Abstract

Electro-optic quantum coherent interfaces map the amplitude and phase of a quantum signal directly to the phase or intensity of a probe beam. At terahertz frequencies, a fundamental challenge is not only to sense such weak signals (due to a weak coupling with a probe in the near-infrared) but also to resolve them in the time domain. Cavity confinement of both light fields can increase the interaction and achieve strong coupling. Using this approach, current realizations are limited to low microwave frequencies. Alternatively, in bulk crystals, electro-optic sampling was shown to reach quantum-level sensitivity of terahertz waves. Yet, the coupling strength was extremely weak. Here, we propose an on-chip architecture that concomitantly provides subcycle temporal resolution and an extreme sensitivity to sense terahertz intracavity fields below 20 V/m. We use guided femtosecond pulses in the near-infrared and a confinement of the terahertz wave to a volume of ${V_{\rm THz}} \sim {10^{- 9}}{({\lambda _{\rm THz}}/2)^3}$ in combination with ultraperformant organic molecules (${r_{33}} = 170\,\,{\rm pm}/{\rm V}$) and accomplish a record-high single-photon electro-optic coupling rate of ${g_{\!{\rm eo}}} = 2\pi \times 0.043\,\,{\rm GHz}$, 10,000 times higher than in recent reports of sensing vacuum field fluctuations in bulk media. Via homodyne detection implemented directly on chip, the interaction results into an intensity modulation of the femtosecond pulses. The single-photon cooperativity is ${C_0} = 1.6 \times {10^{- 8}}$, and the multiphoton cooperativity is $C = 0.002$ at room temperature. We show ${\gt}{70}\;{\rm dB}$ dynamic range in intensity at 500 ms integration under irradiation with a weak coherent terahertz field. Similar devices could be employed in future measurements of quantum states in the terahertz at the standard quantum limit, or for entanglement of subsystems on subcycle temporal scales, such as terahertz and near-infrared quantum bits.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Ma, R. Shrestha, J. Adelberg, C.-Y. Yeh, Z. Hossain, E. Knightly, J. M. Jornet, and D. M. Mittleman, “Security and eavesdropping in terahertz wireless links,” Nature 563, 89–93 (2018).
    [Crossref]
  2. K. Sengupta, T. Nagatsuma, and D. M. Mittleman, “Terahertz integrated electronic and hybrid electronic–photonic systems,” Nat. Electron. 1, 622–635 (2018).
    [Crossref]
  3. T. Rybka, M. Ludwig, M. F. Schmalz, V. Knittel, D. Brida, and A. Leitenstorfer, “Sub-cycle optical phase control of nanotunnelling in the single-electron regime,” Nat. Photonics 10, 667–670 (2016).
    [Crossref]
  4. H. A. Hafez, S. Kovalev, J.-C. Deinert, Z. Mics, B. Green, N. Awari, M. Chen, S. Germanskiy, U. Lehnert, J. Teichert, Z. Wang, K.-J. Tielrooij, Z. Liu, Z. Chen, A. Narita, K. Müllen, M. Bonn, M. Gensch, and D. Turchinovich, “Extremely efficient terahertz high-harmonic generation in graphene by hot Dirac fermions,” Nature 561, 507–511 (2018).
    [Crossref]
  5. S. Schlauderer, C. Lange, S. Baierl, T. Ebnet, C. P. Schmid, D. C. Valovcin, A. K. Zvezdin, A. V. Kimel, R. V. Mikhaylovskiy, and R. Huber, “Temporal and spectral fingerprints of ultrafast all-coherent spin switching,” Nature 569, 383–387 (2019).
    [Crossref]
  6. T. L. Cocker, D. Peller, P. Yu, J. Repp, and R. Huber, “Tracking the ultrafast motion of a single molecule by femtosecond orbital imaging,” Nature 539, 263–267 (2016).
    [Crossref]
  7. C. Javerzac-Galy, K. Plekhanov, N. R. Bernier, L. D. Toth, A. K. Feofanov, and T. J. Kippenberg, “On-chip microwave-to-optical quantum coherent converter based on a superconducting resonator coupled to an electro-optic microresonator,” Phys. Rev. A 94, 053815 (2016).
    [Crossref]
  8. M. Soltani, M. Zhang, C. Ryan, G. J. Ribeill, C. Wang, and M. Loncar, “Efficient quantum microwave-to-optical conversion using electro-optic nanophotonic coupled resonators,” Phys. Rev. A 96, 043808 (2017).
    [Crossref]
  9. A. Rueda, W. Hease, S. Barzanjeh, and J. M. Fink, “Electro-optic entanglement source for microwave to telecom quantum state transfer,” npj Quantum Inf. 5, 108 (2019).
    [Crossref]
  10. A. Rueda, F. Sedlmeir, M. Kumari, G. Leuchs, and H. G. L. Schwefel, “Resonant electro-optic frequency comb,” Nature 568, 378–381 (2019).
    [Crossref]
  11. M. Zhang, B. Buscaino, C. Wang, A. Shams-Ansari, C. Reimer, R. Zhu, J. M. Kahn, and M. Lončar, “Broadband electro-optic frequency comb generation in a lithium niobate microring resonator,” Nature 568, 373–377 (2019).
    [Crossref]
  12. F. Lindel, R. Bennett, and S. Y. Buhmann, “Probing the sculpted quantum vacuum: quantum optics of nonlinear crystals,” arXiv:1905.10200v2 (2019).
  13. S. Barzanjeh, D. Vitali, P. Tombesi, and G. J. Milburn, “Entangling optical and microwave cavity modes by means of a nanomechanical resonator,” Phys. Rev. A 84, 042342 (2011).
    [Crossref]
  14. M. Forsch, R. Stockill, A. Wallucks, I. Marinković, C. Gärtner, R. A. Norte, F. van Otten, A. Fiore, K. Srinivasan, and S. Gröblacher, “Microwave-to-optics conversion using a mechanical oscillator in its quantum ground state,” Nat. Phys. 16, 69–74 (2020).
    [Crossref]
  15. L. Shao, M. Yu, S. Maity, N. Sinclair, L. Zheng, C. Chia, A. Shams-Ansari, C. Wang, M. Zhang, K. Lai, and M. Lončar, “Microwave-to-optical conversion using lithium niobate thin-film acoustic resonators,” Optica 6, 1498–1505 (2019).
    [Crossref]
  16. L. Fan, C.-L. Zou, R. Cheng, X. Guo, X. Han, Z. Gong, S. Wang, and H. X. Tang, “Superconducting cavity electro-optics: a platform for coherent photon conversion between superconducting and photonic circuits,” Sci. Adv. 4, eaar4994 (2018).
    [Crossref]
  17. M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86, 1391–1452 (2014).
    [Crossref]
  18. J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478, 89–92 (2011).
    [Crossref]
  19. F. Brennecke, S. Ritter, T. Donner, and T. Esslinger, “Cavity optomechanics with a Bose-Einstein condensate,” Science 322, 235–238 (2008).
    [Crossref]
  20. I.-C. Benea-Chelmus, F. Settembrini, G. Scalari, and J. Faist, “Electric field correlation measurements on the electromagnetic vacuum state,” Nature 568, 202–206 (2019).
    [Crossref]
  21. C. Riek, D. V. Seletskiy, A. S. Moskalenko, J. F. Schmidt, P. Krauspe, S. Eckart, S. Eggert, G. Burkard, and A. Leitenstorfer, “Direct sampling of electric-field vacuum fluctuations,” Science 350, 420–423 (2015).
    [Crossref]
  22. A. S. Moskalenko, C. Riek, D. V. Seletskiy, G. Burkard, and A. Leitenstorfer, “Paraxial theory of direct electro-optic sampling of the quantum vacuum,” Phys. Rev. Lett. 115, 263601 (2015).
    [Crossref]
  23. C. M. Wilson, G. Johansson, A. Pourkabirian, M. Simoen, J. R. Johansson, T. Duty, F. Nori, and P. Delsing, “Observation of the dynamical Casimir effect in a superconducting circuit,” Nature 479, 376–379 (2011).
    [Crossref]
  24. G. L. Paravicini-Bagliani, F. Appugliese, E. Richter, F. Valmorra, J. Keller, M. Beck, N. Bartolo, C. Rössler, T. Ihn, K. Ensslin, C. Ciuti, G. Scalari, and J. Faist, “Magneto-transport controlled by Landau polariton states,” Nat. Phys. 15, 186–190 (2019).
    [Crossref]
  25. S. De Liberato, “Electro-optical sampling of quantum vacuum fluctuations in dispersive dielectrics,” Phys. Rev. A 100, 031801 (2019).
    [Crossref]
  26. I.-C. Benea-Chelmus, T. Zhu, F. Settembrini, C. Bonzon, E. Mavrona, D. Elder, W. Heni, J. Leuthold, L. Dalton, and J. Faist, “Three-dimensional phase modulator at telecom wavelength acting as a terahertz detector with an electro-optic bandwidth of 1.25  terahertz,” ACS Photon. 5, 1398–1403 (2018).
    [Crossref]
  27. W. Heni, Y. Kutuvantavida, C. Haffner, H. Zwickel, C. Kieninger, S. Wolf, M. Lauermann, Y. Fedoryshyn, A. F. Tillack, L. E. Johnson, D. L. Elder, B. H. Robinson, W. Freude, C. Koos, J. Leuthold, and L. R. Dalton, “Silicon–organic and plasmonic–organic hybrid photonics,” ACS Photon. 4, 1576–1590 (2017).
    [Crossref]
  28. Y. Salamin, W. Heni, C. Haffner, Y. Fedoryshyn, C. Hoessbacher, R. Bonjour, M. Zahner, D. Hillerkuss, P. Leuchtmann, D. L. Elder, L. R. Dalton, C. Hafner, and J. Leuthold, “Direct conversion of free space millimeter waves to optical domain by plasmonic modulator antenna,” Nano Lett. 15, 8342–8346 (2015).
    [Crossref]
  29. Y. Salamin, I.-C. Benea-Chelmus, Y. Fedoryshyn, W. Heni, D. L. Elder, L. R. Dalton, J. Faist, and J. Leuthold, “Compact and ultra-efficient broadband plasmonic terahertz field detector,” Nat. Commun. 10, 5550 (2019).
    [Crossref]
  30. T. Watanabe, M. Ayata, U. Koch, Y. Fedoryshyn, and J. Leuthold, “Perpendicular grating coupler based on a blazed antiback-reflection structure,” J. Lightwave Technol. 35, 4663–4669 (2017).
    [Crossref]
  31. J. Tian, S. Yu, W. Yan, and M. Qiu, “Broadband high-efficiency surface-plasmon-polariton coupler with silicon-metal interface,” Appl. Phys. Lett. 95, 013504 (2009).
    [Crossref]
  32. B. H. Robinson, L. E. Johnson, D. L. Elder, A. A. Kocherzhenko, C. M. Isborn, C. Haffner, W. Heni, C. Hoessbacher, Y. Fedoryshyn, Y. Salamin, B. Baeuerle, A. Josten, M. Ayata, U. Koch, J. Leuthold, and L. R. Dalton, “Optimization of plasmonic-organic hybrid electro-optics,” J. Lightwave Technol. 36, 5036–5047 (2018).
    [Crossref]
  33. D. L. Elder, C. Haffner, W. Heni, Y. Fedoryshyn, K. E. Garrett, L. E. Johnson, R. A. Campbell, J. D. Avila, B. H. Robinson, J. Leuthold, and L. R. Dalton, “Effect of rigid bridge-protection units, quadrupolar interactions, and blending in organic electro-optic chromophores,” Chem. Mater. 29, 6457–6471 (2017).
    [Crossref]
  34. I.-C. Benea-Chelmus, C. Bonzon, C. Maissen, G. Scalari, M. Beck, and J. Faist, “Subcycle measurement of intensity correlations in the terahertz frequency range,” Phys. Rev. A 93, 043812 (2016).
    [Crossref]
  35. H. Xu, F. Liu, D. L. Elder, L. E. Johnson, Y. de Coene, K. Clays, B. H. Robinson, and L. R. Dalton, “Ultrahigh electro-optic coefficients, high index of refraction, and long-term stability from Diels–Alder cross-linkable binary molecular glasses,” Chem. Mater. 32, 1408–1421 (2020).
    [Crossref]
  36. V. B. Braginsky, “Classical and quantum restrictions on the detection of weak disturbances of a macroscopic oscillator,” J. Exp. Theor. Phys. 26, 831 (1968).
  37. D. Mason, J. Chen, M. Rossi, Y. Tsaturyan, and A. Schliesser, “Continuous force and displacement measurement below the standard quantum limit,” Nat. Phys. 15, 745–749 (2019).
    [Crossref]
  38. D. H. Park, V. Yun, J. Luo, A. K. Jen, and W. N. Herman, “EO polymer at cryogenic temperatures,” Electron. Lett. 52, 1703–1705 (2016).
    [Crossref]
  39. Y. Salamin, B. Baeuerle, W. Heni, F. C. Abrecht, A. Josten, Y. Fedoryshyn, C. Haffner, R. Bonjour, T. Watanabe, M. Burla, D. L. Elder, L. R. Dalton, and J. Leuthold, “Microwave plasmonic mixer in a transparent fibre–wireless link,” Nat. Photonics 12, 749–753 (2018).
    [Crossref]
  40. P. Sulzer, K. Oguchi, J. Huster, M. Kizmann, T. L. M. Guedes, A. Liehl, C. Beckh, A. S. Moskalenko, G. Burkard, D. V. Seletskiy, and A. Leitenstorfer, “Determination of the electric field and its Hilbert transform in femtosecond electro-optic sampling,” Phys. Rev. A 101, 033821 (2020).
    [Crossref]
  41. W. S. L. Lee, K. Kaltenecker, S. Nirantar, W. Withayachumnankul, M. Walther, M. Bhaskaran, B. M. Fischer, S. Sriram, and C. Fumeaux, “Terahertz near-field imaging of dielectric resonators,” Opt. Express 25, 3756 (2017).
    [Crossref]
  42. G. I. Groma, J. Hebling, I. Z. Kozma, G. Varo, J. Hauer, J. Kuhl, and E. Riedle, “Terahertz radiation from bacteriorhodopsin reveals correlated primary electron and proton transfer processes,” Proc. Natl. Acad. Sci. USA 105, 6888–6893 (2008).
    [Crossref]
  43. Q. Sun, Y. He, K. Liu, S. Fan, E. P. J. Parrott, and E. Pickwell-MacPherson, “Recent advances in terahertz technology for biomedical applications,” Quant. Imaging Med. Surg. 7, 345–355 (2017).
    [Crossref]
  44. S. Hunsche, M. Koch, I. Brener, and M. Nuss, “THz near-field imaging,” Opt. Commun. 150, 22–26 (1998).
    [Crossref]
  45. I.-C. Benea-Chelmus, M. Rösch, G. Scalari, M. Beck, and J. Faist, “Intensity autocorrelation measurements of frequency combs in the terahertz range,” Phys. Rev. A 96, 033821 (2017).
    [Crossref]
  46. M. Burla, C. Hoessbacher, W. Heni, C. Haffner, Y. Fedoryshyn, D. Werner, T. Watanabe, H. Massler, D. L. Elder, L. R. Dalton, and J. Leuthold, “500  GHz plasmonic Mach-Zehnder modulator enabling sub-THz microwave photonics,” APL Photon. 4, 056106 (2019).
    [Crossref]
  47. M. Piccardo, P. Chevalier, T. S. Mansuripur, D. Kazakov, Y. Wang, N. A. Rubin, L. Meadowcroft, A. Belyanin, and F. Capasso, “The harmonic state of quantum cascade lasers: origin, control, and prospective applications [Invited],” Opt. Express 26, 9464 (2018).
    [Crossref]

2020 (3)

M. Forsch, R. Stockill, A. Wallucks, I. Marinković, C. Gärtner, R. A. Norte, F. van Otten, A. Fiore, K. Srinivasan, and S. Gröblacher, “Microwave-to-optics conversion using a mechanical oscillator in its quantum ground state,” Nat. Phys. 16, 69–74 (2020).
[Crossref]

H. Xu, F. Liu, D. L. Elder, L. E. Johnson, Y. de Coene, K. Clays, B. H. Robinson, and L. R. Dalton, “Ultrahigh electro-optic coefficients, high index of refraction, and long-term stability from Diels–Alder cross-linkable binary molecular glasses,” Chem. Mater. 32, 1408–1421 (2020).
[Crossref]

P. Sulzer, K. Oguchi, J. Huster, M. Kizmann, T. L. M. Guedes, A. Liehl, C. Beckh, A. S. Moskalenko, G. Burkard, D. V. Seletskiy, and A. Leitenstorfer, “Determination of the electric field and its Hilbert transform in femtosecond electro-optic sampling,” Phys. Rev. A 101, 033821 (2020).
[Crossref]

2019 (11)

D. Mason, J. Chen, M. Rossi, Y. Tsaturyan, and A. Schliesser, “Continuous force and displacement measurement below the standard quantum limit,” Nat. Phys. 15, 745–749 (2019).
[Crossref]

G. L. Paravicini-Bagliani, F. Appugliese, E. Richter, F. Valmorra, J. Keller, M. Beck, N. Bartolo, C. Rössler, T. Ihn, K. Ensslin, C. Ciuti, G. Scalari, and J. Faist, “Magneto-transport controlled by Landau polariton states,” Nat. Phys. 15, 186–190 (2019).
[Crossref]

S. De Liberato, “Electro-optical sampling of quantum vacuum fluctuations in dispersive dielectrics,” Phys. Rev. A 100, 031801 (2019).
[Crossref]

Y. Salamin, I.-C. Benea-Chelmus, Y. Fedoryshyn, W. Heni, D. L. Elder, L. R. Dalton, J. Faist, and J. Leuthold, “Compact and ultra-efficient broadband plasmonic terahertz field detector,” Nat. Commun. 10, 5550 (2019).
[Crossref]

L. Shao, M. Yu, S. Maity, N. Sinclair, L. Zheng, C. Chia, A. Shams-Ansari, C. Wang, M. Zhang, K. Lai, and M. Lončar, “Microwave-to-optical conversion using lithium niobate thin-film acoustic resonators,” Optica 6, 1498–1505 (2019).
[Crossref]

I.-C. Benea-Chelmus, F. Settembrini, G. Scalari, and J. Faist, “Electric field correlation measurements on the electromagnetic vacuum state,” Nature 568, 202–206 (2019).
[Crossref]

S. Schlauderer, C. Lange, S. Baierl, T. Ebnet, C. P. Schmid, D. C. Valovcin, A. K. Zvezdin, A. V. Kimel, R. V. Mikhaylovskiy, and R. Huber, “Temporal and spectral fingerprints of ultrafast all-coherent spin switching,” Nature 569, 383–387 (2019).
[Crossref]

A. Rueda, W. Hease, S. Barzanjeh, and J. M. Fink, “Electro-optic entanglement source for microwave to telecom quantum state transfer,” npj Quantum Inf. 5, 108 (2019).
[Crossref]

A. Rueda, F. Sedlmeir, M. Kumari, G. Leuchs, and H. G. L. Schwefel, “Resonant electro-optic frequency comb,” Nature 568, 378–381 (2019).
[Crossref]

M. Zhang, B. Buscaino, C. Wang, A. Shams-Ansari, C. Reimer, R. Zhu, J. M. Kahn, and M. Lončar, “Broadband electro-optic frequency comb generation in a lithium niobate microring resonator,” Nature 568, 373–377 (2019).
[Crossref]

M. Burla, C. Hoessbacher, W. Heni, C. Haffner, Y. Fedoryshyn, D. Werner, T. Watanabe, H. Massler, D. L. Elder, L. R. Dalton, and J. Leuthold, “500  GHz plasmonic Mach-Zehnder modulator enabling sub-THz microwave photonics,” APL Photon. 4, 056106 (2019).
[Crossref]

2018 (8)

M. Piccardo, P. Chevalier, T. S. Mansuripur, D. Kazakov, Y. Wang, N. A. Rubin, L. Meadowcroft, A. Belyanin, and F. Capasso, “The harmonic state of quantum cascade lasers: origin, control, and prospective applications [Invited],” Opt. Express 26, 9464 (2018).
[Crossref]

Y. Salamin, B. Baeuerle, W. Heni, F. C. Abrecht, A. Josten, Y. Fedoryshyn, C. Haffner, R. Bonjour, T. Watanabe, M. Burla, D. L. Elder, L. R. Dalton, and J. Leuthold, “Microwave plasmonic mixer in a transparent fibre–wireless link,” Nat. Photonics 12, 749–753 (2018).
[Crossref]

J. Ma, R. Shrestha, J. Adelberg, C.-Y. Yeh, Z. Hossain, E. Knightly, J. M. Jornet, and D. M. Mittleman, “Security and eavesdropping in terahertz wireless links,” Nature 563, 89–93 (2018).
[Crossref]

K. Sengupta, T. Nagatsuma, and D. M. Mittleman, “Terahertz integrated electronic and hybrid electronic–photonic systems,” Nat. Electron. 1, 622–635 (2018).
[Crossref]

L. Fan, C.-L. Zou, R. Cheng, X. Guo, X. Han, Z. Gong, S. Wang, and H. X. Tang, “Superconducting cavity electro-optics: a platform for coherent photon conversion between superconducting and photonic circuits,” Sci. Adv. 4, eaar4994 (2018).
[Crossref]

H. A. Hafez, S. Kovalev, J.-C. Deinert, Z. Mics, B. Green, N. Awari, M. Chen, S. Germanskiy, U. Lehnert, J. Teichert, Z. Wang, K.-J. Tielrooij, Z. Liu, Z. Chen, A. Narita, K. Müllen, M. Bonn, M. Gensch, and D. Turchinovich, “Extremely efficient terahertz high-harmonic generation in graphene by hot Dirac fermions,” Nature 561, 507–511 (2018).
[Crossref]

I.-C. Benea-Chelmus, T. Zhu, F. Settembrini, C. Bonzon, E. Mavrona, D. Elder, W. Heni, J. Leuthold, L. Dalton, and J. Faist, “Three-dimensional phase modulator at telecom wavelength acting as a terahertz detector with an electro-optic bandwidth of 1.25  terahertz,” ACS Photon. 5, 1398–1403 (2018).
[Crossref]

B. H. Robinson, L. E. Johnson, D. L. Elder, A. A. Kocherzhenko, C. M. Isborn, C. Haffner, W. Heni, C. Hoessbacher, Y. Fedoryshyn, Y. Salamin, B. Baeuerle, A. Josten, M. Ayata, U. Koch, J. Leuthold, and L. R. Dalton, “Optimization of plasmonic-organic hybrid electro-optics,” J. Lightwave Technol. 36, 5036–5047 (2018).
[Crossref]

2017 (7)

D. L. Elder, C. Haffner, W. Heni, Y. Fedoryshyn, K. E. Garrett, L. E. Johnson, R. A. Campbell, J. D. Avila, B. H. Robinson, J. Leuthold, and L. R. Dalton, “Effect of rigid bridge-protection units, quadrupolar interactions, and blending in organic electro-optic chromophores,” Chem. Mater. 29, 6457–6471 (2017).
[Crossref]

W. S. L. Lee, K. Kaltenecker, S. Nirantar, W. Withayachumnankul, M. Walther, M. Bhaskaran, B. M. Fischer, S. Sriram, and C. Fumeaux, “Terahertz near-field imaging of dielectric resonators,” Opt. Express 25, 3756 (2017).
[Crossref]

W. Heni, Y. Kutuvantavida, C. Haffner, H. Zwickel, C. Kieninger, S. Wolf, M. Lauermann, Y. Fedoryshyn, A. F. Tillack, L. E. Johnson, D. L. Elder, B. H. Robinson, W. Freude, C. Koos, J. Leuthold, and L. R. Dalton, “Silicon–organic and plasmonic–organic hybrid photonics,” ACS Photon. 4, 1576–1590 (2017).
[Crossref]

M. Soltani, M. Zhang, C. Ryan, G. J. Ribeill, C. Wang, and M. Loncar, “Efficient quantum microwave-to-optical conversion using electro-optic nanophotonic coupled resonators,” Phys. Rev. A 96, 043808 (2017).
[Crossref]

T. Watanabe, M. Ayata, U. Koch, Y. Fedoryshyn, and J. Leuthold, “Perpendicular grating coupler based on a blazed antiback-reflection structure,” J. Lightwave Technol. 35, 4663–4669 (2017).
[Crossref]

I.-C. Benea-Chelmus, M. Rösch, G. Scalari, M. Beck, and J. Faist, “Intensity autocorrelation measurements of frequency combs in the terahertz range,” Phys. Rev. A 96, 033821 (2017).
[Crossref]

Q. Sun, Y. He, K. Liu, S. Fan, E. P. J. Parrott, and E. Pickwell-MacPherson, “Recent advances in terahertz technology for biomedical applications,” Quant. Imaging Med. Surg. 7, 345–355 (2017).
[Crossref]

2016 (5)

D. H. Park, V. Yun, J. Luo, A. K. Jen, and W. N. Herman, “EO polymer at cryogenic temperatures,” Electron. Lett. 52, 1703–1705 (2016).
[Crossref]

I.-C. Benea-Chelmus, C. Bonzon, C. Maissen, G. Scalari, M. Beck, and J. Faist, “Subcycle measurement of intensity correlations in the terahertz frequency range,” Phys. Rev. A 93, 043812 (2016).
[Crossref]

T. Rybka, M. Ludwig, M. F. Schmalz, V. Knittel, D. Brida, and A. Leitenstorfer, “Sub-cycle optical phase control of nanotunnelling in the single-electron regime,” Nat. Photonics 10, 667–670 (2016).
[Crossref]

T. L. Cocker, D. Peller, P. Yu, J. Repp, and R. Huber, “Tracking the ultrafast motion of a single molecule by femtosecond orbital imaging,” Nature 539, 263–267 (2016).
[Crossref]

C. Javerzac-Galy, K. Plekhanov, N. R. Bernier, L. D. Toth, A. K. Feofanov, and T. J. Kippenberg, “On-chip microwave-to-optical quantum coherent converter based on a superconducting resonator coupled to an electro-optic microresonator,” Phys. Rev. A 94, 053815 (2016).
[Crossref]

2015 (3)

C. Riek, D. V. Seletskiy, A. S. Moskalenko, J. F. Schmidt, P. Krauspe, S. Eckart, S. Eggert, G. Burkard, and A. Leitenstorfer, “Direct sampling of electric-field vacuum fluctuations,” Science 350, 420–423 (2015).
[Crossref]

A. S. Moskalenko, C. Riek, D. V. Seletskiy, G. Burkard, and A. Leitenstorfer, “Paraxial theory of direct electro-optic sampling of the quantum vacuum,” Phys. Rev. Lett. 115, 263601 (2015).
[Crossref]

Y. Salamin, W. Heni, C. Haffner, Y. Fedoryshyn, C. Hoessbacher, R. Bonjour, M. Zahner, D. Hillerkuss, P. Leuchtmann, D. L. Elder, L. R. Dalton, C. Hafner, and J. Leuthold, “Direct conversion of free space millimeter waves to optical domain by plasmonic modulator antenna,” Nano Lett. 15, 8342–8346 (2015).
[Crossref]

2014 (1)

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86, 1391–1452 (2014).
[Crossref]

2011 (3)

J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478, 89–92 (2011).
[Crossref]

C. M. Wilson, G. Johansson, A. Pourkabirian, M. Simoen, J. R. Johansson, T. Duty, F. Nori, and P. Delsing, “Observation of the dynamical Casimir effect in a superconducting circuit,” Nature 479, 376–379 (2011).
[Crossref]

S. Barzanjeh, D. Vitali, P. Tombesi, and G. J. Milburn, “Entangling optical and microwave cavity modes by means of a nanomechanical resonator,” Phys. Rev. A 84, 042342 (2011).
[Crossref]

2009 (1)

J. Tian, S. Yu, W. Yan, and M. Qiu, “Broadband high-efficiency surface-plasmon-polariton coupler with silicon-metal interface,” Appl. Phys. Lett. 95, 013504 (2009).
[Crossref]

2008 (2)

G. I. Groma, J. Hebling, I. Z. Kozma, G. Varo, J. Hauer, J. Kuhl, and E. Riedle, “Terahertz radiation from bacteriorhodopsin reveals correlated primary electron and proton transfer processes,” Proc. Natl. Acad. Sci. USA 105, 6888–6893 (2008).
[Crossref]

F. Brennecke, S. Ritter, T. Donner, and T. Esslinger, “Cavity optomechanics with a Bose-Einstein condensate,” Science 322, 235–238 (2008).
[Crossref]

1998 (1)

S. Hunsche, M. Koch, I. Brener, and M. Nuss, “THz near-field imaging,” Opt. Commun. 150, 22–26 (1998).
[Crossref]

1968 (1)

V. B. Braginsky, “Classical and quantum restrictions on the detection of weak disturbances of a macroscopic oscillator,” J. Exp. Theor. Phys. 26, 831 (1968).

Abrecht, F. C.

Y. Salamin, B. Baeuerle, W. Heni, F. C. Abrecht, A. Josten, Y. Fedoryshyn, C. Haffner, R. Bonjour, T. Watanabe, M. Burla, D. L. Elder, L. R. Dalton, and J. Leuthold, “Microwave plasmonic mixer in a transparent fibre–wireless link,” Nat. Photonics 12, 749–753 (2018).
[Crossref]

Adelberg, J.

J. Ma, R. Shrestha, J. Adelberg, C.-Y. Yeh, Z. Hossain, E. Knightly, J. M. Jornet, and D. M. Mittleman, “Security and eavesdropping in terahertz wireless links,” Nature 563, 89–93 (2018).
[Crossref]

Alegre, T. P. M.

J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478, 89–92 (2011).
[Crossref]

Appugliese, F.

G. L. Paravicini-Bagliani, F. Appugliese, E. Richter, F. Valmorra, J. Keller, M. Beck, N. Bartolo, C. Rössler, T. Ihn, K. Ensslin, C. Ciuti, G. Scalari, and J. Faist, “Magneto-transport controlled by Landau polariton states,” Nat. Phys. 15, 186–190 (2019).
[Crossref]

Aspelmeyer, M.

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86, 1391–1452 (2014).
[Crossref]

J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478, 89–92 (2011).
[Crossref]

Avila, J. D.

D. L. Elder, C. Haffner, W. Heni, Y. Fedoryshyn, K. E. Garrett, L. E. Johnson, R. A. Campbell, J. D. Avila, B. H. Robinson, J. Leuthold, and L. R. Dalton, “Effect of rigid bridge-protection units, quadrupolar interactions, and blending in organic electro-optic chromophores,” Chem. Mater. 29, 6457–6471 (2017).
[Crossref]

Awari, N.

H. A. Hafez, S. Kovalev, J.-C. Deinert, Z. Mics, B. Green, N. Awari, M. Chen, S. Germanskiy, U. Lehnert, J. Teichert, Z. Wang, K.-J. Tielrooij, Z. Liu, Z. Chen, A. Narita, K. Müllen, M. Bonn, M. Gensch, and D. Turchinovich, “Extremely efficient terahertz high-harmonic generation in graphene by hot Dirac fermions,” Nature 561, 507–511 (2018).
[Crossref]

Ayata, M.

Baeuerle, B.

B. H. Robinson, L. E. Johnson, D. L. Elder, A. A. Kocherzhenko, C. M. Isborn, C. Haffner, W. Heni, C. Hoessbacher, Y. Fedoryshyn, Y. Salamin, B. Baeuerle, A. Josten, M. Ayata, U. Koch, J. Leuthold, and L. R. Dalton, “Optimization of plasmonic-organic hybrid electro-optics,” J. Lightwave Technol. 36, 5036–5047 (2018).
[Crossref]

Y. Salamin, B. Baeuerle, W. Heni, F. C. Abrecht, A. Josten, Y. Fedoryshyn, C. Haffner, R. Bonjour, T. Watanabe, M. Burla, D. L. Elder, L. R. Dalton, and J. Leuthold, “Microwave plasmonic mixer in a transparent fibre–wireless link,” Nat. Photonics 12, 749–753 (2018).
[Crossref]

Baierl, S.

S. Schlauderer, C. Lange, S. Baierl, T. Ebnet, C. P. Schmid, D. C. Valovcin, A. K. Zvezdin, A. V. Kimel, R. V. Mikhaylovskiy, and R. Huber, “Temporal and spectral fingerprints of ultrafast all-coherent spin switching,” Nature 569, 383–387 (2019).
[Crossref]

Bartolo, N.

G. L. Paravicini-Bagliani, F. Appugliese, E. Richter, F. Valmorra, J. Keller, M. Beck, N. Bartolo, C. Rössler, T. Ihn, K. Ensslin, C. Ciuti, G. Scalari, and J. Faist, “Magneto-transport controlled by Landau polariton states,” Nat. Phys. 15, 186–190 (2019).
[Crossref]

Barzanjeh, S.

A. Rueda, W. Hease, S. Barzanjeh, and J. M. Fink, “Electro-optic entanglement source for microwave to telecom quantum state transfer,” npj Quantum Inf. 5, 108 (2019).
[Crossref]

S. Barzanjeh, D. Vitali, P. Tombesi, and G. J. Milburn, “Entangling optical and microwave cavity modes by means of a nanomechanical resonator,” Phys. Rev. A 84, 042342 (2011).
[Crossref]

Beck, M.

G. L. Paravicini-Bagliani, F. Appugliese, E. Richter, F. Valmorra, J. Keller, M. Beck, N. Bartolo, C. Rössler, T. Ihn, K. Ensslin, C. Ciuti, G. Scalari, and J. Faist, “Magneto-transport controlled by Landau polariton states,” Nat. Phys. 15, 186–190 (2019).
[Crossref]

I.-C. Benea-Chelmus, M. Rösch, G. Scalari, M. Beck, and J. Faist, “Intensity autocorrelation measurements of frequency combs in the terahertz range,” Phys. Rev. A 96, 033821 (2017).
[Crossref]

I.-C. Benea-Chelmus, C. Bonzon, C. Maissen, G. Scalari, M. Beck, and J. Faist, “Subcycle measurement of intensity correlations in the terahertz frequency range,” Phys. Rev. A 93, 043812 (2016).
[Crossref]

Beckh, C.

P. Sulzer, K. Oguchi, J. Huster, M. Kizmann, T. L. M. Guedes, A. Liehl, C. Beckh, A. S. Moskalenko, G. Burkard, D. V. Seletskiy, and A. Leitenstorfer, “Determination of the electric field and its Hilbert transform in femtosecond electro-optic sampling,” Phys. Rev. A 101, 033821 (2020).
[Crossref]

Belyanin, A.

Benea-Chelmus, I.-C.

Y. Salamin, I.-C. Benea-Chelmus, Y. Fedoryshyn, W. Heni, D. L. Elder, L. R. Dalton, J. Faist, and J. Leuthold, “Compact and ultra-efficient broadband plasmonic terahertz field detector,” Nat. Commun. 10, 5550 (2019).
[Crossref]

I.-C. Benea-Chelmus, F. Settembrini, G. Scalari, and J. Faist, “Electric field correlation measurements on the electromagnetic vacuum state,” Nature 568, 202–206 (2019).
[Crossref]

I.-C. Benea-Chelmus, T. Zhu, F. Settembrini, C. Bonzon, E. Mavrona, D. Elder, W. Heni, J. Leuthold, L. Dalton, and J. Faist, “Three-dimensional phase modulator at telecom wavelength acting as a terahertz detector with an electro-optic bandwidth of 1.25  terahertz,” ACS Photon. 5, 1398–1403 (2018).
[Crossref]

I.-C. Benea-Chelmus, M. Rösch, G. Scalari, M. Beck, and J. Faist, “Intensity autocorrelation measurements of frequency combs in the terahertz range,” Phys. Rev. A 96, 033821 (2017).
[Crossref]

I.-C. Benea-Chelmus, C. Bonzon, C. Maissen, G. Scalari, M. Beck, and J. Faist, “Subcycle measurement of intensity correlations in the terahertz frequency range,” Phys. Rev. A 93, 043812 (2016).
[Crossref]

Bennett, R.

F. Lindel, R. Bennett, and S. Y. Buhmann, “Probing the sculpted quantum vacuum: quantum optics of nonlinear crystals,” arXiv:1905.10200v2 (2019).

Bernier, N. R.

C. Javerzac-Galy, K. Plekhanov, N. R. Bernier, L. D. Toth, A. K. Feofanov, and T. J. Kippenberg, “On-chip microwave-to-optical quantum coherent converter based on a superconducting resonator coupled to an electro-optic microresonator,” Phys. Rev. A 94, 053815 (2016).
[Crossref]

Bhaskaran, M.

Bonjour, R.

Y. Salamin, B. Baeuerle, W. Heni, F. C. Abrecht, A. Josten, Y. Fedoryshyn, C. Haffner, R. Bonjour, T. Watanabe, M. Burla, D. L. Elder, L. R. Dalton, and J. Leuthold, “Microwave plasmonic mixer in a transparent fibre–wireless link,” Nat. Photonics 12, 749–753 (2018).
[Crossref]

Y. Salamin, W. Heni, C. Haffner, Y. Fedoryshyn, C. Hoessbacher, R. Bonjour, M. Zahner, D. Hillerkuss, P. Leuchtmann, D. L. Elder, L. R. Dalton, C. Hafner, and J. Leuthold, “Direct conversion of free space millimeter waves to optical domain by plasmonic modulator antenna,” Nano Lett. 15, 8342–8346 (2015).
[Crossref]

Bonn, M.

H. A. Hafez, S. Kovalev, J.-C. Deinert, Z. Mics, B. Green, N. Awari, M. Chen, S. Germanskiy, U. Lehnert, J. Teichert, Z. Wang, K.-J. Tielrooij, Z. Liu, Z. Chen, A. Narita, K. Müllen, M. Bonn, M. Gensch, and D. Turchinovich, “Extremely efficient terahertz high-harmonic generation in graphene by hot Dirac fermions,” Nature 561, 507–511 (2018).
[Crossref]

Bonzon, C.

I.-C. Benea-Chelmus, T. Zhu, F. Settembrini, C. Bonzon, E. Mavrona, D. Elder, W. Heni, J. Leuthold, L. Dalton, and J. Faist, “Three-dimensional phase modulator at telecom wavelength acting as a terahertz detector with an electro-optic bandwidth of 1.25  terahertz,” ACS Photon. 5, 1398–1403 (2018).
[Crossref]

I.-C. Benea-Chelmus, C. Bonzon, C. Maissen, G. Scalari, M. Beck, and J. Faist, “Subcycle measurement of intensity correlations in the terahertz frequency range,” Phys. Rev. A 93, 043812 (2016).
[Crossref]

Braginsky, V. B.

V. B. Braginsky, “Classical and quantum restrictions on the detection of weak disturbances of a macroscopic oscillator,” J. Exp. Theor. Phys. 26, 831 (1968).

Brener, I.

S. Hunsche, M. Koch, I. Brener, and M. Nuss, “THz near-field imaging,” Opt. Commun. 150, 22–26 (1998).
[Crossref]

Brennecke, F.

F. Brennecke, S. Ritter, T. Donner, and T. Esslinger, “Cavity optomechanics with a Bose-Einstein condensate,” Science 322, 235–238 (2008).
[Crossref]

Brida, D.

T. Rybka, M. Ludwig, M. F. Schmalz, V. Knittel, D. Brida, and A. Leitenstorfer, “Sub-cycle optical phase control of nanotunnelling in the single-electron regime,” Nat. Photonics 10, 667–670 (2016).
[Crossref]

Buhmann, S. Y.

F. Lindel, R. Bennett, and S. Y. Buhmann, “Probing the sculpted quantum vacuum: quantum optics of nonlinear crystals,” arXiv:1905.10200v2 (2019).

Burkard, G.

P. Sulzer, K. Oguchi, J. Huster, M. Kizmann, T. L. M. Guedes, A. Liehl, C. Beckh, A. S. Moskalenko, G. Burkard, D. V. Seletskiy, and A. Leitenstorfer, “Determination of the electric field and its Hilbert transform in femtosecond electro-optic sampling,” Phys. Rev. A 101, 033821 (2020).
[Crossref]

C. Riek, D. V. Seletskiy, A. S. Moskalenko, J. F. Schmidt, P. Krauspe, S. Eckart, S. Eggert, G. Burkard, and A. Leitenstorfer, “Direct sampling of electric-field vacuum fluctuations,” Science 350, 420–423 (2015).
[Crossref]

A. S. Moskalenko, C. Riek, D. V. Seletskiy, G. Burkard, and A. Leitenstorfer, “Paraxial theory of direct electro-optic sampling of the quantum vacuum,” Phys. Rev. Lett. 115, 263601 (2015).
[Crossref]

Burla, M.

M. Burla, C. Hoessbacher, W. Heni, C. Haffner, Y. Fedoryshyn, D. Werner, T. Watanabe, H. Massler, D. L. Elder, L. R. Dalton, and J. Leuthold, “500  GHz plasmonic Mach-Zehnder modulator enabling sub-THz microwave photonics,” APL Photon. 4, 056106 (2019).
[Crossref]

Y. Salamin, B. Baeuerle, W. Heni, F. C. Abrecht, A. Josten, Y. Fedoryshyn, C. Haffner, R. Bonjour, T. Watanabe, M. Burla, D. L. Elder, L. R. Dalton, and J. Leuthold, “Microwave plasmonic mixer in a transparent fibre–wireless link,” Nat. Photonics 12, 749–753 (2018).
[Crossref]

Buscaino, B.

M. Zhang, B. Buscaino, C. Wang, A. Shams-Ansari, C. Reimer, R. Zhu, J. M. Kahn, and M. Lončar, “Broadband electro-optic frequency comb generation in a lithium niobate microring resonator,” Nature 568, 373–377 (2019).
[Crossref]

Campbell, R. A.

D. L. Elder, C. Haffner, W. Heni, Y. Fedoryshyn, K. E. Garrett, L. E. Johnson, R. A. Campbell, J. D. Avila, B. H. Robinson, J. Leuthold, and L. R. Dalton, “Effect of rigid bridge-protection units, quadrupolar interactions, and blending in organic electro-optic chromophores,” Chem. Mater. 29, 6457–6471 (2017).
[Crossref]

Capasso, F.

Chan, J.

J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478, 89–92 (2011).
[Crossref]

Chen, J.

D. Mason, J. Chen, M. Rossi, Y. Tsaturyan, and A. Schliesser, “Continuous force and displacement measurement below the standard quantum limit,” Nat. Phys. 15, 745–749 (2019).
[Crossref]

Chen, M.

H. A. Hafez, S. Kovalev, J.-C. Deinert, Z. Mics, B. Green, N. Awari, M. Chen, S. Germanskiy, U. Lehnert, J. Teichert, Z. Wang, K.-J. Tielrooij, Z. Liu, Z. Chen, A. Narita, K. Müllen, M. Bonn, M. Gensch, and D. Turchinovich, “Extremely efficient terahertz high-harmonic generation in graphene by hot Dirac fermions,” Nature 561, 507–511 (2018).
[Crossref]

Chen, Z.

H. A. Hafez, S. Kovalev, J.-C. Deinert, Z. Mics, B. Green, N. Awari, M. Chen, S. Germanskiy, U. Lehnert, J. Teichert, Z. Wang, K.-J. Tielrooij, Z. Liu, Z. Chen, A. Narita, K. Müllen, M. Bonn, M. Gensch, and D. Turchinovich, “Extremely efficient terahertz high-harmonic generation in graphene by hot Dirac fermions,” Nature 561, 507–511 (2018).
[Crossref]

Cheng, R.

L. Fan, C.-L. Zou, R. Cheng, X. Guo, X. Han, Z. Gong, S. Wang, and H. X. Tang, “Superconducting cavity electro-optics: a platform for coherent photon conversion between superconducting and photonic circuits,” Sci. Adv. 4, eaar4994 (2018).
[Crossref]

Chevalier, P.

Chia, C.

Ciuti, C.

G. L. Paravicini-Bagliani, F. Appugliese, E. Richter, F. Valmorra, J. Keller, M. Beck, N. Bartolo, C. Rössler, T. Ihn, K. Ensslin, C. Ciuti, G. Scalari, and J. Faist, “Magneto-transport controlled by Landau polariton states,” Nat. Phys. 15, 186–190 (2019).
[Crossref]

Clays, K.

H. Xu, F. Liu, D. L. Elder, L. E. Johnson, Y. de Coene, K. Clays, B. H. Robinson, and L. R. Dalton, “Ultrahigh electro-optic coefficients, high index of refraction, and long-term stability from Diels–Alder cross-linkable binary molecular glasses,” Chem. Mater. 32, 1408–1421 (2020).
[Crossref]

Cocker, T. L.

T. L. Cocker, D. Peller, P. Yu, J. Repp, and R. Huber, “Tracking the ultrafast motion of a single molecule by femtosecond orbital imaging,” Nature 539, 263–267 (2016).
[Crossref]

Dalton, L.

I.-C. Benea-Chelmus, T. Zhu, F. Settembrini, C. Bonzon, E. Mavrona, D. Elder, W. Heni, J. Leuthold, L. Dalton, and J. Faist, “Three-dimensional phase modulator at telecom wavelength acting as a terahertz detector with an electro-optic bandwidth of 1.25  terahertz,” ACS Photon. 5, 1398–1403 (2018).
[Crossref]

Dalton, L. R.

H. Xu, F. Liu, D. L. Elder, L. E. Johnson, Y. de Coene, K. Clays, B. H. Robinson, and L. R. Dalton, “Ultrahigh electro-optic coefficients, high index of refraction, and long-term stability from Diels–Alder cross-linkable binary molecular glasses,” Chem. Mater. 32, 1408–1421 (2020).
[Crossref]

M. Burla, C. Hoessbacher, W. Heni, C. Haffner, Y. Fedoryshyn, D. Werner, T. Watanabe, H. Massler, D. L. Elder, L. R. Dalton, and J. Leuthold, “500  GHz plasmonic Mach-Zehnder modulator enabling sub-THz microwave photonics,” APL Photon. 4, 056106 (2019).
[Crossref]

Y. Salamin, I.-C. Benea-Chelmus, Y. Fedoryshyn, W. Heni, D. L. Elder, L. R. Dalton, J. Faist, and J. Leuthold, “Compact and ultra-efficient broadband plasmonic terahertz field detector,” Nat. Commun. 10, 5550 (2019).
[Crossref]

B. H. Robinson, L. E. Johnson, D. L. Elder, A. A. Kocherzhenko, C. M. Isborn, C. Haffner, W. Heni, C. Hoessbacher, Y. Fedoryshyn, Y. Salamin, B. Baeuerle, A. Josten, M. Ayata, U. Koch, J. Leuthold, and L. R. Dalton, “Optimization of plasmonic-organic hybrid electro-optics,” J. Lightwave Technol. 36, 5036–5047 (2018).
[Crossref]

Y. Salamin, B. Baeuerle, W. Heni, F. C. Abrecht, A. Josten, Y. Fedoryshyn, C. Haffner, R. Bonjour, T. Watanabe, M. Burla, D. L. Elder, L. R. Dalton, and J. Leuthold, “Microwave plasmonic mixer in a transparent fibre–wireless link,” Nat. Photonics 12, 749–753 (2018).
[Crossref]

W. Heni, Y. Kutuvantavida, C. Haffner, H. Zwickel, C. Kieninger, S. Wolf, M. Lauermann, Y. Fedoryshyn, A. F. Tillack, L. E. Johnson, D. L. Elder, B. H. Robinson, W. Freude, C. Koos, J. Leuthold, and L. R. Dalton, “Silicon–organic and plasmonic–organic hybrid photonics,” ACS Photon. 4, 1576–1590 (2017).
[Crossref]

D. L. Elder, C. Haffner, W. Heni, Y. Fedoryshyn, K. E. Garrett, L. E. Johnson, R. A. Campbell, J. D. Avila, B. H. Robinson, J. Leuthold, and L. R. Dalton, “Effect of rigid bridge-protection units, quadrupolar interactions, and blending in organic electro-optic chromophores,” Chem. Mater. 29, 6457–6471 (2017).
[Crossref]

Y. Salamin, W. Heni, C. Haffner, Y. Fedoryshyn, C. Hoessbacher, R. Bonjour, M. Zahner, D. Hillerkuss, P. Leuchtmann, D. L. Elder, L. R. Dalton, C. Hafner, and J. Leuthold, “Direct conversion of free space millimeter waves to optical domain by plasmonic modulator antenna,” Nano Lett. 15, 8342–8346 (2015).
[Crossref]

de Coene, Y.

H. Xu, F. Liu, D. L. Elder, L. E. Johnson, Y. de Coene, K. Clays, B. H. Robinson, and L. R. Dalton, “Ultrahigh electro-optic coefficients, high index of refraction, and long-term stability from Diels–Alder cross-linkable binary molecular glasses,” Chem. Mater. 32, 1408–1421 (2020).
[Crossref]

De Liberato, S.

S. De Liberato, “Electro-optical sampling of quantum vacuum fluctuations in dispersive dielectrics,” Phys. Rev. A 100, 031801 (2019).
[Crossref]

Deinert, J.-C.

H. A. Hafez, S. Kovalev, J.-C. Deinert, Z. Mics, B. Green, N. Awari, M. Chen, S. Germanskiy, U. Lehnert, J. Teichert, Z. Wang, K.-J. Tielrooij, Z. Liu, Z. Chen, A. Narita, K. Müllen, M. Bonn, M. Gensch, and D. Turchinovich, “Extremely efficient terahertz high-harmonic generation in graphene by hot Dirac fermions,” Nature 561, 507–511 (2018).
[Crossref]

Delsing, P.

C. M. Wilson, G. Johansson, A. Pourkabirian, M. Simoen, J. R. Johansson, T. Duty, F. Nori, and P. Delsing, “Observation of the dynamical Casimir effect in a superconducting circuit,” Nature 479, 376–379 (2011).
[Crossref]

Donner, T.

F. Brennecke, S. Ritter, T. Donner, and T. Esslinger, “Cavity optomechanics with a Bose-Einstein condensate,” Science 322, 235–238 (2008).
[Crossref]

Duty, T.

C. M. Wilson, G. Johansson, A. Pourkabirian, M. Simoen, J. R. Johansson, T. Duty, F. Nori, and P. Delsing, “Observation of the dynamical Casimir effect in a superconducting circuit,” Nature 479, 376–379 (2011).
[Crossref]

Ebnet, T.

S. Schlauderer, C. Lange, S. Baierl, T. Ebnet, C. P. Schmid, D. C. Valovcin, A. K. Zvezdin, A. V. Kimel, R. V. Mikhaylovskiy, and R. Huber, “Temporal and spectral fingerprints of ultrafast all-coherent spin switching,” Nature 569, 383–387 (2019).
[Crossref]

Eckart, S.

C. Riek, D. V. Seletskiy, A. S. Moskalenko, J. F. Schmidt, P. Krauspe, S. Eckart, S. Eggert, G. Burkard, and A. Leitenstorfer, “Direct sampling of electric-field vacuum fluctuations,” Science 350, 420–423 (2015).
[Crossref]

Eggert, S.

C. Riek, D. V. Seletskiy, A. S. Moskalenko, J. F. Schmidt, P. Krauspe, S. Eckart, S. Eggert, G. Burkard, and A. Leitenstorfer, “Direct sampling of electric-field vacuum fluctuations,” Science 350, 420–423 (2015).
[Crossref]

Elder, D.

I.-C. Benea-Chelmus, T. Zhu, F. Settembrini, C. Bonzon, E. Mavrona, D. Elder, W. Heni, J. Leuthold, L. Dalton, and J. Faist, “Three-dimensional phase modulator at telecom wavelength acting as a terahertz detector with an electro-optic bandwidth of 1.25  terahertz,” ACS Photon. 5, 1398–1403 (2018).
[Crossref]

Elder, D. L.

H. Xu, F. Liu, D. L. Elder, L. E. Johnson, Y. de Coene, K. Clays, B. H. Robinson, and L. R. Dalton, “Ultrahigh electro-optic coefficients, high index of refraction, and long-term stability from Diels–Alder cross-linkable binary molecular glasses,” Chem. Mater. 32, 1408–1421 (2020).
[Crossref]

Y. Salamin, I.-C. Benea-Chelmus, Y. Fedoryshyn, W. Heni, D. L. Elder, L. R. Dalton, J. Faist, and J. Leuthold, “Compact and ultra-efficient broadband plasmonic terahertz field detector,” Nat. Commun. 10, 5550 (2019).
[Crossref]

M. Burla, C. Hoessbacher, W. Heni, C. Haffner, Y. Fedoryshyn, D. Werner, T. Watanabe, H. Massler, D. L. Elder, L. R. Dalton, and J. Leuthold, “500  GHz plasmonic Mach-Zehnder modulator enabling sub-THz microwave photonics,” APL Photon. 4, 056106 (2019).
[Crossref]

Y. Salamin, B. Baeuerle, W. Heni, F. C. Abrecht, A. Josten, Y. Fedoryshyn, C. Haffner, R. Bonjour, T. Watanabe, M. Burla, D. L. Elder, L. R. Dalton, and J. Leuthold, “Microwave plasmonic mixer in a transparent fibre–wireless link,” Nat. Photonics 12, 749–753 (2018).
[Crossref]

B. H. Robinson, L. E. Johnson, D. L. Elder, A. A. Kocherzhenko, C. M. Isborn, C. Haffner, W. Heni, C. Hoessbacher, Y. Fedoryshyn, Y. Salamin, B. Baeuerle, A. Josten, M. Ayata, U. Koch, J. Leuthold, and L. R. Dalton, “Optimization of plasmonic-organic hybrid electro-optics,” J. Lightwave Technol. 36, 5036–5047 (2018).
[Crossref]

W. Heni, Y. Kutuvantavida, C. Haffner, H. Zwickel, C. Kieninger, S. Wolf, M. Lauermann, Y. Fedoryshyn, A. F. Tillack, L. E. Johnson, D. L. Elder, B. H. Robinson, W. Freude, C. Koos, J. Leuthold, and L. R. Dalton, “Silicon–organic and plasmonic–organic hybrid photonics,” ACS Photon. 4, 1576–1590 (2017).
[Crossref]

D. L. Elder, C. Haffner, W. Heni, Y. Fedoryshyn, K. E. Garrett, L. E. Johnson, R. A. Campbell, J. D. Avila, B. H. Robinson, J. Leuthold, and L. R. Dalton, “Effect of rigid bridge-protection units, quadrupolar interactions, and blending in organic electro-optic chromophores,” Chem. Mater. 29, 6457–6471 (2017).
[Crossref]

Y. Salamin, W. Heni, C. Haffner, Y. Fedoryshyn, C. Hoessbacher, R. Bonjour, M. Zahner, D. Hillerkuss, P. Leuchtmann, D. L. Elder, L. R. Dalton, C. Hafner, and J. Leuthold, “Direct conversion of free space millimeter waves to optical domain by plasmonic modulator antenna,” Nano Lett. 15, 8342–8346 (2015).
[Crossref]

Ensslin, K.

G. L. Paravicini-Bagliani, F. Appugliese, E. Richter, F. Valmorra, J. Keller, M. Beck, N. Bartolo, C. Rössler, T. Ihn, K. Ensslin, C. Ciuti, G. Scalari, and J. Faist, “Magneto-transport controlled by Landau polariton states,” Nat. Phys. 15, 186–190 (2019).
[Crossref]

Esslinger, T.

F. Brennecke, S. Ritter, T. Donner, and T. Esslinger, “Cavity optomechanics with a Bose-Einstein condensate,” Science 322, 235–238 (2008).
[Crossref]

Faist, J.

I.-C. Benea-Chelmus, F. Settembrini, G. Scalari, and J. Faist, “Electric field correlation measurements on the electromagnetic vacuum state,” Nature 568, 202–206 (2019).
[Crossref]

G. L. Paravicini-Bagliani, F. Appugliese, E. Richter, F. Valmorra, J. Keller, M. Beck, N. Bartolo, C. Rössler, T. Ihn, K. Ensslin, C. Ciuti, G. Scalari, and J. Faist, “Magneto-transport controlled by Landau polariton states,” Nat. Phys. 15, 186–190 (2019).
[Crossref]

Y. Salamin, I.-C. Benea-Chelmus, Y. Fedoryshyn, W. Heni, D. L. Elder, L. R. Dalton, J. Faist, and J. Leuthold, “Compact and ultra-efficient broadband plasmonic terahertz field detector,” Nat. Commun. 10, 5550 (2019).
[Crossref]

I.-C. Benea-Chelmus, T. Zhu, F. Settembrini, C. Bonzon, E. Mavrona, D. Elder, W. Heni, J. Leuthold, L. Dalton, and J. Faist, “Three-dimensional phase modulator at telecom wavelength acting as a terahertz detector with an electro-optic bandwidth of 1.25  terahertz,” ACS Photon. 5, 1398–1403 (2018).
[Crossref]

I.-C. Benea-Chelmus, M. Rösch, G. Scalari, M. Beck, and J. Faist, “Intensity autocorrelation measurements of frequency combs in the terahertz range,” Phys. Rev. A 96, 033821 (2017).
[Crossref]

I.-C. Benea-Chelmus, C. Bonzon, C. Maissen, G. Scalari, M. Beck, and J. Faist, “Subcycle measurement of intensity correlations in the terahertz frequency range,” Phys. Rev. A 93, 043812 (2016).
[Crossref]

Fan, L.

L. Fan, C.-L. Zou, R. Cheng, X. Guo, X. Han, Z. Gong, S. Wang, and H. X. Tang, “Superconducting cavity electro-optics: a platform for coherent photon conversion between superconducting and photonic circuits,” Sci. Adv. 4, eaar4994 (2018).
[Crossref]

Fan, S.

Q. Sun, Y. He, K. Liu, S. Fan, E. P. J. Parrott, and E. Pickwell-MacPherson, “Recent advances in terahertz technology for biomedical applications,” Quant. Imaging Med. Surg. 7, 345–355 (2017).
[Crossref]

Fedoryshyn, Y.

Y. Salamin, I.-C. Benea-Chelmus, Y. Fedoryshyn, W. Heni, D. L. Elder, L. R. Dalton, J. Faist, and J. Leuthold, “Compact and ultra-efficient broadband plasmonic terahertz field detector,” Nat. Commun. 10, 5550 (2019).
[Crossref]

M. Burla, C. Hoessbacher, W. Heni, C. Haffner, Y. Fedoryshyn, D. Werner, T. Watanabe, H. Massler, D. L. Elder, L. R. Dalton, and J. Leuthold, “500  GHz plasmonic Mach-Zehnder modulator enabling sub-THz microwave photonics,” APL Photon. 4, 056106 (2019).
[Crossref]

B. H. Robinson, L. E. Johnson, D. L. Elder, A. A. Kocherzhenko, C. M. Isborn, C. Haffner, W. Heni, C. Hoessbacher, Y. Fedoryshyn, Y. Salamin, B. Baeuerle, A. Josten, M. Ayata, U. Koch, J. Leuthold, and L. R. Dalton, “Optimization of plasmonic-organic hybrid electro-optics,” J. Lightwave Technol. 36, 5036–5047 (2018).
[Crossref]

Y. Salamin, B. Baeuerle, W. Heni, F. C. Abrecht, A. Josten, Y. Fedoryshyn, C. Haffner, R. Bonjour, T. Watanabe, M. Burla, D. L. Elder, L. R. Dalton, and J. Leuthold, “Microwave plasmonic mixer in a transparent fibre–wireless link,” Nat. Photonics 12, 749–753 (2018).
[Crossref]

T. Watanabe, M. Ayata, U. Koch, Y. Fedoryshyn, and J. Leuthold, “Perpendicular grating coupler based on a blazed antiback-reflection structure,” J. Lightwave Technol. 35, 4663–4669 (2017).
[Crossref]

W. Heni, Y. Kutuvantavida, C. Haffner, H. Zwickel, C. Kieninger, S. Wolf, M. Lauermann, Y. Fedoryshyn, A. F. Tillack, L. E. Johnson, D. L. Elder, B. H. Robinson, W. Freude, C. Koos, J. Leuthold, and L. R. Dalton, “Silicon–organic and plasmonic–organic hybrid photonics,” ACS Photon. 4, 1576–1590 (2017).
[Crossref]

D. L. Elder, C. Haffner, W. Heni, Y. Fedoryshyn, K. E. Garrett, L. E. Johnson, R. A. Campbell, J. D. Avila, B. H. Robinson, J. Leuthold, and L. R. Dalton, “Effect of rigid bridge-protection units, quadrupolar interactions, and blending in organic electro-optic chromophores,” Chem. Mater. 29, 6457–6471 (2017).
[Crossref]

Y. Salamin, W. Heni, C. Haffner, Y. Fedoryshyn, C. Hoessbacher, R. Bonjour, M. Zahner, D. Hillerkuss, P. Leuchtmann, D. L. Elder, L. R. Dalton, C. Hafner, and J. Leuthold, “Direct conversion of free space millimeter waves to optical domain by plasmonic modulator antenna,” Nano Lett. 15, 8342–8346 (2015).
[Crossref]

Feofanov, A. K.

C. Javerzac-Galy, K. Plekhanov, N. R. Bernier, L. D. Toth, A. K. Feofanov, and T. J. Kippenberg, “On-chip microwave-to-optical quantum coherent converter based on a superconducting resonator coupled to an electro-optic microresonator,” Phys. Rev. A 94, 053815 (2016).
[Crossref]

Fink, J. M.

A. Rueda, W. Hease, S. Barzanjeh, and J. M. Fink, “Electro-optic entanglement source for microwave to telecom quantum state transfer,” npj Quantum Inf. 5, 108 (2019).
[Crossref]

Fiore, A.

M. Forsch, R. Stockill, A. Wallucks, I. Marinković, C. Gärtner, R. A. Norte, F. van Otten, A. Fiore, K. Srinivasan, and S. Gröblacher, “Microwave-to-optics conversion using a mechanical oscillator in its quantum ground state,” Nat. Phys. 16, 69–74 (2020).
[Crossref]

Fischer, B. M.

Forsch, M.

M. Forsch, R. Stockill, A. Wallucks, I. Marinković, C. Gärtner, R. A. Norte, F. van Otten, A. Fiore, K. Srinivasan, and S. Gröblacher, “Microwave-to-optics conversion using a mechanical oscillator in its quantum ground state,” Nat. Phys. 16, 69–74 (2020).
[Crossref]

Freude, W.

W. Heni, Y. Kutuvantavida, C. Haffner, H. Zwickel, C. Kieninger, S. Wolf, M. Lauermann, Y. Fedoryshyn, A. F. Tillack, L. E. Johnson, D. L. Elder, B. H. Robinson, W. Freude, C. Koos, J. Leuthold, and L. R. Dalton, “Silicon–organic and plasmonic–organic hybrid photonics,” ACS Photon. 4, 1576–1590 (2017).
[Crossref]

Fumeaux, C.

Garrett, K. E.

D. L. Elder, C. Haffner, W. Heni, Y. Fedoryshyn, K. E. Garrett, L. E. Johnson, R. A. Campbell, J. D. Avila, B. H. Robinson, J. Leuthold, and L. R. Dalton, “Effect of rigid bridge-protection units, quadrupolar interactions, and blending in organic electro-optic chromophores,” Chem. Mater. 29, 6457–6471 (2017).
[Crossref]

Gärtner, C.

M. Forsch, R. Stockill, A. Wallucks, I. Marinković, C. Gärtner, R. A. Norte, F. van Otten, A. Fiore, K. Srinivasan, and S. Gröblacher, “Microwave-to-optics conversion using a mechanical oscillator in its quantum ground state,” Nat. Phys. 16, 69–74 (2020).
[Crossref]

Gensch, M.

H. A. Hafez, S. Kovalev, J.-C. Deinert, Z. Mics, B. Green, N. Awari, M. Chen, S. Germanskiy, U. Lehnert, J. Teichert, Z. Wang, K.-J. Tielrooij, Z. Liu, Z. Chen, A. Narita, K. Müllen, M. Bonn, M. Gensch, and D. Turchinovich, “Extremely efficient terahertz high-harmonic generation in graphene by hot Dirac fermions,” Nature 561, 507–511 (2018).
[Crossref]

Germanskiy, S.

H. A. Hafez, S. Kovalev, J.-C. Deinert, Z. Mics, B. Green, N. Awari, M. Chen, S. Germanskiy, U. Lehnert, J. Teichert, Z. Wang, K.-J. Tielrooij, Z. Liu, Z. Chen, A. Narita, K. Müllen, M. Bonn, M. Gensch, and D. Turchinovich, “Extremely efficient terahertz high-harmonic generation in graphene by hot Dirac fermions,” Nature 561, 507–511 (2018).
[Crossref]

Gong, Z.

L. Fan, C.-L. Zou, R. Cheng, X. Guo, X. Han, Z. Gong, S. Wang, and H. X. Tang, “Superconducting cavity electro-optics: a platform for coherent photon conversion between superconducting and photonic circuits,” Sci. Adv. 4, eaar4994 (2018).
[Crossref]

Green, B.

H. A. Hafez, S. Kovalev, J.-C. Deinert, Z. Mics, B. Green, N. Awari, M. Chen, S. Germanskiy, U. Lehnert, J. Teichert, Z. Wang, K.-J. Tielrooij, Z. Liu, Z. Chen, A. Narita, K. Müllen, M. Bonn, M. Gensch, and D. Turchinovich, “Extremely efficient terahertz high-harmonic generation in graphene by hot Dirac fermions,” Nature 561, 507–511 (2018).
[Crossref]

Gröblacher, S.

M. Forsch, R. Stockill, A. Wallucks, I. Marinković, C. Gärtner, R. A. Norte, F. van Otten, A. Fiore, K. Srinivasan, and S. Gröblacher, “Microwave-to-optics conversion using a mechanical oscillator in its quantum ground state,” Nat. Phys. 16, 69–74 (2020).
[Crossref]

J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478, 89–92 (2011).
[Crossref]

Groma, G. I.

G. I. Groma, J. Hebling, I. Z. Kozma, G. Varo, J. Hauer, J. Kuhl, and E. Riedle, “Terahertz radiation from bacteriorhodopsin reveals correlated primary electron and proton transfer processes,” Proc. Natl. Acad. Sci. USA 105, 6888–6893 (2008).
[Crossref]

Guedes, T. L. M.

P. Sulzer, K. Oguchi, J. Huster, M. Kizmann, T. L. M. Guedes, A. Liehl, C. Beckh, A. S. Moskalenko, G. Burkard, D. V. Seletskiy, and A. Leitenstorfer, “Determination of the electric field and its Hilbert transform in femtosecond electro-optic sampling,” Phys. Rev. A 101, 033821 (2020).
[Crossref]

Guo, X.

L. Fan, C.-L. Zou, R. Cheng, X. Guo, X. Han, Z. Gong, S. Wang, and H. X. Tang, “Superconducting cavity electro-optics: a platform for coherent photon conversion between superconducting and photonic circuits,” Sci. Adv. 4, eaar4994 (2018).
[Crossref]

Hafez, H. A.

H. A. Hafez, S. Kovalev, J.-C. Deinert, Z. Mics, B. Green, N. Awari, M. Chen, S. Germanskiy, U. Lehnert, J. Teichert, Z. Wang, K.-J. Tielrooij, Z. Liu, Z. Chen, A. Narita, K. Müllen, M. Bonn, M. Gensch, and D. Turchinovich, “Extremely efficient terahertz high-harmonic generation in graphene by hot Dirac fermions,” Nature 561, 507–511 (2018).
[Crossref]

Haffner, C.

M. Burla, C. Hoessbacher, W. Heni, C. Haffner, Y. Fedoryshyn, D. Werner, T. Watanabe, H. Massler, D. L. Elder, L. R. Dalton, and J. Leuthold, “500  GHz plasmonic Mach-Zehnder modulator enabling sub-THz microwave photonics,” APL Photon. 4, 056106 (2019).
[Crossref]

B. H. Robinson, L. E. Johnson, D. L. Elder, A. A. Kocherzhenko, C. M. Isborn, C. Haffner, W. Heni, C. Hoessbacher, Y. Fedoryshyn, Y. Salamin, B. Baeuerle, A. Josten, M. Ayata, U. Koch, J. Leuthold, and L. R. Dalton, “Optimization of plasmonic-organic hybrid electro-optics,” J. Lightwave Technol. 36, 5036–5047 (2018).
[Crossref]

Y. Salamin, B. Baeuerle, W. Heni, F. C. Abrecht, A. Josten, Y. Fedoryshyn, C. Haffner, R. Bonjour, T. Watanabe, M. Burla, D. L. Elder, L. R. Dalton, and J. Leuthold, “Microwave plasmonic mixer in a transparent fibre–wireless link,” Nat. Photonics 12, 749–753 (2018).
[Crossref]

W. Heni, Y. Kutuvantavida, C. Haffner, H. Zwickel, C. Kieninger, S. Wolf, M. Lauermann, Y. Fedoryshyn, A. F. Tillack, L. E. Johnson, D. L. Elder, B. H. Robinson, W. Freude, C. Koos, J. Leuthold, and L. R. Dalton, “Silicon–organic and plasmonic–organic hybrid photonics,” ACS Photon. 4, 1576–1590 (2017).
[Crossref]

D. L. Elder, C. Haffner, W. Heni, Y. Fedoryshyn, K. E. Garrett, L. E. Johnson, R. A. Campbell, J. D. Avila, B. H. Robinson, J. Leuthold, and L. R. Dalton, “Effect of rigid bridge-protection units, quadrupolar interactions, and blending in organic electro-optic chromophores,” Chem. Mater. 29, 6457–6471 (2017).
[Crossref]

Y. Salamin, W. Heni, C. Haffner, Y. Fedoryshyn, C. Hoessbacher, R. Bonjour, M. Zahner, D. Hillerkuss, P. Leuchtmann, D. L. Elder, L. R. Dalton, C. Hafner, and J. Leuthold, “Direct conversion of free space millimeter waves to optical domain by plasmonic modulator antenna,” Nano Lett. 15, 8342–8346 (2015).
[Crossref]

Hafner, C.

Y. Salamin, W. Heni, C. Haffner, Y. Fedoryshyn, C. Hoessbacher, R. Bonjour, M. Zahner, D. Hillerkuss, P. Leuchtmann, D. L. Elder, L. R. Dalton, C. Hafner, and J. Leuthold, “Direct conversion of free space millimeter waves to optical domain by plasmonic modulator antenna,” Nano Lett. 15, 8342–8346 (2015).
[Crossref]

Han, X.

L. Fan, C.-L. Zou, R. Cheng, X. Guo, X. Han, Z. Gong, S. Wang, and H. X. Tang, “Superconducting cavity electro-optics: a platform for coherent photon conversion between superconducting and photonic circuits,” Sci. Adv. 4, eaar4994 (2018).
[Crossref]

Hauer, J.

G. I. Groma, J. Hebling, I. Z. Kozma, G. Varo, J. Hauer, J. Kuhl, and E. Riedle, “Terahertz radiation from bacteriorhodopsin reveals correlated primary electron and proton transfer processes,” Proc. Natl. Acad. Sci. USA 105, 6888–6893 (2008).
[Crossref]

He, Y.

Q. Sun, Y. He, K. Liu, S. Fan, E. P. J. Parrott, and E. Pickwell-MacPherson, “Recent advances in terahertz technology for biomedical applications,” Quant. Imaging Med. Surg. 7, 345–355 (2017).
[Crossref]

Hease, W.

A. Rueda, W. Hease, S. Barzanjeh, and J. M. Fink, “Electro-optic entanglement source for microwave to telecom quantum state transfer,” npj Quantum Inf. 5, 108 (2019).
[Crossref]

Hebling, J.

G. I. Groma, J. Hebling, I. Z. Kozma, G. Varo, J. Hauer, J. Kuhl, and E. Riedle, “Terahertz radiation from bacteriorhodopsin reveals correlated primary electron and proton transfer processes,” Proc. Natl. Acad. Sci. USA 105, 6888–6893 (2008).
[Crossref]

Heni, W.

M. Burla, C. Hoessbacher, W. Heni, C. Haffner, Y. Fedoryshyn, D. Werner, T. Watanabe, H. Massler, D. L. Elder, L. R. Dalton, and J. Leuthold, “500  GHz plasmonic Mach-Zehnder modulator enabling sub-THz microwave photonics,” APL Photon. 4, 056106 (2019).
[Crossref]

Y. Salamin, I.-C. Benea-Chelmus, Y. Fedoryshyn, W. Heni, D. L. Elder, L. R. Dalton, J. Faist, and J. Leuthold, “Compact and ultra-efficient broadband plasmonic terahertz field detector,” Nat. Commun. 10, 5550 (2019).
[Crossref]

B. H. Robinson, L. E. Johnson, D. L. Elder, A. A. Kocherzhenko, C. M. Isborn, C. Haffner, W. Heni, C. Hoessbacher, Y. Fedoryshyn, Y. Salamin, B. Baeuerle, A. Josten, M. Ayata, U. Koch, J. Leuthold, and L. R. Dalton, “Optimization of plasmonic-organic hybrid electro-optics,” J. Lightwave Technol. 36, 5036–5047 (2018).
[Crossref]

Y. Salamin, B. Baeuerle, W. Heni, F. C. Abrecht, A. Josten, Y. Fedoryshyn, C. Haffner, R. Bonjour, T. Watanabe, M. Burla, D. L. Elder, L. R. Dalton, and J. Leuthold, “Microwave plasmonic mixer in a transparent fibre–wireless link,” Nat. Photonics 12, 749–753 (2018).
[Crossref]

I.-C. Benea-Chelmus, T. Zhu, F. Settembrini, C. Bonzon, E. Mavrona, D. Elder, W. Heni, J. Leuthold, L. Dalton, and J. Faist, “Three-dimensional phase modulator at telecom wavelength acting as a terahertz detector with an electro-optic bandwidth of 1.25  terahertz,” ACS Photon. 5, 1398–1403 (2018).
[Crossref]

D. L. Elder, C. Haffner, W. Heni, Y. Fedoryshyn, K. E. Garrett, L. E. Johnson, R. A. Campbell, J. D. Avila, B. H. Robinson, J. Leuthold, and L. R. Dalton, “Effect of rigid bridge-protection units, quadrupolar interactions, and blending in organic electro-optic chromophores,” Chem. Mater. 29, 6457–6471 (2017).
[Crossref]

W. Heni, Y. Kutuvantavida, C. Haffner, H. Zwickel, C. Kieninger, S. Wolf, M. Lauermann, Y. Fedoryshyn, A. F. Tillack, L. E. Johnson, D. L. Elder, B. H. Robinson, W. Freude, C. Koos, J. Leuthold, and L. R. Dalton, “Silicon–organic and plasmonic–organic hybrid photonics,” ACS Photon. 4, 1576–1590 (2017).
[Crossref]

Y. Salamin, W. Heni, C. Haffner, Y. Fedoryshyn, C. Hoessbacher, R. Bonjour, M. Zahner, D. Hillerkuss, P. Leuchtmann, D. L. Elder, L. R. Dalton, C. Hafner, and J. Leuthold, “Direct conversion of free space millimeter waves to optical domain by plasmonic modulator antenna,” Nano Lett. 15, 8342–8346 (2015).
[Crossref]

Herman, W. N.

D. H. Park, V. Yun, J. Luo, A. K. Jen, and W. N. Herman, “EO polymer at cryogenic temperatures,” Electron. Lett. 52, 1703–1705 (2016).
[Crossref]

Hill, J. T.

J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478, 89–92 (2011).
[Crossref]

Hillerkuss, D.

Y. Salamin, W. Heni, C. Haffner, Y. Fedoryshyn, C. Hoessbacher, R. Bonjour, M. Zahner, D. Hillerkuss, P. Leuchtmann, D. L. Elder, L. R. Dalton, C. Hafner, and J. Leuthold, “Direct conversion of free space millimeter waves to optical domain by plasmonic modulator antenna,” Nano Lett. 15, 8342–8346 (2015).
[Crossref]

Hoessbacher, C.

M. Burla, C. Hoessbacher, W. Heni, C. Haffner, Y. Fedoryshyn, D. Werner, T. Watanabe, H. Massler, D. L. Elder, L. R. Dalton, and J. Leuthold, “500  GHz plasmonic Mach-Zehnder modulator enabling sub-THz microwave photonics,” APL Photon. 4, 056106 (2019).
[Crossref]

B. H. Robinson, L. E. Johnson, D. L. Elder, A. A. Kocherzhenko, C. M. Isborn, C. Haffner, W. Heni, C. Hoessbacher, Y. Fedoryshyn, Y. Salamin, B. Baeuerle, A. Josten, M. Ayata, U. Koch, J. Leuthold, and L. R. Dalton, “Optimization of plasmonic-organic hybrid electro-optics,” J. Lightwave Technol. 36, 5036–5047 (2018).
[Crossref]

Y. Salamin, W. Heni, C. Haffner, Y. Fedoryshyn, C. Hoessbacher, R. Bonjour, M. Zahner, D. Hillerkuss, P. Leuchtmann, D. L. Elder, L. R. Dalton, C. Hafner, and J. Leuthold, “Direct conversion of free space millimeter waves to optical domain by plasmonic modulator antenna,” Nano Lett. 15, 8342–8346 (2015).
[Crossref]

Hossain, Z.

J. Ma, R. Shrestha, J. Adelberg, C.-Y. Yeh, Z. Hossain, E. Knightly, J. M. Jornet, and D. M. Mittleman, “Security and eavesdropping in terahertz wireless links,” Nature 563, 89–93 (2018).
[Crossref]

Huber, R.

S. Schlauderer, C. Lange, S. Baierl, T. Ebnet, C. P. Schmid, D. C. Valovcin, A. K. Zvezdin, A. V. Kimel, R. V. Mikhaylovskiy, and R. Huber, “Temporal and spectral fingerprints of ultrafast all-coherent spin switching,” Nature 569, 383–387 (2019).
[Crossref]

T. L. Cocker, D. Peller, P. Yu, J. Repp, and R. Huber, “Tracking the ultrafast motion of a single molecule by femtosecond orbital imaging,” Nature 539, 263–267 (2016).
[Crossref]

Hunsche, S.

S. Hunsche, M. Koch, I. Brener, and M. Nuss, “THz near-field imaging,” Opt. Commun. 150, 22–26 (1998).
[Crossref]

Huster, J.

P. Sulzer, K. Oguchi, J. Huster, M. Kizmann, T. L. M. Guedes, A. Liehl, C. Beckh, A. S. Moskalenko, G. Burkard, D. V. Seletskiy, and A. Leitenstorfer, “Determination of the electric field and its Hilbert transform in femtosecond electro-optic sampling,” Phys. Rev. A 101, 033821 (2020).
[Crossref]

Ihn, T.

G. L. Paravicini-Bagliani, F. Appugliese, E. Richter, F. Valmorra, J. Keller, M. Beck, N. Bartolo, C. Rössler, T. Ihn, K. Ensslin, C. Ciuti, G. Scalari, and J. Faist, “Magneto-transport controlled by Landau polariton states,” Nat. Phys. 15, 186–190 (2019).
[Crossref]

Isborn, C. M.

Javerzac-Galy, C.

C. Javerzac-Galy, K. Plekhanov, N. R. Bernier, L. D. Toth, A. K. Feofanov, and T. J. Kippenberg, “On-chip microwave-to-optical quantum coherent converter based on a superconducting resonator coupled to an electro-optic microresonator,” Phys. Rev. A 94, 053815 (2016).
[Crossref]

Jen, A. K.

D. H. Park, V. Yun, J. Luo, A. K. Jen, and W. N. Herman, “EO polymer at cryogenic temperatures,” Electron. Lett. 52, 1703–1705 (2016).
[Crossref]

Johansson, G.

C. M. Wilson, G. Johansson, A. Pourkabirian, M. Simoen, J. R. Johansson, T. Duty, F. Nori, and P. Delsing, “Observation of the dynamical Casimir effect in a superconducting circuit,” Nature 479, 376–379 (2011).
[Crossref]

Johansson, J. R.

C. M. Wilson, G. Johansson, A. Pourkabirian, M. Simoen, J. R. Johansson, T. Duty, F. Nori, and P. Delsing, “Observation of the dynamical Casimir effect in a superconducting circuit,” Nature 479, 376–379 (2011).
[Crossref]

Johnson, L. E.

H. Xu, F. Liu, D. L. Elder, L. E. Johnson, Y. de Coene, K. Clays, B. H. Robinson, and L. R. Dalton, “Ultrahigh electro-optic coefficients, high index of refraction, and long-term stability from Diels–Alder cross-linkable binary molecular glasses,” Chem. Mater. 32, 1408–1421 (2020).
[Crossref]

B. H. Robinson, L. E. Johnson, D. L. Elder, A. A. Kocherzhenko, C. M. Isborn, C. Haffner, W. Heni, C. Hoessbacher, Y. Fedoryshyn, Y. Salamin, B. Baeuerle, A. Josten, M. Ayata, U. Koch, J. Leuthold, and L. R. Dalton, “Optimization of plasmonic-organic hybrid electro-optics,” J. Lightwave Technol. 36, 5036–5047 (2018).
[Crossref]

W. Heni, Y. Kutuvantavida, C. Haffner, H. Zwickel, C. Kieninger, S. Wolf, M. Lauermann, Y. Fedoryshyn, A. F. Tillack, L. E. Johnson, D. L. Elder, B. H. Robinson, W. Freude, C. Koos, J. Leuthold, and L. R. Dalton, “Silicon–organic and plasmonic–organic hybrid photonics,” ACS Photon. 4, 1576–1590 (2017).
[Crossref]

D. L. Elder, C. Haffner, W. Heni, Y. Fedoryshyn, K. E. Garrett, L. E. Johnson, R. A. Campbell, J. D. Avila, B. H. Robinson, J. Leuthold, and L. R. Dalton, “Effect of rigid bridge-protection units, quadrupolar interactions, and blending in organic electro-optic chromophores,” Chem. Mater. 29, 6457–6471 (2017).
[Crossref]

Jornet, J. M.

J. Ma, R. Shrestha, J. Adelberg, C.-Y. Yeh, Z. Hossain, E. Knightly, J. M. Jornet, and D. M. Mittleman, “Security and eavesdropping in terahertz wireless links,” Nature 563, 89–93 (2018).
[Crossref]

Josten, A.

B. H. Robinson, L. E. Johnson, D. L. Elder, A. A. Kocherzhenko, C. M. Isborn, C. Haffner, W. Heni, C. Hoessbacher, Y. Fedoryshyn, Y. Salamin, B. Baeuerle, A. Josten, M. Ayata, U. Koch, J. Leuthold, and L. R. Dalton, “Optimization of plasmonic-organic hybrid electro-optics,” J. Lightwave Technol. 36, 5036–5047 (2018).
[Crossref]

Y. Salamin, B. Baeuerle, W. Heni, F. C. Abrecht, A. Josten, Y. Fedoryshyn, C. Haffner, R. Bonjour, T. Watanabe, M. Burla, D. L. Elder, L. R. Dalton, and J. Leuthold, “Microwave plasmonic mixer in a transparent fibre–wireless link,” Nat. Photonics 12, 749–753 (2018).
[Crossref]

Kahn, J. M.

M. Zhang, B. Buscaino, C. Wang, A. Shams-Ansari, C. Reimer, R. Zhu, J. M. Kahn, and M. Lončar, “Broadband electro-optic frequency comb generation in a lithium niobate microring resonator,” Nature 568, 373–377 (2019).
[Crossref]

Kaltenecker, K.

Kazakov, D.

Keller, J.

G. L. Paravicini-Bagliani, F. Appugliese, E. Richter, F. Valmorra, J. Keller, M. Beck, N. Bartolo, C. Rössler, T. Ihn, K. Ensslin, C. Ciuti, G. Scalari, and J. Faist, “Magneto-transport controlled by Landau polariton states,” Nat. Phys. 15, 186–190 (2019).
[Crossref]

Kieninger, C.

W. Heni, Y. Kutuvantavida, C. Haffner, H. Zwickel, C. Kieninger, S. Wolf, M. Lauermann, Y. Fedoryshyn, A. F. Tillack, L. E. Johnson, D. L. Elder, B. H. Robinson, W. Freude, C. Koos, J. Leuthold, and L. R. Dalton, “Silicon–organic and plasmonic–organic hybrid photonics,” ACS Photon. 4, 1576–1590 (2017).
[Crossref]

Kimel, A. V.

S. Schlauderer, C. Lange, S. Baierl, T. Ebnet, C. P. Schmid, D. C. Valovcin, A. K. Zvezdin, A. V. Kimel, R. V. Mikhaylovskiy, and R. Huber, “Temporal and spectral fingerprints of ultrafast all-coherent spin switching,” Nature 569, 383–387 (2019).
[Crossref]

Kippenberg, T. J.

C. Javerzac-Galy, K. Plekhanov, N. R. Bernier, L. D. Toth, A. K. Feofanov, and T. J. Kippenberg, “On-chip microwave-to-optical quantum coherent converter based on a superconducting resonator coupled to an electro-optic microresonator,” Phys. Rev. A 94, 053815 (2016).
[Crossref]

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86, 1391–1452 (2014).
[Crossref]

Kizmann, M.

P. Sulzer, K. Oguchi, J. Huster, M. Kizmann, T. L. M. Guedes, A. Liehl, C. Beckh, A. S. Moskalenko, G. Burkard, D. V. Seletskiy, and A. Leitenstorfer, “Determination of the electric field and its Hilbert transform in femtosecond electro-optic sampling,” Phys. Rev. A 101, 033821 (2020).
[Crossref]

Knightly, E.

J. Ma, R. Shrestha, J. Adelberg, C.-Y. Yeh, Z. Hossain, E. Knightly, J. M. Jornet, and D. M. Mittleman, “Security and eavesdropping in terahertz wireless links,” Nature 563, 89–93 (2018).
[Crossref]

Knittel, V.

T. Rybka, M. Ludwig, M. F. Schmalz, V. Knittel, D. Brida, and A. Leitenstorfer, “Sub-cycle optical phase control of nanotunnelling in the single-electron regime,” Nat. Photonics 10, 667–670 (2016).
[Crossref]

Koch, M.

S. Hunsche, M. Koch, I. Brener, and M. Nuss, “THz near-field imaging,” Opt. Commun. 150, 22–26 (1998).
[Crossref]

Koch, U.

Kocherzhenko, A. A.

Koos, C.

W. Heni, Y. Kutuvantavida, C. Haffner, H. Zwickel, C. Kieninger, S. Wolf, M. Lauermann, Y. Fedoryshyn, A. F. Tillack, L. E. Johnson, D. L. Elder, B. H. Robinson, W. Freude, C. Koos, J. Leuthold, and L. R. Dalton, “Silicon–organic and plasmonic–organic hybrid photonics,” ACS Photon. 4, 1576–1590 (2017).
[Crossref]

Kovalev, S.

H. A. Hafez, S. Kovalev, J.-C. Deinert, Z. Mics, B. Green, N. Awari, M. Chen, S. Germanskiy, U. Lehnert, J. Teichert, Z. Wang, K.-J. Tielrooij, Z. Liu, Z. Chen, A. Narita, K. Müllen, M. Bonn, M. Gensch, and D. Turchinovich, “Extremely efficient terahertz high-harmonic generation in graphene by hot Dirac fermions,” Nature 561, 507–511 (2018).
[Crossref]

Kozma, I. Z.

G. I. Groma, J. Hebling, I. Z. Kozma, G. Varo, J. Hauer, J. Kuhl, and E. Riedle, “Terahertz radiation from bacteriorhodopsin reveals correlated primary electron and proton transfer processes,” Proc. Natl. Acad. Sci. USA 105, 6888–6893 (2008).
[Crossref]

Krause, A.

J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478, 89–92 (2011).
[Crossref]

Krauspe, P.

C. Riek, D. V. Seletskiy, A. S. Moskalenko, J. F. Schmidt, P. Krauspe, S. Eckart, S. Eggert, G. Burkard, and A. Leitenstorfer, “Direct sampling of electric-field vacuum fluctuations,” Science 350, 420–423 (2015).
[Crossref]

Kuhl, J.

G. I. Groma, J. Hebling, I. Z. Kozma, G. Varo, J. Hauer, J. Kuhl, and E. Riedle, “Terahertz radiation from bacteriorhodopsin reveals correlated primary electron and proton transfer processes,” Proc. Natl. Acad. Sci. USA 105, 6888–6893 (2008).
[Crossref]

Kumari, M.

A. Rueda, F. Sedlmeir, M. Kumari, G. Leuchs, and H. G. L. Schwefel, “Resonant electro-optic frequency comb,” Nature 568, 378–381 (2019).
[Crossref]

Kutuvantavida, Y.

W. Heni, Y. Kutuvantavida, C. Haffner, H. Zwickel, C. Kieninger, S. Wolf, M. Lauermann, Y. Fedoryshyn, A. F. Tillack, L. E. Johnson, D. L. Elder, B. H. Robinson, W. Freude, C. Koos, J. Leuthold, and L. R. Dalton, “Silicon–organic and plasmonic–organic hybrid photonics,” ACS Photon. 4, 1576–1590 (2017).
[Crossref]

Lai, K.

Lange, C.

S. Schlauderer, C. Lange, S. Baierl, T. Ebnet, C. P. Schmid, D. C. Valovcin, A. K. Zvezdin, A. V. Kimel, R. V. Mikhaylovskiy, and R. Huber, “Temporal and spectral fingerprints of ultrafast all-coherent spin switching,” Nature 569, 383–387 (2019).
[Crossref]

Lauermann, M.

W. Heni, Y. Kutuvantavida, C. Haffner, H. Zwickel, C. Kieninger, S. Wolf, M. Lauermann, Y. Fedoryshyn, A. F. Tillack, L. E. Johnson, D. L. Elder, B. H. Robinson, W. Freude, C. Koos, J. Leuthold, and L. R. Dalton, “Silicon–organic and plasmonic–organic hybrid photonics,” ACS Photon. 4, 1576–1590 (2017).
[Crossref]

Lee, W. S. L.

Lehnert, U.

H. A. Hafez, S. Kovalev, J.-C. Deinert, Z. Mics, B. Green, N. Awari, M. Chen, S. Germanskiy, U. Lehnert, J. Teichert, Z. Wang, K.-J. Tielrooij, Z. Liu, Z. Chen, A. Narita, K. Müllen, M. Bonn, M. Gensch, and D. Turchinovich, “Extremely efficient terahertz high-harmonic generation in graphene by hot Dirac fermions,” Nature 561, 507–511 (2018).
[Crossref]

Leitenstorfer, A.

P. Sulzer, K. Oguchi, J. Huster, M. Kizmann, T. L. M. Guedes, A. Liehl, C. Beckh, A. S. Moskalenko, G. Burkard, D. V. Seletskiy, and A. Leitenstorfer, “Determination of the electric field and its Hilbert transform in femtosecond electro-optic sampling,” Phys. Rev. A 101, 033821 (2020).
[Crossref]

T. Rybka, M. Ludwig, M. F. Schmalz, V. Knittel, D. Brida, and A. Leitenstorfer, “Sub-cycle optical phase control of nanotunnelling in the single-electron regime,” Nat. Photonics 10, 667–670 (2016).
[Crossref]

C. Riek, D. V. Seletskiy, A. S. Moskalenko, J. F. Schmidt, P. Krauspe, S. Eckart, S. Eggert, G. Burkard, and A. Leitenstorfer, “Direct sampling of electric-field vacuum fluctuations,” Science 350, 420–423 (2015).
[Crossref]

A. S. Moskalenko, C. Riek, D. V. Seletskiy, G. Burkard, and A. Leitenstorfer, “Paraxial theory of direct electro-optic sampling of the quantum vacuum,” Phys. Rev. Lett. 115, 263601 (2015).
[Crossref]

Leuchs, G.

A. Rueda, F. Sedlmeir, M. Kumari, G. Leuchs, and H. G. L. Schwefel, “Resonant electro-optic frequency comb,” Nature 568, 378–381 (2019).
[Crossref]

Leuchtmann, P.

Y. Salamin, W. Heni, C. Haffner, Y. Fedoryshyn, C. Hoessbacher, R. Bonjour, M. Zahner, D. Hillerkuss, P. Leuchtmann, D. L. Elder, L. R. Dalton, C. Hafner, and J. Leuthold, “Direct conversion of free space millimeter waves to optical domain by plasmonic modulator antenna,” Nano Lett. 15, 8342–8346 (2015).
[Crossref]

Leuthold, J.

M. Burla, C. Hoessbacher, W. Heni, C. Haffner, Y. Fedoryshyn, D. Werner, T. Watanabe, H. Massler, D. L. Elder, L. R. Dalton, and J. Leuthold, “500  GHz plasmonic Mach-Zehnder modulator enabling sub-THz microwave photonics,” APL Photon. 4, 056106 (2019).
[Crossref]

Y. Salamin, I.-C. Benea-Chelmus, Y. Fedoryshyn, W. Heni, D. L. Elder, L. R. Dalton, J. Faist, and J. Leuthold, “Compact and ultra-efficient broadband plasmonic terahertz field detector,” Nat. Commun. 10, 5550 (2019).
[Crossref]

B. H. Robinson, L. E. Johnson, D. L. Elder, A. A. Kocherzhenko, C. M. Isborn, C. Haffner, W. Heni, C. Hoessbacher, Y. Fedoryshyn, Y. Salamin, B. Baeuerle, A. Josten, M. Ayata, U. Koch, J. Leuthold, and L. R. Dalton, “Optimization of plasmonic-organic hybrid electro-optics,” J. Lightwave Technol. 36, 5036–5047 (2018).
[Crossref]

Y. Salamin, B. Baeuerle, W. Heni, F. C. Abrecht, A. Josten, Y. Fedoryshyn, C. Haffner, R. Bonjour, T. Watanabe, M. Burla, D. L. Elder, L. R. Dalton, and J. Leuthold, “Microwave plasmonic mixer in a transparent fibre–wireless link,” Nat. Photonics 12, 749–753 (2018).
[Crossref]

I.-C. Benea-Chelmus, T. Zhu, F. Settembrini, C. Bonzon, E. Mavrona, D. Elder, W. Heni, J. Leuthold, L. Dalton, and J. Faist, “Three-dimensional phase modulator at telecom wavelength acting as a terahertz detector with an electro-optic bandwidth of 1.25  terahertz,” ACS Photon. 5, 1398–1403 (2018).
[Crossref]

D. L. Elder, C. Haffner, W. Heni, Y. Fedoryshyn, K. E. Garrett, L. E. Johnson, R. A. Campbell, J. D. Avila, B. H. Robinson, J. Leuthold, and L. R. Dalton, “Effect of rigid bridge-protection units, quadrupolar interactions, and blending in organic electro-optic chromophores,” Chem. Mater. 29, 6457–6471 (2017).
[Crossref]

W. Heni, Y. Kutuvantavida, C. Haffner, H. Zwickel, C. Kieninger, S. Wolf, M. Lauermann, Y. Fedoryshyn, A. F. Tillack, L. E. Johnson, D. L. Elder, B. H. Robinson, W. Freude, C. Koos, J. Leuthold, and L. R. Dalton, “Silicon–organic and plasmonic–organic hybrid photonics,” ACS Photon. 4, 1576–1590 (2017).
[Crossref]

T. Watanabe, M. Ayata, U. Koch, Y. Fedoryshyn, and J. Leuthold, “Perpendicular grating coupler based on a blazed antiback-reflection structure,” J. Lightwave Technol. 35, 4663–4669 (2017).
[Crossref]

Y. Salamin, W. Heni, C. Haffner, Y. Fedoryshyn, C. Hoessbacher, R. Bonjour, M. Zahner, D. Hillerkuss, P. Leuchtmann, D. L. Elder, L. R. Dalton, C. Hafner, and J. Leuthold, “Direct conversion of free space millimeter waves to optical domain by plasmonic modulator antenna,” Nano Lett. 15, 8342–8346 (2015).
[Crossref]

Liehl, A.

P. Sulzer, K. Oguchi, J. Huster, M. Kizmann, T. L. M. Guedes, A. Liehl, C. Beckh, A. S. Moskalenko, G. Burkard, D. V. Seletskiy, and A. Leitenstorfer, “Determination of the electric field and its Hilbert transform in femtosecond electro-optic sampling,” Phys. Rev. A 101, 033821 (2020).
[Crossref]

Lindel, F.

F. Lindel, R. Bennett, and S. Y. Buhmann, “Probing the sculpted quantum vacuum: quantum optics of nonlinear crystals,” arXiv:1905.10200v2 (2019).

Liu, F.

H. Xu, F. Liu, D. L. Elder, L. E. Johnson, Y. de Coene, K. Clays, B. H. Robinson, and L. R. Dalton, “Ultrahigh electro-optic coefficients, high index of refraction, and long-term stability from Diels–Alder cross-linkable binary molecular glasses,” Chem. Mater. 32, 1408–1421 (2020).
[Crossref]

Liu, K.

Q. Sun, Y. He, K. Liu, S. Fan, E. P. J. Parrott, and E. Pickwell-MacPherson, “Recent advances in terahertz technology for biomedical applications,” Quant. Imaging Med. Surg. 7, 345–355 (2017).
[Crossref]

Liu, Z.

H. A. Hafez, S. Kovalev, J.-C. Deinert, Z. Mics, B. Green, N. Awari, M. Chen, S. Germanskiy, U. Lehnert, J. Teichert, Z. Wang, K.-J. Tielrooij, Z. Liu, Z. Chen, A. Narita, K. Müllen, M. Bonn, M. Gensch, and D. Turchinovich, “Extremely efficient terahertz high-harmonic generation in graphene by hot Dirac fermions,” Nature 561, 507–511 (2018).
[Crossref]

Loncar, M.

M. Zhang, B. Buscaino, C. Wang, A. Shams-Ansari, C. Reimer, R. Zhu, J. M. Kahn, and M. Lončar, “Broadband electro-optic frequency comb generation in a lithium niobate microring resonator,” Nature 568, 373–377 (2019).
[Crossref]

L. Shao, M. Yu, S. Maity, N. Sinclair, L. Zheng, C. Chia, A. Shams-Ansari, C. Wang, M. Zhang, K. Lai, and M. Lončar, “Microwave-to-optical conversion using lithium niobate thin-film acoustic resonators,” Optica 6, 1498–1505 (2019).
[Crossref]

M. Soltani, M. Zhang, C. Ryan, G. J. Ribeill, C. Wang, and M. Loncar, “Efficient quantum microwave-to-optical conversion using electro-optic nanophotonic coupled resonators,” Phys. Rev. A 96, 043808 (2017).
[Crossref]

Ludwig, M.

T. Rybka, M. Ludwig, M. F. Schmalz, V. Knittel, D. Brida, and A. Leitenstorfer, “Sub-cycle optical phase control of nanotunnelling in the single-electron regime,” Nat. Photonics 10, 667–670 (2016).
[Crossref]

Luo, J.

D. H. Park, V. Yun, J. Luo, A. K. Jen, and W. N. Herman, “EO polymer at cryogenic temperatures,” Electron. Lett. 52, 1703–1705 (2016).
[Crossref]

Ma, J.

J. Ma, R. Shrestha, J. Adelberg, C.-Y. Yeh, Z. Hossain, E. Knightly, J. M. Jornet, and D. M. Mittleman, “Security and eavesdropping in terahertz wireless links,” Nature 563, 89–93 (2018).
[Crossref]

Maissen, C.

I.-C. Benea-Chelmus, C. Bonzon, C. Maissen, G. Scalari, M. Beck, and J. Faist, “Subcycle measurement of intensity correlations in the terahertz frequency range,” Phys. Rev. A 93, 043812 (2016).
[Crossref]

Maity, S.

Mansuripur, T. S.

Marinkovic, I.

M. Forsch, R. Stockill, A. Wallucks, I. Marinković, C. Gärtner, R. A. Norte, F. van Otten, A. Fiore, K. Srinivasan, and S. Gröblacher, “Microwave-to-optics conversion using a mechanical oscillator in its quantum ground state,” Nat. Phys. 16, 69–74 (2020).
[Crossref]

Marquardt, F.

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86, 1391–1452 (2014).
[Crossref]

Mason, D.

D. Mason, J. Chen, M. Rossi, Y. Tsaturyan, and A. Schliesser, “Continuous force and displacement measurement below the standard quantum limit,” Nat. Phys. 15, 745–749 (2019).
[Crossref]

Massler, H.

M. Burla, C. Hoessbacher, W. Heni, C. Haffner, Y. Fedoryshyn, D. Werner, T. Watanabe, H. Massler, D. L. Elder, L. R. Dalton, and J. Leuthold, “500  GHz plasmonic Mach-Zehnder modulator enabling sub-THz microwave photonics,” APL Photon. 4, 056106 (2019).
[Crossref]

Mavrona, E.

I.-C. Benea-Chelmus, T. Zhu, F. Settembrini, C. Bonzon, E. Mavrona, D. Elder, W. Heni, J. Leuthold, L. Dalton, and J. Faist, “Three-dimensional phase modulator at telecom wavelength acting as a terahertz detector with an electro-optic bandwidth of 1.25  terahertz,” ACS Photon. 5, 1398–1403 (2018).
[Crossref]

Meadowcroft, L.

Mics, Z.

H. A. Hafez, S. Kovalev, J.-C. Deinert, Z. Mics, B. Green, N. Awari, M. Chen, S. Germanskiy, U. Lehnert, J. Teichert, Z. Wang, K.-J. Tielrooij, Z. Liu, Z. Chen, A. Narita, K. Müllen, M. Bonn, M. Gensch, and D. Turchinovich, “Extremely efficient terahertz high-harmonic generation in graphene by hot Dirac fermions,” Nature 561, 507–511 (2018).
[Crossref]

Mikhaylovskiy, R. V.

S. Schlauderer, C. Lange, S. Baierl, T. Ebnet, C. P. Schmid, D. C. Valovcin, A. K. Zvezdin, A. V. Kimel, R. V. Mikhaylovskiy, and R. Huber, “Temporal and spectral fingerprints of ultrafast all-coherent spin switching,” Nature 569, 383–387 (2019).
[Crossref]

Milburn, G. J.

S. Barzanjeh, D. Vitali, P. Tombesi, and G. J. Milburn, “Entangling optical and microwave cavity modes by means of a nanomechanical resonator,” Phys. Rev. A 84, 042342 (2011).
[Crossref]

Mittleman, D. M.

K. Sengupta, T. Nagatsuma, and D. M. Mittleman, “Terahertz integrated electronic and hybrid electronic–photonic systems,” Nat. Electron. 1, 622–635 (2018).
[Crossref]

J. Ma, R. Shrestha, J. Adelberg, C.-Y. Yeh, Z. Hossain, E. Knightly, J. M. Jornet, and D. M. Mittleman, “Security and eavesdropping in terahertz wireless links,” Nature 563, 89–93 (2018).
[Crossref]

Moskalenko, A. S.

P. Sulzer, K. Oguchi, J. Huster, M. Kizmann, T. L. M. Guedes, A. Liehl, C. Beckh, A. S. Moskalenko, G. Burkard, D. V. Seletskiy, and A. Leitenstorfer, “Determination of the electric field and its Hilbert transform in femtosecond electro-optic sampling,” Phys. Rev. A 101, 033821 (2020).
[Crossref]

C. Riek, D. V. Seletskiy, A. S. Moskalenko, J. F. Schmidt, P. Krauspe, S. Eckart, S. Eggert, G. Burkard, and A. Leitenstorfer, “Direct sampling of electric-field vacuum fluctuations,” Science 350, 420–423 (2015).
[Crossref]

A. S. Moskalenko, C. Riek, D. V. Seletskiy, G. Burkard, and A. Leitenstorfer, “Paraxial theory of direct electro-optic sampling of the quantum vacuum,” Phys. Rev. Lett. 115, 263601 (2015).
[Crossref]

Müllen, K.

H. A. Hafez, S. Kovalev, J.-C. Deinert, Z. Mics, B. Green, N. Awari, M. Chen, S. Germanskiy, U. Lehnert, J. Teichert, Z. Wang, K.-J. Tielrooij, Z. Liu, Z. Chen, A. Narita, K. Müllen, M. Bonn, M. Gensch, and D. Turchinovich, “Extremely efficient terahertz high-harmonic generation in graphene by hot Dirac fermions,” Nature 561, 507–511 (2018).
[Crossref]

Nagatsuma, T.

K. Sengupta, T. Nagatsuma, and D. M. Mittleman, “Terahertz integrated electronic and hybrid electronic–photonic systems,” Nat. Electron. 1, 622–635 (2018).
[Crossref]

Narita, A.

H. A. Hafez, S. Kovalev, J.-C. Deinert, Z. Mics, B. Green, N. Awari, M. Chen, S. Germanskiy, U. Lehnert, J. Teichert, Z. Wang, K.-J. Tielrooij, Z. Liu, Z. Chen, A. Narita, K. Müllen, M. Bonn, M. Gensch, and D. Turchinovich, “Extremely efficient terahertz high-harmonic generation in graphene by hot Dirac fermions,” Nature 561, 507–511 (2018).
[Crossref]

Nirantar, S.

Nori, F.

C. M. Wilson, G. Johansson, A. Pourkabirian, M. Simoen, J. R. Johansson, T. Duty, F. Nori, and P. Delsing, “Observation of the dynamical Casimir effect in a superconducting circuit,” Nature 479, 376–379 (2011).
[Crossref]

Norte, R. A.

M. Forsch, R. Stockill, A. Wallucks, I. Marinković, C. Gärtner, R. A. Norte, F. van Otten, A. Fiore, K. Srinivasan, and S. Gröblacher, “Microwave-to-optics conversion using a mechanical oscillator in its quantum ground state,” Nat. Phys. 16, 69–74 (2020).
[Crossref]

Nuss, M.

S. Hunsche, M. Koch, I. Brener, and M. Nuss, “THz near-field imaging,” Opt. Commun. 150, 22–26 (1998).
[Crossref]

Oguchi, K.

P. Sulzer, K. Oguchi, J. Huster, M. Kizmann, T. L. M. Guedes, A. Liehl, C. Beckh, A. S. Moskalenko, G. Burkard, D. V. Seletskiy, and A. Leitenstorfer, “Determination of the electric field and its Hilbert transform in femtosecond electro-optic sampling,” Phys. Rev. A 101, 033821 (2020).
[Crossref]

Painter, O.

J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478, 89–92 (2011).
[Crossref]

Paravicini-Bagliani, G. L.

G. L. Paravicini-Bagliani, F. Appugliese, E. Richter, F. Valmorra, J. Keller, M. Beck, N. Bartolo, C. Rössler, T. Ihn, K. Ensslin, C. Ciuti, G. Scalari, and J. Faist, “Magneto-transport controlled by Landau polariton states,” Nat. Phys. 15, 186–190 (2019).
[Crossref]

Park, D. H.

D. H. Park, V. Yun, J. Luo, A. K. Jen, and W. N. Herman, “EO polymer at cryogenic temperatures,” Electron. Lett. 52, 1703–1705 (2016).
[Crossref]

Parrott, E. P. J.

Q. Sun, Y. He, K. Liu, S. Fan, E. P. J. Parrott, and E. Pickwell-MacPherson, “Recent advances in terahertz technology for biomedical applications,” Quant. Imaging Med. Surg. 7, 345–355 (2017).
[Crossref]

Peller, D.

T. L. Cocker, D. Peller, P. Yu, J. Repp, and R. Huber, “Tracking the ultrafast motion of a single molecule by femtosecond orbital imaging,” Nature 539, 263–267 (2016).
[Crossref]

Piccardo, M.

Pickwell-MacPherson, E.

Q. Sun, Y. He, K. Liu, S. Fan, E. P. J. Parrott, and E. Pickwell-MacPherson, “Recent advances in terahertz technology for biomedical applications,” Quant. Imaging Med. Surg. 7, 345–355 (2017).
[Crossref]

Plekhanov, K.

C. Javerzac-Galy, K. Plekhanov, N. R. Bernier, L. D. Toth, A. K. Feofanov, and T. J. Kippenberg, “On-chip microwave-to-optical quantum coherent converter based on a superconducting resonator coupled to an electro-optic microresonator,” Phys. Rev. A 94, 053815 (2016).
[Crossref]

Pourkabirian, A.

C. M. Wilson, G. Johansson, A. Pourkabirian, M. Simoen, J. R. Johansson, T. Duty, F. Nori, and P. Delsing, “Observation of the dynamical Casimir effect in a superconducting circuit,” Nature 479, 376–379 (2011).
[Crossref]

Qiu, M.

J. Tian, S. Yu, W. Yan, and M. Qiu, “Broadband high-efficiency surface-plasmon-polariton coupler with silicon-metal interface,” Appl. Phys. Lett. 95, 013504 (2009).
[Crossref]

Reimer, C.

M. Zhang, B. Buscaino, C. Wang, A. Shams-Ansari, C. Reimer, R. Zhu, J. M. Kahn, and M. Lončar, “Broadband electro-optic frequency comb generation in a lithium niobate microring resonator,” Nature 568, 373–377 (2019).
[Crossref]

Repp, J.

T. L. Cocker, D. Peller, P. Yu, J. Repp, and R. Huber, “Tracking the ultrafast motion of a single molecule by femtosecond orbital imaging,” Nature 539, 263–267 (2016).
[Crossref]

Ribeill, G. J.

M. Soltani, M. Zhang, C. Ryan, G. J. Ribeill, C. Wang, and M. Loncar, “Efficient quantum microwave-to-optical conversion using electro-optic nanophotonic coupled resonators,” Phys. Rev. A 96, 043808 (2017).
[Crossref]

Richter, E.

G. L. Paravicini-Bagliani, F. Appugliese, E. Richter, F. Valmorra, J. Keller, M. Beck, N. Bartolo, C. Rössler, T. Ihn, K. Ensslin, C. Ciuti, G. Scalari, and J. Faist, “Magneto-transport controlled by Landau polariton states,” Nat. Phys. 15, 186–190 (2019).
[Crossref]

Riedle, E.

G. I. Groma, J. Hebling, I. Z. Kozma, G. Varo, J. Hauer, J. Kuhl, and E. Riedle, “Terahertz radiation from bacteriorhodopsin reveals correlated primary electron and proton transfer processes,” Proc. Natl. Acad. Sci. USA 105, 6888–6893 (2008).
[Crossref]

Riek, C.

A. S. Moskalenko, C. Riek, D. V. Seletskiy, G. Burkard, and A. Leitenstorfer, “Paraxial theory of direct electro-optic sampling of the quantum vacuum,” Phys. Rev. Lett. 115, 263601 (2015).
[Crossref]

C. Riek, D. V. Seletskiy, A. S. Moskalenko, J. F. Schmidt, P. Krauspe, S. Eckart, S. Eggert, G. Burkard, and A. Leitenstorfer, “Direct sampling of electric-field vacuum fluctuations,” Science 350, 420–423 (2015).
[Crossref]

Ritter, S.

F. Brennecke, S. Ritter, T. Donner, and T. Esslinger, “Cavity optomechanics with a Bose-Einstein condensate,” Science 322, 235–238 (2008).
[Crossref]

Robinson, B. H.

H. Xu, F. Liu, D. L. Elder, L. E. Johnson, Y. de Coene, K. Clays, B. H. Robinson, and L. R. Dalton, “Ultrahigh electro-optic coefficients, high index of refraction, and long-term stability from Diels–Alder cross-linkable binary molecular glasses,” Chem. Mater. 32, 1408–1421 (2020).
[Crossref]

B. H. Robinson, L. E. Johnson, D. L. Elder, A. A. Kocherzhenko, C. M. Isborn, C. Haffner, W. Heni, C. Hoessbacher, Y. Fedoryshyn, Y. Salamin, B. Baeuerle, A. Josten, M. Ayata, U. Koch, J. Leuthold, and L. R. Dalton, “Optimization of plasmonic-organic hybrid electro-optics,” J. Lightwave Technol. 36, 5036–5047 (2018).
[Crossref]

W. Heni, Y. Kutuvantavida, C. Haffner, H. Zwickel, C. Kieninger, S. Wolf, M. Lauermann, Y. Fedoryshyn, A. F. Tillack, L. E. Johnson, D. L. Elder, B. H. Robinson, W. Freude, C. Koos, J. Leuthold, and L. R. Dalton, “Silicon–organic and plasmonic–organic hybrid photonics,” ACS Photon. 4, 1576–1590 (2017).
[Crossref]

D. L. Elder, C. Haffner, W. Heni, Y. Fedoryshyn, K. E. Garrett, L. E. Johnson, R. A. Campbell, J. D. Avila, B. H. Robinson, J. Leuthold, and L. R. Dalton, “Effect of rigid bridge-protection units, quadrupolar interactions, and blending in organic electro-optic chromophores,” Chem. Mater. 29, 6457–6471 (2017).
[Crossref]

Rösch, M.

I.-C. Benea-Chelmus, M. Rösch, G. Scalari, M. Beck, and J. Faist, “Intensity autocorrelation measurements of frequency combs in the terahertz range,” Phys. Rev. A 96, 033821 (2017).
[Crossref]

Rossi, M.

D. Mason, J. Chen, M. Rossi, Y. Tsaturyan, and A. Schliesser, “Continuous force and displacement measurement below the standard quantum limit,” Nat. Phys. 15, 745–749 (2019).
[Crossref]

Rössler, C.

G. L. Paravicini-Bagliani, F. Appugliese, E. Richter, F. Valmorra, J. Keller, M. Beck, N. Bartolo, C. Rössler, T. Ihn, K. Ensslin, C. Ciuti, G. Scalari, and J. Faist, “Magneto-transport controlled by Landau polariton states,” Nat. Phys. 15, 186–190 (2019).
[Crossref]

Rubin, N. A.

Rueda, A.

A. Rueda, W. Hease, S. Barzanjeh, and J. M. Fink, “Electro-optic entanglement source for microwave to telecom quantum state transfer,” npj Quantum Inf. 5, 108 (2019).
[Crossref]

A. Rueda, F. Sedlmeir, M. Kumari, G. Leuchs, and H. G. L. Schwefel, “Resonant electro-optic frequency comb,” Nature 568, 378–381 (2019).
[Crossref]

Ryan, C.

M. Soltani, M. Zhang, C. Ryan, G. J. Ribeill, C. Wang, and M. Loncar, “Efficient quantum microwave-to-optical conversion using electro-optic nanophotonic coupled resonators,” Phys. Rev. A 96, 043808 (2017).
[Crossref]

Rybka, T.

T. Rybka, M. Ludwig, M. F. Schmalz, V. Knittel, D. Brida, and A. Leitenstorfer, “Sub-cycle optical phase control of nanotunnelling in the single-electron regime,” Nat. Photonics 10, 667–670 (2016).
[Crossref]

Safavi-Naeini, A. H.

J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478, 89–92 (2011).
[Crossref]

Salamin, Y.

Y. Salamin, I.-C. Benea-Chelmus, Y. Fedoryshyn, W. Heni, D. L. Elder, L. R. Dalton, J. Faist, and J. Leuthold, “Compact and ultra-efficient broadband plasmonic terahertz field detector,” Nat. Commun. 10, 5550 (2019).
[Crossref]

B. H. Robinson, L. E. Johnson, D. L. Elder, A. A. Kocherzhenko, C. M. Isborn, C. Haffner, W. Heni, C. Hoessbacher, Y. Fedoryshyn, Y. Salamin, B. Baeuerle, A. Josten, M. Ayata, U. Koch, J. Leuthold, and L. R. Dalton, “Optimization of plasmonic-organic hybrid electro-optics,” J. Lightwave Technol. 36, 5036–5047 (2018).
[Crossref]

Y. Salamin, B. Baeuerle, W. Heni, F. C. Abrecht, A. Josten, Y. Fedoryshyn, C. Haffner, R. Bonjour, T. Watanabe, M. Burla, D. L. Elder, L. R. Dalton, and J. Leuthold, “Microwave plasmonic mixer in a transparent fibre–wireless link,” Nat. Photonics 12, 749–753 (2018).
[Crossref]

Y. Salamin, W. Heni, C. Haffner, Y. Fedoryshyn, C. Hoessbacher, R. Bonjour, M. Zahner, D. Hillerkuss, P. Leuchtmann, D. L. Elder, L. R. Dalton, C. Hafner, and J. Leuthold, “Direct conversion of free space millimeter waves to optical domain by plasmonic modulator antenna,” Nano Lett. 15, 8342–8346 (2015).
[Crossref]

Scalari, G.

I.-C. Benea-Chelmus, F. Settembrini, G. Scalari, and J. Faist, “Electric field correlation measurements on the electromagnetic vacuum state,” Nature 568, 202–206 (2019).
[Crossref]

G. L. Paravicini-Bagliani, F. Appugliese, E. Richter, F. Valmorra, J. Keller, M. Beck, N. Bartolo, C. Rössler, T. Ihn, K. Ensslin, C. Ciuti, G. Scalari, and J. Faist, “Magneto-transport controlled by Landau polariton states,” Nat. Phys. 15, 186–190 (2019).
[Crossref]

I.-C. Benea-Chelmus, M. Rösch, G. Scalari, M. Beck, and J. Faist, “Intensity autocorrelation measurements of frequency combs in the terahertz range,” Phys. Rev. A 96, 033821 (2017).
[Crossref]

I.-C. Benea-Chelmus, C. Bonzon, C. Maissen, G. Scalari, M. Beck, and J. Faist, “Subcycle measurement of intensity correlations in the terahertz frequency range,” Phys. Rev. A 93, 043812 (2016).
[Crossref]

Schlauderer, S.

S. Schlauderer, C. Lange, S. Baierl, T. Ebnet, C. P. Schmid, D. C. Valovcin, A. K. Zvezdin, A. V. Kimel, R. V. Mikhaylovskiy, and R. Huber, “Temporal and spectral fingerprints of ultrafast all-coherent spin switching,” Nature 569, 383–387 (2019).
[Crossref]

Schliesser, A.

D. Mason, J. Chen, M. Rossi, Y. Tsaturyan, and A. Schliesser, “Continuous force and displacement measurement below the standard quantum limit,” Nat. Phys. 15, 745–749 (2019).
[Crossref]

Schmalz, M. F.

T. Rybka, M. Ludwig, M. F. Schmalz, V. Knittel, D. Brida, and A. Leitenstorfer, “Sub-cycle optical phase control of nanotunnelling in the single-electron regime,” Nat. Photonics 10, 667–670 (2016).
[Crossref]

Schmid, C. P.

S. Schlauderer, C. Lange, S. Baierl, T. Ebnet, C. P. Schmid, D. C. Valovcin, A. K. Zvezdin, A. V. Kimel, R. V. Mikhaylovskiy, and R. Huber, “Temporal and spectral fingerprints of ultrafast all-coherent spin switching,” Nature 569, 383–387 (2019).
[Crossref]

Schmidt, J. F.

C. Riek, D. V. Seletskiy, A. S. Moskalenko, J. F. Schmidt, P. Krauspe, S. Eckart, S. Eggert, G. Burkard, and A. Leitenstorfer, “Direct sampling of electric-field vacuum fluctuations,” Science 350, 420–423 (2015).
[Crossref]

Schwefel, H. G. L.

A. Rueda, F. Sedlmeir, M. Kumari, G. Leuchs, and H. G. L. Schwefel, “Resonant electro-optic frequency comb,” Nature 568, 378–381 (2019).
[Crossref]

Sedlmeir, F.

A. Rueda, F. Sedlmeir, M. Kumari, G. Leuchs, and H. G. L. Schwefel, “Resonant electro-optic frequency comb,” Nature 568, 378–381 (2019).
[Crossref]

Seletskiy, D. V.

P. Sulzer, K. Oguchi, J. Huster, M. Kizmann, T. L. M. Guedes, A. Liehl, C. Beckh, A. S. Moskalenko, G. Burkard, D. V. Seletskiy, and A. Leitenstorfer, “Determination of the electric field and its Hilbert transform in femtosecond electro-optic sampling,” Phys. Rev. A 101, 033821 (2020).
[Crossref]

C. Riek, D. V. Seletskiy, A. S. Moskalenko, J. F. Schmidt, P. Krauspe, S. Eckart, S. Eggert, G. Burkard, and A. Leitenstorfer, “Direct sampling of electric-field vacuum fluctuations,” Science 350, 420–423 (2015).
[Crossref]

A. S. Moskalenko, C. Riek, D. V. Seletskiy, G. Burkard, and A. Leitenstorfer, “Paraxial theory of direct electro-optic sampling of the quantum vacuum,” Phys. Rev. Lett. 115, 263601 (2015).
[Crossref]

Sengupta, K.

K. Sengupta, T. Nagatsuma, and D. M. Mittleman, “Terahertz integrated electronic and hybrid electronic–photonic systems,” Nat. Electron. 1, 622–635 (2018).
[Crossref]

Settembrini, F.

I.-C. Benea-Chelmus, F. Settembrini, G. Scalari, and J. Faist, “Electric field correlation measurements on the electromagnetic vacuum state,” Nature 568, 202–206 (2019).
[Crossref]

I.-C. Benea-Chelmus, T. Zhu, F. Settembrini, C. Bonzon, E. Mavrona, D. Elder, W. Heni, J. Leuthold, L. Dalton, and J. Faist, “Three-dimensional phase modulator at telecom wavelength acting as a terahertz detector with an electro-optic bandwidth of 1.25  terahertz,” ACS Photon. 5, 1398–1403 (2018).
[Crossref]

Shams-Ansari, A.

M. Zhang, B. Buscaino, C. Wang, A. Shams-Ansari, C. Reimer, R. Zhu, J. M. Kahn, and M. Lončar, “Broadband electro-optic frequency comb generation in a lithium niobate microring resonator,” Nature 568, 373–377 (2019).
[Crossref]

L. Shao, M. Yu, S. Maity, N. Sinclair, L. Zheng, C. Chia, A. Shams-Ansari, C. Wang, M. Zhang, K. Lai, and M. Lončar, “Microwave-to-optical conversion using lithium niobate thin-film acoustic resonators,” Optica 6, 1498–1505 (2019).
[Crossref]

Shao, L.

Shrestha, R.

J. Ma, R. Shrestha, J. Adelberg, C.-Y. Yeh, Z. Hossain, E. Knightly, J. M. Jornet, and D. M. Mittleman, “Security and eavesdropping in terahertz wireless links,” Nature 563, 89–93 (2018).
[Crossref]

Simoen, M.

C. M. Wilson, G. Johansson, A. Pourkabirian, M. Simoen, J. R. Johansson, T. Duty, F. Nori, and P. Delsing, “Observation of the dynamical Casimir effect in a superconducting circuit,” Nature 479, 376–379 (2011).
[Crossref]

Sinclair, N.

Soltani, M.

M. Soltani, M. Zhang, C. Ryan, G. J. Ribeill, C. Wang, and M. Loncar, “Efficient quantum microwave-to-optical conversion using electro-optic nanophotonic coupled resonators,” Phys. Rev. A 96, 043808 (2017).
[Crossref]

Srinivasan, K.

M. Forsch, R. Stockill, A. Wallucks, I. Marinković, C. Gärtner, R. A. Norte, F. van Otten, A. Fiore, K. Srinivasan, and S. Gröblacher, “Microwave-to-optics conversion using a mechanical oscillator in its quantum ground state,” Nat. Phys. 16, 69–74 (2020).
[Crossref]

Sriram, S.

Stockill, R.

M. Forsch, R. Stockill, A. Wallucks, I. Marinković, C. Gärtner, R. A. Norte, F. van Otten, A. Fiore, K. Srinivasan, and S. Gröblacher, “Microwave-to-optics conversion using a mechanical oscillator in its quantum ground state,” Nat. Phys. 16, 69–74 (2020).
[Crossref]

Sulzer, P.

P. Sulzer, K. Oguchi, J. Huster, M. Kizmann, T. L. M. Guedes, A. Liehl, C. Beckh, A. S. Moskalenko, G. Burkard, D. V. Seletskiy, and A. Leitenstorfer, “Determination of the electric field and its Hilbert transform in femtosecond electro-optic sampling,” Phys. Rev. A 101, 033821 (2020).
[Crossref]

Sun, Q.

Q. Sun, Y. He, K. Liu, S. Fan, E. P. J. Parrott, and E. Pickwell-MacPherson, “Recent advances in terahertz technology for biomedical applications,” Quant. Imaging Med. Surg. 7, 345–355 (2017).
[Crossref]

Tang, H. X.

L. Fan, C.-L. Zou, R. Cheng, X. Guo, X. Han, Z. Gong, S. Wang, and H. X. Tang, “Superconducting cavity electro-optics: a platform for coherent photon conversion between superconducting and photonic circuits,” Sci. Adv. 4, eaar4994 (2018).
[Crossref]

Teichert, J.

H. A. Hafez, S. Kovalev, J.-C. Deinert, Z. Mics, B. Green, N. Awari, M. Chen, S. Germanskiy, U. Lehnert, J. Teichert, Z. Wang, K.-J. Tielrooij, Z. Liu, Z. Chen, A. Narita, K. Müllen, M. Bonn, M. Gensch, and D. Turchinovich, “Extremely efficient terahertz high-harmonic generation in graphene by hot Dirac fermions,” Nature 561, 507–511 (2018).
[Crossref]

Tian, J.

J. Tian, S. Yu, W. Yan, and M. Qiu, “Broadband high-efficiency surface-plasmon-polariton coupler with silicon-metal interface,” Appl. Phys. Lett. 95, 013504 (2009).
[Crossref]

Tielrooij, K.-J.

H. A. Hafez, S. Kovalev, J.-C. Deinert, Z. Mics, B. Green, N. Awari, M. Chen, S. Germanskiy, U. Lehnert, J. Teichert, Z. Wang, K.-J. Tielrooij, Z. Liu, Z. Chen, A. Narita, K. Müllen, M. Bonn, M. Gensch, and D. Turchinovich, “Extremely efficient terahertz high-harmonic generation in graphene by hot Dirac fermions,” Nature 561, 507–511 (2018).
[Crossref]

Tillack, A. F.

W. Heni, Y. Kutuvantavida, C. Haffner, H. Zwickel, C. Kieninger, S. Wolf, M. Lauermann, Y. Fedoryshyn, A. F. Tillack, L. E. Johnson, D. L. Elder, B. H. Robinson, W. Freude, C. Koos, J. Leuthold, and L. R. Dalton, “Silicon–organic and plasmonic–organic hybrid photonics,” ACS Photon. 4, 1576–1590 (2017).
[Crossref]

Tombesi, P.

S. Barzanjeh, D. Vitali, P. Tombesi, and G. J. Milburn, “Entangling optical and microwave cavity modes by means of a nanomechanical resonator,” Phys. Rev. A 84, 042342 (2011).
[Crossref]

Toth, L. D.

C. Javerzac-Galy, K. Plekhanov, N. R. Bernier, L. D. Toth, A. K. Feofanov, and T. J. Kippenberg, “On-chip microwave-to-optical quantum coherent converter based on a superconducting resonator coupled to an electro-optic microresonator,” Phys. Rev. A 94, 053815 (2016).
[Crossref]

Tsaturyan, Y.

D. Mason, J. Chen, M. Rossi, Y. Tsaturyan, and A. Schliesser, “Continuous force and displacement measurement below the standard quantum limit,” Nat. Phys. 15, 745–749 (2019).
[Crossref]

Turchinovich, D.

H. A. Hafez, S. Kovalev, J.-C. Deinert, Z. Mics, B. Green, N. Awari, M. Chen, S. Germanskiy, U. Lehnert, J. Teichert, Z. Wang, K.-J. Tielrooij, Z. Liu, Z. Chen, A. Narita, K. Müllen, M. Bonn, M. Gensch, and D. Turchinovich, “Extremely efficient terahertz high-harmonic generation in graphene by hot Dirac fermions,” Nature 561, 507–511 (2018).
[Crossref]

Valmorra, F.

G. L. Paravicini-Bagliani, F. Appugliese, E. Richter, F. Valmorra, J. Keller, M. Beck, N. Bartolo, C. Rössler, T. Ihn, K. Ensslin, C. Ciuti, G. Scalari, and J. Faist, “Magneto-transport controlled by Landau polariton states,” Nat. Phys. 15, 186–190 (2019).
[Crossref]

Valovcin, D. C.

S. Schlauderer, C. Lange, S. Baierl, T. Ebnet, C. P. Schmid, D. C. Valovcin, A. K. Zvezdin, A. V. Kimel, R. V. Mikhaylovskiy, and R. Huber, “Temporal and spectral fingerprints of ultrafast all-coherent spin switching,” Nature 569, 383–387 (2019).
[Crossref]

van Otten, F.

M. Forsch, R. Stockill, A. Wallucks, I. Marinković, C. Gärtner, R. A. Norte, F. van Otten, A. Fiore, K. Srinivasan, and S. Gröblacher, “Microwave-to-optics conversion using a mechanical oscillator in its quantum ground state,” Nat. Phys. 16, 69–74 (2020).
[Crossref]

Varo, G.

G. I. Groma, J. Hebling, I. Z. Kozma, G. Varo, J. Hauer, J. Kuhl, and E. Riedle, “Terahertz radiation from bacteriorhodopsin reveals correlated primary electron and proton transfer processes,” Proc. Natl. Acad. Sci. USA 105, 6888–6893 (2008).
[Crossref]

Vitali, D.

S. Barzanjeh, D. Vitali, P. Tombesi, and G. J. Milburn, “Entangling optical and microwave cavity modes by means of a nanomechanical resonator,” Phys. Rev. A 84, 042342 (2011).
[Crossref]

Wallucks, A.

M. Forsch, R. Stockill, A. Wallucks, I. Marinković, C. Gärtner, R. A. Norte, F. van Otten, A. Fiore, K. Srinivasan, and S. Gröblacher, “Microwave-to-optics conversion using a mechanical oscillator in its quantum ground state,” Nat. Phys. 16, 69–74 (2020).
[Crossref]

Walther, M.

Wang, C.

M. Zhang, B. Buscaino, C. Wang, A. Shams-Ansari, C. Reimer, R. Zhu, J. M. Kahn, and M. Lončar, “Broadband electro-optic frequency comb generation in a lithium niobate microring resonator,” Nature 568, 373–377 (2019).
[Crossref]

L. Shao, M. Yu, S. Maity, N. Sinclair, L. Zheng, C. Chia, A. Shams-Ansari, C. Wang, M. Zhang, K. Lai, and M. Lončar, “Microwave-to-optical conversion using lithium niobate thin-film acoustic resonators,” Optica 6, 1498–1505 (2019).
[Crossref]

M. Soltani, M. Zhang, C. Ryan, G. J. Ribeill, C. Wang, and M. Loncar, “Efficient quantum microwave-to-optical conversion using electro-optic nanophotonic coupled resonators,” Phys. Rev. A 96, 043808 (2017).
[Crossref]

Wang, S.

L. Fan, C.-L. Zou, R. Cheng, X. Guo, X. Han, Z. Gong, S. Wang, and H. X. Tang, “Superconducting cavity electro-optics: a platform for coherent photon conversion between superconducting and photonic circuits,” Sci. Adv. 4, eaar4994 (2018).
[Crossref]

Wang, Y.

Wang, Z.

H. A. Hafez, S. Kovalev, J.-C. Deinert, Z. Mics, B. Green, N. Awari, M. Chen, S. Germanskiy, U. Lehnert, J. Teichert, Z. Wang, K.-J. Tielrooij, Z. Liu, Z. Chen, A. Narita, K. Müllen, M. Bonn, M. Gensch, and D. Turchinovich, “Extremely efficient terahertz high-harmonic generation in graphene by hot Dirac fermions,” Nature 561, 507–511 (2018).
[Crossref]

Watanabe, T.

M. Burla, C. Hoessbacher, W. Heni, C. Haffner, Y. Fedoryshyn, D. Werner, T. Watanabe, H. Massler, D. L. Elder, L. R. Dalton, and J. Leuthold, “500  GHz plasmonic Mach-Zehnder modulator enabling sub-THz microwave photonics,” APL Photon. 4, 056106 (2019).
[Crossref]

Y. Salamin, B. Baeuerle, W. Heni, F. C. Abrecht, A. Josten, Y. Fedoryshyn, C. Haffner, R. Bonjour, T. Watanabe, M. Burla, D. L. Elder, L. R. Dalton, and J. Leuthold, “Microwave plasmonic mixer in a transparent fibre–wireless link,” Nat. Photonics 12, 749–753 (2018).
[Crossref]

T. Watanabe, M. Ayata, U. Koch, Y. Fedoryshyn, and J. Leuthold, “Perpendicular grating coupler based on a blazed antiback-reflection structure,” J. Lightwave Technol. 35, 4663–4669 (2017).
[Crossref]

Werner, D.

M. Burla, C. Hoessbacher, W. Heni, C. Haffner, Y. Fedoryshyn, D. Werner, T. Watanabe, H. Massler, D. L. Elder, L. R. Dalton, and J. Leuthold, “500  GHz plasmonic Mach-Zehnder modulator enabling sub-THz microwave photonics,” APL Photon. 4, 056106 (2019).
[Crossref]

Wilson, C. M.

C. M. Wilson, G. Johansson, A. Pourkabirian, M. Simoen, J. R. Johansson, T. Duty, F. Nori, and P. Delsing, “Observation of the dynamical Casimir effect in a superconducting circuit,” Nature 479, 376–379 (2011).
[Crossref]

Withayachumnankul, W.

Wolf, S.

W. Heni, Y. Kutuvantavida, C. Haffner, H. Zwickel, C. Kieninger, S. Wolf, M. Lauermann, Y. Fedoryshyn, A. F. Tillack, L. E. Johnson, D. L. Elder, B. H. Robinson, W. Freude, C. Koos, J. Leuthold, and L. R. Dalton, “Silicon–organic and plasmonic–organic hybrid photonics,” ACS Photon. 4, 1576–1590 (2017).
[Crossref]

Xu, H.

H. Xu, F. Liu, D. L. Elder, L. E. Johnson, Y. de Coene, K. Clays, B. H. Robinson, and L. R. Dalton, “Ultrahigh electro-optic coefficients, high index of refraction, and long-term stability from Diels–Alder cross-linkable binary molecular glasses,” Chem. Mater. 32, 1408–1421 (2020).
[Crossref]

Yan, W.

J. Tian, S. Yu, W. Yan, and M. Qiu, “Broadband high-efficiency surface-plasmon-polariton coupler with silicon-metal interface,” Appl. Phys. Lett. 95, 013504 (2009).
[Crossref]

Yeh, C.-Y.

J. Ma, R. Shrestha, J. Adelberg, C.-Y. Yeh, Z. Hossain, E. Knightly, J. M. Jornet, and D. M. Mittleman, “Security and eavesdropping in terahertz wireless links,” Nature 563, 89–93 (2018).
[Crossref]

Yu, M.

Yu, P.

T. L. Cocker, D. Peller, P. Yu, J. Repp, and R. Huber, “Tracking the ultrafast motion of a single molecule by femtosecond orbital imaging,” Nature 539, 263–267 (2016).
[Crossref]

Yu, S.

J. Tian, S. Yu, W. Yan, and M. Qiu, “Broadband high-efficiency surface-plasmon-polariton coupler with silicon-metal interface,” Appl. Phys. Lett. 95, 013504 (2009).
[Crossref]

Yun, V.

D. H. Park, V. Yun, J. Luo, A. K. Jen, and W. N. Herman, “EO polymer at cryogenic temperatures,” Electron. Lett. 52, 1703–1705 (2016).
[Crossref]

Zahner, M.

Y. Salamin, W. Heni, C. Haffner, Y. Fedoryshyn, C. Hoessbacher, R. Bonjour, M. Zahner, D. Hillerkuss, P. Leuchtmann, D. L. Elder, L. R. Dalton, C. Hafner, and J. Leuthold, “Direct conversion of free space millimeter waves to optical domain by plasmonic modulator antenna,” Nano Lett. 15, 8342–8346 (2015).
[Crossref]

Zhang, M.

M. Zhang, B. Buscaino, C. Wang, A. Shams-Ansari, C. Reimer, R. Zhu, J. M. Kahn, and M. Lončar, “Broadband electro-optic frequency comb generation in a lithium niobate microring resonator,” Nature 568, 373–377 (2019).
[Crossref]

L. Shao, M. Yu, S. Maity, N. Sinclair, L. Zheng, C. Chia, A. Shams-Ansari, C. Wang, M. Zhang, K. Lai, and M. Lončar, “Microwave-to-optical conversion using lithium niobate thin-film acoustic resonators,” Optica 6, 1498–1505 (2019).
[Crossref]

M. Soltani, M. Zhang, C. Ryan, G. J. Ribeill, C. Wang, and M. Loncar, “Efficient quantum microwave-to-optical conversion using electro-optic nanophotonic coupled resonators,” Phys. Rev. A 96, 043808 (2017).
[Crossref]

Zheng, L.

Zhu, R.

M. Zhang, B. Buscaino, C. Wang, A. Shams-Ansari, C. Reimer, R. Zhu, J. M. Kahn, and M. Lončar, “Broadband electro-optic frequency comb generation in a lithium niobate microring resonator,” Nature 568, 373–377 (2019).
[Crossref]

Zhu, T.

I.-C. Benea-Chelmus, T. Zhu, F. Settembrini, C. Bonzon, E. Mavrona, D. Elder, W. Heni, J. Leuthold, L. Dalton, and J. Faist, “Three-dimensional phase modulator at telecom wavelength acting as a terahertz detector with an electro-optic bandwidth of 1.25  terahertz,” ACS Photon. 5, 1398–1403 (2018).
[Crossref]

Zou, C.-L.

L. Fan, C.-L. Zou, R. Cheng, X. Guo, X. Han, Z. Gong, S. Wang, and H. X. Tang, “Superconducting cavity electro-optics: a platform for coherent photon conversion between superconducting and photonic circuits,” Sci. Adv. 4, eaar4994 (2018).
[Crossref]

Zvezdin, A. K.

S. Schlauderer, C. Lange, S. Baierl, T. Ebnet, C. P. Schmid, D. C. Valovcin, A. K. Zvezdin, A. V. Kimel, R. V. Mikhaylovskiy, and R. Huber, “Temporal and spectral fingerprints of ultrafast all-coherent spin switching,” Nature 569, 383–387 (2019).
[Crossref]

Zwickel, H.

W. Heni, Y. Kutuvantavida, C. Haffner, H. Zwickel, C. Kieninger, S. Wolf, M. Lauermann, Y. Fedoryshyn, A. F. Tillack, L. E. Johnson, D. L. Elder, B. H. Robinson, W. Freude, C. Koos, J. Leuthold, and L. R. Dalton, “Silicon–organic and plasmonic–organic hybrid photonics,” ACS Photon. 4, 1576–1590 (2017).
[Crossref]

ACS Photon. (2)

I.-C. Benea-Chelmus, T. Zhu, F. Settembrini, C. Bonzon, E. Mavrona, D. Elder, W. Heni, J. Leuthold, L. Dalton, and J. Faist, “Three-dimensional phase modulator at telecom wavelength acting as a terahertz detector with an electro-optic bandwidth of 1.25  terahertz,” ACS Photon. 5, 1398–1403 (2018).
[Crossref]

W. Heni, Y. Kutuvantavida, C. Haffner, H. Zwickel, C. Kieninger, S. Wolf, M. Lauermann, Y. Fedoryshyn, A. F. Tillack, L. E. Johnson, D. L. Elder, B. H. Robinson, W. Freude, C. Koos, J. Leuthold, and L. R. Dalton, “Silicon–organic and plasmonic–organic hybrid photonics,” ACS Photon. 4, 1576–1590 (2017).
[Crossref]

APL Photon. (1)

M. Burla, C. Hoessbacher, W. Heni, C. Haffner, Y. Fedoryshyn, D. Werner, T. Watanabe, H. Massler, D. L. Elder, L. R. Dalton, and J. Leuthold, “500  GHz plasmonic Mach-Zehnder modulator enabling sub-THz microwave photonics,” APL Photon. 4, 056106 (2019).
[Crossref]

Appl. Phys. Lett. (1)

J. Tian, S. Yu, W. Yan, and M. Qiu, “Broadband high-efficiency surface-plasmon-polariton coupler with silicon-metal interface,” Appl. Phys. Lett. 95, 013504 (2009).
[Crossref]

Chem. Mater. (2)

D. L. Elder, C. Haffner, W. Heni, Y. Fedoryshyn, K. E. Garrett, L. E. Johnson, R. A. Campbell, J. D. Avila, B. H. Robinson, J. Leuthold, and L. R. Dalton, “Effect of rigid bridge-protection units, quadrupolar interactions, and blending in organic electro-optic chromophores,” Chem. Mater. 29, 6457–6471 (2017).
[Crossref]

H. Xu, F. Liu, D. L. Elder, L. E. Johnson, Y. de Coene, K. Clays, B. H. Robinson, and L. R. Dalton, “Ultrahigh electro-optic coefficients, high index of refraction, and long-term stability from Diels–Alder cross-linkable binary molecular glasses,” Chem. Mater. 32, 1408–1421 (2020).
[Crossref]

Electron. Lett. (1)

D. H. Park, V. Yun, J. Luo, A. K. Jen, and W. N. Herman, “EO polymer at cryogenic temperatures,” Electron. Lett. 52, 1703–1705 (2016).
[Crossref]

J. Exp. Theor. Phys. (1)

V. B. Braginsky, “Classical and quantum restrictions on the detection of weak disturbances of a macroscopic oscillator,” J. Exp. Theor. Phys. 26, 831 (1968).

J. Lightwave Technol. (2)

Nano Lett. (1)

Y. Salamin, W. Heni, C. Haffner, Y. Fedoryshyn, C. Hoessbacher, R. Bonjour, M. Zahner, D. Hillerkuss, P. Leuchtmann, D. L. Elder, L. R. Dalton, C. Hafner, and J. Leuthold, “Direct conversion of free space millimeter waves to optical domain by plasmonic modulator antenna,” Nano Lett. 15, 8342–8346 (2015).
[Crossref]

Nat. Commun. (1)

Y. Salamin, I.-C. Benea-Chelmus, Y. Fedoryshyn, W. Heni, D. L. Elder, L. R. Dalton, J. Faist, and J. Leuthold, “Compact and ultra-efficient broadband plasmonic terahertz field detector,” Nat. Commun. 10, 5550 (2019).
[Crossref]

Nat. Electron. (1)

K. Sengupta, T. Nagatsuma, and D. M. Mittleman, “Terahertz integrated electronic and hybrid electronic–photonic systems,” Nat. Electron. 1, 622–635 (2018).
[Crossref]

Nat. Photonics (2)

T. Rybka, M. Ludwig, M. F. Schmalz, V. Knittel, D. Brida, and A. Leitenstorfer, “Sub-cycle optical phase control of nanotunnelling in the single-electron regime,” Nat. Photonics 10, 667–670 (2016).
[Crossref]

Y. Salamin, B. Baeuerle, W. Heni, F. C. Abrecht, A. Josten, Y. Fedoryshyn, C. Haffner, R. Bonjour, T. Watanabe, M. Burla, D. L. Elder, L. R. Dalton, and J. Leuthold, “Microwave plasmonic mixer in a transparent fibre–wireless link,” Nat. Photonics 12, 749–753 (2018).
[Crossref]

Nat. Phys. (3)

D. Mason, J. Chen, M. Rossi, Y. Tsaturyan, and A. Schliesser, “Continuous force and displacement measurement below the standard quantum limit,” Nat. Phys. 15, 745–749 (2019).
[Crossref]

G. L. Paravicini-Bagliani, F. Appugliese, E. Richter, F. Valmorra, J. Keller, M. Beck, N. Bartolo, C. Rössler, T. Ihn, K. Ensslin, C. Ciuti, G. Scalari, and J. Faist, “Magneto-transport controlled by Landau polariton states,” Nat. Phys. 15, 186–190 (2019).
[Crossref]

M. Forsch, R. Stockill, A. Wallucks, I. Marinković, C. Gärtner, R. A. Norte, F. van Otten, A. Fiore, K. Srinivasan, and S. Gröblacher, “Microwave-to-optics conversion using a mechanical oscillator in its quantum ground state,” Nat. Phys. 16, 69–74 (2020).
[Crossref]

Nature (9)

J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478, 89–92 (2011).
[Crossref]

I.-C. Benea-Chelmus, F. Settembrini, G. Scalari, and J. Faist, “Electric field correlation measurements on the electromagnetic vacuum state,” Nature 568, 202–206 (2019).
[Crossref]

H. A. Hafez, S. Kovalev, J.-C. Deinert, Z. Mics, B. Green, N. Awari, M. Chen, S. Germanskiy, U. Lehnert, J. Teichert, Z. Wang, K.-J. Tielrooij, Z. Liu, Z. Chen, A. Narita, K. Müllen, M. Bonn, M. Gensch, and D. Turchinovich, “Extremely efficient terahertz high-harmonic generation in graphene by hot Dirac fermions,” Nature 561, 507–511 (2018).
[Crossref]

S. Schlauderer, C. Lange, S. Baierl, T. Ebnet, C. P. Schmid, D. C. Valovcin, A. K. Zvezdin, A. V. Kimel, R. V. Mikhaylovskiy, and R. Huber, “Temporal and spectral fingerprints of ultrafast all-coherent spin switching,” Nature 569, 383–387 (2019).
[Crossref]

T. L. Cocker, D. Peller, P. Yu, J. Repp, and R. Huber, “Tracking the ultrafast motion of a single molecule by femtosecond orbital imaging,” Nature 539, 263–267 (2016).
[Crossref]

J. Ma, R. Shrestha, J. Adelberg, C.-Y. Yeh, Z. Hossain, E. Knightly, J. M. Jornet, and D. M. Mittleman, “Security and eavesdropping in terahertz wireless links,” Nature 563, 89–93 (2018).
[Crossref]

A. Rueda, F. Sedlmeir, M. Kumari, G. Leuchs, and H. G. L. Schwefel, “Resonant electro-optic frequency comb,” Nature 568, 378–381 (2019).
[Crossref]

M. Zhang, B. Buscaino, C. Wang, A. Shams-Ansari, C. Reimer, R. Zhu, J. M. Kahn, and M. Lončar, “Broadband electro-optic frequency comb generation in a lithium niobate microring resonator,” Nature 568, 373–377 (2019).
[Crossref]

C. M. Wilson, G. Johansson, A. Pourkabirian, M. Simoen, J. R. Johansson, T. Duty, F. Nori, and P. Delsing, “Observation of the dynamical Casimir effect in a superconducting circuit,” Nature 479, 376–379 (2011).
[Crossref]

npj Quantum Inf. (1)

A. Rueda, W. Hease, S. Barzanjeh, and J. M. Fink, “Electro-optic entanglement source for microwave to telecom quantum state transfer,” npj Quantum Inf. 5, 108 (2019).
[Crossref]

Opt. Commun. (1)

S. Hunsche, M. Koch, I. Brener, and M. Nuss, “THz near-field imaging,” Opt. Commun. 150, 22–26 (1998).
[Crossref]

Opt. Express (2)

Optica (1)

Phys. Rev. A (7)

I.-C. Benea-Chelmus, M. Rösch, G. Scalari, M. Beck, and J. Faist, “Intensity autocorrelation measurements of frequency combs in the terahertz range,” Phys. Rev. A 96, 033821 (2017).
[Crossref]

C. Javerzac-Galy, K. Plekhanov, N. R. Bernier, L. D. Toth, A. K. Feofanov, and T. J. Kippenberg, “On-chip microwave-to-optical quantum coherent converter based on a superconducting resonator coupled to an electro-optic microresonator,” Phys. Rev. A 94, 053815 (2016).
[Crossref]

M. Soltani, M. Zhang, C. Ryan, G. J. Ribeill, C. Wang, and M. Loncar, “Efficient quantum microwave-to-optical conversion using electro-optic nanophotonic coupled resonators,” Phys. Rev. A 96, 043808 (2017).
[Crossref]

S. Barzanjeh, D. Vitali, P. Tombesi, and G. J. Milburn, “Entangling optical and microwave cavity modes by means of a nanomechanical resonator,” Phys. Rev. A 84, 042342 (2011).
[Crossref]

S. De Liberato, “Electro-optical sampling of quantum vacuum fluctuations in dispersive dielectrics,” Phys. Rev. A 100, 031801 (2019).
[Crossref]

I.-C. Benea-Chelmus, C. Bonzon, C. Maissen, G. Scalari, M. Beck, and J. Faist, “Subcycle measurement of intensity correlations in the terahertz frequency range,” Phys. Rev. A 93, 043812 (2016).
[Crossref]

P. Sulzer, K. Oguchi, J. Huster, M. Kizmann, T. L. M. Guedes, A. Liehl, C. Beckh, A. S. Moskalenko, G. Burkard, D. V. Seletskiy, and A. Leitenstorfer, “Determination of the electric field and its Hilbert transform in femtosecond electro-optic sampling,” Phys. Rev. A 101, 033821 (2020).
[Crossref]

Phys. Rev. Lett. (1)

A. S. Moskalenko, C. Riek, D. V. Seletskiy, G. Burkard, and A. Leitenstorfer, “Paraxial theory of direct electro-optic sampling of the quantum vacuum,” Phys. Rev. Lett. 115, 263601 (2015).
[Crossref]

Proc. Natl. Acad. Sci. USA (1)

G. I. Groma, J. Hebling, I. Z. Kozma, G. Varo, J. Hauer, J. Kuhl, and E. Riedle, “Terahertz radiation from bacteriorhodopsin reveals correlated primary electron and proton transfer processes,” Proc. Natl. Acad. Sci. USA 105, 6888–6893 (2008).
[Crossref]

Quant. Imaging Med. Surg. (1)

Q. Sun, Y. He, K. Liu, S. Fan, E. P. J. Parrott, and E. Pickwell-MacPherson, “Recent advances in terahertz technology for biomedical applications,” Quant. Imaging Med. Surg. 7, 345–355 (2017).
[Crossref]

Rev. Mod. Phys. (1)

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86, 1391–1452 (2014).
[Crossref]

Sci. Adv. (1)

L. Fan, C.-L. Zou, R. Cheng, X. Guo, X. Han, Z. Gong, S. Wang, and H. X. Tang, “Superconducting cavity electro-optics: a platform for coherent photon conversion between superconducting and photonic circuits,” Sci. Adv. 4, eaar4994 (2018).
[Crossref]

Science (2)

C. Riek, D. V. Seletskiy, A. S. Moskalenko, J. F. Schmidt, P. Krauspe, S. Eckart, S. Eggert, G. Burkard, and A. Leitenstorfer, “Direct sampling of electric-field vacuum fluctuations,” Science 350, 420–423 (2015).
[Crossref]

F. Brennecke, S. Ritter, T. Donner, and T. Esslinger, “Cavity optomechanics with a Bose-Einstein condensate,” Science 322, 235–238 (2008).
[Crossref]

Other (1)

F. Lindel, R. Bennett, and S. Y. Buhmann, “Probing the sculpted quantum vacuum: quantum optics of nonlinear crystals,” arXiv:1905.10200v2 (2019).

Supplementary Material (1)

NameDescription
» Supplement 1       supplemental document

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. Detection principle of quantum THz fields with electro-optics. (a) A cavity mode at THz frequencies (depicted in green) is sampled in the time domain by a femtosecond pulse in a cavity that contains a nonlinear medium with second-order nonlinearity ${\chi ^{(2)}}$. (b) In practice, the THz cavity is constituted of a metallic antenna, which exhibits an extremely high vacuum electric field $E_{\rm THz}^{\rm vac}$. The latter can give rise to a high single-photon coupling rate with photons in an ultrafast probe pulse depicted in red. (c) In the frequency domain, electro-optic detection entails the cross-phase modulation (sidebands from sum- and difference-frequency generation) introduced by a THz electric field onto a broadband probe via the second-order mixing process. (d) In the time domain, a probe pulse propagating along the antenna gap experiences a phase delay proportional to the interaction time ${t_{\rm int}}$ and the coupling strength. (e) The phase is later transformed into an intensity modulation using homodyne mixing and measured at a slow photodiode. The subcycle resolution is achieved by use of femtosecond probe pulses.
Fig. 2.
Fig. 2. Layout and operation principle of the on-chip detector. (a), (b) Electron micrograph images of the device, showing in false colors the monolithic MZI in silicon and the co-integration of the hybrid organic-plasmonic phase shifters in each arm of the interferometer. The zoom-in (b) highlights the plasmonic gap, which contains the nonlinear organic molecules. The THz antenna confines the incident wave to the plasmonic gap where the interaction occurs. (c) The theoretical amplitude of the vacuum field at the antenna resonance frequency is reported as a function of gap length. (d) The incident THz wave is detected using electro-optic detection. The probing pulses at 1550 nm are coupled via grating couplers [30] to on-chip waveguides and propagate through the interferometer. At the plasmonic phase shifters, they experience a phase delay that varies linearly with the incident THz field amplitude at the point of temporal overlap. The phase modulation is transformed into an intensity modulation after the interferometer and measured by a simple photodiode. (e) A passive imbalance of $\Delta \phi = \pi /2$ between the two arms of the interferometer yields a linear response to the phase introduced by the incident THz field. (f) The two interacting waves propagate in orthogonal directions ($x$ and $y$). The coherence length (here defined at phase difference $\pi /2$) is shorter for faster oscillating frequencies. Therefore, at given plasmonic length, the maximum frequency is determined by ${l_{\rm gap}}$. Operation at higher frequencies requires shorter plasmonic cavities, as was shown in previous work [29], and operating at a targeted frequency allows an optimal length.
Fig. 3.
Fig. 3. Performance of the detectors. (a) Simulated field enhancement as provided by three different geometries of the bowtie antennae depends on the center design frequency. (b) Time trace of the THz transients as detected by the three different antenna designs. Clear frequency selectivity is visible already in the temporal evolution. The peak-peak of the detected field amplitude decreases with center frequency due to a reduction of the field enhancement. (c) The spectra [Fourier transform of the time traces in (b)] are a convolution of the source emission and the detector response, and they follow well the field enhancement provided by the antenna. All plotted results correspond a plasmonic gap length ${l_{\rm gap}} = 10\,\,\unicode{x00B5}{\rm m}$ and an output probe power of ${P_{\rm out}} \sim - 40\,\,{\rm dBm}$. We report on a 35 dB dynamical range in field (70 dB in intensity) at only 500 ms integration time as opposed to the 20 s integration time reported earlier [29]. (d) The normalized peak-peak electro-optic intensity modulation is reported as a function of the plasmonic gap length ${l_{\rm gap}}$, measured for devices with different ${l_{\rm gap}}$. We observe a clear saturation or even decay of the signal for long interaction lengths for the high-frequency antennae. Instead, a $30\,\,\unicode{x00B5}{\rm m}$ long plasmonic gap yields the highest signal for the 220 GHz antenna.
Fig. 4.
Fig. 4. Electric field sensitivity of the detectors. (a) The experimental single-photon electro-optic coupling rate ${g_{\!{\rm eo}}}$ is compared to the theoretically computed one. (b) The modulation efficiency is reported as a function of the THz electric field in the plasmonic gap for fields down to a few 10 V/m. The incident THz field is swept by changing the input power at the photoconductive emitter. The error bars represent the time-domain standard deviation for an integration time per point of 1 s for the first three points and 500 ms for the last three points. (c), The SNR for one single measurement with one single pulse is computed from the detected signal and the computed noise equivalent signal from shot noise. The measured data stems for a probe intensity of ${-}{44.2}\;{\rm dBm}$ and a plasmonic gap length of 20 µm. Also, we add the extrapolated SNR for a probe power of −30 dBm. (d) Detected electro-optic amplitude as a function of probe power shows an initial linear increase with probe power, which then deviates from a linear dependence for high probe powers.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

H ^ I = i d ω α ( ω ) g e o ( ω ) ( a ^ ( ω + Ω ) a ^ ( Ω ) h . c . ) ,
+ i d ω α ( ω ) g e o ( ω ) ( a ^ ( ω Ω ) a ^ ( Ω ) h . c . ) .
g e o ( ω ) = 1 2 n m a t 2 r ω E T H z v a c Γ c ,
E ^ r e s ( t ) = i d ω ω 2 ϵ p V p u p ( x , y , z ) α ( ω ) ( e i ( ω t + Δ ϕ ^ ( t ) ) h . c . ) .
S ^ e o ( t ) = Δ I ^ o u t ( t ) I o u t = B E ^ T H z ( t )