Abstract

Optical phased arrays (OPAs) implemented in integrated photonic circuits could enable a variety of 3D sensing, imaging, illumination, and ranging applications, and their convergence in new lidar technology. However, current integrated OPA approaches do not scale—in control complexity, power consumption, or optical efficiency—to the large aperture sizes needed to support medium- to long-range lidar. We present the serpentine OPA (SOPA), a new OPA concept that addresses these fundamental challenges and enables architectures that scale up to large apertures. The SOPA is based on a serially interconnected array of low-loss grating waveguides and supports fully passive, 2D wavelength-controlled beam steering. A fundamentally space-efficient design that folds the feed network into the aperture also enables scalable tiling of SOPAs into large apertures with a high fill-factor. We experimentally demonstrate, to the best of our knowledge, the first SOPA using a 1450–1650 nm wavelength sweep to produce 16,500 addressable spots in a $27 \times 610$ array. We also demonstrate, for the first time, far-field interference of beams from two separate OPAs on a single silicon photonic chip, as an initial step towards long-range computational imaging lidar based on novel active aperture synthesis schemes.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Van Acoleyen, W. Bogaerts, and R. Baets, “Two-dimensional dispersive off-chip beam scanner fabricated on silicon-on-insulator,” IEEE Photon. Technol. Lett. 23, 1270–1272 (2011).
    [Crossref]
  2. J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493, 195–199 (2013).
    [Crossref]
  3. D. Kwong, A. Hosseini, J. Covey, Y. Zhang, X. Xu, H. Subbaraman, and R. T. Chen, “On-chip silicon optical phased array for two-dimensional beam steering,” Opt. Lett. 39, 941–944 (2014).
    [Crossref]
  4. K. Sayyah, O. Efimov, P. Patterson, J. Schaffner, C. White, J.-F. Seurin, G. Xu, and A. Miglo, “Two-dimensional pseudo-random optical phased array based on tandem optical injection locking of vertical cavity surface emitting lasers,” Opt. Express 23, 19405–19416 (2015).
    [Crossref]
  5. J. Hulme, J. Doylend, M. Heck, J. Peters, M. Davenport, J. Bovington, L. Coldren, and J. Bowers, “Fully integrated hybrid silicon two dimensional beam scanner,” Opt. Express 23, 5861–5874 (2015).
    [Crossref]
  6. D. N. Hutchison, J. Sun, J. K. Doylend, R. Kumar, J. Heck, W. Kim, C. T. Phare, A. Feshali, and H. Rong, “High-resolution aliasing-free optical beam steering,” Optica 3, 887–890 (2016).
    [Crossref]
  7. C. V. Poulton, M. J. Byrd, M. Raval, Z. Su, N. Li, E. Timurdogan, D. Coolbaugh, D. Vermeulen, and M. R. Watts, “Large-scale silicon nitride nanophotonic phased arrays at infrared and visible wavelengths,” Opt. Lett. 42, 21–24 (2017).
    [Crossref]
  8. C. V. Poulton, A. Yaacobi, D. B. Cole, M. J. Byrd, M. Raval, D. Vermeulen, and M. R. Watts, “Coherent solid-state lidar with silicon photonic optical phased arrays,” Opt. Lett. 42, 4091–4094 (2017).
    [Crossref]
  9. T. Komljenovic, R. Helkey, L. Coldren, and J. E. Bowers, “Sparse aperiodic arrays for optical beam forming and lidar,” Opt. Express 25, 2511–2528 (2017).
    [Crossref]
  10. W. Xie, T. Komljenovic, J. Huang, and J. Bowers, “Dense III-V/Si phase shifters for optical phased arrays,” in Asia Communications and Photonics Conference (ACP) (IEEE, 2018), pp. 1–3.
  11. M. Zadka, Y.-C. Chang, A. Mohanty, C. T. Phare, S. P. Roberts, and M. Lipson, “On-chip platform for a phased array with minimal beam divergence and wide field-of-view,” Opt. Express 26, 2528–2534 (2018).
    [Crossref]
  12. R. Fatemi, A. Khachaturian, and A. Hajimiri, “Scalable optical phased array with sparse 2D aperture,” in CLEO: Science and Innovations (Optical Society of America, 2018), paper STu4B–6.
  13. S. Chung, H. Abediasl, and H. Hashemi, “A monolithically integrated large-scale optical phased array in silicon-on-insulator CMOS,” IEEE J. Solid-State Circuits 53, 275–296 (2018).
    [Crossref]
  14. T. Komljenovic and P. Pintus, “On-chip calibration and control of optical phased arrays,” Opt. Express 26, 3199–3210 (2018).
    [Crossref]
  15. C. V. Poulton, P. Russo, E. Timurdogan, M. Whitson, M. J. Byrd, E. Hosseini, B. Moss, Z. Su, D. Vermeulen, and M. R. Watts, “High-performance integrated optical phased arrays for chip-scale beam steering and lidar,” in CLEO: Applications and Technology (Optical Society of America, 2018), paper ATu3R–2.
  16. C. V. Poulton, M. J. Byrd, P. Russo, E. Timurdogan, M. Khandaker, D. Vermeulen, and M. R. Watts, “Long-range lidar and free-space data communication with high-performance optical phased arrays,” IEEE J. Sel. Top. Quantum Electron. 25, 1–8 (2019).
    [Crossref]
  17. C. V. Poulton, P. Russo, B. Moss, M. Khandaker, M. J. Byrd, J. Tran, E. Timurdogan, D. Vermeulen, and M. R. Watts, “Small-form-factor optical phased array module for technology adoption in custom applications,” in CLEO: Applications and Technology (Optical Society of America, 2019), paper JTh5B–6.
  18. N. Dostart, M. Brand, B. Zhang, D. Feldkhun, K. Wagner, and M. A. Popović, “Vernier Si-photonic phased array transceiver for grating lobe suppression and extended field-of-view,” in CLEO: Applications and Technology (Optical Society of America, 2019), paper AW3K-2.
  19. Y. Kohno, K. Komatsu, R. Tang, Y. Ozeki, Y. Nakano, and T. Tanemura, “Ghost imaging using a large-scale silicon photonic phased array chip,” Opt. Express 27, 3817–3823 (2019).
    [Crossref]
  20. Y. Zhang, Y.-C. Ling, K. Zhang, C. Gentry, D. Sadighi, G. Whaley, J. Colosimo, P. Suni, and S. B. Yoo, “Sub-wavelength-pitch silicon-photonic optical phased array for large field-of-regard coherent optical beam steering,” Opt. Express 27, 1929–1940 (2019).
    [Crossref]
  21. S. A. Miller, Y.-C. Chang, C. T. Phare, M. C. Shin, M. Zadka, S. P. Roberts, B. Stern, X. Ji, A. Mohanty, O. A. J. Gordillo, and U. D. Dave, “Large-scale optical phased array using a low-power multi-pass silicon photonic platform,” Optica 7, 3–6 (2020).
    [Crossref]
  22. Velodyne lidar, “Puck datasheet,” (2018).
  23. S. Terrab, A. M. Watson, C. Roath, J. T. Gopinath, and V. M. Bright, “Adaptive electrowetting lens-prism element,” Opt. Express 23, 25838–25845 (2015).
    [Crossref]
  24. P. F. McManamon, P. J. Bos, M. J. Escuti, J. Heikenfeld, S. Serati, H. Xie, and E. A. Watson, “A review of phased array steering for narrow-band electrooptical systems,” Proc. IEEE 97, 1078–1096 (2009).
    [Crossref]
  25. B. Smith, B. Hellman, A. Gin, A. Espinoza, and Y. Takashima, “Single chip lidar with discrete beam steering by digital micromirror device,” Opt. Express 25, 14732–14745 (2017).
    [Crossref]
  26. H. Chen, G. Tan, Y. Huang, Y. Weng, T.-H. Choi, T.-H. Yoon, and S.-T. Wu, “A low voltage liquid crystal phase grating with switchable diffraction angles,” Sci. Rep. 7, 1–8 (2017).
    [Crossref]
  27. S. Hamann, A. Ceballos, J. Landry, and O. Solgaard, “High-speed random access optical scanning using a linear MEMS phased array,” Opt. Lett. 43, 5455–5458 (2018).
    [Crossref]
  28. Y. Wang, G. Zhou, X. Zhang, K. Kwon, P.-A. Blanche, N. Triesault, K.-S. Yu, and M. C. Wu, “2D broadband beamsteering with large-scale mems optical phased array,” Optica 6, 557–562 (2019).
    [Crossref]
  29. O. Atalar, R. Van Laer, C. J. Sarabalis, A. H. Safavi-Naeini, and A. Arbabian, “Time-of-flight imaging based on resonant photoelastic modulation,” Appl. Opt. 58, 2235–2247 (2019).
    [Crossref]
  30. Y. Jiang, S. Karpf, and B. Jalali, “Time-stretch lidar as a spectrally scanned time-of-flight ranging camera,” Nat. Photonics 14, 14–18 (2020).
    [Crossref]
  31. K. H. Wagner, D. Feldkhun, B. Zhang, N. Dostart, M. Brand, and M. Popović, “Super-resolved interferometric imaging with a self-cohering Si-photonic beam-steering lidar array,” in Digital Holography and Three-Dimensional Imaging (Optical Society of America, 2019), paper M5A–1.
  32. M. Raval, C. V. Poulton, and M. R. Watts, “Unidirectional waveguide grating antennas with uniform emission for optical phased arrays,” Opt. Lett. 42, 2563–2566 (2017).
    [Crossref]
  33. C. T. Phare, M. C. Shin, S. A. Miller, B. Stern, and M. Lipson, “Silicon optical phased array with high-efficiency beam formation over 180 degree field of view,” arXiv preprint arXiv:1802.04624 (2018).
  34. D. N. Sitter and W. T. Rhodes, “Generalization of the falling raster-folded spectrum relationship,” Appl. Opt. 29, 2527–2531 (1990).
    [Crossref]
  35. T. Chan, E. Myslivets, and J. E. Ford, “2-Dimensional beamsteering using dispersive deflectors and wavelength tuning,” Opt. Express 16, 14617–14628 (2008).
    [Crossref]
  36. H. Gevorgyan, K. A. Qubaisi, M. S. Dahlem, and A. Khilo, “Silicon photonic time-wavelength pulse interleaver for photonic analog-to-digital converters,” Opt. Express 24, 13489–13499 (2016).
    [Crossref]
  37. M. Cherchi, S. Ylinen, M. Harjanne, M. Kapulainen, and T. Aalto, “Dramatic size reduction of waveguide bends on a micron-scale silicon photonic platform,” Opt. Express 21, 17814–17823 (2013).
    [Crossref]
  38. H. Zafar, P. Moreira, A. M. Taha, B. Paredes, M. S. Dahlem, and A. Khilo, “Compact silicon TE-pass polarizer using adiabatically-bent fully-etched waveguides,” Opt. Express 26, 31850–31860 (2018).
    [Crossref]
  39. G. H. Song and W. J. Tomlinson, “Fourier analysis and synthesis of adiabatic tapers in integrated optics,” J. Opt. Soc. Am. A 9, 1289–1300 (1992).
    [Crossref]
  40. N. Li, D. Vermeulen, Z. Su, E. S. Magden, M. Xin, N. Singh, A. Ruocco, J. Notaros, C. V. Poulton, E. Timurdogan, and C. Baiocco, “Monolithically integrated erbium-doped tunable laser on a CMOS-compatible silicon photonics platform,” Opt. Express 26, 16200–16211 (2018).
    [Crossref]
  41. M. T. Wade, F. Pavanello, R. Kumar, C. M. Gentry, A. Atabaki, R. Ram, V. Stojanović, and M. A. Popović, “75% efficient wide bandwidth grating couplers in a 45 nm microelectronics CMOS process,” in Optical Interconnects Conference (OI) (IEEE, 2015), pp. 46–47.

2020 (2)

2019 (5)

2018 (6)

2017 (6)

2016 (2)

2015 (3)

2014 (1)

2013 (2)

2011 (1)

K. Van Acoleyen, W. Bogaerts, and R. Baets, “Two-dimensional dispersive off-chip beam scanner fabricated on silicon-on-insulator,” IEEE Photon. Technol. Lett. 23, 1270–1272 (2011).
[Crossref]

2009 (1)

P. F. McManamon, P. J. Bos, M. J. Escuti, J. Heikenfeld, S. Serati, H. Xie, and E. A. Watson, “A review of phased array steering for narrow-band electrooptical systems,” Proc. IEEE 97, 1078–1096 (2009).
[Crossref]

2008 (1)

1992 (1)

1990 (1)

Aalto, T.

Abediasl, H.

S. Chung, H. Abediasl, and H. Hashemi, “A monolithically integrated large-scale optical phased array in silicon-on-insulator CMOS,” IEEE J. Solid-State Circuits 53, 275–296 (2018).
[Crossref]

Arbabian, A.

Atabaki, A.

M. T. Wade, F. Pavanello, R. Kumar, C. M. Gentry, A. Atabaki, R. Ram, V. Stojanović, and M. A. Popović, “75% efficient wide bandwidth grating couplers in a 45 nm microelectronics CMOS process,” in Optical Interconnects Conference (OI) (IEEE, 2015), pp. 46–47.

Atalar, O.

Baets, R.

K. Van Acoleyen, W. Bogaerts, and R. Baets, “Two-dimensional dispersive off-chip beam scanner fabricated on silicon-on-insulator,” IEEE Photon. Technol. Lett. 23, 1270–1272 (2011).
[Crossref]

Baiocco, C.

Blanche, P.-A.

Bogaerts, W.

K. Van Acoleyen, W. Bogaerts, and R. Baets, “Two-dimensional dispersive off-chip beam scanner fabricated on silicon-on-insulator,” IEEE Photon. Technol. Lett. 23, 1270–1272 (2011).
[Crossref]

Bos, P. J.

P. F. McManamon, P. J. Bos, M. J. Escuti, J. Heikenfeld, S. Serati, H. Xie, and E. A. Watson, “A review of phased array steering for narrow-band electrooptical systems,” Proc. IEEE 97, 1078–1096 (2009).
[Crossref]

Bovington, J.

Bowers, J.

J. Hulme, J. Doylend, M. Heck, J. Peters, M. Davenport, J. Bovington, L. Coldren, and J. Bowers, “Fully integrated hybrid silicon two dimensional beam scanner,” Opt. Express 23, 5861–5874 (2015).
[Crossref]

W. Xie, T. Komljenovic, J. Huang, and J. Bowers, “Dense III-V/Si phase shifters for optical phased arrays,” in Asia Communications and Photonics Conference (ACP) (IEEE, 2018), pp. 1–3.

Bowers, J. E.

Brand, M.

N. Dostart, M. Brand, B. Zhang, D. Feldkhun, K. Wagner, and M. A. Popović, “Vernier Si-photonic phased array transceiver for grating lobe suppression and extended field-of-view,” in CLEO: Applications and Technology (Optical Society of America, 2019), paper AW3K-2.

K. H. Wagner, D. Feldkhun, B. Zhang, N. Dostart, M. Brand, and M. Popović, “Super-resolved interferometric imaging with a self-cohering Si-photonic beam-steering lidar array,” in Digital Holography and Three-Dimensional Imaging (Optical Society of America, 2019), paper M5A–1.

Bright, V. M.

Byrd, M. J.

C. V. Poulton, M. J. Byrd, P. Russo, E. Timurdogan, M. Khandaker, D. Vermeulen, and M. R. Watts, “Long-range lidar and free-space data communication with high-performance optical phased arrays,” IEEE J. Sel. Top. Quantum Electron. 25, 1–8 (2019).
[Crossref]

C. V. Poulton, M. J. Byrd, M. Raval, Z. Su, N. Li, E. Timurdogan, D. Coolbaugh, D. Vermeulen, and M. R. Watts, “Large-scale silicon nitride nanophotonic phased arrays at infrared and visible wavelengths,” Opt. Lett. 42, 21–24 (2017).
[Crossref]

C. V. Poulton, A. Yaacobi, D. B. Cole, M. J. Byrd, M. Raval, D. Vermeulen, and M. R. Watts, “Coherent solid-state lidar with silicon photonic optical phased arrays,” Opt. Lett. 42, 4091–4094 (2017).
[Crossref]

C. V. Poulton, P. Russo, E. Timurdogan, M. Whitson, M. J. Byrd, E. Hosseini, B. Moss, Z. Su, D. Vermeulen, and M. R. Watts, “High-performance integrated optical phased arrays for chip-scale beam steering and lidar,” in CLEO: Applications and Technology (Optical Society of America, 2018), paper ATu3R–2.

C. V. Poulton, P. Russo, B. Moss, M. Khandaker, M. J. Byrd, J. Tran, E. Timurdogan, D. Vermeulen, and M. R. Watts, “Small-form-factor optical phased array module for technology adoption in custom applications,” in CLEO: Applications and Technology (Optical Society of America, 2019), paper JTh5B–6.

Ceballos, A.

Chan, T.

Chang, Y.-C.

Chen, H.

H. Chen, G. Tan, Y. Huang, Y. Weng, T.-H. Choi, T.-H. Yoon, and S.-T. Wu, “A low voltage liquid crystal phase grating with switchable diffraction angles,” Sci. Rep. 7, 1–8 (2017).
[Crossref]

Chen, R. T.

Cherchi, M.

Choi, T.-H.

H. Chen, G. Tan, Y. Huang, Y. Weng, T.-H. Choi, T.-H. Yoon, and S.-T. Wu, “A low voltage liquid crystal phase grating with switchable diffraction angles,” Sci. Rep. 7, 1–8 (2017).
[Crossref]

Chung, S.

S. Chung, H. Abediasl, and H. Hashemi, “A monolithically integrated large-scale optical phased array in silicon-on-insulator CMOS,” IEEE J. Solid-State Circuits 53, 275–296 (2018).
[Crossref]

Coldren, L.

Cole, D. B.

Colosimo, J.

Coolbaugh, D.

Covey, J.

Dahlem, M. S.

Dave, U. D.

Davenport, M.

Dostart, N.

K. H. Wagner, D. Feldkhun, B. Zhang, N. Dostart, M. Brand, and M. Popović, “Super-resolved interferometric imaging with a self-cohering Si-photonic beam-steering lidar array,” in Digital Holography and Three-Dimensional Imaging (Optical Society of America, 2019), paper M5A–1.

N. Dostart, M. Brand, B. Zhang, D. Feldkhun, K. Wagner, and M. A. Popović, “Vernier Si-photonic phased array transceiver for grating lobe suppression and extended field-of-view,” in CLEO: Applications and Technology (Optical Society of America, 2019), paper AW3K-2.

Doylend, J.

Doylend, J. K.

Efimov, O.

Escuti, M. J.

P. F. McManamon, P. J. Bos, M. J. Escuti, J. Heikenfeld, S. Serati, H. Xie, and E. A. Watson, “A review of phased array steering for narrow-band electrooptical systems,” Proc. IEEE 97, 1078–1096 (2009).
[Crossref]

Espinoza, A.

Fatemi, R.

R. Fatemi, A. Khachaturian, and A. Hajimiri, “Scalable optical phased array with sparse 2D aperture,” in CLEO: Science and Innovations (Optical Society of America, 2018), paper STu4B–6.

Feldkhun, D.

N. Dostart, M. Brand, B. Zhang, D. Feldkhun, K. Wagner, and M. A. Popović, “Vernier Si-photonic phased array transceiver for grating lobe suppression and extended field-of-view,” in CLEO: Applications and Technology (Optical Society of America, 2019), paper AW3K-2.

K. H. Wagner, D. Feldkhun, B. Zhang, N. Dostart, M. Brand, and M. Popović, “Super-resolved interferometric imaging with a self-cohering Si-photonic beam-steering lidar array,” in Digital Holography and Three-Dimensional Imaging (Optical Society of America, 2019), paper M5A–1.

Feshali, A.

Ford, J. E.

Gentry, C.

Gentry, C. M.

M. T. Wade, F. Pavanello, R. Kumar, C. M. Gentry, A. Atabaki, R. Ram, V. Stojanović, and M. A. Popović, “75% efficient wide bandwidth grating couplers in a 45 nm microelectronics CMOS process,” in Optical Interconnects Conference (OI) (IEEE, 2015), pp. 46–47.

Gevorgyan, H.

Gin, A.

Gopinath, J. T.

Gordillo, O. A. J.

Hajimiri, A.

R. Fatemi, A. Khachaturian, and A. Hajimiri, “Scalable optical phased array with sparse 2D aperture,” in CLEO: Science and Innovations (Optical Society of America, 2018), paper STu4B–6.

Hamann, S.

Harjanne, M.

Hashemi, H.

S. Chung, H. Abediasl, and H. Hashemi, “A monolithically integrated large-scale optical phased array in silicon-on-insulator CMOS,” IEEE J. Solid-State Circuits 53, 275–296 (2018).
[Crossref]

Heck, J.

Heck, M.

Heikenfeld, J.

P. F. McManamon, P. J. Bos, M. J. Escuti, J. Heikenfeld, S. Serati, H. Xie, and E. A. Watson, “A review of phased array steering for narrow-band electrooptical systems,” Proc. IEEE 97, 1078–1096 (2009).
[Crossref]

Helkey, R.

Hellman, B.

Hosseini, A.

Hosseini, E.

C. V. Poulton, P. Russo, E. Timurdogan, M. Whitson, M. J. Byrd, E. Hosseini, B. Moss, Z. Su, D. Vermeulen, and M. R. Watts, “High-performance integrated optical phased arrays for chip-scale beam steering and lidar,” in CLEO: Applications and Technology (Optical Society of America, 2018), paper ATu3R–2.

Hosseini, E. S.

J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493, 195–199 (2013).
[Crossref]

Huang, J.

W. Xie, T. Komljenovic, J. Huang, and J. Bowers, “Dense III-V/Si phase shifters for optical phased arrays,” in Asia Communications and Photonics Conference (ACP) (IEEE, 2018), pp. 1–3.

Huang, Y.

H. Chen, G. Tan, Y. Huang, Y. Weng, T.-H. Choi, T.-H. Yoon, and S.-T. Wu, “A low voltage liquid crystal phase grating with switchable diffraction angles,” Sci. Rep. 7, 1–8 (2017).
[Crossref]

Hulme, J.

Hutchison, D. N.

Jalali, B.

Y. Jiang, S. Karpf, and B. Jalali, “Time-stretch lidar as a spectrally scanned time-of-flight ranging camera,” Nat. Photonics 14, 14–18 (2020).
[Crossref]

Ji, X.

Jiang, Y.

Y. Jiang, S. Karpf, and B. Jalali, “Time-stretch lidar as a spectrally scanned time-of-flight ranging camera,” Nat. Photonics 14, 14–18 (2020).
[Crossref]

Kapulainen, M.

Karpf, S.

Y. Jiang, S. Karpf, and B. Jalali, “Time-stretch lidar as a spectrally scanned time-of-flight ranging camera,” Nat. Photonics 14, 14–18 (2020).
[Crossref]

Khachaturian, A.

R. Fatemi, A. Khachaturian, and A. Hajimiri, “Scalable optical phased array with sparse 2D aperture,” in CLEO: Science and Innovations (Optical Society of America, 2018), paper STu4B–6.

Khandaker, M.

C. V. Poulton, M. J. Byrd, P. Russo, E. Timurdogan, M. Khandaker, D. Vermeulen, and M. R. Watts, “Long-range lidar and free-space data communication with high-performance optical phased arrays,” IEEE J. Sel. Top. Quantum Electron. 25, 1–8 (2019).
[Crossref]

C. V. Poulton, P. Russo, B. Moss, M. Khandaker, M. J. Byrd, J. Tran, E. Timurdogan, D. Vermeulen, and M. R. Watts, “Small-form-factor optical phased array module for technology adoption in custom applications,” in CLEO: Applications and Technology (Optical Society of America, 2019), paper JTh5B–6.

Khilo, A.

Kim, W.

Kohno, Y.

Komatsu, K.

Komljenovic, T.

Kumar, R.

D. N. Hutchison, J. Sun, J. K. Doylend, R. Kumar, J. Heck, W. Kim, C. T. Phare, A. Feshali, and H. Rong, “High-resolution aliasing-free optical beam steering,” Optica 3, 887–890 (2016).
[Crossref]

M. T. Wade, F. Pavanello, R. Kumar, C. M. Gentry, A. Atabaki, R. Ram, V. Stojanović, and M. A. Popović, “75% efficient wide bandwidth grating couplers in a 45 nm microelectronics CMOS process,” in Optical Interconnects Conference (OI) (IEEE, 2015), pp. 46–47.

Kwon, K.

Kwong, D.

Landry, J.

Li, N.

Ling, Y.-C.

Lipson, M.

M. Zadka, Y.-C. Chang, A. Mohanty, C. T. Phare, S. P. Roberts, and M. Lipson, “On-chip platform for a phased array with minimal beam divergence and wide field-of-view,” Opt. Express 26, 2528–2534 (2018).
[Crossref]

C. T. Phare, M. C. Shin, S. A. Miller, B. Stern, and M. Lipson, “Silicon optical phased array with high-efficiency beam formation over 180 degree field of view,” arXiv preprint arXiv:1802.04624 (2018).

Magden, E. S.

McManamon, P. F.

P. F. McManamon, P. J. Bos, M. J. Escuti, J. Heikenfeld, S. Serati, H. Xie, and E. A. Watson, “A review of phased array steering for narrow-band electrooptical systems,” Proc. IEEE 97, 1078–1096 (2009).
[Crossref]

Miglo, A.

Miller, S. A.

S. A. Miller, Y.-C. Chang, C. T. Phare, M. C. Shin, M. Zadka, S. P. Roberts, B. Stern, X. Ji, A. Mohanty, O. A. J. Gordillo, and U. D. Dave, “Large-scale optical phased array using a low-power multi-pass silicon photonic platform,” Optica 7, 3–6 (2020).
[Crossref]

C. T. Phare, M. C. Shin, S. A. Miller, B. Stern, and M. Lipson, “Silicon optical phased array with high-efficiency beam formation over 180 degree field of view,” arXiv preprint arXiv:1802.04624 (2018).

Mohanty, A.

Moreira, P.

Moss, B.

C. V. Poulton, P. Russo, B. Moss, M. Khandaker, M. J. Byrd, J. Tran, E. Timurdogan, D. Vermeulen, and M. R. Watts, “Small-form-factor optical phased array module for technology adoption in custom applications,” in CLEO: Applications and Technology (Optical Society of America, 2019), paper JTh5B–6.

C. V. Poulton, P. Russo, E. Timurdogan, M. Whitson, M. J. Byrd, E. Hosseini, B. Moss, Z. Su, D. Vermeulen, and M. R. Watts, “High-performance integrated optical phased arrays for chip-scale beam steering and lidar,” in CLEO: Applications and Technology (Optical Society of America, 2018), paper ATu3R–2.

Myslivets, E.

Nakano, Y.

Notaros, J.

Ozeki, Y.

Paredes, B.

Patterson, P.

Pavanello, F.

M. T. Wade, F. Pavanello, R. Kumar, C. M. Gentry, A. Atabaki, R. Ram, V. Stojanović, and M. A. Popović, “75% efficient wide bandwidth grating couplers in a 45 nm microelectronics CMOS process,” in Optical Interconnects Conference (OI) (IEEE, 2015), pp. 46–47.

Peters, J.

Phare, C. T.

Pintus, P.

Popovic, M.

K. H. Wagner, D. Feldkhun, B. Zhang, N. Dostart, M. Brand, and M. Popović, “Super-resolved interferometric imaging with a self-cohering Si-photonic beam-steering lidar array,” in Digital Holography and Three-Dimensional Imaging (Optical Society of America, 2019), paper M5A–1.

Popovic, M. A.

N. Dostart, M. Brand, B. Zhang, D. Feldkhun, K. Wagner, and M. A. Popović, “Vernier Si-photonic phased array transceiver for grating lobe suppression and extended field-of-view,” in CLEO: Applications and Technology (Optical Society of America, 2019), paper AW3K-2.

M. T. Wade, F. Pavanello, R. Kumar, C. M. Gentry, A. Atabaki, R. Ram, V. Stojanović, and M. A. Popović, “75% efficient wide bandwidth grating couplers in a 45 nm microelectronics CMOS process,” in Optical Interconnects Conference (OI) (IEEE, 2015), pp. 46–47.

Poulton, C. V.

C. V. Poulton, M. J. Byrd, P. Russo, E. Timurdogan, M. Khandaker, D. Vermeulen, and M. R. Watts, “Long-range lidar and free-space data communication with high-performance optical phased arrays,” IEEE J. Sel. Top. Quantum Electron. 25, 1–8 (2019).
[Crossref]

N. Li, D. Vermeulen, Z. Su, E. S. Magden, M. Xin, N. Singh, A. Ruocco, J. Notaros, C. V. Poulton, E. Timurdogan, and C. Baiocco, “Monolithically integrated erbium-doped tunable laser on a CMOS-compatible silicon photonics platform,” Opt. Express 26, 16200–16211 (2018).
[Crossref]

M. Raval, C. V. Poulton, and M. R. Watts, “Unidirectional waveguide grating antennas with uniform emission for optical phased arrays,” Opt. Lett. 42, 2563–2566 (2017).
[Crossref]

C. V. Poulton, A. Yaacobi, D. B. Cole, M. J. Byrd, M. Raval, D. Vermeulen, and M. R. Watts, “Coherent solid-state lidar with silicon photonic optical phased arrays,” Opt. Lett. 42, 4091–4094 (2017).
[Crossref]

C. V. Poulton, M. J. Byrd, M. Raval, Z. Su, N. Li, E. Timurdogan, D. Coolbaugh, D. Vermeulen, and M. R. Watts, “Large-scale silicon nitride nanophotonic phased arrays at infrared and visible wavelengths,” Opt. Lett. 42, 21–24 (2017).
[Crossref]

C. V. Poulton, P. Russo, B. Moss, M. Khandaker, M. J. Byrd, J. Tran, E. Timurdogan, D. Vermeulen, and M. R. Watts, “Small-form-factor optical phased array module for technology adoption in custom applications,” in CLEO: Applications and Technology (Optical Society of America, 2019), paper JTh5B–6.

C. V. Poulton, P. Russo, E. Timurdogan, M. Whitson, M. J. Byrd, E. Hosseini, B. Moss, Z. Su, D. Vermeulen, and M. R. Watts, “High-performance integrated optical phased arrays for chip-scale beam steering and lidar,” in CLEO: Applications and Technology (Optical Society of America, 2018), paper ATu3R–2.

Qubaisi, K. A.

Ram, R.

M. T. Wade, F. Pavanello, R. Kumar, C. M. Gentry, A. Atabaki, R. Ram, V. Stojanović, and M. A. Popović, “75% efficient wide bandwidth grating couplers in a 45 nm microelectronics CMOS process,” in Optical Interconnects Conference (OI) (IEEE, 2015), pp. 46–47.

Raval, M.

Rhodes, W. T.

Roath, C.

Roberts, S. P.

Rong, H.

Ruocco, A.

Russo, P.

C. V. Poulton, M. J. Byrd, P. Russo, E. Timurdogan, M. Khandaker, D. Vermeulen, and M. R. Watts, “Long-range lidar and free-space data communication with high-performance optical phased arrays,” IEEE J. Sel. Top. Quantum Electron. 25, 1–8 (2019).
[Crossref]

C. V. Poulton, P. Russo, B. Moss, M. Khandaker, M. J. Byrd, J. Tran, E. Timurdogan, D. Vermeulen, and M. R. Watts, “Small-form-factor optical phased array module for technology adoption in custom applications,” in CLEO: Applications and Technology (Optical Society of America, 2019), paper JTh5B–6.

C. V. Poulton, P. Russo, E. Timurdogan, M. Whitson, M. J. Byrd, E. Hosseini, B. Moss, Z. Su, D. Vermeulen, and M. R. Watts, “High-performance integrated optical phased arrays for chip-scale beam steering and lidar,” in CLEO: Applications and Technology (Optical Society of America, 2018), paper ATu3R–2.

Sadighi, D.

Safavi-Naeini, A. H.

Sarabalis, C. J.

Sayyah, K.

Schaffner, J.

Serati, S.

P. F. McManamon, P. J. Bos, M. J. Escuti, J. Heikenfeld, S. Serati, H. Xie, and E. A. Watson, “A review of phased array steering for narrow-band electrooptical systems,” Proc. IEEE 97, 1078–1096 (2009).
[Crossref]

Seurin, J.-F.

Shin, M. C.

S. A. Miller, Y.-C. Chang, C. T. Phare, M. C. Shin, M. Zadka, S. P. Roberts, B. Stern, X. Ji, A. Mohanty, O. A. J. Gordillo, and U. D. Dave, “Large-scale optical phased array using a low-power multi-pass silicon photonic platform,” Optica 7, 3–6 (2020).
[Crossref]

C. T. Phare, M. C. Shin, S. A. Miller, B. Stern, and M. Lipson, “Silicon optical phased array with high-efficiency beam formation over 180 degree field of view,” arXiv preprint arXiv:1802.04624 (2018).

Singh, N.

Sitter, D. N.

Smith, B.

Solgaard, O.

Song, G. H.

Stern, B.

S. A. Miller, Y.-C. Chang, C. T. Phare, M. C. Shin, M. Zadka, S. P. Roberts, B. Stern, X. Ji, A. Mohanty, O. A. J. Gordillo, and U. D. Dave, “Large-scale optical phased array using a low-power multi-pass silicon photonic platform,” Optica 7, 3–6 (2020).
[Crossref]

C. T. Phare, M. C. Shin, S. A. Miller, B. Stern, and M. Lipson, “Silicon optical phased array with high-efficiency beam formation over 180 degree field of view,” arXiv preprint arXiv:1802.04624 (2018).

Stojanovic, V.

M. T. Wade, F. Pavanello, R. Kumar, C. M. Gentry, A. Atabaki, R. Ram, V. Stojanović, and M. A. Popović, “75% efficient wide bandwidth grating couplers in a 45 nm microelectronics CMOS process,” in Optical Interconnects Conference (OI) (IEEE, 2015), pp. 46–47.

Su, Z.

Subbaraman, H.

Sun, J.

D. N. Hutchison, J. Sun, J. K. Doylend, R. Kumar, J. Heck, W. Kim, C. T. Phare, A. Feshali, and H. Rong, “High-resolution aliasing-free optical beam steering,” Optica 3, 887–890 (2016).
[Crossref]

J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493, 195–199 (2013).
[Crossref]

Suni, P.

Taha, A. M.

Takashima, Y.

Tan, G.

H. Chen, G. Tan, Y. Huang, Y. Weng, T.-H. Choi, T.-H. Yoon, and S.-T. Wu, “A low voltage liquid crystal phase grating with switchable diffraction angles,” Sci. Rep. 7, 1–8 (2017).
[Crossref]

Tanemura, T.

Tang, R.

Terrab, S.

Timurdogan, E.

C. V. Poulton, M. J. Byrd, P. Russo, E. Timurdogan, M. Khandaker, D. Vermeulen, and M. R. Watts, “Long-range lidar and free-space data communication with high-performance optical phased arrays,” IEEE J. Sel. Top. Quantum Electron. 25, 1–8 (2019).
[Crossref]

N. Li, D. Vermeulen, Z. Su, E. S. Magden, M. Xin, N. Singh, A. Ruocco, J. Notaros, C. V. Poulton, E. Timurdogan, and C. Baiocco, “Monolithically integrated erbium-doped tunable laser on a CMOS-compatible silicon photonics platform,” Opt. Express 26, 16200–16211 (2018).
[Crossref]

C. V. Poulton, M. J. Byrd, M. Raval, Z. Su, N. Li, E. Timurdogan, D. Coolbaugh, D. Vermeulen, and M. R. Watts, “Large-scale silicon nitride nanophotonic phased arrays at infrared and visible wavelengths,” Opt. Lett. 42, 21–24 (2017).
[Crossref]

J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493, 195–199 (2013).
[Crossref]

C. V. Poulton, P. Russo, E. Timurdogan, M. Whitson, M. J. Byrd, E. Hosseini, B. Moss, Z. Su, D. Vermeulen, and M. R. Watts, “High-performance integrated optical phased arrays for chip-scale beam steering and lidar,” in CLEO: Applications and Technology (Optical Society of America, 2018), paper ATu3R–2.

C. V. Poulton, P. Russo, B. Moss, M. Khandaker, M. J. Byrd, J. Tran, E. Timurdogan, D. Vermeulen, and M. R. Watts, “Small-form-factor optical phased array module for technology adoption in custom applications,” in CLEO: Applications and Technology (Optical Society of America, 2019), paper JTh5B–6.

Tomlinson, W. J.

Tran, J.

C. V. Poulton, P. Russo, B. Moss, M. Khandaker, M. J. Byrd, J. Tran, E. Timurdogan, D. Vermeulen, and M. R. Watts, “Small-form-factor optical phased array module for technology adoption in custom applications,” in CLEO: Applications and Technology (Optical Society of America, 2019), paper JTh5B–6.

Triesault, N.

Van Acoleyen, K.

K. Van Acoleyen, W. Bogaerts, and R. Baets, “Two-dimensional dispersive off-chip beam scanner fabricated on silicon-on-insulator,” IEEE Photon. Technol. Lett. 23, 1270–1272 (2011).
[Crossref]

Van Laer, R.

Vermeulen, D.

C. V. Poulton, M. J. Byrd, P. Russo, E. Timurdogan, M. Khandaker, D. Vermeulen, and M. R. Watts, “Long-range lidar and free-space data communication with high-performance optical phased arrays,” IEEE J. Sel. Top. Quantum Electron. 25, 1–8 (2019).
[Crossref]

N. Li, D. Vermeulen, Z. Su, E. S. Magden, M. Xin, N. Singh, A. Ruocco, J. Notaros, C. V. Poulton, E. Timurdogan, and C. Baiocco, “Monolithically integrated erbium-doped tunable laser on a CMOS-compatible silicon photonics platform,” Opt. Express 26, 16200–16211 (2018).
[Crossref]

C. V. Poulton, A. Yaacobi, D. B. Cole, M. J. Byrd, M. Raval, D. Vermeulen, and M. R. Watts, “Coherent solid-state lidar with silicon photonic optical phased arrays,” Opt. Lett. 42, 4091–4094 (2017).
[Crossref]

C. V. Poulton, M. J. Byrd, M. Raval, Z. Su, N. Li, E. Timurdogan, D. Coolbaugh, D. Vermeulen, and M. R. Watts, “Large-scale silicon nitride nanophotonic phased arrays at infrared and visible wavelengths,” Opt. Lett. 42, 21–24 (2017).
[Crossref]

C. V. Poulton, P. Russo, E. Timurdogan, M. Whitson, M. J. Byrd, E. Hosseini, B. Moss, Z. Su, D. Vermeulen, and M. R. Watts, “High-performance integrated optical phased arrays for chip-scale beam steering and lidar,” in CLEO: Applications and Technology (Optical Society of America, 2018), paper ATu3R–2.

C. V. Poulton, P. Russo, B. Moss, M. Khandaker, M. J. Byrd, J. Tran, E. Timurdogan, D. Vermeulen, and M. R. Watts, “Small-form-factor optical phased array module for technology adoption in custom applications,” in CLEO: Applications and Technology (Optical Society of America, 2019), paper JTh5B–6.

Wade, M. T.

M. T. Wade, F. Pavanello, R. Kumar, C. M. Gentry, A. Atabaki, R. Ram, V. Stojanović, and M. A. Popović, “75% efficient wide bandwidth grating couplers in a 45 nm microelectronics CMOS process,” in Optical Interconnects Conference (OI) (IEEE, 2015), pp. 46–47.

Wagner, K.

N. Dostart, M. Brand, B. Zhang, D. Feldkhun, K. Wagner, and M. A. Popović, “Vernier Si-photonic phased array transceiver for grating lobe suppression and extended field-of-view,” in CLEO: Applications and Technology (Optical Society of America, 2019), paper AW3K-2.

Wagner, K. H.

K. H. Wagner, D. Feldkhun, B. Zhang, N. Dostart, M. Brand, and M. Popović, “Super-resolved interferometric imaging with a self-cohering Si-photonic beam-steering lidar array,” in Digital Holography and Three-Dimensional Imaging (Optical Society of America, 2019), paper M5A–1.

Wang, Y.

Watson, A. M.

Watson, E. A.

P. F. McManamon, P. J. Bos, M. J. Escuti, J. Heikenfeld, S. Serati, H. Xie, and E. A. Watson, “A review of phased array steering for narrow-band electrooptical systems,” Proc. IEEE 97, 1078–1096 (2009).
[Crossref]

Watts, M. R.

C. V. Poulton, M. J. Byrd, P. Russo, E. Timurdogan, M. Khandaker, D. Vermeulen, and M. R. Watts, “Long-range lidar and free-space data communication with high-performance optical phased arrays,” IEEE J. Sel. Top. Quantum Electron. 25, 1–8 (2019).
[Crossref]

C. V. Poulton, M. J. Byrd, M. Raval, Z. Su, N. Li, E. Timurdogan, D. Coolbaugh, D. Vermeulen, and M. R. Watts, “Large-scale silicon nitride nanophotonic phased arrays at infrared and visible wavelengths,” Opt. Lett. 42, 21–24 (2017).
[Crossref]

M. Raval, C. V. Poulton, and M. R. Watts, “Unidirectional waveguide grating antennas with uniform emission for optical phased arrays,” Opt. Lett. 42, 2563–2566 (2017).
[Crossref]

C. V. Poulton, A. Yaacobi, D. B. Cole, M. J. Byrd, M. Raval, D. Vermeulen, and M. R. Watts, “Coherent solid-state lidar with silicon photonic optical phased arrays,” Opt. Lett. 42, 4091–4094 (2017).
[Crossref]

J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493, 195–199 (2013).
[Crossref]

C. V. Poulton, P. Russo, E. Timurdogan, M. Whitson, M. J. Byrd, E. Hosseini, B. Moss, Z. Su, D. Vermeulen, and M. R. Watts, “High-performance integrated optical phased arrays for chip-scale beam steering and lidar,” in CLEO: Applications and Technology (Optical Society of America, 2018), paper ATu3R–2.

C. V. Poulton, P. Russo, B. Moss, M. Khandaker, M. J. Byrd, J. Tran, E. Timurdogan, D. Vermeulen, and M. R. Watts, “Small-form-factor optical phased array module for technology adoption in custom applications,” in CLEO: Applications and Technology (Optical Society of America, 2019), paper JTh5B–6.

Weng, Y.

H. Chen, G. Tan, Y. Huang, Y. Weng, T.-H. Choi, T.-H. Yoon, and S.-T. Wu, “A low voltage liquid crystal phase grating with switchable diffraction angles,” Sci. Rep. 7, 1–8 (2017).
[Crossref]

Whaley, G.

White, C.

Whitson, M.

C. V. Poulton, P. Russo, E. Timurdogan, M. Whitson, M. J. Byrd, E. Hosseini, B. Moss, Z. Su, D. Vermeulen, and M. R. Watts, “High-performance integrated optical phased arrays for chip-scale beam steering and lidar,” in CLEO: Applications and Technology (Optical Society of America, 2018), paper ATu3R–2.

Wu, M. C.

Wu, S.-T.

H. Chen, G. Tan, Y. Huang, Y. Weng, T.-H. Choi, T.-H. Yoon, and S.-T. Wu, “A low voltage liquid crystal phase grating with switchable diffraction angles,” Sci. Rep. 7, 1–8 (2017).
[Crossref]

Xie, H.

P. F. McManamon, P. J. Bos, M. J. Escuti, J. Heikenfeld, S. Serati, H. Xie, and E. A. Watson, “A review of phased array steering for narrow-band electrooptical systems,” Proc. IEEE 97, 1078–1096 (2009).
[Crossref]

Xie, W.

W. Xie, T. Komljenovic, J. Huang, and J. Bowers, “Dense III-V/Si phase shifters for optical phased arrays,” in Asia Communications and Photonics Conference (ACP) (IEEE, 2018), pp. 1–3.

Xin, M.

Xu, G.

Xu, X.

Yaacobi, A.

Ylinen, S.

Yoo, S. B.

Yoon, T.-H.

H. Chen, G. Tan, Y. Huang, Y. Weng, T.-H. Choi, T.-H. Yoon, and S.-T. Wu, “A low voltage liquid crystal phase grating with switchable diffraction angles,” Sci. Rep. 7, 1–8 (2017).
[Crossref]

Yu, K.-S.

Zadka, M.

Zafar, H.

Zhang, B.

K. H. Wagner, D. Feldkhun, B. Zhang, N. Dostart, M. Brand, and M. Popović, “Super-resolved interferometric imaging with a self-cohering Si-photonic beam-steering lidar array,” in Digital Holography and Three-Dimensional Imaging (Optical Society of America, 2019), paper M5A–1.

N. Dostart, M. Brand, B. Zhang, D. Feldkhun, K. Wagner, and M. A. Popović, “Vernier Si-photonic phased array transceiver for grating lobe suppression and extended field-of-view,” in CLEO: Applications and Technology (Optical Society of America, 2019), paper AW3K-2.

Zhang, K.

Zhang, X.

Zhang, Y.

Zhou, G.

Appl. Opt. (2)

IEEE J. Sel. Top. Quantum Electron. (1)

C. V. Poulton, M. J. Byrd, P. Russo, E. Timurdogan, M. Khandaker, D. Vermeulen, and M. R. Watts, “Long-range lidar and free-space data communication with high-performance optical phased arrays,” IEEE J. Sel. Top. Quantum Electron. 25, 1–8 (2019).
[Crossref]

IEEE J. Solid-State Circuits (1)

S. Chung, H. Abediasl, and H. Hashemi, “A monolithically integrated large-scale optical phased array in silicon-on-insulator CMOS,” IEEE J. Solid-State Circuits 53, 275–296 (2018).
[Crossref]

IEEE Photon. Technol. Lett. (1)

K. Van Acoleyen, W. Bogaerts, and R. Baets, “Two-dimensional dispersive off-chip beam scanner fabricated on silicon-on-insulator,” IEEE Photon. Technol. Lett. 23, 1270–1272 (2011).
[Crossref]

J. Opt. Soc. Am. A (1)

Nat. Photonics (1)

Y. Jiang, S. Karpf, and B. Jalali, “Time-stretch lidar as a spectrally scanned time-of-flight ranging camera,” Nat. Photonics 14, 14–18 (2020).
[Crossref]

Nature (1)

J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493, 195–199 (2013).
[Crossref]

Opt. Express (14)

K. Sayyah, O. Efimov, P. Patterson, J. Schaffner, C. White, J.-F. Seurin, G. Xu, and A. Miglo, “Two-dimensional pseudo-random optical phased array based on tandem optical injection locking of vertical cavity surface emitting lasers,” Opt. Express 23, 19405–19416 (2015).
[Crossref]

J. Hulme, J. Doylend, M. Heck, J. Peters, M. Davenport, J. Bovington, L. Coldren, and J. Bowers, “Fully integrated hybrid silicon two dimensional beam scanner,” Opt. Express 23, 5861–5874 (2015).
[Crossref]

T. Komljenovic, R. Helkey, L. Coldren, and J. E. Bowers, “Sparse aperiodic arrays for optical beam forming and lidar,” Opt. Express 25, 2511–2528 (2017).
[Crossref]

T. Komljenovic and P. Pintus, “On-chip calibration and control of optical phased arrays,” Opt. Express 26, 3199–3210 (2018).
[Crossref]

M. Zadka, Y.-C. Chang, A. Mohanty, C. T. Phare, S. P. Roberts, and M. Lipson, “On-chip platform for a phased array with minimal beam divergence and wide field-of-view,” Opt. Express 26, 2528–2534 (2018).
[Crossref]

Y. Kohno, K. Komatsu, R. Tang, Y. Ozeki, Y. Nakano, and T. Tanemura, “Ghost imaging using a large-scale silicon photonic phased array chip,” Opt. Express 27, 3817–3823 (2019).
[Crossref]

Y. Zhang, Y.-C. Ling, K. Zhang, C. Gentry, D. Sadighi, G. Whaley, J. Colosimo, P. Suni, and S. B. Yoo, “Sub-wavelength-pitch silicon-photonic optical phased array for large field-of-regard coherent optical beam steering,” Opt. Express 27, 1929–1940 (2019).
[Crossref]

T. Chan, E. Myslivets, and J. E. Ford, “2-Dimensional beamsteering using dispersive deflectors and wavelength tuning,” Opt. Express 16, 14617–14628 (2008).
[Crossref]

H. Gevorgyan, K. A. Qubaisi, M. S. Dahlem, and A. Khilo, “Silicon photonic time-wavelength pulse interleaver for photonic analog-to-digital converters,” Opt. Express 24, 13489–13499 (2016).
[Crossref]

M. Cherchi, S. Ylinen, M. Harjanne, M. Kapulainen, and T. Aalto, “Dramatic size reduction of waveguide bends on a micron-scale silicon photonic platform,” Opt. Express 21, 17814–17823 (2013).
[Crossref]

H. Zafar, P. Moreira, A. M. Taha, B. Paredes, M. S. Dahlem, and A. Khilo, “Compact silicon TE-pass polarizer using adiabatically-bent fully-etched waveguides,” Opt. Express 26, 31850–31860 (2018).
[Crossref]

S. Terrab, A. M. Watson, C. Roath, J. T. Gopinath, and V. M. Bright, “Adaptive electrowetting lens-prism element,” Opt. Express 23, 25838–25845 (2015).
[Crossref]

B. Smith, B. Hellman, A. Gin, A. Espinoza, and Y. Takashima, “Single chip lidar with discrete beam steering by digital micromirror device,” Opt. Express 25, 14732–14745 (2017).
[Crossref]

N. Li, D. Vermeulen, Z. Su, E. S. Magden, M. Xin, N. Singh, A. Ruocco, J. Notaros, C. V. Poulton, E. Timurdogan, and C. Baiocco, “Monolithically integrated erbium-doped tunable laser on a CMOS-compatible silicon photonics platform,” Opt. Express 26, 16200–16211 (2018).
[Crossref]

Opt. Lett. (5)

Optica (3)

Proc. IEEE (1)

P. F. McManamon, P. J. Bos, M. J. Escuti, J. Heikenfeld, S. Serati, H. Xie, and E. A. Watson, “A review of phased array steering for narrow-band electrooptical systems,” Proc. IEEE 97, 1078–1096 (2009).
[Crossref]

Sci. Rep. (1)

H. Chen, G. Tan, Y. Huang, Y. Weng, T.-H. Choi, T.-H. Yoon, and S.-T. Wu, “A low voltage liquid crystal phase grating with switchable diffraction angles,” Sci. Rep. 7, 1–8 (2017).
[Crossref]

Other (9)

C. V. Poulton, P. Russo, B. Moss, M. Khandaker, M. J. Byrd, J. Tran, E. Timurdogan, D. Vermeulen, and M. R. Watts, “Small-form-factor optical phased array module for technology adoption in custom applications,” in CLEO: Applications and Technology (Optical Society of America, 2019), paper JTh5B–6.

N. Dostart, M. Brand, B. Zhang, D. Feldkhun, K. Wagner, and M. A. Popović, “Vernier Si-photonic phased array transceiver for grating lobe suppression and extended field-of-view,” in CLEO: Applications and Technology (Optical Society of America, 2019), paper AW3K-2.

C. T. Phare, M. C. Shin, S. A. Miller, B. Stern, and M. Lipson, “Silicon optical phased array with high-efficiency beam formation over 180 degree field of view,” arXiv preprint arXiv:1802.04624 (2018).

K. H. Wagner, D. Feldkhun, B. Zhang, N. Dostart, M. Brand, and M. Popović, “Super-resolved interferometric imaging with a self-cohering Si-photonic beam-steering lidar array,” in Digital Holography and Three-Dimensional Imaging (Optical Society of America, 2019), paper M5A–1.

Velodyne lidar, “Puck datasheet,” (2018).

R. Fatemi, A. Khachaturian, and A. Hajimiri, “Scalable optical phased array with sparse 2D aperture,” in CLEO: Science and Innovations (Optical Society of America, 2018), paper STu4B–6.

C. V. Poulton, P. Russo, E. Timurdogan, M. Whitson, M. J. Byrd, E. Hosseini, B. Moss, Z. Su, D. Vermeulen, and M. R. Watts, “High-performance integrated optical phased arrays for chip-scale beam steering and lidar,” in CLEO: Applications and Technology (Optical Society of America, 2018), paper ATu3R–2.

W. Xie, T. Komljenovic, J. Huang, and J. Bowers, “Dense III-V/Si phase shifters for optical phased arrays,” in Asia Communications and Photonics Conference (ACP) (IEEE, 2018), pp. 1–3.

M. T. Wade, F. Pavanello, R. Kumar, C. M. Gentry, A. Atabaki, R. Ram, V. Stojanović, and M. A. Popović, “75% efficient wide bandwidth grating couplers in a 45 nm microelectronics CMOS process,” in Optical Interconnects Conference (OI) (IEEE, 2015), pp. 46–47.

Supplementary Material (2)

NameDescription
» Supplement 1       Additional derivations, data, and discussion.
» Visualization 1       200 nm sweep, 1,500 spots at 16.7 GHz frequency steps.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Serpentine optical phased array 2D wavelength steering. (a) Schematic of SOPA tile topology. An array of $M$ rows of grating waveguides (red) are serially connected by flybacks (blue) in a serpentine configuration. Each row has $N$ grating periods. (b) Coarse (slow) wavelength steering. (c) Fine (fast) wavelength steering. (d) For coarse steering along ${\theta _x}$, each grating waveguide diffracts light to an angle determined by the wavelength-dependent tooth-to-tooth phase delay. (e) For fine steering along ${\theta _y}$, the array of gratings diffracts light to an angle determined by the wavelength-dependent row-to-row phase delay.
Fig. 2.
Fig. 2. Images of fabricated SOPA emission pattern and components. (a) Optical micrograph of the fabricated SOPA where the radiating aperture is darker pink. (b) Near-field IR image of the SOPA emission, showing emission decay across the aperture resulting primarily from taper losses. (c) Zoomed view of all SOPA components, centered on the parabolic tapers, with labels for the single-mode adiabatic bends and waveguides. (d) Single-mode adiabatic bends. (e) Two grating waveguides (left and right) and a single flyback waveguide (center). (f) High magnification image of the nitride bar grating. (g) Rendering of a SOPA with nitride bar grating variant. (h) Rendering of a SOPA with silicon sidewall grating variant. (i) Fabrication cross section of the nitride bar grating. (j) SOPA loss budget.
Fig. 3.
Fig. 3. Measurement results of single-tile emission pattern. (a) Example far-field emission pattern of a single tile at one wavelength showing ${5.5^ \circ}$ grating lobe spacing. (b) Zoomed image of the main lobe. (c) Cross section along ${\theta _y}$ of the main lobe with measured full-width half-max (FWHM) of ${0.2^ \circ}$ and side lobes. (d) Cross section along ${\theta _x}$ of the main lobe with measured FWHM of ${0.11^ \circ}$.
Fig. 4.
Fig. 4. Demonstration of 2D wavelength steering with a SOPA. (a) Far-field camera image of a 200 nm scan (see Visualization 1), with only 1500 spots sampled out of 16,500. The grating lobe-limited FOV is ${35.8^ \circ} \times {5.5^ \circ}$. The under-sampling of the scan (every 10th point) and saturated over-exposure applied in post-processing for visibility cause the appearance of diagonal curves that are not the actual scan loci; their curvature arises from the group velocity dispersion. The spot pattern at 1550 nm is shown at the bottom to demonstrate the grating lobe-limited FOV. (b) A ${5^ \circ} \times {5.5^ \circ}$ subsection of the full scan, with only 70 spots sampled. The true scan loci are depicted by the dotted lines as a guide to the eye, and the colors are re-coded for the narrower bandwidth. (c) Wavelength scanning along the fast axis with three non-adjacent spots spaced by 3 GHz. (d) Wavelength scanning along the slow axis with three non-adjacent spots spaced by 82 GHz. (e) Single-wavelength spot at 1550 nm.
Fig. 5.
Fig. 5. Beam steering with tiled apertures. (a) Image of the fabricated SOPA tiled aperture. (b) Illustration of tiled apertures with varying tiling fill-factor (TFF). (c) Radiation patterns of tiled apertures with TFFs from (b) relative to a single tile ($20 \times$ magnified). (d) Relation of TFF to the contribution of tiling lobes to SNR penalty and ambiguity for both direct detection and heterodyne detection.
Fig. 6.
Fig. 6. Demonstration of tiled-aperture operation. (a) Test chip showing $4.2 \times 4.7\,\,{\rm{mm}}^2$ tiled aperture with the tiles used for the interference demonstration highlighted. (b) Comparison of expected and measured fringe visibility demonstrating beam balance and tile coherence. (c) Demonstration of relative phase-shift control (see Supplement 1, Sec. 3) between tiles with visible phase shift asymmetry about the dotted line. (d) Same-angle wavelength steering of both tiles in the slow scanning direction ($\Delta\! f = 82\,\,{\rm{GHz}}$ steps). (e) Same-angle wavelength steering of both tiles in the fast scanning direction ($\Delta\! f = 3\,\,{\rm{GHz}}$ steps).

Tables (1)

Tables Icon

Table 1. Performance Comparison of Demonstrated 2D Integrated Beam Steering Apertures

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

θ x ( f ) = sin 1 ( c 2 π f [ Δ ϕ x ( f ) Λ x + q 2 π Λ x ] ) , q Z = sin 1 ( n e f f ( f ) c f Λ x ) ,
θ y ( f ) = sin 1 ( c f Λ y m o d 2 π [ Δ ϕ y ( f ) ] 2 π ) ,
Δ f x = 2 π ( N Δ ϕ x f ) 1 = c n g ( f ) N Λ x ,
Δ f y = 2 π ( M Δ ϕ y f ) 1 = Δ f x M C ,
T F F a r e a o f e m i t t i n g s u b - a p e r t u r e t o t a l t i l e a r e a .

Metrics