Abstract

Multi-port beam splitters are cornerstone devices for high-dimensional quantum information tasks, which can outperform the two-dimensional ones. Nonetheless, the fabrication of such devices has proven to be challenging with progress only recently achieved with the advent of integrated photonics. Here, we report on the production of high-quality $N \times N$ (with $N = 4,7$) multi-port beam splitters based on a new scheme for manipulating multi-core optical fibers. By exploring their compatibility with optical fiber components, we create four-dimensional quantum systems and implement the measurement-device-independent random number generation task with a programmable four-arm interferometer operating at a 2 MHz repetition rate. Due to the high visibilities observed, we surpass the one-bit limit of binary protocols and attain 1.23 bits of certified private randomness per experimental round. Our result demonstrates that fast switching, low loss, and high optical quality for high-dimensional quantum information can be simultaneously achieved with multi-core fiber technology.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7, 354–362 (2013).
    [Crossref]
  2. S. Iano, T. Sato, S. Sentsui, T. Kuroha, and Y. Nishimura, “Multicore optical fiber,” in Optical Fiber Communication Conference (OFC), OSA Technical Digest (Optical Society of America, 1979), paper WB1.
  3. K. Saitoh and S. Matsuo, “Multicore fiber technology,” J. Lightwave Technol. 34, 55 (2016).
    [Crossref]
  4. P. Sillard, M. Bigot-Astruc, and D. Molin, “Few-mode fibers for mode-division-multiplexed systems,” J. Lightwave Technol. 32, 2824 (2014).
    [Crossref]
  5. N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340, 1545–1548 (2013).
    [Crossref]
  6. C. Brunet, B. Ung, L. Wang, Y. Messaddeq, S. LaRochelle, and L. A. Rusch, “Design of a family of ring-core fibers for OAM transmission studies,” Opt. Express 23, 10553 (2015).
    [Crossref]
  7. P. Gregg, P. Kristensen, and S. Ramachandran, “Conservation of orbital angular momentum in air-core optical fibers,” Optica 2, 267–270 (2015).
    [Crossref]
  8. L. Zhu, G. Zhu, A. Wang, L. Wang, J. Ai, S. Chen, C. Du, J. Liu, S. Yu, and J. Wang, “18  km low-crosstalk OAM +WDM transmission with 224 individual channels enabled by a ring-core fiber with large high-order mode group separation,” Opt. Lett. 43, 1890–1893 (2018).
    [Crossref]
  9. N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
    [Crossref]
  10. H.-K. Lo, M. Curty, and K. Tamaki, “Secure quantum key distribution,” Nat. Photonics 8, 595–604 (2014).
    [Crossref]
  11. E. Diamanti, H.-K. Lo, B. Qi, and Z. Yuan, “Practical challenges in quantum key distribution,” npj Quantum Inf. 2, 16025 (2016).
    [Crossref]
  12. F. Xu, X. Ma, Q. Zhang, H.-K. Lo, and J.-W. Pan, “Quantum cryptography with realistic devices,” arXiv:1903.09051 (2019).
  13. S. Pirandola, U. L. Andersen, L. Banchi, M. Berta, D. Bunandar, R. Colbeck, D. Englund, T. Gehring, C. Lupo, C. Ottaviani, J. Pereira, M. Razavi, J. S. Shaari, M. Tomamichel, V. C. Usenko, G. Vallone, P. Villoresi, and P. Wallden, “Advances in quantum cryptography,” arXiv:1906.01645v1 [quant-ph] (2019).
  14. G. B. Xavier and G. Lima, “Quantum information processing with space-division multiplexing optical fibres,” Commun. Phys. 3, 9 (2020).
    [Crossref]
  15. J. F. Dynes, S. J. Kindness, S. W.-B. Tam, A. Plews, A. W. Sharpe, M. Lucamarini, B. Fröhlich, Z. L. Yuan, R. V. Penty, and A. J. Shields, “Quantum key distribution over multicore fiber,” Opt. Express 24, 8081–8087 (2016).
    [Crossref]
  16. R. Lin, A. Udalcovs, O. Ozolins, X. Pang, L. Gan, L. Shen, M. Tang, S. Fu, S. Popov, C. Yang, W. Tong, D. Liu, T. Ferreira da Silva, G. B. Xavier, and J. Chen, “Telecom compatibility validation of quantum key distribution co-existing with 112  Gbps/λ/core data transmission in non-trench and trench-assistant multicore fibers,” in European Conference on Optical Communications (ECOC) (2018) paper We1A.3.
  17. E. Hugues-Salas, R. Wang, G. T. Kanellos, R. Nejabati, and D. Simeonidou, “Co-existence of 9.6  Tb/s classical channels and a quantum key distribution (QKD) channel over a 7-core multicore optical fibre,” in IEEE British and Irish Conference on Optics and Photonics (BICOP) (IEEE, 2019).
  18. C. Cai, Y. Sun, Y. Zhang, P. Zhang, J. Niu, and Y. Ji, “Experimental wavelength-space division multiplexing of quantum key distribution with classical optical communication over multicore fiber,” Opt. Express 27, 5125–5135 (2019).
    [Crossref]
  19. T. A. Eriksson, B. J. Puttnam, G. Rademacher, R. S. Luís, M. Takeoka, Y. Awaji, M. Sasaki, and N. Wada, “Inter-core crosstalk impact of classical channels on CV-QKD in multicore fiber transmission,” in Optical Fiber Communication Conference (OFC), OSA Technical Digest (Optical Society of America, 2019), paper Th1J.1.
  20. G. Cañas, N. Vera, J. Cariñe, P. González, J. Cardenas, P. W. R. Connolly, A. Przysiezna, E. S. Gómez, M. Figueroa, G. Vallone, P. Villoresi, T. Ferreira da Silva, G. B. Xavier, and G. Lima, “High-dimensional decoy-state quantum key distribution over multicore telecommunication fibers,” Phys. Rev. A 96, 022317 (2017).
    [Crossref]
  21. Y. Ding, D. Bacco, K. Dalgaard, X. Cai, X. Zhou, K. Rottwitt, and L. K. Oxenløwe, “High-dimensional quantum key distribution based on multicore fiber using silicon photonic integrated circuits,” npj Quantum Inf. 3, 25 (2017).
    [Crossref]
  22. B. Da Lio, D. Bacco, D. Cozzolino, N. Biagi, T. N. Arge, E. Larsen, K. Rottwitt, Y. Ding, A. Zavatta, and L. K. Oxenløwe, “Stable transmission of high-dimensional quantum states over a 2-km multicore fiber,” IEEE J. Sel. Top. Quantum Electron. 26, 6400108 (2020).
    [Crossref]
  23. H. J. Lee, S.-K. Choi, and H. S. Park, “Experimental demonstration of four-dimensional photonic spatial entanglement between multi-core optical fibres,” Sci. Rep. 7, 4302 (2017).
    [Crossref]
  24. H. J. Lee and H. S. Park, “Generation and measurement of arbitrary four-dimensional spatial entanglement between photons in multicore fibers,” Photon. Res. 7, 19–27 (2019).
    [Crossref]
  25. L. Cui, J. Su, X. Li, and Z. Y. Ou, “Distribution of entangled photon pairs over few-mode fibers,” Sci. Rep. 7, 14954 (2017).
    [Crossref]
  26. A. Sit, R. Fickler, F. Alsaiari, F. Bouchard, H. Larocque, P. Gregg, L. Yan, R. W. Boyd, S. Ramachandran, and E. Karim, “Quantum cryptography with structured photons through a vortex fiber,” Opt. Lett. 43, 4108–4111 (2018).
    [Crossref]
  27. H. Cao, S.-C. Gao, C. Zhang, J. Wang, D.-Y. He, B.-H. Liu, Z.-W. Zhou, G.-X. Zhu, Y.-J. Chen, Z.-H. Li, S.-Y. Yu, Y.-F. Huang, C.-F. Li, and G.-C. Guo, “Distribution of high- dimensional orbital angular momentum entanglement at telecom wavelength over 1km OAM fiber,” Optica 7, 232 (2020).
    [Crossref]
  28. D. Cozzolino, E. Polino, M. Valeri, G. Carvacho, D. Bacco, N. Spagnolo, L. K. Oxenløwe, and F. Sciarrino, “Air-core fiber distribution of hybrid vector vortex-polarization entangled states,” Adv. Photon. 1, 1 (2019).
    [Crossref]
  29. J. Liu, I. Nape, Q. Wang, A. Vallés, J. Wang, and A. Forbes, “Multi-dimensional entanglement transport through single-mode fibre,” Sci. Adv. 6, eaay0837 (2020).
    [Crossref]
  30. N. H. Valencia, S. Goel, W. McCutcheon, H. Defienne, and M. Malik, “Unscrambling entanglement through a complex medium,” arXiv:1910.04490 (2019).
  31. S. Ecker, F. Bouchard, L. Bulla, F. Brandt, O. Kohout, F. Steinlechner, R. Fickler, M. Malik, Y. Guryanova, R. Ursin, and M. Huber, “Overcoming noise in entanglement distribution,” Phys. Rev. X 9, 041042 (2019).
    [Crossref]
  32. Z. Zhao, M. Tang, S. Fu, S. Liu, H. Wei, Y. Cheng, W. Tong, P. P. Shum, and D. Liu, “All-solid multi-core fiber-based multipath Mach-Zehnder interferometer for temperature sensing,” Appl. Phys. B 112, 491–497 (2013).
    [Crossref]
  33. J. E. Antonio-Lopez, Z. S. Eznaveh, P. LiKamWa, A. Schülzgen, and R. Amezcua-Correa, “Multicore fiber sensor for high-temperature applications up to 1000  C,” Opt. Lett. 39, 4309–4312 (2014).
    [Crossref]
  34. C. Guan, X. Zhong, G. Mao, T. Yuan, J. Yang, and L. Yuan, “In-line Mach-Zehnder interferometric sensor based on linear five-core fiber,” IEEE Photon. Technol. Lett. 27, 635–638 (2015).
    [Crossref]
  35. S. Zhou, B. Huang, and X. Shu, “A multi-core fiber based interferometer for high temperature sensing,” Meas. Sci. Technol. 28, 045107 (2017).
    [Crossref]
  36. L. Gan, R. Wang, D. Liu, L. Duan, S. Liu, S. Fu, B. Li, Z. Feng, H. Wei, W. Tong, P. Shum, and M. Tang, “Spatial-division multiplexed Mach-Zehnder interferometers in heterogeneous multicore fiber for multiparameter measurement,” IEEE Photon. J. 8, 1 (2016).
    [Crossref]
  37. E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
    [Crossref]
  38. L. Neves, G. Lima, J. G. Aguirre Gómez, C. H. Monken, C. Saavedra, and S. Pádua, “Generation of entangled states of qudits using twin photons,” Phys. Rev. Lett. 94, 100501 (2005).
    [Crossref]
  39. M. N. O’Sullivan-Hale, I. Ali Khan, R. W. Boyd, and J. C. Howell, “Pixel entanglement: experimental realization of optically entangled d = 3 and d = 6 qudits,” Phys. Rev. Lett. 94, 220501 (2005).
    [Crossref]
  40. J. T. Barreiro, N. K. Langford, N. A. Peters, and P. G. Kwiat, “Generation of hyperentangled photon pairs,” Phys. Rev. Lett. 95, 260501 (2005).
    [Crossref]
  41. S. Gröblacher, T. Jennewein, A. Vaziri, G. Weihs, and A. Zeilinger, “Experimental quantum cryptography with qutrits,” New J. Phys. 8, 75 (2006).
    [Crossref]
  42. S. P. Walborn, D. S. Lemelle, M. P. Almeida, and P. H. Souto Ribeiro, Quantum key distribution with higher-order alphabets using spatially encoded qudits, Phys. Rev. Lett. 96, 090501 (2006).
    [Crossref]
  43. A. Rossi, G. Vallone, A. Chiuri, F. De Martini, and P. Mataloni, “Multipath entanglement of two photons,” Phys. Rev. Lett. 102, 153902 (2009).
    [Crossref]
  44. W.-B. Gao, C.-Y. Lu, X.-C. Yao, P. Xu, O. Guhne, A. Goebel, Y.-A. Chen, C.-Z. Peng, Z.-B. Chen, and J.-W. Pan, Experimental demonstration of a hyper-entangled ten-qubit Schrödinger cat state, Nat. Phys. 6, 331–335 (2010).
    [Crossref]
  45. A. C. Dada, J. Leach, G. S. Buller, M. J. Padgett, and E. Andersson, “Experimental high-dimensional two-photon entanglement and violations of generalized Bell inequalities,” Nat. Phys. 7, 677–680 (2011).
    [Crossref]
  46. S. Etcheverry, G. Cañas, E. S. Gómez, W. A. T. Nogueira, C. Saavedra, G. B. Xavier, and G. Lima, “Quantum key distribution session with 16-dimensional photonic states,” Sci. Rep. 3, 2316 (2013).
    [Crossref]
  47. P.-L. De Assis, M. A. D. Carvalho, L. P. Berruezo, J. Ferraz, and S. Pádua, “Generation of two pairs of qudits using four photons and a single degree of freedom,” Opt. Express 24, 30149–30163 (2016).
    [Crossref]
  48. M. Malik, M. Erhard, M. Huber, M. Krenn, R. Fickler, and A. Zeilinger, “Multi-photon entanglement in high dimensions,” Nat. Photonics 10, 248–252 (2016).
    [Crossref]
  49. J. Wang, S. Paesani, Y. Ding, R. Santagati, P. Skrzypczyk, A. Salavrakos, J. Tura, R. Augusiak, L. Mančinska, D. Bacco, D. Bonneau, J. W. Silverstone, Q. Gong, A. Acín, K. Rottwitt, L. K. Oxenløwe, J. L. O’Brien, A. Laing, and M. G. Thompson, “Multidimensional quantum entanglement with large-scale integrated optics,” Science 360, 285–291 (2018).
    [Crossref]
  50. E. A. Aguilar, M. Farkas, D. Martínez, M. Alvarado, J. Cariñe, G. B. Xavier, J. F. Barra, G. Cañas, M. Pawłowski, and G. Lima, “Certifying an irreducible 1024-dimensional photonic state using refined dimension witnesses,” Phys. Rev. Lett. 120, 230503 (2018).
    [Crossref]
  51. D. Martínez, A. Tavakoli, M. Casanova, G. Cañas, B. Marques, and G. Lima, “High-dimensional quantum communication complexity beyond strategies based on Bell’s theorem,” Phys. Rev. Lett. 121, 150504 (2018).
    [Crossref]
  52. G. Weihs, M. Reck, H. Weinfurter, and A. Zeilinger, “All-fiber three-path Mach-Zehnder interferometer,” Opt. Lett. 21, 302–304 (1996).
    [Crossref]
  53. A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O’Brien, “Silica-on-silicon waveguide quantum circuits,” Science 320, 646–649 (2008).
    [Crossref]
  54. J. Carolan, C. Harrold, C. Sparrow, E. Martín-López, N. J. Russell, J. W. Silverstone, P. J. Shadbolt, N. Matsuda, M. Oguma, M. Itoh, G. D. Marshall, M. G. Thompson, J. C. F. Matthews, T. Hashimoto, J. L. O’Brien, and A. Laing, “Universal linear optics,” Science 349, 711–716 (2015).
    [Crossref]
  55. N. Spagnolo, C. Vitelli, L. Aparo, P. Mataloni, F. Sciarrino, A. Crespi, R. Ramponi, and R. Osellame, “Three-photon bosonic coalescence in an integrated tritter,” Nat. Commun. 4, 1606 (2013).
    [Crossref]
  56. M. Reck, A. Zeilinger, H. J. Bernstein, and P. Bertani, “Experimental realization of any discrete unitary operator,” Phys. Rev. Lett. 73, 58–61 (1994).
    [Crossref]
  57. M. Zukowski, A. Zeilinger, and M. Horne, “Realizable higher-dimensional two-particle entanglements via multiport beam splitters,” Phys. Rev. A 55, 2564–2579 (1997).
    [Crossref]
  58. W. R. Clements, P. C. Humphreys, B. J. Metcalf, W. S. Kolthammer, and I. A. Walmsley, “Optimal design for universal multiport interferometers,” Optica 3, 1460–1465 (2016).
    [Crossref]
  59. F. Flamini, N. Spagnolo, N. Viggianiello, A. Crespi, R. Osellame, and F. Sciarrino, “Benchmarking integrated linear-optical architectures for quantum information processing,” Sci. Rep. 7, 15133 (2017).
    [Crossref]
  60. M. Y. Saygin, I. V. Kondratyev, I. V. Dyakonov, S. A. Mironov, S. S. Straupe, and S. P. Kulik, “Robust architecture for programmable universal unitaries,” Phys. Rev. Lett. 124, 010501 (2020).
    [Crossref]
  61. L. Pereira, A. Rojas, G. Cañas, G. Lima, A. Delgado, and A. Cabello, “Universal multi-port interferometers with minimal optical depth,” arXiv:2002.01371 (2020).
  62. A. Acín and L. Masanes, “Certified randomness in quantum physics,” Nature 540, 213–219 (2016).
    [Crossref]
  63. S. Pironio, A. Acín, S. Massar, A. B. de La Giroday, D. N. Matsukevich, P. Maunz, S. Olmschenk, D. Hayes, L. Luo, T. A. Manning, and C. Monroe, “Random numbers certified by Bell’s theorem,” Nature 464, 1021–1024 (2010).
    [Crossref]
  64. N. Brunner, D. Cavalcanti, S. Pironio, V. Scarani, and S. Wehner, “Bell nonlocality,” Rev. Mod. Phys. 86, 419 (2014).
    [Crossref]
  65. Y. Liu, X. Yuan, M.-H. Li, W. Zhang, Q. Zhao, J. Zhong, Y. Cao, Y.-H. Li, L.-K. Chen, H. Li, T. Peng, Y.-A. Chen, C.-Z. Peng, S.-C. Shi, Z. Wang, L. You, X. Ma, J. Fan, Q. Zhang, and J.-W. Pan, “High-speed device-independent quantum random number generation without a detection loophole,” Phys. Rev. Lett. 120, 010503 (2018).
    [Crossref]
  66. M. Pawłowski and N. Brunner, “Semi-device-independent security of one-way quantum key distribution,” Phys. Rev. A 84, 010302 (2011).
    [Crossref]
  67. G. Cañas, J. Cariñe, E. S. Gómez, J. F. Barra, A. Cabello, G. B. Xavier, G. Lima, and M. Pawłowski, “Experimental quantum randomness generation invulnerable to the detection loophole,” arXiv:1410.3443v2 (2014).
  68. T. Lunghi, J. B. Brask, C. C. W. Lim, Q. Lavigne, J. Bowles, A. Martin, H. Zbinden, and N. Brunner, “Self-testing quantum random number generator,” Phys. Rev. Lett. 114, 150501 (2015).
    [Crossref]
  69. J. B. Brask, A. Martin, W. Esposito, R. Houlmann, J. Bowles, H. Zbinden, and N. Brunner, “Megahertz-rate semi-device-independent quantum random number generators based on unambiguous state discrimination,” Phys. Rev. Appl. 7, 054018 (2017).
    [Crossref]
  70. T. Van Himbeeck, E. Woodhead, N. J. Cerf, R. García-Patrón, and S. Pironio, “Semi-device-independent framework based on natural physical assumptions,” Quantum 1, 33 (2017).
    [Crossref]
  71. D. Rusca, T. van Himbeeck, A. Martin, J. Bohr Brask, W. Shi, S. Pironio, N. Brunner, and H. Zbinden, “Practical self-testing quantum random number generator based on an energy bound,” arXiv:1904.04819 [quant-ph].
  72. I. Supic, P. Skrzypczyk, and D. Cavalcanti, “Measurement-device independent entanglement and randomness estimation in quantum networks,” Phys. Rev. A 95, 042340 (2017).
    [Crossref]
  73. N. J. Cerf, M. Bourennane, A. Karlsson, and N. Gisin, “Security of quantum key distribution using -level systems,” Phys. Rev. Lett. 88, 127902 (2002).
    [Crossref]
  74. D. Kaszlikowski, P. Gnaciński, M. Żukowski, W. Miklaszewski, and A. Zeilinger, “Violations of local realism by two entangled N-dimensional systems are stronger than for two qubits,” Phys. Rev. Lett. 85, 4418–4421 (2000).
    [Crossref]
  75. S. Pirandola, B. R. Bardhan, C. Weedbrook, and S. Lloyd, “Advances in photonic quantum sensing,” Nat. Photonics 12, 724–733 (2018).
    [Crossref]
  76. T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien, “Quantum computers,” Nature 464, 45–53 (2010).
    [Crossref]
  77. M. Araújo, F. Costa, and C. Brukner, “Computational advantage from quantum-controlled ordering of gates,” Phys. Rev. Lett. 113, 250402 (2014).
    [Crossref]
  78. S. Rahimi-Keshari, M. A. Broome, R. Fickler, A. Fedrizzi, T. C. Ralph, and A. G. White, “Direct characterization of linear-optical networks,” Opt. Express 21, 13450–13458 (2013).
    [Crossref]
  79. C. H. Baldwin, A. Kalev, and I. H. Deutsch, “Quantum process tomography of unitary and near-unitary maps,” Phys. Rev. A 90, 012110 (2014).
    [Crossref]
  80. A. Acín, “Statistical distinguishability between unitary operations,” Phys. Rev. Lett. 87, 177901 (2001).
    [Crossref]
  81. K. Watanabe, T. Saito, K. Imamura, and M. Shiino, “Development of fiber bundle type fan-out for multicore fiber,” in 17th Opto Electronics and Communications Conference (2012).
  82. Y. Tottori, T. Kobayashi, and M. Watanabe, “Low loss optical connection module for seven-core multicore fiber and seven single-mode fibers,” IEEE Photon. Technol. Lett. 24, 1926–1928 (2012).
    [Crossref]
  83. P. Walborn, M. O. Terra Cunha, S. Pádua, and C. H. Monken, “Double-slit quantum eraser,” Phys. Rev. A 65, 033818 (2002).
    [Crossref]
  84. F. A. T. Ruiz, G. Lima, A. Delgado, S. Pádua, and C. Saavedra, “Decoherence in a double-slit quantum eraser,” Phys. Rev. A 81, 042104 (2010).
    [Crossref]
  85. P. Bhatnagar and R. K. Nema, “Maximum power point tracking control techniques: state-of-the-art in photovoltaic applications,” Renew. Sustain. Energy Rev. 23, 224–241 (2013).
    [Crossref]
  86. M. Malmström, O. Tarasenko, W. Margulis, and F. Laurell, “All-fiber nanosecond gating for time-resolved spectral analysis,” IEEE Photon. Technol. Lett. 28, 829–832 (2016).
    [Crossref]
  87. W. Margulis, (personal communication, 2019).
  88. H.-K. Lo, M. Curty, and B. Qi, “Measurement-device-independent quantum key distribution,” Phys. Rev. Lett. 108, 130503 (2012).
    [Crossref]
  89. S. Boyd and L. Vandenberghe, Convex Optimization (Cambridge University, 2004).
  90. W. Hoeffding, “Probability inequalities for sums of bounded random variables,” J. Am. Stat. Assoc. 58, 13–30 (1963).
    [Crossref]
  91. M. M. Taddei, J. Cariñe, D. Martínez, T. García, N. Guerrero, A. A. Abbott, M. Araújo, C. Branciard, E. S. Gómez, S. P. Walborn, L. Aolita, and G. Lima, “Experimental computational advantage from superposition of multiple temporal orders of quantum gates,” arXiv:2002.07817 (2020).

2020 (5)

G. B. Xavier and G. Lima, “Quantum information processing with space-division multiplexing optical fibres,” Commun. Phys. 3, 9 (2020).
[Crossref]

B. Da Lio, D. Bacco, D. Cozzolino, N. Biagi, T. N. Arge, E. Larsen, K. Rottwitt, Y. Ding, A. Zavatta, and L. K. Oxenløwe, “Stable transmission of high-dimensional quantum states over a 2-km multicore fiber,” IEEE J. Sel. Top. Quantum Electron. 26, 6400108 (2020).
[Crossref]

H. Cao, S.-C. Gao, C. Zhang, J. Wang, D.-Y. He, B.-H. Liu, Z.-W. Zhou, G.-X. Zhu, Y.-J. Chen, Z.-H. Li, S.-Y. Yu, Y.-F. Huang, C.-F. Li, and G.-C. Guo, “Distribution of high- dimensional orbital angular momentum entanglement at telecom wavelength over 1km OAM fiber,” Optica 7, 232 (2020).
[Crossref]

J. Liu, I. Nape, Q. Wang, A. Vallés, J. Wang, and A. Forbes, “Multi-dimensional entanglement transport through single-mode fibre,” Sci. Adv. 6, eaay0837 (2020).
[Crossref]

M. Y. Saygin, I. V. Kondratyev, I. V. Dyakonov, S. A. Mironov, S. S. Straupe, and S. P. Kulik, “Robust architecture for programmable universal unitaries,” Phys. Rev. Lett. 124, 010501 (2020).
[Crossref]

2019 (4)

S. Ecker, F. Bouchard, L. Bulla, F. Brandt, O. Kohout, F. Steinlechner, R. Fickler, M. Malik, Y. Guryanova, R. Ursin, and M. Huber, “Overcoming noise in entanglement distribution,” Phys. Rev. X 9, 041042 (2019).
[Crossref]

D. Cozzolino, E. Polino, M. Valeri, G. Carvacho, D. Bacco, N. Spagnolo, L. K. Oxenløwe, and F. Sciarrino, “Air-core fiber distribution of hybrid vector vortex-polarization entangled states,” Adv. Photon. 1, 1 (2019).
[Crossref]

H. J. Lee and H. S. Park, “Generation and measurement of arbitrary four-dimensional spatial entanglement between photons in multicore fibers,” Photon. Res. 7, 19–27 (2019).
[Crossref]

C. Cai, Y. Sun, Y. Zhang, P. Zhang, J. Niu, and Y. Ji, “Experimental wavelength-space division multiplexing of quantum key distribution with classical optical communication over multicore fiber,” Opt. Express 27, 5125–5135 (2019).
[Crossref]

2018 (7)

L. Zhu, G. Zhu, A. Wang, L. Wang, J. Ai, S. Chen, C. Du, J. Liu, S. Yu, and J. Wang, “18  km low-crosstalk OAM +WDM transmission with 224 individual channels enabled by a ring-core fiber with large high-order mode group separation,” Opt. Lett. 43, 1890–1893 (2018).
[Crossref]

A. Sit, R. Fickler, F. Alsaiari, F. Bouchard, H. Larocque, P. Gregg, L. Yan, R. W. Boyd, S. Ramachandran, and E. Karim, “Quantum cryptography with structured photons through a vortex fiber,” Opt. Lett. 43, 4108–4111 (2018).
[Crossref]

J. Wang, S. Paesani, Y. Ding, R. Santagati, P. Skrzypczyk, A. Salavrakos, J. Tura, R. Augusiak, L. Mančinska, D. Bacco, D. Bonneau, J. W. Silverstone, Q. Gong, A. Acín, K. Rottwitt, L. K. Oxenløwe, J. L. O’Brien, A. Laing, and M. G. Thompson, “Multidimensional quantum entanglement with large-scale integrated optics,” Science 360, 285–291 (2018).
[Crossref]

E. A. Aguilar, M. Farkas, D. Martínez, M. Alvarado, J. Cariñe, G. B. Xavier, J. F. Barra, G. Cañas, M. Pawłowski, and G. Lima, “Certifying an irreducible 1024-dimensional photonic state using refined dimension witnesses,” Phys. Rev. Lett. 120, 230503 (2018).
[Crossref]

D. Martínez, A. Tavakoli, M. Casanova, G. Cañas, B. Marques, and G. Lima, “High-dimensional quantum communication complexity beyond strategies based on Bell’s theorem,” Phys. Rev. Lett. 121, 150504 (2018).
[Crossref]

Y. Liu, X. Yuan, M.-H. Li, W. Zhang, Q. Zhao, J. Zhong, Y. Cao, Y.-H. Li, L.-K. Chen, H. Li, T. Peng, Y.-A. Chen, C.-Z. Peng, S.-C. Shi, Z. Wang, L. You, X. Ma, J. Fan, Q. Zhang, and J.-W. Pan, “High-speed device-independent quantum random number generation without a detection loophole,” Phys. Rev. Lett. 120, 010503 (2018).
[Crossref]

S. Pirandola, B. R. Bardhan, C. Weedbrook, and S. Lloyd, “Advances in photonic quantum sensing,” Nat. Photonics 12, 724–733 (2018).
[Crossref]

2017 (9)

J. B. Brask, A. Martin, W. Esposito, R. Houlmann, J. Bowles, H. Zbinden, and N. Brunner, “Megahertz-rate semi-device-independent quantum random number generators based on unambiguous state discrimination,” Phys. Rev. Appl. 7, 054018 (2017).
[Crossref]

T. Van Himbeeck, E. Woodhead, N. J. Cerf, R. García-Patrón, and S. Pironio, “Semi-device-independent framework based on natural physical assumptions,” Quantum 1, 33 (2017).
[Crossref]

I. Supic, P. Skrzypczyk, and D. Cavalcanti, “Measurement-device independent entanglement and randomness estimation in quantum networks,” Phys. Rev. A 95, 042340 (2017).
[Crossref]

F. Flamini, N. Spagnolo, N. Viggianiello, A. Crespi, R. Osellame, and F. Sciarrino, “Benchmarking integrated linear-optical architectures for quantum information processing,” Sci. Rep. 7, 15133 (2017).
[Crossref]

S. Zhou, B. Huang, and X. Shu, “A multi-core fiber based interferometer for high temperature sensing,” Meas. Sci. Technol. 28, 045107 (2017).
[Crossref]

G. Cañas, N. Vera, J. Cariñe, P. González, J. Cardenas, P. W. R. Connolly, A. Przysiezna, E. S. Gómez, M. Figueroa, G. Vallone, P. Villoresi, T. Ferreira da Silva, G. B. Xavier, and G. Lima, “High-dimensional decoy-state quantum key distribution over multicore telecommunication fibers,” Phys. Rev. A 96, 022317 (2017).
[Crossref]

Y. Ding, D. Bacco, K. Dalgaard, X. Cai, X. Zhou, K. Rottwitt, and L. K. Oxenløwe, “High-dimensional quantum key distribution based on multicore fiber using silicon photonic integrated circuits,” npj Quantum Inf. 3, 25 (2017).
[Crossref]

L. Cui, J. Su, X. Li, and Z. Y. Ou, “Distribution of entangled photon pairs over few-mode fibers,” Sci. Rep. 7, 14954 (2017).
[Crossref]

H. J. Lee, S.-K. Choi, and H. S. Park, “Experimental demonstration of four-dimensional photonic spatial entanglement between multi-core optical fibres,” Sci. Rep. 7, 4302 (2017).
[Crossref]

2016 (9)

J. F. Dynes, S. J. Kindness, S. W.-B. Tam, A. Plews, A. W. Sharpe, M. Lucamarini, B. Fröhlich, Z. L. Yuan, R. V. Penty, and A. J. Shields, “Quantum key distribution over multicore fiber,” Opt. Express 24, 8081–8087 (2016).
[Crossref]

K. Saitoh and S. Matsuo, “Multicore fiber technology,” J. Lightwave Technol. 34, 55 (2016).
[Crossref]

L. Gan, R. Wang, D. Liu, L. Duan, S. Liu, S. Fu, B. Li, Z. Feng, H. Wei, W. Tong, P. Shum, and M. Tang, “Spatial-division multiplexed Mach-Zehnder interferometers in heterogeneous multicore fiber for multiparameter measurement,” IEEE Photon. J. 8, 1 (2016).
[Crossref]

E. Diamanti, H.-K. Lo, B. Qi, and Z. Yuan, “Practical challenges in quantum key distribution,” npj Quantum Inf. 2, 16025 (2016).
[Crossref]

W. R. Clements, P. C. Humphreys, B. J. Metcalf, W. S. Kolthammer, and I. A. Walmsley, “Optimal design for universal multiport interferometers,” Optica 3, 1460–1465 (2016).
[Crossref]

A. Acín and L. Masanes, “Certified randomness in quantum physics,” Nature 540, 213–219 (2016).
[Crossref]

P.-L. De Assis, M. A. D. Carvalho, L. P. Berruezo, J. Ferraz, and S. Pádua, “Generation of two pairs of qudits using four photons and a single degree of freedom,” Opt. Express 24, 30149–30163 (2016).
[Crossref]

M. Malik, M. Erhard, M. Huber, M. Krenn, R. Fickler, and A. Zeilinger, “Multi-photon entanglement in high dimensions,” Nat. Photonics 10, 248–252 (2016).
[Crossref]

M. Malmström, O. Tarasenko, W. Margulis, and F. Laurell, “All-fiber nanosecond gating for time-resolved spectral analysis,” IEEE Photon. Technol. Lett. 28, 829–832 (2016).
[Crossref]

2015 (5)

J. Carolan, C. Harrold, C. Sparrow, E. Martín-López, N. J. Russell, J. W. Silverstone, P. J. Shadbolt, N. Matsuda, M. Oguma, M. Itoh, G. D. Marshall, M. G. Thompson, J. C. F. Matthews, T. Hashimoto, J. L. O’Brien, and A. Laing, “Universal linear optics,” Science 349, 711–716 (2015).
[Crossref]

T. Lunghi, J. B. Brask, C. C. W. Lim, Q. Lavigne, J. Bowles, A. Martin, H. Zbinden, and N. Brunner, “Self-testing quantum random number generator,” Phys. Rev. Lett. 114, 150501 (2015).
[Crossref]

C. Guan, X. Zhong, G. Mao, T. Yuan, J. Yang, and L. Yuan, “In-line Mach-Zehnder interferometric sensor based on linear five-core fiber,” IEEE Photon. Technol. Lett. 27, 635–638 (2015).
[Crossref]

C. Brunet, B. Ung, L. Wang, Y. Messaddeq, S. LaRochelle, and L. A. Rusch, “Design of a family of ring-core fibers for OAM transmission studies,” Opt. Express 23, 10553 (2015).
[Crossref]

P. Gregg, P. Kristensen, and S. Ramachandran, “Conservation of orbital angular momentum in air-core optical fibers,” Optica 2, 267–270 (2015).
[Crossref]

2014 (6)

P. Sillard, M. Bigot-Astruc, and D. Molin, “Few-mode fibers for mode-division-multiplexed systems,” J. Lightwave Technol. 32, 2824 (2014).
[Crossref]

H.-K. Lo, M. Curty, and K. Tamaki, “Secure quantum key distribution,” Nat. Photonics 8, 595–604 (2014).
[Crossref]

J. E. Antonio-Lopez, Z. S. Eznaveh, P. LiKamWa, A. Schülzgen, and R. Amezcua-Correa, “Multicore fiber sensor for high-temperature applications up to 1000  C,” Opt. Lett. 39, 4309–4312 (2014).
[Crossref]

N. Brunner, D. Cavalcanti, S. Pironio, V. Scarani, and S. Wehner, “Bell nonlocality,” Rev. Mod. Phys. 86, 419 (2014).
[Crossref]

M. Araújo, F. Costa, and C. Brukner, “Computational advantage from quantum-controlled ordering of gates,” Phys. Rev. Lett. 113, 250402 (2014).
[Crossref]

C. H. Baldwin, A. Kalev, and I. H. Deutsch, “Quantum process tomography of unitary and near-unitary maps,” Phys. Rev. A 90, 012110 (2014).
[Crossref]

2013 (7)

S. Rahimi-Keshari, M. A. Broome, R. Fickler, A. Fedrizzi, T. C. Ralph, and A. G. White, “Direct characterization of linear-optical networks,” Opt. Express 21, 13450–13458 (2013).
[Crossref]

N. Spagnolo, C. Vitelli, L. Aparo, P. Mataloni, F. Sciarrino, A. Crespi, R. Ramponi, and R. Osellame, “Three-photon bosonic coalescence in an integrated tritter,” Nat. Commun. 4, 1606 (2013).
[Crossref]

S. Etcheverry, G. Cañas, E. S. Gómez, W. A. T. Nogueira, C. Saavedra, G. B. Xavier, and G. Lima, “Quantum key distribution session with 16-dimensional photonic states,” Sci. Rep. 3, 2316 (2013).
[Crossref]

Z. Zhao, M. Tang, S. Fu, S. Liu, H. Wei, Y. Cheng, W. Tong, P. P. Shum, and D. Liu, “All-solid multi-core fiber-based multipath Mach-Zehnder interferometer for temperature sensing,” Appl. Phys. B 112, 491–497 (2013).
[Crossref]

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7, 354–362 (2013).
[Crossref]

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340, 1545–1548 (2013).
[Crossref]

P. Bhatnagar and R. K. Nema, “Maximum power point tracking control techniques: state-of-the-art in photovoltaic applications,” Renew. Sustain. Energy Rev. 23, 224–241 (2013).
[Crossref]

2012 (2)

H.-K. Lo, M. Curty, and B. Qi, “Measurement-device-independent quantum key distribution,” Phys. Rev. Lett. 108, 130503 (2012).
[Crossref]

Y. Tottori, T. Kobayashi, and M. Watanabe, “Low loss optical connection module for seven-core multicore fiber and seven single-mode fibers,” IEEE Photon. Technol. Lett. 24, 1926–1928 (2012).
[Crossref]

2011 (2)

M. Pawłowski and N. Brunner, “Semi-device-independent security of one-way quantum key distribution,” Phys. Rev. A 84, 010302 (2011).
[Crossref]

A. C. Dada, J. Leach, G. S. Buller, M. J. Padgett, and E. Andersson, “Experimental high-dimensional two-photon entanglement and violations of generalized Bell inequalities,” Nat. Phys. 7, 677–680 (2011).
[Crossref]

2010 (4)

S. Pironio, A. Acín, S. Massar, A. B. de La Giroday, D. N. Matsukevich, P. Maunz, S. Olmschenk, D. Hayes, L. Luo, T. A. Manning, and C. Monroe, “Random numbers certified by Bell’s theorem,” Nature 464, 1021–1024 (2010).
[Crossref]

T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien, “Quantum computers,” Nature 464, 45–53 (2010).
[Crossref]

W.-B. Gao, C.-Y. Lu, X.-C. Yao, P. Xu, O. Guhne, A. Goebel, Y.-A. Chen, C.-Z. Peng, Z.-B. Chen, and J.-W. Pan, Experimental demonstration of a hyper-entangled ten-qubit Schrödinger cat state, Nat. Phys. 6, 331–335 (2010).
[Crossref]

F. A. T. Ruiz, G. Lima, A. Delgado, S. Pádua, and C. Saavedra, “Decoherence in a double-slit quantum eraser,” Phys. Rev. A 81, 042104 (2010).
[Crossref]

2009 (1)

A. Rossi, G. Vallone, A. Chiuri, F. De Martini, and P. Mataloni, “Multipath entanglement of two photons,” Phys. Rev. Lett. 102, 153902 (2009).
[Crossref]

2008 (1)

A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O’Brien, “Silica-on-silicon waveguide quantum circuits,” Science 320, 646–649 (2008).
[Crossref]

2006 (2)

S. Gröblacher, T. Jennewein, A. Vaziri, G. Weihs, and A. Zeilinger, “Experimental quantum cryptography with qutrits,” New J. Phys. 8, 75 (2006).
[Crossref]

S. P. Walborn, D. S. Lemelle, M. P. Almeida, and P. H. Souto Ribeiro, Quantum key distribution with higher-order alphabets using spatially encoded qudits, Phys. Rev. Lett. 96, 090501 (2006).
[Crossref]

2005 (3)

L. Neves, G. Lima, J. G. Aguirre Gómez, C. H. Monken, C. Saavedra, and S. Pádua, “Generation of entangled states of qudits using twin photons,” Phys. Rev. Lett. 94, 100501 (2005).
[Crossref]

M. N. O’Sullivan-Hale, I. Ali Khan, R. W. Boyd, and J. C. Howell, “Pixel entanglement: experimental realization of optically entangled d = 3 and d = 6 qudits,” Phys. Rev. Lett. 94, 220501 (2005).
[Crossref]

J. T. Barreiro, N. K. Langford, N. A. Peters, and P. G. Kwiat, “Generation of hyperentangled photon pairs,” Phys. Rev. Lett. 95, 260501 (2005).
[Crossref]

2002 (3)

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
[Crossref]

P. Walborn, M. O. Terra Cunha, S. Pádua, and C. H. Monken, “Double-slit quantum eraser,” Phys. Rev. A 65, 033818 (2002).
[Crossref]

N. J. Cerf, M. Bourennane, A. Karlsson, and N. Gisin, “Security of quantum key distribution using -level systems,” Phys. Rev. Lett. 88, 127902 (2002).
[Crossref]

2001 (2)

A. Acín, “Statistical distinguishability between unitary operations,” Phys. Rev. Lett. 87, 177901 (2001).
[Crossref]

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
[Crossref]

2000 (1)

D. Kaszlikowski, P. Gnaciński, M. Żukowski, W. Miklaszewski, and A. Zeilinger, “Violations of local realism by two entangled N-dimensional systems are stronger than for two qubits,” Phys. Rev. Lett. 85, 4418–4421 (2000).
[Crossref]

1997 (1)

M. Zukowski, A. Zeilinger, and M. Horne, “Realizable higher-dimensional two-particle entanglements via multiport beam splitters,” Phys. Rev. A 55, 2564–2579 (1997).
[Crossref]

1996 (1)

1994 (1)

M. Reck, A. Zeilinger, H. J. Bernstein, and P. Bertani, “Experimental realization of any discrete unitary operator,” Phys. Rev. Lett. 73, 58–61 (1994).
[Crossref]

1963 (1)

W. Hoeffding, “Probability inequalities for sums of bounded random variables,” J. Am. Stat. Assoc. 58, 13–30 (1963).
[Crossref]

Abbott, A. A.

M. M. Taddei, J. Cariñe, D. Martínez, T. García, N. Guerrero, A. A. Abbott, M. Araújo, C. Branciard, E. S. Gómez, S. P. Walborn, L. Aolita, and G. Lima, “Experimental computational advantage from superposition of multiple temporal orders of quantum gates,” arXiv:2002.07817 (2020).

Acín, A.

J. Wang, S. Paesani, Y. Ding, R. Santagati, P. Skrzypczyk, A. Salavrakos, J. Tura, R. Augusiak, L. Mančinska, D. Bacco, D. Bonneau, J. W. Silverstone, Q. Gong, A. Acín, K. Rottwitt, L. K. Oxenløwe, J. L. O’Brien, A. Laing, and M. G. Thompson, “Multidimensional quantum entanglement with large-scale integrated optics,” Science 360, 285–291 (2018).
[Crossref]

A. Acín and L. Masanes, “Certified randomness in quantum physics,” Nature 540, 213–219 (2016).
[Crossref]

S. Pironio, A. Acín, S. Massar, A. B. de La Giroday, D. N. Matsukevich, P. Maunz, S. Olmschenk, D. Hayes, L. Luo, T. A. Manning, and C. Monroe, “Random numbers certified by Bell’s theorem,” Nature 464, 1021–1024 (2010).
[Crossref]

A. Acín, “Statistical distinguishability between unitary operations,” Phys. Rev. Lett. 87, 177901 (2001).
[Crossref]

Aguilar, E. A.

E. A. Aguilar, M. Farkas, D. Martínez, M. Alvarado, J. Cariñe, G. B. Xavier, J. F. Barra, G. Cañas, M. Pawłowski, and G. Lima, “Certifying an irreducible 1024-dimensional photonic state using refined dimension witnesses,” Phys. Rev. Lett. 120, 230503 (2018).
[Crossref]

Aguirre Gómez, J. G.

L. Neves, G. Lima, J. G. Aguirre Gómez, C. H. Monken, C. Saavedra, and S. Pádua, “Generation of entangled states of qudits using twin photons,” Phys. Rev. Lett. 94, 100501 (2005).
[Crossref]

Ai, J.

Ali Khan, I.

M. N. O’Sullivan-Hale, I. Ali Khan, R. W. Boyd, and J. C. Howell, “Pixel entanglement: experimental realization of optically entangled d = 3 and d = 6 qudits,” Phys. Rev. Lett. 94, 220501 (2005).
[Crossref]

Almeida, M. P.

S. P. Walborn, D. S. Lemelle, M. P. Almeida, and P. H. Souto Ribeiro, Quantum key distribution with higher-order alphabets using spatially encoded qudits, Phys. Rev. Lett. 96, 090501 (2006).
[Crossref]

Alsaiari, F.

Alvarado, M.

E. A. Aguilar, M. Farkas, D. Martínez, M. Alvarado, J. Cariñe, G. B. Xavier, J. F. Barra, G. Cañas, M. Pawłowski, and G. Lima, “Certifying an irreducible 1024-dimensional photonic state using refined dimension witnesses,” Phys. Rev. Lett. 120, 230503 (2018).
[Crossref]

Amezcua-Correa, R.

Andersen, U. L.

S. Pirandola, U. L. Andersen, L. Banchi, M. Berta, D. Bunandar, R. Colbeck, D. Englund, T. Gehring, C. Lupo, C. Ottaviani, J. Pereira, M. Razavi, J. S. Shaari, M. Tomamichel, V. C. Usenko, G. Vallone, P. Villoresi, and P. Wallden, “Advances in quantum cryptography,” arXiv:1906.01645v1 [quant-ph] (2019).

Andersson, E.

A. C. Dada, J. Leach, G. S. Buller, M. J. Padgett, and E. Andersson, “Experimental high-dimensional two-photon entanglement and violations of generalized Bell inequalities,” Nat. Phys. 7, 677–680 (2011).
[Crossref]

Antonio-Lopez, J. E.

Aolita, L.

M. M. Taddei, J. Cariñe, D. Martínez, T. García, N. Guerrero, A. A. Abbott, M. Araújo, C. Branciard, E. S. Gómez, S. P. Walborn, L. Aolita, and G. Lima, “Experimental computational advantage from superposition of multiple temporal orders of quantum gates,” arXiv:2002.07817 (2020).

Aparo, L.

N. Spagnolo, C. Vitelli, L. Aparo, P. Mataloni, F. Sciarrino, A. Crespi, R. Ramponi, and R. Osellame, “Three-photon bosonic coalescence in an integrated tritter,” Nat. Commun. 4, 1606 (2013).
[Crossref]

Araújo, M.

M. Araújo, F. Costa, and C. Brukner, “Computational advantage from quantum-controlled ordering of gates,” Phys. Rev. Lett. 113, 250402 (2014).
[Crossref]

M. M. Taddei, J. Cariñe, D. Martínez, T. García, N. Guerrero, A. A. Abbott, M. Araújo, C. Branciard, E. S. Gómez, S. P. Walborn, L. Aolita, and G. Lima, “Experimental computational advantage from superposition of multiple temporal orders of quantum gates,” arXiv:2002.07817 (2020).

Arge, T. N.

B. Da Lio, D. Bacco, D. Cozzolino, N. Biagi, T. N. Arge, E. Larsen, K. Rottwitt, Y. Ding, A. Zavatta, and L. K. Oxenløwe, “Stable transmission of high-dimensional quantum states over a 2-km multicore fiber,” IEEE J. Sel. Top. Quantum Electron. 26, 6400108 (2020).
[Crossref]

Augusiak, R.

J. Wang, S. Paesani, Y. Ding, R. Santagati, P. Skrzypczyk, A. Salavrakos, J. Tura, R. Augusiak, L. Mančinska, D. Bacco, D. Bonneau, J. W. Silverstone, Q. Gong, A. Acín, K. Rottwitt, L. K. Oxenløwe, J. L. O’Brien, A. Laing, and M. G. Thompson, “Multidimensional quantum entanglement with large-scale integrated optics,” Science 360, 285–291 (2018).
[Crossref]

Awaji, Y.

T. A. Eriksson, B. J. Puttnam, G. Rademacher, R. S. Luís, M. Takeoka, Y. Awaji, M. Sasaki, and N. Wada, “Inter-core crosstalk impact of classical channels on CV-QKD in multicore fiber transmission,” in Optical Fiber Communication Conference (OFC), OSA Technical Digest (Optical Society of America, 2019), paper Th1J.1.

Bacco, D.

B. Da Lio, D. Bacco, D. Cozzolino, N. Biagi, T. N. Arge, E. Larsen, K. Rottwitt, Y. Ding, A. Zavatta, and L. K. Oxenløwe, “Stable transmission of high-dimensional quantum states over a 2-km multicore fiber,” IEEE J. Sel. Top. Quantum Electron. 26, 6400108 (2020).
[Crossref]

D. Cozzolino, E. Polino, M. Valeri, G. Carvacho, D. Bacco, N. Spagnolo, L. K. Oxenløwe, and F. Sciarrino, “Air-core fiber distribution of hybrid vector vortex-polarization entangled states,” Adv. Photon. 1, 1 (2019).
[Crossref]

J. Wang, S. Paesani, Y. Ding, R. Santagati, P. Skrzypczyk, A. Salavrakos, J. Tura, R. Augusiak, L. Mančinska, D. Bacco, D. Bonneau, J. W. Silverstone, Q. Gong, A. Acín, K. Rottwitt, L. K. Oxenløwe, J. L. O’Brien, A. Laing, and M. G. Thompson, “Multidimensional quantum entanglement with large-scale integrated optics,” Science 360, 285–291 (2018).
[Crossref]

Y. Ding, D. Bacco, K. Dalgaard, X. Cai, X. Zhou, K. Rottwitt, and L. K. Oxenløwe, “High-dimensional quantum key distribution based on multicore fiber using silicon photonic integrated circuits,” npj Quantum Inf. 3, 25 (2017).
[Crossref]

Baldwin, C. H.

C. H. Baldwin, A. Kalev, and I. H. Deutsch, “Quantum process tomography of unitary and near-unitary maps,” Phys. Rev. A 90, 012110 (2014).
[Crossref]

Banchi, L.

S. Pirandola, U. L. Andersen, L. Banchi, M. Berta, D. Bunandar, R. Colbeck, D. Englund, T. Gehring, C. Lupo, C. Ottaviani, J. Pereira, M. Razavi, J. S. Shaari, M. Tomamichel, V. C. Usenko, G. Vallone, P. Villoresi, and P. Wallden, “Advances in quantum cryptography,” arXiv:1906.01645v1 [quant-ph] (2019).

Bardhan, B. R.

S. Pirandola, B. R. Bardhan, C. Weedbrook, and S. Lloyd, “Advances in photonic quantum sensing,” Nat. Photonics 12, 724–733 (2018).
[Crossref]

Barra, J. F.

E. A. Aguilar, M. Farkas, D. Martínez, M. Alvarado, J. Cariñe, G. B. Xavier, J. F. Barra, G. Cañas, M. Pawłowski, and G. Lima, “Certifying an irreducible 1024-dimensional photonic state using refined dimension witnesses,” Phys. Rev. Lett. 120, 230503 (2018).
[Crossref]

G. Cañas, J. Cariñe, E. S. Gómez, J. F. Barra, A. Cabello, G. B. Xavier, G. Lima, and M. Pawłowski, “Experimental quantum randomness generation invulnerable to the detection loophole,” arXiv:1410.3443v2 (2014).

Barreiro, J. T.

J. T. Barreiro, N. K. Langford, N. A. Peters, and P. G. Kwiat, “Generation of hyperentangled photon pairs,” Phys. Rev. Lett. 95, 260501 (2005).
[Crossref]

Bernstein, H. J.

M. Reck, A. Zeilinger, H. J. Bernstein, and P. Bertani, “Experimental realization of any discrete unitary operator,” Phys. Rev. Lett. 73, 58–61 (1994).
[Crossref]

Berruezo, L. P.

Berta, M.

S. Pirandola, U. L. Andersen, L. Banchi, M. Berta, D. Bunandar, R. Colbeck, D. Englund, T. Gehring, C. Lupo, C. Ottaviani, J. Pereira, M. Razavi, J. S. Shaari, M. Tomamichel, V. C. Usenko, G. Vallone, P. Villoresi, and P. Wallden, “Advances in quantum cryptography,” arXiv:1906.01645v1 [quant-ph] (2019).

Bertani, P.

M. Reck, A. Zeilinger, H. J. Bernstein, and P. Bertani, “Experimental realization of any discrete unitary operator,” Phys. Rev. Lett. 73, 58–61 (1994).
[Crossref]

Bhatnagar, P.

P. Bhatnagar and R. K. Nema, “Maximum power point tracking control techniques: state-of-the-art in photovoltaic applications,” Renew. Sustain. Energy Rev. 23, 224–241 (2013).
[Crossref]

Biagi, N.

B. Da Lio, D. Bacco, D. Cozzolino, N. Biagi, T. N. Arge, E. Larsen, K. Rottwitt, Y. Ding, A. Zavatta, and L. K. Oxenløwe, “Stable transmission of high-dimensional quantum states over a 2-km multicore fiber,” IEEE J. Sel. Top. Quantum Electron. 26, 6400108 (2020).
[Crossref]

Bigot-Astruc, M.

Bohr Brask, J.

D. Rusca, T. van Himbeeck, A. Martin, J. Bohr Brask, W. Shi, S. Pironio, N. Brunner, and H. Zbinden, “Practical self-testing quantum random number generator based on an energy bound,” arXiv:1904.04819 [quant-ph].

Bonneau, D.

J. Wang, S. Paesani, Y. Ding, R. Santagati, P. Skrzypczyk, A. Salavrakos, J. Tura, R. Augusiak, L. Mančinska, D. Bacco, D. Bonneau, J. W. Silverstone, Q. Gong, A. Acín, K. Rottwitt, L. K. Oxenløwe, J. L. O’Brien, A. Laing, and M. G. Thompson, “Multidimensional quantum entanglement with large-scale integrated optics,” Science 360, 285–291 (2018).
[Crossref]

Bouchard, F.

S. Ecker, F. Bouchard, L. Bulla, F. Brandt, O. Kohout, F. Steinlechner, R. Fickler, M. Malik, Y. Guryanova, R. Ursin, and M. Huber, “Overcoming noise in entanglement distribution,” Phys. Rev. X 9, 041042 (2019).
[Crossref]

A. Sit, R. Fickler, F. Alsaiari, F. Bouchard, H. Larocque, P. Gregg, L. Yan, R. W. Boyd, S. Ramachandran, and E. Karim, “Quantum cryptography with structured photons through a vortex fiber,” Opt. Lett. 43, 4108–4111 (2018).
[Crossref]

Bourennane, M.

N. J. Cerf, M. Bourennane, A. Karlsson, and N. Gisin, “Security of quantum key distribution using -level systems,” Phys. Rev. Lett. 88, 127902 (2002).
[Crossref]

Bowles, J.

J. B. Brask, A. Martin, W. Esposito, R. Houlmann, J. Bowles, H. Zbinden, and N. Brunner, “Megahertz-rate semi-device-independent quantum random number generators based on unambiguous state discrimination,” Phys. Rev. Appl. 7, 054018 (2017).
[Crossref]

T. Lunghi, J. B. Brask, C. C. W. Lim, Q. Lavigne, J. Bowles, A. Martin, H. Zbinden, and N. Brunner, “Self-testing quantum random number generator,” Phys. Rev. Lett. 114, 150501 (2015).
[Crossref]

Boyd, R. W.

A. Sit, R. Fickler, F. Alsaiari, F. Bouchard, H. Larocque, P. Gregg, L. Yan, R. W. Boyd, S. Ramachandran, and E. Karim, “Quantum cryptography with structured photons through a vortex fiber,” Opt. Lett. 43, 4108–4111 (2018).
[Crossref]

M. N. O’Sullivan-Hale, I. Ali Khan, R. W. Boyd, and J. C. Howell, “Pixel entanglement: experimental realization of optically entangled d = 3 and d = 6 qudits,” Phys. Rev. Lett. 94, 220501 (2005).
[Crossref]

Boyd, S.

S. Boyd and L. Vandenberghe, Convex Optimization (Cambridge University, 2004).

Bozinovic, N.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340, 1545–1548 (2013).
[Crossref]

Branciard, C.

M. M. Taddei, J. Cariñe, D. Martínez, T. García, N. Guerrero, A. A. Abbott, M. Araújo, C. Branciard, E. S. Gómez, S. P. Walborn, L. Aolita, and G. Lima, “Experimental computational advantage from superposition of multiple temporal orders of quantum gates,” arXiv:2002.07817 (2020).

Brandt, F.

S. Ecker, F. Bouchard, L. Bulla, F. Brandt, O. Kohout, F. Steinlechner, R. Fickler, M. Malik, Y. Guryanova, R. Ursin, and M. Huber, “Overcoming noise in entanglement distribution,” Phys. Rev. X 9, 041042 (2019).
[Crossref]

Brask, J. B.

J. B. Brask, A. Martin, W. Esposito, R. Houlmann, J. Bowles, H. Zbinden, and N. Brunner, “Megahertz-rate semi-device-independent quantum random number generators based on unambiguous state discrimination,” Phys. Rev. Appl. 7, 054018 (2017).
[Crossref]

T. Lunghi, J. B. Brask, C. C. W. Lim, Q. Lavigne, J. Bowles, A. Martin, H. Zbinden, and N. Brunner, “Self-testing quantum random number generator,” Phys. Rev. Lett. 114, 150501 (2015).
[Crossref]

Broome, M. A.

Brukner, C.

M. Araújo, F. Costa, and C. Brukner, “Computational advantage from quantum-controlled ordering of gates,” Phys. Rev. Lett. 113, 250402 (2014).
[Crossref]

Brunet, C.

Brunner, N.

J. B. Brask, A. Martin, W. Esposito, R. Houlmann, J. Bowles, H. Zbinden, and N. Brunner, “Megahertz-rate semi-device-independent quantum random number generators based on unambiguous state discrimination,” Phys. Rev. Appl. 7, 054018 (2017).
[Crossref]

T. Lunghi, J. B. Brask, C. C. W. Lim, Q. Lavigne, J. Bowles, A. Martin, H. Zbinden, and N. Brunner, “Self-testing quantum random number generator,” Phys. Rev. Lett. 114, 150501 (2015).
[Crossref]

N. Brunner, D. Cavalcanti, S. Pironio, V. Scarani, and S. Wehner, “Bell nonlocality,” Rev. Mod. Phys. 86, 419 (2014).
[Crossref]

M. Pawłowski and N. Brunner, “Semi-device-independent security of one-way quantum key distribution,” Phys. Rev. A 84, 010302 (2011).
[Crossref]

D. Rusca, T. van Himbeeck, A. Martin, J. Bohr Brask, W. Shi, S. Pironio, N. Brunner, and H. Zbinden, “Practical self-testing quantum random number generator based on an energy bound,” arXiv:1904.04819 [quant-ph].

Bulla, L.

S. Ecker, F. Bouchard, L. Bulla, F. Brandt, O. Kohout, F. Steinlechner, R. Fickler, M. Malik, Y. Guryanova, R. Ursin, and M. Huber, “Overcoming noise in entanglement distribution,” Phys. Rev. X 9, 041042 (2019).
[Crossref]

Buller, G. S.

A. C. Dada, J. Leach, G. S. Buller, M. J. Padgett, and E. Andersson, “Experimental high-dimensional two-photon entanglement and violations of generalized Bell inequalities,” Nat. Phys. 7, 677–680 (2011).
[Crossref]

Bunandar, D.

S. Pirandola, U. L. Andersen, L. Banchi, M. Berta, D. Bunandar, R. Colbeck, D. Englund, T. Gehring, C. Lupo, C. Ottaviani, J. Pereira, M. Razavi, J. S. Shaari, M. Tomamichel, V. C. Usenko, G. Vallone, P. Villoresi, and P. Wallden, “Advances in quantum cryptography,” arXiv:1906.01645v1 [quant-ph] (2019).

Cabello, A.

L. Pereira, A. Rojas, G. Cañas, G. Lima, A. Delgado, and A. Cabello, “Universal multi-port interferometers with minimal optical depth,” arXiv:2002.01371 (2020).

G. Cañas, J. Cariñe, E. S. Gómez, J. F. Barra, A. Cabello, G. B. Xavier, G. Lima, and M. Pawłowski, “Experimental quantum randomness generation invulnerable to the detection loophole,” arXiv:1410.3443v2 (2014).

Cai, C.

Cai, X.

Y. Ding, D. Bacco, K. Dalgaard, X. Cai, X. Zhou, K. Rottwitt, and L. K. Oxenløwe, “High-dimensional quantum key distribution based on multicore fiber using silicon photonic integrated circuits,” npj Quantum Inf. 3, 25 (2017).
[Crossref]

Cañas, G.

E. A. Aguilar, M. Farkas, D. Martínez, M. Alvarado, J. Cariñe, G. B. Xavier, J. F. Barra, G. Cañas, M. Pawłowski, and G. Lima, “Certifying an irreducible 1024-dimensional photonic state using refined dimension witnesses,” Phys. Rev. Lett. 120, 230503 (2018).
[Crossref]

D. Martínez, A. Tavakoli, M. Casanova, G. Cañas, B. Marques, and G. Lima, “High-dimensional quantum communication complexity beyond strategies based on Bell’s theorem,” Phys. Rev. Lett. 121, 150504 (2018).
[Crossref]

G. Cañas, N. Vera, J. Cariñe, P. González, J. Cardenas, P. W. R. Connolly, A. Przysiezna, E. S. Gómez, M. Figueroa, G. Vallone, P. Villoresi, T. Ferreira da Silva, G. B. Xavier, and G. Lima, “High-dimensional decoy-state quantum key distribution over multicore telecommunication fibers,” Phys. Rev. A 96, 022317 (2017).
[Crossref]

S. Etcheverry, G. Cañas, E. S. Gómez, W. A. T. Nogueira, C. Saavedra, G. B. Xavier, and G. Lima, “Quantum key distribution session with 16-dimensional photonic states,” Sci. Rep. 3, 2316 (2013).
[Crossref]

L. Pereira, A. Rojas, G. Cañas, G. Lima, A. Delgado, and A. Cabello, “Universal multi-port interferometers with minimal optical depth,” arXiv:2002.01371 (2020).

G. Cañas, J. Cariñe, E. S. Gómez, J. F. Barra, A. Cabello, G. B. Xavier, G. Lima, and M. Pawłowski, “Experimental quantum randomness generation invulnerable to the detection loophole,” arXiv:1410.3443v2 (2014).

Cao, H.

Cao, Y.

Y. Liu, X. Yuan, M.-H. Li, W. Zhang, Q. Zhao, J. Zhong, Y. Cao, Y.-H. Li, L.-K. Chen, H. Li, T. Peng, Y.-A. Chen, C.-Z. Peng, S.-C. Shi, Z. Wang, L. You, X. Ma, J. Fan, Q. Zhang, and J.-W. Pan, “High-speed device-independent quantum random number generation without a detection loophole,” Phys. Rev. Lett. 120, 010503 (2018).
[Crossref]

Cardenas, J.

G. Cañas, N. Vera, J. Cariñe, P. González, J. Cardenas, P. W. R. Connolly, A. Przysiezna, E. S. Gómez, M. Figueroa, G. Vallone, P. Villoresi, T. Ferreira da Silva, G. B. Xavier, and G. Lima, “High-dimensional decoy-state quantum key distribution over multicore telecommunication fibers,” Phys. Rev. A 96, 022317 (2017).
[Crossref]

Cariñe, J.

E. A. Aguilar, M. Farkas, D. Martínez, M. Alvarado, J. Cariñe, G. B. Xavier, J. F. Barra, G. Cañas, M. Pawłowski, and G. Lima, “Certifying an irreducible 1024-dimensional photonic state using refined dimension witnesses,” Phys. Rev. Lett. 120, 230503 (2018).
[Crossref]

G. Cañas, N. Vera, J. Cariñe, P. González, J. Cardenas, P. W. R. Connolly, A. Przysiezna, E. S. Gómez, M. Figueroa, G. Vallone, P. Villoresi, T. Ferreira da Silva, G. B. Xavier, and G. Lima, “High-dimensional decoy-state quantum key distribution over multicore telecommunication fibers,” Phys. Rev. A 96, 022317 (2017).
[Crossref]

G. Cañas, J. Cariñe, E. S. Gómez, J. F. Barra, A. Cabello, G. B. Xavier, G. Lima, and M. Pawłowski, “Experimental quantum randomness generation invulnerable to the detection loophole,” arXiv:1410.3443v2 (2014).

M. M. Taddei, J. Cariñe, D. Martínez, T. García, N. Guerrero, A. A. Abbott, M. Araújo, C. Branciard, E. S. Gómez, S. P. Walborn, L. Aolita, and G. Lima, “Experimental computational advantage from superposition of multiple temporal orders of quantum gates,” arXiv:2002.07817 (2020).

Carolan, J.

J. Carolan, C. Harrold, C. Sparrow, E. Martín-López, N. J. Russell, J. W. Silverstone, P. J. Shadbolt, N. Matsuda, M. Oguma, M. Itoh, G. D. Marshall, M. G. Thompson, J. C. F. Matthews, T. Hashimoto, J. L. O’Brien, and A. Laing, “Universal linear optics,” Science 349, 711–716 (2015).
[Crossref]

Carvacho, G.

D. Cozzolino, E. Polino, M. Valeri, G. Carvacho, D. Bacco, N. Spagnolo, L. K. Oxenløwe, and F. Sciarrino, “Air-core fiber distribution of hybrid vector vortex-polarization entangled states,” Adv. Photon. 1, 1 (2019).
[Crossref]

Carvalho, M. A. D.

Casanova, M.

D. Martínez, A. Tavakoli, M. Casanova, G. Cañas, B. Marques, and G. Lima, “High-dimensional quantum communication complexity beyond strategies based on Bell’s theorem,” Phys. Rev. Lett. 121, 150504 (2018).
[Crossref]

Cavalcanti, D.

I. Supic, P. Skrzypczyk, and D. Cavalcanti, “Measurement-device independent entanglement and randomness estimation in quantum networks,” Phys. Rev. A 95, 042340 (2017).
[Crossref]

N. Brunner, D. Cavalcanti, S. Pironio, V. Scarani, and S. Wehner, “Bell nonlocality,” Rev. Mod. Phys. 86, 419 (2014).
[Crossref]

Cerf, N. J.

T. Van Himbeeck, E. Woodhead, N. J. Cerf, R. García-Patrón, and S. Pironio, “Semi-device-independent framework based on natural physical assumptions,” Quantum 1, 33 (2017).
[Crossref]

N. J. Cerf, M. Bourennane, A. Karlsson, and N. Gisin, “Security of quantum key distribution using -level systems,” Phys. Rev. Lett. 88, 127902 (2002).
[Crossref]

Chen, J.

R. Lin, A. Udalcovs, O. Ozolins, X. Pang, L. Gan, L. Shen, M. Tang, S. Fu, S. Popov, C. Yang, W. Tong, D. Liu, T. Ferreira da Silva, G. B. Xavier, and J. Chen, “Telecom compatibility validation of quantum key distribution co-existing with 112  Gbps/λ/core data transmission in non-trench and trench-assistant multicore fibers,” in European Conference on Optical Communications (ECOC) (2018) paper We1A.3.

Chen, L.-K.

Y. Liu, X. Yuan, M.-H. Li, W. Zhang, Q. Zhao, J. Zhong, Y. Cao, Y.-H. Li, L.-K. Chen, H. Li, T. Peng, Y.-A. Chen, C.-Z. Peng, S.-C. Shi, Z. Wang, L. You, X. Ma, J. Fan, Q. Zhang, and J.-W. Pan, “High-speed device-independent quantum random number generation without a detection loophole,” Phys. Rev. Lett. 120, 010503 (2018).
[Crossref]

Chen, S.

Chen, Y.-A.

Y. Liu, X. Yuan, M.-H. Li, W. Zhang, Q. Zhao, J. Zhong, Y. Cao, Y.-H. Li, L.-K. Chen, H. Li, T. Peng, Y.-A. Chen, C.-Z. Peng, S.-C. Shi, Z. Wang, L. You, X. Ma, J. Fan, Q. Zhang, and J.-W. Pan, “High-speed device-independent quantum random number generation without a detection loophole,” Phys. Rev. Lett. 120, 010503 (2018).
[Crossref]

W.-B. Gao, C.-Y. Lu, X.-C. Yao, P. Xu, O. Guhne, A. Goebel, Y.-A. Chen, C.-Z. Peng, Z.-B. Chen, and J.-W. Pan, Experimental demonstration of a hyper-entangled ten-qubit Schrödinger cat state, Nat. Phys. 6, 331–335 (2010).
[Crossref]

Chen, Y.-J.

Chen, Z.-B.

W.-B. Gao, C.-Y. Lu, X.-C. Yao, P. Xu, O. Guhne, A. Goebel, Y.-A. Chen, C.-Z. Peng, Z.-B. Chen, and J.-W. Pan, Experimental demonstration of a hyper-entangled ten-qubit Schrödinger cat state, Nat. Phys. 6, 331–335 (2010).
[Crossref]

Cheng, Y.

Z. Zhao, M. Tang, S. Fu, S. Liu, H. Wei, Y. Cheng, W. Tong, P. P. Shum, and D. Liu, “All-solid multi-core fiber-based multipath Mach-Zehnder interferometer for temperature sensing,” Appl. Phys. B 112, 491–497 (2013).
[Crossref]

Chiuri, A.

A. Rossi, G. Vallone, A. Chiuri, F. De Martini, and P. Mataloni, “Multipath entanglement of two photons,” Phys. Rev. Lett. 102, 153902 (2009).
[Crossref]

Choi, S.-K.

H. J. Lee, S.-K. Choi, and H. S. Park, “Experimental demonstration of four-dimensional photonic spatial entanglement between multi-core optical fibres,” Sci. Rep. 7, 4302 (2017).
[Crossref]

Clements, W. R.

Colbeck, R.

S. Pirandola, U. L. Andersen, L. Banchi, M. Berta, D. Bunandar, R. Colbeck, D. Englund, T. Gehring, C. Lupo, C. Ottaviani, J. Pereira, M. Razavi, J. S. Shaari, M. Tomamichel, V. C. Usenko, G. Vallone, P. Villoresi, and P. Wallden, “Advances in quantum cryptography,” arXiv:1906.01645v1 [quant-ph] (2019).

Connolly, P. W. R.

G. Cañas, N. Vera, J. Cariñe, P. González, J. Cardenas, P. W. R. Connolly, A. Przysiezna, E. S. Gómez, M. Figueroa, G. Vallone, P. Villoresi, T. Ferreira da Silva, G. B. Xavier, and G. Lima, “High-dimensional decoy-state quantum key distribution over multicore telecommunication fibers,” Phys. Rev. A 96, 022317 (2017).
[Crossref]

Costa, F.

M. Araújo, F. Costa, and C. Brukner, “Computational advantage from quantum-controlled ordering of gates,” Phys. Rev. Lett. 113, 250402 (2014).
[Crossref]

Cozzolino, D.

B. Da Lio, D. Bacco, D. Cozzolino, N. Biagi, T. N. Arge, E. Larsen, K. Rottwitt, Y. Ding, A. Zavatta, and L. K. Oxenløwe, “Stable transmission of high-dimensional quantum states over a 2-km multicore fiber,” IEEE J. Sel. Top. Quantum Electron. 26, 6400108 (2020).
[Crossref]

D. Cozzolino, E. Polino, M. Valeri, G. Carvacho, D. Bacco, N. Spagnolo, L. K. Oxenløwe, and F. Sciarrino, “Air-core fiber distribution of hybrid vector vortex-polarization entangled states,” Adv. Photon. 1, 1 (2019).
[Crossref]

Crespi, A.

F. Flamini, N. Spagnolo, N. Viggianiello, A. Crespi, R. Osellame, and F. Sciarrino, “Benchmarking integrated linear-optical architectures for quantum information processing,” Sci. Rep. 7, 15133 (2017).
[Crossref]

N. Spagnolo, C. Vitelli, L. Aparo, P. Mataloni, F. Sciarrino, A. Crespi, R. Ramponi, and R. Osellame, “Three-photon bosonic coalescence in an integrated tritter,” Nat. Commun. 4, 1606 (2013).
[Crossref]

Cryan, M. J.

A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O’Brien, “Silica-on-silicon waveguide quantum circuits,” Science 320, 646–649 (2008).
[Crossref]

Cui, L.

L. Cui, J. Su, X. Li, and Z. Y. Ou, “Distribution of entangled photon pairs over few-mode fibers,” Sci. Rep. 7, 14954 (2017).
[Crossref]

Curty, M.

H.-K. Lo, M. Curty, and K. Tamaki, “Secure quantum key distribution,” Nat. Photonics 8, 595–604 (2014).
[Crossref]

H.-K. Lo, M. Curty, and B. Qi, “Measurement-device-independent quantum key distribution,” Phys. Rev. Lett. 108, 130503 (2012).
[Crossref]

Da Lio, B.

B. Da Lio, D. Bacco, D. Cozzolino, N. Biagi, T. N. Arge, E. Larsen, K. Rottwitt, Y. Ding, A. Zavatta, and L. K. Oxenløwe, “Stable transmission of high-dimensional quantum states over a 2-km multicore fiber,” IEEE J. Sel. Top. Quantum Electron. 26, 6400108 (2020).
[Crossref]

Dada, A. C.

A. C. Dada, J. Leach, G. S. Buller, M. J. Padgett, and E. Andersson, “Experimental high-dimensional two-photon entanglement and violations of generalized Bell inequalities,” Nat. Phys. 7, 677–680 (2011).
[Crossref]

Dalgaard, K.

Y. Ding, D. Bacco, K. Dalgaard, X. Cai, X. Zhou, K. Rottwitt, and L. K. Oxenløwe, “High-dimensional quantum key distribution based on multicore fiber using silicon photonic integrated circuits,” npj Quantum Inf. 3, 25 (2017).
[Crossref]

De Assis, P.-L.

de La Giroday, A. B.

S. Pironio, A. Acín, S. Massar, A. B. de La Giroday, D. N. Matsukevich, P. Maunz, S. Olmschenk, D. Hayes, L. Luo, T. A. Manning, and C. Monroe, “Random numbers certified by Bell’s theorem,” Nature 464, 1021–1024 (2010).
[Crossref]

De Martini, F.

A. Rossi, G. Vallone, A. Chiuri, F. De Martini, and P. Mataloni, “Multipath entanglement of two photons,” Phys. Rev. Lett. 102, 153902 (2009).
[Crossref]

Defienne, H.

N. H. Valencia, S. Goel, W. McCutcheon, H. Defienne, and M. Malik, “Unscrambling entanglement through a complex medium,” arXiv:1910.04490 (2019).

Delgado, A.

F. A. T. Ruiz, G. Lima, A. Delgado, S. Pádua, and C. Saavedra, “Decoherence in a double-slit quantum eraser,” Phys. Rev. A 81, 042104 (2010).
[Crossref]

L. Pereira, A. Rojas, G. Cañas, G. Lima, A. Delgado, and A. Cabello, “Universal multi-port interferometers with minimal optical depth,” arXiv:2002.01371 (2020).

Deutsch, I. H.

C. H. Baldwin, A. Kalev, and I. H. Deutsch, “Quantum process tomography of unitary and near-unitary maps,” Phys. Rev. A 90, 012110 (2014).
[Crossref]

Diamanti, E.

E. Diamanti, H.-K. Lo, B. Qi, and Z. Yuan, “Practical challenges in quantum key distribution,” npj Quantum Inf. 2, 16025 (2016).
[Crossref]

Ding, Y.

B. Da Lio, D. Bacco, D. Cozzolino, N. Biagi, T. N. Arge, E. Larsen, K. Rottwitt, Y. Ding, A. Zavatta, and L. K. Oxenløwe, “Stable transmission of high-dimensional quantum states over a 2-km multicore fiber,” IEEE J. Sel. Top. Quantum Electron. 26, 6400108 (2020).
[Crossref]

J. Wang, S. Paesani, Y. Ding, R. Santagati, P. Skrzypczyk, A. Salavrakos, J. Tura, R. Augusiak, L. Mančinska, D. Bacco, D. Bonneau, J. W. Silverstone, Q. Gong, A. Acín, K. Rottwitt, L. K. Oxenløwe, J. L. O’Brien, A. Laing, and M. G. Thompson, “Multidimensional quantum entanglement with large-scale integrated optics,” Science 360, 285–291 (2018).
[Crossref]

Y. Ding, D. Bacco, K. Dalgaard, X. Cai, X. Zhou, K. Rottwitt, and L. K. Oxenløwe, “High-dimensional quantum key distribution based on multicore fiber using silicon photonic integrated circuits,” npj Quantum Inf. 3, 25 (2017).
[Crossref]

Du, C.

Duan, L.

L. Gan, R. Wang, D. Liu, L. Duan, S. Liu, S. Fu, B. Li, Z. Feng, H. Wei, W. Tong, P. Shum, and M. Tang, “Spatial-division multiplexed Mach-Zehnder interferometers in heterogeneous multicore fiber for multiparameter measurement,” IEEE Photon. J. 8, 1 (2016).
[Crossref]

Dyakonov, I. V.

M. Y. Saygin, I. V. Kondratyev, I. V. Dyakonov, S. A. Mironov, S. S. Straupe, and S. P. Kulik, “Robust architecture for programmable universal unitaries,” Phys. Rev. Lett. 124, 010501 (2020).
[Crossref]

Dynes, J. F.

Ecker, S.

S. Ecker, F. Bouchard, L. Bulla, F. Brandt, O. Kohout, F. Steinlechner, R. Fickler, M. Malik, Y. Guryanova, R. Ursin, and M. Huber, “Overcoming noise in entanglement distribution,” Phys. Rev. X 9, 041042 (2019).
[Crossref]

Englund, D.

S. Pirandola, U. L. Andersen, L. Banchi, M. Berta, D. Bunandar, R. Colbeck, D. Englund, T. Gehring, C. Lupo, C. Ottaviani, J. Pereira, M. Razavi, J. S. Shaari, M. Tomamichel, V. C. Usenko, G. Vallone, P. Villoresi, and P. Wallden, “Advances in quantum cryptography,” arXiv:1906.01645v1 [quant-ph] (2019).

Erhard, M.

M. Malik, M. Erhard, M. Huber, M. Krenn, R. Fickler, and A. Zeilinger, “Multi-photon entanglement in high dimensions,” Nat. Photonics 10, 248–252 (2016).
[Crossref]

Eriksson, T. A.

T. A. Eriksson, B. J. Puttnam, G. Rademacher, R. S. Luís, M. Takeoka, Y. Awaji, M. Sasaki, and N. Wada, “Inter-core crosstalk impact of classical channels on CV-QKD in multicore fiber transmission,” in Optical Fiber Communication Conference (OFC), OSA Technical Digest (Optical Society of America, 2019), paper Th1J.1.

Esposito, W.

J. B. Brask, A. Martin, W. Esposito, R. Houlmann, J. Bowles, H. Zbinden, and N. Brunner, “Megahertz-rate semi-device-independent quantum random number generators based on unambiguous state discrimination,” Phys. Rev. Appl. 7, 054018 (2017).
[Crossref]

Etcheverry, S.

S. Etcheverry, G. Cañas, E. S. Gómez, W. A. T. Nogueira, C. Saavedra, G. B. Xavier, and G. Lima, “Quantum key distribution session with 16-dimensional photonic states,” Sci. Rep. 3, 2316 (2013).
[Crossref]

Eznaveh, Z. S.

Fan, J.

Y. Liu, X. Yuan, M.-H. Li, W. Zhang, Q. Zhao, J. Zhong, Y. Cao, Y.-H. Li, L.-K. Chen, H. Li, T. Peng, Y.-A. Chen, C.-Z. Peng, S.-C. Shi, Z. Wang, L. You, X. Ma, J. Fan, Q. Zhang, and J.-W. Pan, “High-speed device-independent quantum random number generation without a detection loophole,” Phys. Rev. Lett. 120, 010503 (2018).
[Crossref]

Farkas, M.

E. A. Aguilar, M. Farkas, D. Martínez, M. Alvarado, J. Cariñe, G. B. Xavier, J. F. Barra, G. Cañas, M. Pawłowski, and G. Lima, “Certifying an irreducible 1024-dimensional photonic state using refined dimension witnesses,” Phys. Rev. Lett. 120, 230503 (2018).
[Crossref]

Fedrizzi, A.

Feng, Z.

L. Gan, R. Wang, D. Liu, L. Duan, S. Liu, S. Fu, B. Li, Z. Feng, H. Wei, W. Tong, P. Shum, and M. Tang, “Spatial-division multiplexed Mach-Zehnder interferometers in heterogeneous multicore fiber for multiparameter measurement,” IEEE Photon. J. 8, 1 (2016).
[Crossref]

Ferraz, J.

Ferreira da Silva, T.

G. Cañas, N. Vera, J. Cariñe, P. González, J. Cardenas, P. W. R. Connolly, A. Przysiezna, E. S. Gómez, M. Figueroa, G. Vallone, P. Villoresi, T. Ferreira da Silva, G. B. Xavier, and G. Lima, “High-dimensional decoy-state quantum key distribution over multicore telecommunication fibers,” Phys. Rev. A 96, 022317 (2017).
[Crossref]

R. Lin, A. Udalcovs, O. Ozolins, X. Pang, L. Gan, L. Shen, M. Tang, S. Fu, S. Popov, C. Yang, W. Tong, D. Liu, T. Ferreira da Silva, G. B. Xavier, and J. Chen, “Telecom compatibility validation of quantum key distribution co-existing with 112  Gbps/λ/core data transmission in non-trench and trench-assistant multicore fibers,” in European Conference on Optical Communications (ECOC) (2018) paper We1A.3.

Fickler, R.

S. Ecker, F. Bouchard, L. Bulla, F. Brandt, O. Kohout, F. Steinlechner, R. Fickler, M. Malik, Y. Guryanova, R. Ursin, and M. Huber, “Overcoming noise in entanglement distribution,” Phys. Rev. X 9, 041042 (2019).
[Crossref]

A. Sit, R. Fickler, F. Alsaiari, F. Bouchard, H. Larocque, P. Gregg, L. Yan, R. W. Boyd, S. Ramachandran, and E. Karim, “Quantum cryptography with structured photons through a vortex fiber,” Opt. Lett. 43, 4108–4111 (2018).
[Crossref]

M. Malik, M. Erhard, M. Huber, M. Krenn, R. Fickler, and A. Zeilinger, “Multi-photon entanglement in high dimensions,” Nat. Photonics 10, 248–252 (2016).
[Crossref]

S. Rahimi-Keshari, M. A. Broome, R. Fickler, A. Fedrizzi, T. C. Ralph, and A. G. White, “Direct characterization of linear-optical networks,” Opt. Express 21, 13450–13458 (2013).
[Crossref]

Figueroa, M.

G. Cañas, N. Vera, J. Cariñe, P. González, J. Cardenas, P. W. R. Connolly, A. Przysiezna, E. S. Gómez, M. Figueroa, G. Vallone, P. Villoresi, T. Ferreira da Silva, G. B. Xavier, and G. Lima, “High-dimensional decoy-state quantum key distribution over multicore telecommunication fibers,” Phys. Rev. A 96, 022317 (2017).
[Crossref]

Fini, J. M.

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7, 354–362 (2013).
[Crossref]

Flamini, F.

F. Flamini, N. Spagnolo, N. Viggianiello, A. Crespi, R. Osellame, and F. Sciarrino, “Benchmarking integrated linear-optical architectures for quantum information processing,” Sci. Rep. 7, 15133 (2017).
[Crossref]

Forbes, A.

J. Liu, I. Nape, Q. Wang, A. Vallés, J. Wang, and A. Forbes, “Multi-dimensional entanglement transport through single-mode fibre,” Sci. Adv. 6, eaay0837 (2020).
[Crossref]

Fröhlich, B.

Fu, S.

L. Gan, R. Wang, D. Liu, L. Duan, S. Liu, S. Fu, B. Li, Z. Feng, H. Wei, W. Tong, P. Shum, and M. Tang, “Spatial-division multiplexed Mach-Zehnder interferometers in heterogeneous multicore fiber for multiparameter measurement,” IEEE Photon. J. 8, 1 (2016).
[Crossref]

Z. Zhao, M. Tang, S. Fu, S. Liu, H. Wei, Y. Cheng, W. Tong, P. P. Shum, and D. Liu, “All-solid multi-core fiber-based multipath Mach-Zehnder interferometer for temperature sensing,” Appl. Phys. B 112, 491–497 (2013).
[Crossref]

R. Lin, A. Udalcovs, O. Ozolins, X. Pang, L. Gan, L. Shen, M. Tang, S. Fu, S. Popov, C. Yang, W. Tong, D. Liu, T. Ferreira da Silva, G. B. Xavier, and J. Chen, “Telecom compatibility validation of quantum key distribution co-existing with 112  Gbps/λ/core data transmission in non-trench and trench-assistant multicore fibers,” in European Conference on Optical Communications (ECOC) (2018) paper We1A.3.

Gan, L.

L. Gan, R. Wang, D. Liu, L. Duan, S. Liu, S. Fu, B. Li, Z. Feng, H. Wei, W. Tong, P. Shum, and M. Tang, “Spatial-division multiplexed Mach-Zehnder interferometers in heterogeneous multicore fiber for multiparameter measurement,” IEEE Photon. J. 8, 1 (2016).
[Crossref]

R. Lin, A. Udalcovs, O. Ozolins, X. Pang, L. Gan, L. Shen, M. Tang, S. Fu, S. Popov, C. Yang, W. Tong, D. Liu, T. Ferreira da Silva, G. B. Xavier, and J. Chen, “Telecom compatibility validation of quantum key distribution co-existing with 112  Gbps/λ/core data transmission in non-trench and trench-assistant multicore fibers,” in European Conference on Optical Communications (ECOC) (2018) paper We1A.3.

Gao, S.-C.

Gao, W.-B.

W.-B. Gao, C.-Y. Lu, X.-C. Yao, P. Xu, O. Guhne, A. Goebel, Y.-A. Chen, C.-Z. Peng, Z.-B. Chen, and J.-W. Pan, Experimental demonstration of a hyper-entangled ten-qubit Schrödinger cat state, Nat. Phys. 6, 331–335 (2010).
[Crossref]

García, T.

M. M. Taddei, J. Cariñe, D. Martínez, T. García, N. Guerrero, A. A. Abbott, M. Araújo, C. Branciard, E. S. Gómez, S. P. Walborn, L. Aolita, and G. Lima, “Experimental computational advantage from superposition of multiple temporal orders of quantum gates,” arXiv:2002.07817 (2020).

García-Patrón, R.

T. Van Himbeeck, E. Woodhead, N. J. Cerf, R. García-Patrón, and S. Pironio, “Semi-device-independent framework based on natural physical assumptions,” Quantum 1, 33 (2017).
[Crossref]

Gehring, T.

S. Pirandola, U. L. Andersen, L. Banchi, M. Berta, D. Bunandar, R. Colbeck, D. Englund, T. Gehring, C. Lupo, C. Ottaviani, J. Pereira, M. Razavi, J. S. Shaari, M. Tomamichel, V. C. Usenko, G. Vallone, P. Villoresi, and P. Wallden, “Advances in quantum cryptography,” arXiv:1906.01645v1 [quant-ph] (2019).

Gisin, N.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
[Crossref]

N. J. Cerf, M. Bourennane, A. Karlsson, and N. Gisin, “Security of quantum key distribution using -level systems,” Phys. Rev. Lett. 88, 127902 (2002).
[Crossref]

Gnacinski, P.

D. Kaszlikowski, P. Gnaciński, M. Żukowski, W. Miklaszewski, and A. Zeilinger, “Violations of local realism by two entangled N-dimensional systems are stronger than for two qubits,” Phys. Rev. Lett. 85, 4418–4421 (2000).
[Crossref]

Goebel, A.

W.-B. Gao, C.-Y. Lu, X.-C. Yao, P. Xu, O. Guhne, A. Goebel, Y.-A. Chen, C.-Z. Peng, Z.-B. Chen, and J.-W. Pan, Experimental demonstration of a hyper-entangled ten-qubit Schrödinger cat state, Nat. Phys. 6, 331–335 (2010).
[Crossref]

Goel, S.

N. H. Valencia, S. Goel, W. McCutcheon, H. Defienne, and M. Malik, “Unscrambling entanglement through a complex medium,” arXiv:1910.04490 (2019).

Gómez, E. S.

G. Cañas, N. Vera, J. Cariñe, P. González, J. Cardenas, P. W. R. Connolly, A. Przysiezna, E. S. Gómez, M. Figueroa, G. Vallone, P. Villoresi, T. Ferreira da Silva, G. B. Xavier, and G. Lima, “High-dimensional decoy-state quantum key distribution over multicore telecommunication fibers,” Phys. Rev. A 96, 022317 (2017).
[Crossref]

S. Etcheverry, G. Cañas, E. S. Gómez, W. A. T. Nogueira, C. Saavedra, G. B. Xavier, and G. Lima, “Quantum key distribution session with 16-dimensional photonic states,” Sci. Rep. 3, 2316 (2013).
[Crossref]

G. Cañas, J. Cariñe, E. S. Gómez, J. F. Barra, A. Cabello, G. B. Xavier, G. Lima, and M. Pawłowski, “Experimental quantum randomness generation invulnerable to the detection loophole,” arXiv:1410.3443v2 (2014).

M. M. Taddei, J. Cariñe, D. Martínez, T. García, N. Guerrero, A. A. Abbott, M. Araújo, C. Branciard, E. S. Gómez, S. P. Walborn, L. Aolita, and G. Lima, “Experimental computational advantage from superposition of multiple temporal orders of quantum gates,” arXiv:2002.07817 (2020).

Gong, Q.

J. Wang, S. Paesani, Y. Ding, R. Santagati, P. Skrzypczyk, A. Salavrakos, J. Tura, R. Augusiak, L. Mančinska, D. Bacco, D. Bonneau, J. W. Silverstone, Q. Gong, A. Acín, K. Rottwitt, L. K. Oxenløwe, J. L. O’Brien, A. Laing, and M. G. Thompson, “Multidimensional quantum entanglement with large-scale integrated optics,” Science 360, 285–291 (2018).
[Crossref]

González, P.

G. Cañas, N. Vera, J. Cariñe, P. González, J. Cardenas, P. W. R. Connolly, A. Przysiezna, E. S. Gómez, M. Figueroa, G. Vallone, P. Villoresi, T. Ferreira da Silva, G. B. Xavier, and G. Lima, “High-dimensional decoy-state quantum key distribution over multicore telecommunication fibers,” Phys. Rev. A 96, 022317 (2017).
[Crossref]

Gregg, P.

Gröblacher, S.

S. Gröblacher, T. Jennewein, A. Vaziri, G. Weihs, and A. Zeilinger, “Experimental quantum cryptography with qutrits,” New J. Phys. 8, 75 (2006).
[Crossref]

Guan, C.

C. Guan, X. Zhong, G. Mao, T. Yuan, J. Yang, and L. Yuan, “In-line Mach-Zehnder interferometric sensor based on linear five-core fiber,” IEEE Photon. Technol. Lett. 27, 635–638 (2015).
[Crossref]

Guerrero, N.

M. M. Taddei, J. Cariñe, D. Martínez, T. García, N. Guerrero, A. A. Abbott, M. Araújo, C. Branciard, E. S. Gómez, S. P. Walborn, L. Aolita, and G. Lima, “Experimental computational advantage from superposition of multiple temporal orders of quantum gates,” arXiv:2002.07817 (2020).

Guhne, O.

W.-B. Gao, C.-Y. Lu, X.-C. Yao, P. Xu, O. Guhne, A. Goebel, Y.-A. Chen, C.-Z. Peng, Z.-B. Chen, and J.-W. Pan, Experimental demonstration of a hyper-entangled ten-qubit Schrödinger cat state, Nat. Phys. 6, 331–335 (2010).
[Crossref]

Guo, G.-C.

Guryanova, Y.

S. Ecker, F. Bouchard, L. Bulla, F. Brandt, O. Kohout, F. Steinlechner, R. Fickler, M. Malik, Y. Guryanova, R. Ursin, and M. Huber, “Overcoming noise in entanglement distribution,” Phys. Rev. X 9, 041042 (2019).
[Crossref]

Harrold, C.

J. Carolan, C. Harrold, C. Sparrow, E. Martín-López, N. J. Russell, J. W. Silverstone, P. J. Shadbolt, N. Matsuda, M. Oguma, M. Itoh, G. D. Marshall, M. G. Thompson, J. C. F. Matthews, T. Hashimoto, J. L. O’Brien, and A. Laing, “Universal linear optics,” Science 349, 711–716 (2015).
[Crossref]

Hashimoto, T.

J. Carolan, C. Harrold, C. Sparrow, E. Martín-López, N. J. Russell, J. W. Silverstone, P. J. Shadbolt, N. Matsuda, M. Oguma, M. Itoh, G. D. Marshall, M. G. Thompson, J. C. F. Matthews, T. Hashimoto, J. L. O’Brien, and A. Laing, “Universal linear optics,” Science 349, 711–716 (2015).
[Crossref]

Hayes, D.

S. Pironio, A. Acín, S. Massar, A. B. de La Giroday, D. N. Matsukevich, P. Maunz, S. Olmschenk, D. Hayes, L. Luo, T. A. Manning, and C. Monroe, “Random numbers certified by Bell’s theorem,” Nature 464, 1021–1024 (2010).
[Crossref]

He, D.-Y.

Hoeffding, W.

W. Hoeffding, “Probability inequalities for sums of bounded random variables,” J. Am. Stat. Assoc. 58, 13–30 (1963).
[Crossref]

Horne, M.

M. Zukowski, A. Zeilinger, and M. Horne, “Realizable higher-dimensional two-particle entanglements via multiport beam splitters,” Phys. Rev. A 55, 2564–2579 (1997).
[Crossref]

Houlmann, R.

J. B. Brask, A. Martin, W. Esposito, R. Houlmann, J. Bowles, H. Zbinden, and N. Brunner, “Megahertz-rate semi-device-independent quantum random number generators based on unambiguous state discrimination,” Phys. Rev. Appl. 7, 054018 (2017).
[Crossref]

Howell, J. C.

M. N. O’Sullivan-Hale, I. Ali Khan, R. W. Boyd, and J. C. Howell, “Pixel entanglement: experimental realization of optically entangled d = 3 and d = 6 qudits,” Phys. Rev. Lett. 94, 220501 (2005).
[Crossref]

Huang, B.

S. Zhou, B. Huang, and X. Shu, “A multi-core fiber based interferometer for high temperature sensing,” Meas. Sci. Technol. 28, 045107 (2017).
[Crossref]

Huang, H.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340, 1545–1548 (2013).
[Crossref]

Huang, Y.-F.

Huber, M.

S. Ecker, F. Bouchard, L. Bulla, F. Brandt, O. Kohout, F. Steinlechner, R. Fickler, M. Malik, Y. Guryanova, R. Ursin, and M. Huber, “Overcoming noise in entanglement distribution,” Phys. Rev. X 9, 041042 (2019).
[Crossref]

M. Malik, M. Erhard, M. Huber, M. Krenn, R. Fickler, and A. Zeilinger, “Multi-photon entanglement in high dimensions,” Nat. Photonics 10, 248–252 (2016).
[Crossref]

Hugues-Salas, E.

E. Hugues-Salas, R. Wang, G. T. Kanellos, R. Nejabati, and D. Simeonidou, “Co-existence of 9.6  Tb/s classical channels and a quantum key distribution (QKD) channel over a 7-core multicore optical fibre,” in IEEE British and Irish Conference on Optics and Photonics (BICOP) (IEEE, 2019).

Humphreys, P. C.

Iano, S.

S. Iano, T. Sato, S. Sentsui, T. Kuroha, and Y. Nishimura, “Multicore optical fiber,” in Optical Fiber Communication Conference (OFC), OSA Technical Digest (Optical Society of America, 1979), paper WB1.

Imamura, K.

K. Watanabe, T. Saito, K. Imamura, and M. Shiino, “Development of fiber bundle type fan-out for multicore fiber,” in 17th Opto Electronics and Communications Conference (2012).

Itoh, M.

J. Carolan, C. Harrold, C. Sparrow, E. Martín-López, N. J. Russell, J. W. Silverstone, P. J. Shadbolt, N. Matsuda, M. Oguma, M. Itoh, G. D. Marshall, M. G. Thompson, J. C. F. Matthews, T. Hashimoto, J. L. O’Brien, and A. Laing, “Universal linear optics,” Science 349, 711–716 (2015).
[Crossref]

Jelezko, F.

T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien, “Quantum computers,” Nature 464, 45–53 (2010).
[Crossref]

Jennewein, T.

S. Gröblacher, T. Jennewein, A. Vaziri, G. Weihs, and A. Zeilinger, “Experimental quantum cryptography with qutrits,” New J. Phys. 8, 75 (2006).
[Crossref]

Ji, Y.

Kalev, A.

C. H. Baldwin, A. Kalev, and I. H. Deutsch, “Quantum process tomography of unitary and near-unitary maps,” Phys. Rev. A 90, 012110 (2014).
[Crossref]

Kanellos, G. T.

E. Hugues-Salas, R. Wang, G. T. Kanellos, R. Nejabati, and D. Simeonidou, “Co-existence of 9.6  Tb/s classical channels and a quantum key distribution (QKD) channel over a 7-core multicore optical fibre,” in IEEE British and Irish Conference on Optics and Photonics (BICOP) (IEEE, 2019).

Karim, E.

Karlsson, A.

N. J. Cerf, M. Bourennane, A. Karlsson, and N. Gisin, “Security of quantum key distribution using -level systems,” Phys. Rev. Lett. 88, 127902 (2002).
[Crossref]

Kaszlikowski, D.

D. Kaszlikowski, P. Gnaciński, M. Żukowski, W. Miklaszewski, and A. Zeilinger, “Violations of local realism by two entangled N-dimensional systems are stronger than for two qubits,” Phys. Rev. Lett. 85, 4418–4421 (2000).
[Crossref]

Kindness, S. J.

Knill, E.

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
[Crossref]

Kobayashi, T.

Y. Tottori, T. Kobayashi, and M. Watanabe, “Low loss optical connection module for seven-core multicore fiber and seven single-mode fibers,” IEEE Photon. Technol. Lett. 24, 1926–1928 (2012).
[Crossref]

Kohout, O.

S. Ecker, F. Bouchard, L. Bulla, F. Brandt, O. Kohout, F. Steinlechner, R. Fickler, M. Malik, Y. Guryanova, R. Ursin, and M. Huber, “Overcoming noise in entanglement distribution,” Phys. Rev. X 9, 041042 (2019).
[Crossref]

Kolthammer, W. S.

Kondratyev, I. V.

M. Y. Saygin, I. V. Kondratyev, I. V. Dyakonov, S. A. Mironov, S. S. Straupe, and S. P. Kulik, “Robust architecture for programmable universal unitaries,” Phys. Rev. Lett. 124, 010501 (2020).
[Crossref]

Krenn, M.

M. Malik, M. Erhard, M. Huber, M. Krenn, R. Fickler, and A. Zeilinger, “Multi-photon entanglement in high dimensions,” Nat. Photonics 10, 248–252 (2016).
[Crossref]

Kristensen, P.

P. Gregg, P. Kristensen, and S. Ramachandran, “Conservation of orbital angular momentum in air-core optical fibers,” Optica 2, 267–270 (2015).
[Crossref]

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340, 1545–1548 (2013).
[Crossref]

Kulik, S. P.

M. Y. Saygin, I. V. Kondratyev, I. V. Dyakonov, S. A. Mironov, S. S. Straupe, and S. P. Kulik, “Robust architecture for programmable universal unitaries,” Phys. Rev. Lett. 124, 010501 (2020).
[Crossref]

Kuroha, T.

S. Iano, T. Sato, S. Sentsui, T. Kuroha, and Y. Nishimura, “Multicore optical fiber,” in Optical Fiber Communication Conference (OFC), OSA Technical Digest (Optical Society of America, 1979), paper WB1.

Kwiat, P. G.

J. T. Barreiro, N. K. Langford, N. A. Peters, and P. G. Kwiat, “Generation of hyperentangled photon pairs,” Phys. Rev. Lett. 95, 260501 (2005).
[Crossref]

Ladd, T. D.

T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien, “Quantum computers,” Nature 464, 45–53 (2010).
[Crossref]

Laflamme, R.

T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien, “Quantum computers,” Nature 464, 45–53 (2010).
[Crossref]

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
[Crossref]

Laing, A.

J. Wang, S. Paesani, Y. Ding, R. Santagati, P. Skrzypczyk, A. Salavrakos, J. Tura, R. Augusiak, L. Mančinska, D. Bacco, D. Bonneau, J. W. Silverstone, Q. Gong, A. Acín, K. Rottwitt, L. K. Oxenløwe, J. L. O’Brien, A. Laing, and M. G. Thompson, “Multidimensional quantum entanglement with large-scale integrated optics,” Science 360, 285–291 (2018).
[Crossref]

J. Carolan, C. Harrold, C. Sparrow, E. Martín-López, N. J. Russell, J. W. Silverstone, P. J. Shadbolt, N. Matsuda, M. Oguma, M. Itoh, G. D. Marshall, M. G. Thompson, J. C. F. Matthews, T. Hashimoto, J. L. O’Brien, and A. Laing, “Universal linear optics,” Science 349, 711–716 (2015).
[Crossref]

Langford, N. K.

J. T. Barreiro, N. K. Langford, N. A. Peters, and P. G. Kwiat, “Generation of hyperentangled photon pairs,” Phys. Rev. Lett. 95, 260501 (2005).
[Crossref]

LaRochelle, S.

Larocque, H.

Larsen, E.

B. Da Lio, D. Bacco, D. Cozzolino, N. Biagi, T. N. Arge, E. Larsen, K. Rottwitt, Y. Ding, A. Zavatta, and L. K. Oxenløwe, “Stable transmission of high-dimensional quantum states over a 2-km multicore fiber,” IEEE J. Sel. Top. Quantum Electron. 26, 6400108 (2020).
[Crossref]

Laurell, F.

M. Malmström, O. Tarasenko, W. Margulis, and F. Laurell, “All-fiber nanosecond gating for time-resolved spectral analysis,” IEEE Photon. Technol. Lett. 28, 829–832 (2016).
[Crossref]

Lavigne, Q.

T. Lunghi, J. B. Brask, C. C. W. Lim, Q. Lavigne, J. Bowles, A. Martin, H. Zbinden, and N. Brunner, “Self-testing quantum random number generator,” Phys. Rev. Lett. 114, 150501 (2015).
[Crossref]

Leach, J.

A. C. Dada, J. Leach, G. S. Buller, M. J. Padgett, and E. Andersson, “Experimental high-dimensional two-photon entanglement and violations of generalized Bell inequalities,” Nat. Phys. 7, 677–680 (2011).
[Crossref]

Lee, H. J.

H. J. Lee and H. S. Park, “Generation and measurement of arbitrary four-dimensional spatial entanglement between photons in multicore fibers,” Photon. Res. 7, 19–27 (2019).
[Crossref]

H. J. Lee, S.-K. Choi, and H. S. Park, “Experimental demonstration of four-dimensional photonic spatial entanglement between multi-core optical fibres,” Sci. Rep. 7, 4302 (2017).
[Crossref]

Lemelle, D. S.

S. P. Walborn, D. S. Lemelle, M. P. Almeida, and P. H. Souto Ribeiro, Quantum key distribution with higher-order alphabets using spatially encoded qudits, Phys. Rev. Lett. 96, 090501 (2006).
[Crossref]

Li, B.

L. Gan, R. Wang, D. Liu, L. Duan, S. Liu, S. Fu, B. Li, Z. Feng, H. Wei, W. Tong, P. Shum, and M. Tang, “Spatial-division multiplexed Mach-Zehnder interferometers in heterogeneous multicore fiber for multiparameter measurement,” IEEE Photon. J. 8, 1 (2016).
[Crossref]

Li, C.-F.

Li, H.

Y. Liu, X. Yuan, M.-H. Li, W. Zhang, Q. Zhao, J. Zhong, Y. Cao, Y.-H. Li, L.-K. Chen, H. Li, T. Peng, Y.-A. Chen, C.-Z. Peng, S.-C. Shi, Z. Wang, L. You, X. Ma, J. Fan, Q. Zhang, and J.-W. Pan, “High-speed device-independent quantum random number generation without a detection loophole,” Phys. Rev. Lett. 120, 010503 (2018).
[Crossref]

Li, M.-H.

Y. Liu, X. Yuan, M.-H. Li, W. Zhang, Q. Zhao, J. Zhong, Y. Cao, Y.-H. Li, L.-K. Chen, H. Li, T. Peng, Y.-A. Chen, C.-Z. Peng, S.-C. Shi, Z. Wang, L. You, X. Ma, J. Fan, Q. Zhang, and J.-W. Pan, “High-speed device-independent quantum random number generation without a detection loophole,” Phys. Rev. Lett. 120, 010503 (2018).
[Crossref]

Li, X.

L. Cui, J. Su, X. Li, and Z. Y. Ou, “Distribution of entangled photon pairs over few-mode fibers,” Sci. Rep. 7, 14954 (2017).
[Crossref]

Li, Y.-H.

Y. Liu, X. Yuan, M.-H. Li, W. Zhang, Q. Zhao, J. Zhong, Y. Cao, Y.-H. Li, L.-K. Chen, H. Li, T. Peng, Y.-A. Chen, C.-Z. Peng, S.-C. Shi, Z. Wang, L. You, X. Ma, J. Fan, Q. Zhang, and J.-W. Pan, “High-speed device-independent quantum random number generation without a detection loophole,” Phys. Rev. Lett. 120, 010503 (2018).
[Crossref]

Li, Z.-H.

LiKamWa, P.

Lim, C. C. W.

T. Lunghi, J. B. Brask, C. C. W. Lim, Q. Lavigne, J. Bowles, A. Martin, H. Zbinden, and N. Brunner, “Self-testing quantum random number generator,” Phys. Rev. Lett. 114, 150501 (2015).
[Crossref]

Lima, G.

G. B. Xavier and G. Lima, “Quantum information processing with space-division multiplexing optical fibres,” Commun. Phys. 3, 9 (2020).
[Crossref]

E. A. Aguilar, M. Farkas, D. Martínez, M. Alvarado, J. Cariñe, G. B. Xavier, J. F. Barra, G. Cañas, M. Pawłowski, and G. Lima, “Certifying an irreducible 1024-dimensional photonic state using refined dimension witnesses,” Phys. Rev. Lett. 120, 230503 (2018).
[Crossref]

D. Martínez, A. Tavakoli, M. Casanova, G. Cañas, B. Marques, and G. Lima, “High-dimensional quantum communication complexity beyond strategies based on Bell’s theorem,” Phys. Rev. Lett. 121, 150504 (2018).
[Crossref]

G. Cañas, N. Vera, J. Cariñe, P. González, J. Cardenas, P. W. R. Connolly, A. Przysiezna, E. S. Gómez, M. Figueroa, G. Vallone, P. Villoresi, T. Ferreira da Silva, G. B. Xavier, and G. Lima, “High-dimensional decoy-state quantum key distribution over multicore telecommunication fibers,” Phys. Rev. A 96, 022317 (2017).
[Crossref]

S. Etcheverry, G. Cañas, E. S. Gómez, W. A. T. Nogueira, C. Saavedra, G. B. Xavier, and G. Lima, “Quantum key distribution session with 16-dimensional photonic states,” Sci. Rep. 3, 2316 (2013).
[Crossref]

F. A. T. Ruiz, G. Lima, A. Delgado, S. Pádua, and C. Saavedra, “Decoherence in a double-slit quantum eraser,” Phys. Rev. A 81, 042104 (2010).
[Crossref]

L. Neves, G. Lima, J. G. Aguirre Gómez, C. H. Monken, C. Saavedra, and S. Pádua, “Generation of entangled states of qudits using twin photons,” Phys. Rev. Lett. 94, 100501 (2005).
[Crossref]

M. M. Taddei, J. Cariñe, D. Martínez, T. García, N. Guerrero, A. A. Abbott, M. Araújo, C. Branciard, E. S. Gómez, S. P. Walborn, L. Aolita, and G. Lima, “Experimental computational advantage from superposition of multiple temporal orders of quantum gates,” arXiv:2002.07817 (2020).

G. Cañas, J. Cariñe, E. S. Gómez, J. F. Barra, A. Cabello, G. B. Xavier, G. Lima, and M. Pawłowski, “Experimental quantum randomness generation invulnerable to the detection loophole,” arXiv:1410.3443v2 (2014).

L. Pereira, A. Rojas, G. Cañas, G. Lima, A. Delgado, and A. Cabello, “Universal multi-port interferometers with minimal optical depth,” arXiv:2002.01371 (2020).

Lin, R.

R. Lin, A. Udalcovs, O. Ozolins, X. Pang, L. Gan, L. Shen, M. Tang, S. Fu, S. Popov, C. Yang, W. Tong, D. Liu, T. Ferreira da Silva, G. B. Xavier, and J. Chen, “Telecom compatibility validation of quantum key distribution co-existing with 112  Gbps/λ/core data transmission in non-trench and trench-assistant multicore fibers,” in European Conference on Optical Communications (ECOC) (2018) paper We1A.3.

Liu, B.-H.

Liu, D.

L. Gan, R. Wang, D. Liu, L. Duan, S. Liu, S. Fu, B. Li, Z. Feng, H. Wei, W. Tong, P. Shum, and M. Tang, “Spatial-division multiplexed Mach-Zehnder interferometers in heterogeneous multicore fiber for multiparameter measurement,” IEEE Photon. J. 8, 1 (2016).
[Crossref]

Z. Zhao, M. Tang, S. Fu, S. Liu, H. Wei, Y. Cheng, W. Tong, P. P. Shum, and D. Liu, “All-solid multi-core fiber-based multipath Mach-Zehnder interferometer for temperature sensing,” Appl. Phys. B 112, 491–497 (2013).
[Crossref]

R. Lin, A. Udalcovs, O. Ozolins, X. Pang, L. Gan, L. Shen, M. Tang, S. Fu, S. Popov, C. Yang, W. Tong, D. Liu, T. Ferreira da Silva, G. B. Xavier, and J. Chen, “Telecom compatibility validation of quantum key distribution co-existing with 112  Gbps/λ/core data transmission in non-trench and trench-assistant multicore fibers,” in European Conference on Optical Communications (ECOC) (2018) paper We1A.3.

Liu, J.

Liu, S.

L. Gan, R. Wang, D. Liu, L. Duan, S. Liu, S. Fu, B. Li, Z. Feng, H. Wei, W. Tong, P. Shum, and M. Tang, “Spatial-division multiplexed Mach-Zehnder interferometers in heterogeneous multicore fiber for multiparameter measurement,” IEEE Photon. J. 8, 1 (2016).
[Crossref]

Z. Zhao, M. Tang, S. Fu, S. Liu, H. Wei, Y. Cheng, W. Tong, P. P. Shum, and D. Liu, “All-solid multi-core fiber-based multipath Mach-Zehnder interferometer for temperature sensing,” Appl. Phys. B 112, 491–497 (2013).
[Crossref]

Liu, Y.

Y. Liu, X. Yuan, M.-H. Li, W. Zhang, Q. Zhao, J. Zhong, Y. Cao, Y.-H. Li, L.-K. Chen, H. Li, T. Peng, Y.-A. Chen, C.-Z. Peng, S.-C. Shi, Z. Wang, L. You, X. Ma, J. Fan, Q. Zhang, and J.-W. Pan, “High-speed device-independent quantum random number generation without a detection loophole,” Phys. Rev. Lett. 120, 010503 (2018).
[Crossref]

Lloyd, S.

S. Pirandola, B. R. Bardhan, C. Weedbrook, and S. Lloyd, “Advances in photonic quantum sensing,” Nat. Photonics 12, 724–733 (2018).
[Crossref]

Lo, H.-K.

E. Diamanti, H.-K. Lo, B. Qi, and Z. Yuan, “Practical challenges in quantum key distribution,” npj Quantum Inf. 2, 16025 (2016).
[Crossref]

H.-K. Lo, M. Curty, and K. Tamaki, “Secure quantum key distribution,” Nat. Photonics 8, 595–604 (2014).
[Crossref]

H.-K. Lo, M. Curty, and B. Qi, “Measurement-device-independent quantum key distribution,” Phys. Rev. Lett. 108, 130503 (2012).
[Crossref]

F. Xu, X. Ma, Q. Zhang, H.-K. Lo, and J.-W. Pan, “Quantum cryptography with realistic devices,” arXiv:1903.09051 (2019).

Lu, C.-Y.

W.-B. Gao, C.-Y. Lu, X.-C. Yao, P. Xu, O. Guhne, A. Goebel, Y.-A. Chen, C.-Z. Peng, Z.-B. Chen, and J.-W. Pan, Experimental demonstration of a hyper-entangled ten-qubit Schrödinger cat state, Nat. Phys. 6, 331–335 (2010).
[Crossref]

Lucamarini, M.

Luís, R. S.

T. A. Eriksson, B. J. Puttnam, G. Rademacher, R. S. Luís, M. Takeoka, Y. Awaji, M. Sasaki, and N. Wada, “Inter-core crosstalk impact of classical channels on CV-QKD in multicore fiber transmission,” in Optical Fiber Communication Conference (OFC), OSA Technical Digest (Optical Society of America, 2019), paper Th1J.1.

Lunghi, T.

T. Lunghi, J. B. Brask, C. C. W. Lim, Q. Lavigne, J. Bowles, A. Martin, H. Zbinden, and N. Brunner, “Self-testing quantum random number generator,” Phys. Rev. Lett. 114, 150501 (2015).
[Crossref]

Luo, L.

S. Pironio, A. Acín, S. Massar, A. B. de La Giroday, D. N. Matsukevich, P. Maunz, S. Olmschenk, D. Hayes, L. Luo, T. A. Manning, and C. Monroe, “Random numbers certified by Bell’s theorem,” Nature 464, 1021–1024 (2010).
[Crossref]

Lupo, C.

S. Pirandola, U. L. Andersen, L. Banchi, M. Berta, D. Bunandar, R. Colbeck, D. Englund, T. Gehring, C. Lupo, C. Ottaviani, J. Pereira, M. Razavi, J. S. Shaari, M. Tomamichel, V. C. Usenko, G. Vallone, P. Villoresi, and P. Wallden, “Advances in quantum cryptography,” arXiv:1906.01645v1 [quant-ph] (2019).

Ma, X.

Y. Liu, X. Yuan, M.-H. Li, W. Zhang, Q. Zhao, J. Zhong, Y. Cao, Y.-H. Li, L.-K. Chen, H. Li, T. Peng, Y.-A. Chen, C.-Z. Peng, S.-C. Shi, Z. Wang, L. You, X. Ma, J. Fan, Q. Zhang, and J.-W. Pan, “High-speed device-independent quantum random number generation without a detection loophole,” Phys. Rev. Lett. 120, 010503 (2018).
[Crossref]

F. Xu, X. Ma, Q. Zhang, H.-K. Lo, and J.-W. Pan, “Quantum cryptography with realistic devices,” arXiv:1903.09051 (2019).

Malik, M.

S. Ecker, F. Bouchard, L. Bulla, F. Brandt, O. Kohout, F. Steinlechner, R. Fickler, M. Malik, Y. Guryanova, R. Ursin, and M. Huber, “Overcoming noise in entanglement distribution,” Phys. Rev. X 9, 041042 (2019).
[Crossref]

M. Malik, M. Erhard, M. Huber, M. Krenn, R. Fickler, and A. Zeilinger, “Multi-photon entanglement in high dimensions,” Nat. Photonics 10, 248–252 (2016).
[Crossref]

N. H. Valencia, S. Goel, W. McCutcheon, H. Defienne, and M. Malik, “Unscrambling entanglement through a complex medium,” arXiv:1910.04490 (2019).

Malmström, M.

M. Malmström, O. Tarasenko, W. Margulis, and F. Laurell, “All-fiber nanosecond gating for time-resolved spectral analysis,” IEEE Photon. Technol. Lett. 28, 829–832 (2016).
[Crossref]

Mancinska, L.

J. Wang, S. Paesani, Y. Ding, R. Santagati, P. Skrzypczyk, A. Salavrakos, J. Tura, R. Augusiak, L. Mančinska, D. Bacco, D. Bonneau, J. W. Silverstone, Q. Gong, A. Acín, K. Rottwitt, L. K. Oxenløwe, J. L. O’Brien, A. Laing, and M. G. Thompson, “Multidimensional quantum entanglement with large-scale integrated optics,” Science 360, 285–291 (2018).
[Crossref]

Manning, T. A.

S. Pironio, A. Acín, S. Massar, A. B. de La Giroday, D. N. Matsukevich, P. Maunz, S. Olmschenk, D. Hayes, L. Luo, T. A. Manning, and C. Monroe, “Random numbers certified by Bell’s theorem,” Nature 464, 1021–1024 (2010).
[Crossref]

Mao, G.

C. Guan, X. Zhong, G. Mao, T. Yuan, J. Yang, and L. Yuan, “In-line Mach-Zehnder interferometric sensor based on linear five-core fiber,” IEEE Photon. Technol. Lett. 27, 635–638 (2015).
[Crossref]

Margulis, W.

M. Malmström, O. Tarasenko, W. Margulis, and F. Laurell, “All-fiber nanosecond gating for time-resolved spectral analysis,” IEEE Photon. Technol. Lett. 28, 829–832 (2016).
[Crossref]

W. Margulis, (personal communication, 2019).

Marques, B.

D. Martínez, A. Tavakoli, M. Casanova, G. Cañas, B. Marques, and G. Lima, “High-dimensional quantum communication complexity beyond strategies based on Bell’s theorem,” Phys. Rev. Lett. 121, 150504 (2018).
[Crossref]

Marshall, G. D.

J. Carolan, C. Harrold, C. Sparrow, E. Martín-López, N. J. Russell, J. W. Silverstone, P. J. Shadbolt, N. Matsuda, M. Oguma, M. Itoh, G. D. Marshall, M. G. Thompson, J. C. F. Matthews, T. Hashimoto, J. L. O’Brien, and A. Laing, “Universal linear optics,” Science 349, 711–716 (2015).
[Crossref]

Martin, A.

J. B. Brask, A. Martin, W. Esposito, R. Houlmann, J. Bowles, H. Zbinden, and N. Brunner, “Megahertz-rate semi-device-independent quantum random number generators based on unambiguous state discrimination,” Phys. Rev. Appl. 7, 054018 (2017).
[Crossref]

T. Lunghi, J. B. Brask, C. C. W. Lim, Q. Lavigne, J. Bowles, A. Martin, H. Zbinden, and N. Brunner, “Self-testing quantum random number generator,” Phys. Rev. Lett. 114, 150501 (2015).
[Crossref]

D. Rusca, T. van Himbeeck, A. Martin, J. Bohr Brask, W. Shi, S. Pironio, N. Brunner, and H. Zbinden, “Practical self-testing quantum random number generator based on an energy bound,” arXiv:1904.04819 [quant-ph].

Martínez, D.

D. Martínez, A. Tavakoli, M. Casanova, G. Cañas, B. Marques, and G. Lima, “High-dimensional quantum communication complexity beyond strategies based on Bell’s theorem,” Phys. Rev. Lett. 121, 150504 (2018).
[Crossref]

E. A. Aguilar, M. Farkas, D. Martínez, M. Alvarado, J. Cariñe, G. B. Xavier, J. F. Barra, G. Cañas, M. Pawłowski, and G. Lima, “Certifying an irreducible 1024-dimensional photonic state using refined dimension witnesses,” Phys. Rev. Lett. 120, 230503 (2018).
[Crossref]

M. M. Taddei, J. Cariñe, D. Martínez, T. García, N. Guerrero, A. A. Abbott, M. Araújo, C. Branciard, E. S. Gómez, S. P. Walborn, L. Aolita, and G. Lima, “Experimental computational advantage from superposition of multiple temporal orders of quantum gates,” arXiv:2002.07817 (2020).

Martín-López, E.

J. Carolan, C. Harrold, C. Sparrow, E. Martín-López, N. J. Russell, J. W. Silverstone, P. J. Shadbolt, N. Matsuda, M. Oguma, M. Itoh, G. D. Marshall, M. G. Thompson, J. C. F. Matthews, T. Hashimoto, J. L. O’Brien, and A. Laing, “Universal linear optics,” Science 349, 711–716 (2015).
[Crossref]

Masanes, L.

A. Acín and L. Masanes, “Certified randomness in quantum physics,” Nature 540, 213–219 (2016).
[Crossref]

Massar, S.

S. Pironio, A. Acín, S. Massar, A. B. de La Giroday, D. N. Matsukevich, P. Maunz, S. Olmschenk, D. Hayes, L. Luo, T. A. Manning, and C. Monroe, “Random numbers certified by Bell’s theorem,” Nature 464, 1021–1024 (2010).
[Crossref]

Mataloni, P.

N. Spagnolo, C. Vitelli, L. Aparo, P. Mataloni, F. Sciarrino, A. Crespi, R. Ramponi, and R. Osellame, “Three-photon bosonic coalescence in an integrated tritter,” Nat. Commun. 4, 1606 (2013).
[Crossref]

A. Rossi, G. Vallone, A. Chiuri, F. De Martini, and P. Mataloni, “Multipath entanglement of two photons,” Phys. Rev. Lett. 102, 153902 (2009).
[Crossref]

Matsuda, N.

J. Carolan, C. Harrold, C. Sparrow, E. Martín-López, N. J. Russell, J. W. Silverstone, P. J. Shadbolt, N. Matsuda, M. Oguma, M. Itoh, G. D. Marshall, M. G. Thompson, J. C. F. Matthews, T. Hashimoto, J. L. O’Brien, and A. Laing, “Universal linear optics,” Science 349, 711–716 (2015).
[Crossref]

Matsukevich, D. N.

S. Pironio, A. Acín, S. Massar, A. B. de La Giroday, D. N. Matsukevich, P. Maunz, S. Olmschenk, D. Hayes, L. Luo, T. A. Manning, and C. Monroe, “Random numbers certified by Bell’s theorem,” Nature 464, 1021–1024 (2010).
[Crossref]

Matsuo, S.

Matthews, J. C. F.

J. Carolan, C. Harrold, C. Sparrow, E. Martín-López, N. J. Russell, J. W. Silverstone, P. J. Shadbolt, N. Matsuda, M. Oguma, M. Itoh, G. D. Marshall, M. G. Thompson, J. C. F. Matthews, T. Hashimoto, J. L. O’Brien, and A. Laing, “Universal linear optics,” Science 349, 711–716 (2015).
[Crossref]

Maunz, P.

S. Pironio, A. Acín, S. Massar, A. B. de La Giroday, D. N. Matsukevich, P. Maunz, S. Olmschenk, D. Hayes, L. Luo, T. A. Manning, and C. Monroe, “Random numbers certified by Bell’s theorem,” Nature 464, 1021–1024 (2010).
[Crossref]

McCutcheon, W.

N. H. Valencia, S. Goel, W. McCutcheon, H. Defienne, and M. Malik, “Unscrambling entanglement through a complex medium,” arXiv:1910.04490 (2019).

Messaddeq, Y.

Metcalf, B. J.

Miklaszewski, W.

D. Kaszlikowski, P. Gnaciński, M. Żukowski, W. Miklaszewski, and A. Zeilinger, “Violations of local realism by two entangled N-dimensional systems are stronger than for two qubits,” Phys. Rev. Lett. 85, 4418–4421 (2000).
[Crossref]

Milburn, G. J.

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
[Crossref]

Mironov, S. A.

M. Y. Saygin, I. V. Kondratyev, I. V. Dyakonov, S. A. Mironov, S. S. Straupe, and S. P. Kulik, “Robust architecture for programmable universal unitaries,” Phys. Rev. Lett. 124, 010501 (2020).
[Crossref]

Molin, D.

Monken, C. H.

L. Neves, G. Lima, J. G. Aguirre Gómez, C. H. Monken, C. Saavedra, and S. Pádua, “Generation of entangled states of qudits using twin photons,” Phys. Rev. Lett. 94, 100501 (2005).
[Crossref]

P. Walborn, M. O. Terra Cunha, S. Pádua, and C. H. Monken, “Double-slit quantum eraser,” Phys. Rev. A 65, 033818 (2002).
[Crossref]

Monroe, C.

T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien, “Quantum computers,” Nature 464, 45–53 (2010).
[Crossref]

S. Pironio, A. Acín, S. Massar, A. B. de La Giroday, D. N. Matsukevich, P. Maunz, S. Olmschenk, D. Hayes, L. Luo, T. A. Manning, and C. Monroe, “Random numbers certified by Bell’s theorem,” Nature 464, 1021–1024 (2010).
[Crossref]

Nakamura, Y.

T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien, “Quantum computers,” Nature 464, 45–53 (2010).
[Crossref]

Nape, I.

J. Liu, I. Nape, Q. Wang, A. Vallés, J. Wang, and A. Forbes, “Multi-dimensional entanglement transport through single-mode fibre,” Sci. Adv. 6, eaay0837 (2020).
[Crossref]

Nejabati, R.

E. Hugues-Salas, R. Wang, G. T. Kanellos, R. Nejabati, and D. Simeonidou, “Co-existence of 9.6  Tb/s classical channels and a quantum key distribution (QKD) channel over a 7-core multicore optical fibre,” in IEEE British and Irish Conference on Optics and Photonics (BICOP) (IEEE, 2019).

Nelson, L. E.

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7, 354–362 (2013).
[Crossref]

Nema, R. K.

P. Bhatnagar and R. K. Nema, “Maximum power point tracking control techniques: state-of-the-art in photovoltaic applications,” Renew. Sustain. Energy Rev. 23, 224–241 (2013).
[Crossref]

Neves, L.

L. Neves, G. Lima, J. G. Aguirre Gómez, C. H. Monken, C. Saavedra, and S. Pádua, “Generation of entangled states of qudits using twin photons,” Phys. Rev. Lett. 94, 100501 (2005).
[Crossref]

Nishimura, Y.

S. Iano, T. Sato, S. Sentsui, T. Kuroha, and Y. Nishimura, “Multicore optical fiber,” in Optical Fiber Communication Conference (OFC), OSA Technical Digest (Optical Society of America, 1979), paper WB1.

Niu, J.

Nogueira, W. A. T.

S. Etcheverry, G. Cañas, E. S. Gómez, W. A. T. Nogueira, C. Saavedra, G. B. Xavier, and G. Lima, “Quantum key distribution session with 16-dimensional photonic states,” Sci. Rep. 3, 2316 (2013).
[Crossref]

O’Brien, J. L.

J. Wang, S. Paesani, Y. Ding, R. Santagati, P. Skrzypczyk, A. Salavrakos, J. Tura, R. Augusiak, L. Mančinska, D. Bacco, D. Bonneau, J. W. Silverstone, Q. Gong, A. Acín, K. Rottwitt, L. K. Oxenløwe, J. L. O’Brien, A. Laing, and M. G. Thompson, “Multidimensional quantum entanglement with large-scale integrated optics,” Science 360, 285–291 (2018).
[Crossref]

J. Carolan, C. Harrold, C. Sparrow, E. Martín-López, N. J. Russell, J. W. Silverstone, P. J. Shadbolt, N. Matsuda, M. Oguma, M. Itoh, G. D. Marshall, M. G. Thompson, J. C. F. Matthews, T. Hashimoto, J. L. O’Brien, and A. Laing, “Universal linear optics,” Science 349, 711–716 (2015).
[Crossref]

T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien, “Quantum computers,” Nature 464, 45–53 (2010).
[Crossref]

A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O’Brien, “Silica-on-silicon waveguide quantum circuits,” Science 320, 646–649 (2008).
[Crossref]

O’Sullivan-Hale, M. N.

M. N. O’Sullivan-Hale, I. Ali Khan, R. W. Boyd, and J. C. Howell, “Pixel entanglement: experimental realization of optically entangled d = 3 and d = 6 qudits,” Phys. Rev. Lett. 94, 220501 (2005).
[Crossref]

Oguma, M.

J. Carolan, C. Harrold, C. Sparrow, E. Martín-López, N. J. Russell, J. W. Silverstone, P. J. Shadbolt, N. Matsuda, M. Oguma, M. Itoh, G. D. Marshall, M. G. Thompson, J. C. F. Matthews, T. Hashimoto, J. L. O’Brien, and A. Laing, “Universal linear optics,” Science 349, 711–716 (2015).
[Crossref]

Olmschenk, S.

S. Pironio, A. Acín, S. Massar, A. B. de La Giroday, D. N. Matsukevich, P. Maunz, S. Olmschenk, D. Hayes, L. Luo, T. A. Manning, and C. Monroe, “Random numbers certified by Bell’s theorem,” Nature 464, 1021–1024 (2010).
[Crossref]

Osellame, R.

F. Flamini, N. Spagnolo, N. Viggianiello, A. Crespi, R. Osellame, and F. Sciarrino, “Benchmarking integrated linear-optical architectures for quantum information processing,” Sci. Rep. 7, 15133 (2017).
[Crossref]

N. Spagnolo, C. Vitelli, L. Aparo, P. Mataloni, F. Sciarrino, A. Crespi, R. Ramponi, and R. Osellame, “Three-photon bosonic coalescence in an integrated tritter,” Nat. Commun. 4, 1606 (2013).
[Crossref]

Ottaviani, C.

S. Pirandola, U. L. Andersen, L. Banchi, M. Berta, D. Bunandar, R. Colbeck, D. Englund, T. Gehring, C. Lupo, C. Ottaviani, J. Pereira, M. Razavi, J. S. Shaari, M. Tomamichel, V. C. Usenko, G. Vallone, P. Villoresi, and P. Wallden, “Advances in quantum cryptography,” arXiv:1906.01645v1 [quant-ph] (2019).

Ou, Z. Y.

L. Cui, J. Su, X. Li, and Z. Y. Ou, “Distribution of entangled photon pairs over few-mode fibers,” Sci. Rep. 7, 14954 (2017).
[Crossref]

Oxenløwe, L. K.

B. Da Lio, D. Bacco, D. Cozzolino, N. Biagi, T. N. Arge, E. Larsen, K. Rottwitt, Y. Ding, A. Zavatta, and L. K. Oxenløwe, “Stable transmission of high-dimensional quantum states over a 2-km multicore fiber,” IEEE J. Sel. Top. Quantum Electron. 26, 6400108 (2020).
[Crossref]

D. Cozzolino, E. Polino, M. Valeri, G. Carvacho, D. Bacco, N. Spagnolo, L. K. Oxenløwe, and F. Sciarrino, “Air-core fiber distribution of hybrid vector vortex-polarization entangled states,” Adv. Photon. 1, 1 (2019).
[Crossref]

J. Wang, S. Paesani, Y. Ding, R. Santagati, P. Skrzypczyk, A. Salavrakos, J. Tura, R. Augusiak, L. Mančinska, D. Bacco, D. Bonneau, J. W. Silverstone, Q. Gong, A. Acín, K. Rottwitt, L. K. Oxenløwe, J. L. O’Brien, A. Laing, and M. G. Thompson, “Multidimensional quantum entanglement with large-scale integrated optics,” Science 360, 285–291 (2018).
[Crossref]

Y. Ding, D. Bacco, K. Dalgaard, X. Cai, X. Zhou, K. Rottwitt, and L. K. Oxenløwe, “High-dimensional quantum key distribution based on multicore fiber using silicon photonic integrated circuits,” npj Quantum Inf. 3, 25 (2017).
[Crossref]

Ozolins, O.

R. Lin, A. Udalcovs, O. Ozolins, X. Pang, L. Gan, L. Shen, M. Tang, S. Fu, S. Popov, C. Yang, W. Tong, D. Liu, T. Ferreira da Silva, G. B. Xavier, and J. Chen, “Telecom compatibility validation of quantum key distribution co-existing with 112  Gbps/λ/core data transmission in non-trench and trench-assistant multicore fibers,” in European Conference on Optical Communications (ECOC) (2018) paper We1A.3.

Padgett, M. J.

A. C. Dada, J. Leach, G. S. Buller, M. J. Padgett, and E. Andersson, “Experimental high-dimensional two-photon entanglement and violations of generalized Bell inequalities,” Nat. Phys. 7, 677–680 (2011).
[Crossref]

Pádua, S.

P.-L. De Assis, M. A. D. Carvalho, L. P. Berruezo, J. Ferraz, and S. Pádua, “Generation of two pairs of qudits using four photons and a single degree of freedom,” Opt. Express 24, 30149–30163 (2016).
[Crossref]

F. A. T. Ruiz, G. Lima, A. Delgado, S. Pádua, and C. Saavedra, “Decoherence in a double-slit quantum eraser,” Phys. Rev. A 81, 042104 (2010).
[Crossref]

L. Neves, G. Lima, J. G. Aguirre Gómez, C. H. Monken, C. Saavedra, and S. Pádua, “Generation of entangled states of qudits using twin photons,” Phys. Rev. Lett. 94, 100501 (2005).
[Crossref]

P. Walborn, M. O. Terra Cunha, S. Pádua, and C. H. Monken, “Double-slit quantum eraser,” Phys. Rev. A 65, 033818 (2002).
[Crossref]

Paesani, S.

J. Wang, S. Paesani, Y. Ding, R. Santagati, P. Skrzypczyk, A. Salavrakos, J. Tura, R. Augusiak, L. Mančinska, D. Bacco, D. Bonneau, J. W. Silverstone, Q. Gong, A. Acín, K. Rottwitt, L. K. Oxenløwe, J. L. O’Brien, A. Laing, and M. G. Thompson, “Multidimensional quantum entanglement with large-scale integrated optics,” Science 360, 285–291 (2018).
[Crossref]

Pan, J.-W.

Y. Liu, X. Yuan, M.-H. Li, W. Zhang, Q. Zhao, J. Zhong, Y. Cao, Y.-H. Li, L.-K. Chen, H. Li, T. Peng, Y.-A. Chen, C.-Z. Peng, S.-C. Shi, Z. Wang, L. You, X. Ma, J. Fan, Q. Zhang, and J.-W. Pan, “High-speed device-independent quantum random number generation without a detection loophole,” Phys. Rev. Lett. 120, 010503 (2018).
[Crossref]

W.-B. Gao, C.-Y. Lu, X.-C. Yao, P. Xu, O. Guhne, A. Goebel, Y.-A. Chen, C.-Z. Peng, Z.-B. Chen, and J.-W. Pan, Experimental demonstration of a hyper-entangled ten-qubit Schrödinger cat state, Nat. Phys. 6, 331–335 (2010).
[Crossref]

F. Xu, X. Ma, Q. Zhang, H.-K. Lo, and J.-W. Pan, “Quantum cryptography with realistic devices,” arXiv:1903.09051 (2019).

Pang, X.

R. Lin, A. Udalcovs, O. Ozolins, X. Pang, L. Gan, L. Shen, M. Tang, S. Fu, S. Popov, C. Yang, W. Tong, D. Liu, T. Ferreira da Silva, G. B. Xavier, and J. Chen, “Telecom compatibility validation of quantum key distribution co-existing with 112  Gbps/λ/core data transmission in non-trench and trench-assistant multicore fibers,” in European Conference on Optical Communications (ECOC) (2018) paper We1A.3.

Park, H. S.

H. J. Lee and H. S. Park, “Generation and measurement of arbitrary four-dimensional spatial entanglement between photons in multicore fibers,” Photon. Res. 7, 19–27 (2019).
[Crossref]

H. J. Lee, S.-K. Choi, and H. S. Park, “Experimental demonstration of four-dimensional photonic spatial entanglement between multi-core optical fibres,” Sci. Rep. 7, 4302 (2017).
[Crossref]

Pawlowski, M.

E. A. Aguilar, M. Farkas, D. Martínez, M. Alvarado, J. Cariñe, G. B. Xavier, J. F. Barra, G. Cañas, M. Pawłowski, and G. Lima, “Certifying an irreducible 1024-dimensional photonic state using refined dimension witnesses,” Phys. Rev. Lett. 120, 230503 (2018).
[Crossref]

M. Pawłowski and N. Brunner, “Semi-device-independent security of one-way quantum key distribution,” Phys. Rev. A 84, 010302 (2011).
[Crossref]

G. Cañas, J. Cariñe, E. S. Gómez, J. F. Barra, A. Cabello, G. B. Xavier, G. Lima, and M. Pawłowski, “Experimental quantum randomness generation invulnerable to the detection loophole,” arXiv:1410.3443v2 (2014).

Peng, C.-Z.

Y. Liu, X. Yuan, M.-H. Li, W. Zhang, Q. Zhao, J. Zhong, Y. Cao, Y.-H. Li, L.-K. Chen, H. Li, T. Peng, Y.-A. Chen, C.-Z. Peng, S.-C. Shi, Z. Wang, L. You, X. Ma, J. Fan, Q. Zhang, and J.-W. Pan, “High-speed device-independent quantum random number generation without a detection loophole,” Phys. Rev. Lett. 120, 010503 (2018).
[Crossref]

W.-B. Gao, C.-Y. Lu, X.-C. Yao, P. Xu, O. Guhne, A. Goebel, Y.-A. Chen, C.-Z. Peng, Z.-B. Chen, and J.-W. Pan, Experimental demonstration of a hyper-entangled ten-qubit Schrödinger cat state, Nat. Phys. 6, 331–335 (2010).
[Crossref]

Peng, T.

Y. Liu, X. Yuan, M.-H. Li, W. Zhang, Q. Zhao, J. Zhong, Y. Cao, Y.-H. Li, L.-K. Chen, H. Li, T. Peng, Y.-A. Chen, C.-Z. Peng, S.-C. Shi, Z. Wang, L. You, X. Ma, J. Fan, Q. Zhang, and J.-W. Pan, “High-speed device-independent quantum random number generation without a detection loophole,” Phys. Rev. Lett. 120, 010503 (2018).
[Crossref]

Penty, R. V.

Pereira, J.

S. Pirandola, U. L. Andersen, L. Banchi, M. Berta, D. Bunandar, R. Colbeck, D. Englund, T. Gehring, C. Lupo, C. Ottaviani, J. Pereira, M. Razavi, J. S. Shaari, M. Tomamichel, V. C. Usenko, G. Vallone, P. Villoresi, and P. Wallden, “Advances in quantum cryptography,” arXiv:1906.01645v1 [quant-ph] (2019).

Pereira, L.

L. Pereira, A. Rojas, G. Cañas, G. Lima, A. Delgado, and A. Cabello, “Universal multi-port interferometers with minimal optical depth,” arXiv:2002.01371 (2020).

Peters, N. A.

J. T. Barreiro, N. K. Langford, N. A. Peters, and P. G. Kwiat, “Generation of hyperentangled photon pairs,” Phys. Rev. Lett. 95, 260501 (2005).
[Crossref]

Pirandola, S.

S. Pirandola, B. R. Bardhan, C. Weedbrook, and S. Lloyd, “Advances in photonic quantum sensing,” Nat. Photonics 12, 724–733 (2018).
[Crossref]

S. Pirandola, U. L. Andersen, L. Banchi, M. Berta, D. Bunandar, R. Colbeck, D. Englund, T. Gehring, C. Lupo, C. Ottaviani, J. Pereira, M. Razavi, J. S. Shaari, M. Tomamichel, V. C. Usenko, G. Vallone, P. Villoresi, and P. Wallden, “Advances in quantum cryptography,” arXiv:1906.01645v1 [quant-ph] (2019).

Pironio, S.

T. Van Himbeeck, E. Woodhead, N. J. Cerf, R. García-Patrón, and S. Pironio, “Semi-device-independent framework based on natural physical assumptions,” Quantum 1, 33 (2017).
[Crossref]

N. Brunner, D. Cavalcanti, S. Pironio, V. Scarani, and S. Wehner, “Bell nonlocality,” Rev. Mod. Phys. 86, 419 (2014).
[Crossref]

S. Pironio, A. Acín, S. Massar, A. B. de La Giroday, D. N. Matsukevich, P. Maunz, S. Olmschenk, D. Hayes, L. Luo, T. A. Manning, and C. Monroe, “Random numbers certified by Bell’s theorem,” Nature 464, 1021–1024 (2010).
[Crossref]

D. Rusca, T. van Himbeeck, A. Martin, J. Bohr Brask, W. Shi, S. Pironio, N. Brunner, and H. Zbinden, “Practical self-testing quantum random number generator based on an energy bound,” arXiv:1904.04819 [quant-ph].

Plews, A.

Polino, E.

D. Cozzolino, E. Polino, M. Valeri, G. Carvacho, D. Bacco, N. Spagnolo, L. K. Oxenløwe, and F. Sciarrino, “Air-core fiber distribution of hybrid vector vortex-polarization entangled states,” Adv. Photon. 1, 1 (2019).
[Crossref]

Politi, A.

A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O’Brien, “Silica-on-silicon waveguide quantum circuits,” Science 320, 646–649 (2008).
[Crossref]

Popov, S.

R. Lin, A. Udalcovs, O. Ozolins, X. Pang, L. Gan, L. Shen, M. Tang, S. Fu, S. Popov, C. Yang, W. Tong, D. Liu, T. Ferreira da Silva, G. B. Xavier, and J. Chen, “Telecom compatibility validation of quantum key distribution co-existing with 112  Gbps/λ/core data transmission in non-trench and trench-assistant multicore fibers,” in European Conference on Optical Communications (ECOC) (2018) paper We1A.3.

Przysiezna, A.

G. Cañas, N. Vera, J. Cariñe, P. González, J. Cardenas, P. W. R. Connolly, A. Przysiezna, E. S. Gómez, M. Figueroa, G. Vallone, P. Villoresi, T. Ferreira da Silva, G. B. Xavier, and G. Lima, “High-dimensional decoy-state quantum key distribution over multicore telecommunication fibers,” Phys. Rev. A 96, 022317 (2017).
[Crossref]

Puttnam, B. J.

T. A. Eriksson, B. J. Puttnam, G. Rademacher, R. S. Luís, M. Takeoka, Y. Awaji, M. Sasaki, and N. Wada, “Inter-core crosstalk impact of classical channels on CV-QKD in multicore fiber transmission,” in Optical Fiber Communication Conference (OFC), OSA Technical Digest (Optical Society of America, 2019), paper Th1J.1.

Qi, B.

E. Diamanti, H.-K. Lo, B. Qi, and Z. Yuan, “Practical challenges in quantum key distribution,” npj Quantum Inf. 2, 16025 (2016).
[Crossref]

H.-K. Lo, M. Curty, and B. Qi, “Measurement-device-independent quantum key distribution,” Phys. Rev. Lett. 108, 130503 (2012).
[Crossref]

Rademacher, G.

T. A. Eriksson, B. J. Puttnam, G. Rademacher, R. S. Luís, M. Takeoka, Y. Awaji, M. Sasaki, and N. Wada, “Inter-core crosstalk impact of classical channels on CV-QKD in multicore fiber transmission,” in Optical Fiber Communication Conference (OFC), OSA Technical Digest (Optical Society of America, 2019), paper Th1J.1.

Rahimi-Keshari, S.

Ralph, T. C.

Ramachandran, S.

Ramponi, R.

N. Spagnolo, C. Vitelli, L. Aparo, P. Mataloni, F. Sciarrino, A. Crespi, R. Ramponi, and R. Osellame, “Three-photon bosonic coalescence in an integrated tritter,” Nat. Commun. 4, 1606 (2013).
[Crossref]

Rarity, J. G.

A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O’Brien, “Silica-on-silicon waveguide quantum circuits,” Science 320, 646–649 (2008).
[Crossref]

Razavi, M.

S. Pirandola, U. L. Andersen, L. Banchi, M. Berta, D. Bunandar, R. Colbeck, D. Englund, T. Gehring, C. Lupo, C. Ottaviani, J. Pereira, M. Razavi, J. S. Shaari, M. Tomamichel, V. C. Usenko, G. Vallone, P. Villoresi, and P. Wallden, “Advances in quantum cryptography,” arXiv:1906.01645v1 [quant-ph] (2019).

Reck, M.

G. Weihs, M. Reck, H. Weinfurter, and A. Zeilinger, “All-fiber three-path Mach-Zehnder interferometer,” Opt. Lett. 21, 302–304 (1996).
[Crossref]

M. Reck, A. Zeilinger, H. J. Bernstein, and P. Bertani, “Experimental realization of any discrete unitary operator,” Phys. Rev. Lett. 73, 58–61 (1994).
[Crossref]

Ren, Y.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340, 1545–1548 (2013).
[Crossref]

Ribordy, G.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
[Crossref]

Richardson, D. J.

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7, 354–362 (2013).
[Crossref]

Rojas, A.

L. Pereira, A. Rojas, G. Cañas, G. Lima, A. Delgado, and A. Cabello, “Universal multi-port interferometers with minimal optical depth,” arXiv:2002.01371 (2020).

Rossi, A.

A. Rossi, G. Vallone, A. Chiuri, F. De Martini, and P. Mataloni, “Multipath entanglement of two photons,” Phys. Rev. Lett. 102, 153902 (2009).
[Crossref]

Rottwitt, K.

B. Da Lio, D. Bacco, D. Cozzolino, N. Biagi, T. N. Arge, E. Larsen, K. Rottwitt, Y. Ding, A. Zavatta, and L. K. Oxenløwe, “Stable transmission of high-dimensional quantum states over a 2-km multicore fiber,” IEEE J. Sel. Top. Quantum Electron. 26, 6400108 (2020).
[Crossref]

J. Wang, S. Paesani, Y. Ding, R. Santagati, P. Skrzypczyk, A. Salavrakos, J. Tura, R. Augusiak, L. Mančinska, D. Bacco, D. Bonneau, J. W. Silverstone, Q. Gong, A. Acín, K. Rottwitt, L. K. Oxenløwe, J. L. O’Brien, A. Laing, and M. G. Thompson, “Multidimensional quantum entanglement with large-scale integrated optics,” Science 360, 285–291 (2018).
[Crossref]

Y. Ding, D. Bacco, K. Dalgaard, X. Cai, X. Zhou, K. Rottwitt, and L. K. Oxenløwe, “High-dimensional quantum key distribution based on multicore fiber using silicon photonic integrated circuits,” npj Quantum Inf. 3, 25 (2017).
[Crossref]

Ruiz, F. A. T.

F. A. T. Ruiz, G. Lima, A. Delgado, S. Pádua, and C. Saavedra, “Decoherence in a double-slit quantum eraser,” Phys. Rev. A 81, 042104 (2010).
[Crossref]

Rusca, D.

D. Rusca, T. van Himbeeck, A. Martin, J. Bohr Brask, W. Shi, S. Pironio, N. Brunner, and H. Zbinden, “Practical self-testing quantum random number generator based on an energy bound,” arXiv:1904.04819 [quant-ph].

Rusch, L. A.

Russell, N. J.

J. Carolan, C. Harrold, C. Sparrow, E. Martín-López, N. J. Russell, J. W. Silverstone, P. J. Shadbolt, N. Matsuda, M. Oguma, M. Itoh, G. D. Marshall, M. G. Thompson, J. C. F. Matthews, T. Hashimoto, J. L. O’Brien, and A. Laing, “Universal linear optics,” Science 349, 711–716 (2015).
[Crossref]

Saavedra, C.

S. Etcheverry, G. Cañas, E. S. Gómez, W. A. T. Nogueira, C. Saavedra, G. B. Xavier, and G. Lima, “Quantum key distribution session with 16-dimensional photonic states,” Sci. Rep. 3, 2316 (2013).
[Crossref]

F. A. T. Ruiz, G. Lima, A. Delgado, S. Pádua, and C. Saavedra, “Decoherence in a double-slit quantum eraser,” Phys. Rev. A 81, 042104 (2010).
[Crossref]

L. Neves, G. Lima, J. G. Aguirre Gómez, C. H. Monken, C. Saavedra, and S. Pádua, “Generation of entangled states of qudits using twin photons,” Phys. Rev. Lett. 94, 100501 (2005).
[Crossref]

Saito, T.

K. Watanabe, T. Saito, K. Imamura, and M. Shiino, “Development of fiber bundle type fan-out for multicore fiber,” in 17th Opto Electronics and Communications Conference (2012).

Saitoh, K.

Salavrakos, A.

J. Wang, S. Paesani, Y. Ding, R. Santagati, P. Skrzypczyk, A. Salavrakos, J. Tura, R. Augusiak, L. Mančinska, D. Bacco, D. Bonneau, J. W. Silverstone, Q. Gong, A. Acín, K. Rottwitt, L. K. Oxenløwe, J. L. O’Brien, A. Laing, and M. G. Thompson, “Multidimensional quantum entanglement with large-scale integrated optics,” Science 360, 285–291 (2018).
[Crossref]

Santagati, R.

J. Wang, S. Paesani, Y. Ding, R. Santagati, P. Skrzypczyk, A. Salavrakos, J. Tura, R. Augusiak, L. Mančinska, D. Bacco, D. Bonneau, J. W. Silverstone, Q. Gong, A. Acín, K. Rottwitt, L. K. Oxenløwe, J. L. O’Brien, A. Laing, and M. G. Thompson, “Multidimensional quantum entanglement with large-scale integrated optics,” Science 360, 285–291 (2018).
[Crossref]

Sasaki, M.

T. A. Eriksson, B. J. Puttnam, G. Rademacher, R. S. Luís, M. Takeoka, Y. Awaji, M. Sasaki, and N. Wada, “Inter-core crosstalk impact of classical channels on CV-QKD in multicore fiber transmission,” in Optical Fiber Communication Conference (OFC), OSA Technical Digest (Optical Society of America, 2019), paper Th1J.1.

Sato, T.

S. Iano, T. Sato, S. Sentsui, T. Kuroha, and Y. Nishimura, “Multicore optical fiber,” in Optical Fiber Communication Conference (OFC), OSA Technical Digest (Optical Society of America, 1979), paper WB1.

Saygin, M. Y.

M. Y. Saygin, I. V. Kondratyev, I. V. Dyakonov, S. A. Mironov, S. S. Straupe, and S. P. Kulik, “Robust architecture for programmable universal unitaries,” Phys. Rev. Lett. 124, 010501 (2020).
[Crossref]

Scarani, V.

N. Brunner, D. Cavalcanti, S. Pironio, V. Scarani, and S. Wehner, “Bell nonlocality,” Rev. Mod. Phys. 86, 419 (2014).
[Crossref]

Schülzgen, A.

Sciarrino, F.

D. Cozzolino, E. Polino, M. Valeri, G. Carvacho, D. Bacco, N. Spagnolo, L. K. Oxenløwe, and F. Sciarrino, “Air-core fiber distribution of hybrid vector vortex-polarization entangled states,” Adv. Photon. 1, 1 (2019).
[Crossref]

F. Flamini, N. Spagnolo, N. Viggianiello, A. Crespi, R. Osellame, and F. Sciarrino, “Benchmarking integrated linear-optical architectures for quantum information processing,” Sci. Rep. 7, 15133 (2017).
[Crossref]

N. Spagnolo, C. Vitelli, L. Aparo, P. Mataloni, F. Sciarrino, A. Crespi, R. Ramponi, and R. Osellame, “Three-photon bosonic coalescence in an integrated tritter,” Nat. Commun. 4, 1606 (2013).
[Crossref]

Sentsui, S.

S. Iano, T. Sato, S. Sentsui, T. Kuroha, and Y. Nishimura, “Multicore optical fiber,” in Optical Fiber Communication Conference (OFC), OSA Technical Digest (Optical Society of America, 1979), paper WB1.

Shaari, J. S.

S. Pirandola, U. L. Andersen, L. Banchi, M. Berta, D. Bunandar, R. Colbeck, D. Englund, T. Gehring, C. Lupo, C. Ottaviani, J. Pereira, M. Razavi, J. S. Shaari, M. Tomamichel, V. C. Usenko, G. Vallone, P. Villoresi, and P. Wallden, “Advances in quantum cryptography,” arXiv:1906.01645v1 [quant-ph] (2019).

Shadbolt, P. J.

J. Carolan, C. Harrold, C. Sparrow, E. Martín-López, N. J. Russell, J. W. Silverstone, P. J. Shadbolt, N. Matsuda, M. Oguma, M. Itoh, G. D. Marshall, M. G. Thompson, J. C. F. Matthews, T. Hashimoto, J. L. O’Brien, and A. Laing, “Universal linear optics,” Science 349, 711–716 (2015).
[Crossref]

Sharpe, A. W.

Shen, L.

R. Lin, A. Udalcovs, O. Ozolins, X. Pang, L. Gan, L. Shen, M. Tang, S. Fu, S. Popov, C. Yang, W. Tong, D. Liu, T. Ferreira da Silva, G. B. Xavier, and J. Chen, “Telecom compatibility validation of quantum key distribution co-existing with 112  Gbps/λ/core data transmission in non-trench and trench-assistant multicore fibers,” in European Conference on Optical Communications (ECOC) (2018) paper We1A.3.

Shi, S.-C.

Y. Liu, X. Yuan, M.-H. Li, W. Zhang, Q. Zhao, J. Zhong, Y. Cao, Y.-H. Li, L.-K. Chen, H. Li, T. Peng, Y.-A. Chen, C.-Z. Peng, S.-C. Shi, Z. Wang, L. You, X. Ma, J. Fan, Q. Zhang, and J.-W. Pan, “High-speed device-independent quantum random number generation without a detection loophole,” Phys. Rev. Lett. 120, 010503 (2018).
[Crossref]

Shi, W.

D. Rusca, T. van Himbeeck, A. Martin, J. Bohr Brask, W. Shi, S. Pironio, N. Brunner, and H. Zbinden, “Practical self-testing quantum random number generator based on an energy bound,” arXiv:1904.04819 [quant-ph].

Shields, A. J.

Shiino, M.

K. Watanabe, T. Saito, K. Imamura, and M. Shiino, “Development of fiber bundle type fan-out for multicore fiber,” in 17th Opto Electronics and Communications Conference (2012).

Shu, X.

S. Zhou, B. Huang, and X. Shu, “A multi-core fiber based interferometer for high temperature sensing,” Meas. Sci. Technol. 28, 045107 (2017).
[Crossref]

Shum, P.

L. Gan, R. Wang, D. Liu, L. Duan, S. Liu, S. Fu, B. Li, Z. Feng, H. Wei, W. Tong, P. Shum, and M. Tang, “Spatial-division multiplexed Mach-Zehnder interferometers in heterogeneous multicore fiber for multiparameter measurement,” IEEE Photon. J. 8, 1 (2016).
[Crossref]

Shum, P. P.

Z. Zhao, M. Tang, S. Fu, S. Liu, H. Wei, Y. Cheng, W. Tong, P. P. Shum, and D. Liu, “All-solid multi-core fiber-based multipath Mach-Zehnder interferometer for temperature sensing,” Appl. Phys. B 112, 491–497 (2013).
[Crossref]

Sillard, P.

Silverstone, J. W.

J. Wang, S. Paesani, Y. Ding, R. Santagati, P. Skrzypczyk, A. Salavrakos, J. Tura, R. Augusiak, L. Mančinska, D. Bacco, D. Bonneau, J. W. Silverstone, Q. Gong, A. Acín, K. Rottwitt, L. K. Oxenløwe, J. L. O’Brien, A. Laing, and M. G. Thompson, “Multidimensional quantum entanglement with large-scale integrated optics,” Science 360, 285–291 (2018).
[Crossref]

J. Carolan, C. Harrold, C. Sparrow, E. Martín-López, N. J. Russell, J. W. Silverstone, P. J. Shadbolt, N. Matsuda, M. Oguma, M. Itoh, G. D. Marshall, M. G. Thompson, J. C. F. Matthews, T. Hashimoto, J. L. O’Brien, and A. Laing, “Universal linear optics,” Science 349, 711–716 (2015).
[Crossref]

Simeonidou, D.

E. Hugues-Salas, R. Wang, G. T. Kanellos, R. Nejabati, and D. Simeonidou, “Co-existence of 9.6  Tb/s classical channels and a quantum key distribution (QKD) channel over a 7-core multicore optical fibre,” in IEEE British and Irish Conference on Optics and Photonics (BICOP) (IEEE, 2019).

Sit, A.

Skrzypczyk, P.

J. Wang, S. Paesani, Y. Ding, R. Santagati, P. Skrzypczyk, A. Salavrakos, J. Tura, R. Augusiak, L. Mančinska, D. Bacco, D. Bonneau, J. W. Silverstone, Q. Gong, A. Acín, K. Rottwitt, L. K. Oxenløwe, J. L. O’Brien, A. Laing, and M. G. Thompson, “Multidimensional quantum entanglement with large-scale integrated optics,” Science 360, 285–291 (2018).
[Crossref]

I. Supic, P. Skrzypczyk, and D. Cavalcanti, “Measurement-device independent entanglement and randomness estimation in quantum networks,” Phys. Rev. A 95, 042340 (2017).
[Crossref]

Souto Ribeiro, P. H.

S. P. Walborn, D. S. Lemelle, M. P. Almeida, and P. H. Souto Ribeiro, Quantum key distribution with higher-order alphabets using spatially encoded qudits, Phys. Rev. Lett. 96, 090501 (2006).
[Crossref]

Spagnolo, N.

D. Cozzolino, E. Polino, M. Valeri, G. Carvacho, D. Bacco, N. Spagnolo, L. K. Oxenløwe, and F. Sciarrino, “Air-core fiber distribution of hybrid vector vortex-polarization entangled states,” Adv. Photon. 1, 1 (2019).
[Crossref]

F. Flamini, N. Spagnolo, N. Viggianiello, A. Crespi, R. Osellame, and F. Sciarrino, “Benchmarking integrated linear-optical architectures for quantum information processing,” Sci. Rep. 7, 15133 (2017).
[Crossref]

N. Spagnolo, C. Vitelli, L. Aparo, P. Mataloni, F. Sciarrino, A. Crespi, R. Ramponi, and R. Osellame, “Three-photon bosonic coalescence in an integrated tritter,” Nat. Commun. 4, 1606 (2013).
[Crossref]

Sparrow, C.

J. Carolan, C. Harrold, C. Sparrow, E. Martín-López, N. J. Russell, J. W. Silverstone, P. J. Shadbolt, N. Matsuda, M. Oguma, M. Itoh, G. D. Marshall, M. G. Thompson, J. C. F. Matthews, T. Hashimoto, J. L. O’Brien, and A. Laing, “Universal linear optics,” Science 349, 711–716 (2015).
[Crossref]

Steinlechner, F.

S. Ecker, F. Bouchard, L. Bulla, F. Brandt, O. Kohout, F. Steinlechner, R. Fickler, M. Malik, Y. Guryanova, R. Ursin, and M. Huber, “Overcoming noise in entanglement distribution,” Phys. Rev. X 9, 041042 (2019).
[Crossref]

Straupe, S. S.

M. Y. Saygin, I. V. Kondratyev, I. V. Dyakonov, S. A. Mironov, S. S. Straupe, and S. P. Kulik, “Robust architecture for programmable universal unitaries,” Phys. Rev. Lett. 124, 010501 (2020).
[Crossref]

Su, J.

L. Cui, J. Su, X. Li, and Z. Y. Ou, “Distribution of entangled photon pairs over few-mode fibers,” Sci. Rep. 7, 14954 (2017).
[Crossref]

Sun, Y.

Supic, I.

I. Supic, P. Skrzypczyk, and D. Cavalcanti, “Measurement-device independent entanglement and randomness estimation in quantum networks,” Phys. Rev. A 95, 042340 (2017).
[Crossref]

Taddei, M. M.

M. M. Taddei, J. Cariñe, D. Martínez, T. García, N. Guerrero, A. A. Abbott, M. Araújo, C. Branciard, E. S. Gómez, S. P. Walborn, L. Aolita, and G. Lima, “Experimental computational advantage from superposition of multiple temporal orders of quantum gates,” arXiv:2002.07817 (2020).

Takeoka, M.

T. A. Eriksson, B. J. Puttnam, G. Rademacher, R. S. Luís, M. Takeoka, Y. Awaji, M. Sasaki, and N. Wada, “Inter-core crosstalk impact of classical channels on CV-QKD in multicore fiber transmission,” in Optical Fiber Communication Conference (OFC), OSA Technical Digest (Optical Society of America, 2019), paper Th1J.1.

Tam, S. W.-B.

Tamaki, K.

H.-K. Lo, M. Curty, and K. Tamaki, “Secure quantum key distribution,” Nat. Photonics 8, 595–604 (2014).
[Crossref]

Tang, M.

L. Gan, R. Wang, D. Liu, L. Duan, S. Liu, S. Fu, B. Li, Z. Feng, H. Wei, W. Tong, P. Shum, and M. Tang, “Spatial-division multiplexed Mach-Zehnder interferometers in heterogeneous multicore fiber for multiparameter measurement,” IEEE Photon. J. 8, 1 (2016).
[Crossref]

Z. Zhao, M. Tang, S. Fu, S. Liu, H. Wei, Y. Cheng, W. Tong, P. P. Shum, and D. Liu, “All-solid multi-core fiber-based multipath Mach-Zehnder interferometer for temperature sensing,” Appl. Phys. B 112, 491–497 (2013).
[Crossref]

R. Lin, A. Udalcovs, O. Ozolins, X. Pang, L. Gan, L. Shen, M. Tang, S. Fu, S. Popov, C. Yang, W. Tong, D. Liu, T. Ferreira da Silva, G. B. Xavier, and J. Chen, “Telecom compatibility validation of quantum key distribution co-existing with 112  Gbps/λ/core data transmission in non-trench and trench-assistant multicore fibers,” in European Conference on Optical Communications (ECOC) (2018) paper We1A.3.

Tarasenko, O.

M. Malmström, O. Tarasenko, W. Margulis, and F. Laurell, “All-fiber nanosecond gating for time-resolved spectral analysis,” IEEE Photon. Technol. Lett. 28, 829–832 (2016).
[Crossref]

Tavakoli, A.

D. Martínez, A. Tavakoli, M. Casanova, G. Cañas, B. Marques, and G. Lima, “High-dimensional quantum communication complexity beyond strategies based on Bell’s theorem,” Phys. Rev. Lett. 121, 150504 (2018).
[Crossref]

Terra Cunha, M. O.

P. Walborn, M. O. Terra Cunha, S. Pádua, and C. H. Monken, “Double-slit quantum eraser,” Phys. Rev. A 65, 033818 (2002).
[Crossref]

Thompson, M. G.

J. Wang, S. Paesani, Y. Ding, R. Santagati, P. Skrzypczyk, A. Salavrakos, J. Tura, R. Augusiak, L. Mančinska, D. Bacco, D. Bonneau, J. W. Silverstone, Q. Gong, A. Acín, K. Rottwitt, L. K. Oxenløwe, J. L. O’Brien, A. Laing, and M. G. Thompson, “Multidimensional quantum entanglement with large-scale integrated optics,” Science 360, 285–291 (2018).
[Crossref]

J. Carolan, C. Harrold, C. Sparrow, E. Martín-López, N. J. Russell, J. W. Silverstone, P. J. Shadbolt, N. Matsuda, M. Oguma, M. Itoh, G. D. Marshall, M. G. Thompson, J. C. F. Matthews, T. Hashimoto, J. L. O’Brien, and A. Laing, “Universal linear optics,” Science 349, 711–716 (2015).
[Crossref]

Tittel, W.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
[Crossref]

Tomamichel, M.

S. Pirandola, U. L. Andersen, L. Banchi, M. Berta, D. Bunandar, R. Colbeck, D. Englund, T. Gehring, C. Lupo, C. Ottaviani, J. Pereira, M. Razavi, J. S. Shaari, M. Tomamichel, V. C. Usenko, G. Vallone, P. Villoresi, and P. Wallden, “Advances in quantum cryptography,” arXiv:1906.01645v1 [quant-ph] (2019).

Tong, W.

L. Gan, R. Wang, D. Liu, L. Duan, S. Liu, S. Fu, B. Li, Z. Feng, H. Wei, W. Tong, P. Shum, and M. Tang, “Spatial-division multiplexed Mach-Zehnder interferometers in heterogeneous multicore fiber for multiparameter measurement,” IEEE Photon. J. 8, 1 (2016).
[Crossref]

Z. Zhao, M. Tang, S. Fu, S. Liu, H. Wei, Y. Cheng, W. Tong, P. P. Shum, and D. Liu, “All-solid multi-core fiber-based multipath Mach-Zehnder interferometer for temperature sensing,” Appl. Phys. B 112, 491–497 (2013).
[Crossref]

R. Lin, A. Udalcovs, O. Ozolins, X. Pang, L. Gan, L. Shen, M. Tang, S. Fu, S. Popov, C. Yang, W. Tong, D. Liu, T. Ferreira da Silva, G. B. Xavier, and J. Chen, “Telecom compatibility validation of quantum key distribution co-existing with 112  Gbps/λ/core data transmission in non-trench and trench-assistant multicore fibers,” in European Conference on Optical Communications (ECOC) (2018) paper We1A.3.

Tottori, Y.

Y. Tottori, T. Kobayashi, and M. Watanabe, “Low loss optical connection module for seven-core multicore fiber and seven single-mode fibers,” IEEE Photon. Technol. Lett. 24, 1926–1928 (2012).
[Crossref]

Tur, M.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340, 1545–1548 (2013).
[Crossref]

Tura, J.

J. Wang, S. Paesani, Y. Ding, R. Santagati, P. Skrzypczyk, A. Salavrakos, J. Tura, R. Augusiak, L. Mančinska, D. Bacco, D. Bonneau, J. W. Silverstone, Q. Gong, A. Acín, K. Rottwitt, L. K. Oxenløwe, J. L. O’Brien, A. Laing, and M. G. Thompson, “Multidimensional quantum entanglement with large-scale integrated optics,” Science 360, 285–291 (2018).
[Crossref]

Udalcovs, A.

R. Lin, A. Udalcovs, O. Ozolins, X. Pang, L. Gan, L. Shen, M. Tang, S. Fu, S. Popov, C. Yang, W. Tong, D. Liu, T. Ferreira da Silva, G. B. Xavier, and J. Chen, “Telecom compatibility validation of quantum key distribution co-existing with 112  Gbps/λ/core data transmission in non-trench and trench-assistant multicore fibers,” in European Conference on Optical Communications (ECOC) (2018) paper We1A.3.

Ung, B.

Ursin, R.

S. Ecker, F. Bouchard, L. Bulla, F. Brandt, O. Kohout, F. Steinlechner, R. Fickler, M. Malik, Y. Guryanova, R. Ursin, and M. Huber, “Overcoming noise in entanglement distribution,” Phys. Rev. X 9, 041042 (2019).
[Crossref]

Usenko, V. C.

S. Pirandola, U. L. Andersen, L. Banchi, M. Berta, D. Bunandar, R. Colbeck, D. Englund, T. Gehring, C. Lupo, C. Ottaviani, J. Pereira, M. Razavi, J. S. Shaari, M. Tomamichel, V. C. Usenko, G. Vallone, P. Villoresi, and P. Wallden, “Advances in quantum cryptography,” arXiv:1906.01645v1 [quant-ph] (2019).

Valencia, N. H.

N. H. Valencia, S. Goel, W. McCutcheon, H. Defienne, and M. Malik, “Unscrambling entanglement through a complex medium,” arXiv:1910.04490 (2019).

Valeri, M.

D. Cozzolino, E. Polino, M. Valeri, G. Carvacho, D. Bacco, N. Spagnolo, L. K. Oxenløwe, and F. Sciarrino, “Air-core fiber distribution of hybrid vector vortex-polarization entangled states,” Adv. Photon. 1, 1 (2019).
[Crossref]

Vallés, A.

J. Liu, I. Nape, Q. Wang, A. Vallés, J. Wang, and A. Forbes, “Multi-dimensional entanglement transport through single-mode fibre,” Sci. Adv. 6, eaay0837 (2020).
[Crossref]

Vallone, G.

G. Cañas, N. Vera, J. Cariñe, P. González, J. Cardenas, P. W. R. Connolly, A. Przysiezna, E. S. Gómez, M. Figueroa, G. Vallone, P. Villoresi, T. Ferreira da Silva, G. B. Xavier, and G. Lima, “High-dimensional decoy-state quantum key distribution over multicore telecommunication fibers,” Phys. Rev. A 96, 022317 (2017).
[Crossref]

A. Rossi, G. Vallone, A. Chiuri, F. De Martini, and P. Mataloni, “Multipath entanglement of two photons,” Phys. Rev. Lett. 102, 153902 (2009).
[Crossref]

S. Pirandola, U. L. Andersen, L. Banchi, M. Berta, D. Bunandar, R. Colbeck, D. Englund, T. Gehring, C. Lupo, C. Ottaviani, J. Pereira, M. Razavi, J. S. Shaari, M. Tomamichel, V. C. Usenko, G. Vallone, P. Villoresi, and P. Wallden, “Advances in quantum cryptography,” arXiv:1906.01645v1 [quant-ph] (2019).

Van Himbeeck, T.

T. Van Himbeeck, E. Woodhead, N. J. Cerf, R. García-Patrón, and S. Pironio, “Semi-device-independent framework based on natural physical assumptions,” Quantum 1, 33 (2017).
[Crossref]

D. Rusca, T. van Himbeeck, A. Martin, J. Bohr Brask, W. Shi, S. Pironio, N. Brunner, and H. Zbinden, “Practical self-testing quantum random number generator based on an energy bound,” arXiv:1904.04819 [quant-ph].

Vandenberghe, L.

S. Boyd and L. Vandenberghe, Convex Optimization (Cambridge University, 2004).

Vaziri, A.

S. Gröblacher, T. Jennewein, A. Vaziri, G. Weihs, and A. Zeilinger, “Experimental quantum cryptography with qutrits,” New J. Phys. 8, 75 (2006).
[Crossref]

Vera, N.

G. Cañas, N. Vera, J. Cariñe, P. González, J. Cardenas, P. W. R. Connolly, A. Przysiezna, E. S. Gómez, M. Figueroa, G. Vallone, P. Villoresi, T. Ferreira da Silva, G. B. Xavier, and G. Lima, “High-dimensional decoy-state quantum key distribution over multicore telecommunication fibers,” Phys. Rev. A 96, 022317 (2017).
[Crossref]

Viggianiello, N.

F. Flamini, N. Spagnolo, N. Viggianiello, A. Crespi, R. Osellame, and F. Sciarrino, “Benchmarking integrated linear-optical architectures for quantum information processing,” Sci. Rep. 7, 15133 (2017).
[Crossref]

Villoresi, P.

G. Cañas, N. Vera, J. Cariñe, P. González, J. Cardenas, P. W. R. Connolly, A. Przysiezna, E. S. Gómez, M. Figueroa, G. Vallone, P. Villoresi, T. Ferreira da Silva, G. B. Xavier, and G. Lima, “High-dimensional decoy-state quantum key distribution over multicore telecommunication fibers,” Phys. Rev. A 96, 022317 (2017).
[Crossref]

S. Pirandola, U. L. Andersen, L. Banchi, M. Berta, D. Bunandar, R. Colbeck, D. Englund, T. Gehring, C. Lupo, C. Ottaviani, J. Pereira, M. Razavi, J. S. Shaari, M. Tomamichel, V. C. Usenko, G. Vallone, P. Villoresi, and P. Wallden, “Advances in quantum cryptography,” arXiv:1906.01645v1 [quant-ph] (2019).

Vitelli, C.

N. Spagnolo, C. Vitelli, L. Aparo, P. Mataloni, F. Sciarrino, A. Crespi, R. Ramponi, and R. Osellame, “Three-photon bosonic coalescence in an integrated tritter,” Nat. Commun. 4, 1606 (2013).
[Crossref]

Wada, N.

T. A. Eriksson, B. J. Puttnam, G. Rademacher, R. S. Luís, M. Takeoka, Y. Awaji, M. Sasaki, and N. Wada, “Inter-core crosstalk impact of classical channels on CV-QKD in multicore fiber transmission,” in Optical Fiber Communication Conference (OFC), OSA Technical Digest (Optical Society of America, 2019), paper Th1J.1.

Walborn, P.

P. Walborn, M. O. Terra Cunha, S. Pádua, and C. H. Monken, “Double-slit quantum eraser,” Phys. Rev. A 65, 033818 (2002).
[Crossref]

Walborn, S. P.

S. P. Walborn, D. S. Lemelle, M. P. Almeida, and P. H. Souto Ribeiro, Quantum key distribution with higher-order alphabets using spatially encoded qudits, Phys. Rev. Lett. 96, 090501 (2006).
[Crossref]

M. M. Taddei, J. Cariñe, D. Martínez, T. García, N. Guerrero, A. A. Abbott, M. Araújo, C. Branciard, E. S. Gómez, S. P. Walborn, L. Aolita, and G. Lima, “Experimental computational advantage from superposition of multiple temporal orders of quantum gates,” arXiv:2002.07817 (2020).

Wallden, P.

S. Pirandola, U. L. Andersen, L. Banchi, M. Berta, D. Bunandar, R. Colbeck, D. Englund, T. Gehring, C. Lupo, C. Ottaviani, J. Pereira, M. Razavi, J. S. Shaari, M. Tomamichel, V. C. Usenko, G. Vallone, P. Villoresi, and P. Wallden, “Advances in quantum cryptography,” arXiv:1906.01645v1 [quant-ph] (2019).

Walmsley, I. A.

Wang, A.

Wang, J.

J. Liu, I. Nape, Q. Wang, A. Vallés, J. Wang, and A. Forbes, “Multi-dimensional entanglement transport through single-mode fibre,” Sci. Adv. 6, eaay0837 (2020).
[Crossref]

H. Cao, S.-C. Gao, C. Zhang, J. Wang, D.-Y. He, B.-H. Liu, Z.-W. Zhou, G.-X. Zhu, Y.-J. Chen, Z.-H. Li, S.-Y. Yu, Y.-F. Huang, C.-F. Li, and G.-C. Guo, “Distribution of high- dimensional orbital angular momentum entanglement at telecom wavelength over 1km OAM fiber,” Optica 7, 232 (2020).
[Crossref]

L. Zhu, G. Zhu, A. Wang, L. Wang, J. Ai, S. Chen, C. Du, J. Liu, S. Yu, and J. Wang, “18  km low-crosstalk OAM +WDM transmission with 224 individual channels enabled by a ring-core fiber with large high-order mode group separation,” Opt. Lett. 43, 1890–1893 (2018).
[Crossref]

J. Wang, S. Paesani, Y. Ding, R. Santagati, P. Skrzypczyk, A. Salavrakos, J. Tura, R. Augusiak, L. Mančinska, D. Bacco, D. Bonneau, J. W. Silverstone, Q. Gong, A. Acín, K. Rottwitt, L. K. Oxenløwe, J. L. O’Brien, A. Laing, and M. G. Thompson, “Multidimensional quantum entanglement with large-scale integrated optics,” Science 360, 285–291 (2018).
[Crossref]

Wang, L.

Wang, Q.

J. Liu, I. Nape, Q. Wang, A. Vallés, J. Wang, and A. Forbes, “Multi-dimensional entanglement transport through single-mode fibre,” Sci. Adv. 6, eaay0837 (2020).
[Crossref]

Wang, R.

L. Gan, R. Wang, D. Liu, L. Duan, S. Liu, S. Fu, B. Li, Z. Feng, H. Wei, W. Tong, P. Shum, and M. Tang, “Spatial-division multiplexed Mach-Zehnder interferometers in heterogeneous multicore fiber for multiparameter measurement,” IEEE Photon. J. 8, 1 (2016).
[Crossref]

E. Hugues-Salas, R. Wang, G. T. Kanellos, R. Nejabati, and D. Simeonidou, “Co-existence of 9.6  Tb/s classical channels and a quantum key distribution (QKD) channel over a 7-core multicore optical fibre,” in IEEE British and Irish Conference on Optics and Photonics (BICOP) (IEEE, 2019).

Wang, Z.

Y. Liu, X. Yuan, M.-H. Li, W. Zhang, Q. Zhao, J. Zhong, Y. Cao, Y.-H. Li, L.-K. Chen, H. Li, T. Peng, Y.-A. Chen, C.-Z. Peng, S.-C. Shi, Z. Wang, L. You, X. Ma, J. Fan, Q. Zhang, and J.-W. Pan, “High-speed device-independent quantum random number generation without a detection loophole,” Phys. Rev. Lett. 120, 010503 (2018).
[Crossref]

Watanabe, K.

K. Watanabe, T. Saito, K. Imamura, and M. Shiino, “Development of fiber bundle type fan-out for multicore fiber,” in 17th Opto Electronics and Communications Conference (2012).

Watanabe, M.

Y. Tottori, T. Kobayashi, and M. Watanabe, “Low loss optical connection module for seven-core multicore fiber and seven single-mode fibers,” IEEE Photon. Technol. Lett. 24, 1926–1928 (2012).
[Crossref]

Weedbrook, C.

S. Pirandola, B. R. Bardhan, C. Weedbrook, and S. Lloyd, “Advances in photonic quantum sensing,” Nat. Photonics 12, 724–733 (2018).
[Crossref]

Wehner, S.

N. Brunner, D. Cavalcanti, S. Pironio, V. Scarani, and S. Wehner, “Bell nonlocality,” Rev. Mod. Phys. 86, 419 (2014).
[Crossref]

Wei, H.

L. Gan, R. Wang, D. Liu, L. Duan, S. Liu, S. Fu, B. Li, Z. Feng, H. Wei, W. Tong, P. Shum, and M. Tang, “Spatial-division multiplexed Mach-Zehnder interferometers in heterogeneous multicore fiber for multiparameter measurement,” IEEE Photon. J. 8, 1 (2016).
[Crossref]

Z. Zhao, M. Tang, S. Fu, S. Liu, H. Wei, Y. Cheng, W. Tong, P. P. Shum, and D. Liu, “All-solid multi-core fiber-based multipath Mach-Zehnder interferometer for temperature sensing,” Appl. Phys. B 112, 491–497 (2013).
[Crossref]

Weihs, G.

S. Gröblacher, T. Jennewein, A. Vaziri, G. Weihs, and A. Zeilinger, “Experimental quantum cryptography with qutrits,” New J. Phys. 8, 75 (2006).
[Crossref]

G. Weihs, M. Reck, H. Weinfurter, and A. Zeilinger, “All-fiber three-path Mach-Zehnder interferometer,” Opt. Lett. 21, 302–304 (1996).
[Crossref]

Weinfurter, H.

White, A. G.

Willner, A. E.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340, 1545–1548 (2013).
[Crossref]

Woodhead, E.

T. Van Himbeeck, E. Woodhead, N. J. Cerf, R. García-Patrón, and S. Pironio, “Semi-device-independent framework based on natural physical assumptions,” Quantum 1, 33 (2017).
[Crossref]

Xavier, G. B.

G. B. Xavier and G. Lima, “Quantum information processing with space-division multiplexing optical fibres,” Commun. Phys. 3, 9 (2020).
[Crossref]

E. A. Aguilar, M. Farkas, D. Martínez, M. Alvarado, J. Cariñe, G. B. Xavier, J. F. Barra, G. Cañas, M. Pawłowski, and G. Lima, “Certifying an irreducible 1024-dimensional photonic state using refined dimension witnesses,” Phys. Rev. Lett. 120, 230503 (2018).
[Crossref]

G. Cañas, N. Vera, J. Cariñe, P. González, J. Cardenas, P. W. R. Connolly, A. Przysiezna, E. S. Gómez, M. Figueroa, G. Vallone, P. Villoresi, T. Ferreira da Silva, G. B. Xavier, and G. Lima, “High-dimensional decoy-state quantum key distribution over multicore telecommunication fibers,” Phys. Rev. A 96, 022317 (2017).
[Crossref]

S. Etcheverry, G. Cañas, E. S. Gómez, W. A. T. Nogueira, C. Saavedra, G. B. Xavier, and G. Lima, “Quantum key distribution session with 16-dimensional photonic states,” Sci. Rep. 3, 2316 (2013).
[Crossref]

G. Cañas, J. Cariñe, E. S. Gómez, J. F. Barra, A. Cabello, G. B. Xavier, G. Lima, and M. Pawłowski, “Experimental quantum randomness generation invulnerable to the detection loophole,” arXiv:1410.3443v2 (2014).

R. Lin, A. Udalcovs, O. Ozolins, X. Pang, L. Gan, L. Shen, M. Tang, S. Fu, S. Popov, C. Yang, W. Tong, D. Liu, T. Ferreira da Silva, G. B. Xavier, and J. Chen, “Telecom compatibility validation of quantum key distribution co-existing with 112  Gbps/λ/core data transmission in non-trench and trench-assistant multicore fibers,” in European Conference on Optical Communications (ECOC) (2018) paper We1A.3.

Xu, F.

F. Xu, X. Ma, Q. Zhang, H.-K. Lo, and J.-W. Pan, “Quantum cryptography with realistic devices,” arXiv:1903.09051 (2019).

Xu, P.

W.-B. Gao, C.-Y. Lu, X.-C. Yao, P. Xu, O. Guhne, A. Goebel, Y.-A. Chen, C.-Z. Peng, Z.-B. Chen, and J.-W. Pan, Experimental demonstration of a hyper-entangled ten-qubit Schrödinger cat state, Nat. Phys. 6, 331–335 (2010).
[Crossref]

Yan, L.

Yang, C.

R. Lin, A. Udalcovs, O. Ozolins, X. Pang, L. Gan, L. Shen, M. Tang, S. Fu, S. Popov, C. Yang, W. Tong, D. Liu, T. Ferreira da Silva, G. B. Xavier, and J. Chen, “Telecom compatibility validation of quantum key distribution co-existing with 112  Gbps/λ/core data transmission in non-trench and trench-assistant multicore fibers,” in European Conference on Optical Communications (ECOC) (2018) paper We1A.3.

Yang, J.

C. Guan, X. Zhong, G. Mao, T. Yuan, J. Yang, and L. Yuan, “In-line Mach-Zehnder interferometric sensor based on linear five-core fiber,” IEEE Photon. Technol. Lett. 27, 635–638 (2015).
[Crossref]

Yao, X.-C.

W.-B. Gao, C.-Y. Lu, X.-C. Yao, P. Xu, O. Guhne, A. Goebel, Y.-A. Chen, C.-Z. Peng, Z.-B. Chen, and J.-W. Pan, Experimental demonstration of a hyper-entangled ten-qubit Schrödinger cat state, Nat. Phys. 6, 331–335 (2010).
[Crossref]

You, L.

Y. Liu, X. Yuan, M.-H. Li, W. Zhang, Q. Zhao, J. Zhong, Y. Cao, Y.-H. Li, L.-K. Chen, H. Li, T. Peng, Y.-A. Chen, C.-Z. Peng, S.-C. Shi, Z. Wang, L. You, X. Ma, J. Fan, Q. Zhang, and J.-W. Pan, “High-speed device-independent quantum random number generation without a detection loophole,” Phys. Rev. Lett. 120, 010503 (2018).
[Crossref]

Yu, S.

Yu, S.-Y.

Yuan, L.

C. Guan, X. Zhong, G. Mao, T. Yuan, J. Yang, and L. Yuan, “In-line Mach-Zehnder interferometric sensor based on linear five-core fiber,” IEEE Photon. Technol. Lett. 27, 635–638 (2015).
[Crossref]

Yuan, T.

C. Guan, X. Zhong, G. Mao, T. Yuan, J. Yang, and L. Yuan, “In-line Mach-Zehnder interferometric sensor based on linear five-core fiber,” IEEE Photon. Technol. Lett. 27, 635–638 (2015).
[Crossref]

Yuan, X.

Y. Liu, X. Yuan, M.-H. Li, W. Zhang, Q. Zhao, J. Zhong, Y. Cao, Y.-H. Li, L.-K. Chen, H. Li, T. Peng, Y.-A. Chen, C.-Z. Peng, S.-C. Shi, Z. Wang, L. You, X. Ma, J. Fan, Q. Zhang, and J.-W. Pan, “High-speed device-independent quantum random number generation without a detection loophole,” Phys. Rev. Lett. 120, 010503 (2018).
[Crossref]

Yuan, Z.

E. Diamanti, H.-K. Lo, B. Qi, and Z. Yuan, “Practical challenges in quantum key distribution,” npj Quantum Inf. 2, 16025 (2016).
[Crossref]

Yuan, Z. L.

Yue, Y.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340, 1545–1548 (2013).
[Crossref]

Zavatta, A.

B. Da Lio, D. Bacco, D. Cozzolino, N. Biagi, T. N. Arge, E. Larsen, K. Rottwitt, Y. Ding, A. Zavatta, and L. K. Oxenløwe, “Stable transmission of high-dimensional quantum states over a 2-km multicore fiber,” IEEE J. Sel. Top. Quantum Electron. 26, 6400108 (2020).
[Crossref]

Zbinden, H.

J. B. Brask, A. Martin, W. Esposito, R. Houlmann, J. Bowles, H. Zbinden, and N. Brunner, “Megahertz-rate semi-device-independent quantum random number generators based on unambiguous state discrimination,” Phys. Rev. Appl. 7, 054018 (2017).
[Crossref]

T. Lunghi, J. B. Brask, C. C. W. Lim, Q. Lavigne, J. Bowles, A. Martin, H. Zbinden, and N. Brunner, “Self-testing quantum random number generator,” Phys. Rev. Lett. 114, 150501 (2015).
[Crossref]

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
[Crossref]

D. Rusca, T. van Himbeeck, A. Martin, J. Bohr Brask, W. Shi, S. Pironio, N. Brunner, and H. Zbinden, “Practical self-testing quantum random number generator based on an energy bound,” arXiv:1904.04819 [quant-ph].

Zeilinger, A.

M. Malik, M. Erhard, M. Huber, M. Krenn, R. Fickler, and A. Zeilinger, “Multi-photon entanglement in high dimensions,” Nat. Photonics 10, 248–252 (2016).
[Crossref]

S. Gröblacher, T. Jennewein, A. Vaziri, G. Weihs, and A. Zeilinger, “Experimental quantum cryptography with qutrits,” New J. Phys. 8, 75 (2006).
[Crossref]

D. Kaszlikowski, P. Gnaciński, M. Żukowski, W. Miklaszewski, and A. Zeilinger, “Violations of local realism by two entangled N-dimensional systems are stronger than for two qubits,” Phys. Rev. Lett. 85, 4418–4421 (2000).
[Crossref]

M. Zukowski, A. Zeilinger, and M. Horne, “Realizable higher-dimensional two-particle entanglements via multiport beam splitters,” Phys. Rev. A 55, 2564–2579 (1997).
[Crossref]

G. Weihs, M. Reck, H. Weinfurter, and A. Zeilinger, “All-fiber three-path Mach-Zehnder interferometer,” Opt. Lett. 21, 302–304 (1996).
[Crossref]

M. Reck, A. Zeilinger, H. J. Bernstein, and P. Bertani, “Experimental realization of any discrete unitary operator,” Phys. Rev. Lett. 73, 58–61 (1994).
[Crossref]

Zhang, C.

Zhang, P.

Zhang, Q.

Y. Liu, X. Yuan, M.-H. Li, W. Zhang, Q. Zhao, J. Zhong, Y. Cao, Y.-H. Li, L.-K. Chen, H. Li, T. Peng, Y.-A. Chen, C.-Z. Peng, S.-C. Shi, Z. Wang, L. You, X. Ma, J. Fan, Q. Zhang, and J.-W. Pan, “High-speed device-independent quantum random number generation without a detection loophole,” Phys. Rev. Lett. 120, 010503 (2018).
[Crossref]

F. Xu, X. Ma, Q. Zhang, H.-K. Lo, and J.-W. Pan, “Quantum cryptography with realistic devices,” arXiv:1903.09051 (2019).

Zhang, W.

Y. Liu, X. Yuan, M.-H. Li, W. Zhang, Q. Zhao, J. Zhong, Y. Cao, Y.-H. Li, L.-K. Chen, H. Li, T. Peng, Y.-A. Chen, C.-Z. Peng, S.-C. Shi, Z. Wang, L. You, X. Ma, J. Fan, Q. Zhang, and J.-W. Pan, “High-speed device-independent quantum random number generation without a detection loophole,” Phys. Rev. Lett. 120, 010503 (2018).
[Crossref]

Zhang, Y.

Zhao, Q.

Y. Liu, X. Yuan, M.-H. Li, W. Zhang, Q. Zhao, J. Zhong, Y. Cao, Y.-H. Li, L.-K. Chen, H. Li, T. Peng, Y.-A. Chen, C.-Z. Peng, S.-C. Shi, Z. Wang, L. You, X. Ma, J. Fan, Q. Zhang, and J.-W. Pan, “High-speed device-independent quantum random number generation without a detection loophole,” Phys. Rev. Lett. 120, 010503 (2018).
[Crossref]

Zhao, Z.

Z. Zhao, M. Tang, S. Fu, S. Liu, H. Wei, Y. Cheng, W. Tong, P. P. Shum, and D. Liu, “All-solid multi-core fiber-based multipath Mach-Zehnder interferometer for temperature sensing,” Appl. Phys. B 112, 491–497 (2013).
[Crossref]

Zhong, J.

Y. Liu, X. Yuan, M.-H. Li, W. Zhang, Q. Zhao, J. Zhong, Y. Cao, Y.-H. Li, L.-K. Chen, H. Li, T. Peng, Y.-A. Chen, C.-Z. Peng, S.-C. Shi, Z. Wang, L. You, X. Ma, J. Fan, Q. Zhang, and J.-W. Pan, “High-speed device-independent quantum random number generation without a detection loophole,” Phys. Rev. Lett. 120, 010503 (2018).
[Crossref]

Zhong, X.

C. Guan, X. Zhong, G. Mao, T. Yuan, J. Yang, and L. Yuan, “In-line Mach-Zehnder interferometric sensor based on linear five-core fiber,” IEEE Photon. Technol. Lett. 27, 635–638 (2015).
[Crossref]

Zhou, S.

S. Zhou, B. Huang, and X. Shu, “A multi-core fiber based interferometer for high temperature sensing,” Meas. Sci. Technol. 28, 045107 (2017).
[Crossref]

Zhou, X.

Y. Ding, D. Bacco, K. Dalgaard, X. Cai, X. Zhou, K. Rottwitt, and L. K. Oxenløwe, “High-dimensional quantum key distribution based on multicore fiber using silicon photonic integrated circuits,” npj Quantum Inf. 3, 25 (2017).
[Crossref]

Zhou, Z.-W.

Zhu, G.

Zhu, G.-X.

Zhu, L.

Zukowski, M.

D. Kaszlikowski, P. Gnaciński, M. Żukowski, W. Miklaszewski, and A. Zeilinger, “Violations of local realism by two entangled N-dimensional systems are stronger than for two qubits,” Phys. Rev. Lett. 85, 4418–4421 (2000).
[Crossref]

M. Zukowski, A. Zeilinger, and M. Horne, “Realizable higher-dimensional two-particle entanglements via multiport beam splitters,” Phys. Rev. A 55, 2564–2579 (1997).
[Crossref]

Adv. Photon. (1)

D. Cozzolino, E. Polino, M. Valeri, G. Carvacho, D. Bacco, N. Spagnolo, L. K. Oxenløwe, and F. Sciarrino, “Air-core fiber distribution of hybrid vector vortex-polarization entangled states,” Adv. Photon. 1, 1 (2019).
[Crossref]

Appl. Phys. B (1)

Z. Zhao, M. Tang, S. Fu, S. Liu, H. Wei, Y. Cheng, W. Tong, P. P. Shum, and D. Liu, “All-solid multi-core fiber-based multipath Mach-Zehnder interferometer for temperature sensing,” Appl. Phys. B 112, 491–497 (2013).
[Crossref]

Commun. Phys. (1)

G. B. Xavier and G. Lima, “Quantum information processing with space-division multiplexing optical fibres,” Commun. Phys. 3, 9 (2020).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

B. Da Lio, D. Bacco, D. Cozzolino, N. Biagi, T. N. Arge, E. Larsen, K. Rottwitt, Y. Ding, A. Zavatta, and L. K. Oxenløwe, “Stable transmission of high-dimensional quantum states over a 2-km multicore fiber,” IEEE J. Sel. Top. Quantum Electron. 26, 6400108 (2020).
[Crossref]

IEEE Photon. J. (1)

L. Gan, R. Wang, D. Liu, L. Duan, S. Liu, S. Fu, B. Li, Z. Feng, H. Wei, W. Tong, P. Shum, and M. Tang, “Spatial-division multiplexed Mach-Zehnder interferometers in heterogeneous multicore fiber for multiparameter measurement,” IEEE Photon. J. 8, 1 (2016).
[Crossref]

IEEE Photon. Technol. Lett. (3)

C. Guan, X. Zhong, G. Mao, T. Yuan, J. Yang, and L. Yuan, “In-line Mach-Zehnder interferometric sensor based on linear five-core fiber,” IEEE Photon. Technol. Lett. 27, 635–638 (2015).
[Crossref]

Y. Tottori, T. Kobayashi, and M. Watanabe, “Low loss optical connection module for seven-core multicore fiber and seven single-mode fibers,” IEEE Photon. Technol. Lett. 24, 1926–1928 (2012).
[Crossref]

M. Malmström, O. Tarasenko, W. Margulis, and F. Laurell, “All-fiber nanosecond gating for time-resolved spectral analysis,” IEEE Photon. Technol. Lett. 28, 829–832 (2016).
[Crossref]

J. Am. Stat. Assoc. (1)

W. Hoeffding, “Probability inequalities for sums of bounded random variables,” J. Am. Stat. Assoc. 58, 13–30 (1963).
[Crossref]

J. Lightwave Technol. (2)

Meas. Sci. Technol. (1)

S. Zhou, B. Huang, and X. Shu, “A multi-core fiber based interferometer for high temperature sensing,” Meas. Sci. Technol. 28, 045107 (2017).
[Crossref]

Nat. Commun. (1)

N. Spagnolo, C. Vitelli, L. Aparo, P. Mataloni, F. Sciarrino, A. Crespi, R. Ramponi, and R. Osellame, “Three-photon bosonic coalescence in an integrated tritter,” Nat. Commun. 4, 1606 (2013).
[Crossref]

Nat. Photonics (4)

S. Pirandola, B. R. Bardhan, C. Weedbrook, and S. Lloyd, “Advances in photonic quantum sensing,” Nat. Photonics 12, 724–733 (2018).
[Crossref]

M. Malik, M. Erhard, M. Huber, M. Krenn, R. Fickler, and A. Zeilinger, “Multi-photon entanglement in high dimensions,” Nat. Photonics 10, 248–252 (2016).
[Crossref]

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7, 354–362 (2013).
[Crossref]

H.-K. Lo, M. Curty, and K. Tamaki, “Secure quantum key distribution,” Nat. Photonics 8, 595–604 (2014).
[Crossref]

Nat. Phys. (2)

W.-B. Gao, C.-Y. Lu, X.-C. Yao, P. Xu, O. Guhne, A. Goebel, Y.-A. Chen, C.-Z. Peng, Z.-B. Chen, and J.-W. Pan, Experimental demonstration of a hyper-entangled ten-qubit Schrödinger cat state, Nat. Phys. 6, 331–335 (2010).
[Crossref]

A. C. Dada, J. Leach, G. S. Buller, M. J. Padgett, and E. Andersson, “Experimental high-dimensional two-photon entanglement and violations of generalized Bell inequalities,” Nat. Phys. 7, 677–680 (2011).
[Crossref]

Nature (4)

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
[Crossref]

T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien, “Quantum computers,” Nature 464, 45–53 (2010).
[Crossref]

A. Acín and L. Masanes, “Certified randomness in quantum physics,” Nature 540, 213–219 (2016).
[Crossref]

S. Pironio, A. Acín, S. Massar, A. B. de La Giroday, D. N. Matsukevich, P. Maunz, S. Olmschenk, D. Hayes, L. Luo, T. A. Manning, and C. Monroe, “Random numbers certified by Bell’s theorem,” Nature 464, 1021–1024 (2010).
[Crossref]

New J. Phys. (1)

S. Gröblacher, T. Jennewein, A. Vaziri, G. Weihs, and A. Zeilinger, “Experimental quantum cryptography with qutrits,” New J. Phys. 8, 75 (2006).
[Crossref]

npj Quantum Inf. (2)

E. Diamanti, H.-K. Lo, B. Qi, and Z. Yuan, “Practical challenges in quantum key distribution,” npj Quantum Inf. 2, 16025 (2016).
[Crossref]

Y. Ding, D. Bacco, K. Dalgaard, X. Cai, X. Zhou, K. Rottwitt, and L. K. Oxenløwe, “High-dimensional quantum key distribution based on multicore fiber using silicon photonic integrated circuits,” npj Quantum Inf. 3, 25 (2017).
[Crossref]

Opt. Express (5)

Opt. Lett. (4)

Optica (3)

Photon. Res. (1)

Phys. Rev. A (7)

G. Cañas, N. Vera, J. Cariñe, P. González, J. Cardenas, P. W. R. Connolly, A. Przysiezna, E. S. Gómez, M. Figueroa, G. Vallone, P. Villoresi, T. Ferreira da Silva, G. B. Xavier, and G. Lima, “High-dimensional decoy-state quantum key distribution over multicore telecommunication fibers,” Phys. Rev. A 96, 022317 (2017).
[Crossref]

M. Pawłowski and N. Brunner, “Semi-device-independent security of one-way quantum key distribution,” Phys. Rev. A 84, 010302 (2011).
[Crossref]

C. H. Baldwin, A. Kalev, and I. H. Deutsch, “Quantum process tomography of unitary and near-unitary maps,” Phys. Rev. A 90, 012110 (2014).
[Crossref]

I. Supic, P. Skrzypczyk, and D. Cavalcanti, “Measurement-device independent entanglement and randomness estimation in quantum networks,” Phys. Rev. A 95, 042340 (2017).
[Crossref]

M. Zukowski, A. Zeilinger, and M. Horne, “Realizable higher-dimensional two-particle entanglements via multiport beam splitters,” Phys. Rev. A 55, 2564–2579 (1997).
[Crossref]

P. Walborn, M. O. Terra Cunha, S. Pádua, and C. H. Monken, “Double-slit quantum eraser,” Phys. Rev. A 65, 033818 (2002).
[Crossref]

F. A. T. Ruiz, G. Lima, A. Delgado, S. Pádua, and C. Saavedra, “Decoherence in a double-slit quantum eraser,” Phys. Rev. A 81, 042104 (2010).
[Crossref]

Phys. Rev. Appl. (1)

J. B. Brask, A. Martin, W. Esposito, R. Houlmann, J. Bowles, H. Zbinden, and N. Brunner, “Megahertz-rate semi-device-independent quantum random number generators based on unambiguous state discrimination,” Phys. Rev. Appl. 7, 054018 (2017).
[Crossref]

Phys. Rev. Lett. (16)

N. J. Cerf, M. Bourennane, A. Karlsson, and N. Gisin, “Security of quantum key distribution using -level systems,” Phys. Rev. Lett. 88, 127902 (2002).
[Crossref]

D. Kaszlikowski, P. Gnaciński, M. Żukowski, W. Miklaszewski, and A. Zeilinger, “Violations of local realism by two entangled N-dimensional systems are stronger than for two qubits,” Phys. Rev. Lett. 85, 4418–4421 (2000).
[Crossref]

A. Acín, “Statistical distinguishability between unitary operations,” Phys. Rev. Lett. 87, 177901 (2001).
[Crossref]

M. Araújo, F. Costa, and C. Brukner, “Computational advantage from quantum-controlled ordering of gates,” Phys. Rev. Lett. 113, 250402 (2014).
[Crossref]

Y. Liu, X. Yuan, M.-H. Li, W. Zhang, Q. Zhao, J. Zhong, Y. Cao, Y.-H. Li, L.-K. Chen, H. Li, T. Peng, Y.-A. Chen, C.-Z. Peng, S.-C. Shi, Z. Wang, L. You, X. Ma, J. Fan, Q. Zhang, and J.-W. Pan, “High-speed device-independent quantum random number generation without a detection loophole,” Phys. Rev. Lett. 120, 010503 (2018).
[Crossref]

M. Y. Saygin, I. V. Kondratyev, I. V. Dyakonov, S. A. Mironov, S. S. Straupe, and S. P. Kulik, “Robust architecture for programmable universal unitaries,” Phys. Rev. Lett. 124, 010501 (2020).
[Crossref]

H.-K. Lo, M. Curty, and B. Qi, “Measurement-device-independent quantum key distribution,” Phys. Rev. Lett. 108, 130503 (2012).
[Crossref]

M. Reck, A. Zeilinger, H. J. Bernstein, and P. Bertani, “Experimental realization of any discrete unitary operator,” Phys. Rev. Lett. 73, 58–61 (1994).
[Crossref]

S. P. Walborn, D. S. Lemelle, M. P. Almeida, and P. H. Souto Ribeiro, Quantum key distribution with higher-order alphabets using spatially encoded qudits, Phys. Rev. Lett. 96, 090501 (2006).
[Crossref]

A. Rossi, G. Vallone, A. Chiuri, F. De Martini, and P. Mataloni, “Multipath entanglement of two photons,” Phys. Rev. Lett. 102, 153902 (2009).
[Crossref]

L. Neves, G. Lima, J. G. Aguirre Gómez, C. H. Monken, C. Saavedra, and S. Pádua, “Generation of entangled states of qudits using twin photons,” Phys. Rev. Lett. 94, 100501 (2005).
[Crossref]

M. N. O’Sullivan-Hale, I. Ali Khan, R. W. Boyd, and J. C. Howell, “Pixel entanglement: experimental realization of optically entangled d = 3 and d = 6 qudits,” Phys. Rev. Lett. 94, 220501 (2005).
[Crossref]

J. T. Barreiro, N. K. Langford, N. A. Peters, and P. G. Kwiat, “Generation of hyperentangled photon pairs,” Phys. Rev. Lett. 95, 260501 (2005).
[Crossref]

E. A. Aguilar, M. Farkas, D. Martínez, M. Alvarado, J. Cariñe, G. B. Xavier, J. F. Barra, G. Cañas, M. Pawłowski, and G. Lima, “Certifying an irreducible 1024-dimensional photonic state using refined dimension witnesses,” Phys. Rev. Lett. 120, 230503 (2018).
[Crossref]

D. Martínez, A. Tavakoli, M. Casanova, G. Cañas, B. Marques, and G. Lima, “High-dimensional quantum communication complexity beyond strategies based on Bell’s theorem,” Phys. Rev. Lett. 121, 150504 (2018).
[Crossref]

T. Lunghi, J. B. Brask, C. C. W. Lim, Q. Lavigne, J. Bowles, A. Martin, H. Zbinden, and N. Brunner, “Self-testing quantum random number generator,” Phys. Rev. Lett. 114, 150501 (2015).
[Crossref]

Phys. Rev. X (1)

S. Ecker, F. Bouchard, L. Bulla, F. Brandt, O. Kohout, F. Steinlechner, R. Fickler, M. Malik, Y. Guryanova, R. Ursin, and M. Huber, “Overcoming noise in entanglement distribution,” Phys. Rev. X 9, 041042 (2019).
[Crossref]

Quantum (1)

T. Van Himbeeck, E. Woodhead, N. J. Cerf, R. García-Patrón, and S. Pironio, “Semi-device-independent framework based on natural physical assumptions,” Quantum 1, 33 (2017).
[Crossref]

Renew. Sustain. Energy Rev. (1)

P. Bhatnagar and R. K. Nema, “Maximum power point tracking control techniques: state-of-the-art in photovoltaic applications,” Renew. Sustain. Energy Rev. 23, 224–241 (2013).
[Crossref]

Rev. Mod. Phys. (2)

N. Brunner, D. Cavalcanti, S. Pironio, V. Scarani, and S. Wehner, “Bell nonlocality,” Rev. Mod. Phys. 86, 419 (2014).
[Crossref]

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
[Crossref]

Sci. Adv. (1)

J. Liu, I. Nape, Q. Wang, A. Vallés, J. Wang, and A. Forbes, “Multi-dimensional entanglement transport through single-mode fibre,” Sci. Adv. 6, eaay0837 (2020).
[Crossref]

Sci. Rep. (4)

S. Etcheverry, G. Cañas, E. S. Gómez, W. A. T. Nogueira, C. Saavedra, G. B. Xavier, and G. Lima, “Quantum key distribution session with 16-dimensional photonic states,” Sci. Rep. 3, 2316 (2013).
[Crossref]

F. Flamini, N. Spagnolo, N. Viggianiello, A. Crespi, R. Osellame, and F. Sciarrino, “Benchmarking integrated linear-optical architectures for quantum information processing,” Sci. Rep. 7, 15133 (2017).
[Crossref]

H. J. Lee, S.-K. Choi, and H. S. Park, “Experimental demonstration of four-dimensional photonic spatial entanglement between multi-core optical fibres,” Sci. Rep. 7, 4302 (2017).
[Crossref]

L. Cui, J. Su, X. Li, and Z. Y. Ou, “Distribution of entangled photon pairs over few-mode fibers,” Sci. Rep. 7, 14954 (2017).
[Crossref]

Science (4)

A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O’Brien, “Silica-on-silicon waveguide quantum circuits,” Science 320, 646–649 (2008).
[Crossref]

J. Carolan, C. Harrold, C. Sparrow, E. Martín-López, N. J. Russell, J. W. Silverstone, P. J. Shadbolt, N. Matsuda, M. Oguma, M. Itoh, G. D. Marshall, M. G. Thompson, J. C. F. Matthews, T. Hashimoto, J. L. O’Brien, and A. Laing, “Universal linear optics,” Science 349, 711–716 (2015).
[Crossref]

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340, 1545–1548 (2013).
[Crossref]

J. Wang, S. Paesani, Y. Ding, R. Santagati, P. Skrzypczyk, A. Salavrakos, J. Tura, R. Augusiak, L. Mančinska, D. Bacco, D. Bonneau, J. W. Silverstone, Q. Gong, A. Acín, K. Rottwitt, L. K. Oxenløwe, J. L. O’Brien, A. Laing, and M. G. Thompson, “Multidimensional quantum entanglement with large-scale integrated optics,” Science 360, 285–291 (2018).
[Crossref]

Other (14)

N. H. Valencia, S. Goel, W. McCutcheon, H. Defienne, and M. Malik, “Unscrambling entanglement through a complex medium,” arXiv:1910.04490 (2019).

S. Iano, T. Sato, S. Sentsui, T. Kuroha, and Y. Nishimura, “Multicore optical fiber,” in Optical Fiber Communication Conference (OFC), OSA Technical Digest (Optical Society of America, 1979), paper WB1.

F. Xu, X. Ma, Q. Zhang, H.-K. Lo, and J.-W. Pan, “Quantum cryptography with realistic devices,” arXiv:1903.09051 (2019).

S. Pirandola, U. L. Andersen, L. Banchi, M. Berta, D. Bunandar, R. Colbeck, D. Englund, T. Gehring, C. Lupo, C. Ottaviani, J. Pereira, M. Razavi, J. S. Shaari, M. Tomamichel, V. C. Usenko, G. Vallone, P. Villoresi, and P. Wallden, “Advances in quantum cryptography,” arXiv:1906.01645v1 [quant-ph] (2019).

R. Lin, A. Udalcovs, O. Ozolins, X. Pang, L. Gan, L. Shen, M. Tang, S. Fu, S. Popov, C. Yang, W. Tong, D. Liu, T. Ferreira da Silva, G. B. Xavier, and J. Chen, “Telecom compatibility validation of quantum key distribution co-existing with 112  Gbps/λ/core data transmission in non-trench and trench-assistant multicore fibers,” in European Conference on Optical Communications (ECOC) (2018) paper We1A.3.

E. Hugues-Salas, R. Wang, G. T. Kanellos, R. Nejabati, and D. Simeonidou, “Co-existence of 9.6  Tb/s classical channels and a quantum key distribution (QKD) channel over a 7-core multicore optical fibre,” in IEEE British and Irish Conference on Optics and Photonics (BICOP) (IEEE, 2019).

T. A. Eriksson, B. J. Puttnam, G. Rademacher, R. S. Luís, M. Takeoka, Y. Awaji, M. Sasaki, and N. Wada, “Inter-core crosstalk impact of classical channels on CV-QKD in multicore fiber transmission,” in Optical Fiber Communication Conference (OFC), OSA Technical Digest (Optical Society of America, 2019), paper Th1J.1.

M. M. Taddei, J. Cariñe, D. Martínez, T. García, N. Guerrero, A. A. Abbott, M. Araújo, C. Branciard, E. S. Gómez, S. P. Walborn, L. Aolita, and G. Lima, “Experimental computational advantage from superposition of multiple temporal orders of quantum gates,” arXiv:2002.07817 (2020).

S. Boyd and L. Vandenberghe, Convex Optimization (Cambridge University, 2004).

W. Margulis, (personal communication, 2019).

L. Pereira, A. Rojas, G. Cañas, G. Lima, A. Delgado, and A. Cabello, “Universal multi-port interferometers with minimal optical depth,” arXiv:2002.01371 (2020).

G. Cañas, J. Cariñe, E. S. Gómez, J. F. Barra, A. Cabello, G. B. Xavier, G. Lima, and M. Pawłowski, “Experimental quantum randomness generation invulnerable to the detection loophole,” arXiv:1410.3443v2 (2014).

D. Rusca, T. van Himbeeck, A. Martin, J. Bohr Brask, W. Shi, S. Pironio, N. Brunner, and H. Zbinden, “Practical self-testing quantum random number generator based on an energy bound,” arXiv:1904.04819 [quant-ph].

K. Watanabe, T. Saito, K. Imamura, and M. Shiino, “Development of fiber bundle type fan-out for multicore fiber,” in 17th Opto Electronics and Communications Conference (2012).

Supplementary Material (1)

NameDescription
» Supplement 1       Supplemental document

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Schematics of a MCF and of the fabricated MBSs. (a) MCF before tapering and the qudit encoding strategy. (b) The fiber is then heated along a length $L$ and pulled symmetrically from both ends, stretching and thinning the fiber. The final device is the MBS and has a length ${L_W}$ with diameter ${D_W}$.
Fig. 2.
Fig. 2. Multi-port beam splitter performance. (a) Image of the facet of the output of a MCF $4 \times 4$ MBS as seen by an infrared CCD camera. (b) Output normalized optical power of each core of the MBS as a function of time.
Fig. 3.
Fig. 3. Schematics of the experimental setup implementing the programmable quantum circuit for HD quantum information processing. Please see the main text for details.
Fig. 4.
Fig. 4. Phase stabilization and interference fringes of the four-arm programmable circuit. (a) Active stabilization of the multi-arm interferometer (integration time 0.1 s). Inset shows a zoom between 50 and 65 s showing the settling time of the control system after turning it on. (b) Detection rate as a function of modulated phases $\phi _k^A$ (integration time 1 s).
Fig. 5.
Fig. 5. Fragment of the data recorded over time. (a) Single count detection rate considering only the selected samples (please see text for details). ${E_i}$ with $i = \{{1,2,\ldots ,13} \}$ represent small zones, mostly between or with long realignment procedures. (b) Observed average success probability for each zone ${E_i}$. Error bars lie within the experimental point representation. (c) Average obtained randomness per experimental round for each zone ${E_i}$. Error bars lie within the star symbols. The dashed line represents the theoretical upper bound allowed for binary RNG protocols.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

V = 1 2 [ 1 1 1 1 1 e i ϕ 1 e i ϕ 1 1 1 1 1 e i ϕ 1 e i ϕ ] .
U ^ = [ 0.499 0 , 501 0 , 499 0 , 499 0 , 501 0 , 491 + 0 , 08 i 0 , 496 0 , 06 i 0 , 498 0 , 01 i 0 , 499 0 , 495 0 , 06 i 0 , 498 + 0 , 03 i 0 , 499 + 0 , 03 i 0 , 499 0 , 499 0 , 01 i 0 , 499 + 0 , 03 i 0 , 499 0 , 01 i ] ,
| χ = 1 2 ( e i ϕ 0 A | 0 + e i ϕ 1 A | 1 + e i ϕ 2 A | 2 + e i ϕ 3 A | 3 ) ,
| ψ 0 = 1 2 ( e i ϕ 0 B | 0 + e i ϕ 1 B | 1 + e i ϕ 2 B | 2 + e i ϕ 3 B | 3 ) , | ψ 1 = 1 2 ( e i ϕ 0 B | 0 + e i ϕ 1 B | 1 e i ϕ 2 B | 2 e i ϕ 3 B | 3 ) , | ψ 2 = 1 2 ( e i ϕ 0 B | 0 e i ϕ 1 B | 1 + e i ϕ 2 B | 2 e i ϕ 3 B | 3 ) , | ψ 3 = 1 2 ( e i ϕ 0 B | 0 e i ϕ 1 B | 1 e i ϕ 2 B | 2 + e i ϕ 3 B | 3 ) ,
H min ( x ) = log 2 P g ( x ) .
ξ ( a | ω x ) t x ( ϵ ) p ( a | ω x ) ξ ( a | ω x ) + t x ( ϵ ) ,
ρ x = p ( 1 ) | ω x ω x | + p ( 2 ) | ϕ x ( 2 ) ϕ x ( 2 ) | ,