Abstract

Cell-resolution optical imaging methods, such as confocal microscopy and full-field optical coherence tomography, capture flat optical sections of the sample. If the sample is curved, the optical field sections through several sample layers, and the view of each layer is reduced. Here we present curved-field optical coherence tomography, capable of capturing optical sections of arbitrary curvature. We test the device on a challenging task of imaging the human cornea in vivo and achieve a ${10} \times$ larger viewing area comparing to the clinical state-of-the-art. This enables more precise cell and nerve counts, opening a path to improved monitoring of corneal and general health conditions (e.g., diabetes). The method is non-contact, compact, and works in a single fast shot (3.5 ms), making it readily available for use in optical research and clinical practice.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. “Ophthalmology Management—Monitoring & Maintaining Endothelial Cell Health,” https://www.ophthalmologymanagement.com/issues/2012/may-2012/monitoring-maintaining-endothelial-cell-health .
  2. F. S. Brightbill, Corneal Surgery. Theory, Technique and Tissue, 4th ed. (Elsevier) (2008), pp. 383–384, 519-521, 723.
  3. “Getting to the root of post-LASIK pain,” https://www.reviewofophthalmology.com/article/getting-to-the-root-of-postlasik-pain .
  4. “Specular Microscope CEM-530 | Cornea & Cataract | NIDEK CO., LTD.,” https://www.nidek-intl.com/product/ophthaloptom/diagnostic/dia_cornea/cem-530.html .
  5. X. Yao, K. Devarajan, R. M. Werkmeister, V. A. dos Santos, M. Ang, A. Kuo, D. W. K. Wong, J. Chua, B. Tan, V. A. Barathi, and L. Schmetterer, “In vivo corneal endothelium imaging using ultrahigh resolution OCT,” Biomed. Opt. Express 10, 5675–5686 (2019).
    [Crossref]
  6. B. Tan, Z. Hosseinaee, L. Han, O. Kralj, L. Sorbara, and K. Bizheva, “250 kHz, 1,5 µm resolution SD-OCT for in-vivo cellular imaging of the human cornea,” Biomed. Opt. Express 9, 6569–6583 (2018).
    [Crossref]
  7. C. Canavesi, A. Cogliati, A. Mietus, Y. Qi, J. Schallek, J. P. Rolland, and H. B. Hindman, “In vivo imaging of corneal nerves and cellular structures in mice with Gabor-domain optical coherence microscopy,” Biomed. Opt. Express 11, 711–724 (2020).
    [Crossref]
  8. S. Chen, X. Liu, N. Wang, X. Wang, Q. Xiong, E. Bo, X. Yu, S. Chen, and L. Liu, “Visualizing micro-anatomical structures of the posterior cornea with micro-optical coherence tomography,” Sci. Rep. 7, 10752 (2017).
    [Crossref]
  9. E. Auksorius, D. Borycki, P. Stremplewski, K. Liżewski, S. Tomczewski, P. Niedźwiedziuk, B. L. Sikorski, and M. Wojtkowski, “In vivo imaging of the human cornea with high-speed and high-resolution Fourier-domain full-field optical coherence tomography,” Biomed. Opt. Express 11, 2849–2865 (2020).
    [Crossref]
  10. T. D. Weber and J. Mertz, “In vivo corneal and lenticular microscopy with asymmetric fundus retroillumination,” Biomed. Opt. Express 11,3263–3273 (2020).
    [Crossref]
  11. F. Beer, A. Wartak, R. Haindl, M. Gröschl, B. Baumann, M. Pircher, and C. K. Hitzenberger, “Conical scan pattern for enhanced visualization of the human cornea using polarization-sensitive OCT,” Biomed. Opt. Express 8, 2906–2923 (2017).
    [Crossref]
  12. F. Beer, R. P. Patil, A. Sinha-Roy, B. Baumann, M. Pircher, and C. K. Hitzenberger, “Ultrahigh resolution polarization sensitive optical coherence tomography of the human cornea with conical scanning pattern and variable dispersion compensation,” Appl. Sci. 9, 4245 (2019).
    [Crossref]
  13. V. Mazlin, P. Xiao, E. Dalimier, K. Grieve, K. Irsch, J.-A. Sahel, M. Fink, and A. C. Boccara, “In vivo high resolution human corneal imaging using full-field optical coherence tomography,” Biomed. Opt. Express 9, 557–568 (2018).
    [Crossref]
  14. V. Mazlin, P. Xiao, J. Scholler, K. Irsch, K. Grieve, M. Fink, and A. C. Boccara, “Real-time non-contact cellular imaging and angiography of human cornea and limbus with common-path full-field/SD OCT,” Nat. Commun. 11, 1868 (2020).
    [Crossref]
  15. R. A. Malik, P. Kallinikos, C. A. Abbott, C. H. M. van Schie, P. Morgan, N. Efron, and A. J. M. Boulton, “Corneal confocal microscopy: a non-invasive surrogate of nerve fibre damage and repair in diabetic patients,” Diabetologia 46, 683–688 (2003).
    [Crossref]
  16. H. Cheng, P. M. Jacobs, K. McPherson, and M. J. Noble, “Precision of cell density estimates and endothelial cell loss with age,” Arch. Ophthalmol. 103, 1478–1481 (1985).
    [Crossref]
  17. S. Labiau, G. David, S. Gigan, and A. C. Boccara, “Defocus test and defocus correction in full-field optical coherence tomography,” Opt. Lett. 34, 1576–1578 (2009).
    [Crossref]
  18. E. Beaurepaire, A. C. Boccara, M. Lebec, L. Blanchot, and H. Saint-Jalmes, “Full-field optical coherence microscopy,” Opt. Lett. 23, 244–246 (1998).
    [Crossref]
  19. A. Dubois, Handbook of Full-Field Optical Coherence Microscopy: Technology and Applications (Pan Stanford publishing, 2016).
  20. M. Dubbelman, V. A. D. P. Sicam, and G. L. Van der Heijde, “The shape of the anterior and posterior surface of the aging human cornea,” Vis. Res. 46, 993–1001 (2006).
    [Crossref]
  21. S. Allgeier, S. Maier, R. Mikut, S. Peschel, K.-M. Reichert, O. Stachs, and B. Köhler, “Mosaicking the subbasal nerve plexus by guided eye movements,” Invest. Ophthalmol. Visual Sci. 55, 6082 (2014).
    [Crossref]
  22. S. Allgeier, A. Bartschat, S. Bohn, S. Peschel, K.-M. Reichert, K. Sperlich, M. Walckling, V. Hagenmeyer, R. Mikut, O. Stachs, and B. Köhler, “3D confocal laser-scanning microscopy for large-area imaging of the corneal subbasal nerve plexus,” Sci. Rep. 8, 7468 (2018).
    [Crossref]
  23. B. E. McCarey, H. F. Edelhauser, and M. J. Lynn, “Review of corneal endothelial specular microscopy for fda clinical trials of refractive procedures, surgical devices, and new intraocular drugs and solutions,” Cornea 27, 1–16 (2008).
    [Crossref]
  24. P. Xiao, M. Fink, and A. C. Boccara, “Full-field spatially incoherent illumination interferometry: a spatial resolution almost insensitive to aberrations,” Opt. Lett. 41, 3920–3923 (2016).
    [Crossref]
  25. A. Fabijańska, “Segmentation of corneal endothelium images using a U-Net-based convolutional neural network,” Artif. Intell. Med. 88, 1–13 (2018).
    [Crossref]

2020 (4)

2019 (2)

F. Beer, R. P. Patil, A. Sinha-Roy, B. Baumann, M. Pircher, and C. K. Hitzenberger, “Ultrahigh resolution polarization sensitive optical coherence tomography of the human cornea with conical scanning pattern and variable dispersion compensation,” Appl. Sci. 9, 4245 (2019).
[Crossref]

X. Yao, K. Devarajan, R. M. Werkmeister, V. A. dos Santos, M. Ang, A. Kuo, D. W. K. Wong, J. Chua, B. Tan, V. A. Barathi, and L. Schmetterer, “In vivo corneal endothelium imaging using ultrahigh resolution OCT,” Biomed. Opt. Express 10, 5675–5686 (2019).
[Crossref]

2018 (4)

B. Tan, Z. Hosseinaee, L. Han, O. Kralj, L. Sorbara, and K. Bizheva, “250 kHz, 1,5 µm resolution SD-OCT for in-vivo cellular imaging of the human cornea,” Biomed. Opt. Express 9, 6569–6583 (2018).
[Crossref]

V. Mazlin, P. Xiao, E. Dalimier, K. Grieve, K. Irsch, J.-A. Sahel, M. Fink, and A. C. Boccara, “In vivo high resolution human corneal imaging using full-field optical coherence tomography,” Biomed. Opt. Express 9, 557–568 (2018).
[Crossref]

S. Allgeier, A. Bartschat, S. Bohn, S. Peschel, K.-M. Reichert, K. Sperlich, M. Walckling, V. Hagenmeyer, R. Mikut, O. Stachs, and B. Köhler, “3D confocal laser-scanning microscopy for large-area imaging of the corneal subbasal nerve plexus,” Sci. Rep. 8, 7468 (2018).
[Crossref]

A. Fabijańska, “Segmentation of corneal endothelium images using a U-Net-based convolutional neural network,” Artif. Intell. Med. 88, 1–13 (2018).
[Crossref]

2017 (2)

F. Beer, A. Wartak, R. Haindl, M. Gröschl, B. Baumann, M. Pircher, and C. K. Hitzenberger, “Conical scan pattern for enhanced visualization of the human cornea using polarization-sensitive OCT,” Biomed. Opt. Express 8, 2906–2923 (2017).
[Crossref]

S. Chen, X. Liu, N. Wang, X. Wang, Q. Xiong, E. Bo, X. Yu, S. Chen, and L. Liu, “Visualizing micro-anatomical structures of the posterior cornea with micro-optical coherence tomography,” Sci. Rep. 7, 10752 (2017).
[Crossref]

2016 (1)

2014 (1)

S. Allgeier, S. Maier, R. Mikut, S. Peschel, K.-M. Reichert, O. Stachs, and B. Köhler, “Mosaicking the subbasal nerve plexus by guided eye movements,” Invest. Ophthalmol. Visual Sci. 55, 6082 (2014).
[Crossref]

2009 (1)

2008 (1)

B. E. McCarey, H. F. Edelhauser, and M. J. Lynn, “Review of corneal endothelial specular microscopy for fda clinical trials of refractive procedures, surgical devices, and new intraocular drugs and solutions,” Cornea 27, 1–16 (2008).
[Crossref]

2006 (1)

M. Dubbelman, V. A. D. P. Sicam, and G. L. Van der Heijde, “The shape of the anterior and posterior surface of the aging human cornea,” Vis. Res. 46, 993–1001 (2006).
[Crossref]

2003 (1)

R. A. Malik, P. Kallinikos, C. A. Abbott, C. H. M. van Schie, P. Morgan, N. Efron, and A. J. M. Boulton, “Corneal confocal microscopy: a non-invasive surrogate of nerve fibre damage and repair in diabetic patients,” Diabetologia 46, 683–688 (2003).
[Crossref]

1998 (1)

1985 (1)

H. Cheng, P. M. Jacobs, K. McPherson, and M. J. Noble, “Precision of cell density estimates and endothelial cell loss with age,” Arch. Ophthalmol. 103, 1478–1481 (1985).
[Crossref]

Abbott, C. A.

R. A. Malik, P. Kallinikos, C. A. Abbott, C. H. M. van Schie, P. Morgan, N. Efron, and A. J. M. Boulton, “Corneal confocal microscopy: a non-invasive surrogate of nerve fibre damage and repair in diabetic patients,” Diabetologia 46, 683–688 (2003).
[Crossref]

Allgeier, S.

S. Allgeier, A. Bartschat, S. Bohn, S. Peschel, K.-M. Reichert, K. Sperlich, M. Walckling, V. Hagenmeyer, R. Mikut, O. Stachs, and B. Köhler, “3D confocal laser-scanning microscopy for large-area imaging of the corneal subbasal nerve plexus,” Sci. Rep. 8, 7468 (2018).
[Crossref]

S. Allgeier, S. Maier, R. Mikut, S. Peschel, K.-M. Reichert, O. Stachs, and B. Köhler, “Mosaicking the subbasal nerve plexus by guided eye movements,” Invest. Ophthalmol. Visual Sci. 55, 6082 (2014).
[Crossref]

Ang, M.

Auksorius, E.

Barathi, V. A.

Bartschat, A.

S. Allgeier, A. Bartschat, S. Bohn, S. Peschel, K.-M. Reichert, K. Sperlich, M. Walckling, V. Hagenmeyer, R. Mikut, O. Stachs, and B. Köhler, “3D confocal laser-scanning microscopy for large-area imaging of the corneal subbasal nerve plexus,” Sci. Rep. 8, 7468 (2018).
[Crossref]

Baumann, B.

F. Beer, R. P. Patil, A. Sinha-Roy, B. Baumann, M. Pircher, and C. K. Hitzenberger, “Ultrahigh resolution polarization sensitive optical coherence tomography of the human cornea with conical scanning pattern and variable dispersion compensation,” Appl. Sci. 9, 4245 (2019).
[Crossref]

F. Beer, A. Wartak, R. Haindl, M. Gröschl, B. Baumann, M. Pircher, and C. K. Hitzenberger, “Conical scan pattern for enhanced visualization of the human cornea using polarization-sensitive OCT,” Biomed. Opt. Express 8, 2906–2923 (2017).
[Crossref]

Beaurepaire, E.

Beer, F.

F. Beer, R. P. Patil, A. Sinha-Roy, B. Baumann, M. Pircher, and C. K. Hitzenberger, “Ultrahigh resolution polarization sensitive optical coherence tomography of the human cornea with conical scanning pattern and variable dispersion compensation,” Appl. Sci. 9, 4245 (2019).
[Crossref]

F. Beer, A. Wartak, R. Haindl, M. Gröschl, B. Baumann, M. Pircher, and C. K. Hitzenberger, “Conical scan pattern for enhanced visualization of the human cornea using polarization-sensitive OCT,” Biomed. Opt. Express 8, 2906–2923 (2017).
[Crossref]

Bizheva, K.

Blanchot, L.

Bo, E.

S. Chen, X. Liu, N. Wang, X. Wang, Q. Xiong, E. Bo, X. Yu, S. Chen, and L. Liu, “Visualizing micro-anatomical structures of the posterior cornea with micro-optical coherence tomography,” Sci. Rep. 7, 10752 (2017).
[Crossref]

Boccara, A. C.

Bohn, S.

S. Allgeier, A. Bartschat, S. Bohn, S. Peschel, K.-M. Reichert, K. Sperlich, M. Walckling, V. Hagenmeyer, R. Mikut, O. Stachs, and B. Köhler, “3D confocal laser-scanning microscopy for large-area imaging of the corneal subbasal nerve plexus,” Sci. Rep. 8, 7468 (2018).
[Crossref]

Borycki, D.

Boulton, A. J. M.

R. A. Malik, P. Kallinikos, C. A. Abbott, C. H. M. van Schie, P. Morgan, N. Efron, and A. J. M. Boulton, “Corneal confocal microscopy: a non-invasive surrogate of nerve fibre damage and repair in diabetic patients,” Diabetologia 46, 683–688 (2003).
[Crossref]

Brightbill, F. S.

F. S. Brightbill, Corneal Surgery. Theory, Technique and Tissue, 4th ed. (Elsevier) (2008), pp. 383–384, 519-521, 723.

Canavesi, C.

Chen, S.

S. Chen, X. Liu, N. Wang, X. Wang, Q. Xiong, E. Bo, X. Yu, S. Chen, and L. Liu, “Visualizing micro-anatomical structures of the posterior cornea with micro-optical coherence tomography,” Sci. Rep. 7, 10752 (2017).
[Crossref]

S. Chen, X. Liu, N. Wang, X. Wang, Q. Xiong, E. Bo, X. Yu, S. Chen, and L. Liu, “Visualizing micro-anatomical structures of the posterior cornea with micro-optical coherence tomography,” Sci. Rep. 7, 10752 (2017).
[Crossref]

Cheng, H.

H. Cheng, P. M. Jacobs, K. McPherson, and M. J. Noble, “Precision of cell density estimates and endothelial cell loss with age,” Arch. Ophthalmol. 103, 1478–1481 (1985).
[Crossref]

Chua, J.

Cogliati, A.

Dalimier, E.

David, G.

Devarajan, K.

dos Santos, V. A.

Dubbelman, M.

M. Dubbelman, V. A. D. P. Sicam, and G. L. Van der Heijde, “The shape of the anterior and posterior surface of the aging human cornea,” Vis. Res. 46, 993–1001 (2006).
[Crossref]

Dubois, A.

A. Dubois, Handbook of Full-Field Optical Coherence Microscopy: Technology and Applications (Pan Stanford publishing, 2016).

Edelhauser, H. F.

B. E. McCarey, H. F. Edelhauser, and M. J. Lynn, “Review of corneal endothelial specular microscopy for fda clinical trials of refractive procedures, surgical devices, and new intraocular drugs and solutions,” Cornea 27, 1–16 (2008).
[Crossref]

Efron, N.

R. A. Malik, P. Kallinikos, C. A. Abbott, C. H. M. van Schie, P. Morgan, N. Efron, and A. J. M. Boulton, “Corneal confocal microscopy: a non-invasive surrogate of nerve fibre damage and repair in diabetic patients,” Diabetologia 46, 683–688 (2003).
[Crossref]

Fabijanska, A.

A. Fabijańska, “Segmentation of corneal endothelium images using a U-Net-based convolutional neural network,” Artif. Intell. Med. 88, 1–13 (2018).
[Crossref]

Fink, M.

Gigan, S.

Grieve, K.

V. Mazlin, P. Xiao, J. Scholler, K. Irsch, K. Grieve, M. Fink, and A. C. Boccara, “Real-time non-contact cellular imaging and angiography of human cornea and limbus with common-path full-field/SD OCT,” Nat. Commun. 11, 1868 (2020).
[Crossref]

V. Mazlin, P. Xiao, E. Dalimier, K. Grieve, K. Irsch, J.-A. Sahel, M. Fink, and A. C. Boccara, “In vivo high resolution human corneal imaging using full-field optical coherence tomography,” Biomed. Opt. Express 9, 557–568 (2018).
[Crossref]

Gröschl, M.

Hagenmeyer, V.

S. Allgeier, A. Bartschat, S. Bohn, S. Peschel, K.-M. Reichert, K. Sperlich, M. Walckling, V. Hagenmeyer, R. Mikut, O. Stachs, and B. Köhler, “3D confocal laser-scanning microscopy for large-area imaging of the corneal subbasal nerve plexus,” Sci. Rep. 8, 7468 (2018).
[Crossref]

Haindl, R.

Han, L.

Hindman, H. B.

Hitzenberger, C. K.

F. Beer, R. P. Patil, A. Sinha-Roy, B. Baumann, M. Pircher, and C. K. Hitzenberger, “Ultrahigh resolution polarization sensitive optical coherence tomography of the human cornea with conical scanning pattern and variable dispersion compensation,” Appl. Sci. 9, 4245 (2019).
[Crossref]

F. Beer, A. Wartak, R. Haindl, M. Gröschl, B. Baumann, M. Pircher, and C. K. Hitzenberger, “Conical scan pattern for enhanced visualization of the human cornea using polarization-sensitive OCT,” Biomed. Opt. Express 8, 2906–2923 (2017).
[Crossref]

Hosseinaee, Z.

Irsch, K.

V. Mazlin, P. Xiao, J. Scholler, K. Irsch, K. Grieve, M. Fink, and A. C. Boccara, “Real-time non-contact cellular imaging and angiography of human cornea and limbus with common-path full-field/SD OCT,” Nat. Commun. 11, 1868 (2020).
[Crossref]

V. Mazlin, P. Xiao, E. Dalimier, K. Grieve, K. Irsch, J.-A. Sahel, M. Fink, and A. C. Boccara, “In vivo high resolution human corneal imaging using full-field optical coherence tomography,” Biomed. Opt. Express 9, 557–568 (2018).
[Crossref]

Jacobs, P. M.

H. Cheng, P. M. Jacobs, K. McPherson, and M. J. Noble, “Precision of cell density estimates and endothelial cell loss with age,” Arch. Ophthalmol. 103, 1478–1481 (1985).
[Crossref]

Kallinikos, P.

R. A. Malik, P. Kallinikos, C. A. Abbott, C. H. M. van Schie, P. Morgan, N. Efron, and A. J. M. Boulton, “Corneal confocal microscopy: a non-invasive surrogate of nerve fibre damage and repair in diabetic patients,” Diabetologia 46, 683–688 (2003).
[Crossref]

Köhler, B.

S. Allgeier, A. Bartschat, S. Bohn, S. Peschel, K.-M. Reichert, K. Sperlich, M. Walckling, V. Hagenmeyer, R. Mikut, O. Stachs, and B. Köhler, “3D confocal laser-scanning microscopy for large-area imaging of the corneal subbasal nerve plexus,” Sci. Rep. 8, 7468 (2018).
[Crossref]

S. Allgeier, S. Maier, R. Mikut, S. Peschel, K.-M. Reichert, O. Stachs, and B. Köhler, “Mosaicking the subbasal nerve plexus by guided eye movements,” Invest. Ophthalmol. Visual Sci. 55, 6082 (2014).
[Crossref]

Kralj, O.

Kuo, A.

Labiau, S.

Lebec, M.

Liu, L.

S. Chen, X. Liu, N. Wang, X. Wang, Q. Xiong, E. Bo, X. Yu, S. Chen, and L. Liu, “Visualizing micro-anatomical structures of the posterior cornea with micro-optical coherence tomography,” Sci. Rep. 7, 10752 (2017).
[Crossref]

Liu, X.

S. Chen, X. Liu, N. Wang, X. Wang, Q. Xiong, E. Bo, X. Yu, S. Chen, and L. Liu, “Visualizing micro-anatomical structures of the posterior cornea with micro-optical coherence tomography,” Sci. Rep. 7, 10752 (2017).
[Crossref]

Lizewski, K.

Lynn, M. J.

B. E. McCarey, H. F. Edelhauser, and M. J. Lynn, “Review of corneal endothelial specular microscopy for fda clinical trials of refractive procedures, surgical devices, and new intraocular drugs and solutions,” Cornea 27, 1–16 (2008).
[Crossref]

Maier, S.

S. Allgeier, S. Maier, R. Mikut, S. Peschel, K.-M. Reichert, O. Stachs, and B. Köhler, “Mosaicking the subbasal nerve plexus by guided eye movements,” Invest. Ophthalmol. Visual Sci. 55, 6082 (2014).
[Crossref]

Malik, R. A.

R. A. Malik, P. Kallinikos, C. A. Abbott, C. H. M. van Schie, P. Morgan, N. Efron, and A. J. M. Boulton, “Corneal confocal microscopy: a non-invasive surrogate of nerve fibre damage and repair in diabetic patients,” Diabetologia 46, 683–688 (2003).
[Crossref]

Mazlin, V.

V. Mazlin, P. Xiao, J. Scholler, K. Irsch, K. Grieve, M. Fink, and A. C. Boccara, “Real-time non-contact cellular imaging and angiography of human cornea and limbus with common-path full-field/SD OCT,” Nat. Commun. 11, 1868 (2020).
[Crossref]

V. Mazlin, P. Xiao, E. Dalimier, K. Grieve, K. Irsch, J.-A. Sahel, M. Fink, and A. C. Boccara, “In vivo high resolution human corneal imaging using full-field optical coherence tomography,” Biomed. Opt. Express 9, 557–568 (2018).
[Crossref]

McCarey, B. E.

B. E. McCarey, H. F. Edelhauser, and M. J. Lynn, “Review of corneal endothelial specular microscopy for fda clinical trials of refractive procedures, surgical devices, and new intraocular drugs and solutions,” Cornea 27, 1–16 (2008).
[Crossref]

McPherson, K.

H. Cheng, P. M. Jacobs, K. McPherson, and M. J. Noble, “Precision of cell density estimates and endothelial cell loss with age,” Arch. Ophthalmol. 103, 1478–1481 (1985).
[Crossref]

Mertz, J.

Mietus, A.

Mikut, R.

S. Allgeier, A. Bartschat, S. Bohn, S. Peschel, K.-M. Reichert, K. Sperlich, M. Walckling, V. Hagenmeyer, R. Mikut, O. Stachs, and B. Köhler, “3D confocal laser-scanning microscopy for large-area imaging of the corneal subbasal nerve plexus,” Sci. Rep. 8, 7468 (2018).
[Crossref]

S. Allgeier, S. Maier, R. Mikut, S. Peschel, K.-M. Reichert, O. Stachs, and B. Köhler, “Mosaicking the subbasal nerve plexus by guided eye movements,” Invest. Ophthalmol. Visual Sci. 55, 6082 (2014).
[Crossref]

Morgan, P.

R. A. Malik, P. Kallinikos, C. A. Abbott, C. H. M. van Schie, P. Morgan, N. Efron, and A. J. M. Boulton, “Corneal confocal microscopy: a non-invasive surrogate of nerve fibre damage and repair in diabetic patients,” Diabetologia 46, 683–688 (2003).
[Crossref]

Niedzwiedziuk, P.

Noble, M. J.

H. Cheng, P. M. Jacobs, K. McPherson, and M. J. Noble, “Precision of cell density estimates and endothelial cell loss with age,” Arch. Ophthalmol. 103, 1478–1481 (1985).
[Crossref]

Patil, R. P.

F. Beer, R. P. Patil, A. Sinha-Roy, B. Baumann, M. Pircher, and C. K. Hitzenberger, “Ultrahigh resolution polarization sensitive optical coherence tomography of the human cornea with conical scanning pattern and variable dispersion compensation,” Appl. Sci. 9, 4245 (2019).
[Crossref]

Peschel, S.

S. Allgeier, A. Bartschat, S. Bohn, S. Peschel, K.-M. Reichert, K. Sperlich, M. Walckling, V. Hagenmeyer, R. Mikut, O. Stachs, and B. Köhler, “3D confocal laser-scanning microscopy for large-area imaging of the corneal subbasal nerve plexus,” Sci. Rep. 8, 7468 (2018).
[Crossref]

S. Allgeier, S. Maier, R. Mikut, S. Peschel, K.-M. Reichert, O. Stachs, and B. Köhler, “Mosaicking the subbasal nerve plexus by guided eye movements,” Invest. Ophthalmol. Visual Sci. 55, 6082 (2014).
[Crossref]

Pircher, M.

F. Beer, R. P. Patil, A. Sinha-Roy, B. Baumann, M. Pircher, and C. K. Hitzenberger, “Ultrahigh resolution polarization sensitive optical coherence tomography of the human cornea with conical scanning pattern and variable dispersion compensation,” Appl. Sci. 9, 4245 (2019).
[Crossref]

F. Beer, A. Wartak, R. Haindl, M. Gröschl, B. Baumann, M. Pircher, and C. K. Hitzenberger, “Conical scan pattern for enhanced visualization of the human cornea using polarization-sensitive OCT,” Biomed. Opt. Express 8, 2906–2923 (2017).
[Crossref]

Qi, Y.

Reichert, K.-M.

S. Allgeier, A. Bartschat, S. Bohn, S. Peschel, K.-M. Reichert, K. Sperlich, M. Walckling, V. Hagenmeyer, R. Mikut, O. Stachs, and B. Köhler, “3D confocal laser-scanning microscopy for large-area imaging of the corneal subbasal nerve plexus,” Sci. Rep. 8, 7468 (2018).
[Crossref]

S. Allgeier, S. Maier, R. Mikut, S. Peschel, K.-M. Reichert, O. Stachs, and B. Köhler, “Mosaicking the subbasal nerve plexus by guided eye movements,” Invest. Ophthalmol. Visual Sci. 55, 6082 (2014).
[Crossref]

Rolland, J. P.

Sahel, J.-A.

Saint-Jalmes, H.

Schallek, J.

Schmetterer, L.

Scholler, J.

V. Mazlin, P. Xiao, J. Scholler, K. Irsch, K. Grieve, M. Fink, and A. C. Boccara, “Real-time non-contact cellular imaging and angiography of human cornea and limbus with common-path full-field/SD OCT,” Nat. Commun. 11, 1868 (2020).
[Crossref]

Sicam, V. A. D. P.

M. Dubbelman, V. A. D. P. Sicam, and G. L. Van der Heijde, “The shape of the anterior and posterior surface of the aging human cornea,” Vis. Res. 46, 993–1001 (2006).
[Crossref]

Sikorski, B. L.

Sinha-Roy, A.

F. Beer, R. P. Patil, A. Sinha-Roy, B. Baumann, M. Pircher, and C. K. Hitzenberger, “Ultrahigh resolution polarization sensitive optical coherence tomography of the human cornea with conical scanning pattern and variable dispersion compensation,” Appl. Sci. 9, 4245 (2019).
[Crossref]

Sorbara, L.

Sperlich, K.

S. Allgeier, A. Bartschat, S. Bohn, S. Peschel, K.-M. Reichert, K. Sperlich, M. Walckling, V. Hagenmeyer, R. Mikut, O. Stachs, and B. Köhler, “3D confocal laser-scanning microscopy for large-area imaging of the corneal subbasal nerve plexus,” Sci. Rep. 8, 7468 (2018).
[Crossref]

Stachs, O.

S. Allgeier, A. Bartschat, S. Bohn, S. Peschel, K.-M. Reichert, K. Sperlich, M. Walckling, V. Hagenmeyer, R. Mikut, O. Stachs, and B. Köhler, “3D confocal laser-scanning microscopy for large-area imaging of the corneal subbasal nerve plexus,” Sci. Rep. 8, 7468 (2018).
[Crossref]

S. Allgeier, S. Maier, R. Mikut, S. Peschel, K.-M. Reichert, O. Stachs, and B. Köhler, “Mosaicking the subbasal nerve plexus by guided eye movements,” Invest. Ophthalmol. Visual Sci. 55, 6082 (2014).
[Crossref]

Stremplewski, P.

Tan, B.

Tomczewski, S.

Van der Heijde, G. L.

M. Dubbelman, V. A. D. P. Sicam, and G. L. Van der Heijde, “The shape of the anterior and posterior surface of the aging human cornea,” Vis. Res. 46, 993–1001 (2006).
[Crossref]

van Schie, C. H. M.

R. A. Malik, P. Kallinikos, C. A. Abbott, C. H. M. van Schie, P. Morgan, N. Efron, and A. J. M. Boulton, “Corneal confocal microscopy: a non-invasive surrogate of nerve fibre damage and repair in diabetic patients,” Diabetologia 46, 683–688 (2003).
[Crossref]

Walckling, M.

S. Allgeier, A. Bartschat, S. Bohn, S. Peschel, K.-M. Reichert, K. Sperlich, M. Walckling, V. Hagenmeyer, R. Mikut, O. Stachs, and B. Köhler, “3D confocal laser-scanning microscopy for large-area imaging of the corneal subbasal nerve plexus,” Sci. Rep. 8, 7468 (2018).
[Crossref]

Wang, N.

S. Chen, X. Liu, N. Wang, X. Wang, Q. Xiong, E. Bo, X. Yu, S. Chen, and L. Liu, “Visualizing micro-anatomical structures of the posterior cornea with micro-optical coherence tomography,” Sci. Rep. 7, 10752 (2017).
[Crossref]

Wang, X.

S. Chen, X. Liu, N. Wang, X. Wang, Q. Xiong, E. Bo, X. Yu, S. Chen, and L. Liu, “Visualizing micro-anatomical structures of the posterior cornea with micro-optical coherence tomography,” Sci. Rep. 7, 10752 (2017).
[Crossref]

Wartak, A.

Weber, T. D.

Werkmeister, R. M.

Wojtkowski, M.

Wong, D. W. K.

Xiao, P.

Xiong, Q.

S. Chen, X. Liu, N. Wang, X. Wang, Q. Xiong, E. Bo, X. Yu, S. Chen, and L. Liu, “Visualizing micro-anatomical structures of the posterior cornea with micro-optical coherence tomography,” Sci. Rep. 7, 10752 (2017).
[Crossref]

Yao, X.

Yu, X.

S. Chen, X. Liu, N. Wang, X. Wang, Q. Xiong, E. Bo, X. Yu, S. Chen, and L. Liu, “Visualizing micro-anatomical structures of the posterior cornea with micro-optical coherence tomography,” Sci. Rep. 7, 10752 (2017).
[Crossref]

Appl. Sci. (1)

F. Beer, R. P. Patil, A. Sinha-Roy, B. Baumann, M. Pircher, and C. K. Hitzenberger, “Ultrahigh resolution polarization sensitive optical coherence tomography of the human cornea with conical scanning pattern and variable dispersion compensation,” Appl. Sci. 9, 4245 (2019).
[Crossref]

Arch. Ophthalmol. (1)

H. Cheng, P. M. Jacobs, K. McPherson, and M. J. Noble, “Precision of cell density estimates and endothelial cell loss with age,” Arch. Ophthalmol. 103, 1478–1481 (1985).
[Crossref]

Artif. Intell. Med. (1)

A. Fabijańska, “Segmentation of corneal endothelium images using a U-Net-based convolutional neural network,” Artif. Intell. Med. 88, 1–13 (2018).
[Crossref]

Biomed. Opt. Express (7)

F. Beer, A. Wartak, R. Haindl, M. Gröschl, B. Baumann, M. Pircher, and C. K. Hitzenberger, “Conical scan pattern for enhanced visualization of the human cornea using polarization-sensitive OCT,” Biomed. Opt. Express 8, 2906–2923 (2017).
[Crossref]

V. Mazlin, P. Xiao, E. Dalimier, K. Grieve, K. Irsch, J.-A. Sahel, M. Fink, and A. C. Boccara, “In vivo high resolution human corneal imaging using full-field optical coherence tomography,” Biomed. Opt. Express 9, 557–568 (2018).
[Crossref]

B. Tan, Z. Hosseinaee, L. Han, O. Kralj, L. Sorbara, and K. Bizheva, “250 kHz, 1,5 µm resolution SD-OCT for in-vivo cellular imaging of the human cornea,” Biomed. Opt. Express 9, 6569–6583 (2018).
[Crossref]

X. Yao, K. Devarajan, R. M. Werkmeister, V. A. dos Santos, M. Ang, A. Kuo, D. W. K. Wong, J. Chua, B. Tan, V. A. Barathi, and L. Schmetterer, “In vivo corneal endothelium imaging using ultrahigh resolution OCT,” Biomed. Opt. Express 10, 5675–5686 (2019).
[Crossref]

C. Canavesi, A. Cogliati, A. Mietus, Y. Qi, J. Schallek, J. P. Rolland, and H. B. Hindman, “In vivo imaging of corneal nerves and cellular structures in mice with Gabor-domain optical coherence microscopy,” Biomed. Opt. Express 11, 711–724 (2020).
[Crossref]

E. Auksorius, D. Borycki, P. Stremplewski, K. Liżewski, S. Tomczewski, P. Niedźwiedziuk, B. L. Sikorski, and M. Wojtkowski, “In vivo imaging of the human cornea with high-speed and high-resolution Fourier-domain full-field optical coherence tomography,” Biomed. Opt. Express 11, 2849–2865 (2020).
[Crossref]

T. D. Weber and J. Mertz, “In vivo corneal and lenticular microscopy with asymmetric fundus retroillumination,” Biomed. Opt. Express 11,3263–3273 (2020).
[Crossref]

Cornea (1)

B. E. McCarey, H. F. Edelhauser, and M. J. Lynn, “Review of corneal endothelial specular microscopy for fda clinical trials of refractive procedures, surgical devices, and new intraocular drugs and solutions,” Cornea 27, 1–16 (2008).
[Crossref]

Diabetologia (1)

R. A. Malik, P. Kallinikos, C. A. Abbott, C. H. M. van Schie, P. Morgan, N. Efron, and A. J. M. Boulton, “Corneal confocal microscopy: a non-invasive surrogate of nerve fibre damage and repair in diabetic patients,” Diabetologia 46, 683–688 (2003).
[Crossref]

Invest. Ophthalmol. Visual Sci. (1)

S. Allgeier, S. Maier, R. Mikut, S. Peschel, K.-M. Reichert, O. Stachs, and B. Köhler, “Mosaicking the subbasal nerve plexus by guided eye movements,” Invest. Ophthalmol. Visual Sci. 55, 6082 (2014).
[Crossref]

Nat. Commun. (1)

V. Mazlin, P. Xiao, J. Scholler, K. Irsch, K. Grieve, M. Fink, and A. C. Boccara, “Real-time non-contact cellular imaging and angiography of human cornea and limbus with common-path full-field/SD OCT,” Nat. Commun. 11, 1868 (2020).
[Crossref]

Opt. Lett. (3)

Sci. Rep. (2)

S. Allgeier, A. Bartschat, S. Bohn, S. Peschel, K.-M. Reichert, K. Sperlich, M. Walckling, V. Hagenmeyer, R. Mikut, O. Stachs, and B. Köhler, “3D confocal laser-scanning microscopy for large-area imaging of the corneal subbasal nerve plexus,” Sci. Rep. 8, 7468 (2018).
[Crossref]

S. Chen, X. Liu, N. Wang, X. Wang, Q. Xiong, E. Bo, X. Yu, S. Chen, and L. Liu, “Visualizing micro-anatomical structures of the posterior cornea with micro-optical coherence tomography,” Sci. Rep. 7, 10752 (2017).
[Crossref]

Vis. Res. (1)

M. Dubbelman, V. A. D. P. Sicam, and G. L. Van der Heijde, “The shape of the anterior and posterior surface of the aging human cornea,” Vis. Res. 46, 993–1001 (2006).
[Crossref]

Other (5)

“Ophthalmology Management—Monitoring & Maintaining Endothelial Cell Health,” https://www.ophthalmologymanagement.com/issues/2012/may-2012/monitoring-maintaining-endothelial-cell-health .

F. S. Brightbill, Corneal Surgery. Theory, Technique and Tissue, 4th ed. (Elsevier) (2008), pp. 383–384, 519-521, 723.

“Getting to the root of post-LASIK pain,” https://www.reviewofophthalmology.com/article/getting-to-the-root-of-postlasik-pain .

“Specular Microscope CEM-530 | Cornea & Cataract | NIDEK CO., LTD.,” https://www.nidek-intl.com/product/ophthaloptom/diagnostic/dia_cornea/cem-530.html .

A. Dubois, Handbook of Full-Field Optical Coherence Microscopy: Technology and Applications (Pan Stanford publishing, 2016).

Supplementary Material (1)

NameDescription
» Visualization 1       3D model of the Curved-field OCT device

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. Comparison of curved-field OCT and conventional time-domain full-field OCT designs. The optical interferometer is equipped with the incoherent LED light source, 2D camera, and microscope objectives (MO). The location of a coherence plane, corresponding to the position of the reference arm is depicted in yellow. Use of a simple optical lens instead of a flat mirror allows to curve the coherence gate and obtain the optical sections of arbitrary curvature. Green inset–CF-OCT configuration with a lens having 7.7 mm radius of curvature, optimal for optical flattening the ${7.79}\;{\pm}\;{0.27}$ (SD) mm curved anterior cornea. Blue inset–CF-OCT configuration with a lens having 6.2 mm radius of curvature, sufficient for optical flattening the ${6.53}\;{\pm}\;{0.25}$ (SD) mm curved posterior cornea.
Fig. 2.
Fig. 2. Curved-field OCT device. The custom-made optical interferometer is mounted on three motorized stages. The stages, controlled with a joystick, are used to center the interferometer optics at the corneal apex, achieving a correct, curved optical sectioning. A small motorized stage beneath the reference arm is used to select the corneal layer to be imaged (e.g., SNP or endothelium). The 3D model of the prototype is shown in Visualization 1.
Fig. 3.
Fig. 3. Correlation between interference fringe density and degree of curvature matching between the surfaces in the sample and reference arms of the interferometer. The fringe density is small, when the curvatures of the reflecting surfaces in the sample and reference arms are similar, as in the case of the conventional TD-FF-OCT with identical flat reflectors (A) and CF-OCT with the curved reflector of 7.7 mm radius, matching to the shape of the artificial (D) or in vivo (F) anterior eye surfaces. Alternatively, the fringe density is high (see zoomed view), when the curvatures of the reflecting surfaces in the sample and reference arms do not match, like in (B), (C), and (E) cases. Model eye was OEMI-7 (Ocular instruments, USA) with anterior curvature of 7.8 mm. All scale bars are 0.1 mm.
Fig. 4.
Fig. 4. Curved-field OCT versus full-field OCT and confocal microscopy for imaging of the SNP in the human cornea in vivo. By matching the curvature of optical sectioning with that of the cornea, CF-OCT substantially increases the FOV of the SNP layer, in comparison to the state-of-the-art TD-FF-OCT [9] and CM. Non-contact CF-OCT is free from corneal applanation artifacts, which typically complicate SNP imaging with a contact CM. All scale bars are 0.1 mm.
Fig. 5.
Fig. 5. Curved-field OCT versus full-field OCT and specular microscopy for imaging of the endothelium in the human cornea in vivo. By matching the curvature of optical sectioning with the curvature of the cornea, CF-OCT substantially increases the FOV of the corneal endothelial layer, in comparison to the state-of-the-art TD-FF-OCT and SM. All scale bars are 0.1 mm.
Fig. 6.
Fig. 6. Retrieving endothelial cell mosaic from curved-field OCT camera images, obscured with interference fringes. Interference fringes originating from the mirror-like reflection can be removed by subtracting the consecutive camera images and averaging, followed by filtering in the Fourier domain. All scale bars are 0.1 mm.
Fig. 7.
Fig. 7. Comparison of curved-field OCT images captured in a single shot (3.5 ms) and averaged (52.5 ms) from in vivo human cornea. Single shot image of the endothelium, obtained by subtracting the two camera images and by Fourier filtering with a mask extended to higher spatial frequencies, has a different contrast comparing to SM or averaged CF-OCT images. Nevertheless, the same cells are revealed. Images were obtained from the same subject. All scale bars are 0.1 mm.
Fig. 8.
Fig. 8. Comparison of endothelial images obtained with lenses of 6.2 mm (matching to the posterior corneal curvature) and 7.7 mm (matching to the anterior corneal curvature) radii of curvature. Tomographic FF-OCT images before and after Fourier filtering are shown on the left and right, respectively. The curvature mismatch is highlighted by the fringes with increased density at the border of the image, which are difficult to filter without affecting the underlying cells. Fringes can still be removed by either performing averaging before Fourier filtering or using a 4-phase tomographic image retrieval scheme. All scale bars are 0.1 mm.