Abstract

A robust approach for acquiring background-free, multitransition absorption spectra under single-laser-shot conditions is demonstrated using broadband, ultrashort laser pulses. This technique—referred to as time-resolved optically gated absorption (TOGA)—exploits the inherent differences in timescales between broadband, femtosecond-duration light sources and the longer-duration responses of narrowband atomic or molecular absorption features. An optical temporal gate, based on frequency mixing via sum-frequency generation or difference-frequency generation, is used to isolate these long-lived time-domain absorption features from the ultrashort component associated with the broadband absorption light source. A proof-of-principle demonstration of TOGA is provided using atomic Rb as an absorbing medium. Application of this technique toward single-laser-shot simultaneous detection of hydroxyl radical concentration and the corresponding local temperature is also demonstrated in a reacting flow. These results indicate that TOGA can provide spectrally resolved, broadband, background-free absorption measurements at laser-source repetition rates.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Roy, J. R. Gord, and A. K. Patnaik, “Recent advances in coherent anti-Stokes Raman scattering spectroscopy: Fundamental developments and applications in reacting flows,” Prog. Energy Combust. Sci. 36, 280–306 (2010).
    [Crossref]
  2. A. K. Patnaik, I. Adamovich, J. R. Gord, and S. Roy, “Recent advances in ultrafast-laser-based spectroscopy and imaging for reacting plasmas and flames,” Plasma Sources Sci. Technol. 26, 103001 (2017).
    [Crossref]
  3. N. Picqué and T. W. Hänsch, “Frequency comb spectroscopy,”Nat. Photonics 13, 146–157 (2019).
    [Crossref]
  4. T. Siebert, M. Schmitt, T. Michelis, A. Materny, and W. Kiefer, “CCD broadband detection technique for the spectral characterization of the inhomogeneous signal in femtosecond time-resolved four-wave mixing spectroscopy,” J. Raman Spectrosc. 30, 807–813 (1999).
    [Crossref]
  5. P. Beaud, H. M. Frey, T. Lang, and M. Motzkus, “Flame thermometry by femtosecond CARS,” Chem. Phys. Lett. 344, 407–412 (2001).
    [Crossref]
  6. T. Lang and M. Motzkus, “Single-shot femtosecond coherent anti-Stokes Raman-scattering thermometry,” J. Opt. Soc. Am. B 19, 340–344 (2002).
    [Crossref]
  7. J. Mandon, G. Guelachvili, N. Picqué, F. Druon, and P. Georges, “Femtosecond laser Fourier transform absorption spectroscopy,” Opt. Lett. 32, 1677–1679 (2007).
    [Crossref]
  8. E. Sorokin, I. T. Sorokina, J. Mandon, G. Guelachvili, and N. Picqué, “Sensitive multiplex spectroscopy in the molecular fingerprint 2.4 µm region with a Cr2+:ZnSE femtosecond laser,” Opt. Express 15, 16540–16545 (2007).
    [Crossref]
  9. I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,”Phys. Rev. Lett. 100, 013902 (2008).
    [Crossref]
  10. J. Mandon, E. Sorokin, I. T. Sorokina, G. Guelachvili, and N. Picqué, “Supercontinua for high-resolution absorption multiplex infrared spectroscopy,” Opt. Lett. 33, 285–287 (2008).
    [Crossref]
  11. J. Mandon, G. Guelachvili, and N. Picqué, “Fourier transform spectroscopy with a laser frequency comb,” Nat. Photonics 3, 99–102 (2009).
    [Crossref]
  12. I. Coddington, W. C. Swann, and N. R. Newbury, “Time-domain spectroscopy of molecular free-induction decay in the infrared,” Opt. Lett. 35, 1395–1397 (2010).
    [Crossref]
  13. I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent dual-comb spectroscopy at high signal-to-noise ratio,” Phys. Rev. A 82, 043817 (2010).
    [Crossref]
  14. T. J. Hammond, S. Monchoce, C. M. Zhang, G. G. Brown, P. B. Corkum, and D. M. Villeneuve, “Femtosecond time-domain observation of atmospheric absorption in the near-infrared spectrum,” Phys. Rev. A 94, 063410 (2016).
    [Crossref]
  15. R. K. Cole, A. S. Makowiecki, N. Hoghooghi, and G. B. Rieker, “Baseline-free quantitative absorption spectroscopy based on cepstral analysis,” Opt. Express 27, 37920–37939 (2019).
    [Crossref]
  16. T. Tomberg, A. Muraviev, Q. T. Ru, and K. L. Vodopyanov, “Background-free broadband absorption spectroscopy based on interferometric suppression with a sign-inverted waveform,” Optica 6, 147–151 (2019).
    [Crossref]
  17. T. Buberl, P. Sulzer, A. Leitenstorfer, F. Krausz, and I. Pupeza, “Broadband interferometric subtraction of optical fields,” Opt. Express 27, 2432–2443 (2019).
    [Crossref]
  18. B. D. Prince, A. Chakraborty, B. M. Prince, and H. U. Stauffer, “Development of simultaneous frequency- and time-resolved coherent anti-Stokes Raman scattering for ultrafast detection of molecular Raman spectra,” J. Chem. Phys. 125, 044502 (2006).
    [Crossref]
  19. M. N. Slipchenko, B. D. Prince, S. C. Ducatman, and H. U. Stauffer, “Development of a simultaneously frequency- and time-resolved Raman-induced Kerr effect probe,” J. Phys. Chem. A 113, 135–140 (2009).
    [Crossref]
  20. S. Roy, W. D. Kulatilaka, D. R. Richardson, R. P. Lucht, and J. R. Gord, “Gas-phase single-shot thermometry at 1 kHz using fs-CARS spectroscopy,” Opt. Lett. 34, 3857–3859 (2009).
    [Crossref]
  21. S. Roy, N. Jiang, H. U. Stauffer, J. B. Schmidt, W. D. Kulatilaka, T. R. Meyer, C. E. Bunker, and J. R. Gord, “Spatially and temporally resolved temperature and shock-speed measurements behind a laser-induced blast wave of energetic nanoparticles,” J. Appl. Phys. 113, 184310 (2013).
    [Crossref]
  22. D. R. Richardson, H. U. Stauffer, S. Roy, and J. R. Gord, “Comparison of chirped-probe-pulse and hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering for combustion thermometry,” Appl. Opt. 56, E37–E49 (2017).
    [Crossref]
  23. P. J. Wrzesinski, H. U. Stauffer, J. B. Schmidt, S. Roy, and J. R. Gord, “Single-shot thermometry and OH detection via femtosecond fully resonant electronically enhanced CARS (FREE-CARS),” Opt. Lett. 41, 2021–2024 (2016).
    [Crossref]
  24. R. J. Tancin, Z. Chang, M. Gu, V. Radhakrishna, R. P. Lucht, and C. S. Goldenstein, “Ultrafast laser-absorption spectroscopy for single-shot, mid-infrared measurements of temperature, CO, and CH4 in flames,” Opt. Lett. 45, 583–586 (2020).
    [Crossref]
  25. R. D. Hancock, K. E. Bertagnolli, and R. P. Lucht, “Nitrogen and hydrogen CARS temperature measurements in a hydrogen/air flame using a near-adiabatic flat-flame burner,” Combust. Flame 109, 323–331 (1997).
    [Crossref]
  26. T. R. Meyer, S. Roy, T. N. Anderson, J. D. Miller, V. R. Katta, R. P. Lucht, and J. R. Gord, “Measurements of OH mole fraction and temperature up to 20 kHz by using a diode-laser-based UV absorption sensor,” Appl. Opt. 44, 6729–6740 (2005).
    [Crossref]
  27. M. Tamura, P. A. Berg, J. E. Harrington, J. Luque, J. B. Jeffries, G. P. Smith, and D. R. Crosley, “Collisional quenching of CH(A), OH(A), and NO(A) in low pressure hydrocarbon flames,” Combust. Flame 114, 502–514 (1998).
    [Crossref]
  28. J. Luque and D. R. Crosley, “LIFBASE: database and spectral simulation program (Version 1.5),” SRI International Report MP 99-009 (1999).
  29. H. U. Stauffer, S. Roy, W. D. Kulatilaka, and J. R. Gord, “Detailed calculation of hydroxyl (OH) radical two-photon absorption via broadband ultrafast excitation,” J. Opt. Soc. Am. B 29, 40–52 (2012).
    [Crossref]
  30. H. U. Stauffer, K. A. Rahman, M. N. Slipchenko, S. Roy, J. R. Gord, and T. R. Meyer, “Interference-free hybrid fs/ps vibrational CARS thermometry in high-pressure flames,” Opt. Lett. 43, 4911–4914 (2018).
    [Crossref]

2020 (1)

2019 (4)

2018 (1)

2017 (2)

D. R. Richardson, H. U. Stauffer, S. Roy, and J. R. Gord, “Comparison of chirped-probe-pulse and hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering for combustion thermometry,” Appl. Opt. 56, E37–E49 (2017).
[Crossref]

A. K. Patnaik, I. Adamovich, J. R. Gord, and S. Roy, “Recent advances in ultrafast-laser-based spectroscopy and imaging for reacting plasmas and flames,” Plasma Sources Sci. Technol. 26, 103001 (2017).
[Crossref]

2016 (2)

P. J. Wrzesinski, H. U. Stauffer, J. B. Schmidt, S. Roy, and J. R. Gord, “Single-shot thermometry and OH detection via femtosecond fully resonant electronically enhanced CARS (FREE-CARS),” Opt. Lett. 41, 2021–2024 (2016).
[Crossref]

T. J. Hammond, S. Monchoce, C. M. Zhang, G. G. Brown, P. B. Corkum, and D. M. Villeneuve, “Femtosecond time-domain observation of atmospheric absorption in the near-infrared spectrum,” Phys. Rev. A 94, 063410 (2016).
[Crossref]

2013 (1)

S. Roy, N. Jiang, H. U. Stauffer, J. B. Schmidt, W. D. Kulatilaka, T. R. Meyer, C. E. Bunker, and J. R. Gord, “Spatially and temporally resolved temperature and shock-speed measurements behind a laser-induced blast wave of energetic nanoparticles,” J. Appl. Phys. 113, 184310 (2013).
[Crossref]

2012 (1)

2010 (3)

S. Roy, J. R. Gord, and A. K. Patnaik, “Recent advances in coherent anti-Stokes Raman scattering spectroscopy: Fundamental developments and applications in reacting flows,” Prog. Energy Combust. Sci. 36, 280–306 (2010).
[Crossref]

I. Coddington, W. C. Swann, and N. R. Newbury, “Time-domain spectroscopy of molecular free-induction decay in the infrared,” Opt. Lett. 35, 1395–1397 (2010).
[Crossref]

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent dual-comb spectroscopy at high signal-to-noise ratio,” Phys. Rev. A 82, 043817 (2010).
[Crossref]

2009 (3)

J. Mandon, G. Guelachvili, and N. Picqué, “Fourier transform spectroscopy with a laser frequency comb,” Nat. Photonics 3, 99–102 (2009).
[Crossref]

M. N. Slipchenko, B. D. Prince, S. C. Ducatman, and H. U. Stauffer, “Development of a simultaneously frequency- and time-resolved Raman-induced Kerr effect probe,” J. Phys. Chem. A 113, 135–140 (2009).
[Crossref]

S. Roy, W. D. Kulatilaka, D. R. Richardson, R. P. Lucht, and J. R. Gord, “Gas-phase single-shot thermometry at 1 kHz using fs-CARS spectroscopy,” Opt. Lett. 34, 3857–3859 (2009).
[Crossref]

2008 (2)

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,”Phys. Rev. Lett. 100, 013902 (2008).
[Crossref]

J. Mandon, E. Sorokin, I. T. Sorokina, G. Guelachvili, and N. Picqué, “Supercontinua for high-resolution absorption multiplex infrared spectroscopy,” Opt. Lett. 33, 285–287 (2008).
[Crossref]

2007 (2)

2006 (1)

B. D. Prince, A. Chakraborty, B. M. Prince, and H. U. Stauffer, “Development of simultaneous frequency- and time-resolved coherent anti-Stokes Raman scattering for ultrafast detection of molecular Raman spectra,” J. Chem. Phys. 125, 044502 (2006).
[Crossref]

2005 (1)

2002 (1)

2001 (1)

P. Beaud, H. M. Frey, T. Lang, and M. Motzkus, “Flame thermometry by femtosecond CARS,” Chem. Phys. Lett. 344, 407–412 (2001).
[Crossref]

1999 (1)

T. Siebert, M. Schmitt, T. Michelis, A. Materny, and W. Kiefer, “CCD broadband detection technique for the spectral characterization of the inhomogeneous signal in femtosecond time-resolved four-wave mixing spectroscopy,” J. Raman Spectrosc. 30, 807–813 (1999).
[Crossref]

1998 (1)

M. Tamura, P. A. Berg, J. E. Harrington, J. Luque, J. B. Jeffries, G. P. Smith, and D. R. Crosley, “Collisional quenching of CH(A), OH(A), and NO(A) in low pressure hydrocarbon flames,” Combust. Flame 114, 502–514 (1998).
[Crossref]

1997 (1)

R. D. Hancock, K. E. Bertagnolli, and R. P. Lucht, “Nitrogen and hydrogen CARS temperature measurements in a hydrogen/air flame using a near-adiabatic flat-flame burner,” Combust. Flame 109, 323–331 (1997).
[Crossref]

Adamovich, I.

A. K. Patnaik, I. Adamovich, J. R. Gord, and S. Roy, “Recent advances in ultrafast-laser-based spectroscopy and imaging for reacting plasmas and flames,” Plasma Sources Sci. Technol. 26, 103001 (2017).
[Crossref]

Anderson, T. N.

Beaud, P.

P. Beaud, H. M. Frey, T. Lang, and M. Motzkus, “Flame thermometry by femtosecond CARS,” Chem. Phys. Lett. 344, 407–412 (2001).
[Crossref]

Berg, P. A.

M. Tamura, P. A. Berg, J. E. Harrington, J. Luque, J. B. Jeffries, G. P. Smith, and D. R. Crosley, “Collisional quenching of CH(A), OH(A), and NO(A) in low pressure hydrocarbon flames,” Combust. Flame 114, 502–514 (1998).
[Crossref]

Bertagnolli, K. E.

R. D. Hancock, K. E. Bertagnolli, and R. P. Lucht, “Nitrogen and hydrogen CARS temperature measurements in a hydrogen/air flame using a near-adiabatic flat-flame burner,” Combust. Flame 109, 323–331 (1997).
[Crossref]

Brown, G. G.

T. J. Hammond, S. Monchoce, C. M. Zhang, G. G. Brown, P. B. Corkum, and D. M. Villeneuve, “Femtosecond time-domain observation of atmospheric absorption in the near-infrared spectrum,” Phys. Rev. A 94, 063410 (2016).
[Crossref]

Buberl, T.

Bunker, C. E.

S. Roy, N. Jiang, H. U. Stauffer, J. B. Schmidt, W. D. Kulatilaka, T. R. Meyer, C. E. Bunker, and J. R. Gord, “Spatially and temporally resolved temperature and shock-speed measurements behind a laser-induced blast wave of energetic nanoparticles,” J. Appl. Phys. 113, 184310 (2013).
[Crossref]

Chakraborty, A.

B. D. Prince, A. Chakraborty, B. M. Prince, and H. U. Stauffer, “Development of simultaneous frequency- and time-resolved coherent anti-Stokes Raman scattering for ultrafast detection of molecular Raman spectra,” J. Chem. Phys. 125, 044502 (2006).
[Crossref]

Chang, Z.

Coddington, I.

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent dual-comb spectroscopy at high signal-to-noise ratio,” Phys. Rev. A 82, 043817 (2010).
[Crossref]

I. Coddington, W. C. Swann, and N. R. Newbury, “Time-domain spectroscopy of molecular free-induction decay in the infrared,” Opt. Lett. 35, 1395–1397 (2010).
[Crossref]

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,”Phys. Rev. Lett. 100, 013902 (2008).
[Crossref]

Cole, R. K.

Corkum, P. B.

T. J. Hammond, S. Monchoce, C. M. Zhang, G. G. Brown, P. B. Corkum, and D. M. Villeneuve, “Femtosecond time-domain observation of atmospheric absorption in the near-infrared spectrum,” Phys. Rev. A 94, 063410 (2016).
[Crossref]

Crosley, D. R.

M. Tamura, P. A. Berg, J. E. Harrington, J. Luque, J. B. Jeffries, G. P. Smith, and D. R. Crosley, “Collisional quenching of CH(A), OH(A), and NO(A) in low pressure hydrocarbon flames,” Combust. Flame 114, 502–514 (1998).
[Crossref]

J. Luque and D. R. Crosley, “LIFBASE: database and spectral simulation program (Version 1.5),” SRI International Report MP 99-009 (1999).

Druon, F.

Ducatman, S. C.

M. N. Slipchenko, B. D. Prince, S. C. Ducatman, and H. U. Stauffer, “Development of a simultaneously frequency- and time-resolved Raman-induced Kerr effect probe,” J. Phys. Chem. A 113, 135–140 (2009).
[Crossref]

Frey, H. M.

P. Beaud, H. M. Frey, T. Lang, and M. Motzkus, “Flame thermometry by femtosecond CARS,” Chem. Phys. Lett. 344, 407–412 (2001).
[Crossref]

Georges, P.

Goldenstein, C. S.

Gord, J. R.

H. U. Stauffer, K. A. Rahman, M. N. Slipchenko, S. Roy, J. R. Gord, and T. R. Meyer, “Interference-free hybrid fs/ps vibrational CARS thermometry in high-pressure flames,” Opt. Lett. 43, 4911–4914 (2018).
[Crossref]

D. R. Richardson, H. U. Stauffer, S. Roy, and J. R. Gord, “Comparison of chirped-probe-pulse and hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering for combustion thermometry,” Appl. Opt. 56, E37–E49 (2017).
[Crossref]

A. K. Patnaik, I. Adamovich, J. R. Gord, and S. Roy, “Recent advances in ultrafast-laser-based spectroscopy and imaging for reacting plasmas and flames,” Plasma Sources Sci. Technol. 26, 103001 (2017).
[Crossref]

P. J. Wrzesinski, H. U. Stauffer, J. B. Schmidt, S. Roy, and J. R. Gord, “Single-shot thermometry and OH detection via femtosecond fully resonant electronically enhanced CARS (FREE-CARS),” Opt. Lett. 41, 2021–2024 (2016).
[Crossref]

S. Roy, N. Jiang, H. U. Stauffer, J. B. Schmidt, W. D. Kulatilaka, T. R. Meyer, C. E. Bunker, and J. R. Gord, “Spatially and temporally resolved temperature and shock-speed measurements behind a laser-induced blast wave of energetic nanoparticles,” J. Appl. Phys. 113, 184310 (2013).
[Crossref]

H. U. Stauffer, S. Roy, W. D. Kulatilaka, and J. R. Gord, “Detailed calculation of hydroxyl (OH) radical two-photon absorption via broadband ultrafast excitation,” J. Opt. Soc. Am. B 29, 40–52 (2012).
[Crossref]

S. Roy, J. R. Gord, and A. K. Patnaik, “Recent advances in coherent anti-Stokes Raman scattering spectroscopy: Fundamental developments and applications in reacting flows,” Prog. Energy Combust. Sci. 36, 280–306 (2010).
[Crossref]

S. Roy, W. D. Kulatilaka, D. R. Richardson, R. P. Lucht, and J. R. Gord, “Gas-phase single-shot thermometry at 1 kHz using fs-CARS spectroscopy,” Opt. Lett. 34, 3857–3859 (2009).
[Crossref]

T. R. Meyer, S. Roy, T. N. Anderson, J. D. Miller, V. R. Katta, R. P. Lucht, and J. R. Gord, “Measurements of OH mole fraction and temperature up to 20 kHz by using a diode-laser-based UV absorption sensor,” Appl. Opt. 44, 6729–6740 (2005).
[Crossref]

Gu, M.

Guelachvili, G.

Hammond, T. J.

T. J. Hammond, S. Monchoce, C. M. Zhang, G. G. Brown, P. B. Corkum, and D. M. Villeneuve, “Femtosecond time-domain observation of atmospheric absorption in the near-infrared spectrum,” Phys. Rev. A 94, 063410 (2016).
[Crossref]

Hancock, R. D.

R. D. Hancock, K. E. Bertagnolli, and R. P. Lucht, “Nitrogen and hydrogen CARS temperature measurements in a hydrogen/air flame using a near-adiabatic flat-flame burner,” Combust. Flame 109, 323–331 (1997).
[Crossref]

Hänsch, T. W.

N. Picqué and T. W. Hänsch, “Frequency comb spectroscopy,”Nat. Photonics 13, 146–157 (2019).
[Crossref]

Harrington, J. E.

M. Tamura, P. A. Berg, J. E. Harrington, J. Luque, J. B. Jeffries, G. P. Smith, and D. R. Crosley, “Collisional quenching of CH(A), OH(A), and NO(A) in low pressure hydrocarbon flames,” Combust. Flame 114, 502–514 (1998).
[Crossref]

Hoghooghi, N.

Jeffries, J. B.

M. Tamura, P. A. Berg, J. E. Harrington, J. Luque, J. B. Jeffries, G. P. Smith, and D. R. Crosley, “Collisional quenching of CH(A), OH(A), and NO(A) in low pressure hydrocarbon flames,” Combust. Flame 114, 502–514 (1998).
[Crossref]

Jiang, N.

S. Roy, N. Jiang, H. U. Stauffer, J. B. Schmidt, W. D. Kulatilaka, T. R. Meyer, C. E. Bunker, and J. R. Gord, “Spatially and temporally resolved temperature and shock-speed measurements behind a laser-induced blast wave of energetic nanoparticles,” J. Appl. Phys. 113, 184310 (2013).
[Crossref]

Katta, V. R.

Kiefer, W.

T. Siebert, M. Schmitt, T. Michelis, A. Materny, and W. Kiefer, “CCD broadband detection technique for the spectral characterization of the inhomogeneous signal in femtosecond time-resolved four-wave mixing spectroscopy,” J. Raman Spectrosc. 30, 807–813 (1999).
[Crossref]

Krausz, F.

Kulatilaka, W. D.

S. Roy, N. Jiang, H. U. Stauffer, J. B. Schmidt, W. D. Kulatilaka, T. R. Meyer, C. E. Bunker, and J. R. Gord, “Spatially and temporally resolved temperature and shock-speed measurements behind a laser-induced blast wave of energetic nanoparticles,” J. Appl. Phys. 113, 184310 (2013).
[Crossref]

H. U. Stauffer, S. Roy, W. D. Kulatilaka, and J. R. Gord, “Detailed calculation of hydroxyl (OH) radical two-photon absorption via broadband ultrafast excitation,” J. Opt. Soc. Am. B 29, 40–52 (2012).
[Crossref]

S. Roy, W. D. Kulatilaka, D. R. Richardson, R. P. Lucht, and J. R. Gord, “Gas-phase single-shot thermometry at 1 kHz using fs-CARS spectroscopy,” Opt. Lett. 34, 3857–3859 (2009).
[Crossref]

Lang, T.

T. Lang and M. Motzkus, “Single-shot femtosecond coherent anti-Stokes Raman-scattering thermometry,” J. Opt. Soc. Am. B 19, 340–344 (2002).
[Crossref]

P. Beaud, H. M. Frey, T. Lang, and M. Motzkus, “Flame thermometry by femtosecond CARS,” Chem. Phys. Lett. 344, 407–412 (2001).
[Crossref]

Leitenstorfer, A.

Lucht, R. P.

Luque, J.

M. Tamura, P. A. Berg, J. E. Harrington, J. Luque, J. B. Jeffries, G. P. Smith, and D. R. Crosley, “Collisional quenching of CH(A), OH(A), and NO(A) in low pressure hydrocarbon flames,” Combust. Flame 114, 502–514 (1998).
[Crossref]

J. Luque and D. R. Crosley, “LIFBASE: database and spectral simulation program (Version 1.5),” SRI International Report MP 99-009 (1999).

Makowiecki, A. S.

Mandon, J.

Materny, A.

T. Siebert, M. Schmitt, T. Michelis, A. Materny, and W. Kiefer, “CCD broadband detection technique for the spectral characterization of the inhomogeneous signal in femtosecond time-resolved four-wave mixing spectroscopy,” J. Raman Spectrosc. 30, 807–813 (1999).
[Crossref]

Meyer, T. R.

Michelis, T.

T. Siebert, M. Schmitt, T. Michelis, A. Materny, and W. Kiefer, “CCD broadband detection technique for the spectral characterization of the inhomogeneous signal in femtosecond time-resolved four-wave mixing spectroscopy,” J. Raman Spectrosc. 30, 807–813 (1999).
[Crossref]

Miller, J. D.

Monchoce, S.

T. J. Hammond, S. Monchoce, C. M. Zhang, G. G. Brown, P. B. Corkum, and D. M. Villeneuve, “Femtosecond time-domain observation of atmospheric absorption in the near-infrared spectrum,” Phys. Rev. A 94, 063410 (2016).
[Crossref]

Motzkus, M.

T. Lang and M. Motzkus, “Single-shot femtosecond coherent anti-Stokes Raman-scattering thermometry,” J. Opt. Soc. Am. B 19, 340–344 (2002).
[Crossref]

P. Beaud, H. M. Frey, T. Lang, and M. Motzkus, “Flame thermometry by femtosecond CARS,” Chem. Phys. Lett. 344, 407–412 (2001).
[Crossref]

Muraviev, A.

Newbury, N. R.

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent dual-comb spectroscopy at high signal-to-noise ratio,” Phys. Rev. A 82, 043817 (2010).
[Crossref]

I. Coddington, W. C. Swann, and N. R. Newbury, “Time-domain spectroscopy of molecular free-induction decay in the infrared,” Opt. Lett. 35, 1395–1397 (2010).
[Crossref]

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,”Phys. Rev. Lett. 100, 013902 (2008).
[Crossref]

Patnaik, A. K.

A. K. Patnaik, I. Adamovich, J. R. Gord, and S. Roy, “Recent advances in ultrafast-laser-based spectroscopy and imaging for reacting plasmas and flames,” Plasma Sources Sci. Technol. 26, 103001 (2017).
[Crossref]

S. Roy, J. R. Gord, and A. K. Patnaik, “Recent advances in coherent anti-Stokes Raman scattering spectroscopy: Fundamental developments and applications in reacting flows,” Prog. Energy Combust. Sci. 36, 280–306 (2010).
[Crossref]

Picqué, N.

Prince, B. D.

M. N. Slipchenko, B. D. Prince, S. C. Ducatman, and H. U. Stauffer, “Development of a simultaneously frequency- and time-resolved Raman-induced Kerr effect probe,” J. Phys. Chem. A 113, 135–140 (2009).
[Crossref]

B. D. Prince, A. Chakraborty, B. M. Prince, and H. U. Stauffer, “Development of simultaneous frequency- and time-resolved coherent anti-Stokes Raman scattering for ultrafast detection of molecular Raman spectra,” J. Chem. Phys. 125, 044502 (2006).
[Crossref]

Prince, B. M.

B. D. Prince, A. Chakraborty, B. M. Prince, and H. U. Stauffer, “Development of simultaneous frequency- and time-resolved coherent anti-Stokes Raman scattering for ultrafast detection of molecular Raman spectra,” J. Chem. Phys. 125, 044502 (2006).
[Crossref]

Pupeza, I.

Radhakrishna, V.

Rahman, K. A.

Richardson, D. R.

Rieker, G. B.

Roy, S.

H. U. Stauffer, K. A. Rahman, M. N. Slipchenko, S. Roy, J. R. Gord, and T. R. Meyer, “Interference-free hybrid fs/ps vibrational CARS thermometry in high-pressure flames,” Opt. Lett. 43, 4911–4914 (2018).
[Crossref]

D. R. Richardson, H. U. Stauffer, S. Roy, and J. R. Gord, “Comparison of chirped-probe-pulse and hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering for combustion thermometry,” Appl. Opt. 56, E37–E49 (2017).
[Crossref]

A. K. Patnaik, I. Adamovich, J. R. Gord, and S. Roy, “Recent advances in ultrafast-laser-based spectroscopy and imaging for reacting plasmas and flames,” Plasma Sources Sci. Technol. 26, 103001 (2017).
[Crossref]

P. J. Wrzesinski, H. U. Stauffer, J. B. Schmidt, S. Roy, and J. R. Gord, “Single-shot thermometry and OH detection via femtosecond fully resonant electronically enhanced CARS (FREE-CARS),” Opt. Lett. 41, 2021–2024 (2016).
[Crossref]

S. Roy, N. Jiang, H. U. Stauffer, J. B. Schmidt, W. D. Kulatilaka, T. R. Meyer, C. E. Bunker, and J. R. Gord, “Spatially and temporally resolved temperature and shock-speed measurements behind a laser-induced blast wave of energetic nanoparticles,” J. Appl. Phys. 113, 184310 (2013).
[Crossref]

H. U. Stauffer, S. Roy, W. D. Kulatilaka, and J. R. Gord, “Detailed calculation of hydroxyl (OH) radical two-photon absorption via broadband ultrafast excitation,” J. Opt. Soc. Am. B 29, 40–52 (2012).
[Crossref]

S. Roy, J. R. Gord, and A. K. Patnaik, “Recent advances in coherent anti-Stokes Raman scattering spectroscopy: Fundamental developments and applications in reacting flows,” Prog. Energy Combust. Sci. 36, 280–306 (2010).
[Crossref]

S. Roy, W. D. Kulatilaka, D. R. Richardson, R. P. Lucht, and J. R. Gord, “Gas-phase single-shot thermometry at 1 kHz using fs-CARS spectroscopy,” Opt. Lett. 34, 3857–3859 (2009).
[Crossref]

T. R. Meyer, S. Roy, T. N. Anderson, J. D. Miller, V. R. Katta, R. P. Lucht, and J. R. Gord, “Measurements of OH mole fraction and temperature up to 20 kHz by using a diode-laser-based UV absorption sensor,” Appl. Opt. 44, 6729–6740 (2005).
[Crossref]

Ru, Q. T.

Schmidt, J. B.

P. J. Wrzesinski, H. U. Stauffer, J. B. Schmidt, S. Roy, and J. R. Gord, “Single-shot thermometry and OH detection via femtosecond fully resonant electronically enhanced CARS (FREE-CARS),” Opt. Lett. 41, 2021–2024 (2016).
[Crossref]

S. Roy, N. Jiang, H. U. Stauffer, J. B. Schmidt, W. D. Kulatilaka, T. R. Meyer, C. E. Bunker, and J. R. Gord, “Spatially and temporally resolved temperature and shock-speed measurements behind a laser-induced blast wave of energetic nanoparticles,” J. Appl. Phys. 113, 184310 (2013).
[Crossref]

Schmitt, M.

T. Siebert, M. Schmitt, T. Michelis, A. Materny, and W. Kiefer, “CCD broadband detection technique for the spectral characterization of the inhomogeneous signal in femtosecond time-resolved four-wave mixing spectroscopy,” J. Raman Spectrosc. 30, 807–813 (1999).
[Crossref]

Siebert, T.

T. Siebert, M. Schmitt, T. Michelis, A. Materny, and W. Kiefer, “CCD broadband detection technique for the spectral characterization of the inhomogeneous signal in femtosecond time-resolved four-wave mixing spectroscopy,” J. Raman Spectrosc. 30, 807–813 (1999).
[Crossref]

Slipchenko, M. N.

H. U. Stauffer, K. A. Rahman, M. N. Slipchenko, S. Roy, J. R. Gord, and T. R. Meyer, “Interference-free hybrid fs/ps vibrational CARS thermometry in high-pressure flames,” Opt. Lett. 43, 4911–4914 (2018).
[Crossref]

M. N. Slipchenko, B. D. Prince, S. C. Ducatman, and H. U. Stauffer, “Development of a simultaneously frequency- and time-resolved Raman-induced Kerr effect probe,” J. Phys. Chem. A 113, 135–140 (2009).
[Crossref]

Smith, G. P.

M. Tamura, P. A. Berg, J. E. Harrington, J. Luque, J. B. Jeffries, G. P. Smith, and D. R. Crosley, “Collisional quenching of CH(A), OH(A), and NO(A) in low pressure hydrocarbon flames,” Combust. Flame 114, 502–514 (1998).
[Crossref]

Sorokin, E.

Sorokina, I. T.

Stauffer, H. U.

H. U. Stauffer, K. A. Rahman, M. N. Slipchenko, S. Roy, J. R. Gord, and T. R. Meyer, “Interference-free hybrid fs/ps vibrational CARS thermometry in high-pressure flames,” Opt. Lett. 43, 4911–4914 (2018).
[Crossref]

D. R. Richardson, H. U. Stauffer, S. Roy, and J. R. Gord, “Comparison of chirped-probe-pulse and hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering for combustion thermometry,” Appl. Opt. 56, E37–E49 (2017).
[Crossref]

P. J. Wrzesinski, H. U. Stauffer, J. B. Schmidt, S. Roy, and J. R. Gord, “Single-shot thermometry and OH detection via femtosecond fully resonant electronically enhanced CARS (FREE-CARS),” Opt. Lett. 41, 2021–2024 (2016).
[Crossref]

S. Roy, N. Jiang, H. U. Stauffer, J. B. Schmidt, W. D. Kulatilaka, T. R. Meyer, C. E. Bunker, and J. R. Gord, “Spatially and temporally resolved temperature and shock-speed measurements behind a laser-induced blast wave of energetic nanoparticles,” J. Appl. Phys. 113, 184310 (2013).
[Crossref]

H. U. Stauffer, S. Roy, W. D. Kulatilaka, and J. R. Gord, “Detailed calculation of hydroxyl (OH) radical two-photon absorption via broadband ultrafast excitation,” J. Opt. Soc. Am. B 29, 40–52 (2012).
[Crossref]

M. N. Slipchenko, B. D. Prince, S. C. Ducatman, and H. U. Stauffer, “Development of a simultaneously frequency- and time-resolved Raman-induced Kerr effect probe,” J. Phys. Chem. A 113, 135–140 (2009).
[Crossref]

B. D. Prince, A. Chakraborty, B. M. Prince, and H. U. Stauffer, “Development of simultaneous frequency- and time-resolved coherent anti-Stokes Raman scattering for ultrafast detection of molecular Raman spectra,” J. Chem. Phys. 125, 044502 (2006).
[Crossref]

Sulzer, P.

Swann, W. C.

I. Coddington, W. C. Swann, and N. R. Newbury, “Time-domain spectroscopy of molecular free-induction decay in the infrared,” Opt. Lett. 35, 1395–1397 (2010).
[Crossref]

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent dual-comb spectroscopy at high signal-to-noise ratio,” Phys. Rev. A 82, 043817 (2010).
[Crossref]

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,”Phys. Rev. Lett. 100, 013902 (2008).
[Crossref]

Tamura, M.

M. Tamura, P. A. Berg, J. E. Harrington, J. Luque, J. B. Jeffries, G. P. Smith, and D. R. Crosley, “Collisional quenching of CH(A), OH(A), and NO(A) in low pressure hydrocarbon flames,” Combust. Flame 114, 502–514 (1998).
[Crossref]

Tancin, R. J.

Tomberg, T.

Villeneuve, D. M.

T. J. Hammond, S. Monchoce, C. M. Zhang, G. G. Brown, P. B. Corkum, and D. M. Villeneuve, “Femtosecond time-domain observation of atmospheric absorption in the near-infrared spectrum,” Phys. Rev. A 94, 063410 (2016).
[Crossref]

Vodopyanov, K. L.

Wrzesinski, P. J.

Zhang, C. M.

T. J. Hammond, S. Monchoce, C. M. Zhang, G. G. Brown, P. B. Corkum, and D. M. Villeneuve, “Femtosecond time-domain observation of atmospheric absorption in the near-infrared spectrum,” Phys. Rev. A 94, 063410 (2016).
[Crossref]

Appl. Opt. (2)

Chem. Phys. Lett. (1)

P. Beaud, H. M. Frey, T. Lang, and M. Motzkus, “Flame thermometry by femtosecond CARS,” Chem. Phys. Lett. 344, 407–412 (2001).
[Crossref]

Combust. Flame (2)

R. D. Hancock, K. E. Bertagnolli, and R. P. Lucht, “Nitrogen and hydrogen CARS temperature measurements in a hydrogen/air flame using a near-adiabatic flat-flame burner,” Combust. Flame 109, 323–331 (1997).
[Crossref]

M. Tamura, P. A. Berg, J. E. Harrington, J. Luque, J. B. Jeffries, G. P. Smith, and D. R. Crosley, “Collisional quenching of CH(A), OH(A), and NO(A) in low pressure hydrocarbon flames,” Combust. Flame 114, 502–514 (1998).
[Crossref]

J. Appl. Phys. (1)

S. Roy, N. Jiang, H. U. Stauffer, J. B. Schmidt, W. D. Kulatilaka, T. R. Meyer, C. E. Bunker, and J. R. Gord, “Spatially and temporally resolved temperature and shock-speed measurements behind a laser-induced blast wave of energetic nanoparticles,” J. Appl. Phys. 113, 184310 (2013).
[Crossref]

J. Chem. Phys. (1)

B. D. Prince, A. Chakraborty, B. M. Prince, and H. U. Stauffer, “Development of simultaneous frequency- and time-resolved coherent anti-Stokes Raman scattering for ultrafast detection of molecular Raman spectra,” J. Chem. Phys. 125, 044502 (2006).
[Crossref]

J. Opt. Soc. Am. B (2)

J. Phys. Chem. A (1)

M. N. Slipchenko, B. D. Prince, S. C. Ducatman, and H. U. Stauffer, “Development of a simultaneously frequency- and time-resolved Raman-induced Kerr effect probe,” J. Phys. Chem. A 113, 135–140 (2009).
[Crossref]

J. Raman Spectrosc. (1)

T. Siebert, M. Schmitt, T. Michelis, A. Materny, and W. Kiefer, “CCD broadband detection technique for the spectral characterization of the inhomogeneous signal in femtosecond time-resolved four-wave mixing spectroscopy,” J. Raman Spectrosc. 30, 807–813 (1999).
[Crossref]

Nat. Photonics (2)

N. Picqué and T. W. Hänsch, “Frequency comb spectroscopy,”Nat. Photonics 13, 146–157 (2019).
[Crossref]

J. Mandon, G. Guelachvili, and N. Picqué, “Fourier transform spectroscopy with a laser frequency comb,” Nat. Photonics 3, 99–102 (2009).
[Crossref]

Opt. Express (3)

Opt. Lett. (7)

Optica (1)

Phys. Rev. A (2)

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent dual-comb spectroscopy at high signal-to-noise ratio,” Phys. Rev. A 82, 043817 (2010).
[Crossref]

T. J. Hammond, S. Monchoce, C. M. Zhang, G. G. Brown, P. B. Corkum, and D. M. Villeneuve, “Femtosecond time-domain observation of atmospheric absorption in the near-infrared spectrum,” Phys. Rev. A 94, 063410 (2016).
[Crossref]

Phys. Rev. Lett. (1)

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,”Phys. Rev. Lett. 100, 013902 (2008).
[Crossref]

Plasma Sources Sci. Technol. (1)

A. K. Patnaik, I. Adamovich, J. R. Gord, and S. Roy, “Recent advances in ultrafast-laser-based spectroscopy and imaging for reacting plasmas and flames,” Plasma Sources Sci. Technol. 26, 103001 (2017).
[Crossref]

Prog. Energy Combust. Sci. (1)

S. Roy, J. R. Gord, and A. K. Patnaik, “Recent advances in coherent anti-Stokes Raman scattering spectroscopy: Fundamental developments and applications in reacting flows,” Prog. Energy Combust. Sci. 36, 280–306 (2010).
[Crossref]

Other (1)

J. Luque and D. R. Crosley, “LIFBASE: database and spectral simulation program (Version 1.5),” SRI International Report MP 99-009 (1999).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. (a) Background and transmitted spectra for OH absorption near 286 nm in a 25.4 mm long stoichiometric ${{\rm{C}}_2}{{\rm{H}}_4}$–air laminar flame 5 mm above the burner surface; (b) intensity ratio spectrum indicating frequency-dependent transmitted intensity ($I$) relative to the input intensity, ${I_0}$. Significant signal averaging is required to counteract the shot-to-shot intensity fluctuations of the ultraviolet input laser source.
Fig. 2.
Fig. 2. Schematic optical configuration of TOGA setup, including pairs of simulated optical electric fields (upper panel of pair: frequency-domain depiction; lower panel: time-domain depiction). In this setup, only the absorption beam is required to pass through the sample of interest (here, either a Rb cell or a flame containing transient OH radical). Panels (a) and (b) depict the ultrashort-pulse, broadband absorption beam prior to sample interaction. Following sample absorption, (c) and (d) depict the absorption beam containing atomic/molecular absorption features in the frequency domain (as narrow peaks) and time domain (long-lived response), respectively. The gating beam, also with (e) broad spectral bandwidth and (f) ultrashort-pulse duration traverses a delay line for temporal control; frequency narrowing is achieved with (g) and (h) a Fabry–Pérot étalon. (i) Temporal overlap of the gating and absorption pulses in a sum-frequency or difference-frequency generation (SFG or DFG) medium is afforded by adjusting the delay line. (j) The resultant time-domain upconverted (or downconverted) signal is (k) detected following spectral dispersion.
Fig. 3.
Fig. 3. Absorption of broadband fs-duration pulse by Rb atom. Insets depict absorption features corresponding to Rb transitions near 780.0 nm and 794.8 nm.
Fig. 4.
Fig. 4. Time-domain atomic response of Rb probed by fs-duration gating pulse. An oscillatory component resulting from the beat between the two accessed transitions is observed (left inset) with beat frequency of ${237.2}\;{\rm{c}}{{\rm{m}}^{- 1}}$ (right inset).
Fig. 5.
Fig. 5. Single-laser-shot TOGA signal from Rb produced using a narrowband gating pulse shaped using an étalon with a ${{288}}\;{\rm{c}}{{\rm{m}}^{- 1}}$ FSR, delayed to ${\sim}{9.5}\;{\rm{ps}}$ following the impulsive, broadband component of the absorption pulse. The $x$ axis represents the measured transition frequency following subtraction of the peak frequency of the upconverting gating pulse from the measured TOGA frequency. Major peaks correspond to the Rb transitions at 794.8 nm and 780.0 nm. Two replica peaks are also observed, resulting from transitions upconverted by an adjacent étalon order, blue-shifted by the FSR.
Fig. 6.
Fig. 6. Example single-laser-shot TOGA spectra of OH in a reacting flow. (a) Absorption coefficients of relevant OH (0,0) transition branches in this region; (b) and (c) example TOGA spectra at fuel:air equivalence ratios ($\phi$) of 0.98 and 0.58, respectively. Corresponding simulated spectra are included, calculated at the denoted best-fit temperature for these selected spectra.
Fig. 7.
Fig. 7. Best-fit $T$ and scaled OH number density TOGA results as a function of $\phi$, obtained 10 mm above Hencken burner surface. Symbols represent averages; error bars depict ${{1}}\sigma$ from 1000 best-fit single-shot spectra. (a) Best-fit ${T_{{\rm avg}}}$ (symbols) and calculated equilibrium $T$ (curve); (b) scaled OH number density from TOGA, OH number density determined from FREE-CARS measurements (dashed curve), and equilibrium OH number density (solid curve, right axis).