Abstract

Passive microwave imaging of incoherent sources is often approached in a lensless configuration through array-based interferometric processing. We present an alternative route in the form of a coded aperture realized using a dynamic metasurface. We demonstrate that this device can achieve an estimate of the spectral source distribution from a series of single-port spectral magnitude measurements and complex characterization of the modulation patterns. The image estimation problem is formulated in this case as compressive inversion of a set of standard linear matrix equations. In addition, we demonstrate that a dispersive metasurface design can achieve spectral encoding directly, offering the potential for spectral imaging from frequency-integrated, multiplexed measurements. The microwave dynamic metasurface aperture as an encoding structure is shown to comprise a substantially simplified hardware architecture than that employed in common passive microwave imaging systems. Our proposed technique can facilitate large scale microwave imaging applications that exploit pervasive ambient sources, while similar principles can readily be applied at terahertz, infrared, and optical frequencies.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. W. Goodman, Introduction to Fourier Optics (Roberts & Company, 2005).
  2. T. Pittman, Y. Shih, D. Strekalov, and A. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52, R3429 (1995).
    [Crossref]
  3. J. H. Shapiro, “Computational ghost imaging,” Phys. Rev. A 78, 061802 (2008).
    [Crossref]
  4. A. V. Diebold, M. F. Imani, T. Sleasman, and D. R. Smith, “Phaseless computational ghost imaging at microwave frequencies using a dynamic metasurface aperture,” Appl. Opt. 57, 2142–2149 (2018).
    [Crossref]
  5. A. V. Diebold, M. F. Imani, T. Sleasman, and D. R. Smith, “Phaseless coherent and incoherent microwave ghost imaging with dynamic metasurface apertures,” Optica 5, 1529–1541 (2018).
    [Crossref]
  6. M. Soumekh, Fourier Array Imaging (Prentice-Hall, 1994).
  7. J. W. Goodman, Statistical Optics (Wiley, 2015).
  8. L. Mandel and E. Wolf, Optical Coherence and Quantum optics (Cambridge University, 1995).
  9. K. Dutta and J. Goodman, “Reconstructions of images of partially coherent objects from samples of mutual intensity,” J. Opt. Soc. Am. 67, 796–803 (1977).
    [Crossref]
  10. J. Garnier and G. Papanicolaou, Passive Imaging with Ambient Noise (Cambridge University, 2016).
  11. C. E. Yarman and B. Yazici, “Synthetic aperture hitchhiker imaging,” IEEE Trans. Image Process. 17, 2156–2173 (2008).
    [Crossref]
  12. S. J. Norton and M. Linzer, “Backprojection reconstruction of random source distributions,” J. Acoust. Soc. Am. 81, 977–985 (1987).
    [Crossref]
  13. D. L. Marks, R. A. Stack, and D. J. Brady, “Astigmatic coherence sensor for digital imaging,” Opt. Lett. 25, 1726–1728 (2000).
    [Crossref]
  14. K. Nugent, “Wave field determination using three-dimensional intensity information,” Phys. Rev. Lett. 68, 2261–2264 (1992).
    [Crossref]
  15. L. Tian, J. Lee, S. B. Oh, and G. Barbastathis, “Experimental compressive phase space tomography,” Opt. Express 20, 8296–8308 (2012).
    [Crossref]
  16. J. R. Fienup and P. S. Idell, “Imaging correlography with sparse arrays of detectors,” Opt. Eng. 27, 279778 (1988).
    [Crossref]
  17. G. Osnabrugge, R. Horstmeyer, I. N. Papadopoulos, B. Judkewitz, and I. M. Vellekoop, “Generalized optical memory effect,” Optica 4, 886–892 (2017).
    [Crossref]
  18. J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491, 232–234 (2012).
    [Crossref]
  19. A. R. Thompson, J. M. Moran, and G. W. Swenson, Interferometry and Synthesis in Radio Astronomy (Wiley, 1986).
  20. S. Kharkovsky and R. Zoughi, “Microwave and millimeter wave nondestructive testing and evaluation - overview and recent advances,” IEEE Instrum. Meas. Mag. 10(2), 26–38 (2007).
    [Crossref]
  21. J. M. Beada’a, A. M. Abbosh, S. Mustafa, and D. Ireland, “Microwave system for head imaging,” IEEE Trans. Instrum. Meas. 63, 117–123 (2014).
    [Crossref]
  22. D. M. Sheen, D. L. McMakin, and T. E. Hall, “Three-dimensional millimeter-wave imaging for concealed weapon detection,” IEEE Trans. Microwave Theory Tech. 49, 1581–1592 (2001).
    [Crossref]
  23. M. Peichl, S. Dill, M. Jirousek, and H. Suess, “Passive microwave remote sensing for security applications,” in European Radar Conference (IEEE, 2007), pp. 32–35.
  24. T. J. Jackson and T. J. Schmugge, “Passive microwave remote sensing system for soil moisture: some supporting research,” IEEE Trans. Geosci. Remote Sens. 27, 225–235 (1989).
    [Crossref]
  25. S. Vakalis and J. A. Nanzer, “Microwave imaging using noise signals,” IEEE Trans. Microwave Theory Tech. 66, 5842–5851 (2018).
    [Crossref]
  26. J. Chen, Y. Li, J. Wang, Y. Li, and Y. Zhang, “An accurate imaging algorithm for millimeter wave synthetic aperture imaging radiometer in near-field,” Prog. Electromagn. Res. 141, 517–535 (2013).
    [Crossref]
  27. C. S. Ruf, C. T. Swift, A. B. Tanner, and D. M. Le Vine, “Interferometric synthetic aperture microwave radiometry for the remote sensing of the earth,” IEEE Trans. Geosci. Remote Sens. 26, 597–611 (1988).
    [Crossref]
  28. N. Gopalsami, S. Liao, T. W. Elmer, E. R. Koehl, A. Heifetz, A. P. C. Raptis, L. Spinoulas, and A. Katsaggelos, “Passive millimeter-wave imaging with compressive sensing,” Opt. Eng. 51, 091614 (2012).
    [Crossref]
  29. D. J. Brady, Optical Imaging and Spectroscopy (Wiley, 2009).
  30. M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25(2), 83–91 (2008).
    [Crossref]
  31. G. R. Arce, D. J. Brady, L. Carin, H. Arguello, and D. S. Kittle, “Compressive coded aperture spectral imaging: an introduction,” IEEE Signal Process. Mag. 31(1), 105–115 (2013).
    [Crossref]
  32. J. Hunt, T. Driscoll, A. Mrozack, G. Lipworth, M. Reynolds, D. Brady, and D. R. Smith, “Metamaterial apertures for computational imaging,” Science 339, 310–313 (2013).
    [Crossref]
  33. M. F. Imani, J. N. Gollub, O. Yurduseven, A. V. Diebold, M. Boyarsky, T. Fromenteze, L. Pulido-Mancera, T. Sleasman, and D. R. Smith, “Review of metasurface antennas for computational microwave imaging,” IEEE Trans. Antennas Propag. 68, 1860–1875 (2020).
    [Crossref]
  34. N. Landy, J. Hunt, and D. R. Smith, “Homogenization analysis of complementary waveguide metamaterials,” Photon. Nanostruct. Fundam. Applic. 11, 453–467 (2013).
    [Crossref]
  35. T. Sleasman, M. F. Imani, J. N. Gollub, and D. R. Smith, “Dynamic metamaterial aperture for microwave imaging,” Appl. Phys. Lett. 107, 204104 (2015).
    [Crossref]
  36. E. L. Kpré and C. Decroze, “Passive coding technique applied to synthetic aperture interferometric radiometer,” IEEE Geosci. Remote Sens. Lett. 14, 1193–1197 (2017).
    [Crossref]
  37. E. Kpre, C. Decroze, M. Mouhamadou, and T. Fromenteze, “Computational imaging for compressive synthetic aperture interferometric radiometer,” IEEE Trans. Antennas Propag. 66, 5546–5557 (2018).
    [Crossref]
  38. A. C. Tondo Yoya, B. Fuchs, and M. Davy, “Computational passive imaging of thermal sources with a leaky chaotic cavity,” Appl. Phys. Lett. 111, 193501 (2017).
    [Crossref]
  39. A. Walther, “Radiometry and coherence,” J. Opt. Soc. Am. 58, 1256–1259 (1968).
    [Crossref]
  40. E. Wolf, “Coherence and radiometry,” J. Opt. Soc. Am. 68, 6–17 (1978).
    [Crossref]
  41. Y. Xie, T.-H. Tsai, A. Konneker, B.-I. Popa, D. J. Brady, and S. A. Cummer, “Single-sensor multispeaker listening with acoustic metamaterials,” Proc. Natl. Acad. Sci. USA 112, 10595–10598 (2015).
    [Crossref]
  42. X. Li, J. A. Greenberg, and M. E. Gehm, “Single-shot multispectral imaging through a thin scatterer,” Optica 6, 864–871 (2019).
    [Crossref]
  43. M. F. Imani, T. Sleasman, and D. R. Smith, “Two-dimensional dynamic metasurface apertures for computational microwave imaging,” IEEE Antennas Wireless Propag. Lett. 17, 2299–2303 (2018).
    [Crossref]
  44. T. Sleasman, M. F. Imani, A. V. Diebold, M. Boyarsky, K. P. Trofatter, and D. R. Smith, “Implementation and characterization of a two-dimensional printed circuit dynamic metasurface aperture for computational microwave imaging,” arXiv:1911.08952v1 (2019).
  45. I. Yoo, M. F. Imani, T. Sleasman, and D. R. Smith, “Efficient complementary metamaterial element for waveguide-fed metasurface antennas,” Opt. Express 24, 28686–28692 (2016).
    [Crossref]
  46. B. T. Draine and P. J. Flatau, “Discrete-dipole approximation for scattering calculations,” J. Opt. Soc. Am. A 11, 1491–1499 (1994).
    [Crossref]
  47. L. Pulido-Mancera, P. T. Bowen, M. F. Imani, N. Kundtz, and D. Smith, “Polarizability extraction of complementary metamaterial elements in waveguides for aperture modeling,” Phys. Rev. B 96, 235402 (2017).
    [Crossref]
  48. L. Pulido-Mancera, M. F. Imani, P. T. Bowen, N. Kundtz, and D. R. Smith, “Analytical modeling of a two-dimensional waveguide-fed metasurface,” arXiv:1807.11592 (2018).
  49. G. Lipworth, A. Rose, O. Yurduseven, V. R. Gowda, M. F. Imani, H. Odabasi, P. Trofatter, J. Gollub, and D. R. Smith, “Comprehensive simulation platform for a metamaterial imaging system,” Appl. Opt. 54, 9343–9353 (2015).
    [Crossref]
  50. A. Yaghjian, “An overview of near-field antenna measurements,” IEEE Trans. Antennas Propag. 34, 30–45 (1986).
    [Crossref]
  51. W. Menke, Geophysical Data Analysis: Discrete Inverse Theory (Academic, 2018).
  52. M. Elad, Sparse and Redundant Representations: From Theory to Applications in Signal and Image Processing (Springer, 2010).
  53. J. M. Bioucas-Dias and M. A. Figueiredo, “A new twist: two-step iterative shrinkage/thresholding algorithms for image restoration,” IEEE Trans. Image Process. 16, 2992–3004 (2007).
    [Crossref]
  54. T. Fromenteze, O. Yurduseven, M. F. Imani, J. Gollub, C. Decroze, D. Carsenat, and D. R. Smith, “Computational imaging using a mode-mixing cavity at microwave frequencies,” Appl. Phys. Lett. 106, 194104 (2015).
    [Crossref]
  55. O. Yurduseven, J. N. Gollub, D. L. Marks, and D. R. Smith, “Frequency-diverse microwave imaging using planar Mills-Cross cavity apertures,” Opt. Express 24, 8907–8925 (2016).
    [Crossref]
  56. T. Shirai, T. Setälä, and A. T. Friberg, “Temporal ghost imaging with classical non-stationary pulsed light,” J. Opt. Soc. Am. B 27, 2549–2555 (2010).
    [Crossref]
  57. M. F. Imani and D. R. Smith, “Temporal microwave ghost imaging using a reconfigurable disordered cavity,” Appl. Phys. Lett. 116, 054102 (2020).
    [Crossref]
  58. J. Gollub, O. Yurduseven, K. Trofatter, D. Arnitz, M. Imani, T. Sleasman, M. Boyarsky, A. Rose, A. Pedross-Engel, T. H. Odabasi, G. L. Zvolensky, D. Brady, D. L. Marks, M. S. Reynolds, and D. R. Smith, “Large metasurface aperture for millimeter wave computational imaging at the human-scale,” Sci. Rep. 7, 42650 (2017).
    [Crossref]
  59. D. L. Marks, J. Gollub, and D. R. Smith, “Spatially resolving antenna arrays using frequency diversity,” J. Opt. Soc. Am. A 33, 899–912 (2016).
    [Crossref]
  60. D. L. Marks, R. A. Stack, and D. J. Brady, “Three-dimensional coherence imaging in the Fresnel domain,” Appl. Opt. 38, 1332–1342 (1999).
    [Crossref]
  61. N. A. Salmon, “3-D radiometric aperture synthesis imaging,” IEEE Trans. Microwave Theory Tech. 63, 3579–3587 (2015).
    [Crossref]
  62. A. Starikov and E. Wolf, “Coherent-mode representation of Gaussian Schell-model sources and of their radiation fields,” J. Opt. Soc. Am. 72, 923–928 (1982).
    [Crossref]
  63. C. Bao, G. Barbastathis, H. Ji, Z. Shen, and Z. Zhang, “Coherence retrieval using trace regularization,” SIAM J. Imaging Sci. 11, 679–706 (2018).
    [Crossref]
  64. H. N. Chapman, “Phase-retrieval x-ray microscopy by Wigner-distribution deconvolution,” Ultramicroscopy 66, 153–172 (1996).
    [Crossref]
  65. J. N. Clark, X. Huang, R. J. Harder, and I. K. Robinson, “Dynamic imaging using ptychography,” Phys. Rev. Lett. 112, 113901 (2014).
    [Crossref]
  66. A. V. Diebold, L. Pulido-Mancera, T. Sleasman, M. Boyarsky, M. F. Imani, and D. R. Smith, “Generalized range migration algorithm for synthetic aperture radar image reconstruction of metasurface antenna measurements,” J. Opt. Soc. Am. B 34, 2610–2623 (2017).
    [Crossref]
  67. W. Carter, “On refocusing a radio telescope to image sources in the near field of the antenna array,” IEEE Trans. Antennas Propag. 37, 314–319 (1989).
    [Crossref]
  68. T. Fromenteze, O. Yurduseven, M. Boyarsky, J. Gollub, D. L. Marks, and D. R. Smith, “Computational polarimetric microwave imaging,” Opt. Express 25, 27488–27505 (2017).
    [Crossref]
  69. J. Tervo, T. Setälä, and A. T. Friberg, “Theory of partially coherent electromagnetic fields in the space–frequency domain,” J. Opt. Soc. Am. A 21, 2205–2215 (2004).
    [Crossref]
  70. D. D. Ross, C. J. Ryan, G. J. Schneider, J. Murakowski, and D. W. Prather, “Passive three-dimensional spatial-spectral analysis based on k-space tomography,” IEEE Photon. Technol. Lett. 30, 817–820 (2018).
    [Crossref]
  71. O. Yurduseven, M. A. B. Abbasi, T. Fromenteze, and V. Fusco, “Frequency-diverse computational direction of arrival estimation technique,” Sci. Rep. 9, 1–12 (2019).
    [Crossref]

2020 (2)

M. F. Imani, J. N. Gollub, O. Yurduseven, A. V. Diebold, M. Boyarsky, T. Fromenteze, L. Pulido-Mancera, T. Sleasman, and D. R. Smith, “Review of metasurface antennas for computational microwave imaging,” IEEE Trans. Antennas Propag. 68, 1860–1875 (2020).
[Crossref]

M. F. Imani and D. R. Smith, “Temporal microwave ghost imaging using a reconfigurable disordered cavity,” Appl. Phys. Lett. 116, 054102 (2020).
[Crossref]

2019 (2)

O. Yurduseven, M. A. B. Abbasi, T. Fromenteze, and V. Fusco, “Frequency-diverse computational direction of arrival estimation technique,” Sci. Rep. 9, 1–12 (2019).
[Crossref]

X. Li, J. A. Greenberg, and M. E. Gehm, “Single-shot multispectral imaging through a thin scatterer,” Optica 6, 864–871 (2019).
[Crossref]

2018 (7)

M. F. Imani, T. Sleasman, and D. R. Smith, “Two-dimensional dynamic metasurface apertures for computational microwave imaging,” IEEE Antennas Wireless Propag. Lett. 17, 2299–2303 (2018).
[Crossref]

E. Kpre, C. Decroze, M. Mouhamadou, and T. Fromenteze, “Computational imaging for compressive synthetic aperture interferometric radiometer,” IEEE Trans. Antennas Propag. 66, 5546–5557 (2018).
[Crossref]

A. V. Diebold, M. F. Imani, T. Sleasman, and D. R. Smith, “Phaseless computational ghost imaging at microwave frequencies using a dynamic metasurface aperture,” Appl. Opt. 57, 2142–2149 (2018).
[Crossref]

A. V. Diebold, M. F. Imani, T. Sleasman, and D. R. Smith, “Phaseless coherent and incoherent microwave ghost imaging with dynamic metasurface apertures,” Optica 5, 1529–1541 (2018).
[Crossref]

S. Vakalis and J. A. Nanzer, “Microwave imaging using noise signals,” IEEE Trans. Microwave Theory Tech. 66, 5842–5851 (2018).
[Crossref]

D. D. Ross, C. J. Ryan, G. J. Schneider, J. Murakowski, and D. W. Prather, “Passive three-dimensional spatial-spectral analysis based on k-space tomography,” IEEE Photon. Technol. Lett. 30, 817–820 (2018).
[Crossref]

C. Bao, G. Barbastathis, H. Ji, Z. Shen, and Z. Zhang, “Coherence retrieval using trace regularization,” SIAM J. Imaging Sci. 11, 679–706 (2018).
[Crossref]

2017 (7)

A. V. Diebold, L. Pulido-Mancera, T. Sleasman, M. Boyarsky, M. F. Imani, and D. R. Smith, “Generalized range migration algorithm for synthetic aperture radar image reconstruction of metasurface antenna measurements,” J. Opt. Soc. Am. B 34, 2610–2623 (2017).
[Crossref]

J. Gollub, O. Yurduseven, K. Trofatter, D. Arnitz, M. Imani, T. Sleasman, M. Boyarsky, A. Rose, A. Pedross-Engel, T. H. Odabasi, G. L. Zvolensky, D. Brady, D. L. Marks, M. S. Reynolds, and D. R. Smith, “Large metasurface aperture for millimeter wave computational imaging at the human-scale,” Sci. Rep. 7, 42650 (2017).
[Crossref]

L. Pulido-Mancera, P. T. Bowen, M. F. Imani, N. Kundtz, and D. Smith, “Polarizability extraction of complementary metamaterial elements in waveguides for aperture modeling,” Phys. Rev. B 96, 235402 (2017).
[Crossref]

T. Fromenteze, O. Yurduseven, M. Boyarsky, J. Gollub, D. L. Marks, and D. R. Smith, “Computational polarimetric microwave imaging,” Opt. Express 25, 27488–27505 (2017).
[Crossref]

G. Osnabrugge, R. Horstmeyer, I. N. Papadopoulos, B. Judkewitz, and I. M. Vellekoop, “Generalized optical memory effect,” Optica 4, 886–892 (2017).
[Crossref]

A. C. Tondo Yoya, B. Fuchs, and M. Davy, “Computational passive imaging of thermal sources with a leaky chaotic cavity,” Appl. Phys. Lett. 111, 193501 (2017).
[Crossref]

E. L. Kpré and C. Decroze, “Passive coding technique applied to synthetic aperture interferometric radiometer,” IEEE Geosci. Remote Sens. Lett. 14, 1193–1197 (2017).
[Crossref]

2016 (3)

2015 (5)

N. A. Salmon, “3-D radiometric aperture synthesis imaging,” IEEE Trans. Microwave Theory Tech. 63, 3579–3587 (2015).
[Crossref]

G. Lipworth, A. Rose, O. Yurduseven, V. R. Gowda, M. F. Imani, H. Odabasi, P. Trofatter, J. Gollub, and D. R. Smith, “Comprehensive simulation platform for a metamaterial imaging system,” Appl. Opt. 54, 9343–9353 (2015).
[Crossref]

T. Fromenteze, O. Yurduseven, M. F. Imani, J. Gollub, C. Decroze, D. Carsenat, and D. R. Smith, “Computational imaging using a mode-mixing cavity at microwave frequencies,” Appl. Phys. Lett. 106, 194104 (2015).
[Crossref]

Y. Xie, T.-H. Tsai, A. Konneker, B.-I. Popa, D. J. Brady, and S. A. Cummer, “Single-sensor multispeaker listening with acoustic metamaterials,” Proc. Natl. Acad. Sci. USA 112, 10595–10598 (2015).
[Crossref]

T. Sleasman, M. F. Imani, J. N. Gollub, and D. R. Smith, “Dynamic metamaterial aperture for microwave imaging,” Appl. Phys. Lett. 107, 204104 (2015).
[Crossref]

2014 (2)

J. M. Beada’a, A. M. Abbosh, S. Mustafa, and D. Ireland, “Microwave system for head imaging,” IEEE Trans. Instrum. Meas. 63, 117–123 (2014).
[Crossref]

J. N. Clark, X. Huang, R. J. Harder, and I. K. Robinson, “Dynamic imaging using ptychography,” Phys. Rev. Lett. 112, 113901 (2014).
[Crossref]

2013 (4)

J. Chen, Y. Li, J. Wang, Y. Li, and Y. Zhang, “An accurate imaging algorithm for millimeter wave synthetic aperture imaging radiometer in near-field,” Prog. Electromagn. Res. 141, 517–535 (2013).
[Crossref]

N. Landy, J. Hunt, and D. R. Smith, “Homogenization analysis of complementary waveguide metamaterials,” Photon. Nanostruct. Fundam. Applic. 11, 453–467 (2013).
[Crossref]

G. R. Arce, D. J. Brady, L. Carin, H. Arguello, and D. S. Kittle, “Compressive coded aperture spectral imaging: an introduction,” IEEE Signal Process. Mag. 31(1), 105–115 (2013).
[Crossref]

J. Hunt, T. Driscoll, A. Mrozack, G. Lipworth, M. Reynolds, D. Brady, and D. R. Smith, “Metamaterial apertures for computational imaging,” Science 339, 310–313 (2013).
[Crossref]

2012 (3)

N. Gopalsami, S. Liao, T. W. Elmer, E. R. Koehl, A. Heifetz, A. P. C. Raptis, L. Spinoulas, and A. Katsaggelos, “Passive millimeter-wave imaging with compressive sensing,” Opt. Eng. 51, 091614 (2012).
[Crossref]

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491, 232–234 (2012).
[Crossref]

L. Tian, J. Lee, S. B. Oh, and G. Barbastathis, “Experimental compressive phase space tomography,” Opt. Express 20, 8296–8308 (2012).
[Crossref]

2010 (1)

2008 (3)

J. H. Shapiro, “Computational ghost imaging,” Phys. Rev. A 78, 061802 (2008).
[Crossref]

C. E. Yarman and B. Yazici, “Synthetic aperture hitchhiker imaging,” IEEE Trans. Image Process. 17, 2156–2173 (2008).
[Crossref]

M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25(2), 83–91 (2008).
[Crossref]

2007 (2)

S. Kharkovsky and R. Zoughi, “Microwave and millimeter wave nondestructive testing and evaluation - overview and recent advances,” IEEE Instrum. Meas. Mag. 10(2), 26–38 (2007).
[Crossref]

J. M. Bioucas-Dias and M. A. Figueiredo, “A new twist: two-step iterative shrinkage/thresholding algorithms for image restoration,” IEEE Trans. Image Process. 16, 2992–3004 (2007).
[Crossref]

2004 (1)

2001 (1)

D. M. Sheen, D. L. McMakin, and T. E. Hall, “Three-dimensional millimeter-wave imaging for concealed weapon detection,” IEEE Trans. Microwave Theory Tech. 49, 1581–1592 (2001).
[Crossref]

2000 (1)

1999 (1)

1996 (1)

H. N. Chapman, “Phase-retrieval x-ray microscopy by Wigner-distribution deconvolution,” Ultramicroscopy 66, 153–172 (1996).
[Crossref]

1995 (1)

T. Pittman, Y. Shih, D. Strekalov, and A. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52, R3429 (1995).
[Crossref]

1994 (1)

1992 (1)

K. Nugent, “Wave field determination using three-dimensional intensity information,” Phys. Rev. Lett. 68, 2261–2264 (1992).
[Crossref]

1989 (2)

T. J. Jackson and T. J. Schmugge, “Passive microwave remote sensing system for soil moisture: some supporting research,” IEEE Trans. Geosci. Remote Sens. 27, 225–235 (1989).
[Crossref]

W. Carter, “On refocusing a radio telescope to image sources in the near field of the antenna array,” IEEE Trans. Antennas Propag. 37, 314–319 (1989).
[Crossref]

1988 (2)

C. S. Ruf, C. T. Swift, A. B. Tanner, and D. M. Le Vine, “Interferometric synthetic aperture microwave radiometry for the remote sensing of the earth,” IEEE Trans. Geosci. Remote Sens. 26, 597–611 (1988).
[Crossref]

J. R. Fienup and P. S. Idell, “Imaging correlography with sparse arrays of detectors,” Opt. Eng. 27, 279778 (1988).
[Crossref]

1987 (1)

S. J. Norton and M. Linzer, “Backprojection reconstruction of random source distributions,” J. Acoust. Soc. Am. 81, 977–985 (1987).
[Crossref]

1986 (1)

A. Yaghjian, “An overview of near-field antenna measurements,” IEEE Trans. Antennas Propag. 34, 30–45 (1986).
[Crossref]

1982 (1)

1978 (1)

1977 (1)

1968 (1)

Abbasi, M. A. B.

O. Yurduseven, M. A. B. Abbasi, T. Fromenteze, and V. Fusco, “Frequency-diverse computational direction of arrival estimation technique,” Sci. Rep. 9, 1–12 (2019).
[Crossref]

Abbosh, A. M.

J. M. Beada’a, A. M. Abbosh, S. Mustafa, and D. Ireland, “Microwave system for head imaging,” IEEE Trans. Instrum. Meas. 63, 117–123 (2014).
[Crossref]

Arce, G. R.

G. R. Arce, D. J. Brady, L. Carin, H. Arguello, and D. S. Kittle, “Compressive coded aperture spectral imaging: an introduction,” IEEE Signal Process. Mag. 31(1), 105–115 (2013).
[Crossref]

Arguello, H.

G. R. Arce, D. J. Brady, L. Carin, H. Arguello, and D. S. Kittle, “Compressive coded aperture spectral imaging: an introduction,” IEEE Signal Process. Mag. 31(1), 105–115 (2013).
[Crossref]

Arnitz, D.

J. Gollub, O. Yurduseven, K. Trofatter, D. Arnitz, M. Imani, T. Sleasman, M. Boyarsky, A. Rose, A. Pedross-Engel, T. H. Odabasi, G. L. Zvolensky, D. Brady, D. L. Marks, M. S. Reynolds, and D. R. Smith, “Large metasurface aperture for millimeter wave computational imaging at the human-scale,” Sci. Rep. 7, 42650 (2017).
[Crossref]

Bao, C.

C. Bao, G. Barbastathis, H. Ji, Z. Shen, and Z. Zhang, “Coherence retrieval using trace regularization,” SIAM J. Imaging Sci. 11, 679–706 (2018).
[Crossref]

Baraniuk, R. G.

M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25(2), 83–91 (2008).
[Crossref]

Barbastathis, G.

C. Bao, G. Barbastathis, H. Ji, Z. Shen, and Z. Zhang, “Coherence retrieval using trace regularization,” SIAM J. Imaging Sci. 11, 679–706 (2018).
[Crossref]

L. Tian, J. Lee, S. B. Oh, and G. Barbastathis, “Experimental compressive phase space tomography,” Opt. Express 20, 8296–8308 (2012).
[Crossref]

Beada’a, J. M.

J. M. Beada’a, A. M. Abbosh, S. Mustafa, and D. Ireland, “Microwave system for head imaging,” IEEE Trans. Instrum. Meas. 63, 117–123 (2014).
[Crossref]

Bertolotti, J.

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491, 232–234 (2012).
[Crossref]

Bioucas-Dias, J. M.

J. M. Bioucas-Dias and M. A. Figueiredo, “A new twist: two-step iterative shrinkage/thresholding algorithms for image restoration,” IEEE Trans. Image Process. 16, 2992–3004 (2007).
[Crossref]

Blum, C.

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491, 232–234 (2012).
[Crossref]

Bowen, P. T.

L. Pulido-Mancera, P. T. Bowen, M. F. Imani, N. Kundtz, and D. Smith, “Polarizability extraction of complementary metamaterial elements in waveguides for aperture modeling,” Phys. Rev. B 96, 235402 (2017).
[Crossref]

L. Pulido-Mancera, M. F. Imani, P. T. Bowen, N. Kundtz, and D. R. Smith, “Analytical modeling of a two-dimensional waveguide-fed metasurface,” arXiv:1807.11592 (2018).

Boyarsky, M.

M. F. Imani, J. N. Gollub, O. Yurduseven, A. V. Diebold, M. Boyarsky, T. Fromenteze, L. Pulido-Mancera, T. Sleasman, and D. R. Smith, “Review of metasurface antennas for computational microwave imaging,” IEEE Trans. Antennas Propag. 68, 1860–1875 (2020).
[Crossref]

J. Gollub, O. Yurduseven, K. Trofatter, D. Arnitz, M. Imani, T. Sleasman, M. Boyarsky, A. Rose, A. Pedross-Engel, T. H. Odabasi, G. L. Zvolensky, D. Brady, D. L. Marks, M. S. Reynolds, and D. R. Smith, “Large metasurface aperture for millimeter wave computational imaging at the human-scale,” Sci. Rep. 7, 42650 (2017).
[Crossref]

A. V. Diebold, L. Pulido-Mancera, T. Sleasman, M. Boyarsky, M. F. Imani, and D. R. Smith, “Generalized range migration algorithm for synthetic aperture radar image reconstruction of metasurface antenna measurements,” J. Opt. Soc. Am. B 34, 2610–2623 (2017).
[Crossref]

T. Fromenteze, O. Yurduseven, M. Boyarsky, J. Gollub, D. L. Marks, and D. R. Smith, “Computational polarimetric microwave imaging,” Opt. Express 25, 27488–27505 (2017).
[Crossref]

T. Sleasman, M. F. Imani, A. V. Diebold, M. Boyarsky, K. P. Trofatter, and D. R. Smith, “Implementation and characterization of a two-dimensional printed circuit dynamic metasurface aperture for computational microwave imaging,” arXiv:1911.08952v1 (2019).

Brady, D.

J. Gollub, O. Yurduseven, K. Trofatter, D. Arnitz, M. Imani, T. Sleasman, M. Boyarsky, A. Rose, A. Pedross-Engel, T. H. Odabasi, G. L. Zvolensky, D. Brady, D. L. Marks, M. S. Reynolds, and D. R. Smith, “Large metasurface aperture for millimeter wave computational imaging at the human-scale,” Sci. Rep. 7, 42650 (2017).
[Crossref]

J. Hunt, T. Driscoll, A. Mrozack, G. Lipworth, M. Reynolds, D. Brady, and D. R. Smith, “Metamaterial apertures for computational imaging,” Science 339, 310–313 (2013).
[Crossref]

Brady, D. J.

Y. Xie, T.-H. Tsai, A. Konneker, B.-I. Popa, D. J. Brady, and S. A. Cummer, “Single-sensor multispeaker listening with acoustic metamaterials,” Proc. Natl. Acad. Sci. USA 112, 10595–10598 (2015).
[Crossref]

G. R. Arce, D. J. Brady, L. Carin, H. Arguello, and D. S. Kittle, “Compressive coded aperture spectral imaging: an introduction,” IEEE Signal Process. Mag. 31(1), 105–115 (2013).
[Crossref]

D. L. Marks, R. A. Stack, and D. J. Brady, “Astigmatic coherence sensor for digital imaging,” Opt. Lett. 25, 1726–1728 (2000).
[Crossref]

D. L. Marks, R. A. Stack, and D. J. Brady, “Three-dimensional coherence imaging in the Fresnel domain,” Appl. Opt. 38, 1332–1342 (1999).
[Crossref]

D. J. Brady, Optical Imaging and Spectroscopy (Wiley, 2009).

Carin, L.

G. R. Arce, D. J. Brady, L. Carin, H. Arguello, and D. S. Kittle, “Compressive coded aperture spectral imaging: an introduction,” IEEE Signal Process. Mag. 31(1), 105–115 (2013).
[Crossref]

Carsenat, D.

T. Fromenteze, O. Yurduseven, M. F. Imani, J. Gollub, C. Decroze, D. Carsenat, and D. R. Smith, “Computational imaging using a mode-mixing cavity at microwave frequencies,” Appl. Phys. Lett. 106, 194104 (2015).
[Crossref]

Carter, W.

W. Carter, “On refocusing a radio telescope to image sources in the near field of the antenna array,” IEEE Trans. Antennas Propag. 37, 314–319 (1989).
[Crossref]

Chapman, H. N.

H. N. Chapman, “Phase-retrieval x-ray microscopy by Wigner-distribution deconvolution,” Ultramicroscopy 66, 153–172 (1996).
[Crossref]

Chen, J.

J. Chen, Y. Li, J. Wang, Y. Li, and Y. Zhang, “An accurate imaging algorithm for millimeter wave synthetic aperture imaging radiometer in near-field,” Prog. Electromagn. Res. 141, 517–535 (2013).
[Crossref]

Clark, J. N.

J. N. Clark, X. Huang, R. J. Harder, and I. K. Robinson, “Dynamic imaging using ptychography,” Phys. Rev. Lett. 112, 113901 (2014).
[Crossref]

Cummer, S. A.

Y. Xie, T.-H. Tsai, A. Konneker, B.-I. Popa, D. J. Brady, and S. A. Cummer, “Single-sensor multispeaker listening with acoustic metamaterials,” Proc. Natl. Acad. Sci. USA 112, 10595–10598 (2015).
[Crossref]

Davenport, M. A.

M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25(2), 83–91 (2008).
[Crossref]

Davy, M.

A. C. Tondo Yoya, B. Fuchs, and M. Davy, “Computational passive imaging of thermal sources with a leaky chaotic cavity,” Appl. Phys. Lett. 111, 193501 (2017).
[Crossref]

Decroze, C.

E. Kpre, C. Decroze, M. Mouhamadou, and T. Fromenteze, “Computational imaging for compressive synthetic aperture interferometric radiometer,” IEEE Trans. Antennas Propag. 66, 5546–5557 (2018).
[Crossref]

E. L. Kpré and C. Decroze, “Passive coding technique applied to synthetic aperture interferometric radiometer,” IEEE Geosci. Remote Sens. Lett. 14, 1193–1197 (2017).
[Crossref]

T. Fromenteze, O. Yurduseven, M. F. Imani, J. Gollub, C. Decroze, D. Carsenat, and D. R. Smith, “Computational imaging using a mode-mixing cavity at microwave frequencies,” Appl. Phys. Lett. 106, 194104 (2015).
[Crossref]

Diebold, A. V.

M. F. Imani, J. N. Gollub, O. Yurduseven, A. V. Diebold, M. Boyarsky, T. Fromenteze, L. Pulido-Mancera, T. Sleasman, and D. R. Smith, “Review of metasurface antennas for computational microwave imaging,” IEEE Trans. Antennas Propag. 68, 1860–1875 (2020).
[Crossref]

A. V. Diebold, M. F. Imani, T. Sleasman, and D. R. Smith, “Phaseless computational ghost imaging at microwave frequencies using a dynamic metasurface aperture,” Appl. Opt. 57, 2142–2149 (2018).
[Crossref]

A. V. Diebold, M. F. Imani, T. Sleasman, and D. R. Smith, “Phaseless coherent and incoherent microwave ghost imaging with dynamic metasurface apertures,” Optica 5, 1529–1541 (2018).
[Crossref]

A. V. Diebold, L. Pulido-Mancera, T. Sleasman, M. Boyarsky, M. F. Imani, and D. R. Smith, “Generalized range migration algorithm for synthetic aperture radar image reconstruction of metasurface antenna measurements,” J. Opt. Soc. Am. B 34, 2610–2623 (2017).
[Crossref]

T. Sleasman, M. F. Imani, A. V. Diebold, M. Boyarsky, K. P. Trofatter, and D. R. Smith, “Implementation and characterization of a two-dimensional printed circuit dynamic metasurface aperture for computational microwave imaging,” arXiv:1911.08952v1 (2019).

Dill, S.

M. Peichl, S. Dill, M. Jirousek, and H. Suess, “Passive microwave remote sensing for security applications,” in European Radar Conference (IEEE, 2007), pp. 32–35.

Draine, B. T.

Driscoll, T.

J. Hunt, T. Driscoll, A. Mrozack, G. Lipworth, M. Reynolds, D. Brady, and D. R. Smith, “Metamaterial apertures for computational imaging,” Science 339, 310–313 (2013).
[Crossref]

Duarte, M. F.

M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25(2), 83–91 (2008).
[Crossref]

Dutta, K.

Elad, M.

M. Elad, Sparse and Redundant Representations: From Theory to Applications in Signal and Image Processing (Springer, 2010).

Elmer, T. W.

N. Gopalsami, S. Liao, T. W. Elmer, E. R. Koehl, A. Heifetz, A. P. C. Raptis, L. Spinoulas, and A. Katsaggelos, “Passive millimeter-wave imaging with compressive sensing,” Opt. Eng. 51, 091614 (2012).
[Crossref]

Fienup, J. R.

J. R. Fienup and P. S. Idell, “Imaging correlography with sparse arrays of detectors,” Opt. Eng. 27, 279778 (1988).
[Crossref]

Figueiredo, M. A.

J. M. Bioucas-Dias and M. A. Figueiredo, “A new twist: two-step iterative shrinkage/thresholding algorithms for image restoration,” IEEE Trans. Image Process. 16, 2992–3004 (2007).
[Crossref]

Flatau, P. J.

Friberg, A. T.

Fromenteze, T.

M. F. Imani, J. N. Gollub, O. Yurduseven, A. V. Diebold, M. Boyarsky, T. Fromenteze, L. Pulido-Mancera, T. Sleasman, and D. R. Smith, “Review of metasurface antennas for computational microwave imaging,” IEEE Trans. Antennas Propag. 68, 1860–1875 (2020).
[Crossref]

O. Yurduseven, M. A. B. Abbasi, T. Fromenteze, and V. Fusco, “Frequency-diverse computational direction of arrival estimation technique,” Sci. Rep. 9, 1–12 (2019).
[Crossref]

E. Kpre, C. Decroze, M. Mouhamadou, and T. Fromenteze, “Computational imaging for compressive synthetic aperture interferometric radiometer,” IEEE Trans. Antennas Propag. 66, 5546–5557 (2018).
[Crossref]

T. Fromenteze, O. Yurduseven, M. Boyarsky, J. Gollub, D. L. Marks, and D. R. Smith, “Computational polarimetric microwave imaging,” Opt. Express 25, 27488–27505 (2017).
[Crossref]

T. Fromenteze, O. Yurduseven, M. F. Imani, J. Gollub, C. Decroze, D. Carsenat, and D. R. Smith, “Computational imaging using a mode-mixing cavity at microwave frequencies,” Appl. Phys. Lett. 106, 194104 (2015).
[Crossref]

Fuchs, B.

A. C. Tondo Yoya, B. Fuchs, and M. Davy, “Computational passive imaging of thermal sources with a leaky chaotic cavity,” Appl. Phys. Lett. 111, 193501 (2017).
[Crossref]

Fusco, V.

O. Yurduseven, M. A. B. Abbasi, T. Fromenteze, and V. Fusco, “Frequency-diverse computational direction of arrival estimation technique,” Sci. Rep. 9, 1–12 (2019).
[Crossref]

Garnier, J.

J. Garnier and G. Papanicolaou, Passive Imaging with Ambient Noise (Cambridge University, 2016).

Gehm, M. E.

Gollub, J.

J. Gollub, O. Yurduseven, K. Trofatter, D. Arnitz, M. Imani, T. Sleasman, M. Boyarsky, A. Rose, A. Pedross-Engel, T. H. Odabasi, G. L. Zvolensky, D. Brady, D. L. Marks, M. S. Reynolds, and D. R. Smith, “Large metasurface aperture for millimeter wave computational imaging at the human-scale,” Sci. Rep. 7, 42650 (2017).
[Crossref]

T. Fromenteze, O. Yurduseven, M. Boyarsky, J. Gollub, D. L. Marks, and D. R. Smith, “Computational polarimetric microwave imaging,” Opt. Express 25, 27488–27505 (2017).
[Crossref]

D. L. Marks, J. Gollub, and D. R. Smith, “Spatially resolving antenna arrays using frequency diversity,” J. Opt. Soc. Am. A 33, 899–912 (2016).
[Crossref]

G. Lipworth, A. Rose, O. Yurduseven, V. R. Gowda, M. F. Imani, H. Odabasi, P. Trofatter, J. Gollub, and D. R. Smith, “Comprehensive simulation platform for a metamaterial imaging system,” Appl. Opt. 54, 9343–9353 (2015).
[Crossref]

T. Fromenteze, O. Yurduseven, M. F. Imani, J. Gollub, C. Decroze, D. Carsenat, and D. R. Smith, “Computational imaging using a mode-mixing cavity at microwave frequencies,” Appl. Phys. Lett. 106, 194104 (2015).
[Crossref]

Gollub, J. N.

M. F. Imani, J. N. Gollub, O. Yurduseven, A. V. Diebold, M. Boyarsky, T. Fromenteze, L. Pulido-Mancera, T. Sleasman, and D. R. Smith, “Review of metasurface antennas for computational microwave imaging,” IEEE Trans. Antennas Propag. 68, 1860–1875 (2020).
[Crossref]

O. Yurduseven, J. N. Gollub, D. L. Marks, and D. R. Smith, “Frequency-diverse microwave imaging using planar Mills-Cross cavity apertures,” Opt. Express 24, 8907–8925 (2016).
[Crossref]

T. Sleasman, M. F. Imani, J. N. Gollub, and D. R. Smith, “Dynamic metamaterial aperture for microwave imaging,” Appl. Phys. Lett. 107, 204104 (2015).
[Crossref]

Goodman, J.

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics (Roberts & Company, 2005).

J. W. Goodman, Statistical Optics (Wiley, 2015).

Gopalsami, N.

N. Gopalsami, S. Liao, T. W. Elmer, E. R. Koehl, A. Heifetz, A. P. C. Raptis, L. Spinoulas, and A. Katsaggelos, “Passive millimeter-wave imaging with compressive sensing,” Opt. Eng. 51, 091614 (2012).
[Crossref]

Gowda, V. R.

Greenberg, J. A.

Hall, T. E.

D. M. Sheen, D. L. McMakin, and T. E. Hall, “Three-dimensional millimeter-wave imaging for concealed weapon detection,” IEEE Trans. Microwave Theory Tech. 49, 1581–1592 (2001).
[Crossref]

Harder, R. J.

J. N. Clark, X. Huang, R. J. Harder, and I. K. Robinson, “Dynamic imaging using ptychography,” Phys. Rev. Lett. 112, 113901 (2014).
[Crossref]

Heifetz, A.

N. Gopalsami, S. Liao, T. W. Elmer, E. R. Koehl, A. Heifetz, A. P. C. Raptis, L. Spinoulas, and A. Katsaggelos, “Passive millimeter-wave imaging with compressive sensing,” Opt. Eng. 51, 091614 (2012).
[Crossref]

Horstmeyer, R.

Huang, X.

J. N. Clark, X. Huang, R. J. Harder, and I. K. Robinson, “Dynamic imaging using ptychography,” Phys. Rev. Lett. 112, 113901 (2014).
[Crossref]

Hunt, J.

N. Landy, J. Hunt, and D. R. Smith, “Homogenization analysis of complementary waveguide metamaterials,” Photon. Nanostruct. Fundam. Applic. 11, 453–467 (2013).
[Crossref]

J. Hunt, T. Driscoll, A. Mrozack, G. Lipworth, M. Reynolds, D. Brady, and D. R. Smith, “Metamaterial apertures for computational imaging,” Science 339, 310–313 (2013).
[Crossref]

Idell, P. S.

J. R. Fienup and P. S. Idell, “Imaging correlography with sparse arrays of detectors,” Opt. Eng. 27, 279778 (1988).
[Crossref]

Imani, M.

J. Gollub, O. Yurduseven, K. Trofatter, D. Arnitz, M. Imani, T. Sleasman, M. Boyarsky, A. Rose, A. Pedross-Engel, T. H. Odabasi, G. L. Zvolensky, D. Brady, D. L. Marks, M. S. Reynolds, and D. R. Smith, “Large metasurface aperture for millimeter wave computational imaging at the human-scale,” Sci. Rep. 7, 42650 (2017).
[Crossref]

Imani, M. F.

M. F. Imani, J. N. Gollub, O. Yurduseven, A. V. Diebold, M. Boyarsky, T. Fromenteze, L. Pulido-Mancera, T. Sleasman, and D. R. Smith, “Review of metasurface antennas for computational microwave imaging,” IEEE Trans. Antennas Propag. 68, 1860–1875 (2020).
[Crossref]

M. F. Imani and D. R. Smith, “Temporal microwave ghost imaging using a reconfigurable disordered cavity,” Appl. Phys. Lett. 116, 054102 (2020).
[Crossref]

A. V. Diebold, M. F. Imani, T. Sleasman, and D. R. Smith, “Phaseless computational ghost imaging at microwave frequencies using a dynamic metasurface aperture,” Appl. Opt. 57, 2142–2149 (2018).
[Crossref]

M. F. Imani, T. Sleasman, and D. R. Smith, “Two-dimensional dynamic metasurface apertures for computational microwave imaging,” IEEE Antennas Wireless Propag. Lett. 17, 2299–2303 (2018).
[Crossref]

A. V. Diebold, M. F. Imani, T. Sleasman, and D. R. Smith, “Phaseless coherent and incoherent microwave ghost imaging with dynamic metasurface apertures,” Optica 5, 1529–1541 (2018).
[Crossref]

L. Pulido-Mancera, P. T. Bowen, M. F. Imani, N. Kundtz, and D. Smith, “Polarizability extraction of complementary metamaterial elements in waveguides for aperture modeling,” Phys. Rev. B 96, 235402 (2017).
[Crossref]

A. V. Diebold, L. Pulido-Mancera, T. Sleasman, M. Boyarsky, M. F. Imani, and D. R. Smith, “Generalized range migration algorithm for synthetic aperture radar image reconstruction of metasurface antenna measurements,” J. Opt. Soc. Am. B 34, 2610–2623 (2017).
[Crossref]

I. Yoo, M. F. Imani, T. Sleasman, and D. R. Smith, “Efficient complementary metamaterial element for waveguide-fed metasurface antennas,” Opt. Express 24, 28686–28692 (2016).
[Crossref]

T. Fromenteze, O. Yurduseven, M. F. Imani, J. Gollub, C. Decroze, D. Carsenat, and D. R. Smith, “Computational imaging using a mode-mixing cavity at microwave frequencies,” Appl. Phys. Lett. 106, 194104 (2015).
[Crossref]

G. Lipworth, A. Rose, O. Yurduseven, V. R. Gowda, M. F. Imani, H. Odabasi, P. Trofatter, J. Gollub, and D. R. Smith, “Comprehensive simulation platform for a metamaterial imaging system,” Appl. Opt. 54, 9343–9353 (2015).
[Crossref]

T. Sleasman, M. F. Imani, J. N. Gollub, and D. R. Smith, “Dynamic metamaterial aperture for microwave imaging,” Appl. Phys. Lett. 107, 204104 (2015).
[Crossref]

T. Sleasman, M. F. Imani, A. V. Diebold, M. Boyarsky, K. P. Trofatter, and D. R. Smith, “Implementation and characterization of a two-dimensional printed circuit dynamic metasurface aperture for computational microwave imaging,” arXiv:1911.08952v1 (2019).

L. Pulido-Mancera, M. F. Imani, P. T. Bowen, N. Kundtz, and D. R. Smith, “Analytical modeling of a two-dimensional waveguide-fed metasurface,” arXiv:1807.11592 (2018).

Ireland, D.

J. M. Beada’a, A. M. Abbosh, S. Mustafa, and D. Ireland, “Microwave system for head imaging,” IEEE Trans. Instrum. Meas. 63, 117–123 (2014).
[Crossref]

Jackson, T. J.

T. J. Jackson and T. J. Schmugge, “Passive microwave remote sensing system for soil moisture: some supporting research,” IEEE Trans. Geosci. Remote Sens. 27, 225–235 (1989).
[Crossref]

Ji, H.

C. Bao, G. Barbastathis, H. Ji, Z. Shen, and Z. Zhang, “Coherence retrieval using trace regularization,” SIAM J. Imaging Sci. 11, 679–706 (2018).
[Crossref]

Jirousek, M.

M. Peichl, S. Dill, M. Jirousek, and H. Suess, “Passive microwave remote sensing for security applications,” in European Radar Conference (IEEE, 2007), pp. 32–35.

Judkewitz, B.

Katsaggelos, A.

N. Gopalsami, S. Liao, T. W. Elmer, E. R. Koehl, A. Heifetz, A. P. C. Raptis, L. Spinoulas, and A. Katsaggelos, “Passive millimeter-wave imaging with compressive sensing,” Opt. Eng. 51, 091614 (2012).
[Crossref]

Kelly, K. F.

M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25(2), 83–91 (2008).
[Crossref]

Kharkovsky, S.

S. Kharkovsky and R. Zoughi, “Microwave and millimeter wave nondestructive testing and evaluation - overview and recent advances,” IEEE Instrum. Meas. Mag. 10(2), 26–38 (2007).
[Crossref]

Kittle, D. S.

G. R. Arce, D. J. Brady, L. Carin, H. Arguello, and D. S. Kittle, “Compressive coded aperture spectral imaging: an introduction,” IEEE Signal Process. Mag. 31(1), 105–115 (2013).
[Crossref]

Koehl, E. R.

N. Gopalsami, S. Liao, T. W. Elmer, E. R. Koehl, A. Heifetz, A. P. C. Raptis, L. Spinoulas, and A. Katsaggelos, “Passive millimeter-wave imaging with compressive sensing,” Opt. Eng. 51, 091614 (2012).
[Crossref]

Konneker, A.

Y. Xie, T.-H. Tsai, A. Konneker, B.-I. Popa, D. J. Brady, and S. A. Cummer, “Single-sensor multispeaker listening with acoustic metamaterials,” Proc. Natl. Acad. Sci. USA 112, 10595–10598 (2015).
[Crossref]

Kpre, E.

E. Kpre, C. Decroze, M. Mouhamadou, and T. Fromenteze, “Computational imaging for compressive synthetic aperture interferometric radiometer,” IEEE Trans. Antennas Propag. 66, 5546–5557 (2018).
[Crossref]

Kpré, E. L.

E. L. Kpré and C. Decroze, “Passive coding technique applied to synthetic aperture interferometric radiometer,” IEEE Geosci. Remote Sens. Lett. 14, 1193–1197 (2017).
[Crossref]

Kundtz, N.

L. Pulido-Mancera, P. T. Bowen, M. F. Imani, N. Kundtz, and D. Smith, “Polarizability extraction of complementary metamaterial elements in waveguides for aperture modeling,” Phys. Rev. B 96, 235402 (2017).
[Crossref]

L. Pulido-Mancera, M. F. Imani, P. T. Bowen, N. Kundtz, and D. R. Smith, “Analytical modeling of a two-dimensional waveguide-fed metasurface,” arXiv:1807.11592 (2018).

Lagendijk, A.

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491, 232–234 (2012).
[Crossref]

Landy, N.

N. Landy, J. Hunt, and D. R. Smith, “Homogenization analysis of complementary waveguide metamaterials,” Photon. Nanostruct. Fundam. Applic. 11, 453–467 (2013).
[Crossref]

Laska, J. N.

M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25(2), 83–91 (2008).
[Crossref]

Le Vine, D. M.

C. S. Ruf, C. T. Swift, A. B. Tanner, and D. M. Le Vine, “Interferometric synthetic aperture microwave radiometry for the remote sensing of the earth,” IEEE Trans. Geosci. Remote Sens. 26, 597–611 (1988).
[Crossref]

Lee, J.

Li, X.

Li, Y.

J. Chen, Y. Li, J. Wang, Y. Li, and Y. Zhang, “An accurate imaging algorithm for millimeter wave synthetic aperture imaging radiometer in near-field,” Prog. Electromagn. Res. 141, 517–535 (2013).
[Crossref]

J. Chen, Y. Li, J. Wang, Y. Li, and Y. Zhang, “An accurate imaging algorithm for millimeter wave synthetic aperture imaging radiometer in near-field,” Prog. Electromagn. Res. 141, 517–535 (2013).
[Crossref]

Liao, S.

N. Gopalsami, S. Liao, T. W. Elmer, E. R. Koehl, A. Heifetz, A. P. C. Raptis, L. Spinoulas, and A. Katsaggelos, “Passive millimeter-wave imaging with compressive sensing,” Opt. Eng. 51, 091614 (2012).
[Crossref]

Linzer, M.

S. J. Norton and M. Linzer, “Backprojection reconstruction of random source distributions,” J. Acoust. Soc. Am. 81, 977–985 (1987).
[Crossref]

Lipworth, G.

G. Lipworth, A. Rose, O. Yurduseven, V. R. Gowda, M. F. Imani, H. Odabasi, P. Trofatter, J. Gollub, and D. R. Smith, “Comprehensive simulation platform for a metamaterial imaging system,” Appl. Opt. 54, 9343–9353 (2015).
[Crossref]

J. Hunt, T. Driscoll, A. Mrozack, G. Lipworth, M. Reynolds, D. Brady, and D. R. Smith, “Metamaterial apertures for computational imaging,” Science 339, 310–313 (2013).
[Crossref]

Mandel, L.

L. Mandel and E. Wolf, Optical Coherence and Quantum optics (Cambridge University, 1995).

Marks, D. L.

McMakin, D. L.

D. M. Sheen, D. L. McMakin, and T. E. Hall, “Three-dimensional millimeter-wave imaging for concealed weapon detection,” IEEE Trans. Microwave Theory Tech. 49, 1581–1592 (2001).
[Crossref]

Menke, W.

W. Menke, Geophysical Data Analysis: Discrete Inverse Theory (Academic, 2018).

Moran, J. M.

A. R. Thompson, J. M. Moran, and G. W. Swenson, Interferometry and Synthesis in Radio Astronomy (Wiley, 1986).

Mosk, A. P.

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491, 232–234 (2012).
[Crossref]

Mouhamadou, M.

E. Kpre, C. Decroze, M. Mouhamadou, and T. Fromenteze, “Computational imaging for compressive synthetic aperture interferometric radiometer,” IEEE Trans. Antennas Propag. 66, 5546–5557 (2018).
[Crossref]

Mrozack, A.

J. Hunt, T. Driscoll, A. Mrozack, G. Lipworth, M. Reynolds, D. Brady, and D. R. Smith, “Metamaterial apertures for computational imaging,” Science 339, 310–313 (2013).
[Crossref]

Murakowski, J.

D. D. Ross, C. J. Ryan, G. J. Schneider, J. Murakowski, and D. W. Prather, “Passive three-dimensional spatial-spectral analysis based on k-space tomography,” IEEE Photon. Technol. Lett. 30, 817–820 (2018).
[Crossref]

Mustafa, S.

J. M. Beada’a, A. M. Abbosh, S. Mustafa, and D. Ireland, “Microwave system for head imaging,” IEEE Trans. Instrum. Meas. 63, 117–123 (2014).
[Crossref]

Nanzer, J. A.

S. Vakalis and J. A. Nanzer, “Microwave imaging using noise signals,” IEEE Trans. Microwave Theory Tech. 66, 5842–5851 (2018).
[Crossref]

Norton, S. J.

S. J. Norton and M. Linzer, “Backprojection reconstruction of random source distributions,” J. Acoust. Soc. Am. 81, 977–985 (1987).
[Crossref]

Nugent, K.

K. Nugent, “Wave field determination using three-dimensional intensity information,” Phys. Rev. Lett. 68, 2261–2264 (1992).
[Crossref]

Odabasi, H.

Odabasi, T. H.

J. Gollub, O. Yurduseven, K. Trofatter, D. Arnitz, M. Imani, T. Sleasman, M. Boyarsky, A. Rose, A. Pedross-Engel, T. H. Odabasi, G. L. Zvolensky, D. Brady, D. L. Marks, M. S. Reynolds, and D. R. Smith, “Large metasurface aperture for millimeter wave computational imaging at the human-scale,” Sci. Rep. 7, 42650 (2017).
[Crossref]

Oh, S. B.

Osnabrugge, G.

Papadopoulos, I. N.

Papanicolaou, G.

J. Garnier and G. Papanicolaou, Passive Imaging with Ambient Noise (Cambridge University, 2016).

Pedross-Engel, A.

J. Gollub, O. Yurduseven, K. Trofatter, D. Arnitz, M. Imani, T. Sleasman, M. Boyarsky, A. Rose, A. Pedross-Engel, T. H. Odabasi, G. L. Zvolensky, D. Brady, D. L. Marks, M. S. Reynolds, and D. R. Smith, “Large metasurface aperture for millimeter wave computational imaging at the human-scale,” Sci. Rep. 7, 42650 (2017).
[Crossref]

Peichl, M.

M. Peichl, S. Dill, M. Jirousek, and H. Suess, “Passive microwave remote sensing for security applications,” in European Radar Conference (IEEE, 2007), pp. 32–35.

Pittman, T.

T. Pittman, Y. Shih, D. Strekalov, and A. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52, R3429 (1995).
[Crossref]

Popa, B.-I.

Y. Xie, T.-H. Tsai, A. Konneker, B.-I. Popa, D. J. Brady, and S. A. Cummer, “Single-sensor multispeaker listening with acoustic metamaterials,” Proc. Natl. Acad. Sci. USA 112, 10595–10598 (2015).
[Crossref]

Prather, D. W.

D. D. Ross, C. J. Ryan, G. J. Schneider, J. Murakowski, and D. W. Prather, “Passive three-dimensional spatial-spectral analysis based on k-space tomography,” IEEE Photon. Technol. Lett. 30, 817–820 (2018).
[Crossref]

Pulido-Mancera, L.

M. F. Imani, J. N. Gollub, O. Yurduseven, A. V. Diebold, M. Boyarsky, T. Fromenteze, L. Pulido-Mancera, T. Sleasman, and D. R. Smith, “Review of metasurface antennas for computational microwave imaging,” IEEE Trans. Antennas Propag. 68, 1860–1875 (2020).
[Crossref]

A. V. Diebold, L. Pulido-Mancera, T. Sleasman, M. Boyarsky, M. F. Imani, and D. R. Smith, “Generalized range migration algorithm for synthetic aperture radar image reconstruction of metasurface antenna measurements,” J. Opt. Soc. Am. B 34, 2610–2623 (2017).
[Crossref]

L. Pulido-Mancera, P. T. Bowen, M. F. Imani, N. Kundtz, and D. Smith, “Polarizability extraction of complementary metamaterial elements in waveguides for aperture modeling,” Phys. Rev. B 96, 235402 (2017).
[Crossref]

L. Pulido-Mancera, M. F. Imani, P. T. Bowen, N. Kundtz, and D. R. Smith, “Analytical modeling of a two-dimensional waveguide-fed metasurface,” arXiv:1807.11592 (2018).

Raptis, A. P. C.

N. Gopalsami, S. Liao, T. W. Elmer, E. R. Koehl, A. Heifetz, A. P. C. Raptis, L. Spinoulas, and A. Katsaggelos, “Passive millimeter-wave imaging with compressive sensing,” Opt. Eng. 51, 091614 (2012).
[Crossref]

Reynolds, M.

J. Hunt, T. Driscoll, A. Mrozack, G. Lipworth, M. Reynolds, D. Brady, and D. R. Smith, “Metamaterial apertures for computational imaging,” Science 339, 310–313 (2013).
[Crossref]

Reynolds, M. S.

J. Gollub, O. Yurduseven, K. Trofatter, D. Arnitz, M. Imani, T. Sleasman, M. Boyarsky, A. Rose, A. Pedross-Engel, T. H. Odabasi, G. L. Zvolensky, D. Brady, D. L. Marks, M. S. Reynolds, and D. R. Smith, “Large metasurface aperture for millimeter wave computational imaging at the human-scale,” Sci. Rep. 7, 42650 (2017).
[Crossref]

Robinson, I. K.

J. N. Clark, X. Huang, R. J. Harder, and I. K. Robinson, “Dynamic imaging using ptychography,” Phys. Rev. Lett. 112, 113901 (2014).
[Crossref]

Rose, A.

J. Gollub, O. Yurduseven, K. Trofatter, D. Arnitz, M. Imani, T. Sleasman, M. Boyarsky, A. Rose, A. Pedross-Engel, T. H. Odabasi, G. L. Zvolensky, D. Brady, D. L. Marks, M. S. Reynolds, and D. R. Smith, “Large metasurface aperture for millimeter wave computational imaging at the human-scale,” Sci. Rep. 7, 42650 (2017).
[Crossref]

G. Lipworth, A. Rose, O. Yurduseven, V. R. Gowda, M. F. Imani, H. Odabasi, P. Trofatter, J. Gollub, and D. R. Smith, “Comprehensive simulation platform for a metamaterial imaging system,” Appl. Opt. 54, 9343–9353 (2015).
[Crossref]

Ross, D. D.

D. D. Ross, C. J. Ryan, G. J. Schneider, J. Murakowski, and D. W. Prather, “Passive three-dimensional spatial-spectral analysis based on k-space tomography,” IEEE Photon. Technol. Lett. 30, 817–820 (2018).
[Crossref]

Ruf, C. S.

C. S. Ruf, C. T. Swift, A. B. Tanner, and D. M. Le Vine, “Interferometric synthetic aperture microwave radiometry for the remote sensing of the earth,” IEEE Trans. Geosci. Remote Sens. 26, 597–611 (1988).
[Crossref]

Ryan, C. J.

D. D. Ross, C. J. Ryan, G. J. Schneider, J. Murakowski, and D. W. Prather, “Passive three-dimensional spatial-spectral analysis based on k-space tomography,” IEEE Photon. Technol. Lett. 30, 817–820 (2018).
[Crossref]

Salmon, N. A.

N. A. Salmon, “3-D radiometric aperture synthesis imaging,” IEEE Trans. Microwave Theory Tech. 63, 3579–3587 (2015).
[Crossref]

Schmugge, T. J.

T. J. Jackson and T. J. Schmugge, “Passive microwave remote sensing system for soil moisture: some supporting research,” IEEE Trans. Geosci. Remote Sens. 27, 225–235 (1989).
[Crossref]

Schneider, G. J.

D. D. Ross, C. J. Ryan, G. J. Schneider, J. Murakowski, and D. W. Prather, “Passive three-dimensional spatial-spectral analysis based on k-space tomography,” IEEE Photon. Technol. Lett. 30, 817–820 (2018).
[Crossref]

Sergienko, A.

T. Pittman, Y. Shih, D. Strekalov, and A. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52, R3429 (1995).
[Crossref]

Setälä, T.

Shapiro, J. H.

J. H. Shapiro, “Computational ghost imaging,” Phys. Rev. A 78, 061802 (2008).
[Crossref]

Sheen, D. M.

D. M. Sheen, D. L. McMakin, and T. E. Hall, “Three-dimensional millimeter-wave imaging for concealed weapon detection,” IEEE Trans. Microwave Theory Tech. 49, 1581–1592 (2001).
[Crossref]

Shen, Z.

C. Bao, G. Barbastathis, H. Ji, Z. Shen, and Z. Zhang, “Coherence retrieval using trace regularization,” SIAM J. Imaging Sci. 11, 679–706 (2018).
[Crossref]

Shih, Y.

T. Pittman, Y. Shih, D. Strekalov, and A. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52, R3429 (1995).
[Crossref]

Shirai, T.

Sleasman, T.

M. F. Imani, J. N. Gollub, O. Yurduseven, A. V. Diebold, M. Boyarsky, T. Fromenteze, L. Pulido-Mancera, T. Sleasman, and D. R. Smith, “Review of metasurface antennas for computational microwave imaging,” IEEE Trans. Antennas Propag. 68, 1860–1875 (2020).
[Crossref]

M. F. Imani, T. Sleasman, and D. R. Smith, “Two-dimensional dynamic metasurface apertures for computational microwave imaging,” IEEE Antennas Wireless Propag. Lett. 17, 2299–2303 (2018).
[Crossref]

A. V. Diebold, M. F. Imani, T. Sleasman, and D. R. Smith, “Phaseless computational ghost imaging at microwave frequencies using a dynamic metasurface aperture,” Appl. Opt. 57, 2142–2149 (2018).
[Crossref]

A. V. Diebold, M. F. Imani, T. Sleasman, and D. R. Smith, “Phaseless coherent and incoherent microwave ghost imaging with dynamic metasurface apertures,” Optica 5, 1529–1541 (2018).
[Crossref]

J. Gollub, O. Yurduseven, K. Trofatter, D. Arnitz, M. Imani, T. Sleasman, M. Boyarsky, A. Rose, A. Pedross-Engel, T. H. Odabasi, G. L. Zvolensky, D. Brady, D. L. Marks, M. S. Reynolds, and D. R. Smith, “Large metasurface aperture for millimeter wave computational imaging at the human-scale,” Sci. Rep. 7, 42650 (2017).
[Crossref]

A. V. Diebold, L. Pulido-Mancera, T. Sleasman, M. Boyarsky, M. F. Imani, and D. R. Smith, “Generalized range migration algorithm for synthetic aperture radar image reconstruction of metasurface antenna measurements,” J. Opt. Soc. Am. B 34, 2610–2623 (2017).
[Crossref]

I. Yoo, M. F. Imani, T. Sleasman, and D. R. Smith, “Efficient complementary metamaterial element for waveguide-fed metasurface antennas,” Opt. Express 24, 28686–28692 (2016).
[Crossref]

T. Sleasman, M. F. Imani, J. N. Gollub, and D. R. Smith, “Dynamic metamaterial aperture for microwave imaging,” Appl. Phys. Lett. 107, 204104 (2015).
[Crossref]

T. Sleasman, M. F. Imani, A. V. Diebold, M. Boyarsky, K. P. Trofatter, and D. R. Smith, “Implementation and characterization of a two-dimensional printed circuit dynamic metasurface aperture for computational microwave imaging,” arXiv:1911.08952v1 (2019).

Smith, D.

L. Pulido-Mancera, P. T. Bowen, M. F. Imani, N. Kundtz, and D. Smith, “Polarizability extraction of complementary metamaterial elements in waveguides for aperture modeling,” Phys. Rev. B 96, 235402 (2017).
[Crossref]

Smith, D. R.

M. F. Imani, J. N. Gollub, O. Yurduseven, A. V. Diebold, M. Boyarsky, T. Fromenteze, L. Pulido-Mancera, T. Sleasman, and D. R. Smith, “Review of metasurface antennas for computational microwave imaging,” IEEE Trans. Antennas Propag. 68, 1860–1875 (2020).
[Crossref]

M. F. Imani and D. R. Smith, “Temporal microwave ghost imaging using a reconfigurable disordered cavity,” Appl. Phys. Lett. 116, 054102 (2020).
[Crossref]

A. V. Diebold, M. F. Imani, T. Sleasman, and D. R. Smith, “Phaseless computational ghost imaging at microwave frequencies using a dynamic metasurface aperture,” Appl. Opt. 57, 2142–2149 (2018).
[Crossref]

M. F. Imani, T. Sleasman, and D. R. Smith, “Two-dimensional dynamic metasurface apertures for computational microwave imaging,” IEEE Antennas Wireless Propag. Lett. 17, 2299–2303 (2018).
[Crossref]

A. V. Diebold, M. F. Imani, T. Sleasman, and D. R. Smith, “Phaseless coherent and incoherent microwave ghost imaging with dynamic metasurface apertures,” Optica 5, 1529–1541 (2018).
[Crossref]

T. Fromenteze, O. Yurduseven, M. Boyarsky, J. Gollub, D. L. Marks, and D. R. Smith, “Computational polarimetric microwave imaging,” Opt. Express 25, 27488–27505 (2017).
[Crossref]

A. V. Diebold, L. Pulido-Mancera, T. Sleasman, M. Boyarsky, M. F. Imani, and D. R. Smith, “Generalized range migration algorithm for synthetic aperture radar image reconstruction of metasurface antenna measurements,” J. Opt. Soc. Am. B 34, 2610–2623 (2017).
[Crossref]

J. Gollub, O. Yurduseven, K. Trofatter, D. Arnitz, M. Imani, T. Sleasman, M. Boyarsky, A. Rose, A. Pedross-Engel, T. H. Odabasi, G. L. Zvolensky, D. Brady, D. L. Marks, M. S. Reynolds, and D. R. Smith, “Large metasurface aperture for millimeter wave computational imaging at the human-scale,” Sci. Rep. 7, 42650 (2017).
[Crossref]

D. L. Marks, J. Gollub, and D. R. Smith, “Spatially resolving antenna arrays using frequency diversity,” J. Opt. Soc. Am. A 33, 899–912 (2016).
[Crossref]

I. Yoo, M. F. Imani, T. Sleasman, and D. R. Smith, “Efficient complementary metamaterial element for waveguide-fed metasurface antennas,” Opt. Express 24, 28686–28692 (2016).
[Crossref]

O. Yurduseven, J. N. Gollub, D. L. Marks, and D. R. Smith, “Frequency-diverse microwave imaging using planar Mills-Cross cavity apertures,” Opt. Express 24, 8907–8925 (2016).
[Crossref]

T. Fromenteze, O. Yurduseven, M. F. Imani, J. Gollub, C. Decroze, D. Carsenat, and D. R. Smith, “Computational imaging using a mode-mixing cavity at microwave frequencies,” Appl. Phys. Lett. 106, 194104 (2015).
[Crossref]

T. Sleasman, M. F. Imani, J. N. Gollub, and D. R. Smith, “Dynamic metamaterial aperture for microwave imaging,” Appl. Phys. Lett. 107, 204104 (2015).
[Crossref]

G. Lipworth, A. Rose, O. Yurduseven, V. R. Gowda, M. F. Imani, H. Odabasi, P. Trofatter, J. Gollub, and D. R. Smith, “Comprehensive simulation platform for a metamaterial imaging system,” Appl. Opt. 54, 9343–9353 (2015).
[Crossref]

N. Landy, J. Hunt, and D. R. Smith, “Homogenization analysis of complementary waveguide metamaterials,” Photon. Nanostruct. Fundam. Applic. 11, 453–467 (2013).
[Crossref]

J. Hunt, T. Driscoll, A. Mrozack, G. Lipworth, M. Reynolds, D. Brady, and D. R. Smith, “Metamaterial apertures for computational imaging,” Science 339, 310–313 (2013).
[Crossref]

L. Pulido-Mancera, M. F. Imani, P. T. Bowen, N. Kundtz, and D. R. Smith, “Analytical modeling of a two-dimensional waveguide-fed metasurface,” arXiv:1807.11592 (2018).

T. Sleasman, M. F. Imani, A. V. Diebold, M. Boyarsky, K. P. Trofatter, and D. R. Smith, “Implementation and characterization of a two-dimensional printed circuit dynamic metasurface aperture for computational microwave imaging,” arXiv:1911.08952v1 (2019).

Soumekh, M.

M. Soumekh, Fourier Array Imaging (Prentice-Hall, 1994).

Spinoulas, L.

N. Gopalsami, S. Liao, T. W. Elmer, E. R. Koehl, A. Heifetz, A. P. C. Raptis, L. Spinoulas, and A. Katsaggelos, “Passive millimeter-wave imaging with compressive sensing,” Opt. Eng. 51, 091614 (2012).
[Crossref]

Stack, R. A.

Starikov, A.

Strekalov, D.

T. Pittman, Y. Shih, D. Strekalov, and A. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52, R3429 (1995).
[Crossref]

Suess, H.

M. Peichl, S. Dill, M. Jirousek, and H. Suess, “Passive microwave remote sensing for security applications,” in European Radar Conference (IEEE, 2007), pp. 32–35.

Sun, T.

M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25(2), 83–91 (2008).
[Crossref]

Swenson, G. W.

A. R. Thompson, J. M. Moran, and G. W. Swenson, Interferometry and Synthesis in Radio Astronomy (Wiley, 1986).

Swift, C. T.

C. S. Ruf, C. T. Swift, A. B. Tanner, and D. M. Le Vine, “Interferometric synthetic aperture microwave radiometry for the remote sensing of the earth,” IEEE Trans. Geosci. Remote Sens. 26, 597–611 (1988).
[Crossref]

Takhar, D.

M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25(2), 83–91 (2008).
[Crossref]

Tanner, A. B.

C. S. Ruf, C. T. Swift, A. B. Tanner, and D. M. Le Vine, “Interferometric synthetic aperture microwave radiometry for the remote sensing of the earth,” IEEE Trans. Geosci. Remote Sens. 26, 597–611 (1988).
[Crossref]

Tervo, J.

Thompson, A. R.

A. R. Thompson, J. M. Moran, and G. W. Swenson, Interferometry and Synthesis in Radio Astronomy (Wiley, 1986).

Tian, L.

Tondo Yoya, A. C.

A. C. Tondo Yoya, B. Fuchs, and M. Davy, “Computational passive imaging of thermal sources with a leaky chaotic cavity,” Appl. Phys. Lett. 111, 193501 (2017).
[Crossref]

Trofatter, K.

J. Gollub, O. Yurduseven, K. Trofatter, D. Arnitz, M. Imani, T. Sleasman, M. Boyarsky, A. Rose, A. Pedross-Engel, T. H. Odabasi, G. L. Zvolensky, D. Brady, D. L. Marks, M. S. Reynolds, and D. R. Smith, “Large metasurface aperture for millimeter wave computational imaging at the human-scale,” Sci. Rep. 7, 42650 (2017).
[Crossref]

Trofatter, K. P.

T. Sleasman, M. F. Imani, A. V. Diebold, M. Boyarsky, K. P. Trofatter, and D. R. Smith, “Implementation and characterization of a two-dimensional printed circuit dynamic metasurface aperture for computational microwave imaging,” arXiv:1911.08952v1 (2019).

Trofatter, P.

Tsai, T.-H.

Y. Xie, T.-H. Tsai, A. Konneker, B.-I. Popa, D. J. Brady, and S. A. Cummer, “Single-sensor multispeaker listening with acoustic metamaterials,” Proc. Natl. Acad. Sci. USA 112, 10595–10598 (2015).
[Crossref]

Vakalis, S.

S. Vakalis and J. A. Nanzer, “Microwave imaging using noise signals,” IEEE Trans. Microwave Theory Tech. 66, 5842–5851 (2018).
[Crossref]

van Putten, E. G.

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491, 232–234 (2012).
[Crossref]

Vellekoop, I. M.

Vos, W. L.

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491, 232–234 (2012).
[Crossref]

Walther, A.

Wang, J.

J. Chen, Y. Li, J. Wang, Y. Li, and Y. Zhang, “An accurate imaging algorithm for millimeter wave synthetic aperture imaging radiometer in near-field,” Prog. Electromagn. Res. 141, 517–535 (2013).
[Crossref]

Wolf, E.

Xie, Y.

Y. Xie, T.-H. Tsai, A. Konneker, B.-I. Popa, D. J. Brady, and S. A. Cummer, “Single-sensor multispeaker listening with acoustic metamaterials,” Proc. Natl. Acad. Sci. USA 112, 10595–10598 (2015).
[Crossref]

Yaghjian, A.

A. Yaghjian, “An overview of near-field antenna measurements,” IEEE Trans. Antennas Propag. 34, 30–45 (1986).
[Crossref]

Yarman, C. E.

C. E. Yarman and B. Yazici, “Synthetic aperture hitchhiker imaging,” IEEE Trans. Image Process. 17, 2156–2173 (2008).
[Crossref]

Yazici, B.

C. E. Yarman and B. Yazici, “Synthetic aperture hitchhiker imaging,” IEEE Trans. Image Process. 17, 2156–2173 (2008).
[Crossref]

Yoo, I.

Yurduseven, O.

M. F. Imani, J. N. Gollub, O. Yurduseven, A. V. Diebold, M. Boyarsky, T. Fromenteze, L. Pulido-Mancera, T. Sleasman, and D. R. Smith, “Review of metasurface antennas for computational microwave imaging,” IEEE Trans. Antennas Propag. 68, 1860–1875 (2020).
[Crossref]

O. Yurduseven, M. A. B. Abbasi, T. Fromenteze, and V. Fusco, “Frequency-diverse computational direction of arrival estimation technique,” Sci. Rep. 9, 1–12 (2019).
[Crossref]

J. Gollub, O. Yurduseven, K. Trofatter, D. Arnitz, M. Imani, T. Sleasman, M. Boyarsky, A. Rose, A. Pedross-Engel, T. H. Odabasi, G. L. Zvolensky, D. Brady, D. L. Marks, M. S. Reynolds, and D. R. Smith, “Large metasurface aperture for millimeter wave computational imaging at the human-scale,” Sci. Rep. 7, 42650 (2017).
[Crossref]

T. Fromenteze, O. Yurduseven, M. Boyarsky, J. Gollub, D. L. Marks, and D. R. Smith, “Computational polarimetric microwave imaging,” Opt. Express 25, 27488–27505 (2017).
[Crossref]

O. Yurduseven, J. N. Gollub, D. L. Marks, and D. R. Smith, “Frequency-diverse microwave imaging using planar Mills-Cross cavity apertures,” Opt. Express 24, 8907–8925 (2016).
[Crossref]

T. Fromenteze, O. Yurduseven, M. F. Imani, J. Gollub, C. Decroze, D. Carsenat, and D. R. Smith, “Computational imaging using a mode-mixing cavity at microwave frequencies,” Appl. Phys. Lett. 106, 194104 (2015).
[Crossref]

G. Lipworth, A. Rose, O. Yurduseven, V. R. Gowda, M. F. Imani, H. Odabasi, P. Trofatter, J. Gollub, and D. R. Smith, “Comprehensive simulation platform for a metamaterial imaging system,” Appl. Opt. 54, 9343–9353 (2015).
[Crossref]

Zhang, Y.

J. Chen, Y. Li, J. Wang, Y. Li, and Y. Zhang, “An accurate imaging algorithm for millimeter wave synthetic aperture imaging radiometer in near-field,” Prog. Electromagn. Res. 141, 517–535 (2013).
[Crossref]

Zhang, Z.

C. Bao, G. Barbastathis, H. Ji, Z. Shen, and Z. Zhang, “Coherence retrieval using trace regularization,” SIAM J. Imaging Sci. 11, 679–706 (2018).
[Crossref]

Zoughi, R.

S. Kharkovsky and R. Zoughi, “Microwave and millimeter wave nondestructive testing and evaluation - overview and recent advances,” IEEE Instrum. Meas. Mag. 10(2), 26–38 (2007).
[Crossref]

Zvolensky, G. L.

J. Gollub, O. Yurduseven, K. Trofatter, D. Arnitz, M. Imani, T. Sleasman, M. Boyarsky, A. Rose, A. Pedross-Engel, T. H. Odabasi, G. L. Zvolensky, D. Brady, D. L. Marks, M. S. Reynolds, and D. R. Smith, “Large metasurface aperture for millimeter wave computational imaging at the human-scale,” Sci. Rep. 7, 42650 (2017).
[Crossref]

Appl. Opt. (3)

Appl. Phys. Lett. (4)

M. F. Imani and D. R. Smith, “Temporal microwave ghost imaging using a reconfigurable disordered cavity,” Appl. Phys. Lett. 116, 054102 (2020).
[Crossref]

T. Sleasman, M. F. Imani, J. N. Gollub, and D. R. Smith, “Dynamic metamaterial aperture for microwave imaging,” Appl. Phys. Lett. 107, 204104 (2015).
[Crossref]

A. C. Tondo Yoya, B. Fuchs, and M. Davy, “Computational passive imaging of thermal sources with a leaky chaotic cavity,” Appl. Phys. Lett. 111, 193501 (2017).
[Crossref]

T. Fromenteze, O. Yurduseven, M. F. Imani, J. Gollub, C. Decroze, D. Carsenat, and D. R. Smith, “Computational imaging using a mode-mixing cavity at microwave frequencies,” Appl. Phys. Lett. 106, 194104 (2015).
[Crossref]

IEEE Antennas Wireless Propag. Lett. (1)

M. F. Imani, T. Sleasman, and D. R. Smith, “Two-dimensional dynamic metasurface apertures for computational microwave imaging,” IEEE Antennas Wireless Propag. Lett. 17, 2299–2303 (2018).
[Crossref]

IEEE Geosci. Remote Sens. Lett. (1)

E. L. Kpré and C. Decroze, “Passive coding technique applied to synthetic aperture interferometric radiometer,” IEEE Geosci. Remote Sens. Lett. 14, 1193–1197 (2017).
[Crossref]

IEEE Instrum. Meas. Mag. (1)

S. Kharkovsky and R. Zoughi, “Microwave and millimeter wave nondestructive testing and evaluation - overview and recent advances,” IEEE Instrum. Meas. Mag. 10(2), 26–38 (2007).
[Crossref]

IEEE Photon. Technol. Lett. (1)

D. D. Ross, C. J. Ryan, G. J. Schneider, J. Murakowski, and D. W. Prather, “Passive three-dimensional spatial-spectral analysis based on k-space tomography,” IEEE Photon. Technol. Lett. 30, 817–820 (2018).
[Crossref]

IEEE Signal Process. Mag. (2)

M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25(2), 83–91 (2008).
[Crossref]

G. R. Arce, D. J. Brady, L. Carin, H. Arguello, and D. S. Kittle, “Compressive coded aperture spectral imaging: an introduction,” IEEE Signal Process. Mag. 31(1), 105–115 (2013).
[Crossref]

IEEE Trans. Antennas Propag. (4)

E. Kpre, C. Decroze, M. Mouhamadou, and T. Fromenteze, “Computational imaging for compressive synthetic aperture interferometric radiometer,” IEEE Trans. Antennas Propag. 66, 5546–5557 (2018).
[Crossref]

M. F. Imani, J. N. Gollub, O. Yurduseven, A. V. Diebold, M. Boyarsky, T. Fromenteze, L. Pulido-Mancera, T. Sleasman, and D. R. Smith, “Review of metasurface antennas for computational microwave imaging,” IEEE Trans. Antennas Propag. 68, 1860–1875 (2020).
[Crossref]

A. Yaghjian, “An overview of near-field antenna measurements,” IEEE Trans. Antennas Propag. 34, 30–45 (1986).
[Crossref]

W. Carter, “On refocusing a radio telescope to image sources in the near field of the antenna array,” IEEE Trans. Antennas Propag. 37, 314–319 (1989).
[Crossref]

IEEE Trans. Geosci. Remote Sens. (2)

C. S. Ruf, C. T. Swift, A. B. Tanner, and D. M. Le Vine, “Interferometric synthetic aperture microwave radiometry for the remote sensing of the earth,” IEEE Trans. Geosci. Remote Sens. 26, 597–611 (1988).
[Crossref]

T. J. Jackson and T. J. Schmugge, “Passive microwave remote sensing system for soil moisture: some supporting research,” IEEE Trans. Geosci. Remote Sens. 27, 225–235 (1989).
[Crossref]

IEEE Trans. Image Process. (2)

C. E. Yarman and B. Yazici, “Synthetic aperture hitchhiker imaging,” IEEE Trans. Image Process. 17, 2156–2173 (2008).
[Crossref]

J. M. Bioucas-Dias and M. A. Figueiredo, “A new twist: two-step iterative shrinkage/thresholding algorithms for image restoration,” IEEE Trans. Image Process. 16, 2992–3004 (2007).
[Crossref]

IEEE Trans. Instrum. Meas. (1)

J. M. Beada’a, A. M. Abbosh, S. Mustafa, and D. Ireland, “Microwave system for head imaging,” IEEE Trans. Instrum. Meas. 63, 117–123 (2014).
[Crossref]

IEEE Trans. Microwave Theory Tech. (3)

D. M. Sheen, D. L. McMakin, and T. E. Hall, “Three-dimensional millimeter-wave imaging for concealed weapon detection,” IEEE Trans. Microwave Theory Tech. 49, 1581–1592 (2001).
[Crossref]

S. Vakalis and J. A. Nanzer, “Microwave imaging using noise signals,” IEEE Trans. Microwave Theory Tech. 66, 5842–5851 (2018).
[Crossref]

N. A. Salmon, “3-D radiometric aperture synthesis imaging,” IEEE Trans. Microwave Theory Tech. 63, 3579–3587 (2015).
[Crossref]

J. Acoust. Soc. Am. (1)

S. J. Norton and M. Linzer, “Backprojection reconstruction of random source distributions,” J. Acoust. Soc. Am. 81, 977–985 (1987).
[Crossref]

J. Opt. Soc. Am. (4)

J. Opt. Soc. Am. A (3)

J. Opt. Soc. Am. B (2)

Nature (1)

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491, 232–234 (2012).
[Crossref]

Opt. Eng. (2)

J. R. Fienup and P. S. Idell, “Imaging correlography with sparse arrays of detectors,” Opt. Eng. 27, 279778 (1988).
[Crossref]

N. Gopalsami, S. Liao, T. W. Elmer, E. R. Koehl, A. Heifetz, A. P. C. Raptis, L. Spinoulas, and A. Katsaggelos, “Passive millimeter-wave imaging with compressive sensing,” Opt. Eng. 51, 091614 (2012).
[Crossref]

Opt. Express (4)

Opt. Lett. (1)

Optica (3)

Photon. Nanostruct. Fundam. Applic. (1)

N. Landy, J. Hunt, and D. R. Smith, “Homogenization analysis of complementary waveguide metamaterials,” Photon. Nanostruct. Fundam. Applic. 11, 453–467 (2013).
[Crossref]

Phys. Rev. A (2)

T. Pittman, Y. Shih, D. Strekalov, and A. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52, R3429 (1995).
[Crossref]

J. H. Shapiro, “Computational ghost imaging,” Phys. Rev. A 78, 061802 (2008).
[Crossref]

Phys. Rev. B (1)

L. Pulido-Mancera, P. T. Bowen, M. F. Imani, N. Kundtz, and D. Smith, “Polarizability extraction of complementary metamaterial elements in waveguides for aperture modeling,” Phys. Rev. B 96, 235402 (2017).
[Crossref]

Phys. Rev. Lett. (2)

K. Nugent, “Wave field determination using three-dimensional intensity information,” Phys. Rev. Lett. 68, 2261–2264 (1992).
[Crossref]

J. N. Clark, X. Huang, R. J. Harder, and I. K. Robinson, “Dynamic imaging using ptychography,” Phys. Rev. Lett. 112, 113901 (2014).
[Crossref]

Proc. Natl. Acad. Sci. USA (1)

Y. Xie, T.-H. Tsai, A. Konneker, B.-I. Popa, D. J. Brady, and S. A. Cummer, “Single-sensor multispeaker listening with acoustic metamaterials,” Proc. Natl. Acad. Sci. USA 112, 10595–10598 (2015).
[Crossref]

Prog. Electromagn. Res. (1)

J. Chen, Y. Li, J. Wang, Y. Li, and Y. Zhang, “An accurate imaging algorithm for millimeter wave synthetic aperture imaging radiometer in near-field,” Prog. Electromagn. Res. 141, 517–535 (2013).
[Crossref]

Sci. Rep. (2)

O. Yurduseven, M. A. B. Abbasi, T. Fromenteze, and V. Fusco, “Frequency-diverse computational direction of arrival estimation technique,” Sci. Rep. 9, 1–12 (2019).
[Crossref]

J. Gollub, O. Yurduseven, K. Trofatter, D. Arnitz, M. Imani, T. Sleasman, M. Boyarsky, A. Rose, A. Pedross-Engel, T. H. Odabasi, G. L. Zvolensky, D. Brady, D. L. Marks, M. S. Reynolds, and D. R. Smith, “Large metasurface aperture for millimeter wave computational imaging at the human-scale,” Sci. Rep. 7, 42650 (2017).
[Crossref]

Science (1)

J. Hunt, T. Driscoll, A. Mrozack, G. Lipworth, M. Reynolds, D. Brady, and D. R. Smith, “Metamaterial apertures for computational imaging,” Science 339, 310–313 (2013).
[Crossref]

SIAM J. Imaging Sci. (1)

C. Bao, G. Barbastathis, H. Ji, Z. Shen, and Z. Zhang, “Coherence retrieval using trace regularization,” SIAM J. Imaging Sci. 11, 679–706 (2018).
[Crossref]

Ultramicroscopy (1)

H. N. Chapman, “Phase-retrieval x-ray microscopy by Wigner-distribution deconvolution,” Ultramicroscopy 66, 153–172 (1996).
[Crossref]

Other (12)

D. J. Brady, Optical Imaging and Spectroscopy (Wiley, 2009).

T. Sleasman, M. F. Imani, A. V. Diebold, M. Boyarsky, K. P. Trofatter, and D. R. Smith, “Implementation and characterization of a two-dimensional printed circuit dynamic metasurface aperture for computational microwave imaging,” arXiv:1911.08952v1 (2019).

L. Pulido-Mancera, M. F. Imani, P. T. Bowen, N. Kundtz, and D. R. Smith, “Analytical modeling of a two-dimensional waveguide-fed metasurface,” arXiv:1807.11592 (2018).

W. Menke, Geophysical Data Analysis: Discrete Inverse Theory (Academic, 2018).

M. Elad, Sparse and Redundant Representations: From Theory to Applications in Signal and Image Processing (Springer, 2010).

A. R. Thompson, J. M. Moran, and G. W. Swenson, Interferometry and Synthesis in Radio Astronomy (Wiley, 1986).

M. Peichl, S. Dill, M. Jirousek, and H. Suess, “Passive microwave remote sensing for security applications,” in European Radar Conference (IEEE, 2007), pp. 32–35.

J. W. Goodman, Introduction to Fourier Optics (Roberts & Company, 2005).

M. Soumekh, Fourier Array Imaging (Prentice-Hall, 1994).

J. W. Goodman, Statistical Optics (Wiley, 2015).

L. Mandel and E. Wolf, Optical Coherence and Quantum optics (Cambridge University, 1995).

J. Garnier and G. Papanicolaou, Passive Imaging with Ambient Noise (Cambridge University, 2016).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1. (a) Illustration of passive imaging configuration with a standard receiving array. (b) Illustration of proposed coded aperture imaging concept. (c) Diagram of single-port coded aperture passive imaging using a sparsely sampled DMA. The red coloring on the DMAs represents on elements corresponding to a single tuning state.
Fig. 2.
Fig. 2. (a) Simplified illustration of DMA used in this work, where coloring indicates the element is on, while different colors represent different resonant frequencies. (b)–(d) Experimental near-field scans of DMA radiation patterns taken 5 cm from the radiating surface, which characterize the aperture modulation function ${A_m}(\vec r_a^\prime ,\omega)$. (b) Normalized magnitude of radiation pattern corresponding to a single tuning state and 19 GHz. (c) Normalized magnitude of radiation pattern that results from applying a different tuning state to the DMA at the same frequency of 19 GHz. (d) Normalized magnitude of radiation pattern realized by applying the tuning state from (a) at a frequency of 20 GHz.
Fig. 3.
Fig. 3. (a) Photo of experimental setup, including a VNA to generate the “noise” signal radiated by a target (OEWG antenna), and a spectrum analyzer measuring a signal encoded using a DMA receiver. (b) Schematic illustration of experimental setup.
Fig. 4.
Fig. 4. (a) Metasurface used as source. (b) Total intensity profile reconstructed using the proposed coded aperture method. (c) Near-field scan of metasurface antenna convolved with system point spread function.
Fig. 5.
Fig. 5. (a) Perforated face of radiating cavity used as source. (b) Total intensity profile reconstructed using the proposed coded aperture method.
Fig. 6.
Fig. 6. (a) Experimental intensity image of two independent microwave sources. Different colors correspond to different mean spectral frequencies. (b) Estimated radiation spectra for two different points imaged in (a), compared to spectra measured separately.
Fig. 7.
Fig. 7. (a) Image of an OEWG target radiating at different transverse locations 70 cm from the aperture plane. The total intensity images in this case were reconstructed from multiplexed, frequency-integrated measurements through compressive inversion of Eq. (15). (b) Radiated spectra recovered from multiplexed measurements, compared to those obtained from independent frequency measurements using a spectrum analyzer.
Fig. 8.
Fig. 8. (a) Intensity image of two radiating OEWG sources from multiplexed measurements obtained through compressive inversion of Eq. (15), summed over the frequency range 18–19 GHz. (b) Intensity image of two radiating OEWG sources from multiplexed measurements, summed over the frequency range 19–20 GHz. (c) Comparison of the recovered spectra of the two OEWG sources using independent frequency measurements versus frequency-multiplexed measurements.
Fig. 9.
Fig. 9. (a) Normalized aperture modulation function spatial autocorrelation, at a center position of the aperture and a frequency of 19 GHz. The average was computed over 1000 tuning states. (b) Aperture modulation function frequency cross correlations at ${\omega _0} = 18.4$, 19, and 19.6 GHz, averaged over all tuning states and positions. (c) Normalized singular value spectra of the matrix ${\bf H}$ for varying numbers of modulation patterns.
Fig. 10.
Fig. 10. (a) Experimental point spread function at an approximate distance of 0.3 m, obtained using compressive reconstruction. (b)–(d) Comparison of point spread function cross sections for measurements taken using a standard, ideal array [given by Eq. (18)], to those resulting from our coded aperture method.

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

m m ( r i , ω ) = α m ( r i , ω ) H z ( r i , ω ) z ^ ,
E m ( r a , ω ) = j ω μ 0 4 π i ( m m ( r i , ω ) × r ^ ) ( j k R i 1 R i 2 ) e j k R i ,
g m ( ω ) = r a A m ( r a , ω ) E a ( r a , ω ) d 2 r a .
S s ( r , ω ) = E s ( r , ω ) E s ( r , ω ) ,
W a ( r a , r a , ω ) = r S s ( r , ω ) G ( r , r a , ω ) G ( r , r a , ω ) d 3 r ,
G ( r , r a ) = e j k | r r a | | r r a |
W a ( r a , r a , ω ) = E a ( r a , ω ) E a ( r a , ω ) ,
| g m ( ω ) | 2 = r a r a A m ( r a , ω ) A m ( r a , ω ) E a ( r a , ω ) E a ( r a , ω ) d 2 r a d 2 r a .
| g m ( ω ) | 2 = r a r a r A m ( r a , ω ) A m ( r a , ω ) G ( r , r a , ω ) G ( r , r a , ω ) × S s ( r , ω ) d 3 r d 2 r a d 2 r a = r H m ( r , ω ) S s ( r , ω ) d 3 r ,
H m ( r , ω ) = r a r a A m ( r a , ω ) A m ( r a , ω ) G ( r , r a , ω ) G ( r , r a , ω ) d 2 r a d 2 r a = | r a A m ( r a , ω ) G ( r , r a , ω ) d 2 r a | 2 ,
g ω = H ω s ω .
s ^ ω = argmin s ω g ω H ω s ω 2 + γ s ω 1 ,
I ^ s ( r ) = ω S ^ s ( r , ω ) d ω .
ω | g m ( ω ) | 2 d ω = ω r H m ( r , ω ) S s ( r , ω ) d 3 r d ω .
g = H s ,
ρ ( ω 0 , ω ) = κ r a A m ( r a , ω 0 ) A m ( r a , ω ) m d 2 r a ,
S ^ s ( r , ω ) = r S s ( r , ω ) | K ( r , r , ω ) | 2 d 3 r ,
K ( r , r , ω ) = r a G ( r , r a , ω ) G ( r a , r , ω ) d 2 r a ,