Abstract

Light is critical for art. It allows us to see color, and can itself be a tool for creating unique pieces of art and design. Here we demonstrate that a laser can be a multifunctional and effective tool for the creation of masterpieces, analogous to the process of an artist creating a canvas with classical paints and brushes. We investigate the interaction between focused laser irradiation and metallic surfaces and analyze the optical effects in thin oxide films for three main artistic operations: color making, multiple color changes, and erasing managed by a nanosecond laser. These processes are possible upon heating the material above the evaporation point and are proved to be dependent on the cooling rate, according to both experimental and theoretical results. Such an interference-based laser paintbrush could find applications in modern art and design.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
More Like This
Laser coloration of metals in visual art and design

Ya. M. Andreeva, V. C. Luong, D. S. Lutoshina, O. S. Medvedev, V. Yu. Mikhailovskii, M. K. Moskvin, G. V. Odintsova, V. V. Romanov, N. N. Shchedrina, and V. P. Veiko
Opt. Mater. Express 9(3) 1310-1319 (2019)

Design, Manufacture, and Analysis of Photonic Materials for Historical and Modern Visual Art: feature issue introduction

Joel K. W. Yang, Martina Mrongovius, Martin C. Fischer, and Alexandra Boltasseva
Opt. Mater. Express 9(5) 2128-2130 (2019)

Ptychographic wavefront characterization for single-particle imaging at x-ray lasers

Benedikt J. Daurer, Simone Sala, Max F. Hantke, Hemanth K. N. Reddy, Johan Bielecki, Zhou Shen, Carl Nettelblad, Martin Svenda, Tomas Ekeberg, Gabriella A. Carini, Philip Hart, Timur Osipov, Andrew Aquila, N. Duane Loh, Filipe R. N. C. Maia, and Pierre Thibault
Optica 8(4) 551-562 (2021)

References

  • View by:
  • |
  • |
  • |

  1. W. Hong, Z. Yuan, and X. Chen, “Structural color materials for optical anticounterfeiting,” Small 16, 1907626 (2020).
    [Crossref]
  2. Y. Bao, Y. Yu, H. Xu, C. Guo, J. Li, S. Sun, Z.-K. Zhou, C.-W. Qiu, and X.-H. Wang, “Full-colour nanoprint-hologram synchronous metasurface with arbitrary hue-saturation-brightness control,” Light Sci. Appl. 8, 95 (2019).
    [Crossref]
  3. M. F. Limonov, M. V. Rybin, A. N. Poddubny, and Y. S. Kivshar, “Fano resonances in photonics,” Nat. Photonics 11, 543–554 (2017).
    [Crossref]
  4. S. V. Makarov, V. A. Milichko, I. S. Mukhin, I. I. Shishkin, D. A. Zuev, A. M. Mozharov, A. E. Krasnok, and P. A. Belov, “Controllable femtosecond laser-induced dewetting for plasmonic applications,” Laser Photon. Rev. 10, 91–99 (2016).
    [Crossref]
  5. P. Mao, C. Liu, F. Song, M. Han, S. A. Maier, and S. Zhang, “Manipulating disordered plasmonic systems by external cavity with transition from broadband absorption to reconfigurable reflection,” Nat. Commun. 11, 1538 (2020).
    [Crossref]
  6. A. Kristensen, J. K. Yang, S. I. Bozhevolnyi, S. Link, P. Nordlander, N. J. Halas, and N. A. Mortensen, “Plasmonic colour generation,” Nat. Rev. Mater. 2, 16088 (2016).
    [Crossref]
  7. Y. D. Shah, P. W. Connolly, J. P. Grant, D. Hao, C. Accarino, X. Ren, M. Kenney, V. Annese, K. G. Rew, and Z. M. Greener, “Ultralow-light-level color image reconstruction using high-efficiency plasmonic metasurface mosaic filters,” Optica 7, 632–639 (2020).
    [Crossref]
  8. C. Zou, J. Sautter, F. Setzpfandt, and I. Staude, “Resonant dielectric metasurfaces: active tuning and nonlinear effects,” J. Phys. D 52, 373002 (2019).
    [Crossref]
  9. Z. Dong, J. Ho, Y. F. Yu, Y. H. Fu, R. Paniagua-Dominguez, S. Wang, A. Kuznetsov, and J. K. Yang, “Printing beyond srgb color gamut by mimicking silicon nanostructures in free-space,” Nano Lett. 17, 7620–7628 (2017).
    [Crossref]
  10. M. Rahmani, B. Luk’yanchuk, and M. Hong, “Fano resonance in novel plasmonic nanostructures,” Laser Photon. Rev. 7, 329–349 (2013).
    [Crossref]
  11. Y. Zhang, Q. Zhang, X. Ouyang, D. Y. Lei, A. P. Zhang, and H.-Y. Tam, “Ultrafast light-controlled growth of silver nanoparticles for direct plasmonic color printing,” ACS Nano 12, 9913–9921 (2018).
    [Crossref]
  12. K. Kumar, H. Duan, R. S. Hegde, S. C. Koh, J. N. Wei, and J. K. Yang, “Printing colour at the optical diffraction limit,” Nat. Nanotechnol. 7, 557 (2012).
    [Crossref]
  13. F. Cheng, J. Gao, T. S. Luk, and X. Yang, “Structural color printing based on plasmonic metasurfaces of perfect light absorption,” Sci. Rep. 5, 11045 (2015).
    [Crossref]
  14. D. Franklin, Y. Chen, A. Vazquez-Guardado, S. Modak, J. Boroumand, D. Xu, S.-T. Wu, and D. Chanda, “Polarization-independent actively tunable colour generation on imprinted plasmonic surfaces,” Nat. Commun. 6, 7337 (2015).
    [Crossref]
  15. J. Meng, J. J. Cadusch, and K. B. Crozier, “Detector-only spectrometer based on structurally colored silicon nanowires and a reconstruction algorithm,” Nano Lett. 20, 320–328 (2019).
    [Crossref]
  16. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  17. X. Zhu, C. Vannahme, E. Højlund-Nielsen, N. A. Mortensen, and A. Kristensen, “Plasmonic colour laser printing,” Nat. Nanotechnol. 11, 325 (2016).
    [Crossref]
  18. A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, and B. Luk’Yanchuk, “Magnetic light,” Sci. Rep. 2, 492 (2012).
    [Crossref]
  19. P. Huo, M. Song, W. Zhu, C. Zhang, L. Chen, H. J. Lezec, Y. Lu, A. Agrawal, and T. Xu, “Photorealistic full-color nanopainting enabled by a low-loss metasurface,” Optica 7, 1171–1172 (2020).
    [Crossref]
  20. S. Jahani and Z. Jacob, “All-dielectric metamaterials,” Nat. Nanotechnol. 11, 23 (2016).
    [Crossref]
  21. H. Nishi and T. Tatsuma, “Full-color scattering based on plasmon and mie resonances of gold nanoparticles modulated by Fabry–Pérot interference for coloring and image projection,” ACS Appl. Nano Mater. 2, 5071–5078 (2019).
    [Crossref]
  22. Y. Jin, I. Qamar, M. Wessely, and S. Mueller, “Photo-chromeleon: re-programmable multi-color textures using photochromic dyes,” in ACM SIGGRAPH 2020 Emerging Technologies (ACM DL, 2020), pp. 1–2.
  23. Z. Liu, J. Siegel, M. Garcia-Lechuga, T. Epicier, Y. Lefkir, S. Reynaud, M. Bugnet, F. Vocanson, J. Solis, and G. Vitrant, “Three-dimensional self-organization in nanocomposite layered systems by ultrafast laser pulses,” ACS Nano 11, 5031–5040 (2017).
    [Crossref]
  24. Y. Kuroiwa and T. Tatsuma, “Laser printing of translucent plasmonic full-color images with transmission-scattering dichroism of silver nanoparticles,” ACS Appl. Nano Mater. 3, 2472–2479 (2020).
    [Crossref]
  25. A. Y. Vorobyev and C. Guo, “Colorizing metals with femtosecond laser pulses,” Appl. Phys. Lett. 92, 041914 (2008).
    [Crossref]
  26. E. Ageev, V. Veiko, E. Vlasova, Y. Karlagina, A. Krivonosov, M. Moskvin, G. Odintsova, V. Pshenichnov, V. Romanov, and R. Yatsuk, “Controlled nanostructures formation on stainless steel by short laser pulses for products protection against falsification,” Opt. Express 26, 2117–2122 (2018).
    [Crossref]
  27. B. Dusser, Z. Sagan, H. Soder, N. Faure, J.-P. Colombier, M. Jourlin, and E. Audouard, “Controlled nanostructrures formation by ultra fast laser pulses for color marking,” Opt. Express 18, 2913–2924 (2010).
    [Crossref]
  28. H. Jiang and B. Kaminska, “Scalable inkjet-based structural color printing by molding transparent gratings on multilayer nanostructured surfaces,” ACS Nano 12, 3112–3125 (2018).
    [Crossref]
  29. K. Keller, A. V. Yakovlev, E. V. Grachova, and A. V. Vinogradov, “Inkjet printing of multicolor daylight visible opal holography,” Adv. Funct. Mater. 28, 1706903 (2018).
    [Crossref]
  30. V. Veiko, G. Odintsova, E. Gorbunova, E. Ageev, A. Shimko, Y. Karlagina, and Y. Andreeva, “Development of complete color palette based on spectrophotometric measurements of steel oxidation results for enhancement of color laser marking technology,” Mater. Des. 89, 684–688 (2016).
    [Crossref]
  31. A. V. Yakovlev, V. A. Milichko, V. V. Vinogradov, and A. V. Vinogradov, “Inkjet color printing by interference nanostructures,” ACS Nano 10, 3078–3086 (2016).
    [Crossref]
  32. K. Łęcka, M. Wójcik, and A. Antończak, “Laser-induced color marking of titanium: a modeling study of the interference effect and the impact of protective coating,” Math. Probl. Eng. 2017, 3425108 (2017).
    [Crossref]
  33. H. Liu, W. Lin, and M. Hong, “Surface coloring by laser irradiation of solid substrates,” APL Photon. 4, 051101 (2019).
    [Crossref]
  34. R. Zhou, T. Huang, Y. Lu, and M. Hong, “Tunable coloring via post-thermal annealing of laser-processed metal surface,” Appl. Sci. 8, 1716 (2018).
    [Crossref]
  35. K. ŁeRcka, A. Antonczak, B. Szubzda, M. Wójcik, B. SteRpak, P. Szymczyk, M. Trzcinski, M. Ozimek, and K. Abramski, “Effects of laser-induced oxidation on the corrosion resistance of aisi 304 stainless steel,” J. Laser Appl. 28, 032009 (2016).
    [Crossref]
  36. V. Veiko, G. Odintsova, E. Ageev, Y. Karlagina, A. Loginov, A. Skuratova, and E. Gorbunova, “Controlled oxide films formation by nanosecond laser pulses for color marking,” Opt. Express 22, 24342–24347 (2014).
    [Crossref]
  37. E. Amara, F. Haïd, and A. Noukaz, “Experimental investigations on fiber laser color marking of steels,” Appl. Surf. Sci. 351, 1–12 (2015).
    [Crossref]
  38. A. Pereira, A. Cros, P. Delaporte, S. Georgiou, A. Manousaki, W. Marine, and M. Sentis, “Surface nanostructuring of metals by laser irradiation: effects of pulse duration, wavelength and gas atmosphere,” Appl. Phys. A 79, 1433–1437 (2004).
    [Crossref]
  39. T. Jwad, M. Walker, and S. Dimov, “Erasing and rewriting of titanium oxide colour marks using laser-induced reduction/oxidation,” Appl. Surf. Sci. 458, 849–854 (2018).
    [Crossref]
  40. S. Cucerca, P. Didyk, H.-P. Seidel, and V. Babaei, “Computational image marking on metals via laser induced heating,” ACM Trans. Graph. 39, 70–71 (2020).
    [Crossref]
  41. G. Odintsova, Y. Andreeva, A. Salminen, H. Roozbahani, L. Van Cuong, R. Yatsuk, V. Golubeva, V. Romanov, and V. Veiko, “Investigation of production related impact on the optical properties of color laser marking,” J. Mater. Process. Technol. 274, 116263 (2019).
    [Crossref]
  42. M. Born and E. Wolf, Principles of Optics (Cambridge University Press, 1999), Chap. 1.
  43. J. Jaglarz, J. Szewczenko, K. Marszałek, M. Basiaga, M. Marszałek, and R. Gaweł, “Nonstandard optical methods as a tool for rough surface analysis,” Mater. Today 2(7), 4046–4052 (2015).
    [Crossref]
  44. T. Siefke, S. Kroker, K. Pfeiffer, O. Puffky, K. Dietrich, D. Franta, I. Ohlídal, A. Szeghalmi, E. Kley, and A. Tünnermann, “Materials pushing the application limits of wire grid polarizers further into the deep ultraviolet spectral range,” Adv. Opt. Mater. 4, 1780–1786 (2016).
    [Crossref]
  45. A. Bendavid, P. Martin, A. Jamting, and H. Takikawa, “Structural and optical properties of titanium oxide thin films deposited by filtered arc deposition,” Thin Solid Films 355, 6–11 (1999).
    [Crossref]
  46. M. R. Saleem, R. Ali, S. Honkanen, and J. Turunen, “Thermal properties of thin al2o3 films and their barrier layer effect on thermo-optic properties of TiO2 films grown by atomic layer deposition,” Thin Solid Films 542, 257–262 (2013).
    [Crossref]
  47. S. A. Jalil, M. Akram, G. Yoon, A. Khalid, D. Lee, N. Raeis-Hosseini, S. So, I. Kim, Q. S. Ahmed, and J. Rho, “High refractive index Ti3O5 films for dielectric metasurfaces,” Chin. Phys. Lett. 34, 088102 (2017).
    [Crossref]
  48. D. Höche, S. Müller, G. Rapin, M. Shinn, E. Remdt, M. Gubisch, and P. Schaaf, “Marangoni convection during free electron laser nitriding of titanium,” Metall. Mater. Trans. B 40, 497–507 (2009).
    [Crossref]
  49. M. J. Weber, Handbook of Optical Materials (CRC Press, 2002), Vol. 19.
  50. N. Bulgakova and A. Bulgakov, “Pulsed laser ablation of solids: transition from normal vaporization to phase explosion,” Appl. Phys. A 73, 199–208 (2001).
    [Crossref]
  51. P. Kofstad, P. Anderson, and O. Krudtaa, “Oxidation of titanium in the temperature range 800–1200 c,” J. Less Common Met. 3, 89–97 (1961).
    [Crossref]
  52. J. Trisno, R. Ng, Q. Ruan, C. Qiu, N. Mortensen, and J. Yang, “Nanophotonic structural colors,” ACS Photon. 8, 18–33 (2020).
    [Crossref]
  53. E. Ageev, Y. M. Andreeva, Y. Y. Karlagina, Y. R. Kolobov, S. Manokhin, G. Odintsova, A. Slobodov, and V. Veiko, “Composition analysis of oxide films formed on titanium surface under pulsed laser action by method of chemical thermodynamics,” Laser Phys. 27, 046001 (2017).
    [Crossref]

2020 (7)

W. Hong, Z. Yuan, and X. Chen, “Structural color materials for optical anticounterfeiting,” Small 16, 1907626 (2020).
[Crossref]

Y. D. Shah, P. W. Connolly, J. P. Grant, D. Hao, C. Accarino, X. Ren, M. Kenney, V. Annese, K. G. Rew, and Z. M. Greener, “Ultralow-light-level color image reconstruction using high-efficiency plasmonic metasurface mosaic filters,” Optica 7, 632–639 (2020).
[Crossref]

P. Mao, C. Liu, F. Song, M. Han, S. A. Maier, and S. Zhang, “Manipulating disordered plasmonic systems by external cavity with transition from broadband absorption to reconfigurable reflection,” Nat. Commun. 11, 1538 (2020).
[Crossref]

P. Huo, M. Song, W. Zhu, C. Zhang, L. Chen, H. J. Lezec, Y. Lu, A. Agrawal, and T. Xu, “Photorealistic full-color nanopainting enabled by a low-loss metasurface,” Optica 7, 1171–1172 (2020).
[Crossref]

Y. Kuroiwa and T. Tatsuma, “Laser printing of translucent plasmonic full-color images with transmission-scattering dichroism of silver nanoparticles,” ACS Appl. Nano Mater. 3, 2472–2479 (2020).
[Crossref]

S. Cucerca, P. Didyk, H.-P. Seidel, and V. Babaei, “Computational image marking on metals via laser induced heating,” ACM Trans. Graph. 39, 70–71 (2020).
[Crossref]

J. Trisno, R. Ng, Q. Ruan, C. Qiu, N. Mortensen, and J. Yang, “Nanophotonic structural colors,” ACS Photon. 8, 18–33 (2020).
[Crossref]

2019 (6)

G. Odintsova, Y. Andreeva, A. Salminen, H. Roozbahani, L. Van Cuong, R. Yatsuk, V. Golubeva, V. Romanov, and V. Veiko, “Investigation of production related impact on the optical properties of color laser marking,” J. Mater. Process. Technol. 274, 116263 (2019).
[Crossref]

H. Nishi and T. Tatsuma, “Full-color scattering based on plasmon and mie resonances of gold nanoparticles modulated by Fabry–Pérot interference for coloring and image projection,” ACS Appl. Nano Mater. 2, 5071–5078 (2019).
[Crossref]

H. Liu, W. Lin, and M. Hong, “Surface coloring by laser irradiation of solid substrates,” APL Photon. 4, 051101 (2019).
[Crossref]

J. Meng, J. J. Cadusch, and K. B. Crozier, “Detector-only spectrometer based on structurally colored silicon nanowires and a reconstruction algorithm,” Nano Lett. 20, 320–328 (2019).
[Crossref]

C. Zou, J. Sautter, F. Setzpfandt, and I. Staude, “Resonant dielectric metasurfaces: active tuning and nonlinear effects,” J. Phys. D 52, 373002 (2019).
[Crossref]

Y. Bao, Y. Yu, H. Xu, C. Guo, J. Li, S. Sun, Z.-K. Zhou, C.-W. Qiu, and X.-H. Wang, “Full-colour nanoprint-hologram synchronous metasurface with arbitrary hue-saturation-brightness control,” Light Sci. Appl. 8, 95 (2019).
[Crossref]

2018 (6)

Y. Zhang, Q. Zhang, X. Ouyang, D. Y. Lei, A. P. Zhang, and H.-Y. Tam, “Ultrafast light-controlled growth of silver nanoparticles for direct plasmonic color printing,” ACS Nano 12, 9913–9921 (2018).
[Crossref]

R. Zhou, T. Huang, Y. Lu, and M. Hong, “Tunable coloring via post-thermal annealing of laser-processed metal surface,” Appl. Sci. 8, 1716 (2018).
[Crossref]

H. Jiang and B. Kaminska, “Scalable inkjet-based structural color printing by molding transparent gratings on multilayer nanostructured surfaces,” ACS Nano 12, 3112–3125 (2018).
[Crossref]

K. Keller, A. V. Yakovlev, E. V. Grachova, and A. V. Vinogradov, “Inkjet printing of multicolor daylight visible opal holography,” Adv. Funct. Mater. 28, 1706903 (2018).
[Crossref]

E. Ageev, V. Veiko, E. Vlasova, Y. Karlagina, A. Krivonosov, M. Moskvin, G. Odintsova, V. Pshenichnov, V. Romanov, and R. Yatsuk, “Controlled nanostructures formation on stainless steel by short laser pulses for products protection against falsification,” Opt. Express 26, 2117–2122 (2018).
[Crossref]

T. Jwad, M. Walker, and S. Dimov, “Erasing and rewriting of titanium oxide colour marks using laser-induced reduction/oxidation,” Appl. Surf. Sci. 458, 849–854 (2018).
[Crossref]

2017 (6)

K. Łęcka, M. Wójcik, and A. Antończak, “Laser-induced color marking of titanium: a modeling study of the interference effect and the impact of protective coating,” Math. Probl. Eng. 2017, 3425108 (2017).
[Crossref]

E. Ageev, Y. M. Andreeva, Y. Y. Karlagina, Y. R. Kolobov, S. Manokhin, G. Odintsova, A. Slobodov, and V. Veiko, “Composition analysis of oxide films formed on titanium surface under pulsed laser action by method of chemical thermodynamics,” Laser Phys. 27, 046001 (2017).
[Crossref]

S. A. Jalil, M. Akram, G. Yoon, A. Khalid, D. Lee, N. Raeis-Hosseini, S. So, I. Kim, Q. S. Ahmed, and J. Rho, “High refractive index Ti3O5 films for dielectric metasurfaces,” Chin. Phys. Lett. 34, 088102 (2017).
[Crossref]

Z. Liu, J. Siegel, M. Garcia-Lechuga, T. Epicier, Y. Lefkir, S. Reynaud, M. Bugnet, F. Vocanson, J. Solis, and G. Vitrant, “Three-dimensional self-organization in nanocomposite layered systems by ultrafast laser pulses,” ACS Nano 11, 5031–5040 (2017).
[Crossref]

M. F. Limonov, M. V. Rybin, A. N. Poddubny, and Y. S. Kivshar, “Fano resonances in photonics,” Nat. Photonics 11, 543–554 (2017).
[Crossref]

Z. Dong, J. Ho, Y. F. Yu, Y. H. Fu, R. Paniagua-Dominguez, S. Wang, A. Kuznetsov, and J. K. Yang, “Printing beyond srgb color gamut by mimicking silicon nanostructures in free-space,” Nano Lett. 17, 7620–7628 (2017).
[Crossref]

2016 (8)

S. V. Makarov, V. A. Milichko, I. S. Mukhin, I. I. Shishkin, D. A. Zuev, A. M. Mozharov, A. E. Krasnok, and P. A. Belov, “Controllable femtosecond laser-induced dewetting for plasmonic applications,” Laser Photon. Rev. 10, 91–99 (2016).
[Crossref]

A. Kristensen, J. K. Yang, S. I. Bozhevolnyi, S. Link, P. Nordlander, N. J. Halas, and N. A. Mortensen, “Plasmonic colour generation,” Nat. Rev. Mater. 2, 16088 (2016).
[Crossref]

X. Zhu, C. Vannahme, E. Højlund-Nielsen, N. A. Mortensen, and A. Kristensen, “Plasmonic colour laser printing,” Nat. Nanotechnol. 11, 325 (2016).
[Crossref]

S. Jahani and Z. Jacob, “All-dielectric metamaterials,” Nat. Nanotechnol. 11, 23 (2016).
[Crossref]

V. Veiko, G. Odintsova, E. Gorbunova, E. Ageev, A. Shimko, Y. Karlagina, and Y. Andreeva, “Development of complete color palette based on spectrophotometric measurements of steel oxidation results for enhancement of color laser marking technology,” Mater. Des. 89, 684–688 (2016).
[Crossref]

A. V. Yakovlev, V. A. Milichko, V. V. Vinogradov, and A. V. Vinogradov, “Inkjet color printing by interference nanostructures,” ACS Nano 10, 3078–3086 (2016).
[Crossref]

K. ŁeRcka, A. Antonczak, B. Szubzda, M. Wójcik, B. SteRpak, P. Szymczyk, M. Trzcinski, M. Ozimek, and K. Abramski, “Effects of laser-induced oxidation on the corrosion resistance of aisi 304 stainless steel,” J. Laser Appl. 28, 032009 (2016).
[Crossref]

T. Siefke, S. Kroker, K. Pfeiffer, O. Puffky, K. Dietrich, D. Franta, I. Ohlídal, A. Szeghalmi, E. Kley, and A. Tünnermann, “Materials pushing the application limits of wire grid polarizers further into the deep ultraviolet spectral range,” Adv. Opt. Mater. 4, 1780–1786 (2016).
[Crossref]

2015 (4)

J. Jaglarz, J. Szewczenko, K. Marszałek, M. Basiaga, M. Marszałek, and R. Gaweł, “Nonstandard optical methods as a tool for rough surface analysis,” Mater. Today 2(7), 4046–4052 (2015).
[Crossref]

E. Amara, F. Haïd, and A. Noukaz, “Experimental investigations on fiber laser color marking of steels,” Appl. Surf. Sci. 351, 1–12 (2015).
[Crossref]

F. Cheng, J. Gao, T. S. Luk, and X. Yang, “Structural color printing based on plasmonic metasurfaces of perfect light absorption,” Sci. Rep. 5, 11045 (2015).
[Crossref]

D. Franklin, Y. Chen, A. Vazquez-Guardado, S. Modak, J. Boroumand, D. Xu, S.-T. Wu, and D. Chanda, “Polarization-independent actively tunable colour generation on imprinted plasmonic surfaces,” Nat. Commun. 6, 7337 (2015).
[Crossref]

2014 (1)

2013 (2)

M. Rahmani, B. Luk’yanchuk, and M. Hong, “Fano resonance in novel plasmonic nanostructures,” Laser Photon. Rev. 7, 329–349 (2013).
[Crossref]

M. R. Saleem, R. Ali, S. Honkanen, and J. Turunen, “Thermal properties of thin al2o3 films and their barrier layer effect on thermo-optic properties of TiO2 films grown by atomic layer deposition,” Thin Solid Films 542, 257–262 (2013).
[Crossref]

2012 (2)

A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, and B. Luk’Yanchuk, “Magnetic light,” Sci. Rep. 2, 492 (2012).
[Crossref]

K. Kumar, H. Duan, R. S. Hegde, S. C. Koh, J. N. Wei, and J. K. Yang, “Printing colour at the optical diffraction limit,” Nat. Nanotechnol. 7, 557 (2012).
[Crossref]

2010 (1)

2009 (1)

D. Höche, S. Müller, G. Rapin, M. Shinn, E. Remdt, M. Gubisch, and P. Schaaf, “Marangoni convection during free electron laser nitriding of titanium,” Metall. Mater. Trans. B 40, 497–507 (2009).
[Crossref]

2008 (1)

A. Y. Vorobyev and C. Guo, “Colorizing metals with femtosecond laser pulses,” Appl. Phys. Lett. 92, 041914 (2008).
[Crossref]

2004 (1)

A. Pereira, A. Cros, P. Delaporte, S. Georgiou, A. Manousaki, W. Marine, and M. Sentis, “Surface nanostructuring of metals by laser irradiation: effects of pulse duration, wavelength and gas atmosphere,” Appl. Phys. A 79, 1433–1437 (2004).
[Crossref]

2001 (1)

N. Bulgakova and A. Bulgakov, “Pulsed laser ablation of solids: transition from normal vaporization to phase explosion,” Appl. Phys. A 73, 199–208 (2001).
[Crossref]

1999 (1)

A. Bendavid, P. Martin, A. Jamting, and H. Takikawa, “Structural and optical properties of titanium oxide thin films deposited by filtered arc deposition,” Thin Solid Films 355, 6–11 (1999).
[Crossref]

1961 (1)

P. Kofstad, P. Anderson, and O. Krudtaa, “Oxidation of titanium in the temperature range 800–1200 c,” J. Less Common Met. 3, 89–97 (1961).
[Crossref]

Abramski, K.

K. ŁeRcka, A. Antonczak, B. Szubzda, M. Wójcik, B. SteRpak, P. Szymczyk, M. Trzcinski, M. Ozimek, and K. Abramski, “Effects of laser-induced oxidation on the corrosion resistance of aisi 304 stainless steel,” J. Laser Appl. 28, 032009 (2016).
[Crossref]

Accarino, C.

Ageev, E.

E. Ageev, V. Veiko, E. Vlasova, Y. Karlagina, A. Krivonosov, M. Moskvin, G. Odintsova, V. Pshenichnov, V. Romanov, and R. Yatsuk, “Controlled nanostructures formation on stainless steel by short laser pulses for products protection against falsification,” Opt. Express 26, 2117–2122 (2018).
[Crossref]

E. Ageev, Y. M. Andreeva, Y. Y. Karlagina, Y. R. Kolobov, S. Manokhin, G. Odintsova, A. Slobodov, and V. Veiko, “Composition analysis of oxide films formed on titanium surface under pulsed laser action by method of chemical thermodynamics,” Laser Phys. 27, 046001 (2017).
[Crossref]

V. Veiko, G. Odintsova, E. Gorbunova, E. Ageev, A. Shimko, Y. Karlagina, and Y. Andreeva, “Development of complete color palette based on spectrophotometric measurements of steel oxidation results for enhancement of color laser marking technology,” Mater. Des. 89, 684–688 (2016).
[Crossref]

V. Veiko, G. Odintsova, E. Ageev, Y. Karlagina, A. Loginov, A. Skuratova, and E. Gorbunova, “Controlled oxide films formation by nanosecond laser pulses for color marking,” Opt. Express 22, 24342–24347 (2014).
[Crossref]

Agrawal, A.

Ahmed, Q. S.

S. A. Jalil, M. Akram, G. Yoon, A. Khalid, D. Lee, N. Raeis-Hosseini, S. So, I. Kim, Q. S. Ahmed, and J. Rho, “High refractive index Ti3O5 films for dielectric metasurfaces,” Chin. Phys. Lett. 34, 088102 (2017).
[Crossref]

Akram, M.

S. A. Jalil, M. Akram, G. Yoon, A. Khalid, D. Lee, N. Raeis-Hosseini, S. So, I. Kim, Q. S. Ahmed, and J. Rho, “High refractive index Ti3O5 films for dielectric metasurfaces,” Chin. Phys. Lett. 34, 088102 (2017).
[Crossref]

Ali, R.

M. R. Saleem, R. Ali, S. Honkanen, and J. Turunen, “Thermal properties of thin al2o3 films and their barrier layer effect on thermo-optic properties of TiO2 films grown by atomic layer deposition,” Thin Solid Films 542, 257–262 (2013).
[Crossref]

Amara, E.

E. Amara, F. Haïd, and A. Noukaz, “Experimental investigations on fiber laser color marking of steels,” Appl. Surf. Sci. 351, 1–12 (2015).
[Crossref]

Anderson, P.

P. Kofstad, P. Anderson, and O. Krudtaa, “Oxidation of titanium in the temperature range 800–1200 c,” J. Less Common Met. 3, 89–97 (1961).
[Crossref]

Andreeva, Y.

G. Odintsova, Y. Andreeva, A. Salminen, H. Roozbahani, L. Van Cuong, R. Yatsuk, V. Golubeva, V. Romanov, and V. Veiko, “Investigation of production related impact on the optical properties of color laser marking,” J. Mater. Process. Technol. 274, 116263 (2019).
[Crossref]

V. Veiko, G. Odintsova, E. Gorbunova, E. Ageev, A. Shimko, Y. Karlagina, and Y. Andreeva, “Development of complete color palette based on spectrophotometric measurements of steel oxidation results for enhancement of color laser marking technology,” Mater. Des. 89, 684–688 (2016).
[Crossref]

Andreeva, Y. M.

E. Ageev, Y. M. Andreeva, Y. Y. Karlagina, Y. R. Kolobov, S. Manokhin, G. Odintsova, A. Slobodov, and V. Veiko, “Composition analysis of oxide films formed on titanium surface under pulsed laser action by method of chemical thermodynamics,” Laser Phys. 27, 046001 (2017).
[Crossref]

Annese, V.

Antonczak, A.

K. Łęcka, M. Wójcik, and A. Antończak, “Laser-induced color marking of titanium: a modeling study of the interference effect and the impact of protective coating,” Math. Probl. Eng. 2017, 3425108 (2017).
[Crossref]

K. ŁeRcka, A. Antonczak, B. Szubzda, M. Wójcik, B. SteRpak, P. Szymczyk, M. Trzcinski, M. Ozimek, and K. Abramski, “Effects of laser-induced oxidation on the corrosion resistance of aisi 304 stainless steel,” J. Laser Appl. 28, 032009 (2016).
[Crossref]

Audouard, E.

Babaei, V.

S. Cucerca, P. Didyk, H.-P. Seidel, and V. Babaei, “Computational image marking on metals via laser induced heating,” ACM Trans. Graph. 39, 70–71 (2020).
[Crossref]

Bao, Y.

Y. Bao, Y. Yu, H. Xu, C. Guo, J. Li, S. Sun, Z.-K. Zhou, C.-W. Qiu, and X.-H. Wang, “Full-colour nanoprint-hologram synchronous metasurface with arbitrary hue-saturation-brightness control,” Light Sci. Appl. 8, 95 (2019).
[Crossref]

Basiaga, M.

J. Jaglarz, J. Szewczenko, K. Marszałek, M. Basiaga, M. Marszałek, and R. Gaweł, “Nonstandard optical methods as a tool for rough surface analysis,” Mater. Today 2(7), 4046–4052 (2015).
[Crossref]

Belov, P. A.

S. V. Makarov, V. A. Milichko, I. S. Mukhin, I. I. Shishkin, D. A. Zuev, A. M. Mozharov, A. E. Krasnok, and P. A. Belov, “Controllable femtosecond laser-induced dewetting for plasmonic applications,” Laser Photon. Rev. 10, 91–99 (2016).
[Crossref]

Bendavid, A.

A. Bendavid, P. Martin, A. Jamting, and H. Takikawa, “Structural and optical properties of titanium oxide thin films deposited by filtered arc deposition,” Thin Solid Films 355, 6–11 (1999).
[Crossref]

Born, M.

M. Born and E. Wolf, Principles of Optics (Cambridge University Press, 1999), Chap. 1.

Boroumand, J.

D. Franklin, Y. Chen, A. Vazquez-Guardado, S. Modak, J. Boroumand, D. Xu, S.-T. Wu, and D. Chanda, “Polarization-independent actively tunable colour generation on imprinted plasmonic surfaces,” Nat. Commun. 6, 7337 (2015).
[Crossref]

Bozhevolnyi, S. I.

A. Kristensen, J. K. Yang, S. I. Bozhevolnyi, S. Link, P. Nordlander, N. J. Halas, and N. A. Mortensen, “Plasmonic colour generation,” Nat. Rev. Mater. 2, 16088 (2016).
[Crossref]

Bugnet, M.

Z. Liu, J. Siegel, M. Garcia-Lechuga, T. Epicier, Y. Lefkir, S. Reynaud, M. Bugnet, F. Vocanson, J. Solis, and G. Vitrant, “Three-dimensional self-organization in nanocomposite layered systems by ultrafast laser pulses,” ACS Nano 11, 5031–5040 (2017).
[Crossref]

Bulgakov, A.

N. Bulgakova and A. Bulgakov, “Pulsed laser ablation of solids: transition from normal vaporization to phase explosion,” Appl. Phys. A 73, 199–208 (2001).
[Crossref]

Bulgakova, N.

N. Bulgakova and A. Bulgakov, “Pulsed laser ablation of solids: transition from normal vaporization to phase explosion,” Appl. Phys. A 73, 199–208 (2001).
[Crossref]

Cadusch, J. J.

J. Meng, J. J. Cadusch, and K. B. Crozier, “Detector-only spectrometer based on structurally colored silicon nanowires and a reconstruction algorithm,” Nano Lett. 20, 320–328 (2019).
[Crossref]

Chanda, D.

D. Franklin, Y. Chen, A. Vazquez-Guardado, S. Modak, J. Boroumand, D. Xu, S.-T. Wu, and D. Chanda, “Polarization-independent actively tunable colour generation on imprinted plasmonic surfaces,” Nat. Commun. 6, 7337 (2015).
[Crossref]

Chen, L.

Chen, X.

W. Hong, Z. Yuan, and X. Chen, “Structural color materials for optical anticounterfeiting,” Small 16, 1907626 (2020).
[Crossref]

Chen, Y.

D. Franklin, Y. Chen, A. Vazquez-Guardado, S. Modak, J. Boroumand, D. Xu, S.-T. Wu, and D. Chanda, “Polarization-independent actively tunable colour generation on imprinted plasmonic surfaces,” Nat. Commun. 6, 7337 (2015).
[Crossref]

Cheng, F.

F. Cheng, J. Gao, T. S. Luk, and X. Yang, “Structural color printing based on plasmonic metasurfaces of perfect light absorption,” Sci. Rep. 5, 11045 (2015).
[Crossref]

Colombier, J.-P.

Connolly, P. W.

Cros, A.

A. Pereira, A. Cros, P. Delaporte, S. Georgiou, A. Manousaki, W. Marine, and M. Sentis, “Surface nanostructuring of metals by laser irradiation: effects of pulse duration, wavelength and gas atmosphere,” Appl. Phys. A 79, 1433–1437 (2004).
[Crossref]

Crozier, K. B.

J. Meng, J. J. Cadusch, and K. B. Crozier, “Detector-only spectrometer based on structurally colored silicon nanowires and a reconstruction algorithm,” Nano Lett. 20, 320–328 (2019).
[Crossref]

Cucerca, S.

S. Cucerca, P. Didyk, H.-P. Seidel, and V. Babaei, “Computational image marking on metals via laser induced heating,” ACM Trans. Graph. 39, 70–71 (2020).
[Crossref]

Delaporte, P.

A. Pereira, A. Cros, P. Delaporte, S. Georgiou, A. Manousaki, W. Marine, and M. Sentis, “Surface nanostructuring of metals by laser irradiation: effects of pulse duration, wavelength and gas atmosphere,” Appl. Phys. A 79, 1433–1437 (2004).
[Crossref]

Didyk, P.

S. Cucerca, P. Didyk, H.-P. Seidel, and V. Babaei, “Computational image marking on metals via laser induced heating,” ACM Trans. Graph. 39, 70–71 (2020).
[Crossref]

Dietrich, K.

T. Siefke, S. Kroker, K. Pfeiffer, O. Puffky, K. Dietrich, D. Franta, I. Ohlídal, A. Szeghalmi, E. Kley, and A. Tünnermann, “Materials pushing the application limits of wire grid polarizers further into the deep ultraviolet spectral range,” Adv. Opt. Mater. 4, 1780–1786 (2016).
[Crossref]

Dimov, S.

T. Jwad, M. Walker, and S. Dimov, “Erasing and rewriting of titanium oxide colour marks using laser-induced reduction/oxidation,” Appl. Surf. Sci. 458, 849–854 (2018).
[Crossref]

Dong, Z.

Z. Dong, J. Ho, Y. F. Yu, Y. H. Fu, R. Paniagua-Dominguez, S. Wang, A. Kuznetsov, and J. K. Yang, “Printing beyond srgb color gamut by mimicking silicon nanostructures in free-space,” Nano Lett. 17, 7620–7628 (2017).
[Crossref]

Duan, H.

K. Kumar, H. Duan, R. S. Hegde, S. C. Koh, J. N. Wei, and J. K. Yang, “Printing colour at the optical diffraction limit,” Nat. Nanotechnol. 7, 557 (2012).
[Crossref]

Dusser, B.

Epicier, T.

Z. Liu, J. Siegel, M. Garcia-Lechuga, T. Epicier, Y. Lefkir, S. Reynaud, M. Bugnet, F. Vocanson, J. Solis, and G. Vitrant, “Three-dimensional self-organization in nanocomposite layered systems by ultrafast laser pulses,” ACS Nano 11, 5031–5040 (2017).
[Crossref]

Faure, N.

Franklin, D.

D. Franklin, Y. Chen, A. Vazquez-Guardado, S. Modak, J. Boroumand, D. Xu, S.-T. Wu, and D. Chanda, “Polarization-independent actively tunable colour generation on imprinted plasmonic surfaces,” Nat. Commun. 6, 7337 (2015).
[Crossref]

Franta, D.

T. Siefke, S. Kroker, K. Pfeiffer, O. Puffky, K. Dietrich, D. Franta, I. Ohlídal, A. Szeghalmi, E. Kley, and A. Tünnermann, “Materials pushing the application limits of wire grid polarizers further into the deep ultraviolet spectral range,” Adv. Opt. Mater. 4, 1780–1786 (2016).
[Crossref]

Fu, Y. H.

Z. Dong, J. Ho, Y. F. Yu, Y. H. Fu, R. Paniagua-Dominguez, S. Wang, A. Kuznetsov, and J. K. Yang, “Printing beyond srgb color gamut by mimicking silicon nanostructures in free-space,” Nano Lett. 17, 7620–7628 (2017).
[Crossref]

A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, and B. Luk’Yanchuk, “Magnetic light,” Sci. Rep. 2, 492 (2012).
[Crossref]

Gao, J.

F. Cheng, J. Gao, T. S. Luk, and X. Yang, “Structural color printing based on plasmonic metasurfaces of perfect light absorption,” Sci. Rep. 5, 11045 (2015).
[Crossref]

Garcia-Lechuga, M.

Z. Liu, J. Siegel, M. Garcia-Lechuga, T. Epicier, Y. Lefkir, S. Reynaud, M. Bugnet, F. Vocanson, J. Solis, and G. Vitrant, “Three-dimensional self-organization in nanocomposite layered systems by ultrafast laser pulses,” ACS Nano 11, 5031–5040 (2017).
[Crossref]

Gawel, R.

J. Jaglarz, J. Szewczenko, K. Marszałek, M. Basiaga, M. Marszałek, and R. Gaweł, “Nonstandard optical methods as a tool for rough surface analysis,” Mater. Today 2(7), 4046–4052 (2015).
[Crossref]

Georgiou, S.

A. Pereira, A. Cros, P. Delaporte, S. Georgiou, A. Manousaki, W. Marine, and M. Sentis, “Surface nanostructuring of metals by laser irradiation: effects of pulse duration, wavelength and gas atmosphere,” Appl. Phys. A 79, 1433–1437 (2004).
[Crossref]

Golubeva, V.

G. Odintsova, Y. Andreeva, A. Salminen, H. Roozbahani, L. Van Cuong, R. Yatsuk, V. Golubeva, V. Romanov, and V. Veiko, “Investigation of production related impact on the optical properties of color laser marking,” J. Mater. Process. Technol. 274, 116263 (2019).
[Crossref]

Gorbunova, E.

V. Veiko, G. Odintsova, E. Gorbunova, E. Ageev, A. Shimko, Y. Karlagina, and Y. Andreeva, “Development of complete color palette based on spectrophotometric measurements of steel oxidation results for enhancement of color laser marking technology,” Mater. Des. 89, 684–688 (2016).
[Crossref]

V. Veiko, G. Odintsova, E. Ageev, Y. Karlagina, A. Loginov, A. Skuratova, and E. Gorbunova, “Controlled oxide films formation by nanosecond laser pulses for color marking,” Opt. Express 22, 24342–24347 (2014).
[Crossref]

Grachova, E. V.

K. Keller, A. V. Yakovlev, E. V. Grachova, and A. V. Vinogradov, “Inkjet printing of multicolor daylight visible opal holography,” Adv. Funct. Mater. 28, 1706903 (2018).
[Crossref]

Grant, J. P.

Greener, Z. M.

Gubisch, M.

D. Höche, S. Müller, G. Rapin, M. Shinn, E. Remdt, M. Gubisch, and P. Schaaf, “Marangoni convection during free electron laser nitriding of titanium,” Metall. Mater. Trans. B 40, 497–507 (2009).
[Crossref]

Guo, C.

Y. Bao, Y. Yu, H. Xu, C. Guo, J. Li, S. Sun, Z.-K. Zhou, C.-W. Qiu, and X.-H. Wang, “Full-colour nanoprint-hologram synchronous metasurface with arbitrary hue-saturation-brightness control,” Light Sci. Appl. 8, 95 (2019).
[Crossref]

A. Y. Vorobyev and C. Guo, “Colorizing metals with femtosecond laser pulses,” Appl. Phys. Lett. 92, 041914 (2008).
[Crossref]

Haïd, F.

E. Amara, F. Haïd, and A. Noukaz, “Experimental investigations on fiber laser color marking of steels,” Appl. Surf. Sci. 351, 1–12 (2015).
[Crossref]

Halas, N. J.

A. Kristensen, J. K. Yang, S. I. Bozhevolnyi, S. Link, P. Nordlander, N. J. Halas, and N. A. Mortensen, “Plasmonic colour generation,” Nat. Rev. Mater. 2, 16088 (2016).
[Crossref]

Han, M.

P. Mao, C. Liu, F. Song, M. Han, S. A. Maier, and S. Zhang, “Manipulating disordered plasmonic systems by external cavity with transition from broadband absorption to reconfigurable reflection,” Nat. Commun. 11, 1538 (2020).
[Crossref]

Hao, D.

Hegde, R. S.

K. Kumar, H. Duan, R. S. Hegde, S. C. Koh, J. N. Wei, and J. K. Yang, “Printing colour at the optical diffraction limit,” Nat. Nanotechnol. 7, 557 (2012).
[Crossref]

Ho, J.

Z. Dong, J. Ho, Y. F. Yu, Y. H. Fu, R. Paniagua-Dominguez, S. Wang, A. Kuznetsov, and J. K. Yang, “Printing beyond srgb color gamut by mimicking silicon nanostructures in free-space,” Nano Lett. 17, 7620–7628 (2017).
[Crossref]

Höche, D.

D. Höche, S. Müller, G. Rapin, M. Shinn, E. Remdt, M. Gubisch, and P. Schaaf, “Marangoni convection during free electron laser nitriding of titanium,” Metall. Mater. Trans. B 40, 497–507 (2009).
[Crossref]

Højlund-Nielsen, E.

X. Zhu, C. Vannahme, E. Højlund-Nielsen, N. A. Mortensen, and A. Kristensen, “Plasmonic colour laser printing,” Nat. Nanotechnol. 11, 325 (2016).
[Crossref]

Hong, M.

H. Liu, W. Lin, and M. Hong, “Surface coloring by laser irradiation of solid substrates,” APL Photon. 4, 051101 (2019).
[Crossref]

R. Zhou, T. Huang, Y. Lu, and M. Hong, “Tunable coloring via post-thermal annealing of laser-processed metal surface,” Appl. Sci. 8, 1716 (2018).
[Crossref]

M. Rahmani, B. Luk’yanchuk, and M. Hong, “Fano resonance in novel plasmonic nanostructures,” Laser Photon. Rev. 7, 329–349 (2013).
[Crossref]

Hong, W.

W. Hong, Z. Yuan, and X. Chen, “Structural color materials for optical anticounterfeiting,” Small 16, 1907626 (2020).
[Crossref]

Honkanen, S.

M. R. Saleem, R. Ali, S. Honkanen, and J. Turunen, “Thermal properties of thin al2o3 films and their barrier layer effect on thermo-optic properties of TiO2 films grown by atomic layer deposition,” Thin Solid Films 542, 257–262 (2013).
[Crossref]

Huang, T.

R. Zhou, T. Huang, Y. Lu, and M. Hong, “Tunable coloring via post-thermal annealing of laser-processed metal surface,” Appl. Sci. 8, 1716 (2018).
[Crossref]

Huo, P.

Jacob, Z.

S. Jahani and Z. Jacob, “All-dielectric metamaterials,” Nat. Nanotechnol. 11, 23 (2016).
[Crossref]

Jaglarz, J.

J. Jaglarz, J. Szewczenko, K. Marszałek, M. Basiaga, M. Marszałek, and R. Gaweł, “Nonstandard optical methods as a tool for rough surface analysis,” Mater. Today 2(7), 4046–4052 (2015).
[Crossref]

Jahani, S.

S. Jahani and Z. Jacob, “All-dielectric metamaterials,” Nat. Nanotechnol. 11, 23 (2016).
[Crossref]

Jalil, S. A.

S. A. Jalil, M. Akram, G. Yoon, A. Khalid, D. Lee, N. Raeis-Hosseini, S. So, I. Kim, Q. S. Ahmed, and J. Rho, “High refractive index Ti3O5 films for dielectric metasurfaces,” Chin. Phys. Lett. 34, 088102 (2017).
[Crossref]

Jamting, A.

A. Bendavid, P. Martin, A. Jamting, and H. Takikawa, “Structural and optical properties of titanium oxide thin films deposited by filtered arc deposition,” Thin Solid Films 355, 6–11 (1999).
[Crossref]

Jiang, H.

H. Jiang and B. Kaminska, “Scalable inkjet-based structural color printing by molding transparent gratings on multilayer nanostructured surfaces,” ACS Nano 12, 3112–3125 (2018).
[Crossref]

Jin, Y.

Y. Jin, I. Qamar, M. Wessely, and S. Mueller, “Photo-chromeleon: re-programmable multi-color textures using photochromic dyes,” in ACM SIGGRAPH 2020 Emerging Technologies (ACM DL, 2020), pp. 1–2.

Jourlin, M.

Jwad, T.

T. Jwad, M. Walker, and S. Dimov, “Erasing and rewriting of titanium oxide colour marks using laser-induced reduction/oxidation,” Appl. Surf. Sci. 458, 849–854 (2018).
[Crossref]

Kaminska, B.

H. Jiang and B. Kaminska, “Scalable inkjet-based structural color printing by molding transparent gratings on multilayer nanostructured surfaces,” ACS Nano 12, 3112–3125 (2018).
[Crossref]

Karlagina, Y.

Karlagina, Y. Y.

E. Ageev, Y. M. Andreeva, Y. Y. Karlagina, Y. R. Kolobov, S. Manokhin, G. Odintsova, A. Slobodov, and V. Veiko, “Composition analysis of oxide films formed on titanium surface under pulsed laser action by method of chemical thermodynamics,” Laser Phys. 27, 046001 (2017).
[Crossref]

Keller, K.

K. Keller, A. V. Yakovlev, E. V. Grachova, and A. V. Vinogradov, “Inkjet printing of multicolor daylight visible opal holography,” Adv. Funct. Mater. 28, 1706903 (2018).
[Crossref]

Kenney, M.

Khalid, A.

S. A. Jalil, M. Akram, G. Yoon, A. Khalid, D. Lee, N. Raeis-Hosseini, S. So, I. Kim, Q. S. Ahmed, and J. Rho, “High refractive index Ti3O5 films for dielectric metasurfaces,” Chin. Phys. Lett. 34, 088102 (2017).
[Crossref]

Kim, I.

S. A. Jalil, M. Akram, G. Yoon, A. Khalid, D. Lee, N. Raeis-Hosseini, S. So, I. Kim, Q. S. Ahmed, and J. Rho, “High refractive index Ti3O5 films for dielectric metasurfaces,” Chin. Phys. Lett. 34, 088102 (2017).
[Crossref]

Kivshar, Y. S.

M. F. Limonov, M. V. Rybin, A. N. Poddubny, and Y. S. Kivshar, “Fano resonances in photonics,” Nat. Photonics 11, 543–554 (2017).
[Crossref]

Kley, E.

T. Siefke, S. Kroker, K. Pfeiffer, O. Puffky, K. Dietrich, D. Franta, I. Ohlídal, A. Szeghalmi, E. Kley, and A. Tünnermann, “Materials pushing the application limits of wire grid polarizers further into the deep ultraviolet spectral range,” Adv. Opt. Mater. 4, 1780–1786 (2016).
[Crossref]

Kofstad, P.

P. Kofstad, P. Anderson, and O. Krudtaa, “Oxidation of titanium in the temperature range 800–1200 c,” J. Less Common Met. 3, 89–97 (1961).
[Crossref]

Koh, S. C.

K. Kumar, H. Duan, R. S. Hegde, S. C. Koh, J. N. Wei, and J. K. Yang, “Printing colour at the optical diffraction limit,” Nat. Nanotechnol. 7, 557 (2012).
[Crossref]

Kolobov, Y. R.

E. Ageev, Y. M. Andreeva, Y. Y. Karlagina, Y. R. Kolobov, S. Manokhin, G. Odintsova, A. Slobodov, and V. Veiko, “Composition analysis of oxide films formed on titanium surface under pulsed laser action by method of chemical thermodynamics,” Laser Phys. 27, 046001 (2017).
[Crossref]

Krasnok, A. E.

S. V. Makarov, V. A. Milichko, I. S. Mukhin, I. I. Shishkin, D. A. Zuev, A. M. Mozharov, A. E. Krasnok, and P. A. Belov, “Controllable femtosecond laser-induced dewetting for plasmonic applications,” Laser Photon. Rev. 10, 91–99 (2016).
[Crossref]

Kristensen, A.

A. Kristensen, J. K. Yang, S. I. Bozhevolnyi, S. Link, P. Nordlander, N. J. Halas, and N. A. Mortensen, “Plasmonic colour generation,” Nat. Rev. Mater. 2, 16088 (2016).
[Crossref]

X. Zhu, C. Vannahme, E. Højlund-Nielsen, N. A. Mortensen, and A. Kristensen, “Plasmonic colour laser printing,” Nat. Nanotechnol. 11, 325 (2016).
[Crossref]

Krivonosov, A.

Kroker, S.

T. Siefke, S. Kroker, K. Pfeiffer, O. Puffky, K. Dietrich, D. Franta, I. Ohlídal, A. Szeghalmi, E. Kley, and A. Tünnermann, “Materials pushing the application limits of wire grid polarizers further into the deep ultraviolet spectral range,” Adv. Opt. Mater. 4, 1780–1786 (2016).
[Crossref]

Krudtaa, O.

P. Kofstad, P. Anderson, and O. Krudtaa, “Oxidation of titanium in the temperature range 800–1200 c,” J. Less Common Met. 3, 89–97 (1961).
[Crossref]

Kumar, K.

K. Kumar, H. Duan, R. S. Hegde, S. C. Koh, J. N. Wei, and J. K. Yang, “Printing colour at the optical diffraction limit,” Nat. Nanotechnol. 7, 557 (2012).
[Crossref]

Kuroiwa, Y.

Y. Kuroiwa and T. Tatsuma, “Laser printing of translucent plasmonic full-color images with transmission-scattering dichroism of silver nanoparticles,” ACS Appl. Nano Mater. 3, 2472–2479 (2020).
[Crossref]

Kuznetsov, A.

Z. Dong, J. Ho, Y. F. Yu, Y. H. Fu, R. Paniagua-Dominguez, S. Wang, A. Kuznetsov, and J. K. Yang, “Printing beyond srgb color gamut by mimicking silicon nanostructures in free-space,” Nano Lett. 17, 7620–7628 (2017).
[Crossref]

Kuznetsov, A. I.

A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, and B. Luk’Yanchuk, “Magnetic light,” Sci. Rep. 2, 492 (2012).
[Crossref]

Lecka, K.

K. Łęcka, M. Wójcik, and A. Antończak, “Laser-induced color marking of titanium: a modeling study of the interference effect and the impact of protective coating,” Math. Probl. Eng. 2017, 3425108 (2017).
[Crossref]

Lee, D.

S. A. Jalil, M. Akram, G. Yoon, A. Khalid, D. Lee, N. Raeis-Hosseini, S. So, I. Kim, Q. S. Ahmed, and J. Rho, “High refractive index Ti3O5 films for dielectric metasurfaces,” Chin. Phys. Lett. 34, 088102 (2017).
[Crossref]

Lefkir, Y.

Z. Liu, J. Siegel, M. Garcia-Lechuga, T. Epicier, Y. Lefkir, S. Reynaud, M. Bugnet, F. Vocanson, J. Solis, and G. Vitrant, “Three-dimensional self-organization in nanocomposite layered systems by ultrafast laser pulses,” ACS Nano 11, 5031–5040 (2017).
[Crossref]

Lei, D. Y.

Y. Zhang, Q. Zhang, X. Ouyang, D. Y. Lei, A. P. Zhang, and H.-Y. Tam, “Ultrafast light-controlled growth of silver nanoparticles for direct plasmonic color printing,” ACS Nano 12, 9913–9921 (2018).
[Crossref]

LeRcka, K.

K. ŁeRcka, A. Antonczak, B. Szubzda, M. Wójcik, B. SteRpak, P. Szymczyk, M. Trzcinski, M. Ozimek, and K. Abramski, “Effects of laser-induced oxidation on the corrosion resistance of aisi 304 stainless steel,” J. Laser Appl. 28, 032009 (2016).
[Crossref]

Lezec, H. J.

Li, J.

Y. Bao, Y. Yu, H. Xu, C. Guo, J. Li, S. Sun, Z.-K. Zhou, C.-W. Qiu, and X.-H. Wang, “Full-colour nanoprint-hologram synchronous metasurface with arbitrary hue-saturation-brightness control,” Light Sci. Appl. 8, 95 (2019).
[Crossref]

Limonov, M. F.

M. F. Limonov, M. V. Rybin, A. N. Poddubny, and Y. S. Kivshar, “Fano resonances in photonics,” Nat. Photonics 11, 543–554 (2017).
[Crossref]

Lin, W.

H. Liu, W. Lin, and M. Hong, “Surface coloring by laser irradiation of solid substrates,” APL Photon. 4, 051101 (2019).
[Crossref]

Link, S.

A. Kristensen, J. K. Yang, S. I. Bozhevolnyi, S. Link, P. Nordlander, N. J. Halas, and N. A. Mortensen, “Plasmonic colour generation,” Nat. Rev. Mater. 2, 16088 (2016).
[Crossref]

Liu, C.

P. Mao, C. Liu, F. Song, M. Han, S. A. Maier, and S. Zhang, “Manipulating disordered plasmonic systems by external cavity with transition from broadband absorption to reconfigurable reflection,” Nat. Commun. 11, 1538 (2020).
[Crossref]

Liu, H.

H. Liu, W. Lin, and M. Hong, “Surface coloring by laser irradiation of solid substrates,” APL Photon. 4, 051101 (2019).
[Crossref]

Liu, Z.

Z. Liu, J. Siegel, M. Garcia-Lechuga, T. Epicier, Y. Lefkir, S. Reynaud, M. Bugnet, F. Vocanson, J. Solis, and G. Vitrant, “Three-dimensional self-organization in nanocomposite layered systems by ultrafast laser pulses,” ACS Nano 11, 5031–5040 (2017).
[Crossref]

Loginov, A.

Lu, Y.

P. Huo, M. Song, W. Zhu, C. Zhang, L. Chen, H. J. Lezec, Y. Lu, A. Agrawal, and T. Xu, “Photorealistic full-color nanopainting enabled by a low-loss metasurface,” Optica 7, 1171–1172 (2020).
[Crossref]

R. Zhou, T. Huang, Y. Lu, and M. Hong, “Tunable coloring via post-thermal annealing of laser-processed metal surface,” Appl. Sci. 8, 1716 (2018).
[Crossref]

Luk, T. S.

F. Cheng, J. Gao, T. S. Luk, and X. Yang, “Structural color printing based on plasmonic metasurfaces of perfect light absorption,” Sci. Rep. 5, 11045 (2015).
[Crossref]

Luk’yanchuk, B.

M. Rahmani, B. Luk’yanchuk, and M. Hong, “Fano resonance in novel plasmonic nanostructures,” Laser Photon. Rev. 7, 329–349 (2013).
[Crossref]

A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, and B. Luk’Yanchuk, “Magnetic light,” Sci. Rep. 2, 492 (2012).
[Crossref]

Maier, S. A.

P. Mao, C. Liu, F. Song, M. Han, S. A. Maier, and S. Zhang, “Manipulating disordered plasmonic systems by external cavity with transition from broadband absorption to reconfigurable reflection,” Nat. Commun. 11, 1538 (2020).
[Crossref]

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

Makarov, S. V.

S. V. Makarov, V. A. Milichko, I. S. Mukhin, I. I. Shishkin, D. A. Zuev, A. M. Mozharov, A. E. Krasnok, and P. A. Belov, “Controllable femtosecond laser-induced dewetting for plasmonic applications,” Laser Photon. Rev. 10, 91–99 (2016).
[Crossref]

Manokhin, S.

E. Ageev, Y. M. Andreeva, Y. Y. Karlagina, Y. R. Kolobov, S. Manokhin, G. Odintsova, A. Slobodov, and V. Veiko, “Composition analysis of oxide films formed on titanium surface under pulsed laser action by method of chemical thermodynamics,” Laser Phys. 27, 046001 (2017).
[Crossref]

Manousaki, A.

A. Pereira, A. Cros, P. Delaporte, S. Georgiou, A. Manousaki, W. Marine, and M. Sentis, “Surface nanostructuring of metals by laser irradiation: effects of pulse duration, wavelength and gas atmosphere,” Appl. Phys. A 79, 1433–1437 (2004).
[Crossref]

Mao, P.

P. Mao, C. Liu, F. Song, M. Han, S. A. Maier, and S. Zhang, “Manipulating disordered plasmonic systems by external cavity with transition from broadband absorption to reconfigurable reflection,” Nat. Commun. 11, 1538 (2020).
[Crossref]

Marine, W.

A. Pereira, A. Cros, P. Delaporte, S. Georgiou, A. Manousaki, W. Marine, and M. Sentis, “Surface nanostructuring of metals by laser irradiation: effects of pulse duration, wavelength and gas atmosphere,” Appl. Phys. A 79, 1433–1437 (2004).
[Crossref]

Marszalek, K.

J. Jaglarz, J. Szewczenko, K. Marszałek, M. Basiaga, M. Marszałek, and R. Gaweł, “Nonstandard optical methods as a tool for rough surface analysis,” Mater. Today 2(7), 4046–4052 (2015).
[Crossref]

Marszalek, M.

J. Jaglarz, J. Szewczenko, K. Marszałek, M. Basiaga, M. Marszałek, and R. Gaweł, “Nonstandard optical methods as a tool for rough surface analysis,” Mater. Today 2(7), 4046–4052 (2015).
[Crossref]

Martin, P.

A. Bendavid, P. Martin, A. Jamting, and H. Takikawa, “Structural and optical properties of titanium oxide thin films deposited by filtered arc deposition,” Thin Solid Films 355, 6–11 (1999).
[Crossref]

Meng, J.

J. Meng, J. J. Cadusch, and K. B. Crozier, “Detector-only spectrometer based on structurally colored silicon nanowires and a reconstruction algorithm,” Nano Lett. 20, 320–328 (2019).
[Crossref]

Milichko, V. A.

S. V. Makarov, V. A. Milichko, I. S. Mukhin, I. I. Shishkin, D. A. Zuev, A. M. Mozharov, A. E. Krasnok, and P. A. Belov, “Controllable femtosecond laser-induced dewetting for plasmonic applications,” Laser Photon. Rev. 10, 91–99 (2016).
[Crossref]

A. V. Yakovlev, V. A. Milichko, V. V. Vinogradov, and A. V. Vinogradov, “Inkjet color printing by interference nanostructures,” ACS Nano 10, 3078–3086 (2016).
[Crossref]

Miroshnichenko, A. E.

A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, and B. Luk’Yanchuk, “Magnetic light,” Sci. Rep. 2, 492 (2012).
[Crossref]

Modak, S.

D. Franklin, Y. Chen, A. Vazquez-Guardado, S. Modak, J. Boroumand, D. Xu, S.-T. Wu, and D. Chanda, “Polarization-independent actively tunable colour generation on imprinted plasmonic surfaces,” Nat. Commun. 6, 7337 (2015).
[Crossref]

Mortensen, N.

J. Trisno, R. Ng, Q. Ruan, C. Qiu, N. Mortensen, and J. Yang, “Nanophotonic structural colors,” ACS Photon. 8, 18–33 (2020).
[Crossref]

Mortensen, N. A.

X. Zhu, C. Vannahme, E. Højlund-Nielsen, N. A. Mortensen, and A. Kristensen, “Plasmonic colour laser printing,” Nat. Nanotechnol. 11, 325 (2016).
[Crossref]

A. Kristensen, J. K. Yang, S. I. Bozhevolnyi, S. Link, P. Nordlander, N. J. Halas, and N. A. Mortensen, “Plasmonic colour generation,” Nat. Rev. Mater. 2, 16088 (2016).
[Crossref]

Moskvin, M.

Mozharov, A. M.

S. V. Makarov, V. A. Milichko, I. S. Mukhin, I. I. Shishkin, D. A. Zuev, A. M. Mozharov, A. E. Krasnok, and P. A. Belov, “Controllable femtosecond laser-induced dewetting for plasmonic applications,” Laser Photon. Rev. 10, 91–99 (2016).
[Crossref]

Mueller, S.

Y. Jin, I. Qamar, M. Wessely, and S. Mueller, “Photo-chromeleon: re-programmable multi-color textures using photochromic dyes,” in ACM SIGGRAPH 2020 Emerging Technologies (ACM DL, 2020), pp. 1–2.

Mukhin, I. S.

S. V. Makarov, V. A. Milichko, I. S. Mukhin, I. I. Shishkin, D. A. Zuev, A. M. Mozharov, A. E. Krasnok, and P. A. Belov, “Controllable femtosecond laser-induced dewetting for plasmonic applications,” Laser Photon. Rev. 10, 91–99 (2016).
[Crossref]

Müller, S.

D. Höche, S. Müller, G. Rapin, M. Shinn, E. Remdt, M. Gubisch, and P. Schaaf, “Marangoni convection during free electron laser nitriding of titanium,” Metall. Mater. Trans. B 40, 497–507 (2009).
[Crossref]

Ng, R.

J. Trisno, R. Ng, Q. Ruan, C. Qiu, N. Mortensen, and J. Yang, “Nanophotonic structural colors,” ACS Photon. 8, 18–33 (2020).
[Crossref]

Nishi, H.

H. Nishi and T. Tatsuma, “Full-color scattering based on plasmon and mie resonances of gold nanoparticles modulated by Fabry–Pérot interference for coloring and image projection,” ACS Appl. Nano Mater. 2, 5071–5078 (2019).
[Crossref]

Nordlander, P.

A. Kristensen, J. K. Yang, S. I. Bozhevolnyi, S. Link, P. Nordlander, N. J. Halas, and N. A. Mortensen, “Plasmonic colour generation,” Nat. Rev. Mater. 2, 16088 (2016).
[Crossref]

Noukaz, A.

E. Amara, F. Haïd, and A. Noukaz, “Experimental investigations on fiber laser color marking of steels,” Appl. Surf. Sci. 351, 1–12 (2015).
[Crossref]

Odintsova, G.

G. Odintsova, Y. Andreeva, A. Salminen, H. Roozbahani, L. Van Cuong, R. Yatsuk, V. Golubeva, V. Romanov, and V. Veiko, “Investigation of production related impact on the optical properties of color laser marking,” J. Mater. Process. Technol. 274, 116263 (2019).
[Crossref]

E. Ageev, V. Veiko, E. Vlasova, Y. Karlagina, A. Krivonosov, M. Moskvin, G. Odintsova, V. Pshenichnov, V. Romanov, and R. Yatsuk, “Controlled nanostructures formation on stainless steel by short laser pulses for products protection against falsification,” Opt. Express 26, 2117–2122 (2018).
[Crossref]

E. Ageev, Y. M. Andreeva, Y. Y. Karlagina, Y. R. Kolobov, S. Manokhin, G. Odintsova, A. Slobodov, and V. Veiko, “Composition analysis of oxide films formed on titanium surface under pulsed laser action by method of chemical thermodynamics,” Laser Phys. 27, 046001 (2017).
[Crossref]

V. Veiko, G. Odintsova, E. Gorbunova, E. Ageev, A. Shimko, Y. Karlagina, and Y. Andreeva, “Development of complete color palette based on spectrophotometric measurements of steel oxidation results for enhancement of color laser marking technology,” Mater. Des. 89, 684–688 (2016).
[Crossref]

V. Veiko, G. Odintsova, E. Ageev, Y. Karlagina, A. Loginov, A. Skuratova, and E. Gorbunova, “Controlled oxide films formation by nanosecond laser pulses for color marking,” Opt. Express 22, 24342–24347 (2014).
[Crossref]

Ohlídal, I.

T. Siefke, S. Kroker, K. Pfeiffer, O. Puffky, K. Dietrich, D. Franta, I. Ohlídal, A. Szeghalmi, E. Kley, and A. Tünnermann, “Materials pushing the application limits of wire grid polarizers further into the deep ultraviolet spectral range,” Adv. Opt. Mater. 4, 1780–1786 (2016).
[Crossref]

Ouyang, X.

Y. Zhang, Q. Zhang, X. Ouyang, D. Y. Lei, A. P. Zhang, and H.-Y. Tam, “Ultrafast light-controlled growth of silver nanoparticles for direct plasmonic color printing,” ACS Nano 12, 9913–9921 (2018).
[Crossref]

Ozimek, M.

K. ŁeRcka, A. Antonczak, B. Szubzda, M. Wójcik, B. SteRpak, P. Szymczyk, M. Trzcinski, M. Ozimek, and K. Abramski, “Effects of laser-induced oxidation on the corrosion resistance of aisi 304 stainless steel,” J. Laser Appl. 28, 032009 (2016).
[Crossref]

Paniagua-Dominguez, R.

Z. Dong, J. Ho, Y. F. Yu, Y. H. Fu, R. Paniagua-Dominguez, S. Wang, A. Kuznetsov, and J. K. Yang, “Printing beyond srgb color gamut by mimicking silicon nanostructures in free-space,” Nano Lett. 17, 7620–7628 (2017).
[Crossref]

Pereira, A.

A. Pereira, A. Cros, P. Delaporte, S. Georgiou, A. Manousaki, W. Marine, and M. Sentis, “Surface nanostructuring of metals by laser irradiation: effects of pulse duration, wavelength and gas atmosphere,” Appl. Phys. A 79, 1433–1437 (2004).
[Crossref]

Pfeiffer, K.

T. Siefke, S. Kroker, K. Pfeiffer, O. Puffky, K. Dietrich, D. Franta, I. Ohlídal, A. Szeghalmi, E. Kley, and A. Tünnermann, “Materials pushing the application limits of wire grid polarizers further into the deep ultraviolet spectral range,” Adv. Opt. Mater. 4, 1780–1786 (2016).
[Crossref]

Poddubny, A. N.

M. F. Limonov, M. V. Rybin, A. N. Poddubny, and Y. S. Kivshar, “Fano resonances in photonics,” Nat. Photonics 11, 543–554 (2017).
[Crossref]

Pshenichnov, V.

Puffky, O.

T. Siefke, S. Kroker, K. Pfeiffer, O. Puffky, K. Dietrich, D. Franta, I. Ohlídal, A. Szeghalmi, E. Kley, and A. Tünnermann, “Materials pushing the application limits of wire grid polarizers further into the deep ultraviolet spectral range,” Adv. Opt. Mater. 4, 1780–1786 (2016).
[Crossref]

Qamar, I.

Y. Jin, I. Qamar, M. Wessely, and S. Mueller, “Photo-chromeleon: re-programmable multi-color textures using photochromic dyes,” in ACM SIGGRAPH 2020 Emerging Technologies (ACM DL, 2020), pp. 1–2.

Qiu, C.

J. Trisno, R. Ng, Q. Ruan, C. Qiu, N. Mortensen, and J. Yang, “Nanophotonic structural colors,” ACS Photon. 8, 18–33 (2020).
[Crossref]

Qiu, C.-W.

Y. Bao, Y. Yu, H. Xu, C. Guo, J. Li, S. Sun, Z.-K. Zhou, C.-W. Qiu, and X.-H. Wang, “Full-colour nanoprint-hologram synchronous metasurface with arbitrary hue-saturation-brightness control,” Light Sci. Appl. 8, 95 (2019).
[Crossref]

Raeis-Hosseini, N.

S. A. Jalil, M. Akram, G. Yoon, A. Khalid, D. Lee, N. Raeis-Hosseini, S. So, I. Kim, Q. S. Ahmed, and J. Rho, “High refractive index Ti3O5 films for dielectric metasurfaces,” Chin. Phys. Lett. 34, 088102 (2017).
[Crossref]

Rahmani, M.

M. Rahmani, B. Luk’yanchuk, and M. Hong, “Fano resonance in novel plasmonic nanostructures,” Laser Photon. Rev. 7, 329–349 (2013).
[Crossref]

Rapin, G.

D. Höche, S. Müller, G. Rapin, M. Shinn, E. Remdt, M. Gubisch, and P. Schaaf, “Marangoni convection during free electron laser nitriding of titanium,” Metall. Mater. Trans. B 40, 497–507 (2009).
[Crossref]

Remdt, E.

D. Höche, S. Müller, G. Rapin, M. Shinn, E. Remdt, M. Gubisch, and P. Schaaf, “Marangoni convection during free electron laser nitriding of titanium,” Metall. Mater. Trans. B 40, 497–507 (2009).
[Crossref]

Ren, X.

Rew, K. G.

Reynaud, S.

Z. Liu, J. Siegel, M. Garcia-Lechuga, T. Epicier, Y. Lefkir, S. Reynaud, M. Bugnet, F. Vocanson, J. Solis, and G. Vitrant, “Three-dimensional self-organization in nanocomposite layered systems by ultrafast laser pulses,” ACS Nano 11, 5031–5040 (2017).
[Crossref]

Rho, J.

S. A. Jalil, M. Akram, G. Yoon, A. Khalid, D. Lee, N. Raeis-Hosseini, S. So, I. Kim, Q. S. Ahmed, and J. Rho, “High refractive index Ti3O5 films for dielectric metasurfaces,” Chin. Phys. Lett. 34, 088102 (2017).
[Crossref]

Romanov, V.

G. Odintsova, Y. Andreeva, A. Salminen, H. Roozbahani, L. Van Cuong, R. Yatsuk, V. Golubeva, V. Romanov, and V. Veiko, “Investigation of production related impact on the optical properties of color laser marking,” J. Mater. Process. Technol. 274, 116263 (2019).
[Crossref]

E. Ageev, V. Veiko, E. Vlasova, Y. Karlagina, A. Krivonosov, M. Moskvin, G. Odintsova, V. Pshenichnov, V. Romanov, and R. Yatsuk, “Controlled nanostructures formation on stainless steel by short laser pulses for products protection against falsification,” Opt. Express 26, 2117–2122 (2018).
[Crossref]

Roozbahani, H.

G. Odintsova, Y. Andreeva, A. Salminen, H. Roozbahani, L. Van Cuong, R. Yatsuk, V. Golubeva, V. Romanov, and V. Veiko, “Investigation of production related impact on the optical properties of color laser marking,” J. Mater. Process. Technol. 274, 116263 (2019).
[Crossref]

Ruan, Q.

J. Trisno, R. Ng, Q. Ruan, C. Qiu, N. Mortensen, and J. Yang, “Nanophotonic structural colors,” ACS Photon. 8, 18–33 (2020).
[Crossref]

Rybin, M. V.

M. F. Limonov, M. V. Rybin, A. N. Poddubny, and Y. S. Kivshar, “Fano resonances in photonics,” Nat. Photonics 11, 543–554 (2017).
[Crossref]

Sagan, Z.

Saleem, M. R.

M. R. Saleem, R. Ali, S. Honkanen, and J. Turunen, “Thermal properties of thin al2o3 films and their barrier layer effect on thermo-optic properties of TiO2 films grown by atomic layer deposition,” Thin Solid Films 542, 257–262 (2013).
[Crossref]

Salminen, A.

G. Odintsova, Y. Andreeva, A. Salminen, H. Roozbahani, L. Van Cuong, R. Yatsuk, V. Golubeva, V. Romanov, and V. Veiko, “Investigation of production related impact on the optical properties of color laser marking,” J. Mater. Process. Technol. 274, 116263 (2019).
[Crossref]

Sautter, J.

C. Zou, J. Sautter, F. Setzpfandt, and I. Staude, “Resonant dielectric metasurfaces: active tuning and nonlinear effects,” J. Phys. D 52, 373002 (2019).
[Crossref]

Schaaf, P.

D. Höche, S. Müller, G. Rapin, M. Shinn, E. Remdt, M. Gubisch, and P. Schaaf, “Marangoni convection during free electron laser nitriding of titanium,” Metall. Mater. Trans. B 40, 497–507 (2009).
[Crossref]

Seidel, H.-P.

S. Cucerca, P. Didyk, H.-P. Seidel, and V. Babaei, “Computational image marking on metals via laser induced heating,” ACM Trans. Graph. 39, 70–71 (2020).
[Crossref]

Sentis, M.

A. Pereira, A. Cros, P. Delaporte, S. Georgiou, A. Manousaki, W. Marine, and M. Sentis, “Surface nanostructuring of metals by laser irradiation: effects of pulse duration, wavelength and gas atmosphere,” Appl. Phys. A 79, 1433–1437 (2004).
[Crossref]

Setzpfandt, F.

C. Zou, J. Sautter, F. Setzpfandt, and I. Staude, “Resonant dielectric metasurfaces: active tuning and nonlinear effects,” J. Phys. D 52, 373002 (2019).
[Crossref]

Shah, Y. D.

Shimko, A.

V. Veiko, G. Odintsova, E. Gorbunova, E. Ageev, A. Shimko, Y. Karlagina, and Y. Andreeva, “Development of complete color palette based on spectrophotometric measurements of steel oxidation results for enhancement of color laser marking technology,” Mater. Des. 89, 684–688 (2016).
[Crossref]

Shinn, M.

D. Höche, S. Müller, G. Rapin, M. Shinn, E. Remdt, M. Gubisch, and P. Schaaf, “Marangoni convection during free electron laser nitriding of titanium,” Metall. Mater. Trans. B 40, 497–507 (2009).
[Crossref]

Shishkin, I. I.

S. V. Makarov, V. A. Milichko, I. S. Mukhin, I. I. Shishkin, D. A. Zuev, A. M. Mozharov, A. E. Krasnok, and P. A. Belov, “Controllable femtosecond laser-induced dewetting for plasmonic applications,” Laser Photon. Rev. 10, 91–99 (2016).
[Crossref]

Siefke, T.

T. Siefke, S. Kroker, K. Pfeiffer, O. Puffky, K. Dietrich, D. Franta, I. Ohlídal, A. Szeghalmi, E. Kley, and A. Tünnermann, “Materials pushing the application limits of wire grid polarizers further into the deep ultraviolet spectral range,” Adv. Opt. Mater. 4, 1780–1786 (2016).
[Crossref]

Siegel, J.

Z. Liu, J. Siegel, M. Garcia-Lechuga, T. Epicier, Y. Lefkir, S. Reynaud, M. Bugnet, F. Vocanson, J. Solis, and G. Vitrant, “Three-dimensional self-organization in nanocomposite layered systems by ultrafast laser pulses,” ACS Nano 11, 5031–5040 (2017).
[Crossref]

Skuratova, A.

Slobodov, A.

E. Ageev, Y. M. Andreeva, Y. Y. Karlagina, Y. R. Kolobov, S. Manokhin, G. Odintsova, A. Slobodov, and V. Veiko, “Composition analysis of oxide films formed on titanium surface under pulsed laser action by method of chemical thermodynamics,” Laser Phys. 27, 046001 (2017).
[Crossref]

So, S.

S. A. Jalil, M. Akram, G. Yoon, A. Khalid, D. Lee, N. Raeis-Hosseini, S. So, I. Kim, Q. S. Ahmed, and J. Rho, “High refractive index Ti3O5 films for dielectric metasurfaces,” Chin. Phys. Lett. 34, 088102 (2017).
[Crossref]

Soder, H.

Solis, J.

Z. Liu, J. Siegel, M. Garcia-Lechuga, T. Epicier, Y. Lefkir, S. Reynaud, M. Bugnet, F. Vocanson, J. Solis, and G. Vitrant, “Three-dimensional self-organization in nanocomposite layered systems by ultrafast laser pulses,” ACS Nano 11, 5031–5040 (2017).
[Crossref]

Song, F.

P. Mao, C. Liu, F. Song, M. Han, S. A. Maier, and S. Zhang, “Manipulating disordered plasmonic systems by external cavity with transition from broadband absorption to reconfigurable reflection,” Nat. Commun. 11, 1538 (2020).
[Crossref]

Song, M.

Staude, I.

C. Zou, J. Sautter, F. Setzpfandt, and I. Staude, “Resonant dielectric metasurfaces: active tuning and nonlinear effects,” J. Phys. D 52, 373002 (2019).
[Crossref]

SteRpak, B.

K. ŁeRcka, A. Antonczak, B. Szubzda, M. Wójcik, B. SteRpak, P. Szymczyk, M. Trzcinski, M. Ozimek, and K. Abramski, “Effects of laser-induced oxidation on the corrosion resistance of aisi 304 stainless steel,” J. Laser Appl. 28, 032009 (2016).
[Crossref]

Sun, S.

Y. Bao, Y. Yu, H. Xu, C. Guo, J. Li, S. Sun, Z.-K. Zhou, C.-W. Qiu, and X.-H. Wang, “Full-colour nanoprint-hologram synchronous metasurface with arbitrary hue-saturation-brightness control,” Light Sci. Appl. 8, 95 (2019).
[Crossref]

Szeghalmi, A.

T. Siefke, S. Kroker, K. Pfeiffer, O. Puffky, K. Dietrich, D. Franta, I. Ohlídal, A. Szeghalmi, E. Kley, and A. Tünnermann, “Materials pushing the application limits of wire grid polarizers further into the deep ultraviolet spectral range,” Adv. Opt. Mater. 4, 1780–1786 (2016).
[Crossref]

Szewczenko, J.

J. Jaglarz, J. Szewczenko, K. Marszałek, M. Basiaga, M. Marszałek, and R. Gaweł, “Nonstandard optical methods as a tool for rough surface analysis,” Mater. Today 2(7), 4046–4052 (2015).
[Crossref]

Szubzda, B.

K. ŁeRcka, A. Antonczak, B. Szubzda, M. Wójcik, B. SteRpak, P. Szymczyk, M. Trzcinski, M. Ozimek, and K. Abramski, “Effects of laser-induced oxidation on the corrosion resistance of aisi 304 stainless steel,” J. Laser Appl. 28, 032009 (2016).
[Crossref]

Szymczyk, P.

K. ŁeRcka, A. Antonczak, B. Szubzda, M. Wójcik, B. SteRpak, P. Szymczyk, M. Trzcinski, M. Ozimek, and K. Abramski, “Effects of laser-induced oxidation on the corrosion resistance of aisi 304 stainless steel,” J. Laser Appl. 28, 032009 (2016).
[Crossref]

Takikawa, H.

A. Bendavid, P. Martin, A. Jamting, and H. Takikawa, “Structural and optical properties of titanium oxide thin films deposited by filtered arc deposition,” Thin Solid Films 355, 6–11 (1999).
[Crossref]

Tam, H.-Y.

Y. Zhang, Q. Zhang, X. Ouyang, D. Y. Lei, A. P. Zhang, and H.-Y. Tam, “Ultrafast light-controlled growth of silver nanoparticles for direct plasmonic color printing,” ACS Nano 12, 9913–9921 (2018).
[Crossref]

Tatsuma, T.

Y. Kuroiwa and T. Tatsuma, “Laser printing of translucent plasmonic full-color images with transmission-scattering dichroism of silver nanoparticles,” ACS Appl. Nano Mater. 3, 2472–2479 (2020).
[Crossref]

H. Nishi and T. Tatsuma, “Full-color scattering based on plasmon and mie resonances of gold nanoparticles modulated by Fabry–Pérot interference for coloring and image projection,” ACS Appl. Nano Mater. 2, 5071–5078 (2019).
[Crossref]

Trisno, J.

J. Trisno, R. Ng, Q. Ruan, C. Qiu, N. Mortensen, and J. Yang, “Nanophotonic structural colors,” ACS Photon. 8, 18–33 (2020).
[Crossref]

Trzcinski, M.

K. ŁeRcka, A. Antonczak, B. Szubzda, M. Wójcik, B. SteRpak, P. Szymczyk, M. Trzcinski, M. Ozimek, and K. Abramski, “Effects of laser-induced oxidation on the corrosion resistance of aisi 304 stainless steel,” J. Laser Appl. 28, 032009 (2016).
[Crossref]

Tünnermann, A.

T. Siefke, S. Kroker, K. Pfeiffer, O. Puffky, K. Dietrich, D. Franta, I. Ohlídal, A. Szeghalmi, E. Kley, and A. Tünnermann, “Materials pushing the application limits of wire grid polarizers further into the deep ultraviolet spectral range,” Adv. Opt. Mater. 4, 1780–1786 (2016).
[Crossref]

Turunen, J.

M. R. Saleem, R. Ali, S. Honkanen, and J. Turunen, “Thermal properties of thin al2o3 films and their barrier layer effect on thermo-optic properties of TiO2 films grown by atomic layer deposition,” Thin Solid Films 542, 257–262 (2013).
[Crossref]

Van Cuong, L.

G. Odintsova, Y. Andreeva, A. Salminen, H. Roozbahani, L. Van Cuong, R. Yatsuk, V. Golubeva, V. Romanov, and V. Veiko, “Investigation of production related impact on the optical properties of color laser marking,” J. Mater. Process. Technol. 274, 116263 (2019).
[Crossref]

Vannahme, C.

X. Zhu, C. Vannahme, E. Højlund-Nielsen, N. A. Mortensen, and A. Kristensen, “Plasmonic colour laser printing,” Nat. Nanotechnol. 11, 325 (2016).
[Crossref]

Vazquez-Guardado, A.

D. Franklin, Y. Chen, A. Vazquez-Guardado, S. Modak, J. Boroumand, D. Xu, S.-T. Wu, and D. Chanda, “Polarization-independent actively tunable colour generation on imprinted plasmonic surfaces,” Nat. Commun. 6, 7337 (2015).
[Crossref]

Veiko, V.

G. Odintsova, Y. Andreeva, A. Salminen, H. Roozbahani, L. Van Cuong, R. Yatsuk, V. Golubeva, V. Romanov, and V. Veiko, “Investigation of production related impact on the optical properties of color laser marking,” J. Mater. Process. Technol. 274, 116263 (2019).
[Crossref]

E. Ageev, V. Veiko, E. Vlasova, Y. Karlagina, A. Krivonosov, M. Moskvin, G. Odintsova, V. Pshenichnov, V. Romanov, and R. Yatsuk, “Controlled nanostructures formation on stainless steel by short laser pulses for products protection against falsification,” Opt. Express 26, 2117–2122 (2018).
[Crossref]

E. Ageev, Y. M. Andreeva, Y. Y. Karlagina, Y. R. Kolobov, S. Manokhin, G. Odintsova, A. Slobodov, and V. Veiko, “Composition analysis of oxide films formed on titanium surface under pulsed laser action by method of chemical thermodynamics,” Laser Phys. 27, 046001 (2017).
[Crossref]

V. Veiko, G. Odintsova, E. Gorbunova, E. Ageev, A. Shimko, Y. Karlagina, and Y. Andreeva, “Development of complete color palette based on spectrophotometric measurements of steel oxidation results for enhancement of color laser marking technology,” Mater. Des. 89, 684–688 (2016).
[Crossref]

V. Veiko, G. Odintsova, E. Ageev, Y. Karlagina, A. Loginov, A. Skuratova, and E. Gorbunova, “Controlled oxide films formation by nanosecond laser pulses for color marking,” Opt. Express 22, 24342–24347 (2014).
[Crossref]

Vinogradov, A. V.

K. Keller, A. V. Yakovlev, E. V. Grachova, and A. V. Vinogradov, “Inkjet printing of multicolor daylight visible opal holography,” Adv. Funct. Mater. 28, 1706903 (2018).
[Crossref]

A. V. Yakovlev, V. A. Milichko, V. V. Vinogradov, and A. V. Vinogradov, “Inkjet color printing by interference nanostructures,” ACS Nano 10, 3078–3086 (2016).
[Crossref]

Vinogradov, V. V.

A. V. Yakovlev, V. A. Milichko, V. V. Vinogradov, and A. V. Vinogradov, “Inkjet color printing by interference nanostructures,” ACS Nano 10, 3078–3086 (2016).
[Crossref]

Vitrant, G.

Z. Liu, J. Siegel, M. Garcia-Lechuga, T. Epicier, Y. Lefkir, S. Reynaud, M. Bugnet, F. Vocanson, J. Solis, and G. Vitrant, “Three-dimensional self-organization in nanocomposite layered systems by ultrafast laser pulses,” ACS Nano 11, 5031–5040 (2017).
[Crossref]

Vlasova, E.

Vocanson, F.

Z. Liu, J. Siegel, M. Garcia-Lechuga, T. Epicier, Y. Lefkir, S. Reynaud, M. Bugnet, F. Vocanson, J. Solis, and G. Vitrant, “Three-dimensional self-organization in nanocomposite layered systems by ultrafast laser pulses,” ACS Nano 11, 5031–5040 (2017).
[Crossref]

Vorobyev, A. Y.

A. Y. Vorobyev and C. Guo, “Colorizing metals with femtosecond laser pulses,” Appl. Phys. Lett. 92, 041914 (2008).
[Crossref]

Walker, M.

T. Jwad, M. Walker, and S. Dimov, “Erasing and rewriting of titanium oxide colour marks using laser-induced reduction/oxidation,” Appl. Surf. Sci. 458, 849–854 (2018).
[Crossref]

Wang, S.

Z. Dong, J. Ho, Y. F. Yu, Y. H. Fu, R. Paniagua-Dominguez, S. Wang, A. Kuznetsov, and J. K. Yang, “Printing beyond srgb color gamut by mimicking silicon nanostructures in free-space,” Nano Lett. 17, 7620–7628 (2017).
[Crossref]

Wang, X.-H.

Y. Bao, Y. Yu, H. Xu, C. Guo, J. Li, S. Sun, Z.-K. Zhou, C.-W. Qiu, and X.-H. Wang, “Full-colour nanoprint-hologram synchronous metasurface with arbitrary hue-saturation-brightness control,” Light Sci. Appl. 8, 95 (2019).
[Crossref]

Weber, M. J.

M. J. Weber, Handbook of Optical Materials (CRC Press, 2002), Vol. 19.

Wei, J. N.

K. Kumar, H. Duan, R. S. Hegde, S. C. Koh, J. N. Wei, and J. K. Yang, “Printing colour at the optical diffraction limit,” Nat. Nanotechnol. 7, 557 (2012).
[Crossref]

Wessely, M.

Y. Jin, I. Qamar, M. Wessely, and S. Mueller, “Photo-chromeleon: re-programmable multi-color textures using photochromic dyes,” in ACM SIGGRAPH 2020 Emerging Technologies (ACM DL, 2020), pp. 1–2.

Wójcik, M.

K. Łęcka, M. Wójcik, and A. Antończak, “Laser-induced color marking of titanium: a modeling study of the interference effect and the impact of protective coating,” Math. Probl. Eng. 2017, 3425108 (2017).
[Crossref]

K. ŁeRcka, A. Antonczak, B. Szubzda, M. Wójcik, B. SteRpak, P. Szymczyk, M. Trzcinski, M. Ozimek, and K. Abramski, “Effects of laser-induced oxidation on the corrosion resistance of aisi 304 stainless steel,” J. Laser Appl. 28, 032009 (2016).
[Crossref]

Wolf, E.

M. Born and E. Wolf, Principles of Optics (Cambridge University Press, 1999), Chap. 1.

Wu, S.-T.

D. Franklin, Y. Chen, A. Vazquez-Guardado, S. Modak, J. Boroumand, D. Xu, S.-T. Wu, and D. Chanda, “Polarization-independent actively tunable colour generation on imprinted plasmonic surfaces,” Nat. Commun. 6, 7337 (2015).
[Crossref]

Xu, D.

D. Franklin, Y. Chen, A. Vazquez-Guardado, S. Modak, J. Boroumand, D. Xu, S.-T. Wu, and D. Chanda, “Polarization-independent actively tunable colour generation on imprinted plasmonic surfaces,” Nat. Commun. 6, 7337 (2015).
[Crossref]

Xu, H.

Y. Bao, Y. Yu, H. Xu, C. Guo, J. Li, S. Sun, Z.-K. Zhou, C.-W. Qiu, and X.-H. Wang, “Full-colour nanoprint-hologram synchronous metasurface with arbitrary hue-saturation-brightness control,” Light Sci. Appl. 8, 95 (2019).
[Crossref]

Xu, T.

Yakovlev, A. V.

K. Keller, A. V. Yakovlev, E. V. Grachova, and A. V. Vinogradov, “Inkjet printing of multicolor daylight visible opal holography,” Adv. Funct. Mater. 28, 1706903 (2018).
[Crossref]

A. V. Yakovlev, V. A. Milichko, V. V. Vinogradov, and A. V. Vinogradov, “Inkjet color printing by interference nanostructures,” ACS Nano 10, 3078–3086 (2016).
[Crossref]

Yang, J.

J. Trisno, R. Ng, Q. Ruan, C. Qiu, N. Mortensen, and J. Yang, “Nanophotonic structural colors,” ACS Photon. 8, 18–33 (2020).
[Crossref]

Yang, J. K.

Z. Dong, J. Ho, Y. F. Yu, Y. H. Fu, R. Paniagua-Dominguez, S. Wang, A. Kuznetsov, and J. K. Yang, “Printing beyond srgb color gamut by mimicking silicon nanostructures in free-space,” Nano Lett. 17, 7620–7628 (2017).
[Crossref]

A. Kristensen, J. K. Yang, S. I. Bozhevolnyi, S. Link, P. Nordlander, N. J. Halas, and N. A. Mortensen, “Plasmonic colour generation,” Nat. Rev. Mater. 2, 16088 (2016).
[Crossref]

K. Kumar, H. Duan, R. S. Hegde, S. C. Koh, J. N. Wei, and J. K. Yang, “Printing colour at the optical diffraction limit,” Nat. Nanotechnol. 7, 557 (2012).
[Crossref]

Yang, X.

F. Cheng, J. Gao, T. S. Luk, and X. Yang, “Structural color printing based on plasmonic metasurfaces of perfect light absorption,” Sci. Rep. 5, 11045 (2015).
[Crossref]

Yatsuk, R.

G. Odintsova, Y. Andreeva, A. Salminen, H. Roozbahani, L. Van Cuong, R. Yatsuk, V. Golubeva, V. Romanov, and V. Veiko, “Investigation of production related impact on the optical properties of color laser marking,” J. Mater. Process. Technol. 274, 116263 (2019).
[Crossref]

E. Ageev, V. Veiko, E. Vlasova, Y. Karlagina, A. Krivonosov, M. Moskvin, G. Odintsova, V. Pshenichnov, V. Romanov, and R. Yatsuk, “Controlled nanostructures formation on stainless steel by short laser pulses for products protection against falsification,” Opt. Express 26, 2117–2122 (2018).
[Crossref]

Yoon, G.

S. A. Jalil, M. Akram, G. Yoon, A. Khalid, D. Lee, N. Raeis-Hosseini, S. So, I. Kim, Q. S. Ahmed, and J. Rho, “High refractive index Ti3O5 films for dielectric metasurfaces,” Chin. Phys. Lett. 34, 088102 (2017).
[Crossref]

Yu, Y.

Y. Bao, Y. Yu, H. Xu, C. Guo, J. Li, S. Sun, Z.-K. Zhou, C.-W. Qiu, and X.-H. Wang, “Full-colour nanoprint-hologram synchronous metasurface with arbitrary hue-saturation-brightness control,” Light Sci. Appl. 8, 95 (2019).
[Crossref]

Yu, Y. F.

Z. Dong, J. Ho, Y. F. Yu, Y. H. Fu, R. Paniagua-Dominguez, S. Wang, A. Kuznetsov, and J. K. Yang, “Printing beyond srgb color gamut by mimicking silicon nanostructures in free-space,” Nano Lett. 17, 7620–7628 (2017).
[Crossref]

Yuan, Z.

W. Hong, Z. Yuan, and X. Chen, “Structural color materials for optical anticounterfeiting,” Small 16, 1907626 (2020).
[Crossref]

Zhang, A. P.

Y. Zhang, Q. Zhang, X. Ouyang, D. Y. Lei, A. P. Zhang, and H.-Y. Tam, “Ultrafast light-controlled growth of silver nanoparticles for direct plasmonic color printing,” ACS Nano 12, 9913–9921 (2018).
[Crossref]

Zhang, C.

Zhang, J.

A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, and B. Luk’Yanchuk, “Magnetic light,” Sci. Rep. 2, 492 (2012).
[Crossref]

Zhang, Q.

Y. Zhang, Q. Zhang, X. Ouyang, D. Y. Lei, A. P. Zhang, and H.-Y. Tam, “Ultrafast light-controlled growth of silver nanoparticles for direct plasmonic color printing,” ACS Nano 12, 9913–9921 (2018).
[Crossref]

Zhang, S.

P. Mao, C. Liu, F. Song, M. Han, S. A. Maier, and S. Zhang, “Manipulating disordered plasmonic systems by external cavity with transition from broadband absorption to reconfigurable reflection,” Nat. Commun. 11, 1538 (2020).
[Crossref]

Zhang, Y.

Y. Zhang, Q. Zhang, X. Ouyang, D. Y. Lei, A. P. Zhang, and H.-Y. Tam, “Ultrafast light-controlled growth of silver nanoparticles for direct plasmonic color printing,” ACS Nano 12, 9913–9921 (2018).
[Crossref]

Zhou, R.

R. Zhou, T. Huang, Y. Lu, and M. Hong, “Tunable coloring via post-thermal annealing of laser-processed metal surface,” Appl. Sci. 8, 1716 (2018).
[Crossref]

Zhou, Z.-K.

Y. Bao, Y. Yu, H. Xu, C. Guo, J. Li, S. Sun, Z.-K. Zhou, C.-W. Qiu, and X.-H. Wang, “Full-colour nanoprint-hologram synchronous metasurface with arbitrary hue-saturation-brightness control,” Light Sci. Appl. 8, 95 (2019).
[Crossref]

Zhu, W.

Zhu, X.

X. Zhu, C. Vannahme, E. Højlund-Nielsen, N. A. Mortensen, and A. Kristensen, “Plasmonic colour laser printing,” Nat. Nanotechnol. 11, 325 (2016).
[Crossref]

Zou, C.

C. Zou, J. Sautter, F. Setzpfandt, and I. Staude, “Resonant dielectric metasurfaces: active tuning and nonlinear effects,” J. Phys. D 52, 373002 (2019).
[Crossref]

Zuev, D. A.

S. V. Makarov, V. A. Milichko, I. S. Mukhin, I. I. Shishkin, D. A. Zuev, A. M. Mozharov, A. E. Krasnok, and P. A. Belov, “Controllable femtosecond laser-induced dewetting for plasmonic applications,” Laser Photon. Rev. 10, 91–99 (2016).
[Crossref]

ACM Trans. Graph. (1)

S. Cucerca, P. Didyk, H.-P. Seidel, and V. Babaei, “Computational image marking on metals via laser induced heating,” ACM Trans. Graph. 39, 70–71 (2020).
[Crossref]

ACS Appl. Nano Mater. (2)

H. Nishi and T. Tatsuma, “Full-color scattering based on plasmon and mie resonances of gold nanoparticles modulated by Fabry–Pérot interference for coloring and image projection,” ACS Appl. Nano Mater. 2, 5071–5078 (2019).
[Crossref]

Y. Kuroiwa and T. Tatsuma, “Laser printing of translucent plasmonic full-color images with transmission-scattering dichroism of silver nanoparticles,” ACS Appl. Nano Mater. 3, 2472–2479 (2020).
[Crossref]

ACS Nano (4)

Z. Liu, J. Siegel, M. Garcia-Lechuga, T. Epicier, Y. Lefkir, S. Reynaud, M. Bugnet, F. Vocanson, J. Solis, and G. Vitrant, “Three-dimensional self-organization in nanocomposite layered systems by ultrafast laser pulses,” ACS Nano 11, 5031–5040 (2017).
[Crossref]

H. Jiang and B. Kaminska, “Scalable inkjet-based structural color printing by molding transparent gratings on multilayer nanostructured surfaces,” ACS Nano 12, 3112–3125 (2018).
[Crossref]

Y. Zhang, Q. Zhang, X. Ouyang, D. Y. Lei, A. P. Zhang, and H.-Y. Tam, “Ultrafast light-controlled growth of silver nanoparticles for direct plasmonic color printing,” ACS Nano 12, 9913–9921 (2018).
[Crossref]

A. V. Yakovlev, V. A. Milichko, V. V. Vinogradov, and A. V. Vinogradov, “Inkjet color printing by interference nanostructures,” ACS Nano 10, 3078–3086 (2016).
[Crossref]

ACS Photon. (1)

J. Trisno, R. Ng, Q. Ruan, C. Qiu, N. Mortensen, and J. Yang, “Nanophotonic structural colors,” ACS Photon. 8, 18–33 (2020).
[Crossref]

Adv. Funct. Mater. (1)

K. Keller, A. V. Yakovlev, E. V. Grachova, and A. V. Vinogradov, “Inkjet printing of multicolor daylight visible opal holography,” Adv. Funct. Mater. 28, 1706903 (2018).
[Crossref]

Adv. Opt. Mater. (1)

T. Siefke, S. Kroker, K. Pfeiffer, O. Puffky, K. Dietrich, D. Franta, I. Ohlídal, A. Szeghalmi, E. Kley, and A. Tünnermann, “Materials pushing the application limits of wire grid polarizers further into the deep ultraviolet spectral range,” Adv. Opt. Mater. 4, 1780–1786 (2016).
[Crossref]

APL Photon. (1)

H. Liu, W. Lin, and M. Hong, “Surface coloring by laser irradiation of solid substrates,” APL Photon. 4, 051101 (2019).
[Crossref]

Appl. Phys. A (2)

N. Bulgakova and A. Bulgakov, “Pulsed laser ablation of solids: transition from normal vaporization to phase explosion,” Appl. Phys. A 73, 199–208 (2001).
[Crossref]

A. Pereira, A. Cros, P. Delaporte, S. Georgiou, A. Manousaki, W. Marine, and M. Sentis, “Surface nanostructuring of metals by laser irradiation: effects of pulse duration, wavelength and gas atmosphere,” Appl. Phys. A 79, 1433–1437 (2004).
[Crossref]

Appl. Phys. Lett. (1)

A. Y. Vorobyev and C. Guo, “Colorizing metals with femtosecond laser pulses,” Appl. Phys. Lett. 92, 041914 (2008).
[Crossref]

Appl. Sci. (1)

R. Zhou, T. Huang, Y. Lu, and M. Hong, “Tunable coloring via post-thermal annealing of laser-processed metal surface,” Appl. Sci. 8, 1716 (2018).
[Crossref]

Appl. Surf. Sci. (2)

T. Jwad, M. Walker, and S. Dimov, “Erasing and rewriting of titanium oxide colour marks using laser-induced reduction/oxidation,” Appl. Surf. Sci. 458, 849–854 (2018).
[Crossref]

E. Amara, F. Haïd, and A. Noukaz, “Experimental investigations on fiber laser color marking of steels,” Appl. Surf. Sci. 351, 1–12 (2015).
[Crossref]

Chin. Phys. Lett. (1)

S. A. Jalil, M. Akram, G. Yoon, A. Khalid, D. Lee, N. Raeis-Hosseini, S. So, I. Kim, Q. S. Ahmed, and J. Rho, “High refractive index Ti3O5 films for dielectric metasurfaces,” Chin. Phys. Lett. 34, 088102 (2017).
[Crossref]

J. Laser Appl. (1)

K. ŁeRcka, A. Antonczak, B. Szubzda, M. Wójcik, B. SteRpak, P. Szymczyk, M. Trzcinski, M. Ozimek, and K. Abramski, “Effects of laser-induced oxidation on the corrosion resistance of aisi 304 stainless steel,” J. Laser Appl. 28, 032009 (2016).
[Crossref]

J. Less Common Met. (1)

P. Kofstad, P. Anderson, and O. Krudtaa, “Oxidation of titanium in the temperature range 800–1200 c,” J. Less Common Met. 3, 89–97 (1961).
[Crossref]

J. Mater. Process. Technol. (1)

G. Odintsova, Y. Andreeva, A. Salminen, H. Roozbahani, L. Van Cuong, R. Yatsuk, V. Golubeva, V. Romanov, and V. Veiko, “Investigation of production related impact on the optical properties of color laser marking,” J. Mater. Process. Technol. 274, 116263 (2019).
[Crossref]

J. Phys. D (1)

C. Zou, J. Sautter, F. Setzpfandt, and I. Staude, “Resonant dielectric metasurfaces: active tuning and nonlinear effects,” J. Phys. D 52, 373002 (2019).
[Crossref]

Laser Photon. Rev. (2)

S. V. Makarov, V. A. Milichko, I. S. Mukhin, I. I. Shishkin, D. A. Zuev, A. M. Mozharov, A. E. Krasnok, and P. A. Belov, “Controllable femtosecond laser-induced dewetting for plasmonic applications,” Laser Photon. Rev. 10, 91–99 (2016).
[Crossref]

M. Rahmani, B. Luk’yanchuk, and M. Hong, “Fano resonance in novel plasmonic nanostructures,” Laser Photon. Rev. 7, 329–349 (2013).
[Crossref]

Laser Phys. (1)

E. Ageev, Y. M. Andreeva, Y. Y. Karlagina, Y. R. Kolobov, S. Manokhin, G. Odintsova, A. Slobodov, and V. Veiko, “Composition analysis of oxide films formed on titanium surface under pulsed laser action by method of chemical thermodynamics,” Laser Phys. 27, 046001 (2017).
[Crossref]

Light Sci. Appl. (1)

Y. Bao, Y. Yu, H. Xu, C. Guo, J. Li, S. Sun, Z.-K. Zhou, C.-W. Qiu, and X.-H. Wang, “Full-colour nanoprint-hologram synchronous metasurface with arbitrary hue-saturation-brightness control,” Light Sci. Appl. 8, 95 (2019).
[Crossref]

Mater. Des. (1)

V. Veiko, G. Odintsova, E. Gorbunova, E. Ageev, A. Shimko, Y. Karlagina, and Y. Andreeva, “Development of complete color palette based on spectrophotometric measurements of steel oxidation results for enhancement of color laser marking technology,” Mater. Des. 89, 684–688 (2016).
[Crossref]

Mater. Today (1)

J. Jaglarz, J. Szewczenko, K. Marszałek, M. Basiaga, M. Marszałek, and R. Gaweł, “Nonstandard optical methods as a tool for rough surface analysis,” Mater. Today 2(7), 4046–4052 (2015).
[Crossref]

Math. Probl. Eng. (1)

K. Łęcka, M. Wójcik, and A. Antończak, “Laser-induced color marking of titanium: a modeling study of the interference effect and the impact of protective coating,” Math. Probl. Eng. 2017, 3425108 (2017).
[Crossref]

Metall. Mater. Trans. B (1)

D. Höche, S. Müller, G. Rapin, M. Shinn, E. Remdt, M. Gubisch, and P. Schaaf, “Marangoni convection during free electron laser nitriding of titanium,” Metall. Mater. Trans. B 40, 497–507 (2009).
[Crossref]

Nano Lett. (2)

Z. Dong, J. Ho, Y. F. Yu, Y. H. Fu, R. Paniagua-Dominguez, S. Wang, A. Kuznetsov, and J. K. Yang, “Printing beyond srgb color gamut by mimicking silicon nanostructures in free-space,” Nano Lett. 17, 7620–7628 (2017).
[Crossref]

J. Meng, J. J. Cadusch, and K. B. Crozier, “Detector-only spectrometer based on structurally colored silicon nanowires and a reconstruction algorithm,” Nano Lett. 20, 320–328 (2019).
[Crossref]

Nat. Commun. (2)

P. Mao, C. Liu, F. Song, M. Han, S. A. Maier, and S. Zhang, “Manipulating disordered plasmonic systems by external cavity with transition from broadband absorption to reconfigurable reflection,” Nat. Commun. 11, 1538 (2020).
[Crossref]

D. Franklin, Y. Chen, A. Vazquez-Guardado, S. Modak, J. Boroumand, D. Xu, S.-T. Wu, and D. Chanda, “Polarization-independent actively tunable colour generation on imprinted plasmonic surfaces,” Nat. Commun. 6, 7337 (2015).
[Crossref]

Nat. Nanotechnol. (3)

S. Jahani and Z. Jacob, “All-dielectric metamaterials,” Nat. Nanotechnol. 11, 23 (2016).
[Crossref]

X. Zhu, C. Vannahme, E. Højlund-Nielsen, N. A. Mortensen, and A. Kristensen, “Plasmonic colour laser printing,” Nat. Nanotechnol. 11, 325 (2016).
[Crossref]

K. Kumar, H. Duan, R. S. Hegde, S. C. Koh, J. N. Wei, and J. K. Yang, “Printing colour at the optical diffraction limit,” Nat. Nanotechnol. 7, 557 (2012).
[Crossref]

Nat. Photonics (1)

M. F. Limonov, M. V. Rybin, A. N. Poddubny, and Y. S. Kivshar, “Fano resonances in photonics,” Nat. Photonics 11, 543–554 (2017).
[Crossref]

Nat. Rev. Mater. (1)

A. Kristensen, J. K. Yang, S. I. Bozhevolnyi, S. Link, P. Nordlander, N. J. Halas, and N. A. Mortensen, “Plasmonic colour generation,” Nat. Rev. Mater. 2, 16088 (2016).
[Crossref]

Opt. Express (3)

Optica (2)

Sci. Rep. (2)

F. Cheng, J. Gao, T. S. Luk, and X. Yang, “Structural color printing based on plasmonic metasurfaces of perfect light absorption,” Sci. Rep. 5, 11045 (2015).
[Crossref]

A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, and B. Luk’Yanchuk, “Magnetic light,” Sci. Rep. 2, 492 (2012).
[Crossref]

Small (1)

W. Hong, Z. Yuan, and X. Chen, “Structural color materials for optical anticounterfeiting,” Small 16, 1907626 (2020).
[Crossref]

Thin Solid Films (2)

A. Bendavid, P. Martin, A. Jamting, and H. Takikawa, “Structural and optical properties of titanium oxide thin films deposited by filtered arc deposition,” Thin Solid Films 355, 6–11 (1999).
[Crossref]

M. R. Saleem, R. Ali, S. Honkanen, and J. Turunen, “Thermal properties of thin al2o3 films and their barrier layer effect on thermo-optic properties of TiO2 films grown by atomic layer deposition,” Thin Solid Films 542, 257–262 (2013).
[Crossref]

Other (4)

M. J. Weber, Handbook of Optical Materials (CRC Press, 2002), Vol. 19.

M. Born and E. Wolf, Principles of Optics (Cambridge University Press, 1999), Chap. 1.

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

Y. Jin, I. Qamar, M. Wessely, and S. Mueller, “Photo-chromeleon: re-programmable multi-color textures using photochromic dyes,” in ACM SIGGRAPH 2020 Emerging Technologies (ACM DL, 2020), pp. 1–2.

Supplementary Material (2)

NameDescription
» Supplement 1       Supplementary information for the manuscript
» Visualization 1       The video shows the process of laser painting on titanium. By nanosecond pulsed irradiation it is possible to draw a colorful picture, change colors, and erase them completely. These processes are possible due to the material heating above [Read More]

Data Availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Schematics of laser paintbrush and microimages of color strokes.
Fig. 2.
Fig. 2. Principle of color laser paintbrush. (a) Applying of color strokes: schematics of the process and photo of the color palette for titanium: laser intensity $I = 1.02 \cdot {10^7} \; {\rm W}/{\rm cm^2}$, and scanning speed decreases from 500 to $100\;{\rm mm/s}$ with the step of $50\;{\rm mm/s}$ for colors ${\rm Ti_1}$ to ${\rm Ti_9}$, respectively. (b) Reflectance spectra of the obtained color palette. (c) Color palette on color locus. (d) Schematics of laser rewriting and photo of color rewriting: eight identical areas of ${{\rm Ti}_8}$ color were initially obtained. After that, the second laser pass ($I = 1.02 \cdot {10^7} \; {\rm W}/{\rm cm^2}$) with the scanning speed in the range of 100–1500 mm/s was performed; the intersection area surrounded by black dashed line represents the corrected color. (e) Schematics of laser color erasing, photo, and microimages of color erasing of different colors ${\rm Ti_2} - {\rm Ti_9}$ performed at scanning speed ${V_{\textit{sc}}} = 1500\; {\rm mm/s}$ ($I = 1.02 \cdot {10^7}\; {\rm W}/{\rm cm^2}$).
Fig. 3.
Fig. 3. Color maps for laser painting, color change, and erasing for $I = 1.02 \cdot {10^7} \; {\rm W}/{\rm cm^2}$. (a) Color palette of the laser paintbrush. The map represents color dependencies on different scanning speed: the single-step coloration regime on a bare titanium (coloring zone), the change of eight initial colors for other ones (color change zone), complete erasing of colors (erasing zone). (b) Multiple rewriting of the color circle: colors are changed in a consequence, the result after initial writing (first pass), and rewriting (second and third passes).
Fig. 4.
Fig. 4. Multiple color rewriting. (a) Schematics of laser multiple rewriting of gold color to blue and back. (b) Photo of rewritten squares: Layer 1 (${\rm L}1$) reproduces sample ${\rm Ti_4}$ (${I} = 1.02 \cdot {10^7}\; {\rm W}/{\rm cm^2}$, ${V_{\textit{sc}}} = 350\; {\rm mm/s}$). All the blue layers (${\rm L2,L4,L6,L8}$) were produced by reprocessing of gold areas with a scanning speed of ${V_{\textit{sc}}} = 170\; {\rm mm/s}$. The ${\rm L3,L5,L7,L9}$ gold layers were recorded with a scanning speed of ${V_{{sc}}} = 450\;{\rm mm/s}$. (c)–(e) Reflectance spectra of colors: (c) experimental spectra, ${\rm L1 - L9}$: color difference between the rewritten colors $\Delta E$ does not exceed 8; (d) colors representing experimental and calculated CIE ${\rm L*a*b*}$ (2013) color coordinates for initial surface (${\rm Ti_0}$) L1 and L8; (e) modelled spectra: the yellow line is for the ${\rm L}1$ regime (estimated for $20 \pm 3\;{\rm nm}$ thick rutile film on a bulk Ti), the and blue line is for the ${\rm L}8$ regime (estimated for $23 \pm 3\;{\rm nm}$ thick ${\rm Ti_3}{\rm O_5}$ and $12 \pm 2\;{\rm nm}$ thick anatase films layered on top of a bulk Ti). (f)–(h) Morphological and structural characterization of oxide layers after laser exposure. TEM, STEM, and electron beam diffraction images of oxide films of samples: (f) ${\rm L}1$, (g) L9, and (h)${\rm Ti_8}$.
Fig. 5.
Fig. 5. Temperature distribution and laser oxidation process. (a) Microimage and profile of Ti surface after laser irradiation; (b) calculated temperature distribution over the surface; (c) temperature dynamics for central region of the recorded track considering the presence of oxide layers for different scanning speeds (${I} = 1.02 \cdot {10^7} \;{\rm W}/{\rm cm^2}$).
Fig. 6.
Fig. 6. Photos of color laser miniature paintings. (a) Interpretation of Van Gogh painting “Starry Night” and the portrait of the artist made on titanium canvas by laser paintbrush technique. (b) Laser miniature painting (author D. Lutoshina): intersections between different elements represent the color mixture (laser rewriting) and erasing (laser erasing).

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

M = [ cos ( β 1 ) cos ( β 2 ) n 2 n 1 sin ( β 1 ) sin ( β 2 ) i ( sin ( β 2 ) cos ( β 1 ) n 2 + cos ( β 2 ) sin ( β 1 ) n 1 ) i ( n 2 sin ( β 2 ) + cos ( β 1 ) n 1 cos ( β 2 ) sin ( β 1 ) ) cos ( β 1 ) cos ( β 2 ) n 2 n 1 sin ( β 1 ) sin ( β 2 ) ] ,
R ( λ , h j ) = | M 1 , 1 + n 3 M 1 , 2 M 2 , 1 n 3 M 2 , 2 M 1 , 1 + n 3 M 1 , 2 + M 2 , 1 + n 3 M 2 , 2 | 2 ,
( c + L m δ ( T T m ) ) T t ( k T ) = 0 k T z | z = 0 = A i = 0 N 1 q i ν e ν L e ν k T x | x = 0 = 0 k T y | y = 0 = 0 k T z | z = z max = 0 k T x | x = x max = 0 k T y | y = y max = 0 T | t = 0 = T 0 ,
2 10 5 I + 393 V sc > 1 ,