Abstract

In terahertz (THz) photonics, there is an ongoing effort to develop thin, compact devices such as dielectric photonic crystal (PhC) slabs with desirable light–matter interactions. However, previous works in THz PhC slabs have been limited to rigid substrates with thicknesses ${\sim}100\,\,{\rm s}$ of micrometers. Dielectric PhC slabs have been shown to possess in-plane modes that are excited by external radiation to produce sharp guided-mode resonances with minimal absorption for applications in sensors, optics, and lasers. Here we confirm the existence of guided resonances in a membrane-type THz PhC slab with subwavelength (${\lambda _0}/6 {-} {\lambda _0}/12$) thicknesses of flexible dielectric polyimide films. The transmittance of the guided resonances was measured for different structural parameters of the unit cell. Furthermore, we exploited the flexibility of the samples to modulate the guided modes for a bend angle of $\theta \ge {5^ \circ }$, confirmed experimentally by the suppression of these modes. The mechanical flexibility of the device allows for an additional degree of freedom in system design for high-speed communications, soft wearable photonics, and implantable medical devices.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Merbold, A. Bitzer, and T. Feurer, “Second harmonic generation based on strong field enhancement in nanostructured THz materials,” Opt. Express 19, 7262–7273 (2011).
    [Crossref]
  2. S. Bagiante, F. Enderli, J. Fabiańska, H. Sigg, and T. Feurer, “Giant electric field enhancement in split ring resonators featuring nanometer-sized gaps,” Sci. Rep. 5, 8051 (2015).
    [Crossref]
  3. N. Kim, S. In, D. Lee, J. Rhie, J. Jeong, D.-S. Kim, and N. Park, “Colossal terahertz field enhancement using split-ring resonators with a sub-10 nm gap,” ACS Photon. 5, 278–283 (2018).
    [Crossref]
  4. Q. Wang, X. Zhang, Y. Xu, Z. Tian, J. Gu, W. Yue, S. Zhang, J. Han, and W. Zhang, “A broadband metasurface-based terahertz flat-lens array,” Adv. Opt. Mater. 3, 779–785 (2015).
    [Crossref]
  5. K. Guven and E. Ozbay, “Near field imaging in microwave regime using double layer split-ring resonator based metamaterial,” Opto-Electron. Rev. 14, 213 (2006).
    [Crossref]
  6. L. Cong, N. Xu, W. Zhang, and R. Singh, “Polarization control in terahertz metasurfaces with the lowest order rotational symmetry,” Adv. Opt. Mater. 3, 1176–1183 (2015).
    [Crossref]
  7. Y. Liu, C. Liu, X. Jin, B. Zhang, Y. Zhang, X. Zhu, B. Su, and X. Zhao, “Beam steering by using a gradient refractive index metamaterial planar lens and a gradient phase metasurface planar lens,” Microwave and Opt. Technol. Lett. 60, 330–337 (2018).
    [Crossref]
  8. L. Cong, N. Xu, J. Gu, R. Singh, J. Han, and W. Zhang, “Highly flexible broadband terahertz metamaterial quarter-wave plate,” Laser Photon. Rev. 8, 626–632 (2014).
    [Crossref]
  9. J. A. Burrow, R. Yahiaoui, A. Sarangan, I. Agha, J. Mathews, and T. A. Searles, “Polarization-dependent electromagnetic responses of ultrathin and highly flexible asymmetric terahertz metasurfaces,” Opt. Express 25, 32540–32549 (2017).
    [Crossref]
  10. R. Yahiaoui, J. A. Burrow, S. M. Mekonen, A. Sarangan, J. Mathews, I. Agha, and T. A. Searles, “Electromagnetically induced transparency control in terahertz metasurfaces based on bright-bright mode coupling,” Phys. Rev. B 97, 155403 (2018).
    [Crossref]
  11. J. Li, C. M. Shah, W. Withayachumnankul, B. S.-Y. Ung, A. Mitchell, S. Sriram, M. Bhaskaran, S. Chang, and D. Abbott, “Mechanically tunable terahertz metamaterials,” Appl. Phys. Lett. 102, 121101 (2013).
    [Crossref]
  12. J. T. Hong, D. J. Park, J. H. Yim, J. K. Park, J.-Y. Park, S. Lee, and Y. H. Ahn, “Dielectric constant engineering of single-walled carbon nanotube films for metamaterials and plasmonic devices,” J. Phys. Chem. Lett. 4, 3950–3957 (2013).
    [Crossref]
  13. S.-Y. Lin, E. Chow, V. Hietala, P. R. Villeneuve, and J. D. Joannopoulos, “Experimental demonstration of guiding and bending of electromagnetic waves in a photonic crystal,” Science 282, 274–276 (1998).
    [Crossref]
  14. A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787–3790 (1996).
    [Crossref]
  15. A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5  micrometres,” Nature 405, 437–440 (2000).
    [Crossref]
  16. T. F. Krauss, R. M. D. L. Rue, and S. Brand, “Two-dimensional photonic-bandgap structures operating at near-infrared wavelengths,” Nature 383, 699–702 (1996).
    [Crossref]
  17. L. Lalouat, B. Cluzel, C. Dumas, L. Salomon, and F. de Fornel, “Imaging photoexcited optical modes in photonic-crystal cavities with a near-field probe,” Phys. Rev. B 83, 115326 (2011).
    [Crossref]
  18. S. Mujumdar, A. F. Koenderink, R. Wuest, and V. Sandoghdar, “Nano-optomechanical characterization and manipulation of photonic crystals,” IEEE J. Sel. Top. Quantum Electron. 13, 253–261 (2007).
    [Crossref]
  19. S. Noda, M. Yokoyama, M. Imada, A. Chutinan, and M. Mochizuki, “Polarization mode control of two-dimensional photonic crystal laser by unit cell structure design,” Science 293, 1123–1125 (2001).
    [Crossref]
  20. M. Meier, A. Mekis, A. Dodabalapur, A. Timko, R. E. Slusher, J. D. Joannopoulos, and O. Nalamasu, “Laser action from two-dimensional distributed feedback in photonic crystals,” Appl. Phys. Lett. 74, 7–9 (1999).
    [Crossref]
  21. T. Prasad, V. L. Colvin, and D. M. Mittleman, “Dependence of guided resonances on the structural parameters of terahertz photonic crystal slabs,” J. Opt. Soc. Am. B 25, 633–644 (2008).
    [Crossref]
  22. T. Prasad, V. L. Colvin, and D. M. Mittleman, “The effect of structural disorder on guided resonances in photonic crystal slabs studied with terahertz time-domain spectroscopy,” Opt. Express 15, 16954–16965 (2007).
    [Crossref]
  23. Z. Jian and D. M. Mittleman, “Out-of-plane dispersion and homogenization in photonic crystal slabs,” Appl. Phys. Lett. 87, 191113 (2005).
    [Crossref]
  24. Z. Jian and D. M. Mittleman, “Broadband group-velocity anomaly in transmission through a terahertz photonic crystal slab,” Phys. Rev. B 73, 115118 (2006).
    [Crossref]
  25. Z. Jian and D. M. Mittleman, “Characterization of guided resonances in photonic crystal slabs using terahertz time-domain spectroscopy,” J. Appl. Phys. 100, 123113 (2006).
    [Crossref]
  26. R. Kakimi, M. Fujita, M. Nagai, M. Ashida, and T. Nagatsuma, “Capture of a terahertz wave in a photonic-crystal slab,” Nat. Photonics 8, 657–663 (2014).
    [Crossref]
  27. K. Tsuruda, M. Fujita, and T. Nagatsuma, “Extremely low-loss terahertz waveguide based on silicon photonic-crystal slab,” Opt. Express 23, 31977–31990 (2015).
    [Crossref]
  28. N. Jukam and M. S. Sherwin, “Two-dimensional terahertz photonic crystals fabricated by deep reactive ion etching in Si,” Appl. Phys. Lett. 83, 21–23 (2003).
    [Crossref]
  29. W. J. Otter, S. M. Hanham, N. M. Ridler, G. Marino, N. Klein, and S. Lucyszyn, “100  ghz ultra-high Q-factor photonic crystal resonators,” Sens. Actuators A 217, 151–159 (2014).
    [Crossref]
  30. M. Yata, M. Fujita, and T. Nagatsuma, “Photonic-crystal diplexers for terahertz-wave applications,” Opt. Express 24, 7835–7849 (2016).
    [Crossref]
  31. C. Yee, N. Jukam, and M. Sherwin, “Transmission of single mode ultrathin terahertz photonic crystal slabs,” Appl. Phys. Lett. 91, 194104 (2007).
    [Crossref]
  32. C. M. Yee and M. S. Sherwin, “High-Q terahertz microcavities in silicon photonic crystal slabs,” Appl. Phys. Lett. 94, 154104 (2009).
    [Crossref]
  33. N. Jukam, C. Yee, M. S. Sherwin, I. Fushman, and J. Vučković, “Patterned femtosecond laser excitation of terahertz leaky modes in GaAs photonic crystals,” Appl. Phys. Lett. 89, 241112 (2006).
    [Crossref]
  34. S. G. Johnson and J. D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express 8, 173–190 (2001).
    [Crossref]
  35. Q. Yang, S. Kruk, Y. Xu, Q. Wang, Y. K. Srivastava, K. Koshelev, I. Kravchenko, R. Singh, J. Han, Y. Kivshar, and I. Shadrivov, “Mie-resonant membrane Huygens’ metasurfaces,” Adv. Funct. Mater. 30, 1906851 (2019).
    [Crossref]
  36. K. B. Crozier, V. Lousse, O. Kilic, S. Kim, S. Fan, and O. Solgaard, “Air-bridged photonic crystal slabs at visible and near-infrared wavelengths,” Phys. Rev. B 73, 115126 (2006).
    [Crossref]

2019 (1)

Q. Yang, S. Kruk, Y. Xu, Q. Wang, Y. K. Srivastava, K. Koshelev, I. Kravchenko, R. Singh, J. Han, Y. Kivshar, and I. Shadrivov, “Mie-resonant membrane Huygens’ metasurfaces,” Adv. Funct. Mater. 30, 1906851 (2019).
[Crossref]

2018 (3)

N. Kim, S. In, D. Lee, J. Rhie, J. Jeong, D.-S. Kim, and N. Park, “Colossal terahertz field enhancement using split-ring resonators with a sub-10 nm gap,” ACS Photon. 5, 278–283 (2018).
[Crossref]

Y. Liu, C. Liu, X. Jin, B. Zhang, Y. Zhang, X. Zhu, B. Su, and X. Zhao, “Beam steering by using a gradient refractive index metamaterial planar lens and a gradient phase metasurface planar lens,” Microwave and Opt. Technol. Lett. 60, 330–337 (2018).
[Crossref]

R. Yahiaoui, J. A. Burrow, S. M. Mekonen, A. Sarangan, J. Mathews, I. Agha, and T. A. Searles, “Electromagnetically induced transparency control in terahertz metasurfaces based on bright-bright mode coupling,” Phys. Rev. B 97, 155403 (2018).
[Crossref]

2017 (1)

2016 (1)

2015 (4)

K. Tsuruda, M. Fujita, and T. Nagatsuma, “Extremely low-loss terahertz waveguide based on silicon photonic-crystal slab,” Opt. Express 23, 31977–31990 (2015).
[Crossref]

L. Cong, N. Xu, W. Zhang, and R. Singh, “Polarization control in terahertz metasurfaces with the lowest order rotational symmetry,” Adv. Opt. Mater. 3, 1176–1183 (2015).
[Crossref]

Q. Wang, X. Zhang, Y. Xu, Z. Tian, J. Gu, W. Yue, S. Zhang, J. Han, and W. Zhang, “A broadband metasurface-based terahertz flat-lens array,” Adv. Opt. Mater. 3, 779–785 (2015).
[Crossref]

S. Bagiante, F. Enderli, J. Fabiańska, H. Sigg, and T. Feurer, “Giant electric field enhancement in split ring resonators featuring nanometer-sized gaps,” Sci. Rep. 5, 8051 (2015).
[Crossref]

2014 (3)

L. Cong, N. Xu, J. Gu, R. Singh, J. Han, and W. Zhang, “Highly flexible broadband terahertz metamaterial quarter-wave plate,” Laser Photon. Rev. 8, 626–632 (2014).
[Crossref]

R. Kakimi, M. Fujita, M. Nagai, M. Ashida, and T. Nagatsuma, “Capture of a terahertz wave in a photonic-crystal slab,” Nat. Photonics 8, 657–663 (2014).
[Crossref]

W. J. Otter, S. M. Hanham, N. M. Ridler, G. Marino, N. Klein, and S. Lucyszyn, “100  ghz ultra-high Q-factor photonic crystal resonators,” Sens. Actuators A 217, 151–159 (2014).
[Crossref]

2013 (2)

J. Li, C. M. Shah, W. Withayachumnankul, B. S.-Y. Ung, A. Mitchell, S. Sriram, M. Bhaskaran, S. Chang, and D. Abbott, “Mechanically tunable terahertz metamaterials,” Appl. Phys. Lett. 102, 121101 (2013).
[Crossref]

J. T. Hong, D. J. Park, J. H. Yim, J. K. Park, J.-Y. Park, S. Lee, and Y. H. Ahn, “Dielectric constant engineering of single-walled carbon nanotube films for metamaterials and plasmonic devices,” J. Phys. Chem. Lett. 4, 3950–3957 (2013).
[Crossref]

2011 (2)

L. Lalouat, B. Cluzel, C. Dumas, L. Salomon, and F. de Fornel, “Imaging photoexcited optical modes in photonic-crystal cavities with a near-field probe,” Phys. Rev. B 83, 115326 (2011).
[Crossref]

H. Merbold, A. Bitzer, and T. Feurer, “Second harmonic generation based on strong field enhancement in nanostructured THz materials,” Opt. Express 19, 7262–7273 (2011).
[Crossref]

2009 (1)

C. M. Yee and M. S. Sherwin, “High-Q terahertz microcavities in silicon photonic crystal slabs,” Appl. Phys. Lett. 94, 154104 (2009).
[Crossref]

2008 (1)

2007 (3)

T. Prasad, V. L. Colvin, and D. M. Mittleman, “The effect of structural disorder on guided resonances in photonic crystal slabs studied with terahertz time-domain spectroscopy,” Opt. Express 15, 16954–16965 (2007).
[Crossref]

C. Yee, N. Jukam, and M. Sherwin, “Transmission of single mode ultrathin terahertz photonic crystal slabs,” Appl. Phys. Lett. 91, 194104 (2007).
[Crossref]

S. Mujumdar, A. F. Koenderink, R. Wuest, and V. Sandoghdar, “Nano-optomechanical characterization and manipulation of photonic crystals,” IEEE J. Sel. Top. Quantum Electron. 13, 253–261 (2007).
[Crossref]

2006 (5)

K. Guven and E. Ozbay, “Near field imaging in microwave regime using double layer split-ring resonator based metamaterial,” Opto-Electron. Rev. 14, 213 (2006).
[Crossref]

N. Jukam, C. Yee, M. S. Sherwin, I. Fushman, and J. Vučković, “Patterned femtosecond laser excitation of terahertz leaky modes in GaAs photonic crystals,” Appl. Phys. Lett. 89, 241112 (2006).
[Crossref]

K. B. Crozier, V. Lousse, O. Kilic, S. Kim, S. Fan, and O. Solgaard, “Air-bridged photonic crystal slabs at visible and near-infrared wavelengths,” Phys. Rev. B 73, 115126 (2006).
[Crossref]

Z. Jian and D. M. Mittleman, “Broadband group-velocity anomaly in transmission through a terahertz photonic crystal slab,” Phys. Rev. B 73, 115118 (2006).
[Crossref]

Z. Jian and D. M. Mittleman, “Characterization of guided resonances in photonic crystal slabs using terahertz time-domain spectroscopy,” J. Appl. Phys. 100, 123113 (2006).
[Crossref]

2005 (1)

Z. Jian and D. M. Mittleman, “Out-of-plane dispersion and homogenization in photonic crystal slabs,” Appl. Phys. Lett. 87, 191113 (2005).
[Crossref]

2003 (1)

N. Jukam and M. S. Sherwin, “Two-dimensional terahertz photonic crystals fabricated by deep reactive ion etching in Si,” Appl. Phys. Lett. 83, 21–23 (2003).
[Crossref]

2001 (2)

S. G. Johnson and J. D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express 8, 173–190 (2001).
[Crossref]

S. Noda, M. Yokoyama, M. Imada, A. Chutinan, and M. Mochizuki, “Polarization mode control of two-dimensional photonic crystal laser by unit cell structure design,” Science 293, 1123–1125 (2001).
[Crossref]

2000 (1)

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5  micrometres,” Nature 405, 437–440 (2000).
[Crossref]

1999 (1)

M. Meier, A. Mekis, A. Dodabalapur, A. Timko, R. E. Slusher, J. D. Joannopoulos, and O. Nalamasu, “Laser action from two-dimensional distributed feedback in photonic crystals,” Appl. Phys. Lett. 74, 7–9 (1999).
[Crossref]

1998 (1)

S.-Y. Lin, E. Chow, V. Hietala, P. R. Villeneuve, and J. D. Joannopoulos, “Experimental demonstration of guiding and bending of electromagnetic waves in a photonic crystal,” Science 282, 274–276 (1998).
[Crossref]

1996 (2)

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787–3790 (1996).
[Crossref]

T. F. Krauss, R. M. D. L. Rue, and S. Brand, “Two-dimensional photonic-bandgap structures operating at near-infrared wavelengths,” Nature 383, 699–702 (1996).
[Crossref]

Abbott, D.

J. Li, C. M. Shah, W. Withayachumnankul, B. S.-Y. Ung, A. Mitchell, S. Sriram, M. Bhaskaran, S. Chang, and D. Abbott, “Mechanically tunable terahertz metamaterials,” Appl. Phys. Lett. 102, 121101 (2013).
[Crossref]

Agha, I.

R. Yahiaoui, J. A. Burrow, S. M. Mekonen, A. Sarangan, J. Mathews, I. Agha, and T. A. Searles, “Electromagnetically induced transparency control in terahertz metasurfaces based on bright-bright mode coupling,” Phys. Rev. B 97, 155403 (2018).
[Crossref]

J. A. Burrow, R. Yahiaoui, A. Sarangan, I. Agha, J. Mathews, and T. A. Searles, “Polarization-dependent electromagnetic responses of ultrathin and highly flexible asymmetric terahertz metasurfaces,” Opt. Express 25, 32540–32549 (2017).
[Crossref]

Ahn, Y. H.

J. T. Hong, D. J. Park, J. H. Yim, J. K. Park, J.-Y. Park, S. Lee, and Y. H. Ahn, “Dielectric constant engineering of single-walled carbon nanotube films for metamaterials and plasmonic devices,” J. Phys. Chem. Lett. 4, 3950–3957 (2013).
[Crossref]

Ashida, M.

R. Kakimi, M. Fujita, M. Nagai, M. Ashida, and T. Nagatsuma, “Capture of a terahertz wave in a photonic-crystal slab,” Nat. Photonics 8, 657–663 (2014).
[Crossref]

Bagiante, S.

S. Bagiante, F. Enderli, J. Fabiańska, H. Sigg, and T. Feurer, “Giant electric field enhancement in split ring resonators featuring nanometer-sized gaps,” Sci. Rep. 5, 8051 (2015).
[Crossref]

Bhaskaran, M.

J. Li, C. M. Shah, W. Withayachumnankul, B. S.-Y. Ung, A. Mitchell, S. Sriram, M. Bhaskaran, S. Chang, and D. Abbott, “Mechanically tunable terahertz metamaterials,” Appl. Phys. Lett. 102, 121101 (2013).
[Crossref]

Bitzer, A.

Blanco, A.

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5  micrometres,” Nature 405, 437–440 (2000).
[Crossref]

Brand, S.

T. F. Krauss, R. M. D. L. Rue, and S. Brand, “Two-dimensional photonic-bandgap structures operating at near-infrared wavelengths,” Nature 383, 699–702 (1996).
[Crossref]

Burrow, J. A.

R. Yahiaoui, J. A. Burrow, S. M. Mekonen, A. Sarangan, J. Mathews, I. Agha, and T. A. Searles, “Electromagnetically induced transparency control in terahertz metasurfaces based on bright-bright mode coupling,” Phys. Rev. B 97, 155403 (2018).
[Crossref]

J. A. Burrow, R. Yahiaoui, A. Sarangan, I. Agha, J. Mathews, and T. A. Searles, “Polarization-dependent electromagnetic responses of ultrathin and highly flexible asymmetric terahertz metasurfaces,” Opt. Express 25, 32540–32549 (2017).
[Crossref]

Chang, S.

J. Li, C. M. Shah, W. Withayachumnankul, B. S.-Y. Ung, A. Mitchell, S. Sriram, M. Bhaskaran, S. Chang, and D. Abbott, “Mechanically tunable terahertz metamaterials,” Appl. Phys. Lett. 102, 121101 (2013).
[Crossref]

Chen, J. C.

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787–3790 (1996).
[Crossref]

Chomski, E.

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5  micrometres,” Nature 405, 437–440 (2000).
[Crossref]

Chow, E.

S.-Y. Lin, E. Chow, V. Hietala, P. R. Villeneuve, and J. D. Joannopoulos, “Experimental demonstration of guiding and bending of electromagnetic waves in a photonic crystal,” Science 282, 274–276 (1998).
[Crossref]

Chutinan, A.

S. Noda, M. Yokoyama, M. Imada, A. Chutinan, and M. Mochizuki, “Polarization mode control of two-dimensional photonic crystal laser by unit cell structure design,” Science 293, 1123–1125 (2001).
[Crossref]

Cluzel, B.

L. Lalouat, B. Cluzel, C. Dumas, L. Salomon, and F. de Fornel, “Imaging photoexcited optical modes in photonic-crystal cavities with a near-field probe,” Phys. Rev. B 83, 115326 (2011).
[Crossref]

Colvin, V. L.

Cong, L.

L. Cong, N. Xu, W. Zhang, and R. Singh, “Polarization control in terahertz metasurfaces with the lowest order rotational symmetry,” Adv. Opt. Mater. 3, 1176–1183 (2015).
[Crossref]

L. Cong, N. Xu, J. Gu, R. Singh, J. Han, and W. Zhang, “Highly flexible broadband terahertz metamaterial quarter-wave plate,” Laser Photon. Rev. 8, 626–632 (2014).
[Crossref]

Crozier, K. B.

K. B. Crozier, V. Lousse, O. Kilic, S. Kim, S. Fan, and O. Solgaard, “Air-bridged photonic crystal slabs at visible and near-infrared wavelengths,” Phys. Rev. B 73, 115126 (2006).
[Crossref]

de Fornel, F.

L. Lalouat, B. Cluzel, C. Dumas, L. Salomon, and F. de Fornel, “Imaging photoexcited optical modes in photonic-crystal cavities with a near-field probe,” Phys. Rev. B 83, 115326 (2011).
[Crossref]

Dodabalapur, A.

M. Meier, A. Mekis, A. Dodabalapur, A. Timko, R. E. Slusher, J. D. Joannopoulos, and O. Nalamasu, “Laser action from two-dimensional distributed feedback in photonic crystals,” Appl. Phys. Lett. 74, 7–9 (1999).
[Crossref]

Dumas, C.

L. Lalouat, B. Cluzel, C. Dumas, L. Salomon, and F. de Fornel, “Imaging photoexcited optical modes in photonic-crystal cavities with a near-field probe,” Phys. Rev. B 83, 115326 (2011).
[Crossref]

Enderli, F.

S. Bagiante, F. Enderli, J. Fabiańska, H. Sigg, and T. Feurer, “Giant electric field enhancement in split ring resonators featuring nanometer-sized gaps,” Sci. Rep. 5, 8051 (2015).
[Crossref]

Fabianska, J.

S. Bagiante, F. Enderli, J. Fabiańska, H. Sigg, and T. Feurer, “Giant electric field enhancement in split ring resonators featuring nanometer-sized gaps,” Sci. Rep. 5, 8051 (2015).
[Crossref]

Fan, S.

K. B. Crozier, V. Lousse, O. Kilic, S. Kim, S. Fan, and O. Solgaard, “Air-bridged photonic crystal slabs at visible and near-infrared wavelengths,” Phys. Rev. B 73, 115126 (2006).
[Crossref]

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787–3790 (1996).
[Crossref]

Feurer, T.

S. Bagiante, F. Enderli, J. Fabiańska, H. Sigg, and T. Feurer, “Giant electric field enhancement in split ring resonators featuring nanometer-sized gaps,” Sci. Rep. 5, 8051 (2015).
[Crossref]

H. Merbold, A. Bitzer, and T. Feurer, “Second harmonic generation based on strong field enhancement in nanostructured THz materials,” Opt. Express 19, 7262–7273 (2011).
[Crossref]

Fujita, M.

Fushman, I.

N. Jukam, C. Yee, M. S. Sherwin, I. Fushman, and J. Vučković, “Patterned femtosecond laser excitation of terahertz leaky modes in GaAs photonic crystals,” Appl. Phys. Lett. 89, 241112 (2006).
[Crossref]

Grabtchak, S.

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5  micrometres,” Nature 405, 437–440 (2000).
[Crossref]

Gu, J.

Q. Wang, X. Zhang, Y. Xu, Z. Tian, J. Gu, W. Yue, S. Zhang, J. Han, and W. Zhang, “A broadband metasurface-based terahertz flat-lens array,” Adv. Opt. Mater. 3, 779–785 (2015).
[Crossref]

L. Cong, N. Xu, J. Gu, R. Singh, J. Han, and W. Zhang, “Highly flexible broadband terahertz metamaterial quarter-wave plate,” Laser Photon. Rev. 8, 626–632 (2014).
[Crossref]

Guven, K.

K. Guven and E. Ozbay, “Near field imaging in microwave regime using double layer split-ring resonator based metamaterial,” Opto-Electron. Rev. 14, 213 (2006).
[Crossref]

Han, J.

Q. Yang, S. Kruk, Y. Xu, Q. Wang, Y. K. Srivastava, K. Koshelev, I. Kravchenko, R. Singh, J. Han, Y. Kivshar, and I. Shadrivov, “Mie-resonant membrane Huygens’ metasurfaces,” Adv. Funct. Mater. 30, 1906851 (2019).
[Crossref]

Q. Wang, X. Zhang, Y. Xu, Z. Tian, J. Gu, W. Yue, S. Zhang, J. Han, and W. Zhang, “A broadband metasurface-based terahertz flat-lens array,” Adv. Opt. Mater. 3, 779–785 (2015).
[Crossref]

L. Cong, N. Xu, J. Gu, R. Singh, J. Han, and W. Zhang, “Highly flexible broadband terahertz metamaterial quarter-wave plate,” Laser Photon. Rev. 8, 626–632 (2014).
[Crossref]

Hanham, S. M.

W. J. Otter, S. M. Hanham, N. M. Ridler, G. Marino, N. Klein, and S. Lucyszyn, “100  ghz ultra-high Q-factor photonic crystal resonators,” Sens. Actuators A 217, 151–159 (2014).
[Crossref]

Hietala, V.

S.-Y. Lin, E. Chow, V. Hietala, P. R. Villeneuve, and J. D. Joannopoulos, “Experimental demonstration of guiding and bending of electromagnetic waves in a photonic crystal,” Science 282, 274–276 (1998).
[Crossref]

Hong, J. T.

J. T. Hong, D. J. Park, J. H. Yim, J. K. Park, J.-Y. Park, S. Lee, and Y. H. Ahn, “Dielectric constant engineering of single-walled carbon nanotube films for metamaterials and plasmonic devices,” J. Phys. Chem. Lett. 4, 3950–3957 (2013).
[Crossref]

Ibisate, M.

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5  micrometres,” Nature 405, 437–440 (2000).
[Crossref]

Imada, M.

S. Noda, M. Yokoyama, M. Imada, A. Chutinan, and M. Mochizuki, “Polarization mode control of two-dimensional photonic crystal laser by unit cell structure design,” Science 293, 1123–1125 (2001).
[Crossref]

In, S.

N. Kim, S. In, D. Lee, J. Rhie, J. Jeong, D.-S. Kim, and N. Park, “Colossal terahertz field enhancement using split-ring resonators with a sub-10 nm gap,” ACS Photon. 5, 278–283 (2018).
[Crossref]

Jeong, J.

N. Kim, S. In, D. Lee, J. Rhie, J. Jeong, D.-S. Kim, and N. Park, “Colossal terahertz field enhancement using split-ring resonators with a sub-10 nm gap,” ACS Photon. 5, 278–283 (2018).
[Crossref]

Jian, Z.

Z. Jian and D. M. Mittleman, “Characterization of guided resonances in photonic crystal slabs using terahertz time-domain spectroscopy,” J. Appl. Phys. 100, 123113 (2006).
[Crossref]

Z. Jian and D. M. Mittleman, “Broadband group-velocity anomaly in transmission through a terahertz photonic crystal slab,” Phys. Rev. B 73, 115118 (2006).
[Crossref]

Z. Jian and D. M. Mittleman, “Out-of-plane dispersion and homogenization in photonic crystal slabs,” Appl. Phys. Lett. 87, 191113 (2005).
[Crossref]

Jin, X.

Y. Liu, C. Liu, X. Jin, B. Zhang, Y. Zhang, X. Zhu, B. Su, and X. Zhao, “Beam steering by using a gradient refractive index metamaterial planar lens and a gradient phase metasurface planar lens,” Microwave and Opt. Technol. Lett. 60, 330–337 (2018).
[Crossref]

Joannopoulos, J. D.

S. G. Johnson and J. D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express 8, 173–190 (2001).
[Crossref]

M. Meier, A. Mekis, A. Dodabalapur, A. Timko, R. E. Slusher, J. D. Joannopoulos, and O. Nalamasu, “Laser action from two-dimensional distributed feedback in photonic crystals,” Appl. Phys. Lett. 74, 7–9 (1999).
[Crossref]

S.-Y. Lin, E. Chow, V. Hietala, P. R. Villeneuve, and J. D. Joannopoulos, “Experimental demonstration of guiding and bending of electromagnetic waves in a photonic crystal,” Science 282, 274–276 (1998).
[Crossref]

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787–3790 (1996).
[Crossref]

John, S.

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5  micrometres,” Nature 405, 437–440 (2000).
[Crossref]

Johnson, S. G.

Jukam, N.

C. Yee, N. Jukam, and M. Sherwin, “Transmission of single mode ultrathin terahertz photonic crystal slabs,” Appl. Phys. Lett. 91, 194104 (2007).
[Crossref]

N. Jukam, C. Yee, M. S. Sherwin, I. Fushman, and J. Vučković, “Patterned femtosecond laser excitation of terahertz leaky modes in GaAs photonic crystals,” Appl. Phys. Lett. 89, 241112 (2006).
[Crossref]

N. Jukam and M. S. Sherwin, “Two-dimensional terahertz photonic crystals fabricated by deep reactive ion etching in Si,” Appl. Phys. Lett. 83, 21–23 (2003).
[Crossref]

Kakimi, R.

R. Kakimi, M. Fujita, M. Nagai, M. Ashida, and T. Nagatsuma, “Capture of a terahertz wave in a photonic-crystal slab,” Nat. Photonics 8, 657–663 (2014).
[Crossref]

Kilic, O.

K. B. Crozier, V. Lousse, O. Kilic, S. Kim, S. Fan, and O. Solgaard, “Air-bridged photonic crystal slabs at visible and near-infrared wavelengths,” Phys. Rev. B 73, 115126 (2006).
[Crossref]

Kim, D.-S.

N. Kim, S. In, D. Lee, J. Rhie, J. Jeong, D.-S. Kim, and N. Park, “Colossal terahertz field enhancement using split-ring resonators with a sub-10 nm gap,” ACS Photon. 5, 278–283 (2018).
[Crossref]

Kim, N.

N. Kim, S. In, D. Lee, J. Rhie, J. Jeong, D.-S. Kim, and N. Park, “Colossal terahertz field enhancement using split-ring resonators with a sub-10 nm gap,” ACS Photon. 5, 278–283 (2018).
[Crossref]

Kim, S.

K. B. Crozier, V. Lousse, O. Kilic, S. Kim, S. Fan, and O. Solgaard, “Air-bridged photonic crystal slabs at visible and near-infrared wavelengths,” Phys. Rev. B 73, 115126 (2006).
[Crossref]

Kivshar, Y.

Q. Yang, S. Kruk, Y. Xu, Q. Wang, Y. K. Srivastava, K. Koshelev, I. Kravchenko, R. Singh, J. Han, Y. Kivshar, and I. Shadrivov, “Mie-resonant membrane Huygens’ metasurfaces,” Adv. Funct. Mater. 30, 1906851 (2019).
[Crossref]

Klein, N.

W. J. Otter, S. M. Hanham, N. M. Ridler, G. Marino, N. Klein, and S. Lucyszyn, “100  ghz ultra-high Q-factor photonic crystal resonators,” Sens. Actuators A 217, 151–159 (2014).
[Crossref]

Koenderink, A. F.

S. Mujumdar, A. F. Koenderink, R. Wuest, and V. Sandoghdar, “Nano-optomechanical characterization and manipulation of photonic crystals,” IEEE J. Sel. Top. Quantum Electron. 13, 253–261 (2007).
[Crossref]

Koshelev, K.

Q. Yang, S. Kruk, Y. Xu, Q. Wang, Y. K. Srivastava, K. Koshelev, I. Kravchenko, R. Singh, J. Han, Y. Kivshar, and I. Shadrivov, “Mie-resonant membrane Huygens’ metasurfaces,” Adv. Funct. Mater. 30, 1906851 (2019).
[Crossref]

Krauss, T. F.

T. F. Krauss, R. M. D. L. Rue, and S. Brand, “Two-dimensional photonic-bandgap structures operating at near-infrared wavelengths,” Nature 383, 699–702 (1996).
[Crossref]

Kravchenko, I.

Q. Yang, S. Kruk, Y. Xu, Q. Wang, Y. K. Srivastava, K. Koshelev, I. Kravchenko, R. Singh, J. Han, Y. Kivshar, and I. Shadrivov, “Mie-resonant membrane Huygens’ metasurfaces,” Adv. Funct. Mater. 30, 1906851 (2019).
[Crossref]

Kruk, S.

Q. Yang, S. Kruk, Y. Xu, Q. Wang, Y. K. Srivastava, K. Koshelev, I. Kravchenko, R. Singh, J. Han, Y. Kivshar, and I. Shadrivov, “Mie-resonant membrane Huygens’ metasurfaces,” Adv. Funct. Mater. 30, 1906851 (2019).
[Crossref]

Kurland, I.

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787–3790 (1996).
[Crossref]

Lalouat, L.

L. Lalouat, B. Cluzel, C. Dumas, L. Salomon, and F. de Fornel, “Imaging photoexcited optical modes in photonic-crystal cavities with a near-field probe,” Phys. Rev. B 83, 115326 (2011).
[Crossref]

Lee, D.

N. Kim, S. In, D. Lee, J. Rhie, J. Jeong, D.-S. Kim, and N. Park, “Colossal terahertz field enhancement using split-ring resonators with a sub-10 nm gap,” ACS Photon. 5, 278–283 (2018).
[Crossref]

Lee, S.

J. T. Hong, D. J. Park, J. H. Yim, J. K. Park, J.-Y. Park, S. Lee, and Y. H. Ahn, “Dielectric constant engineering of single-walled carbon nanotube films for metamaterials and plasmonic devices,” J. Phys. Chem. Lett. 4, 3950–3957 (2013).
[Crossref]

Leonard, S. W.

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5  micrometres,” Nature 405, 437–440 (2000).
[Crossref]

Li, J.

J. Li, C. M. Shah, W. Withayachumnankul, B. S.-Y. Ung, A. Mitchell, S. Sriram, M. Bhaskaran, S. Chang, and D. Abbott, “Mechanically tunable terahertz metamaterials,” Appl. Phys. Lett. 102, 121101 (2013).
[Crossref]

Lin, S.-Y.

S.-Y. Lin, E. Chow, V. Hietala, P. R. Villeneuve, and J. D. Joannopoulos, “Experimental demonstration of guiding and bending of electromagnetic waves in a photonic crystal,” Science 282, 274–276 (1998).
[Crossref]

Liu, C.

Y. Liu, C. Liu, X. Jin, B. Zhang, Y. Zhang, X. Zhu, B. Su, and X. Zhao, “Beam steering by using a gradient refractive index metamaterial planar lens and a gradient phase metasurface planar lens,” Microwave and Opt. Technol. Lett. 60, 330–337 (2018).
[Crossref]

Liu, Y.

Y. Liu, C. Liu, X. Jin, B. Zhang, Y. Zhang, X. Zhu, B. Su, and X. Zhao, “Beam steering by using a gradient refractive index metamaterial planar lens and a gradient phase metasurface planar lens,” Microwave and Opt. Technol. Lett. 60, 330–337 (2018).
[Crossref]

Lopez, C.

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5  micrometres,” Nature 405, 437–440 (2000).
[Crossref]

Lousse, V.

K. B. Crozier, V. Lousse, O. Kilic, S. Kim, S. Fan, and O. Solgaard, “Air-bridged photonic crystal slabs at visible and near-infrared wavelengths,” Phys. Rev. B 73, 115126 (2006).
[Crossref]

Lucyszyn, S.

W. J. Otter, S. M. Hanham, N. M. Ridler, G. Marino, N. Klein, and S. Lucyszyn, “100  ghz ultra-high Q-factor photonic crystal resonators,” Sens. Actuators A 217, 151–159 (2014).
[Crossref]

Marino, G.

W. J. Otter, S. M. Hanham, N. M. Ridler, G. Marino, N. Klein, and S. Lucyszyn, “100  ghz ultra-high Q-factor photonic crystal resonators,” Sens. Actuators A 217, 151–159 (2014).
[Crossref]

Mathews, J.

R. Yahiaoui, J. A. Burrow, S. M. Mekonen, A. Sarangan, J. Mathews, I. Agha, and T. A. Searles, “Electromagnetically induced transparency control in terahertz metasurfaces based on bright-bright mode coupling,” Phys. Rev. B 97, 155403 (2018).
[Crossref]

J. A. Burrow, R. Yahiaoui, A. Sarangan, I. Agha, J. Mathews, and T. A. Searles, “Polarization-dependent electromagnetic responses of ultrathin and highly flexible asymmetric terahertz metasurfaces,” Opt. Express 25, 32540–32549 (2017).
[Crossref]

Meier, M.

M. Meier, A. Mekis, A. Dodabalapur, A. Timko, R. E. Slusher, J. D. Joannopoulos, and O. Nalamasu, “Laser action from two-dimensional distributed feedback in photonic crystals,” Appl. Phys. Lett. 74, 7–9 (1999).
[Crossref]

Mekis, A.

M. Meier, A. Mekis, A. Dodabalapur, A. Timko, R. E. Slusher, J. D. Joannopoulos, and O. Nalamasu, “Laser action from two-dimensional distributed feedback in photonic crystals,” Appl. Phys. Lett. 74, 7–9 (1999).
[Crossref]

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787–3790 (1996).
[Crossref]

Mekonen, S. M.

R. Yahiaoui, J. A. Burrow, S. M. Mekonen, A. Sarangan, J. Mathews, I. Agha, and T. A. Searles, “Electromagnetically induced transparency control in terahertz metasurfaces based on bright-bright mode coupling,” Phys. Rev. B 97, 155403 (2018).
[Crossref]

Merbold, H.

Meseguer, F.

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5  micrometres,” Nature 405, 437–440 (2000).
[Crossref]

Miguez, H.

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5  micrometres,” Nature 405, 437–440 (2000).
[Crossref]

Mitchell, A.

J. Li, C. M. Shah, W. Withayachumnankul, B. S.-Y. Ung, A. Mitchell, S. Sriram, M. Bhaskaran, S. Chang, and D. Abbott, “Mechanically tunable terahertz metamaterials,” Appl. Phys. Lett. 102, 121101 (2013).
[Crossref]

Mittleman, D. M.

T. Prasad, V. L. Colvin, and D. M. Mittleman, “Dependence of guided resonances on the structural parameters of terahertz photonic crystal slabs,” J. Opt. Soc. Am. B 25, 633–644 (2008).
[Crossref]

T. Prasad, V. L. Colvin, and D. M. Mittleman, “The effect of structural disorder on guided resonances in photonic crystal slabs studied with terahertz time-domain spectroscopy,” Opt. Express 15, 16954–16965 (2007).
[Crossref]

Z. Jian and D. M. Mittleman, “Broadband group-velocity anomaly in transmission through a terahertz photonic crystal slab,” Phys. Rev. B 73, 115118 (2006).
[Crossref]

Z. Jian and D. M. Mittleman, “Characterization of guided resonances in photonic crystal slabs using terahertz time-domain spectroscopy,” J. Appl. Phys. 100, 123113 (2006).
[Crossref]

Z. Jian and D. M. Mittleman, “Out-of-plane dispersion and homogenization in photonic crystal slabs,” Appl. Phys. Lett. 87, 191113 (2005).
[Crossref]

Mochizuki, M.

S. Noda, M. Yokoyama, M. Imada, A. Chutinan, and M. Mochizuki, “Polarization mode control of two-dimensional photonic crystal laser by unit cell structure design,” Science 293, 1123–1125 (2001).
[Crossref]

Mondia, J. P.

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5  micrometres,” Nature 405, 437–440 (2000).
[Crossref]

Mujumdar, S.

S. Mujumdar, A. F. Koenderink, R. Wuest, and V. Sandoghdar, “Nano-optomechanical characterization and manipulation of photonic crystals,” IEEE J. Sel. Top. Quantum Electron. 13, 253–261 (2007).
[Crossref]

Nagai, M.

R. Kakimi, M. Fujita, M. Nagai, M. Ashida, and T. Nagatsuma, “Capture of a terahertz wave in a photonic-crystal slab,” Nat. Photonics 8, 657–663 (2014).
[Crossref]

Nagatsuma, T.

Nalamasu, O.

M. Meier, A. Mekis, A. Dodabalapur, A. Timko, R. E. Slusher, J. D. Joannopoulos, and O. Nalamasu, “Laser action from two-dimensional distributed feedback in photonic crystals,” Appl. Phys. Lett. 74, 7–9 (1999).
[Crossref]

Noda, S.

S. Noda, M. Yokoyama, M. Imada, A. Chutinan, and M. Mochizuki, “Polarization mode control of two-dimensional photonic crystal laser by unit cell structure design,” Science 293, 1123–1125 (2001).
[Crossref]

Otter, W. J.

W. J. Otter, S. M. Hanham, N. M. Ridler, G. Marino, N. Klein, and S. Lucyszyn, “100  ghz ultra-high Q-factor photonic crystal resonators,” Sens. Actuators A 217, 151–159 (2014).
[Crossref]

Ozbay, E.

K. Guven and E. Ozbay, “Near field imaging in microwave regime using double layer split-ring resonator based metamaterial,” Opto-Electron. Rev. 14, 213 (2006).
[Crossref]

Ozin, G. A.

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5  micrometres,” Nature 405, 437–440 (2000).
[Crossref]

Park, D. J.

J. T. Hong, D. J. Park, J. H. Yim, J. K. Park, J.-Y. Park, S. Lee, and Y. H. Ahn, “Dielectric constant engineering of single-walled carbon nanotube films for metamaterials and plasmonic devices,” J. Phys. Chem. Lett. 4, 3950–3957 (2013).
[Crossref]

Park, J. K.

J. T. Hong, D. J. Park, J. H. Yim, J. K. Park, J.-Y. Park, S. Lee, and Y. H. Ahn, “Dielectric constant engineering of single-walled carbon nanotube films for metamaterials and plasmonic devices,” J. Phys. Chem. Lett. 4, 3950–3957 (2013).
[Crossref]

Park, J.-Y.

J. T. Hong, D. J. Park, J. H. Yim, J. K. Park, J.-Y. Park, S. Lee, and Y. H. Ahn, “Dielectric constant engineering of single-walled carbon nanotube films for metamaterials and plasmonic devices,” J. Phys. Chem. Lett. 4, 3950–3957 (2013).
[Crossref]

Park, N.

N. Kim, S. In, D. Lee, J. Rhie, J. Jeong, D.-S. Kim, and N. Park, “Colossal terahertz field enhancement using split-ring resonators with a sub-10 nm gap,” ACS Photon. 5, 278–283 (2018).
[Crossref]

Prasad, T.

Rhie, J.

N. Kim, S. In, D. Lee, J. Rhie, J. Jeong, D.-S. Kim, and N. Park, “Colossal terahertz field enhancement using split-ring resonators with a sub-10 nm gap,” ACS Photon. 5, 278–283 (2018).
[Crossref]

Ridler, N. M.

W. J. Otter, S. M. Hanham, N. M. Ridler, G. Marino, N. Klein, and S. Lucyszyn, “100  ghz ultra-high Q-factor photonic crystal resonators,” Sens. Actuators A 217, 151–159 (2014).
[Crossref]

Rue, R. M. D. L.

T. F. Krauss, R. M. D. L. Rue, and S. Brand, “Two-dimensional photonic-bandgap structures operating at near-infrared wavelengths,” Nature 383, 699–702 (1996).
[Crossref]

Salomon, L.

L. Lalouat, B. Cluzel, C. Dumas, L. Salomon, and F. de Fornel, “Imaging photoexcited optical modes in photonic-crystal cavities with a near-field probe,” Phys. Rev. B 83, 115326 (2011).
[Crossref]

Sandoghdar, V.

S. Mujumdar, A. F. Koenderink, R. Wuest, and V. Sandoghdar, “Nano-optomechanical characterization and manipulation of photonic crystals,” IEEE J. Sel. Top. Quantum Electron. 13, 253–261 (2007).
[Crossref]

Sarangan, A.

R. Yahiaoui, J. A. Burrow, S. M. Mekonen, A. Sarangan, J. Mathews, I. Agha, and T. A. Searles, “Electromagnetically induced transparency control in terahertz metasurfaces based on bright-bright mode coupling,” Phys. Rev. B 97, 155403 (2018).
[Crossref]

J. A. Burrow, R. Yahiaoui, A. Sarangan, I. Agha, J. Mathews, and T. A. Searles, “Polarization-dependent electromagnetic responses of ultrathin and highly flexible asymmetric terahertz metasurfaces,” Opt. Express 25, 32540–32549 (2017).
[Crossref]

Searles, T. A.

R. Yahiaoui, J. A. Burrow, S. M. Mekonen, A. Sarangan, J. Mathews, I. Agha, and T. A. Searles, “Electromagnetically induced transparency control in terahertz metasurfaces based on bright-bright mode coupling,” Phys. Rev. B 97, 155403 (2018).
[Crossref]

J. A. Burrow, R. Yahiaoui, A. Sarangan, I. Agha, J. Mathews, and T. A. Searles, “Polarization-dependent electromagnetic responses of ultrathin and highly flexible asymmetric terahertz metasurfaces,” Opt. Express 25, 32540–32549 (2017).
[Crossref]

Shadrivov, I.

Q. Yang, S. Kruk, Y. Xu, Q. Wang, Y. K. Srivastava, K. Koshelev, I. Kravchenko, R. Singh, J. Han, Y. Kivshar, and I. Shadrivov, “Mie-resonant membrane Huygens’ metasurfaces,” Adv. Funct. Mater. 30, 1906851 (2019).
[Crossref]

Shah, C. M.

J. Li, C. M. Shah, W. Withayachumnankul, B. S.-Y. Ung, A. Mitchell, S. Sriram, M. Bhaskaran, S. Chang, and D. Abbott, “Mechanically tunable terahertz metamaterials,” Appl. Phys. Lett. 102, 121101 (2013).
[Crossref]

Sherwin, M.

C. Yee, N. Jukam, and M. Sherwin, “Transmission of single mode ultrathin terahertz photonic crystal slabs,” Appl. Phys. Lett. 91, 194104 (2007).
[Crossref]

Sherwin, M. S.

C. M. Yee and M. S. Sherwin, “High-Q terahertz microcavities in silicon photonic crystal slabs,” Appl. Phys. Lett. 94, 154104 (2009).
[Crossref]

N. Jukam, C. Yee, M. S. Sherwin, I. Fushman, and J. Vučković, “Patterned femtosecond laser excitation of terahertz leaky modes in GaAs photonic crystals,” Appl. Phys. Lett. 89, 241112 (2006).
[Crossref]

N. Jukam and M. S. Sherwin, “Two-dimensional terahertz photonic crystals fabricated by deep reactive ion etching in Si,” Appl. Phys. Lett. 83, 21–23 (2003).
[Crossref]

Sigg, H.

S. Bagiante, F. Enderli, J. Fabiańska, H. Sigg, and T. Feurer, “Giant electric field enhancement in split ring resonators featuring nanometer-sized gaps,” Sci. Rep. 5, 8051 (2015).
[Crossref]

Singh, R.

Q. Yang, S. Kruk, Y. Xu, Q. Wang, Y. K. Srivastava, K. Koshelev, I. Kravchenko, R. Singh, J. Han, Y. Kivshar, and I. Shadrivov, “Mie-resonant membrane Huygens’ metasurfaces,” Adv. Funct. Mater. 30, 1906851 (2019).
[Crossref]

L. Cong, N. Xu, W. Zhang, and R. Singh, “Polarization control in terahertz metasurfaces with the lowest order rotational symmetry,” Adv. Opt. Mater. 3, 1176–1183 (2015).
[Crossref]

L. Cong, N. Xu, J. Gu, R. Singh, J. Han, and W. Zhang, “Highly flexible broadband terahertz metamaterial quarter-wave plate,” Laser Photon. Rev. 8, 626–632 (2014).
[Crossref]

Slusher, R. E.

M. Meier, A. Mekis, A. Dodabalapur, A. Timko, R. E. Slusher, J. D. Joannopoulos, and O. Nalamasu, “Laser action from two-dimensional distributed feedback in photonic crystals,” Appl. Phys. Lett. 74, 7–9 (1999).
[Crossref]

Solgaard, O.

K. B. Crozier, V. Lousse, O. Kilic, S. Kim, S. Fan, and O. Solgaard, “Air-bridged photonic crystal slabs at visible and near-infrared wavelengths,” Phys. Rev. B 73, 115126 (2006).
[Crossref]

Sriram, S.

J. Li, C. M. Shah, W. Withayachumnankul, B. S.-Y. Ung, A. Mitchell, S. Sriram, M. Bhaskaran, S. Chang, and D. Abbott, “Mechanically tunable terahertz metamaterials,” Appl. Phys. Lett. 102, 121101 (2013).
[Crossref]

Srivastava, Y. K.

Q. Yang, S. Kruk, Y. Xu, Q. Wang, Y. K. Srivastava, K. Koshelev, I. Kravchenko, R. Singh, J. Han, Y. Kivshar, and I. Shadrivov, “Mie-resonant membrane Huygens’ metasurfaces,” Adv. Funct. Mater. 30, 1906851 (2019).
[Crossref]

Su, B.

Y. Liu, C. Liu, X. Jin, B. Zhang, Y. Zhang, X. Zhu, B. Su, and X. Zhao, “Beam steering by using a gradient refractive index metamaterial planar lens and a gradient phase metasurface planar lens,” Microwave and Opt. Technol. Lett. 60, 330–337 (2018).
[Crossref]

Tian, Z.

Q. Wang, X. Zhang, Y. Xu, Z. Tian, J. Gu, W. Yue, S. Zhang, J. Han, and W. Zhang, “A broadband metasurface-based terahertz flat-lens array,” Adv. Opt. Mater. 3, 779–785 (2015).
[Crossref]

Timko, A.

M. Meier, A. Mekis, A. Dodabalapur, A. Timko, R. E. Slusher, J. D. Joannopoulos, and O. Nalamasu, “Laser action from two-dimensional distributed feedback in photonic crystals,” Appl. Phys. Lett. 74, 7–9 (1999).
[Crossref]

Toader, O.

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5  micrometres,” Nature 405, 437–440 (2000).
[Crossref]

Tsuruda, K.

Ung, B. S.-Y.

J. Li, C. M. Shah, W. Withayachumnankul, B. S.-Y. Ung, A. Mitchell, S. Sriram, M. Bhaskaran, S. Chang, and D. Abbott, “Mechanically tunable terahertz metamaterials,” Appl. Phys. Lett. 102, 121101 (2013).
[Crossref]

van Driel, H. M.

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5  micrometres,” Nature 405, 437–440 (2000).
[Crossref]

Villeneuve, P. R.

S.-Y. Lin, E. Chow, V. Hietala, P. R. Villeneuve, and J. D. Joannopoulos, “Experimental demonstration of guiding and bending of electromagnetic waves in a photonic crystal,” Science 282, 274–276 (1998).
[Crossref]

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787–3790 (1996).
[Crossref]

Vuckovic, J.

N. Jukam, C. Yee, M. S. Sherwin, I. Fushman, and J. Vučković, “Patterned femtosecond laser excitation of terahertz leaky modes in GaAs photonic crystals,” Appl. Phys. Lett. 89, 241112 (2006).
[Crossref]

Wang, Q.

Q. Yang, S. Kruk, Y. Xu, Q. Wang, Y. K. Srivastava, K. Koshelev, I. Kravchenko, R. Singh, J. Han, Y. Kivshar, and I. Shadrivov, “Mie-resonant membrane Huygens’ metasurfaces,” Adv. Funct. Mater. 30, 1906851 (2019).
[Crossref]

Q. Wang, X. Zhang, Y. Xu, Z. Tian, J. Gu, W. Yue, S. Zhang, J. Han, and W. Zhang, “A broadband metasurface-based terahertz flat-lens array,” Adv. Opt. Mater. 3, 779–785 (2015).
[Crossref]

Withayachumnankul, W.

J. Li, C. M. Shah, W. Withayachumnankul, B. S.-Y. Ung, A. Mitchell, S. Sriram, M. Bhaskaran, S. Chang, and D. Abbott, “Mechanically tunable terahertz metamaterials,” Appl. Phys. Lett. 102, 121101 (2013).
[Crossref]

Wuest, R.

S. Mujumdar, A. F. Koenderink, R. Wuest, and V. Sandoghdar, “Nano-optomechanical characterization and manipulation of photonic crystals,” IEEE J. Sel. Top. Quantum Electron. 13, 253–261 (2007).
[Crossref]

Xu, N.

L. Cong, N. Xu, W. Zhang, and R. Singh, “Polarization control in terahertz metasurfaces with the lowest order rotational symmetry,” Adv. Opt. Mater. 3, 1176–1183 (2015).
[Crossref]

L. Cong, N. Xu, J. Gu, R. Singh, J. Han, and W. Zhang, “Highly flexible broadband terahertz metamaterial quarter-wave plate,” Laser Photon. Rev. 8, 626–632 (2014).
[Crossref]

Xu, Y.

Q. Yang, S. Kruk, Y. Xu, Q. Wang, Y. K. Srivastava, K. Koshelev, I. Kravchenko, R. Singh, J. Han, Y. Kivshar, and I. Shadrivov, “Mie-resonant membrane Huygens’ metasurfaces,” Adv. Funct. Mater. 30, 1906851 (2019).
[Crossref]

Q. Wang, X. Zhang, Y. Xu, Z. Tian, J. Gu, W. Yue, S. Zhang, J. Han, and W. Zhang, “A broadband metasurface-based terahertz flat-lens array,” Adv. Opt. Mater. 3, 779–785 (2015).
[Crossref]

Yahiaoui, R.

R. Yahiaoui, J. A. Burrow, S. M. Mekonen, A. Sarangan, J. Mathews, I. Agha, and T. A. Searles, “Electromagnetically induced transparency control in terahertz metasurfaces based on bright-bright mode coupling,” Phys. Rev. B 97, 155403 (2018).
[Crossref]

J. A. Burrow, R. Yahiaoui, A. Sarangan, I. Agha, J. Mathews, and T. A. Searles, “Polarization-dependent electromagnetic responses of ultrathin and highly flexible asymmetric terahertz metasurfaces,” Opt. Express 25, 32540–32549 (2017).
[Crossref]

Yang, Q.

Q. Yang, S. Kruk, Y. Xu, Q. Wang, Y. K. Srivastava, K. Koshelev, I. Kravchenko, R. Singh, J. Han, Y. Kivshar, and I. Shadrivov, “Mie-resonant membrane Huygens’ metasurfaces,” Adv. Funct. Mater. 30, 1906851 (2019).
[Crossref]

Yata, M.

Yee, C.

C. Yee, N. Jukam, and M. Sherwin, “Transmission of single mode ultrathin terahertz photonic crystal slabs,” Appl. Phys. Lett. 91, 194104 (2007).
[Crossref]

N. Jukam, C. Yee, M. S. Sherwin, I. Fushman, and J. Vučković, “Patterned femtosecond laser excitation of terahertz leaky modes in GaAs photonic crystals,” Appl. Phys. Lett. 89, 241112 (2006).
[Crossref]

Yee, C. M.

C. M. Yee and M. S. Sherwin, “High-Q terahertz microcavities in silicon photonic crystal slabs,” Appl. Phys. Lett. 94, 154104 (2009).
[Crossref]

Yim, J. H.

J. T. Hong, D. J. Park, J. H. Yim, J. K. Park, J.-Y. Park, S. Lee, and Y. H. Ahn, “Dielectric constant engineering of single-walled carbon nanotube films for metamaterials and plasmonic devices,” J. Phys. Chem. Lett. 4, 3950–3957 (2013).
[Crossref]

Yokoyama, M.

S. Noda, M. Yokoyama, M. Imada, A. Chutinan, and M. Mochizuki, “Polarization mode control of two-dimensional photonic crystal laser by unit cell structure design,” Science 293, 1123–1125 (2001).
[Crossref]

Yue, W.

Q. Wang, X. Zhang, Y. Xu, Z. Tian, J. Gu, W. Yue, S. Zhang, J. Han, and W. Zhang, “A broadband metasurface-based terahertz flat-lens array,” Adv. Opt. Mater. 3, 779–785 (2015).
[Crossref]

Zhang, B.

Y. Liu, C. Liu, X. Jin, B. Zhang, Y. Zhang, X. Zhu, B. Su, and X. Zhao, “Beam steering by using a gradient refractive index metamaterial planar lens and a gradient phase metasurface planar lens,” Microwave and Opt. Technol. Lett. 60, 330–337 (2018).
[Crossref]

Zhang, S.

Q. Wang, X. Zhang, Y. Xu, Z. Tian, J. Gu, W. Yue, S. Zhang, J. Han, and W. Zhang, “A broadband metasurface-based terahertz flat-lens array,” Adv. Opt. Mater. 3, 779–785 (2015).
[Crossref]

Zhang, W.

Q. Wang, X. Zhang, Y. Xu, Z. Tian, J. Gu, W. Yue, S. Zhang, J. Han, and W. Zhang, “A broadband metasurface-based terahertz flat-lens array,” Adv. Opt. Mater. 3, 779–785 (2015).
[Crossref]

L. Cong, N. Xu, W. Zhang, and R. Singh, “Polarization control in terahertz metasurfaces with the lowest order rotational symmetry,” Adv. Opt. Mater. 3, 1176–1183 (2015).
[Crossref]

L. Cong, N. Xu, J. Gu, R. Singh, J. Han, and W. Zhang, “Highly flexible broadband terahertz metamaterial quarter-wave plate,” Laser Photon. Rev. 8, 626–632 (2014).
[Crossref]

Zhang, X.

Q. Wang, X. Zhang, Y. Xu, Z. Tian, J. Gu, W. Yue, S. Zhang, J. Han, and W. Zhang, “A broadband metasurface-based terahertz flat-lens array,” Adv. Opt. Mater. 3, 779–785 (2015).
[Crossref]

Zhang, Y.

Y. Liu, C. Liu, X. Jin, B. Zhang, Y. Zhang, X. Zhu, B. Su, and X. Zhao, “Beam steering by using a gradient refractive index metamaterial planar lens and a gradient phase metasurface planar lens,” Microwave and Opt. Technol. Lett. 60, 330–337 (2018).
[Crossref]

Zhao, X.

Y. Liu, C. Liu, X. Jin, B. Zhang, Y. Zhang, X. Zhu, B. Su, and X. Zhao, “Beam steering by using a gradient refractive index metamaterial planar lens and a gradient phase metasurface planar lens,” Microwave and Opt. Technol. Lett. 60, 330–337 (2018).
[Crossref]

Zhu, X.

Y. Liu, C. Liu, X. Jin, B. Zhang, Y. Zhang, X. Zhu, B. Su, and X. Zhao, “Beam steering by using a gradient refractive index metamaterial planar lens and a gradient phase metasurface planar lens,” Microwave and Opt. Technol. Lett. 60, 330–337 (2018).
[Crossref]

ACS Photon. (1)

N. Kim, S. In, D. Lee, J. Rhie, J. Jeong, D.-S. Kim, and N. Park, “Colossal terahertz field enhancement using split-ring resonators with a sub-10 nm gap,” ACS Photon. 5, 278–283 (2018).
[Crossref]

Adv. Funct. Mater. (1)

Q. Yang, S. Kruk, Y. Xu, Q. Wang, Y. K. Srivastava, K. Koshelev, I. Kravchenko, R. Singh, J. Han, Y. Kivshar, and I. Shadrivov, “Mie-resonant membrane Huygens’ metasurfaces,” Adv. Funct. Mater. 30, 1906851 (2019).
[Crossref]

Adv. Opt. Mater. (2)

Q. Wang, X. Zhang, Y. Xu, Z. Tian, J. Gu, W. Yue, S. Zhang, J. Han, and W. Zhang, “A broadband metasurface-based terahertz flat-lens array,” Adv. Opt. Mater. 3, 779–785 (2015).
[Crossref]

L. Cong, N. Xu, W. Zhang, and R. Singh, “Polarization control in terahertz metasurfaces with the lowest order rotational symmetry,” Adv. Opt. Mater. 3, 1176–1183 (2015).
[Crossref]

Appl. Phys. Lett. (7)

J. Li, C. M. Shah, W. Withayachumnankul, B. S.-Y. Ung, A. Mitchell, S. Sriram, M. Bhaskaran, S. Chang, and D. Abbott, “Mechanically tunable terahertz metamaterials,” Appl. Phys. Lett. 102, 121101 (2013).
[Crossref]

M. Meier, A. Mekis, A. Dodabalapur, A. Timko, R. E. Slusher, J. D. Joannopoulos, and O. Nalamasu, “Laser action from two-dimensional distributed feedback in photonic crystals,” Appl. Phys. Lett. 74, 7–9 (1999).
[Crossref]

Z. Jian and D. M. Mittleman, “Out-of-plane dispersion and homogenization in photonic crystal slabs,” Appl. Phys. Lett. 87, 191113 (2005).
[Crossref]

C. Yee, N. Jukam, and M. Sherwin, “Transmission of single mode ultrathin terahertz photonic crystal slabs,” Appl. Phys. Lett. 91, 194104 (2007).
[Crossref]

C. M. Yee and M. S. Sherwin, “High-Q terahertz microcavities in silicon photonic crystal slabs,” Appl. Phys. Lett. 94, 154104 (2009).
[Crossref]

N. Jukam, C. Yee, M. S. Sherwin, I. Fushman, and J. Vučković, “Patterned femtosecond laser excitation of terahertz leaky modes in GaAs photonic crystals,” Appl. Phys. Lett. 89, 241112 (2006).
[Crossref]

N. Jukam and M. S. Sherwin, “Two-dimensional terahertz photonic crystals fabricated by deep reactive ion etching in Si,” Appl. Phys. Lett. 83, 21–23 (2003).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

S. Mujumdar, A. F. Koenderink, R. Wuest, and V. Sandoghdar, “Nano-optomechanical characterization and manipulation of photonic crystals,” IEEE J. Sel. Top. Quantum Electron. 13, 253–261 (2007).
[Crossref]

J. Appl. Phys. (1)

Z. Jian and D. M. Mittleman, “Characterization of guided resonances in photonic crystal slabs using terahertz time-domain spectroscopy,” J. Appl. Phys. 100, 123113 (2006).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. Lett. (1)

J. T. Hong, D. J. Park, J. H. Yim, J. K. Park, J.-Y. Park, S. Lee, and Y. H. Ahn, “Dielectric constant engineering of single-walled carbon nanotube films for metamaterials and plasmonic devices,” J. Phys. Chem. Lett. 4, 3950–3957 (2013).
[Crossref]

Laser Photon. Rev. (1)

L. Cong, N. Xu, J. Gu, R. Singh, J. Han, and W. Zhang, “Highly flexible broadband terahertz metamaterial quarter-wave plate,” Laser Photon. Rev. 8, 626–632 (2014).
[Crossref]

Microwave and Opt. Technol. Lett. (1)

Y. Liu, C. Liu, X. Jin, B. Zhang, Y. Zhang, X. Zhu, B. Su, and X. Zhao, “Beam steering by using a gradient refractive index metamaterial planar lens and a gradient phase metasurface planar lens,” Microwave and Opt. Technol. Lett. 60, 330–337 (2018).
[Crossref]

Nat. Photonics (1)

R. Kakimi, M. Fujita, M. Nagai, M. Ashida, and T. Nagatsuma, “Capture of a terahertz wave in a photonic-crystal slab,” Nat. Photonics 8, 657–663 (2014).
[Crossref]

Nature (2)

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5  micrometres,” Nature 405, 437–440 (2000).
[Crossref]

T. F. Krauss, R. M. D. L. Rue, and S. Brand, “Two-dimensional photonic-bandgap structures operating at near-infrared wavelengths,” Nature 383, 699–702 (1996).
[Crossref]

Opt. Express (6)

Opto-Electron. Rev. (1)

K. Guven and E. Ozbay, “Near field imaging in microwave regime using double layer split-ring resonator based metamaterial,” Opto-Electron. Rev. 14, 213 (2006).
[Crossref]

Phys. Rev. B (4)

R. Yahiaoui, J. A. Burrow, S. M. Mekonen, A. Sarangan, J. Mathews, I. Agha, and T. A. Searles, “Electromagnetically induced transparency control in terahertz metasurfaces based on bright-bright mode coupling,” Phys. Rev. B 97, 155403 (2018).
[Crossref]

L. Lalouat, B. Cluzel, C. Dumas, L. Salomon, and F. de Fornel, “Imaging photoexcited optical modes in photonic-crystal cavities with a near-field probe,” Phys. Rev. B 83, 115326 (2011).
[Crossref]

Z. Jian and D. M. Mittleman, “Broadband group-velocity anomaly in transmission through a terahertz photonic crystal slab,” Phys. Rev. B 73, 115118 (2006).
[Crossref]

K. B. Crozier, V. Lousse, O. Kilic, S. Kim, S. Fan, and O. Solgaard, “Air-bridged photonic crystal slabs at visible and near-infrared wavelengths,” Phys. Rev. B 73, 115126 (2006).
[Crossref]

Phys. Rev. Lett. (1)

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787–3790 (1996).
[Crossref]

Sci. Rep. (1)

S. Bagiante, F. Enderli, J. Fabiańska, H. Sigg, and T. Feurer, “Giant electric field enhancement in split ring resonators featuring nanometer-sized gaps,” Sci. Rep. 5, 8051 (2015).
[Crossref]

Science (2)

S. Noda, M. Yokoyama, M. Imada, A. Chutinan, and M. Mochizuki, “Polarization mode control of two-dimensional photonic crystal laser by unit cell structure design,” Science 293, 1123–1125 (2001).
[Crossref]

S.-Y. Lin, E. Chow, V. Hietala, P. R. Villeneuve, and J. D. Joannopoulos, “Experimental demonstration of guiding and bending of electromagnetic waves in a photonic crystal,” Science 282, 274–276 (1998).
[Crossref]

Sens. Actuators A (1)

W. J. Otter, S. M. Hanham, N. M. Ridler, G. Marino, N. Klein, and S. Lucyszyn, “100  ghz ultra-high Q-factor photonic crystal resonators,” Sens. Actuators A 217, 151–159 (2014).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. Flexible 2D THz PhC slab. (a) Unit cell of the 2D PhC slab with air hole radius $r$, diameter $d$, and cell period a. (b) Band dispersion calculated for the PhC slab in (a) with $r/a = 0.3$ and $\epsilon = 3.4$. The TM mode is dashed, and the TE mode is solid. (c) Representation of the mechanism for supporting guided modes where the incident THz wave couples with the in-plane resonant mode of the PhC slab. (d) Optical images of the fabricated PhC slab and highly flexible Kapton film (top-right insert). Noticeable cracking on the surface of the slab is attributed to possible thermal expansion and contraction during the ICP etching process.
Fig. 2.
Fig. 2. Transmission of the guided modes as a function of hole diameter for 50 µm thick sample. (a) Simulated (solid line) and measured (dashed line) transmission spectra for circular air holes of different diameters in a square lattice. The spectra are offset vertically for clarity. (b) The hole fill fraction (black) and effective refractive index (red) are also calculated for different ${ r}/{ a}$ values. (c) Shifts in frequency of the guided resonances are extracted from experiment and simulation for increasing ${ r}/{a}$ values. (d) The measured modulation depth of the ${d} = 160 \;{\unicode{x00B5}{\rm m}}$ sample (red) and ${d} = 180 \;{\unicode{x00B5}{\rm m}}$ (blue) are plotted in parallel with a measured ${Q}$-factor insert for ${d} = 160 \;{\unicode{x00B5}{\rm m}}$.
Fig. 3.
Fig. 3. Transmission of guided mode as a function of square hole diameter for 25 µm sample. (a) Unit cell of the PhC sample with parameters ${t} = 25 \;{\unicode{x00B5}{\rm m}}$, ${a} = 300 \;{\unicode{x00B5}{\rm m}}$, and variable diameter ${d}$. (b) Simulated (solid line) and measured (dotted line) transmission spectra for different diameters in a square lattice. The spectra are offset vertically for clarity. (c) Evolution of the ${Q}$ factor versus the hole diameter. Inset: optical microscope image of the fabricated PhC with square shaped air holes. (d) The frequency dependence of experimentally measured modulation depth for $d = 185\;\unicode{x00B5}{\rm m}$ and 190 µm.
Fig. 4.
Fig. 4. Curvature-dependent transmission of the guided mode. (a) Top panel: the figure illustrates the setup of bent PhC sample. Bottom panel: image of the curved PhC sample showing an approximately determined bent angle of $\theta { = 10^ \circ }$. (b) Simulated (solid line) and measured (dotted line) transmission are plotted for the 25 µm thick sample with bending angles $\theta { = 0^ \circ }$, 5°, and 10°.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

n e f f = ( ϵ K F F K ) + ( ϵ h F F h ) ,