Abstract

Compact and powerful ultrafast light sources at high pulse repetition rates, based on mode-locked near infrared fiber lasers, are now widely available and are being used in applications such as frequency metrology, molecular spectroscopy, and laser micro-machining. The realization of such lasers in the mid-infrared has, however, remained a challenge for many years. Here we report a record-breaking three-stage fiber laser system that uses an Er-doped fluoride fiber as gain medium, delivering W-level few-cycle pulses at 2.8 µm at a repetition rate of 42.1 MHz. A fiber-based seed oscillator, cavity dispersion-managed by a pulse-stretcher, generates near-100-fs mid-infrared pulses with ${\gt}{110}\;{\rm nm}$ spectral bandwidth. These pulses are amplified to an average power of ${\sim}{1}\;{\rm W}$ in a chirp-engineered fiber amplifier, and then compressed to ${\sim}{16}\;{\rm fs}$ in a short length of highly nonlinear ZBLAN fiber, resulting in a more-than-octave-wide spectrum reaching from 1.8 µm to 3.8 µm with a total power of 430 mW.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Jackson, “Towards high-power mid-infrared emission from a fibre laser,” Nat. Photonics 6, 423–431 (2012).
    [Crossref]
  2. A. Schliesser, N. Picqué, and T. Hänsch, “Mid-infrared frequency combs,” Nat. Photonics 6, 440–449 (2012).
    [Crossref]
  3. A. Schliesser, M. Brehm, F. Keilmann, and D. W. van der Weide, “Frequency-comb infrared spectrometer for rapid, remote chemical sensing,” Opt. Express 13, 9029–9038 (2005).
    [Crossref]
  4. J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
    [Crossref]
  5. P. Krogen, H. Suchowski, H. Liang, N. Flemens, K.-H. Hong, F. Kärtner, and J. Moses, “Generation and multi-octave shaping of mid-infrared intense single-cycle pulses,” Nat. Photonics 11, 222–226 (2017).
    [Crossref]
  6. I. Pupeza, D. Sánchez, J. Zhang, N. Lilienfein, M. Seidel, N. Karpowicz, T. Paasch-Colberg, I. Znakovskaya, M. Pescher, W. Schweinberger, V. Pervak, E. Fill, O. Pronin, Z. Wei, F. Krausz, A. Apolonski, and J. Biegert, “High-power sub-two-cycle mid-infrared pulses at 100  MHz repetition rate,” Nat. Photonics 9, 721–724 (2015).
    [Crossref]
  7. T. Butler, N. Lilienfein, J. Xu, N. Nagl, C. Hofer, D. Gerz, and J. Limpert, “Multi-octave spanning, watt-level ultrafast mid-infrared source,” J. Phys. Photon. 1, 044006 (2019).
    [Crossref]
  8. C. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3  µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
    [Crossref]
  9. N. Nagl, K. Mak, Q. Wang, V. Pervak, F. Krausz, and O. Pronin, “Efficient femtosecond mid-infrared generation based on a Cr:ZnS oscillator and step-index fluoride fibers,” Opt. Lett. 44, 2390–2393 (2019).
    [Crossref]
  10. S. Vasilyev, I. Moskalev, V. Smolski, J. Peppers, M. Mirov, A. Muraviev, K. Zawilski, P. Schunemann, S. Mirov, K. Vodopyanov, and V. Gapontsev, “Super-octave longwave mid-infrared coherent transients produced by optical rectification of few-cycle 2.5  µm pulses,” Optica 6, 111–114 (2019).
    [Crossref]
  11. S. Vasilyev, M. Mirov, and V. Gapontsev, “Kerr-lens mode-locked femtosecond polycrystalline Cr2+:ZnS and Cr2+:ZnSe lasers,” Opt. Express 22, 5118–5123 (2014).
    [Crossref]
  12. S. Duval, M. Bernier, V. Fortin, J. Genest, M. Piché, and R. Vallée, “Femtosecond fiber lasers reach the mid-infrared,” Optica 2, 623–626 (2015).
    [Crossref]
  13. S. Antipov, D. Hudson, A. Fuerbach, and S. D. Jackson, “High-power mid-infrared femtosecond fiber laser in the water vapor transmission window,” Optica 3, 1373–1376 (2016).
    [Crossref]
  14. Y. Shen, Y. Wang, H. Chen, K. Luan, M. Tao, and J. Si, “Wavelength-tunable passively mode-locked mid-infrared Er3+-doped ZBLAN fiber laser,” Sci. Rep. 7, 1 (2017).
    [Crossref]
  15. O. Henderson-Sapir, N. Bawden, M. Majewski, R. Woodward, D. Ottaway, and S. Jackson, “Mode-locked and tunable fiber laser at the 3.5 µm band using frequency-shifted feedback,” Opt. Lett. 45, 224–227 (2020).
    [Crossref]
  16. M. Fermann and I. Hartl, “Ultrafast fibre lasers,” Nat. Photonics 7, 868–874 (2013).
    [Crossref]
  17. J. Huang, M. Pang, X. Jiang, W. He, and P. St. J. Russell, “Route from single-pulse to multi-pulse states in a mid-infrared soliton fiber laser,” Opt. Express 27, 26392–26404 (2019).
    [Crossref]
  18. R. I. Woodward, D. D. Hudson, A. Fuerbach, and S. D. Jackson, “Generation of 70-fs pulses at 2.86  µm from a mid-infrared fiber laser,” Opt. Lett. 42, 4893–4896 (2017).
    [Crossref]
  19. O. Martinez, “3000 times grating compressor with positive group velocity dispersion: application to fiber compensation in 1.3–1.6  µm region,” IEEE J. Quantum Electron. 23, 59–64 (1987).
    [Crossref]
  20. M. E. Fermann, “Passive mode locking by using nonlinear polarization evolution in a polarization-maintaining erbium-doped fiber,” Opt. Lett. 18, 894–896 (1993).
    [Crossref]
  21. K. Kieu, W. H. Renninger, A. Chong, and F. W. Wise, “Sub-100  fs pulses at watt-level powers from a dissipative-soliton fiber laser,” Opt. Lett. 34, 593–595 (2009).
    [Crossref]
  22. H. A. Haus and A. Mecozzi, “Noise of mode-locked lasers,” IEEE J. Quantum Electron. 29, 983–996 (1993).
    [Crossref]
  23. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2007).
  24. J. P. Gordon, “Theory of the soliton self-frequency shift,” Opt. Lett. 11, 662–664 (1986).
    [Crossref]
  25. J. Travers, J. Stone, A. Rulkov, B. Cumberland, A. George, S. Popov, J. Knight, and J. Taylor, “Optical pulse compression in dispersion decreasing photonic crystal fiber,” Opt. Express 15, 13203–13211 (2007).
    [Crossref]

2020 (1)

2019 (4)

2017 (3)

P. Krogen, H. Suchowski, H. Liang, N. Flemens, K.-H. Hong, F. Kärtner, and J. Moses, “Generation and multi-octave shaping of mid-infrared intense single-cycle pulses,” Nat. Photonics 11, 222–226 (2017).
[Crossref]

R. I. Woodward, D. D. Hudson, A. Fuerbach, and S. D. Jackson, “Generation of 70-fs pulses at 2.86  µm from a mid-infrared fiber laser,” Opt. Lett. 42, 4893–4896 (2017).
[Crossref]

Y. Shen, Y. Wang, H. Chen, K. Luan, M. Tao, and J. Si, “Wavelength-tunable passively mode-locked mid-infrared Er3+-doped ZBLAN fiber laser,” Sci. Rep. 7, 1 (2017).
[Crossref]

2016 (1)

2015 (2)

S. Duval, M. Bernier, V. Fortin, J. Genest, M. Piché, and R. Vallée, “Femtosecond fiber lasers reach the mid-infrared,” Optica 2, 623–626 (2015).
[Crossref]

I. Pupeza, D. Sánchez, J. Zhang, N. Lilienfein, M. Seidel, N. Karpowicz, T. Paasch-Colberg, I. Znakovskaya, M. Pescher, W. Schweinberger, V. Pervak, E. Fill, O. Pronin, Z. Wei, F. Krausz, A. Apolonski, and J. Biegert, “High-power sub-two-cycle mid-infrared pulses at 100  MHz repetition rate,” Nat. Photonics 9, 721–724 (2015).
[Crossref]

2014 (2)

C. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3  µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

S. Vasilyev, M. Mirov, and V. Gapontsev, “Kerr-lens mode-locked femtosecond polycrystalline Cr2+:ZnS and Cr2+:ZnSe lasers,” Opt. Express 22, 5118–5123 (2014).
[Crossref]

2013 (1)

M. Fermann and I. Hartl, “Ultrafast fibre lasers,” Nat. Photonics 7, 868–874 (2013).
[Crossref]

2012 (2)

S. Jackson, “Towards high-power mid-infrared emission from a fibre laser,” Nat. Photonics 6, 423–431 (2012).
[Crossref]

A. Schliesser, N. Picqué, and T. Hänsch, “Mid-infrared frequency combs,” Nat. Photonics 6, 440–449 (2012).
[Crossref]

2009 (1)

2007 (1)

2005 (1)

1994 (1)

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
[Crossref]

1993 (2)

1987 (1)

O. Martinez, “3000 times grating compressor with positive group velocity dispersion: application to fiber compensation in 1.3–1.6  µm region,” IEEE J. Quantum Electron. 23, 59–64 (1987).
[Crossref]

1986 (1)

Abdel-Moneim, N.

C. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3  µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2007).

Antipov, S.

Apolonski, A.

I. Pupeza, D. Sánchez, J. Zhang, N. Lilienfein, M. Seidel, N. Karpowicz, T. Paasch-Colberg, I. Znakovskaya, M. Pescher, W. Schweinberger, V. Pervak, E. Fill, O. Pronin, Z. Wei, F. Krausz, A. Apolonski, and J. Biegert, “High-power sub-two-cycle mid-infrared pulses at 100  MHz repetition rate,” Nat. Photonics 9, 721–724 (2015).
[Crossref]

Bang, O.

C. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3  µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Bawden, N.

Benson, T.

C. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3  µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Bernier, M.

Biegert, J.

I. Pupeza, D. Sánchez, J. Zhang, N. Lilienfein, M. Seidel, N. Karpowicz, T. Paasch-Colberg, I. Znakovskaya, M. Pescher, W. Schweinberger, V. Pervak, E. Fill, O. Pronin, Z. Wei, F. Krausz, A. Apolonski, and J. Biegert, “High-power sub-two-cycle mid-infrared pulses at 100  MHz repetition rate,” Nat. Photonics 9, 721–724 (2015).
[Crossref]

Brehm, M.

Butler, T.

T. Butler, N. Lilienfein, J. Xu, N. Nagl, C. Hofer, D. Gerz, and J. Limpert, “Multi-octave spanning, watt-level ultrafast mid-infrared source,” J. Phys. Photon. 1, 044006 (2019).
[Crossref]

Capasso, F.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
[Crossref]

Chen, H.

Y. Shen, Y. Wang, H. Chen, K. Luan, M. Tao, and J. Si, “Wavelength-tunable passively mode-locked mid-infrared Er3+-doped ZBLAN fiber laser,” Sci. Rep. 7, 1 (2017).
[Crossref]

Cho, A. Y.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
[Crossref]

Chong, A.

Cumberland, B.

Dupont, S.

C. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3  µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Duval, S.

Faist, J.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
[Crossref]

Fermann, M.

M. Fermann and I. Hartl, “Ultrafast fibre lasers,” Nat. Photonics 7, 868–874 (2013).
[Crossref]

Fermann, M. E.

Fill, E.

I. Pupeza, D. Sánchez, J. Zhang, N. Lilienfein, M. Seidel, N. Karpowicz, T. Paasch-Colberg, I. Znakovskaya, M. Pescher, W. Schweinberger, V. Pervak, E. Fill, O. Pronin, Z. Wei, F. Krausz, A. Apolonski, and J. Biegert, “High-power sub-two-cycle mid-infrared pulses at 100  MHz repetition rate,” Nat. Photonics 9, 721–724 (2015).
[Crossref]

Flemens, N.

P. Krogen, H. Suchowski, H. Liang, N. Flemens, K.-H. Hong, F. Kärtner, and J. Moses, “Generation and multi-octave shaping of mid-infrared intense single-cycle pulses,” Nat. Photonics 11, 222–226 (2017).
[Crossref]

Fortin, V.

Fuerbach, A.

Furniss, D.

C. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3  µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Gapontsev, V.

Genest, J.

George, A.

Gerz, D.

T. Butler, N. Lilienfein, J. Xu, N. Nagl, C. Hofer, D. Gerz, and J. Limpert, “Multi-octave spanning, watt-level ultrafast mid-infrared source,” J. Phys. Photon. 1, 044006 (2019).
[Crossref]

Gordon, J. P.

Hänsch, T.

A. Schliesser, N. Picqué, and T. Hänsch, “Mid-infrared frequency combs,” Nat. Photonics 6, 440–449 (2012).
[Crossref]

Hartl, I.

M. Fermann and I. Hartl, “Ultrafast fibre lasers,” Nat. Photonics 7, 868–874 (2013).
[Crossref]

Haus, H. A.

H. A. Haus and A. Mecozzi, “Noise of mode-locked lasers,” IEEE J. Quantum Electron. 29, 983–996 (1993).
[Crossref]

He, W.

Henderson-Sapir, O.

Hofer, C.

T. Butler, N. Lilienfein, J. Xu, N. Nagl, C. Hofer, D. Gerz, and J. Limpert, “Multi-octave spanning, watt-level ultrafast mid-infrared source,” J. Phys. Photon. 1, 044006 (2019).
[Crossref]

Hong, K.-H.

P. Krogen, H. Suchowski, H. Liang, N. Flemens, K.-H. Hong, F. Kärtner, and J. Moses, “Generation and multi-octave shaping of mid-infrared intense single-cycle pulses,” Nat. Photonics 11, 222–226 (2017).
[Crossref]

Huang, J.

Hudson, D.

Hudson, D. D.

Hutchinson, A. L.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
[Crossref]

Jackson, S.

Jackson, S. D.

Jiang, X.

Karpowicz, N.

I. Pupeza, D. Sánchez, J. Zhang, N. Lilienfein, M. Seidel, N. Karpowicz, T. Paasch-Colberg, I. Znakovskaya, M. Pescher, W. Schweinberger, V. Pervak, E. Fill, O. Pronin, Z. Wei, F. Krausz, A. Apolonski, and J. Biegert, “High-power sub-two-cycle mid-infrared pulses at 100  MHz repetition rate,” Nat. Photonics 9, 721–724 (2015).
[Crossref]

Kärtner, F.

P. Krogen, H. Suchowski, H. Liang, N. Flemens, K.-H. Hong, F. Kärtner, and J. Moses, “Generation and multi-octave shaping of mid-infrared intense single-cycle pulses,” Nat. Photonics 11, 222–226 (2017).
[Crossref]

Keilmann, F.

Kieu, K.

Knight, J.

Krausz, F.

N. Nagl, K. Mak, Q. Wang, V. Pervak, F. Krausz, and O. Pronin, “Efficient femtosecond mid-infrared generation based on a Cr:ZnS oscillator and step-index fluoride fibers,” Opt. Lett. 44, 2390–2393 (2019).
[Crossref]

I. Pupeza, D. Sánchez, J. Zhang, N. Lilienfein, M. Seidel, N. Karpowicz, T. Paasch-Colberg, I. Znakovskaya, M. Pescher, W. Schweinberger, V. Pervak, E. Fill, O. Pronin, Z. Wei, F. Krausz, A. Apolonski, and J. Biegert, “High-power sub-two-cycle mid-infrared pulses at 100  MHz repetition rate,” Nat. Photonics 9, 721–724 (2015).
[Crossref]

Krogen, P.

P. Krogen, H. Suchowski, H. Liang, N. Flemens, K.-H. Hong, F. Kärtner, and J. Moses, “Generation and multi-octave shaping of mid-infrared intense single-cycle pulses,” Nat. Photonics 11, 222–226 (2017).
[Crossref]

Kubat, I.

C. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3  µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Liang, H.

P. Krogen, H. Suchowski, H. Liang, N. Flemens, K.-H. Hong, F. Kärtner, and J. Moses, “Generation and multi-octave shaping of mid-infrared intense single-cycle pulses,” Nat. Photonics 11, 222–226 (2017).
[Crossref]

Lilienfein, N.

T. Butler, N. Lilienfein, J. Xu, N. Nagl, C. Hofer, D. Gerz, and J. Limpert, “Multi-octave spanning, watt-level ultrafast mid-infrared source,” J. Phys. Photon. 1, 044006 (2019).
[Crossref]

I. Pupeza, D. Sánchez, J. Zhang, N. Lilienfein, M. Seidel, N. Karpowicz, T. Paasch-Colberg, I. Znakovskaya, M. Pescher, W. Schweinberger, V. Pervak, E. Fill, O. Pronin, Z. Wei, F. Krausz, A. Apolonski, and J. Biegert, “High-power sub-two-cycle mid-infrared pulses at 100  MHz repetition rate,” Nat. Photonics 9, 721–724 (2015).
[Crossref]

Limpert, J.

T. Butler, N. Lilienfein, J. Xu, N. Nagl, C. Hofer, D. Gerz, and J. Limpert, “Multi-octave spanning, watt-level ultrafast mid-infrared source,” J. Phys. Photon. 1, 044006 (2019).
[Crossref]

Luan, K.

Y. Shen, Y. Wang, H. Chen, K. Luan, M. Tao, and J. Si, “Wavelength-tunable passively mode-locked mid-infrared Er3+-doped ZBLAN fiber laser,” Sci. Rep. 7, 1 (2017).
[Crossref]

Majewski, M.

Mak, K.

Martinez, O.

O. Martinez, “3000 times grating compressor with positive group velocity dispersion: application to fiber compensation in 1.3–1.6  µm region,” IEEE J. Quantum Electron. 23, 59–64 (1987).
[Crossref]

Mecozzi, A.

H. A. Haus and A. Mecozzi, “Noise of mode-locked lasers,” IEEE J. Quantum Electron. 29, 983–996 (1993).
[Crossref]

Mirov, M.

Mirov, S.

Møller, U.

C. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3  µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Moses, J.

P. Krogen, H. Suchowski, H. Liang, N. Flemens, K.-H. Hong, F. Kärtner, and J. Moses, “Generation and multi-octave shaping of mid-infrared intense single-cycle pulses,” Nat. Photonics 11, 222–226 (2017).
[Crossref]

Moskalev, I.

Muraviev, A.

Nagl, N.

N. Nagl, K. Mak, Q. Wang, V. Pervak, F. Krausz, and O. Pronin, “Efficient femtosecond mid-infrared generation based on a Cr:ZnS oscillator and step-index fluoride fibers,” Opt. Lett. 44, 2390–2393 (2019).
[Crossref]

T. Butler, N. Lilienfein, J. Xu, N. Nagl, C. Hofer, D. Gerz, and J. Limpert, “Multi-octave spanning, watt-level ultrafast mid-infrared source,” J. Phys. Photon. 1, 044006 (2019).
[Crossref]

Ottaway, D.

Paasch-Colberg, T.

I. Pupeza, D. Sánchez, J. Zhang, N. Lilienfein, M. Seidel, N. Karpowicz, T. Paasch-Colberg, I. Znakovskaya, M. Pescher, W. Schweinberger, V. Pervak, E. Fill, O. Pronin, Z. Wei, F. Krausz, A. Apolonski, and J. Biegert, “High-power sub-two-cycle mid-infrared pulses at 100  MHz repetition rate,” Nat. Photonics 9, 721–724 (2015).
[Crossref]

Pang, M.

Peppers, J.

Pervak, V.

N. Nagl, K. Mak, Q. Wang, V. Pervak, F. Krausz, and O. Pronin, “Efficient femtosecond mid-infrared generation based on a Cr:ZnS oscillator and step-index fluoride fibers,” Opt. Lett. 44, 2390–2393 (2019).
[Crossref]

I. Pupeza, D. Sánchez, J. Zhang, N. Lilienfein, M. Seidel, N. Karpowicz, T. Paasch-Colberg, I. Znakovskaya, M. Pescher, W. Schweinberger, V. Pervak, E. Fill, O. Pronin, Z. Wei, F. Krausz, A. Apolonski, and J. Biegert, “High-power sub-two-cycle mid-infrared pulses at 100  MHz repetition rate,” Nat. Photonics 9, 721–724 (2015).
[Crossref]

Pescher, M.

I. Pupeza, D. Sánchez, J. Zhang, N. Lilienfein, M. Seidel, N. Karpowicz, T. Paasch-Colberg, I. Znakovskaya, M. Pescher, W. Schweinberger, V. Pervak, E. Fill, O. Pronin, Z. Wei, F. Krausz, A. Apolonski, and J. Biegert, “High-power sub-two-cycle mid-infrared pulses at 100  MHz repetition rate,” Nat. Photonics 9, 721–724 (2015).
[Crossref]

Petersen, C.

C. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3  µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Piché, M.

Picqué, N.

A. Schliesser, N. Picqué, and T. Hänsch, “Mid-infrared frequency combs,” Nat. Photonics 6, 440–449 (2012).
[Crossref]

Popov, S.

Pronin, O.

N. Nagl, K. Mak, Q. Wang, V. Pervak, F. Krausz, and O. Pronin, “Efficient femtosecond mid-infrared generation based on a Cr:ZnS oscillator and step-index fluoride fibers,” Opt. Lett. 44, 2390–2393 (2019).
[Crossref]

I. Pupeza, D. Sánchez, J. Zhang, N. Lilienfein, M. Seidel, N. Karpowicz, T. Paasch-Colberg, I. Znakovskaya, M. Pescher, W. Schweinberger, V. Pervak, E. Fill, O. Pronin, Z. Wei, F. Krausz, A. Apolonski, and J. Biegert, “High-power sub-two-cycle mid-infrared pulses at 100  MHz repetition rate,” Nat. Photonics 9, 721–724 (2015).
[Crossref]

Pupeza, I.

I. Pupeza, D. Sánchez, J. Zhang, N. Lilienfein, M. Seidel, N. Karpowicz, T. Paasch-Colberg, I. Znakovskaya, M. Pescher, W. Schweinberger, V. Pervak, E. Fill, O. Pronin, Z. Wei, F. Krausz, A. Apolonski, and J. Biegert, “High-power sub-two-cycle mid-infrared pulses at 100  MHz repetition rate,” Nat. Photonics 9, 721–724 (2015).
[Crossref]

Ramsay, J.

C. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3  µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Renninger, W. H.

Rulkov, A.

Sánchez, D.

I. Pupeza, D. Sánchez, J. Zhang, N. Lilienfein, M. Seidel, N. Karpowicz, T. Paasch-Colberg, I. Znakovskaya, M. Pescher, W. Schweinberger, V. Pervak, E. Fill, O. Pronin, Z. Wei, F. Krausz, A. Apolonski, and J. Biegert, “High-power sub-two-cycle mid-infrared pulses at 100  MHz repetition rate,” Nat. Photonics 9, 721–724 (2015).
[Crossref]

Schliesser, A.

Schunemann, P.

Schweinberger, W.

I. Pupeza, D. Sánchez, J. Zhang, N. Lilienfein, M. Seidel, N. Karpowicz, T. Paasch-Colberg, I. Znakovskaya, M. Pescher, W. Schweinberger, V. Pervak, E. Fill, O. Pronin, Z. Wei, F. Krausz, A. Apolonski, and J. Biegert, “High-power sub-two-cycle mid-infrared pulses at 100  MHz repetition rate,” Nat. Photonics 9, 721–724 (2015).
[Crossref]

Seddon, A.

C. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3  µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Seidel, M.

I. Pupeza, D. Sánchez, J. Zhang, N. Lilienfein, M. Seidel, N. Karpowicz, T. Paasch-Colberg, I. Znakovskaya, M. Pescher, W. Schweinberger, V. Pervak, E. Fill, O. Pronin, Z. Wei, F. Krausz, A. Apolonski, and J. Biegert, “High-power sub-two-cycle mid-infrared pulses at 100  MHz repetition rate,” Nat. Photonics 9, 721–724 (2015).
[Crossref]

Shen, Y.

Y. Shen, Y. Wang, H. Chen, K. Luan, M. Tao, and J. Si, “Wavelength-tunable passively mode-locked mid-infrared Er3+-doped ZBLAN fiber laser,” Sci. Rep. 7, 1 (2017).
[Crossref]

Si, J.

Y. Shen, Y. Wang, H. Chen, K. Luan, M. Tao, and J. Si, “Wavelength-tunable passively mode-locked mid-infrared Er3+-doped ZBLAN fiber laser,” Sci. Rep. 7, 1 (2017).
[Crossref]

Sirtori, C.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
[Crossref]

Sivco, D. L.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
[Crossref]

Smolski, V.

St. J. Russell, P.

Stone, J.

Suchowski, H.

P. Krogen, H. Suchowski, H. Liang, N. Flemens, K.-H. Hong, F. Kärtner, and J. Moses, “Generation and multi-octave shaping of mid-infrared intense single-cycle pulses,” Nat. Photonics 11, 222–226 (2017).
[Crossref]

Sujecki, S.

C. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3  µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Tang, Z.

C. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3  µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Tao, M.

Y. Shen, Y. Wang, H. Chen, K. Luan, M. Tao, and J. Si, “Wavelength-tunable passively mode-locked mid-infrared Er3+-doped ZBLAN fiber laser,” Sci. Rep. 7, 1 (2017).
[Crossref]

Taylor, J.

Travers, J.

Vallée, R.

van der Weide, D. W.

Vasilyev, S.

Vodopyanov, K.

Wang, Q.

Wang, Y.

Y. Shen, Y. Wang, H. Chen, K. Luan, M. Tao, and J. Si, “Wavelength-tunable passively mode-locked mid-infrared Er3+-doped ZBLAN fiber laser,” Sci. Rep. 7, 1 (2017).
[Crossref]

Wei, Z.

I. Pupeza, D. Sánchez, J. Zhang, N. Lilienfein, M. Seidel, N. Karpowicz, T. Paasch-Colberg, I. Znakovskaya, M. Pescher, W. Schweinberger, V. Pervak, E. Fill, O. Pronin, Z. Wei, F. Krausz, A. Apolonski, and J. Biegert, “High-power sub-two-cycle mid-infrared pulses at 100  MHz repetition rate,” Nat. Photonics 9, 721–724 (2015).
[Crossref]

Wise, F. W.

Woodward, R.

Woodward, R. I.

Xu, J.

T. Butler, N. Lilienfein, J. Xu, N. Nagl, C. Hofer, D. Gerz, and J. Limpert, “Multi-octave spanning, watt-level ultrafast mid-infrared source,” J. Phys. Photon. 1, 044006 (2019).
[Crossref]

Zawilski, K.

Zhang, J.

I. Pupeza, D. Sánchez, J. Zhang, N. Lilienfein, M. Seidel, N. Karpowicz, T. Paasch-Colberg, I. Znakovskaya, M. Pescher, W. Schweinberger, V. Pervak, E. Fill, O. Pronin, Z. Wei, F. Krausz, A. Apolonski, and J. Biegert, “High-power sub-two-cycle mid-infrared pulses at 100  MHz repetition rate,” Nat. Photonics 9, 721–724 (2015).
[Crossref]

Zhou, B.

C. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3  µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Znakovskaya, I.

I. Pupeza, D. Sánchez, J. Zhang, N. Lilienfein, M. Seidel, N. Karpowicz, T. Paasch-Colberg, I. Znakovskaya, M. Pescher, W. Schweinberger, V. Pervak, E. Fill, O. Pronin, Z. Wei, F. Krausz, A. Apolonski, and J. Biegert, “High-power sub-two-cycle mid-infrared pulses at 100  MHz repetition rate,” Nat. Photonics 9, 721–724 (2015).
[Crossref]

IEEE J. Quantum Electron. (2)

O. Martinez, “3000 times grating compressor with positive group velocity dispersion: application to fiber compensation in 1.3–1.6  µm region,” IEEE J. Quantum Electron. 23, 59–64 (1987).
[Crossref]

H. A. Haus and A. Mecozzi, “Noise of mode-locked lasers,” IEEE J. Quantum Electron. 29, 983–996 (1993).
[Crossref]

J. Phys. Photon. (1)

T. Butler, N. Lilienfein, J. Xu, N. Nagl, C. Hofer, D. Gerz, and J. Limpert, “Multi-octave spanning, watt-level ultrafast mid-infrared source,” J. Phys. Photon. 1, 044006 (2019).
[Crossref]

Nat. Photonics (6)

C. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3  µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

S. Jackson, “Towards high-power mid-infrared emission from a fibre laser,” Nat. Photonics 6, 423–431 (2012).
[Crossref]

A. Schliesser, N. Picqué, and T. Hänsch, “Mid-infrared frequency combs,” Nat. Photonics 6, 440–449 (2012).
[Crossref]

P. Krogen, H. Suchowski, H. Liang, N. Flemens, K.-H. Hong, F. Kärtner, and J. Moses, “Generation and multi-octave shaping of mid-infrared intense single-cycle pulses,” Nat. Photonics 11, 222–226 (2017).
[Crossref]

I. Pupeza, D. Sánchez, J. Zhang, N. Lilienfein, M. Seidel, N. Karpowicz, T. Paasch-Colberg, I. Znakovskaya, M. Pescher, W. Schweinberger, V. Pervak, E. Fill, O. Pronin, Z. Wei, F. Krausz, A. Apolonski, and J. Biegert, “High-power sub-two-cycle mid-infrared pulses at 100  MHz repetition rate,” Nat. Photonics 9, 721–724 (2015).
[Crossref]

M. Fermann and I. Hartl, “Ultrafast fibre lasers,” Nat. Photonics 7, 868–874 (2013).
[Crossref]

Opt. Express (4)

Opt. Lett. (6)

Optica (3)

Sci. Rep. (1)

Y. Shen, Y. Wang, H. Chen, K. Luan, M. Tao, and J. Si, “Wavelength-tunable passively mode-locked mid-infrared Er3+-doped ZBLAN fiber laser,” Sci. Rep. 7, 1 (2017).
[Crossref]

Science (1)

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
[Crossref]

Other (1)

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2007).

Supplementary Material (1)

NameDescription
» Supplement 1       Supplemental document

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Three-stage fiber laser set-up. For details of the laser diagnostics, see section S1 in Supplement 1. DM, dichroic mirror; HWP, half-wave plate; QWP, quarter-wave plate; ISO, isolator; POL, polarizer; MS, Martinez stretcher.
Fig. 2.
Fig. 2. Performance of the seed oscillator. (a) and (b) Measured optical spectrum and autocorrelation function of the output pulses when the oscillator was operating in the soliton regime. (c) and (d) Optical spectrum and autocorrelation function of the laser pulses in the average-soliton regime. (e) Measured optical spectrum in the stretched-pulse regime. The inset shows the autocorrelation function of the pulses, measured directly at the oscillator output. (f) Output pulse train of the frequency doubled laser output, recorded by a 33 GHz oscilloscope. (g) FFT spectrum of the second-harmonic signal. (h) Simulated pulse energy evolution around the laser cavity. (i) Simulated variation in pulse duration and 3 dB spectral bandwidth around the cavity.
Fig. 3.
Fig. 3. Measured optical spectrum and duration of the laser pulses from the second-stage fiber amplifier. (a) The optical spectrum measured at the amplifier output has a FWHM bandwidth of ${\sim}{200}\;{\rm nm}$ (in purple and seed laser spectrum in green), for an output power of 1.2 W and a grating-mirror offset of 40.8 mm. (b) Measured autocorrelation function of the laser pulses directly at the amplifier output. (c) Compensation of the residual chirp using several few-mm-thick ${\rm CaF}_{2}$ or ZnSe windows. (d) The shortest pulse duration (82 fs) was obtained using a 5-mm-think ${\rm CaF}_{2}$ window. (e) Spectrum and (f) pulse duration at decreasing average power levels. As the signal power decreases, the nonlinear spectral broadening weakens. As a result, gain filtering dominates spectral shaping during amplification.
Fig. 4.
Fig. 4. Soliton self-compression in the highly-nonlinear ZBLAN fiber (soliton order ${\sim}{5}$). (a)–(c) Measured (blue) and simulated (green) optical spectra at different ZBLAN fiber lengths. (d)–(e) Simulated temporal and spectral evolution of the laser pulse in the ZBLAN fiber.
Fig. 5.
Fig. 5. SH-FROG measurements of the laser pulses emerging from a 90-mm-long highly-nonlinear ZBLAN fiber. (a) Measured and (b) retrieved SH-FROG traces. (c) Retrieved temporal intensity (blue) and phase (green) of the compressed pulse. (d) Spectral profile (blue) and phase (green) of the compressed pulse, retrieved from the SH-FROG trace. The power spectral density, measured using the FTIR, is also plotted in orange for comparison.