities and Rabi flopping of an exciton population in a semiconductor interacting with strong terahertz fields,” Phys. Rev. B 77, 165308 (2008). [CrossRef]  

24. M. Kira and S. W. Koch, Semiconductor Quantum Optics, 1st ed. (Cambridge University, 2011).

25. M. Gurioli, F. Bogani, D. S. Wiersma, P. Roussignol, G. Cassabois, G. Khitrova, and H. Gibbs, “Experimental study of disorder in a semiconductor microcavity,” Phys. Rev. B 64, 165309 (2001). [CrossRef]  

26. B. Min, E. Ostby, V. Sorger, E. Ulin-Avila, L. Yang, X. Zhang, and K. Vahala, “High-Q surface-plasmon-polariton whispering-gallery microcavity,” Nature 457, 455–458 (2009). [CrossRef]  

27. D. Chanda, K. Shigeta, T. Truong, E. Lui, A. Mihi, M. Schulmerich, P. V. Braun, R. Bhargava, and J. A. Rogers, “Coupling of plasmonic and optical cavity modes in quasi-three-dimensional plasmonic crystals,” Nat. Commun. 2, 479 (2011). [CrossRef]  

28. P. Berini and I. de Leon, “Surface plasmon-polariton amplifiers and lasers,” Nat. Photonics 6, 16–24 (2012). [CrossRef]  

29. T. Volz, A. Reinhard, M. Winger, A. Badolato, K. J. Hennessy, E. L. Hu, and A. Imamoğlu, “Ultrafast all-optical switching by single photons,” Nat. Photonics 6, 607–611 (2012). [CrossRef]  

30. V. Bulovic, V. G. Kozlov, V. B. Khalfin, and S. R. Forrest, “Transform-limited, narrow-linewidth lasing action in organic semiconductor microcavities,” Science 279, 553–555 (1998). [CrossRef]  

31. S. Kéna-Cohen and S. R. Forrest, “Room-temperature polariton lasing in an organic single-crystal microcavity,” Nat. Photonics 4, 371–375 (2010). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. D. Powell, “Lasers boost space communications,” Nature 499, 266–267 (2013).
    [Crossref]
  2. T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, J. L. O’Brien, “Quantum computers,” Nature 464, 45–53 (2010).
    [Crossref]
  3. R. J. Warburton, C. Schäflein, D. Haft, F. Bickel, A. Lorke, K. Karrai, J. M. Garcia, W. Schoenfeld, P. M. Petroff, “Optical emission from a charge-tunable quantum ring,” Nature 405, 926–929 (2000).
    [Crossref]
  4. F. N. Xia, M. Steiner, Y. M. Lin, P. Avouris, “A microcavity-controlled, current-driven, on-chip nanotube emitter at infrared wavelengths,” Nat. Nanotechnol. 3, 609–613 (2008).
    [Crossref]
  5. N. M. Gabor, Z. H. Zhong, K. Bosnick, J. Park, P. L. McEuen, “Extremely efficient multiple electron-hole pair generation in carbon nanotube photodiodes,” Science 325, 1367–1371 (2009).
    [Crossref]
  6. S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7, 977–981 (2013).
    [Crossref]
  7. G. Khitrova, H. M. Gibbs, F. Jahnke, M. Kira, S. W. Koch, “Nonlinear optics of normal-mode-coupling semiconductor microcavities,” Rev. Mod. Phys. 71, 1591–1639 (1999).
    [Crossref]
  8. G. Günter, A. A. Anappara, J. Hees, A. Sell, G. Biasiol, L. Sorba, S. de Liberato, C. Ciuti, A. Tredicucci, A. Leitenstorfer, R. Huber, “Sub-cycle switch-on of ultrastrong light–matter interaction,” Nature 458, 178–181 (2009).
    [Crossref]
  9. Y.-S. Lee, T. B. Norris, M. Kira, F. Jahnke, S. W. Koch, G. Khitrova, H. M. Gibbs, “Quantum correlations and intraband coherences in semiconductor cavity QED,” Phys. Rev. Lett. 83, 5338–5341 (1999).
    [Crossref]
  10. J. P. Reithmaier, G. Sęk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432, 197–200 (2004).
    [Crossref]
  11. T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200–203 (2004).
    [Crossref]
  12. K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445, 896–899 (2007).
    [Crossref]
  13. H. Deng, G. Weihs, C. Santori, J. Bloch, Y. Yamamoto, “Condensation of semiconductor microcavity exciton polaritons,” Science 298, 199–202 (2002).
    [Crossref]
  14. J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymańska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, L. S. Dang, “Bose–Einstein condensation of exciton polaritons,” Nature 443, 409–414 (2006).
    [Crossref]
  15. R. Balili, V. Hartwell, D. Snoke, L. Pfeiffer, K. West, “Bose–Einstein condensation of microcavity polaritons in a trap,” Science 316, 1007–1010 (2007).
    [Crossref]
  16. J. R. Danielson, Y.-S. Lee, J. P. Prineas, J. T. Steiner, M. Kira, S. W. Koch, “Interaction of strong single-cycle terahertz pulses with semiconductor quantum wells,” Phys. Rev. Lett. 99, 237401 (2007).
    [Crossref]
  17. R. Huber, F. Tauser, A. Brodschelm, M. Bichler, G. Abstreiter, A. Leitenstorfer, “Femtosecond buildup of Coulomb screening in photoexcited GaAs probed via ultrabroadband THz spectroscopy,” J. Lumin. 94–95, 555–558 (2001).
    [Crossref]
  18. R. A. Kaindl, M. A. Carnahan, D. Hägele, R. Lövenich, D. S. Chemla, “Ultrafast terahertz probes of transient conducting and insulating phases in an electron–hole gas,” Nature 423, 734–738 (2003).
    [Crossref]
  19. J. L. Tomaino, A. D. Jameson, Y.-S. Lee, G. Khitrova, H. M. Gibbs, A. C. Klettke, M. Kira, S. W. Koch, “Terahertz excitation of a coherent Λ-type three-level system of exciton-polariton modes in a quantum-well microcavity,” Phys. Rev. Lett. 108, 267402 (2012).
    [Crossref]
  20. A. D. Jameson, J. L. Tomaino, Y. Lee, J. P. Prineas, J. T. Steiner, M. Kira, S. W. Koch, “Transient optical response of quantum well excitons to intense narrowband terahertz pulses,” Appl. Phys. Lett. 95, 201107 (2009).
    [Crossref]
  21. O. D. Mücke, T. Tritschler, M. Wegener, U. Morgner, F. X. Kärtner, “Signatures of carrier-wave Rabi flopping in GaAs,” Phys. Rev. Lett. 87, 057401 (2001).
    [Crossref]
  22. M. Kira, S. W. Koch, “Many-body correlations and excitonic effects in semiconductor spectroscopy,” Prog. Quantum Electron. 30, 155–296 (2006).
    [Crossref]
  23. J. T. Steiner, M. Kira, S. W. Koch, “Optical nonlinearities and Rabi flopping of an exciton population in a semiconductor interacting with strong terahertz fields,” Phys. Rev. B 77, 165308 (2008).
    [Crossref]
  24. M. Kira, S. W. Koch, Semiconductor Quantum Optics, 1st ed. (Cambridge University, 2011).
  25. M. Gurioli, F. Bogani, D. S. Wiersma, P. Roussignol, G. Cassabois, G. Khitrova, H. Gibbs, “Experimental study of disorder in a semiconductor microcavity,” Phys. Rev. B 64, 165309 (2001).
    [Crossref]
  26. B. Min, E. Ostby, V. Sorger, E. Ulin-Avila, L. Yang, X. Zhang, K. Vahala, “High-Q surface-plasmon-polariton whispering-gallery microcavity,” Nature 457, 455–458 (2009).
    [Crossref]
  27. D. Chanda, K. Shigeta, T. Truong, E. Lui, A. Mihi, M. Schulmerich, P. V. Braun, R. Bhargava, J. A. Rogers, “Coupling of plasmonic and optical cavity modes in quasi-three-dimensional plasmonic crystals,” Nat. Commun. 2, 479 (2011).
    [Crossref]
  28. P. Berini, I. de Leon, “Surface plasmon-polariton amplifiers and lasers,” Nat. Photonics 6, 16–24 (2012).
    [Crossref]
  29. T. Volz, A. Reinhard, M. Winger, A. Badolato, K. J. Hennessy, E. L. Hu, A. Imamoğlu, “Ultrafast all-optical switching by single photons,” Nat. Photonics 6, 607–611 (2012).
    [Crossref]
  30. V. Bulovic, V. G. Kozlov, V. B. Khalfin, S. R. Forrest, “Transform-limited, narrow-linewidth lasing action in organic semiconductor microcavities,” Science 279, 553–555 (1998).
    [Crossref]
  31. S. Kéna-Cohen, S. R. Forrest, “Room-temperature polariton lasing in an organic single-crystal microcavity,” Nat. Photonics 4, 371–375 (2010).
    [Crossref]

2013 (2)

D. Powell, “Lasers boost space communications,” Nature 499, 266–267 (2013).
[Crossref]

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7, 977–981 (2013).
[Crossref]

2012 (3)

J. L. Tomaino, A. D. Jameson, Y.-S. Lee, G. Khitrova, H. M. Gibbs, A. C. Klettke, M. Kira, S. W. Koch, “Terahertz excitation of a coherent Λ-type three-level system of exciton-polariton modes in a quantum-well microcavity,” Phys. Rev. Lett. 108, 267402 (2012).
[Crossref]

P. Berini, I. de Leon, “Surface plasmon-polariton amplifiers and lasers,” Nat. Photonics 6, 16–24 (2012).
[Crossref]

T. Volz, A. Reinhard, M. Winger, A. Badolato, K. J. Hennessy, E. L. Hu, A. Imamoğlu, “Ultrafast all-optical switching by single photons,” Nat. Photonics 6, 607–611 (2012).
[Crossref]

2011 (1)

D. Chanda, K. Shigeta, T. Truong, E. Lui, A. Mihi, M. Schulmerich, P. V. Braun, R. Bhargava, J. A. Rogers, “Coupling of plasmonic and optical cavity modes in quasi-three-dimensional plasmonic crystals,” Nat. Commun. 2, 479 (2011).
[Crossref]

2010 (2)

S. Kéna-Cohen, S. R. Forrest, “Room-temperature polariton lasing in an organic single-crystal microcavity,” Nat. Photonics 4, 371–375 (2010).
[Crossref]

T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, J. L. O’Brien, “Quantum computers,” Nature 464, 45–53 (2010).
[Crossref]

2009 (4)

N. M. Gabor, Z. H. Zhong, K. Bosnick, J. Park, P. L. McEuen, “Extremely efficient multiple electron-hole pair generation in carbon nanotube photodiodes,” Science 325, 1367–1371 (2009).
[Crossref]

G. Günter, A. A. Anappara, J. Hees, A. Sell, G. Biasiol, L. Sorba, S. de Liberato, C. Ciuti, A. Tredicucci, A. Leitenstorfer, R. Huber, “Sub-cycle switch-on of ultrastrong light–matter interaction,” Nature 458, 178–181 (2009).
[Crossref]

B. Min, E. Ostby, V. Sorger, E. Ulin-Avila, L. Yang, X. Zhang, K. Vahala, “High-Q surface-plasmon-polariton whispering-gallery microcavity,” Nature 457, 455–458 (2009).
[Crossref]

A. D. Jameson, J. L. Tomaino, Y. Lee, J. P. Prineas, J. T. Steiner, M. Kira, S. W. Koch, “Transient optical response of quantum well excitons to intense narrowband terahertz pulses,” Appl. Phys. Lett. 95, 201107 (2009).
[Crossref]

2008 (2)

J. T. Steiner, M. Kira, S. W. Koch, “Optical nonlinearities and Rabi flopping of an exciton population in a semiconductor interacting with strong terahertz fields,” Phys. Rev. B 77, 165308 (2008).
[Crossref]

F. N. Xia, M. Steiner, Y. M. Lin, P. Avouris, “A microcavity-controlled, current-driven, on-chip nanotube emitter at infrared wavelengths,” Nat. Nanotechnol. 3, 609–613 (2008).
[Crossref]

2007 (3)

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445, 896–899 (2007).
[Crossref]

R. Balili, V. Hartwell, D. Snoke, L. Pfeiffer, K. West, “Bose–Einstein condensation of microcavity polaritons in a trap,” Science 316, 1007–1010 (2007).
[Crossref]

J. R. Danielson, Y.-S. Lee, J. P. Prineas, J. T. Steiner, M. Kira, S. W. Koch, “Interaction of strong single-cycle terahertz pulses with semiconductor quantum wells,” Phys. Rev. Lett. 99, 237401 (2007).
[Crossref]

2006 (2)

J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymańska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, L. S. Dang, “Bose–Einstein condensation of exciton polaritons,” Nature 443, 409–414 (2006).
[Crossref]

M. Kira, S. W. Koch, “Many-body correlations and excitonic effects in semiconductor spectroscopy,” Prog. Quantum Electron. 30, 155–296 (2006).
[Crossref]

2004 (2)

J. P. Reithmaier, G. Sęk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432, 197–200 (2004).
[Crossref]

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200–203 (2004).
[Crossref]

2003 (1)

R. A. Kaindl, M. A. Carnahan, D. Hägele, R. Lövenich, D. S. Chemla, “Ultrafast terahertz probes of transient conducting and insulating phases in an electron–hole gas,” Nature 423, 734–738 (2003).
[Crossref]

2002 (1)

H. Deng, G. Weihs, C. Santori, J. Bloch, Y. Yamamoto, “Condensation of semiconductor microcavity exciton polaritons,” Science 298, 199–202 (2002).
[Crossref]

2001 (3)

R. Huber, F. Tauser, A. Brodschelm, M. Bichler, G. Abstreiter, A. Leitenstorfer, “Femtosecond buildup of Coulomb screening in photoexcited GaAs probed via ultrabroadband THz spectroscopy,” J. Lumin. 94–95, 555–558 (2001).
[Crossref]

M. Gurioli, F. Bogani, D. S. Wiersma, P. Roussignol, G. Cassabois, G. Khitrova, H. Gibbs, “Experimental study of disorder in a semiconductor microcavity,” Phys. Rev. B 64, 165309 (2001).
[Crossref]

O. D. Mücke, T. Tritschler, M. Wegener, U. Morgner, F. X. Kärtner, “Signatures of carrier-wave Rabi flopping in GaAs,” Phys. Rev. Lett. 87, 057401 (2001).
[Crossref]

2000 (1)

R. J. Warburton, C. Schäflein, D. Haft, F. Bickel, A. Lorke, K. Karrai, J. M. Garcia, W. Schoenfeld, P. M. Petroff, “Optical emission from a charge-tunable quantum ring,” Nature 405, 926–929 (2000).
[Crossref]

1999 (2)

Y.-S. Lee, T. B. Norris, M. Kira, F. Jahnke, S. W. Koch, G. Khitrova, H. M. Gibbs, “Quantum correlations and intraband coherences in semiconductor cavity QED,” Phys. Rev. Lett. 83, 5338–5341 (1999).
[Crossref]

G. Khitrova, H. M. Gibbs, F. Jahnke, M. Kira, S. W. Koch, “Nonlinear optics of normal-mode-coupling semiconductor microcavities,” Rev. Mod. Phys. 71, 1591–1639 (1999).
[Crossref]

1998 (1)

V. Bulovic, V. G. Kozlov, V. B. Khalfin, S. R. Forrest, “Transform-limited, narrow-linewidth lasing action in organic semiconductor microcavities,” Science 279, 553–555 (1998).
[Crossref]

Abstreiter, G.

R. Huber, F. Tauser, A. Brodschelm, M. Bichler, G. Abstreiter, A. Leitenstorfer, “Femtosecond buildup of Coulomb screening in photoexcited GaAs probed via ultrabroadband THz spectroscopy,” J. Lumin. 94–95, 555–558 (2001).
[Crossref]

Ambacher, O.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7, 977–981 (2013).
[Crossref]

Anappara, A. A.

G. Günter, A. A. Anappara, J. Hees, A. Sell, G. Biasiol, L. Sorba, S. de Liberato, C. Ciuti, A. Tredicucci, A. Leitenstorfer, R. Huber, “Sub-cycle switch-on of ultrastrong light–matter interaction,” Nature 458, 178–181 (2009).
[Crossref]

André, R.

J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymańska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, L. S. Dang, “Bose–Einstein condensation of exciton polaritons,” Nature 443, 409–414 (2006).
[Crossref]

Antes, J.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7, 977–981 (2013).
[Crossref]

Atatüre, M.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445, 896–899 (2007).
[Crossref]

Avouris, P.

F. N. Xia, M. Steiner, Y. M. Lin, P. Avouris, “A microcavity-controlled, current-driven, on-chip nanotube emitter at infrared wavelengths,” Nat. Nanotechnol. 3, 609–613 (2008).
[Crossref]

Baas, A.

J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymańska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, L. S. Dang, “Bose–Einstein condensation of exciton polaritons,” Nature 443, 409–414 (2006).
[Crossref]

Badolato, A.

T. Volz, A. Reinhard, M. Winger, A. Badolato, K. J. Hennessy, E. L. Hu, A. Imamoğlu, “Ultrafast all-optical switching by single photons,” Nat. Photonics 6, 607–611 (2012).
[Crossref]

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445, 896–899 (2007).
[Crossref]

Balili, R.

R. Balili, V. Hartwell, D. Snoke, L. Pfeiffer, K. West, “Bose–Einstein condensation of microcavity polaritons in a trap,” Science 316, 1007–1010 (2007).
[Crossref]

Berini, P.

P. Berini, I. de Leon, “Surface plasmon-polariton amplifiers and lasers,” Nat. Photonics 6, 16–24 (2012).
[Crossref]

Bhargava, R.

D. Chanda, K. Shigeta, T. Truong, E. Lui, A. Mihi, M. Schulmerich, P. V. Braun, R. Bhargava, J. A. Rogers, “Coupling of plasmonic and optical cavity modes in quasi-three-dimensional plasmonic crystals,” Nat. Commun. 2, 479 (2011).
[Crossref]

Biasiol, G.

G. Günter, A. A. Anappara, J. Hees, A. Sell, G. Biasiol, L. Sorba, S. de Liberato, C. Ciuti, A. Tredicucci, A. Leitenstorfer, R. Huber, “Sub-cycle switch-on of ultrastrong light–matter interaction,” Nature 458, 178–181 (2009).
[Crossref]

Bichler, M.

R. Huber, F. Tauser, A. Brodschelm, M. Bichler, G. Abstreiter, A. Leitenstorfer, “Femtosecond buildup of Coulomb screening in photoexcited GaAs probed via ultrabroadband THz spectroscopy,” J. Lumin. 94–95, 555–558 (2001).
[Crossref]

Bickel, F.

R. J. Warburton, C. Schäflein, D. Haft, F. Bickel, A. Lorke, K. Karrai, J. M. Garcia, W. Schoenfeld, P. M. Petroff, “Optical emission from a charge-tunable quantum ring,” Nature 405, 926–929 (2000).
[Crossref]

Bloch, J.

H. Deng, G. Weihs, C. Santori, J. Bloch, Y. Yamamoto, “Condensation of semiconductor microcavity exciton polaritons,” Science 298, 199–202 (2002).
[Crossref]

Boes, F.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7, 977–981 (2013).
[Crossref]

Bogani, F.

M. Gurioli, F. Bogani, D. S. Wiersma, P. Roussignol, G. Cassabois, G. Khitrova, H. Gibbs, “Experimental study of disorder in a semiconductor microcavity,” Phys. Rev. B 64, 165309 (2001).
[Crossref]

Bosnick, K.

N. M. Gabor, Z. H. Zhong, K. Bosnick, J. Park, P. L. McEuen, “Extremely efficient multiple electron-hole pair generation in carbon nanotube photodiodes,” Science 325, 1367–1371 (2009).
[Crossref]

Braun, P. V.

D. Chanda, K. Shigeta, T. Truong, E. Lui, A. Mihi, M. Schulmerich, P. V. Braun, R. Bhargava, J. A. Rogers, “Coupling of plasmonic and optical cavity modes in quasi-three-dimensional plasmonic crystals,” Nat. Commun. 2, 479 (2011).
[Crossref]

Brodschelm, A.

R. Huber, F. Tauser, A. Brodschelm, M. Bichler, G. Abstreiter, A. Leitenstorfer, “Femtosecond buildup of Coulomb screening in photoexcited GaAs probed via ultrabroadband THz spectroscopy,” J. Lumin. 94–95, 555–558 (2001).
[Crossref]

Bulovic, V.

V. Bulovic, V. G. Kozlov, V. B. Khalfin, S. R. Forrest, “Transform-limited, narrow-linewidth lasing action in organic semiconductor microcavities,” Science 279, 553–555 (1998).
[Crossref]

Carnahan, M. A.

R. A. Kaindl, M. A. Carnahan, D. Hägele, R. Lövenich, D. S. Chemla, “Ultrafast terahertz probes of transient conducting and insulating phases in an electron–hole gas,” Nature 423, 734–738 (2003).
[Crossref]

Cassabois, G.

M. Gurioli, F. Bogani, D. S. Wiersma, P. Roussignol, G. Cassabois, G. Khitrova, H. Gibbs, “Experimental study of disorder in a semiconductor microcavity,” Phys. Rev. B 64, 165309 (2001).
[Crossref]

Chanda, D.

D. Chanda, K. Shigeta, T. Truong, E. Lui, A. Mihi, M. Schulmerich, P. V. Braun, R. Bhargava, J. A. Rogers, “Coupling of plasmonic and optical cavity modes in quasi-three-dimensional plasmonic crystals,” Nat. Commun. 2, 479 (2011).
[Crossref]

Chemla, D. S.

R. A. Kaindl, M. A. Carnahan, D. Hägele, R. Lövenich, D. S. Chemla, “Ultrafast terahertz probes of transient conducting and insulating phases in an electron–hole gas,” Nature 423, 734–738 (2003).
[Crossref]

Ciuti, C.

G. Günter, A. A. Anappara, J. Hees, A. Sell, G. Biasiol, L. Sorba, S. de Liberato, C. Ciuti, A. Tredicucci, A. Leitenstorfer, R. Huber, “Sub-cycle switch-on of ultrastrong light–matter interaction,” Nature 458, 178–181 (2009).
[Crossref]

Dang, L. S.

J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymańska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, L. S. Dang, “Bose–Einstein condensation of exciton polaritons,” Nature 443, 409–414 (2006).
[Crossref]

Danielson, J. R.

J. R. Danielson, Y.-S. Lee, J. P. Prineas, J. T. Steiner, M. Kira, S. W. Koch, “Interaction of strong single-cycle terahertz pulses with semiconductor quantum wells,” Phys. Rev. Lett. 99, 237401 (2007).
[Crossref]

de Leon, I.

P. Berini, I. de Leon, “Surface plasmon-polariton amplifiers and lasers,” Nat. Photonics 6, 16–24 (2012).
[Crossref]

de Liberato, S.

G. Günter, A. A. Anappara, J. Hees, A. Sell, G. Biasiol, L. Sorba, S. de Liberato, C. Ciuti, A. Tredicucci, A. Leitenstorfer, R. Huber, “Sub-cycle switch-on of ultrastrong light–matter interaction,” Nature 458, 178–181 (2009).
[Crossref]

Deng, H.

H. Deng, G. Weihs, C. Santori, J. Bloch, Y. Yamamoto, “Condensation of semiconductor microcavity exciton polaritons,” Science 298, 199–202 (2002).
[Crossref]

Deppe, D. G.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200–203 (2004).
[Crossref]

Deveaud, B.

J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymańska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, L. S. Dang, “Bose–Einstein condensation of exciton polaritons,” Nature 443, 409–414 (2006).
[Crossref]

Ell, C.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200–203 (2004).
[Crossref]

Fält, S.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445, 896–899 (2007).
[Crossref]

Forchel, A.

J. P. Reithmaier, G. Sęk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432, 197–200 (2004).
[Crossref]

Forrest, S. R.

S. Kéna-Cohen, S. R. Forrest, “Room-temperature polariton lasing in an organic single-crystal microcavity,” Nat. Photonics 4, 371–375 (2010).
[Crossref]

V. Bulovic, V. G. Kozlov, V. B. Khalfin, S. R. Forrest, “Transform-limited, narrow-linewidth lasing action in organic semiconductor microcavities,” Science 279, 553–555 (1998).
[Crossref]

Freude, W.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7, 977–981 (2013).
[Crossref]

Gabor, N. M.

N. M. Gabor, Z. H. Zhong, K. Bosnick, J. Park, P. L. McEuen, “Extremely efficient multiple electron-hole pair generation in carbon nanotube photodiodes,” Science 325, 1367–1371 (2009).
[Crossref]

Garcia, J. M.

R. J. Warburton, C. Schäflein, D. Haft, F. Bickel, A. Lorke, K. Karrai, J. M. Garcia, W. Schoenfeld, P. M. Petroff, “Optical emission from a charge-tunable quantum ring,” Nature 405, 926–929 (2000).
[Crossref]

Gerace, D.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445, 896–899 (2007).
[Crossref]

Gibbs, H.

M. Gurioli, F. Bogani, D. S. Wiersma, P. Roussignol, G. Cassabois, G. Khitrova, H. Gibbs, “Experimental study of disorder in a semiconductor microcavity,” Phys. Rev. B 64, 165309 (2001).
[Crossref]

Gibbs, H. M.

J. L. Tomaino, A. D. Jameson, Y.-S. Lee, G. Khitrova, H. M. Gibbs, A. C. Klettke, M. Kira, S. W. Koch, “Terahertz excitation of a coherent Λ-type three-level system of exciton-polariton modes in a quantum-well microcavity,” Phys. Rev. Lett. 108, 267402 (2012).
[Crossref]

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200–203 (2004).
[Crossref]

G. Khitrova, H. M. Gibbs, F. Jahnke, M. Kira, S. W. Koch, “Nonlinear optics of normal-mode-coupling semiconductor microcavities,” Rev. Mod. Phys. 71, 1591–1639 (1999).
[Crossref]

Y.-S. Lee, T. B. Norris, M. Kira, F. Jahnke, S. W. Koch, G. Khitrova, H. M. Gibbs, “Quantum correlations and intraband coherences in semiconductor cavity QED,” Phys. Rev. Lett. 83, 5338–5341 (1999).
[Crossref]

Gulde, S.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445, 896–899 (2007).
[Crossref]

Günter, G.

G. Günter, A. A. Anappara, J. Hees, A. Sell, G. Biasiol, L. Sorba, S. de Liberato, C. Ciuti, A. Tredicucci, A. Leitenstorfer, R. Huber, “Sub-cycle switch-on of ultrastrong light–matter interaction,” Nature 458, 178–181 (2009).
[Crossref]

Gurioli, M.

M. Gurioli, F. Bogani, D. S. Wiersma, P. Roussignol, G. Cassabois, G. Khitrova, H. Gibbs, “Experimental study of disorder in a semiconductor microcavity,” Phys. Rev. B 64, 165309 (2001).
[Crossref]

Haft, D.

R. J. Warburton, C. Schäflein, D. Haft, F. Bickel, A. Lorke, K. Karrai, J. M. Garcia, W. Schoenfeld, P. M. Petroff, “Optical emission from a charge-tunable quantum ring,” Nature 405, 926–929 (2000).
[Crossref]

Hägele, D.

R. A. Kaindl, M. A. Carnahan, D. Hägele, R. Lövenich, D. S. Chemla, “Ultrafast terahertz probes of transient conducting and insulating phases in an electron–hole gas,” Nature 423, 734–738 (2003).
[Crossref]

Hartwell, V.

R. Balili, V. Hartwell, D. Snoke, L. Pfeiffer, K. West, “Bose–Einstein condensation of microcavity polaritons in a trap,” Science 316, 1007–1010 (2007).
[Crossref]

Hees, J.

G. Günter, A. A. Anappara, J. Hees, A. Sell, G. Biasiol, L. Sorba, S. de Liberato, C. Ciuti, A. Tredicucci, A. Leitenstorfer, R. Huber, “Sub-cycle switch-on of ultrastrong light–matter interaction,” Nature 458, 178–181 (2009).
[Crossref]

Hendrickson, J.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200–203 (2004).
[Crossref]

Henneberger, R.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7, 977–981 (2013).
[Crossref]

Hennessy, K.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445, 896–899 (2007).
[Crossref]

Hennessy, K. J.

T. Volz, A. Reinhard, M. Winger, A. Badolato, K. J. Hennessy, E. L. Hu, A. Imamoğlu, “Ultrafast all-optical switching by single photons,” Nat. Photonics 6, 607–611 (2012).
[Crossref]

Hillerkuss, D.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7, 977–981 (2013).
[Crossref]

Hofmann, C.

J. P. Reithmaier, G. Sęk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432, 197–200 (2004).
[Crossref]

Hu, E. L.

T. Volz, A. Reinhard, M. Winger, A. Badolato, K. J. Hennessy, E. L. Hu, A. Imamoğlu, “Ultrafast all-optical switching by single photons,” Nat. Photonics 6, 607–611 (2012).
[Crossref]

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445, 896–899 (2007).
[Crossref]

Huber, R.

G. Günter, A. A. Anappara, J. Hees, A. Sell, G. Biasiol, L. Sorba, S. de Liberato, C. Ciuti, A. Tredicucci, A. Leitenstorfer, R. Huber, “Sub-cycle switch-on of ultrastrong light–matter interaction,” Nature 458, 178–181 (2009).
[Crossref]

R. Huber, F. Tauser, A. Brodschelm, M. Bichler, G. Abstreiter, A. Leitenstorfer, “Femtosecond buildup of Coulomb screening in photoexcited GaAs probed via ultrabroadband THz spectroscopy,” J. Lumin. 94–95, 555–558 (2001).
[Crossref]

Imamoglu, A.

T. Volz, A. Reinhard, M. Winger, A. Badolato, K. J. Hennessy, E. L. Hu, A. Imamoğlu, “Ultrafast all-optical switching by single photons,” Nat. Photonics 6, 607–611 (2012).
[Crossref]

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445, 896–899 (2007).
[Crossref]

Jahnke, F.

Y.-S. Lee, T. B. Norris, M. Kira, F. Jahnke, S. W. Koch, G. Khitrova, H. M. Gibbs, “Quantum correlations and intraband coherences in semiconductor cavity QED,” Phys. Rev. Lett. 83, 5338–5341 (1999).
[Crossref]

G. Khitrova, H. M. Gibbs, F. Jahnke, M. Kira, S. W. Koch, “Nonlinear optics of normal-mode-coupling semiconductor microcavities,” Rev. Mod. Phys. 71, 1591–1639 (1999).
[Crossref]

Jameson, A. D.

J. L. Tomaino, A. D. Jameson, Y.-S. Lee, G. Khitrova, H. M. Gibbs, A. C. Klettke, M. Kira, S. W. Koch, “Terahertz excitation of a coherent Λ-type three-level system of exciton-polariton modes in a quantum-well microcavity,” Phys. Rev. Lett. 108, 267402 (2012).
[Crossref]

A. D. Jameson, J. L. Tomaino, Y. Lee, J. P. Prineas, J. T. Steiner, M. Kira, S. W. Koch, “Transient optical response of quantum well excitons to intense narrowband terahertz pulses,” Appl. Phys. Lett. 95, 201107 (2009).
[Crossref]

Jeambrun, P.

J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymańska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, L. S. Dang, “Bose–Einstein condensation of exciton polaritons,” Nature 443, 409–414 (2006).
[Crossref]

Jelezko, F.

T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, J. L. O’Brien, “Quantum computers,” Nature 464, 45–53 (2010).
[Crossref]

Kaindl, R. A.

R. A. Kaindl, M. A. Carnahan, D. Hägele, R. Lövenich, D. S. Chemla, “Ultrafast terahertz probes of transient conducting and insulating phases in an electron–hole gas,” Nature 423, 734–738 (2003).
[Crossref]

Kallfass, I.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7, 977–981 (2013).
[Crossref]

Karrai, K.

R. J. Warburton, C. Schäflein, D. Haft, F. Bickel, A. Lorke, K. Karrai, J. M. Garcia, W. Schoenfeld, P. M. Petroff, “Optical emission from a charge-tunable quantum ring,” Nature 405, 926–929 (2000).
[Crossref]

Kärtner, F. X.

O. D. Mücke, T. Tritschler, M. Wegener, U. Morgner, F. X. Kärtner, “Signatures of carrier-wave Rabi flopping in GaAs,” Phys. Rev. Lett. 87, 057401 (2001).
[Crossref]

Kasprzak, J.

J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymańska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, L. S. Dang, “Bose–Einstein condensation of exciton polaritons,” Nature 443, 409–414 (2006).
[Crossref]

Keeling, J. M. J.

J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymańska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, L. S. Dang, “Bose–Einstein condensation of exciton polaritons,” Nature 443, 409–414 (2006).
[Crossref]

Keldysh, L. V.

J. P. Reithmaier, G. Sęk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432, 197–200 (2004).
[Crossref]

Kéna-Cohen, S.

S. Kéna-Cohen, S. R. Forrest, “Room-temperature polariton lasing in an organic single-crystal microcavity,” Nat. Photonics 4, 371–375 (2010).
[Crossref]

Khalfin, V. B.

V. Bulovic, V. G. Kozlov, V. B. Khalfin, S. R. Forrest, “Transform-limited, narrow-linewidth lasing action in organic semiconductor microcavities,” Science 279, 553–555 (1998).
[Crossref]

Khitrova, G.

J. L. Tomaino, A. D. Jameson, Y.-S. Lee, G. Khitrova, H. M. Gibbs, A. C. Klettke, M. Kira, S. W. Koch, “Terahertz excitation of a coherent Λ-type three-level system of exciton-polariton modes in a quantum-well microcavity,” Phys. Rev. Lett. 108, 267402 (2012).
[Crossref]

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200–203 (2004).
[Crossref]

M. Gurioli, F. Bogani, D. S. Wiersma, P. Roussignol, G. Cassabois, G. Khitrova, H. Gibbs, “Experimental study of disorder in a semiconductor microcavity,” Phys. Rev. B 64, 165309 (2001).
[Crossref]

Y.-S. Lee, T. B. Norris, M. Kira, F. Jahnke, S. W. Koch, G. Khitrova, H. M. Gibbs, “Quantum correlations and intraband coherences in semiconductor cavity QED,” Phys. Rev. Lett. 83, 5338–5341 (1999).
[Crossref]

G. Khitrova, H. M. Gibbs, F. Jahnke, M. Kira, S. W. Koch, “Nonlinear optics of normal-mode-coupling semiconductor microcavities,” Rev. Mod. Phys. 71, 1591–1639 (1999).
[Crossref]

Kira, M.

J. L. Tomaino, A. D. Jameson, Y.-S. Lee, G. Khitrova, H. M. Gibbs, A. C. Klettke, M. Kira, S. W. Koch, “Terahertz excitation of a coherent Λ-type three-level system of exciton-polariton modes in a quantum-well microcavity,” Phys. Rev. Lett. 108, 267402 (2012).
[Crossref]

A. D. Jameson, J. L. Tomaino, Y. Lee, J. P. Prineas, J. T. Steiner, M. Kira, S. W. Koch, “Transient optical response of quantum well excitons to intense narrowband terahertz pulses,” Appl. Phys. Lett. 95, 201107 (2009).
[Crossref]

J. T. Steiner, M. Kira, S. W. Koch, “Optical nonlinearities and Rabi flopping of an exciton population in a semiconductor interacting with strong terahertz fields,” Phys. Rev. B 77, 165308 (2008).
[Crossref]

J. R. Danielson, Y.-S. Lee, J. P. Prineas, J. T. Steiner, M. Kira, S. W. Koch, “Interaction of strong single-cycle terahertz pulses with semiconductor quantum wells,” Phys. Rev. Lett. 99, 237401 (2007).
[Crossref]

M. Kira, S. W. Koch, “Many-body correlations and excitonic effects in semiconductor spectroscopy,” Prog. Quantum Electron. 30, 155–296 (2006).
[Crossref]

G. Khitrova, H. M. Gibbs, F. Jahnke, M. Kira, S. W. Koch, “Nonlinear optics of normal-mode-coupling semiconductor microcavities,” Rev. Mod. Phys. 71, 1591–1639 (1999).
[Crossref]

Y.-S. Lee, T. B. Norris, M. Kira, F. Jahnke, S. W. Koch, G. Khitrova, H. M. Gibbs, “Quantum correlations and intraband coherences in semiconductor cavity QED,” Phys. Rev. Lett. 83, 5338–5341 (1999).
[Crossref]

M. Kira, S. W. Koch, Semiconductor Quantum Optics, 1st ed. (Cambridge University, 2011).

Klettke, A. C.

J. L. Tomaino, A. D. Jameson, Y.-S. Lee, G. Khitrova, H. M. Gibbs, A. C. Klettke, M. Kira, S. W. Koch, “Terahertz excitation of a coherent Λ-type three-level system of exciton-polariton modes in a quantum-well microcavity,” Phys. Rev. Lett. 108, 267402 (2012).
[Crossref]

Koch, S. W.

J. L. Tomaino, A. D. Jameson, Y.-S. Lee, G. Khitrova, H. M. Gibbs, A. C. Klettke, M. Kira, S. W. Koch, “Terahertz excitation of a coherent Λ-type three-level system of exciton-polariton modes in a quantum-well microcavity,” Phys. Rev. Lett. 108, 267402 (2012).
[Crossref]

A. D. Jameson, J. L. Tomaino, Y. Lee, J. P. Prineas, J. T. Steiner, M. Kira, S. W. Koch, “Transient optical response of quantum well excitons to intense narrowband terahertz pulses,” Appl. Phys. Lett. 95, 201107 (2009).
[Crossref]

J. T. Steiner, M. Kira, S. W. Koch, “Optical nonlinearities and Rabi flopping of an exciton population in a semiconductor interacting with strong terahertz fields,” Phys. Rev. B 77, 165308 (2008).
[Crossref]

J. R. Danielson, Y.-S. Lee, J. P. Prineas, J. T. Steiner, M. Kira, S. W. Koch, “Interaction of strong single-cycle terahertz pulses with semiconductor quantum wells,” Phys. Rev. Lett. 99, 237401 (2007).
[Crossref]

M. Kira, S. W. Koch, “Many-body correlations and excitonic effects in semiconductor spectroscopy,” Prog. Quantum Electron. 30, 155–296 (2006).
[Crossref]

Y.-S. Lee, T. B. Norris, M. Kira, F. Jahnke, S. W. Koch, G. Khitrova, H. M. Gibbs, “Quantum correlations and intraband coherences in semiconductor cavity QED,” Phys. Rev. Lett. 83, 5338–5341 (1999).
[Crossref]

G. Khitrova, H. M. Gibbs, F. Jahnke, M. Kira, S. W. Koch, “Nonlinear optics of normal-mode-coupling semiconductor microcavities,” Rev. Mod. Phys. 71, 1591–1639 (1999).
[Crossref]

M. Kira, S. W. Koch, Semiconductor Quantum Optics, 1st ed. (Cambridge University, 2011).

Koenig, S.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7, 977–981 (2013).
[Crossref]

Koos, C.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7, 977–981 (2013).
[Crossref]

Kozlov, V. G.

V. Bulovic, V. G. Kozlov, V. B. Khalfin, S. R. Forrest, “Transform-limited, narrow-linewidth lasing action in organic semiconductor microcavities,” Science 279, 553–555 (1998).
[Crossref]

Kuhn, S.

J. P. Reithmaier, G. Sęk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432, 197–200 (2004).
[Crossref]

Kulakovskii, V. D.

J. P. Reithmaier, G. Sęk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432, 197–200 (2004).
[Crossref]

Kundermann, S.

J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymańska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, L. S. Dang, “Bose–Einstein condensation of exciton polaritons,” Nature 443, 409–414 (2006).
[Crossref]

Ladd, T. D.

T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, J. L. O’Brien, “Quantum computers,” Nature 464, 45–53 (2010).
[Crossref]

Laflamme, R.

T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, J. L. O’Brien, “Quantum computers,” Nature 464, 45–53 (2010).
[Crossref]

Lee, Y.

A. D. Jameson, J. L. Tomaino, Y. Lee, J. P. Prineas, J. T. Steiner, M. Kira, S. W. Koch, “Transient optical response of quantum well excitons to intense narrowband terahertz pulses,” Appl. Phys. Lett. 95, 201107 (2009).
[Crossref]

Lee, Y.-S.

J. L. Tomaino, A. D. Jameson, Y.-S. Lee, G. Khitrova, H. M. Gibbs, A. C. Klettke, M. Kira, S. W. Koch, “Terahertz excitation of a coherent Λ-type three-level system of exciton-polariton modes in a quantum-well microcavity,” Phys. Rev. Lett. 108, 267402 (2012).
[Crossref]

J. R. Danielson, Y.-S. Lee, J. P. Prineas, J. T. Steiner, M. Kira, S. W. Koch, “Interaction of strong single-cycle terahertz pulses with semiconductor quantum wells,” Phys. Rev. Lett. 99, 237401 (2007).
[Crossref]

Y.-S. Lee, T. B. Norris, M. Kira, F. Jahnke, S. W. Koch, G. Khitrova, H. M. Gibbs, “Quantum correlations and intraband coherences in semiconductor cavity QED,” Phys. Rev. Lett. 83, 5338–5341 (1999).
[Crossref]

Leitenstorfer, A.

G. Günter, A. A. Anappara, J. Hees, A. Sell, G. Biasiol, L. Sorba, S. de Liberato, C. Ciuti, A. Tredicucci, A. Leitenstorfer, R. Huber, “Sub-cycle switch-on of ultrastrong light–matter interaction,” Nature 458, 178–181 (2009).
[Crossref]

R. Huber, F. Tauser, A. Brodschelm, M. Bichler, G. Abstreiter, A. Leitenstorfer, “Femtosecond buildup of Coulomb screening in photoexcited GaAs probed via ultrabroadband THz spectroscopy,” J. Lumin. 94–95, 555–558 (2001).
[Crossref]

Leuther, A.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7, 977–981 (2013).
[Crossref]

Leuthold, J.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7, 977–981 (2013).
[Crossref]

Lin, Y. M.

F. N. Xia, M. Steiner, Y. M. Lin, P. Avouris, “A microcavity-controlled, current-driven, on-chip nanotube emitter at infrared wavelengths,” Nat. Nanotechnol. 3, 609–613 (2008).
[Crossref]

Littlewood, P. B.

J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymańska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, L. S. Dang, “Bose–Einstein condensation of exciton polaritons,” Nature 443, 409–414 (2006).
[Crossref]

Löffler, A.

J. P. Reithmaier, G. Sęk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432, 197–200 (2004).
[Crossref]

Lopez-Diaz, D.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7, 977–981 (2013).
[Crossref]

Lorke, A.

R. J. Warburton, C. Schäflein, D. Haft, F. Bickel, A. Lorke, K. Karrai, J. M. Garcia, W. Schoenfeld, P. M. Petroff, “Optical emission from a charge-tunable quantum ring,” Nature 405, 926–929 (2000).
[Crossref]

Lövenich, R.

R. A. Kaindl, M. A. Carnahan, D. Hägele, R. Lövenich, D. S. Chemla, “Ultrafast terahertz probes of transient conducting and insulating phases in an electron–hole gas,” Nature 423, 734–738 (2003).
[Crossref]

Lui, E.

D. Chanda, K. Shigeta, T. Truong, E. Lui, A. Mihi, M. Schulmerich, P. V. Braun, R. Bhargava, J. A. Rogers, “Coupling of plasmonic and optical cavity modes in quasi-three-dimensional plasmonic crystals,” Nat. Commun. 2, 479 (2011).
[Crossref]

Marchetti, F. M.

J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymańska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, L. S. Dang, “Bose–Einstein condensation of exciton polaritons,” Nature 443, 409–414 (2006).
[Crossref]

McEuen, P. L.

N. M. Gabor, Z. H. Zhong, K. Bosnick, J. Park, P. L. McEuen, “Extremely efficient multiple electron-hole pair generation in carbon nanotube photodiodes,” Science 325, 1367–1371 (2009).
[Crossref]

Mihi, A.

D. Chanda, K. Shigeta, T. Truong, E. Lui, A. Mihi, M. Schulmerich, P. V. Braun, R. Bhargava, J. A. Rogers, “Coupling of plasmonic and optical cavity modes in quasi-three-dimensional plasmonic crystals,” Nat. Commun. 2, 479 (2011).
[Crossref]

Min, B.

B. Min, E. Ostby, V. Sorger, E. Ulin-Avila, L. Yang, X. Zhang, K. Vahala, “High-Q surface-plasmon-polariton whispering-gallery microcavity,” Nature 457, 455–458 (2009).
[Crossref]

Monroe, C.

T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, J. L. O’Brien, “Quantum computers,” Nature 464, 45–53 (2010).
[Crossref]

Morgner, U.

O. D. Mücke, T. Tritschler, M. Wegener, U. Morgner, F. X. Kärtner, “Signatures of carrier-wave Rabi flopping in GaAs,” Phys. Rev. Lett. 87, 057401 (2001).
[Crossref]

Mücke, O. D.

O. D. Mücke, T. Tritschler, M. Wegener, U. Morgner, F. X. Kärtner, “Signatures of carrier-wave Rabi flopping in GaAs,” Phys. Rev. Lett. 87, 057401 (2001).
[Crossref]

Nakamura, Y.

T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, J. L. O’Brien, “Quantum computers,” Nature 464, 45–53 (2010).
[Crossref]

Norris, T. B.

Y.-S. Lee, T. B. Norris, M. Kira, F. Jahnke, S. W. Koch, G. Khitrova, H. M. Gibbs, “Quantum correlations and intraband coherences in semiconductor cavity QED,” Phys. Rev. Lett. 83, 5338–5341 (1999).
[Crossref]

O’Brien, J. L.

T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, J. L. O’Brien, “Quantum computers,” Nature 464, 45–53 (2010).
[Crossref]

Ostby, E.

B. Min, E. Ostby, V. Sorger, E. Ulin-Avila, L. Yang, X. Zhang, K. Vahala, “High-Q surface-plasmon-polariton whispering-gallery microcavity,” Nature 457, 455–458 (2009).
[Crossref]

Palmer, R.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7, 977–981 (2013).
[Crossref]

Park, J.

N. M. Gabor, Z. H. Zhong, K. Bosnick, J. Park, P. L. McEuen, “Extremely efficient multiple electron-hole pair generation in carbon nanotube photodiodes,” Science 325, 1367–1371 (2009).
[Crossref]

Petroff, P. M.

R. J. Warburton, C. Schäflein, D. Haft, F. Bickel, A. Lorke, K. Karrai, J. M. Garcia, W. Schoenfeld, P. M. Petroff, “Optical emission from a charge-tunable quantum ring,” Nature 405, 926–929 (2000).
[Crossref]

Pfeiffer, L.

R. Balili, V. Hartwell, D. Snoke, L. Pfeiffer, K. West, “Bose–Einstein condensation of microcavity polaritons in a trap,” Science 316, 1007–1010 (2007).
[Crossref]

Powell, D.

D. Powell, “Lasers boost space communications,” Nature 499, 266–267 (2013).
[Crossref]

Prineas, J. P.

A. D. Jameson, J. L. Tomaino, Y. Lee, J. P. Prineas, J. T. Steiner, M. Kira, S. W. Koch, “Transient optical response of quantum well excitons to intense narrowband terahertz pulses,” Appl. Phys. Lett. 95, 201107 (2009).
[Crossref]

J. R. Danielson, Y.-S. Lee, J. P. Prineas, J. T. Steiner, M. Kira, S. W. Koch, “Interaction of strong single-cycle terahertz pulses with semiconductor quantum wells,” Phys. Rev. Lett. 99, 237401 (2007).
[Crossref]

Reinecke, T. L.

J. P. Reithmaier, G. Sęk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432, 197–200 (2004).
[Crossref]

Reinhard, A.

T. Volz, A. Reinhard, M. Winger, A. Badolato, K. J. Hennessy, E. L. Hu, A. Imamoğlu, “Ultrafast all-optical switching by single photons,” Nat. Photonics 6, 607–611 (2012).
[Crossref]

Reithmaier, J. P.

J. P. Reithmaier, G. Sęk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432, 197–200 (2004).
[Crossref]

Reitzenstein, S.

J. P. Reithmaier, G. Sęk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432, 197–200 (2004).
[Crossref]

Richard, M.

J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymańska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, L. S. Dang, “Bose–Einstein condensation of exciton polaritons,” Nature 443, 409–414 (2006).
[Crossref]

Rogers, J. A.

D. Chanda, K. Shigeta, T. Truong, E. Lui, A. Mihi, M. Schulmerich, P. V. Braun, R. Bhargava, J. A. Rogers, “Coupling of plasmonic and optical cavity modes in quasi-three-dimensional plasmonic crystals,” Nat. Commun. 2, 479 (2011).
[Crossref]

Roussignol, P.

M. Gurioli, F. Bogani, D. S. Wiersma, P. Roussignol, G. Cassabois, G. Khitrova, H. Gibbs, “Experimental study of disorder in a semiconductor microcavity,” Phys. Rev. B 64, 165309 (2001).
[Crossref]

Rupper, G.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200–203 (2004).
[Crossref]

Santori, C.

H. Deng, G. Weihs, C. Santori, J. Bloch, Y. Yamamoto, “Condensation of semiconductor microcavity exciton polaritons,” Science 298, 199–202 (2002).
[Crossref]

Savona, V.

J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymańska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, L. S. Dang, “Bose–Einstein condensation of exciton polaritons,” Nature 443, 409–414 (2006).
[Crossref]

Schäflein, C.

R. J. Warburton, C. Schäflein, D. Haft, F. Bickel, A. Lorke, K. Karrai, J. M. Garcia, W. Schoenfeld, P. M. Petroff, “Optical emission from a charge-tunable quantum ring,” Nature 405, 926–929 (2000).
[Crossref]

Scherer, A.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200–203 (2004).
[Crossref]

Schmogrow, R.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7, 977–981 (2013).
[Crossref]

Schoenfeld, W.

R. J. Warburton, C. Schäflein, D. Haft, F. Bickel, A. Lorke, K. Karrai, J. M. Garcia, W. Schoenfeld, P. M. Petroff, “Optical emission from a charge-tunable quantum ring,” Nature 405, 926–929 (2000).
[Crossref]

Schulmerich, M.

D. Chanda, K. Shigeta, T. Truong, E. Lui, A. Mihi, M. Schulmerich, P. V. Braun, R. Bhargava, J. A. Rogers, “Coupling of plasmonic and optical cavity modes in quasi-three-dimensional plasmonic crystals,” Nat. Commun. 2, 479 (2011).
[Crossref]

Sek, G.

J. P. Reithmaier, G. Sęk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432, 197–200 (2004).
[Crossref]

Sell, A.

G. Günter, A. A. Anappara, J. Hees, A. Sell, G. Biasiol, L. Sorba, S. de Liberato, C. Ciuti, A. Tredicucci, A. Leitenstorfer, R. Huber, “Sub-cycle switch-on of ultrastrong light–matter interaction,” Nature 458, 178–181 (2009).
[Crossref]

Shchekin, O. B.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200–203 (2004).
[Crossref]

Shigeta, K.

D. Chanda, K. Shigeta, T. Truong, E. Lui, A. Mihi, M. Schulmerich, P. V. Braun, R. Bhargava, J. A. Rogers, “Coupling of plasmonic and optical cavity modes in quasi-three-dimensional plasmonic crystals,” Nat. Commun. 2, 479 (2011).
[Crossref]

Snoke, D.

R. Balili, V. Hartwell, D. Snoke, L. Pfeiffer, K. West, “Bose–Einstein condensation of microcavity polaritons in a trap,” Science 316, 1007–1010 (2007).
[Crossref]

Sorba, L.

G. Günter, A. A. Anappara, J. Hees, A. Sell, G. Biasiol, L. Sorba, S. de Liberato, C. Ciuti, A. Tredicucci, A. Leitenstorfer, R. Huber, “Sub-cycle switch-on of ultrastrong light–matter interaction,” Nature 458, 178–181 (2009).
[Crossref]

Sorger, V.

B. Min, E. Ostby, V. Sorger, E. Ulin-Avila, L. Yang, X. Zhang, K. Vahala, “High-Q surface-plasmon-polariton whispering-gallery microcavity,” Nature 457, 455–458 (2009).
[Crossref]

Staehli, J. L.

J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymańska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, L. S. Dang, “Bose–Einstein condensation of exciton polaritons,” Nature 443, 409–414 (2006).
[Crossref]

Steiner, J. T.

A. D. Jameson, J. L. Tomaino, Y. Lee, J. P. Prineas, J. T. Steiner, M. Kira, S. W. Koch, “Transient optical response of quantum well excitons to intense narrowband terahertz pulses,” Appl. Phys. Lett. 95, 201107 (2009).
[Crossref]

J. T. Steiner, M. Kira, S. W. Koch, “Optical nonlinearities and Rabi flopping of an exciton population in a semiconductor interacting with strong terahertz fields,” Phys. Rev. B 77, 165308 (2008).
[Crossref]

J. R. Danielson, Y.-S. Lee, J. P. Prineas, J. T. Steiner, M. Kira, S. W. Koch, “Interaction of strong single-cycle terahertz pulses with semiconductor quantum wells,” Phys. Rev. Lett. 99, 237401 (2007).
[Crossref]

Steiner, M.

F. N. Xia, M. Steiner, Y. M. Lin, P. Avouris, “A microcavity-controlled, current-driven, on-chip nanotube emitter at infrared wavelengths,” Nat. Nanotechnol. 3, 609–613 (2008).
[Crossref]

Szymanska, M. H.

J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymańska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, L. S. Dang, “Bose–Einstein condensation of exciton polaritons,” Nature 443, 409–414 (2006).
[Crossref]

Tauser, F.

R. Huber, F. Tauser, A. Brodschelm, M. Bichler, G. Abstreiter, A. Leitenstorfer, “Femtosecond buildup of Coulomb screening in photoexcited GaAs probed via ultrabroadband THz spectroscopy,” J. Lumin. 94–95, 555–558 (2001).
[Crossref]

Tessmann, A.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7, 977–981 (2013).
[Crossref]

Tomaino, J. L.

J. L. Tomaino, A. D. Jameson, Y.-S. Lee, G. Khitrova, H. M. Gibbs, A. C. Klettke, M. Kira, S. W. Koch, “Terahertz excitation of a coherent Λ-type three-level system of exciton-polariton modes in a quantum-well microcavity,” Phys. Rev. Lett. 108, 267402 (2012).
[Crossref]

A. D. Jameson, J. L. Tomaino, Y. Lee, J. P. Prineas, J. T. Steiner, M. Kira, S. W. Koch, “Transient optical response of quantum well excitons to intense narrowband terahertz pulses,” Appl. Phys. Lett. 95, 201107 (2009).
[Crossref]

Tredicucci, A.

G. Günter, A. A. Anappara, J. Hees, A. Sell, G. Biasiol, L. Sorba, S. de Liberato, C. Ciuti, A. Tredicucci, A. Leitenstorfer, R. Huber, “Sub-cycle switch-on of ultrastrong light–matter interaction,” Nature 458, 178–181 (2009).
[Crossref]

Tritschler, T.

O. D. Mücke, T. Tritschler, M. Wegener, U. Morgner, F. X. Kärtner, “Signatures of carrier-wave Rabi flopping in GaAs,” Phys. Rev. Lett. 87, 057401 (2001).
[Crossref]

Truong, T.

D. Chanda, K. Shigeta, T. Truong, E. Lui, A. Mihi, M. Schulmerich, P. V. Braun, R. Bhargava, J. A. Rogers, “Coupling of plasmonic and optical cavity modes in quasi-three-dimensional plasmonic crystals,” Nat. Commun. 2, 479 (2011).
[Crossref]

Ulin-Avila, E.

B. Min, E. Ostby, V. Sorger, E. Ulin-Avila, L. Yang, X. Zhang, K. Vahala, “High-Q surface-plasmon-polariton whispering-gallery microcavity,” Nature 457, 455–458 (2009).
[Crossref]

Vahala, K.

B. Min, E. Ostby, V. Sorger, E. Ulin-Avila, L. Yang, X. Zhang, K. Vahala, “High-Q surface-plasmon-polariton whispering-gallery microcavity,” Nature 457, 455–458 (2009).
[Crossref]

Volz, T.

T. Volz, A. Reinhard, M. Winger, A. Badolato, K. J. Hennessy, E. L. Hu, A. Imamoğlu, “Ultrafast all-optical switching by single photons,” Nat. Photonics 6, 607–611 (2012).
[Crossref]

Warburton, R. J.

R. J. Warburton, C. Schäflein, D. Haft, F. Bickel, A. Lorke, K. Karrai, J. M. Garcia, W. Schoenfeld, P. M. Petroff, “Optical emission from a charge-tunable quantum ring,” Nature 405, 926–929 (2000).
[Crossref]

Wegener, M.

O. D. Mücke, T. Tritschler, M. Wegener, U. Morgner, F. X. Kärtner, “Signatures of carrier-wave Rabi flopping in GaAs,” Phys. Rev. Lett. 87, 057401 (2001).
[Crossref]

Weihs, G.

H. Deng, G. Weihs, C. Santori, J. Bloch, Y. Yamamoto, “Condensation of semiconductor microcavity exciton polaritons,” Science 298, 199–202 (2002).
[Crossref]

West, K.

R. Balili, V. Hartwell, D. Snoke, L. Pfeiffer, K. West, “Bose–Einstein condensation of microcavity polaritons in a trap,” Science 316, 1007–1010 (2007).
[Crossref]

Wiersma, D. S.

M. Gurioli, F. Bogani, D. S. Wiersma, P. Roussignol, G. Cassabois, G. Khitrova, H. Gibbs, “Experimental study of disorder in a semiconductor microcavity,” Phys. Rev. B 64, 165309 (2001).
[Crossref]

Winger, M.

T. Volz, A. Reinhard, M. Winger, A. Badolato, K. J. Hennessy, E. L. Hu, A. Imamoğlu, “Ultrafast all-optical switching by single photons,” Nat. Photonics 6, 607–611 (2012).
[Crossref]

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445, 896–899 (2007).
[Crossref]

Xia, F. N.

F. N. Xia, M. Steiner, Y. M. Lin, P. Avouris, “A microcavity-controlled, current-driven, on-chip nanotube emitter at infrared wavelengths,” Nat. Nanotechnol. 3, 609–613 (2008).
[Crossref]

Yamamoto, Y.

H. Deng, G. Weihs, C. Santori, J. Bloch, Y. Yamamoto, “Condensation of semiconductor microcavity exciton polaritons,” Science 298, 199–202 (2002).
[Crossref]

Yang, L.

B. Min, E. Ostby, V. Sorger, E. Ulin-Avila, L. Yang, X. Zhang, K. Vahala, “High-Q surface-plasmon-polariton whispering-gallery microcavity,” Nature 457, 455–458 (2009).
[Crossref]

Yoshie, T.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200–203 (2004).
[Crossref]

Zhang, X.

B. Min, E. Ostby, V. Sorger, E. Ulin-Avila, L. Yang, X. Zhang, K. Vahala, “High-Q surface-plasmon-polariton whispering-gallery microcavity,” Nature 457, 455–458 (2009).
[Crossref]

Zhong, Z. H.

N. M. Gabor, Z. H. Zhong, K. Bosnick, J. Park, P. L. McEuen, “Extremely efficient multiple electron-hole pair generation in carbon nanotube photodiodes,” Science 325, 1367–1371 (2009).
[Crossref]

Zwick, T.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7, 977–981 (2013).
[Crossref]

Appl. Phys. Lett. (1)

A. D. Jameson, J. L. Tomaino, Y. Lee, J. P. Prineas, J. T. Steiner, M. Kira, S. W. Koch, “Transient optical response of quantum well excitons to intense narrowband terahertz pulses,” Appl. Phys. Lett. 95, 201107 (2009).
[Crossref]

J. Lumin. (1)

R. Huber, F. Tauser, A. Brodschelm, M. Bichler, G. Abstreiter, A. Leitenstorfer, “Femtosecond buildup of Coulomb screening in photoexcited GaAs probed via ultrabroadband THz spectroscopy,” J. Lumin. 94–95, 555–558 (2001).
[Crossref]

Nat. Commun. (1)

D. Chanda, K. Shigeta, T. Truong, E. Lui, A. Mihi, M. Schulmerich, P. V. Braun, R. Bhargava, J. A. Rogers, “Coupling of plasmonic and optical cavity modes in quasi-three-dimensional plasmonic crystals,” Nat. Commun. 2, 479 (2011).
[Crossref]

Nat. Nanotechnol. (1)

F. N. Xia, M. Steiner, Y. M. Lin, P. Avouris, “A microcavity-controlled, current-driven, on-chip nanotube emitter at infrared wavelengths,” Nat. Nanotechnol. 3, 609–613 (2008).
[Crossref]

Nat. Photonics (4)

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7, 977–981 (2013).
[Crossref]

P. Berini, I. de Leon, “Surface plasmon-polariton amplifiers and lasers,” Nat. Photonics 6, 16–24 (2012).
[Crossref]

T. Volz, A. Reinhard, M. Winger, A. Badolato, K. J. Hennessy, E. L. Hu, A. Imamoğlu, “Ultrafast all-optical switching by single photons,” Nat. Photonics 6, 607–611 (2012).
[Crossref]

S. Kéna-Cohen, S. R. Forrest, “Room-temperature polariton lasing in an organic single-crystal microcavity,” Nat. Photonics 4, 371–375 (2010).
[Crossref]

Nature (10)

B. Min, E. Ostby, V. Sorger, E. Ulin-Avila, L. Yang, X. Zhang, K. Vahala, “High-Q surface-plasmon-polariton whispering-gallery microcavity,” Nature 457, 455–458 (2009).
[Crossref]

G. Günter, A. A. Anappara, J. Hees, A. Sell, G. Biasiol, L. Sorba, S. de Liberato, C. Ciuti, A. Tredicucci, A. Leitenstorfer, R. Huber, “Sub-cycle switch-on of ultrastrong light–matter interaction,” Nature 458, 178–181 (2009).
[Crossref]

D. Powell, “Lasers boost space communications,” Nature 499, 266–267 (2013).
[Crossref]

T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, J. L. O’Brien, “Quantum computers,” Nature 464, 45–53 (2010).
[Crossref]

R. J. Warburton, C. Schäflein, D. Haft, F. Bickel, A. Lorke, K. Karrai, J. M. Garcia, W. Schoenfeld, P. M. Petroff, “Optical emission from a charge-tunable quantum ring,” Nature 405, 926–929 (2000).
[Crossref]

R. A. Kaindl, M. A. Carnahan, D. Hägele, R. Lövenich, D. S. Chemla, “Ultrafast terahertz probes of transient conducting and insulating phases in an electron–hole gas,” Nature 423, 734–738 (2003).
[Crossref]

J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymańska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, L. S. Dang, “Bose–Einstein condensation of exciton polaritons,” Nature 443, 409–414 (2006).
[Crossref]

J. P. Reithmaier, G. Sęk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432, 197–200 (2004).
[Crossref]

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200–203 (2004).
[Crossref]

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445, 896–899 (2007).
[Crossref]

Phys. Rev. B (2)

M. Gurioli, F. Bogani, D. S. Wiersma, P. Roussignol, G. Cassabois, G. Khitrova, H. Gibbs, “Experimental study of disorder in a semiconductor microcavity,” Phys. Rev. B 64, 165309 (2001).
[Crossref]

J. T. Steiner, M. Kira, S. W. Koch, “Optical nonlinearities and Rabi flopping of an exciton population in a semiconductor interacting with strong terahertz fields,” Phys. Rev. B 77, 165308 (2008).
[Crossref]

Phys. Rev. Lett. (4)

O. D. Mücke, T. Tritschler, M. Wegener, U. Morgner, F. X. Kärtner, “Signatures of carrier-wave Rabi flopping in GaAs,” Phys. Rev. Lett. 87, 057401 (2001).
[Crossref]

J. R. Danielson, Y.-S. Lee, J. P. Prineas, J. T. Steiner, M. Kira, S. W. Koch, “Interaction of strong single-cycle terahertz pulses with semiconductor quantum wells,” Phys. Rev. Lett. 99, 237401 (2007).
[Crossref]

J. L. Tomaino, A. D. Jameson, Y.-S. Lee, G. Khitrova, H. M. Gibbs, A. C. Klettke, M. Kira, S. W. Koch, “Terahertz excitation of a coherent Λ-type three-level system of exciton-polariton modes in a quantum-well microcavity,” Phys. Rev. Lett. 108, 267402 (2012).
[Crossref]

Y.-S. Lee, T. B. Norris, M. Kira, F. Jahnke, S. W. Koch, G. Khitrova, H. M. Gibbs, “Quantum correlations and intraband coherences in semiconductor cavity QED,” Phys. Rev. Lett. 83, 5338–5341 (1999).
[Crossref]

Prog. Quantum Electron. (1)

M. Kira, S. W. Koch, “Many-body correlations and excitonic effects in semiconductor spectroscopy,” Prog. Quantum Electron. 30, 155–296 (2006).
[Crossref]

Rev. Mod. Phys. (1)

G. Khitrova, H. M. Gibbs, F. Jahnke, M. Kira, S. W. Koch, “Nonlinear optics of normal-mode-coupling semiconductor microcavities,” Rev. Mod. Phys. 71, 1591–1639 (1999).
[Crossref]

Science (4)

N. M. Gabor, Z. H. Zhong, K. Bosnick, J. Park, P. L. McEuen, “Extremely efficient multiple electron-hole pair generation in carbon nanotube photodiodes,” Science 325, 1367–1371 (2009).
[Crossref]

R. Balili, V. Hartwell, D. Snoke, L. Pfeiffer, K. West, “Bose–Einstein condensation of microcavity polaritons in a trap,” Science 316, 1007–1010 (2007).
[Crossref]

H. Deng, G. Weihs, C. Santori, J. Bloch, Y. Yamamoto, “Condensation of semiconductor microcavity exciton polaritons,” Science 298, 199–202 (2002).
[Crossref]

V. Bulovic, V. G. Kozlov, V. B. Khalfin, S. R. Forrest, “Transform-limited, narrow-linewidth lasing action in organic semiconductor microcavities,” Science 279, 553–555 (1998).
[Crossref]

Other (1)

M. Kira, S. W. Koch, Semiconductor Quantum Optics, 1st ed. (Cambridge University, 2011).

Supplementary Material (1)

» Supplement 1: PDF (1504 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Pump–reset protocol for a cavity polariton. The microcavity (disks) is irradiated with an optical pump pulse (arrow, left) to generate a cavity polariton. Subsequently, the QW polarization (P) and the cavity field (E) periodically exchange energy. A reset pulse (wave symbols) removes the polarization at two exemplary times (dashed lines). The reset-induced changes are revealed in modulations of the pump-reflection spectrum (1R, solid red lines), where the shaded areas correspond to the spectra without the reset.
Fig. 2.
Fig. 2. Demonstration of pump–reset protocol. The measured optical reflection spectra (1R) at zero detuning without additional THz excitation (shaded) are compared to those with THz pulses at time delays of 0.4 ps (red line) and 0.73 ps (black line) between optical and THz excitation. The inset shows the experimental single-cycle THz-reset pulse. Figure S2 in Supplement 1 shows the THz power spectrum.
Fig. 3.
Fig. 3. Direct measurement of polariton oscillations. (a) The experimentally measured differential reflectivity ΔR=R0Rreset at zero detuning is plotted as a function of energy and time delay between the optical pump and the THz-reset pulses with ETHz=10kV/cm; (b) slice through the low-energy peak. The oscillation period is 0.66 ps (shaded area), corresponding to the LEP–HEP energy splitting of 6.3 meV.
Fig. 4.
Fig. 4. Computed polariton oscillations in pump–reset protocol. (a) The computed differential reflectivity ΔR=R0Rreset at zero detuning is plotted as a function of energy and time delay between the optical pump and the THz-reset pulses; (b) slice through the low-energy peak (red solid line), polarization (blue-shaded area), and optical field (yellow-shaded area) at the QW position. The oscillation period is 0.66 ps (gray-shaded areas).
Fig. 5.
Fig. 5. Cavity-detuning-dependent polariton oscillation. (a) Time slices of polariton oscillation through the low-energy peak at δc=1.9, 0.3, and 0.4 meV. The curves are vertically offset for clarity. (b) Polariton oscillation period versus cavity detuning. The red squares indicate experimental data, and the gray line is a theoretical curve obtained from calculated polariton mode splitting.

Metrics