Abstract

Acoustic waves can serve as memory for optical information; however, propagating acoustic phonons in the gigahertz (GHz) regime decay on the nanosecond time scale. Usually this is dominated by intrinsic acoustic loss due to inelastic scattering of the acoustic waves and thermal phonons. Here we show a way to counteract the intrinsic acoustic decay of the phonons in a waveguide by resonantly reinforcing the acoustic wave via synchronized optical pulses. We experimentally demonstrate coherent on-chip storage in amplitude and phase up to 40 ns, 4 times the intrinsic acoustic lifetime in the waveguide. Through theoretical considerations, we anticipate that this concept allows for storage times up to microseconds within realistic experimental limitations while maintaining a GHz bandwidth of the optical signal.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. H. Safavi-Naeini and O. Painter, “Proposal for an optomechanical traveling wave phonon–photon translator,” New J. Phys. 13, 013017 (2011).
    [Crossref]
  2. R. Pant, C. G. Poulton, D.-Y. Choi, H. Mcfarlane, S. Hile, E. Li, L. Thevenaz, B. Luther-Davies, S. J. Madden, and B. J. Eggleton, “On-chip stimulated Brillouin scattering,” Opt. Express 19, 8285–8290 (2011).
    [Crossref]
  3. H. Shin, W. Qiu, R. Jarecki, A. Cox, R. H. Olsson, A. Starbuck, Z. Wang, and P. T. Rakich, “Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides,” Nat. Commun. 4, 1944 (2013).
    [Crossref]
  4. B. J. Eggleton, C. G. Poulton, and R. Pant, “Inducing and harnessing stimulated Brillouin scattering in photonic integrated circuits,” Adv. Opt. Photon. 5, 536–587 (2013).
    [Crossref]
  5. J.-C. Beugnot, S. Lebrun, G. Pauliat, H. Maillotte, V. Laude, and T. Sylvestre, “Brillouin light scattering from surface acoustic waves in a subwavelength-diameter optical fibre,” Nat. Comm. 5, 5242 (2014).
    [Crossref]
  6. R. Van Laer, A. Bazin, B. Kuyken, R. Baets, and D. Van Thourhout, “Net on-chip Brillouin gain based on suspended silicon nanowires,” New J. Phys. 17, 115005 (2015).
    [Crossref]
  7. K. C. Balram, M. I. Davanço, J. D. Song, and S. K. Srinivasan, “Coherent coupling between radiofrequency, optical and acoustic waves in piezo-optomechanical circuits,” Nat. Photonics 10, 346–352 (2016).
    [Crossref]
  8. H. Li, S. A. Tadesse, Q. Liu, and M. Li, “Nanophotonic cavity optomechanics with propagating acoustic waves at frequencies up to 12 GHz,” Optica 2, 826–831 (2015).
    [Crossref]
  9. Z. Zhu, D. J. Gauthier, and R. W. Boyd, “Stored light in an optical fiber via stimulated Brillouin scattering,” Science 318, 1748–1750 (2007).
    [Crossref]
  10. D. E. Chang, S.-A. H. Naeini, M. Hafezi, and O. Painter, “Slowing and stopping light using an optomechanical crystal array,” New J. Phys. 13, 023003 (2011).
    [Crossref]
  11. S.-A. H. Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472, 69–73 (2011).
    [Crossref]
  12. V. Fiore, Y. Yang, M.-C. Kuzyk, R. Barbour, and H. Wang, “Storing optical information as a mechanical excitation in a silica optomechanical resonator,” Phys. Rev. Lett. 107, 1–5 (2011).
    [Crossref]
  13. K. Jamshidi, S. Preuler, A. Wiatrek, and T. Schneider, “A review to the all-optical quasi-light storage,” IEEE J. Sel. Top. Quantum Electron. 18, 884–890 (2012).
    [Crossref]
  14. V. Fiore, C. Dong, M. C. Kuzyk, and H. Wang, “Optomechanical light storage in a silica microresonator,” Phys. Rev. A 87, 1–6 (2013).
    [Crossref]
  15. C. Galland, N. Sangouard, N. Piro, N. Gisin, and T. J. Kippenberg, “Heralded single-phonon preparation, storage, and readout in cavity optomechanics,” Phys. Rev. Lett. 112, 1–6 (2014).
    [Crossref]
  16. C.-H. Dong, Z. Shen, C.-L. Zou, Y.-L. Zhang, W. Fu, and G.-C. Guo, “Brillouin-scattering-induced transparency and non-reciprocal light storage,” Nat. Commun. 6, 6193 (2015).
    [Crossref]
  17. M. Merklein, B. Stiller, K. Vu, S. J. Madden, and B. J. Eggleton, “A chip-integrated coherent photonic-phononic memory,” Nat. Commun. 8, 574 (2017).
    [Crossref]
  18. M. Merklein, B. Stiller, and B. J. Eggleton, “Brillouin-based light storage and delay techniques,” J. Opt. 20, 083003 (2018).
    [Crossref]
  19. B. Stiller, M. Merklein, C. G. Poulton, K. Vu, P. Ma, S. J. Madden, and B. J. Eggleton, “Cross talk-free multi-wavelength coherent light storage via Brillouin interaction,” APL Photon. 4, 040802 (2019).
    [Crossref]
  20. J. J. Longdell, E. Fraval, M. J. Sellars, and N. B. Manson, “Stopped light with storage times greater than one second using electromagnetically induced transparency in a solid,” Phys. Rev. Lett. 95, 063601 (2005).
    [Crossref]
  21. G. Heinze, C. Hubrich, and T. Halfmann, “Stopped light and image storage by electromagnetically induced transparency up to the regime of one minute,” Phys. Rev. Lett. 111, 033601 (2013).
    [Crossref]
  22. M. Hosseini, B. M. Sparkes, G. Campbell, P. K. Lam, and B. C. Buchler, “High efficiency coherent optical memory with warm rubidium vapour,” Nat. Commun. 2, 174 (2011).
    [Crossref]
  23. L. Brillouin, “Diffusion de la lumière par un corps transparent homogène,” Ann. Phys. 9, 88–122 (1922).
    [Crossref]
  24. Y. R. Shen and N. Bloembergen, “Theory of stimulated Brillouin and Raman scattering,” Phys. Rev. A 137, A1787 (1965).
    [Crossref]
  25. R. Boyd, K. Rzaewski, and P. Narum, “Noise initiation of stimulated Brillouin scattering,” Phys. Rev. A 42, 5514–5521 (1990).
    [Crossref]
  26. A. L. Gaeta and R. W. Boyd, “Stochastic dynamics of stimulated Brillouin scattering in an optical fiber,” Phys. Rev. A 44, 3205–3209 (1991).
    [Crossref]
  27. E. Garmire, F. Pandarese, and C. H. Townes, “Coherently driven molecular vibrations and light modulation,” Phys. Rev. Lett. 11, 160–163 (1963).
    [Crossref]
  28. M. Dong and H. G. Winful, “Area dependence of chirped-pulse stimulated Brillouin scattering: implications for stored light and dynamic gratings,” J. Opt. Soc. Am. B 32, 2514–2519 (2015).
    [Crossref]
  29. K. Jaksch, K. Merklein, K. Vu, P. Ma, S. J. Madden, B. J. Eggleton, and B. Stiller, “Brillouin-based light storage of 200ps-long pulses for 70 pulse widths,” in Frontiers in Optics, OSA Technical Digest (online) (Optical Society of America, 2017), paper FTh4A.5.
  30. M. Santagiustina, S. Chin, N. Primerov, L. Ursini, and L. Thévenaz, “All-optical signal processing using dynamic Brillouin gratings,” Sci. Rep. 3, 1594 (2013).
    [Crossref]
  31. H. Winful, “Chirped Brillouin dynamic gratings for storing and compressing light,” Opt. Express 21, 10039–10047 (2013).
    [Crossref]

2019 (1)

B. Stiller, M. Merklein, C. G. Poulton, K. Vu, P. Ma, S. J. Madden, and B. J. Eggleton, “Cross talk-free multi-wavelength coherent light storage via Brillouin interaction,” APL Photon. 4, 040802 (2019).
[Crossref]

2018 (1)

M. Merklein, B. Stiller, and B. J. Eggleton, “Brillouin-based light storage and delay techniques,” J. Opt. 20, 083003 (2018).
[Crossref]

2017 (1)

M. Merklein, B. Stiller, K. Vu, S. J. Madden, and B. J. Eggleton, “A chip-integrated coherent photonic-phononic memory,” Nat. Commun. 8, 574 (2017).
[Crossref]

2016 (1)

K. C. Balram, M. I. Davanço, J. D. Song, and S. K. Srinivasan, “Coherent coupling between radiofrequency, optical and acoustic waves in piezo-optomechanical circuits,” Nat. Photonics 10, 346–352 (2016).
[Crossref]

2015 (4)

H. Li, S. A. Tadesse, Q. Liu, and M. Li, “Nanophotonic cavity optomechanics with propagating acoustic waves at frequencies up to 12 GHz,” Optica 2, 826–831 (2015).
[Crossref]

R. Van Laer, A. Bazin, B. Kuyken, R. Baets, and D. Van Thourhout, “Net on-chip Brillouin gain based on suspended silicon nanowires,” New J. Phys. 17, 115005 (2015).
[Crossref]

C.-H. Dong, Z. Shen, C.-L. Zou, Y.-L. Zhang, W. Fu, and G.-C. Guo, “Brillouin-scattering-induced transparency and non-reciprocal light storage,” Nat. Commun. 6, 6193 (2015).
[Crossref]

M. Dong and H. G. Winful, “Area dependence of chirped-pulse stimulated Brillouin scattering: implications for stored light and dynamic gratings,” J. Opt. Soc. Am. B 32, 2514–2519 (2015).
[Crossref]

2014 (2)

C. Galland, N. Sangouard, N. Piro, N. Gisin, and T. J. Kippenberg, “Heralded single-phonon preparation, storage, and readout in cavity optomechanics,” Phys. Rev. Lett. 112, 1–6 (2014).
[Crossref]

J.-C. Beugnot, S. Lebrun, G. Pauliat, H. Maillotte, V. Laude, and T. Sylvestre, “Brillouin light scattering from surface acoustic waves in a subwavelength-diameter optical fibre,” Nat. Comm. 5, 5242 (2014).
[Crossref]

2013 (6)

H. Shin, W. Qiu, R. Jarecki, A. Cox, R. H. Olsson, A. Starbuck, Z. Wang, and P. T. Rakich, “Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides,” Nat. Commun. 4, 1944 (2013).
[Crossref]

B. J. Eggleton, C. G. Poulton, and R. Pant, “Inducing and harnessing stimulated Brillouin scattering in photonic integrated circuits,” Adv. Opt. Photon. 5, 536–587 (2013).
[Crossref]

V. Fiore, C. Dong, M. C. Kuzyk, and H. Wang, “Optomechanical light storage in a silica microresonator,” Phys. Rev. A 87, 1–6 (2013).
[Crossref]

M. Santagiustina, S. Chin, N. Primerov, L. Ursini, and L. Thévenaz, “All-optical signal processing using dynamic Brillouin gratings,” Sci. Rep. 3, 1594 (2013).
[Crossref]

H. Winful, “Chirped Brillouin dynamic gratings for storing and compressing light,” Opt. Express 21, 10039–10047 (2013).
[Crossref]

G. Heinze, C. Hubrich, and T. Halfmann, “Stopped light and image storage by electromagnetically induced transparency up to the regime of one minute,” Phys. Rev. Lett. 111, 033601 (2013).
[Crossref]

2012 (1)

K. Jamshidi, S. Preuler, A. Wiatrek, and T. Schneider, “A review to the all-optical quasi-light storage,” IEEE J. Sel. Top. Quantum Electron. 18, 884–890 (2012).
[Crossref]

2011 (6)

D. E. Chang, S.-A. H. Naeini, M. Hafezi, and O. Painter, “Slowing and stopping light using an optomechanical crystal array,” New J. Phys. 13, 023003 (2011).
[Crossref]

S.-A. H. Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472, 69–73 (2011).
[Crossref]

V. Fiore, Y. Yang, M.-C. Kuzyk, R. Barbour, and H. Wang, “Storing optical information as a mechanical excitation in a silica optomechanical resonator,” Phys. Rev. Lett. 107, 1–5 (2011).
[Crossref]

A. H. Safavi-Naeini and O. Painter, “Proposal for an optomechanical traveling wave phonon–photon translator,” New J. Phys. 13, 013017 (2011).
[Crossref]

R. Pant, C. G. Poulton, D.-Y. Choi, H. Mcfarlane, S. Hile, E. Li, L. Thevenaz, B. Luther-Davies, S. J. Madden, and B. J. Eggleton, “On-chip stimulated Brillouin scattering,” Opt. Express 19, 8285–8290 (2011).
[Crossref]

M. Hosseini, B. M. Sparkes, G. Campbell, P. K. Lam, and B. C. Buchler, “High efficiency coherent optical memory with warm rubidium vapour,” Nat. Commun. 2, 174 (2011).
[Crossref]

2007 (1)

Z. Zhu, D. J. Gauthier, and R. W. Boyd, “Stored light in an optical fiber via stimulated Brillouin scattering,” Science 318, 1748–1750 (2007).
[Crossref]

2005 (1)

J. J. Longdell, E. Fraval, M. J. Sellars, and N. B. Manson, “Stopped light with storage times greater than one second using electromagnetically induced transparency in a solid,” Phys. Rev. Lett. 95, 063601 (2005).
[Crossref]

1991 (1)

A. L. Gaeta and R. W. Boyd, “Stochastic dynamics of stimulated Brillouin scattering in an optical fiber,” Phys. Rev. A 44, 3205–3209 (1991).
[Crossref]

1990 (1)

R. Boyd, K. Rzaewski, and P. Narum, “Noise initiation of stimulated Brillouin scattering,” Phys. Rev. A 42, 5514–5521 (1990).
[Crossref]

1965 (1)

Y. R. Shen and N. Bloembergen, “Theory of stimulated Brillouin and Raman scattering,” Phys. Rev. A 137, A1787 (1965).
[Crossref]

1963 (1)

E. Garmire, F. Pandarese, and C. H. Townes, “Coherently driven molecular vibrations and light modulation,” Phys. Rev. Lett. 11, 160–163 (1963).
[Crossref]

1922 (1)

L. Brillouin, “Diffusion de la lumière par un corps transparent homogène,” Ann. Phys. 9, 88–122 (1922).
[Crossref]

Alegre, T. P. M.

S.-A. H. Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472, 69–73 (2011).
[Crossref]

Baets, R.

R. Van Laer, A. Bazin, B. Kuyken, R. Baets, and D. Van Thourhout, “Net on-chip Brillouin gain based on suspended silicon nanowires,” New J. Phys. 17, 115005 (2015).
[Crossref]

Balram, K. C.

K. C. Balram, M. I. Davanço, J. D. Song, and S. K. Srinivasan, “Coherent coupling between radiofrequency, optical and acoustic waves in piezo-optomechanical circuits,” Nat. Photonics 10, 346–352 (2016).
[Crossref]

Barbour, R.

V. Fiore, Y. Yang, M.-C. Kuzyk, R. Barbour, and H. Wang, “Storing optical information as a mechanical excitation in a silica optomechanical resonator,” Phys. Rev. Lett. 107, 1–5 (2011).
[Crossref]

Bazin, A.

R. Van Laer, A. Bazin, B. Kuyken, R. Baets, and D. Van Thourhout, “Net on-chip Brillouin gain based on suspended silicon nanowires,” New J. Phys. 17, 115005 (2015).
[Crossref]

Beugnot, J.-C.

J.-C. Beugnot, S. Lebrun, G. Pauliat, H. Maillotte, V. Laude, and T. Sylvestre, “Brillouin light scattering from surface acoustic waves in a subwavelength-diameter optical fibre,” Nat. Comm. 5, 5242 (2014).
[Crossref]

Bloembergen, N.

Y. R. Shen and N. Bloembergen, “Theory of stimulated Brillouin and Raman scattering,” Phys. Rev. A 137, A1787 (1965).
[Crossref]

Boyd, R.

R. Boyd, K. Rzaewski, and P. Narum, “Noise initiation of stimulated Brillouin scattering,” Phys. Rev. A 42, 5514–5521 (1990).
[Crossref]

Boyd, R. W.

Z. Zhu, D. J. Gauthier, and R. W. Boyd, “Stored light in an optical fiber via stimulated Brillouin scattering,” Science 318, 1748–1750 (2007).
[Crossref]

A. L. Gaeta and R. W. Boyd, “Stochastic dynamics of stimulated Brillouin scattering in an optical fiber,” Phys. Rev. A 44, 3205–3209 (1991).
[Crossref]

Brillouin, L.

L. Brillouin, “Diffusion de la lumière par un corps transparent homogène,” Ann. Phys. 9, 88–122 (1922).
[Crossref]

Buchler, B. C.

M. Hosseini, B. M. Sparkes, G. Campbell, P. K. Lam, and B. C. Buchler, “High efficiency coherent optical memory with warm rubidium vapour,” Nat. Commun. 2, 174 (2011).
[Crossref]

Campbell, G.

M. Hosseini, B. M. Sparkes, G. Campbell, P. K. Lam, and B. C. Buchler, “High efficiency coherent optical memory with warm rubidium vapour,” Nat. Commun. 2, 174 (2011).
[Crossref]

Chan, J.

S.-A. H. Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472, 69–73 (2011).
[Crossref]

Chang, D.

S.-A. H. Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472, 69–73 (2011).
[Crossref]

Chang, D. E.

D. E. Chang, S.-A. H. Naeini, M. Hafezi, and O. Painter, “Slowing and stopping light using an optomechanical crystal array,” New J. Phys. 13, 023003 (2011).
[Crossref]

Chin, S.

M. Santagiustina, S. Chin, N. Primerov, L. Ursini, and L. Thévenaz, “All-optical signal processing using dynamic Brillouin gratings,” Sci. Rep. 3, 1594 (2013).
[Crossref]

Choi, D.-Y.

Cox, A.

H. Shin, W. Qiu, R. Jarecki, A. Cox, R. H. Olsson, A. Starbuck, Z. Wang, and P. T. Rakich, “Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides,” Nat. Commun. 4, 1944 (2013).
[Crossref]

Davanço, M. I.

K. C. Balram, M. I. Davanço, J. D. Song, and S. K. Srinivasan, “Coherent coupling between radiofrequency, optical and acoustic waves in piezo-optomechanical circuits,” Nat. Photonics 10, 346–352 (2016).
[Crossref]

Dong, C.

V. Fiore, C. Dong, M. C. Kuzyk, and H. Wang, “Optomechanical light storage in a silica microresonator,” Phys. Rev. A 87, 1–6 (2013).
[Crossref]

Dong, C.-H.

C.-H. Dong, Z. Shen, C.-L. Zou, Y.-L. Zhang, W. Fu, and G.-C. Guo, “Brillouin-scattering-induced transparency and non-reciprocal light storage,” Nat. Commun. 6, 6193 (2015).
[Crossref]

Dong, M.

Eggleton, B. J.

B. Stiller, M. Merklein, C. G. Poulton, K. Vu, P. Ma, S. J. Madden, and B. J. Eggleton, “Cross talk-free multi-wavelength coherent light storage via Brillouin interaction,” APL Photon. 4, 040802 (2019).
[Crossref]

M. Merklein, B. Stiller, and B. J. Eggleton, “Brillouin-based light storage and delay techniques,” J. Opt. 20, 083003 (2018).
[Crossref]

M. Merklein, B. Stiller, K. Vu, S. J. Madden, and B. J. Eggleton, “A chip-integrated coherent photonic-phononic memory,” Nat. Commun. 8, 574 (2017).
[Crossref]

B. J. Eggleton, C. G. Poulton, and R. Pant, “Inducing and harnessing stimulated Brillouin scattering in photonic integrated circuits,” Adv. Opt. Photon. 5, 536–587 (2013).
[Crossref]

R. Pant, C. G. Poulton, D.-Y. Choi, H. Mcfarlane, S. Hile, E. Li, L. Thevenaz, B. Luther-Davies, S. J. Madden, and B. J. Eggleton, “On-chip stimulated Brillouin scattering,” Opt. Express 19, 8285–8290 (2011).
[Crossref]

K. Jaksch, K. Merklein, K. Vu, P. Ma, S. J. Madden, B. J. Eggleton, and B. Stiller, “Brillouin-based light storage of 200ps-long pulses for 70 pulse widths,” in Frontiers in Optics, OSA Technical Digest (online) (Optical Society of America, 2017), paper FTh4A.5.

Eichenfield, M.

S.-A. H. Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472, 69–73 (2011).
[Crossref]

Fiore, V.

V. Fiore, C. Dong, M. C. Kuzyk, and H. Wang, “Optomechanical light storage in a silica microresonator,” Phys. Rev. A 87, 1–6 (2013).
[Crossref]

V. Fiore, Y. Yang, M.-C. Kuzyk, R. Barbour, and H. Wang, “Storing optical information as a mechanical excitation in a silica optomechanical resonator,” Phys. Rev. Lett. 107, 1–5 (2011).
[Crossref]

Fraval, E.

J. J. Longdell, E. Fraval, M. J. Sellars, and N. B. Manson, “Stopped light with storage times greater than one second using electromagnetically induced transparency in a solid,” Phys. Rev. Lett. 95, 063601 (2005).
[Crossref]

Fu, W.

C.-H. Dong, Z. Shen, C.-L. Zou, Y.-L. Zhang, W. Fu, and G.-C. Guo, “Brillouin-scattering-induced transparency and non-reciprocal light storage,” Nat. Commun. 6, 6193 (2015).
[Crossref]

Gaeta, A. L.

A. L. Gaeta and R. W. Boyd, “Stochastic dynamics of stimulated Brillouin scattering in an optical fiber,” Phys. Rev. A 44, 3205–3209 (1991).
[Crossref]

Galland, C.

C. Galland, N. Sangouard, N. Piro, N. Gisin, and T. J. Kippenberg, “Heralded single-phonon preparation, storage, and readout in cavity optomechanics,” Phys. Rev. Lett. 112, 1–6 (2014).
[Crossref]

Garmire, E.

E. Garmire, F. Pandarese, and C. H. Townes, “Coherently driven molecular vibrations and light modulation,” Phys. Rev. Lett. 11, 160–163 (1963).
[Crossref]

Gauthier, D. J.

Z. Zhu, D. J. Gauthier, and R. W. Boyd, “Stored light in an optical fiber via stimulated Brillouin scattering,” Science 318, 1748–1750 (2007).
[Crossref]

Gisin, N.

C. Galland, N. Sangouard, N. Piro, N. Gisin, and T. J. Kippenberg, “Heralded single-phonon preparation, storage, and readout in cavity optomechanics,” Phys. Rev. Lett. 112, 1–6 (2014).
[Crossref]

Guo, G.-C.

C.-H. Dong, Z. Shen, C.-L. Zou, Y.-L. Zhang, W. Fu, and G.-C. Guo, “Brillouin-scattering-induced transparency and non-reciprocal light storage,” Nat. Commun. 6, 6193 (2015).
[Crossref]

Hafezi, M.

D. E. Chang, S.-A. H. Naeini, M. Hafezi, and O. Painter, “Slowing and stopping light using an optomechanical crystal array,” New J. Phys. 13, 023003 (2011).
[Crossref]

Halfmann, T.

G. Heinze, C. Hubrich, and T. Halfmann, “Stopped light and image storage by electromagnetically induced transparency up to the regime of one minute,” Phys. Rev. Lett. 111, 033601 (2013).
[Crossref]

Heinze, G.

G. Heinze, C. Hubrich, and T. Halfmann, “Stopped light and image storage by electromagnetically induced transparency up to the regime of one minute,” Phys. Rev. Lett. 111, 033601 (2013).
[Crossref]

Hile, S.

Hill, J. T.

S.-A. H. Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472, 69–73 (2011).
[Crossref]

Hosseini, M.

M. Hosseini, B. M. Sparkes, G. Campbell, P. K. Lam, and B. C. Buchler, “High efficiency coherent optical memory with warm rubidium vapour,” Nat. Commun. 2, 174 (2011).
[Crossref]

Hubrich, C.

G. Heinze, C. Hubrich, and T. Halfmann, “Stopped light and image storage by electromagnetically induced transparency up to the regime of one minute,” Phys. Rev. Lett. 111, 033601 (2013).
[Crossref]

Jaksch, K.

K. Jaksch, K. Merklein, K. Vu, P. Ma, S. J. Madden, B. J. Eggleton, and B. Stiller, “Brillouin-based light storage of 200ps-long pulses for 70 pulse widths,” in Frontiers in Optics, OSA Technical Digest (online) (Optical Society of America, 2017), paper FTh4A.5.

Jamshidi, K.

K. Jamshidi, S. Preuler, A. Wiatrek, and T. Schneider, “A review to the all-optical quasi-light storage,” IEEE J. Sel. Top. Quantum Electron. 18, 884–890 (2012).
[Crossref]

Jarecki, R.

H. Shin, W. Qiu, R. Jarecki, A. Cox, R. H. Olsson, A. Starbuck, Z. Wang, and P. T. Rakich, “Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides,” Nat. Commun. 4, 1944 (2013).
[Crossref]

Kippenberg, T. J.

C. Galland, N. Sangouard, N. Piro, N. Gisin, and T. J. Kippenberg, “Heralded single-phonon preparation, storage, and readout in cavity optomechanics,” Phys. Rev. Lett. 112, 1–6 (2014).
[Crossref]

Kuyken, B.

R. Van Laer, A. Bazin, B. Kuyken, R. Baets, and D. Van Thourhout, “Net on-chip Brillouin gain based on suspended silicon nanowires,” New J. Phys. 17, 115005 (2015).
[Crossref]

Kuzyk, M. C.

V. Fiore, C. Dong, M. C. Kuzyk, and H. Wang, “Optomechanical light storage in a silica microresonator,” Phys. Rev. A 87, 1–6 (2013).
[Crossref]

Kuzyk, M.-C.

V. Fiore, Y. Yang, M.-C. Kuzyk, R. Barbour, and H. Wang, “Storing optical information as a mechanical excitation in a silica optomechanical resonator,” Phys. Rev. Lett. 107, 1–5 (2011).
[Crossref]

Lam, P. K.

M. Hosseini, B. M. Sparkes, G. Campbell, P. K. Lam, and B. C. Buchler, “High efficiency coherent optical memory with warm rubidium vapour,” Nat. Commun. 2, 174 (2011).
[Crossref]

Laude, V.

J.-C. Beugnot, S. Lebrun, G. Pauliat, H. Maillotte, V. Laude, and T. Sylvestre, “Brillouin light scattering from surface acoustic waves in a subwavelength-diameter optical fibre,” Nat. Comm. 5, 5242 (2014).
[Crossref]

Lebrun, S.

J.-C. Beugnot, S. Lebrun, G. Pauliat, H. Maillotte, V. Laude, and T. Sylvestre, “Brillouin light scattering from surface acoustic waves in a subwavelength-diameter optical fibre,” Nat. Comm. 5, 5242 (2014).
[Crossref]

Li, E.

Li, H.

Li, M.

Lin, Q.

S.-A. H. Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472, 69–73 (2011).
[Crossref]

Liu, Q.

Longdell, J. J.

J. J. Longdell, E. Fraval, M. J. Sellars, and N. B. Manson, “Stopped light with storage times greater than one second using electromagnetically induced transparency in a solid,” Phys. Rev. Lett. 95, 063601 (2005).
[Crossref]

Luther-Davies, B.

Ma, P.

B. Stiller, M. Merklein, C. G. Poulton, K. Vu, P. Ma, S. J. Madden, and B. J. Eggleton, “Cross talk-free multi-wavelength coherent light storage via Brillouin interaction,” APL Photon. 4, 040802 (2019).
[Crossref]

K. Jaksch, K. Merklein, K. Vu, P. Ma, S. J. Madden, B. J. Eggleton, and B. Stiller, “Brillouin-based light storage of 200ps-long pulses for 70 pulse widths,” in Frontiers in Optics, OSA Technical Digest (online) (Optical Society of America, 2017), paper FTh4A.5.

Madden, S. J.

B. Stiller, M. Merklein, C. G. Poulton, K. Vu, P. Ma, S. J. Madden, and B. J. Eggleton, “Cross talk-free multi-wavelength coherent light storage via Brillouin interaction,” APL Photon. 4, 040802 (2019).
[Crossref]

M. Merklein, B. Stiller, K. Vu, S. J. Madden, and B. J. Eggleton, “A chip-integrated coherent photonic-phononic memory,” Nat. Commun. 8, 574 (2017).
[Crossref]

R. Pant, C. G. Poulton, D.-Y. Choi, H. Mcfarlane, S. Hile, E. Li, L. Thevenaz, B. Luther-Davies, S. J. Madden, and B. J. Eggleton, “On-chip stimulated Brillouin scattering,” Opt. Express 19, 8285–8290 (2011).
[Crossref]

K. Jaksch, K. Merklein, K. Vu, P. Ma, S. J. Madden, B. J. Eggleton, and B. Stiller, “Brillouin-based light storage of 200ps-long pulses for 70 pulse widths,” in Frontiers in Optics, OSA Technical Digest (online) (Optical Society of America, 2017), paper FTh4A.5.

Maillotte, H.

J.-C. Beugnot, S. Lebrun, G. Pauliat, H. Maillotte, V. Laude, and T. Sylvestre, “Brillouin light scattering from surface acoustic waves in a subwavelength-diameter optical fibre,” Nat. Comm. 5, 5242 (2014).
[Crossref]

Manson, N. B.

J. J. Longdell, E. Fraval, M. J. Sellars, and N. B. Manson, “Stopped light with storage times greater than one second using electromagnetically induced transparency in a solid,” Phys. Rev. Lett. 95, 063601 (2005).
[Crossref]

Mcfarlane, H.

Merklein, K.

K. Jaksch, K. Merklein, K. Vu, P. Ma, S. J. Madden, B. J. Eggleton, and B. Stiller, “Brillouin-based light storage of 200ps-long pulses for 70 pulse widths,” in Frontiers in Optics, OSA Technical Digest (online) (Optical Society of America, 2017), paper FTh4A.5.

Merklein, M.

B. Stiller, M. Merklein, C. G. Poulton, K. Vu, P. Ma, S. J. Madden, and B. J. Eggleton, “Cross talk-free multi-wavelength coherent light storage via Brillouin interaction,” APL Photon. 4, 040802 (2019).
[Crossref]

M. Merklein, B. Stiller, and B. J. Eggleton, “Brillouin-based light storage and delay techniques,” J. Opt. 20, 083003 (2018).
[Crossref]

M. Merklein, B. Stiller, K. Vu, S. J. Madden, and B. J. Eggleton, “A chip-integrated coherent photonic-phononic memory,” Nat. Commun. 8, 574 (2017).
[Crossref]

Naeini, S.-A. H.

D. E. Chang, S.-A. H. Naeini, M. Hafezi, and O. Painter, “Slowing and stopping light using an optomechanical crystal array,” New J. Phys. 13, 023003 (2011).
[Crossref]

S.-A. H. Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472, 69–73 (2011).
[Crossref]

Narum, P.

R. Boyd, K. Rzaewski, and P. Narum, “Noise initiation of stimulated Brillouin scattering,” Phys. Rev. A 42, 5514–5521 (1990).
[Crossref]

Olsson, R. H.

H. Shin, W. Qiu, R. Jarecki, A. Cox, R. H. Olsson, A. Starbuck, Z. Wang, and P. T. Rakich, “Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides,” Nat. Commun. 4, 1944 (2013).
[Crossref]

Painter, O.

A. H. Safavi-Naeini and O. Painter, “Proposal for an optomechanical traveling wave phonon–photon translator,” New J. Phys. 13, 013017 (2011).
[Crossref]

S.-A. H. Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472, 69–73 (2011).
[Crossref]

D. E. Chang, S.-A. H. Naeini, M. Hafezi, and O. Painter, “Slowing and stopping light using an optomechanical crystal array,” New J. Phys. 13, 023003 (2011).
[Crossref]

Pandarese, F.

E. Garmire, F. Pandarese, and C. H. Townes, “Coherently driven molecular vibrations and light modulation,” Phys. Rev. Lett. 11, 160–163 (1963).
[Crossref]

Pant, R.

Pauliat, G.

J.-C. Beugnot, S. Lebrun, G. Pauliat, H. Maillotte, V. Laude, and T. Sylvestre, “Brillouin light scattering from surface acoustic waves in a subwavelength-diameter optical fibre,” Nat. Comm. 5, 5242 (2014).
[Crossref]

Piro, N.

C. Galland, N. Sangouard, N. Piro, N. Gisin, and T. J. Kippenberg, “Heralded single-phonon preparation, storage, and readout in cavity optomechanics,” Phys. Rev. Lett. 112, 1–6 (2014).
[Crossref]

Poulton, C. G.

Preuler, S.

K. Jamshidi, S. Preuler, A. Wiatrek, and T. Schneider, “A review to the all-optical quasi-light storage,” IEEE J. Sel. Top. Quantum Electron. 18, 884–890 (2012).
[Crossref]

Primerov, N.

M. Santagiustina, S. Chin, N. Primerov, L. Ursini, and L. Thévenaz, “All-optical signal processing using dynamic Brillouin gratings,” Sci. Rep. 3, 1594 (2013).
[Crossref]

Qiu, W.

H. Shin, W. Qiu, R. Jarecki, A. Cox, R. H. Olsson, A. Starbuck, Z. Wang, and P. T. Rakich, “Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides,” Nat. Commun. 4, 1944 (2013).
[Crossref]

Rakich, P. T.

H. Shin, W. Qiu, R. Jarecki, A. Cox, R. H. Olsson, A. Starbuck, Z. Wang, and P. T. Rakich, “Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides,” Nat. Commun. 4, 1944 (2013).
[Crossref]

Rzaewski, K.

R. Boyd, K. Rzaewski, and P. Narum, “Noise initiation of stimulated Brillouin scattering,” Phys. Rev. A 42, 5514–5521 (1990).
[Crossref]

Safavi-Naeini, A. H.

A. H. Safavi-Naeini and O. Painter, “Proposal for an optomechanical traveling wave phonon–photon translator,” New J. Phys. 13, 013017 (2011).
[Crossref]

Sangouard, N.

C. Galland, N. Sangouard, N. Piro, N. Gisin, and T. J. Kippenberg, “Heralded single-phonon preparation, storage, and readout in cavity optomechanics,” Phys. Rev. Lett. 112, 1–6 (2014).
[Crossref]

Santagiustina, M.

M. Santagiustina, S. Chin, N. Primerov, L. Ursini, and L. Thévenaz, “All-optical signal processing using dynamic Brillouin gratings,” Sci. Rep. 3, 1594 (2013).
[Crossref]

Schneider, T.

K. Jamshidi, S. Preuler, A. Wiatrek, and T. Schneider, “A review to the all-optical quasi-light storage,” IEEE J. Sel. Top. Quantum Electron. 18, 884–890 (2012).
[Crossref]

Sellars, M. J.

J. J. Longdell, E. Fraval, M. J. Sellars, and N. B. Manson, “Stopped light with storage times greater than one second using electromagnetically induced transparency in a solid,” Phys. Rev. Lett. 95, 063601 (2005).
[Crossref]

Shen, Y. R.

Y. R. Shen and N. Bloembergen, “Theory of stimulated Brillouin and Raman scattering,” Phys. Rev. A 137, A1787 (1965).
[Crossref]

Shen, Z.

C.-H. Dong, Z. Shen, C.-L. Zou, Y.-L. Zhang, W. Fu, and G.-C. Guo, “Brillouin-scattering-induced transparency and non-reciprocal light storage,” Nat. Commun. 6, 6193 (2015).
[Crossref]

Shin, H.

H. Shin, W. Qiu, R. Jarecki, A. Cox, R. H. Olsson, A. Starbuck, Z. Wang, and P. T. Rakich, “Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides,” Nat. Commun. 4, 1944 (2013).
[Crossref]

Song, J. D.

K. C. Balram, M. I. Davanço, J. D. Song, and S. K. Srinivasan, “Coherent coupling between radiofrequency, optical and acoustic waves in piezo-optomechanical circuits,” Nat. Photonics 10, 346–352 (2016).
[Crossref]

Sparkes, B. M.

M. Hosseini, B. M. Sparkes, G. Campbell, P. K. Lam, and B. C. Buchler, “High efficiency coherent optical memory with warm rubidium vapour,” Nat. Commun. 2, 174 (2011).
[Crossref]

Srinivasan, S. K.

K. C. Balram, M. I. Davanço, J. D. Song, and S. K. Srinivasan, “Coherent coupling between radiofrequency, optical and acoustic waves in piezo-optomechanical circuits,” Nat. Photonics 10, 346–352 (2016).
[Crossref]

Starbuck, A.

H. Shin, W. Qiu, R. Jarecki, A. Cox, R. H. Olsson, A. Starbuck, Z. Wang, and P. T. Rakich, “Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides,” Nat. Commun. 4, 1944 (2013).
[Crossref]

Stiller, B.

B. Stiller, M. Merklein, C. G. Poulton, K. Vu, P. Ma, S. J. Madden, and B. J. Eggleton, “Cross talk-free multi-wavelength coherent light storage via Brillouin interaction,” APL Photon. 4, 040802 (2019).
[Crossref]

M. Merklein, B. Stiller, and B. J. Eggleton, “Brillouin-based light storage and delay techniques,” J. Opt. 20, 083003 (2018).
[Crossref]

M. Merklein, B. Stiller, K. Vu, S. J. Madden, and B. J. Eggleton, “A chip-integrated coherent photonic-phononic memory,” Nat. Commun. 8, 574 (2017).
[Crossref]

K. Jaksch, K. Merklein, K. Vu, P. Ma, S. J. Madden, B. J. Eggleton, and B. Stiller, “Brillouin-based light storage of 200ps-long pulses for 70 pulse widths,” in Frontiers in Optics, OSA Technical Digest (online) (Optical Society of America, 2017), paper FTh4A.5.

Sylvestre, T.

J.-C. Beugnot, S. Lebrun, G. Pauliat, H. Maillotte, V. Laude, and T. Sylvestre, “Brillouin light scattering from surface acoustic waves in a subwavelength-diameter optical fibre,” Nat. Comm. 5, 5242 (2014).
[Crossref]

Tadesse, S. A.

Thevenaz, L.

Thévenaz, L.

M. Santagiustina, S. Chin, N. Primerov, L. Ursini, and L. Thévenaz, “All-optical signal processing using dynamic Brillouin gratings,” Sci. Rep. 3, 1594 (2013).
[Crossref]

Townes, C. H.

E. Garmire, F. Pandarese, and C. H. Townes, “Coherently driven molecular vibrations and light modulation,” Phys. Rev. Lett. 11, 160–163 (1963).
[Crossref]

Ursini, L.

M. Santagiustina, S. Chin, N. Primerov, L. Ursini, and L. Thévenaz, “All-optical signal processing using dynamic Brillouin gratings,” Sci. Rep. 3, 1594 (2013).
[Crossref]

Van Laer, R.

R. Van Laer, A. Bazin, B. Kuyken, R. Baets, and D. Van Thourhout, “Net on-chip Brillouin gain based on suspended silicon nanowires,” New J. Phys. 17, 115005 (2015).
[Crossref]

Van Thourhout, D.

R. Van Laer, A. Bazin, B. Kuyken, R. Baets, and D. Van Thourhout, “Net on-chip Brillouin gain based on suspended silicon nanowires,” New J. Phys. 17, 115005 (2015).
[Crossref]

Vu, K.

B. Stiller, M. Merklein, C. G. Poulton, K. Vu, P. Ma, S. J. Madden, and B. J. Eggleton, “Cross talk-free multi-wavelength coherent light storage via Brillouin interaction,” APL Photon. 4, 040802 (2019).
[Crossref]

M. Merklein, B. Stiller, K. Vu, S. J. Madden, and B. J. Eggleton, “A chip-integrated coherent photonic-phononic memory,” Nat. Commun. 8, 574 (2017).
[Crossref]

K. Jaksch, K. Merklein, K. Vu, P. Ma, S. J. Madden, B. J. Eggleton, and B. Stiller, “Brillouin-based light storage of 200ps-long pulses for 70 pulse widths,” in Frontiers in Optics, OSA Technical Digest (online) (Optical Society of America, 2017), paper FTh4A.5.

Wang, H.

V. Fiore, C. Dong, M. C. Kuzyk, and H. Wang, “Optomechanical light storage in a silica microresonator,” Phys. Rev. A 87, 1–6 (2013).
[Crossref]

V. Fiore, Y. Yang, M.-C. Kuzyk, R. Barbour, and H. Wang, “Storing optical information as a mechanical excitation in a silica optomechanical resonator,” Phys. Rev. Lett. 107, 1–5 (2011).
[Crossref]

Wang, Z.

H. Shin, W. Qiu, R. Jarecki, A. Cox, R. H. Olsson, A. Starbuck, Z. Wang, and P. T. Rakich, “Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides,” Nat. Commun. 4, 1944 (2013).
[Crossref]

Wiatrek, A.

K. Jamshidi, S. Preuler, A. Wiatrek, and T. Schneider, “A review to the all-optical quasi-light storage,” IEEE J. Sel. Top. Quantum Electron. 18, 884–890 (2012).
[Crossref]

Winful, H.

Winful, H. G.

Winger, M.

S.-A. H. Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472, 69–73 (2011).
[Crossref]

Yang, Y.

V. Fiore, Y. Yang, M.-C. Kuzyk, R. Barbour, and H. Wang, “Storing optical information as a mechanical excitation in a silica optomechanical resonator,” Phys. Rev. Lett. 107, 1–5 (2011).
[Crossref]

Zhang, Y.-L.

C.-H. Dong, Z. Shen, C.-L. Zou, Y.-L. Zhang, W. Fu, and G.-C. Guo, “Brillouin-scattering-induced transparency and non-reciprocal light storage,” Nat. Commun. 6, 6193 (2015).
[Crossref]

Zhu, Z.

Z. Zhu, D. J. Gauthier, and R. W. Boyd, “Stored light in an optical fiber via stimulated Brillouin scattering,” Science 318, 1748–1750 (2007).
[Crossref]

Zou, C.-L.

C.-H. Dong, Z. Shen, C.-L. Zou, Y.-L. Zhang, W. Fu, and G.-C. Guo, “Brillouin-scattering-induced transparency and non-reciprocal light storage,” Nat. Commun. 6, 6193 (2015).
[Crossref]

Adv. Opt. Photon. (1)

Ann. Phys. (1)

L. Brillouin, “Diffusion de la lumière par un corps transparent homogène,” Ann. Phys. 9, 88–122 (1922).
[Crossref]

APL Photon. (1)

B. Stiller, M. Merklein, C. G. Poulton, K. Vu, P. Ma, S. J. Madden, and B. J. Eggleton, “Cross talk-free multi-wavelength coherent light storage via Brillouin interaction,” APL Photon. 4, 040802 (2019).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

K. Jamshidi, S. Preuler, A. Wiatrek, and T. Schneider, “A review to the all-optical quasi-light storage,” IEEE J. Sel. Top. Quantum Electron. 18, 884–890 (2012).
[Crossref]

J. Opt. (1)

M. Merklein, B. Stiller, and B. J. Eggleton, “Brillouin-based light storage and delay techniques,” J. Opt. 20, 083003 (2018).
[Crossref]

J. Opt. Soc. Am. B (1)

Nat. Comm. (1)

J.-C. Beugnot, S. Lebrun, G. Pauliat, H. Maillotte, V. Laude, and T. Sylvestre, “Brillouin light scattering from surface acoustic waves in a subwavelength-diameter optical fibre,” Nat. Comm. 5, 5242 (2014).
[Crossref]

Nat. Commun. (4)

H. Shin, W. Qiu, R. Jarecki, A. Cox, R. H. Olsson, A. Starbuck, Z. Wang, and P. T. Rakich, “Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides,” Nat. Commun. 4, 1944 (2013).
[Crossref]

M. Hosseini, B. M. Sparkes, G. Campbell, P. K. Lam, and B. C. Buchler, “High efficiency coherent optical memory with warm rubidium vapour,” Nat. Commun. 2, 174 (2011).
[Crossref]

C.-H. Dong, Z. Shen, C.-L. Zou, Y.-L. Zhang, W. Fu, and G.-C. Guo, “Brillouin-scattering-induced transparency and non-reciprocal light storage,” Nat. Commun. 6, 6193 (2015).
[Crossref]

M. Merklein, B. Stiller, K. Vu, S. J. Madden, and B. J. Eggleton, “A chip-integrated coherent photonic-phononic memory,” Nat. Commun. 8, 574 (2017).
[Crossref]

Nat. Photonics (1)

K. C. Balram, M. I. Davanço, J. D. Song, and S. K. Srinivasan, “Coherent coupling between radiofrequency, optical and acoustic waves in piezo-optomechanical circuits,” Nat. Photonics 10, 346–352 (2016).
[Crossref]

Nature (1)

S.-A. H. Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472, 69–73 (2011).
[Crossref]

New J. Phys. (3)

D. E. Chang, S.-A. H. Naeini, M. Hafezi, and O. Painter, “Slowing and stopping light using an optomechanical crystal array,” New J. Phys. 13, 023003 (2011).
[Crossref]

A. H. Safavi-Naeini and O. Painter, “Proposal for an optomechanical traveling wave phonon–photon translator,” New J. Phys. 13, 013017 (2011).
[Crossref]

R. Van Laer, A. Bazin, B. Kuyken, R. Baets, and D. Van Thourhout, “Net on-chip Brillouin gain based on suspended silicon nanowires,” New J. Phys. 17, 115005 (2015).
[Crossref]

Opt. Express (2)

Optica (1)

Phys. Rev. A (4)

V. Fiore, C. Dong, M. C. Kuzyk, and H. Wang, “Optomechanical light storage in a silica microresonator,” Phys. Rev. A 87, 1–6 (2013).
[Crossref]

Y. R. Shen and N. Bloembergen, “Theory of stimulated Brillouin and Raman scattering,” Phys. Rev. A 137, A1787 (1965).
[Crossref]

R. Boyd, K. Rzaewski, and P. Narum, “Noise initiation of stimulated Brillouin scattering,” Phys. Rev. A 42, 5514–5521 (1990).
[Crossref]

A. L. Gaeta and R. W. Boyd, “Stochastic dynamics of stimulated Brillouin scattering in an optical fiber,” Phys. Rev. A 44, 3205–3209 (1991).
[Crossref]

Phys. Rev. Lett. (5)

E. Garmire, F. Pandarese, and C. H. Townes, “Coherently driven molecular vibrations and light modulation,” Phys. Rev. Lett. 11, 160–163 (1963).
[Crossref]

J. J. Longdell, E. Fraval, M. J. Sellars, and N. B. Manson, “Stopped light with storage times greater than one second using electromagnetically induced transparency in a solid,” Phys. Rev. Lett. 95, 063601 (2005).
[Crossref]

G. Heinze, C. Hubrich, and T. Halfmann, “Stopped light and image storage by electromagnetically induced transparency up to the regime of one minute,” Phys. Rev. Lett. 111, 033601 (2013).
[Crossref]

C. Galland, N. Sangouard, N. Piro, N. Gisin, and T. J. Kippenberg, “Heralded single-phonon preparation, storage, and readout in cavity optomechanics,” Phys. Rev. Lett. 112, 1–6 (2014).
[Crossref]

V. Fiore, Y. Yang, M.-C. Kuzyk, R. Barbour, and H. Wang, “Storing optical information as a mechanical excitation in a silica optomechanical resonator,” Phys. Rev. Lett. 107, 1–5 (2011).
[Crossref]

Sci. Rep. (1)

M. Santagiustina, S. Chin, N. Primerov, L. Ursini, and L. Thévenaz, “All-optical signal processing using dynamic Brillouin gratings,” Sci. Rep. 3, 1594 (2013).
[Crossref]

Science (1)

Z. Zhu, D. J. Gauthier, and R. W. Boyd, “Stored light in an optical fiber via stimulated Brillouin scattering,” Science 318, 1748–1750 (2007).
[Crossref]

Other (1)

K. Jaksch, K. Merklein, K. Vu, P. Ma, S. J. Madden, B. J. Eggleton, and B. Stiller, “Brillouin-based light storage of 200ps-long pulses for 70 pulse widths,” in Frontiers in Optics, OSA Technical Digest (online) (Optical Society of America, 2017), paper FTh4A.5.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Concept of the refreshed optoacoustic memory. (a) An optical write pulse converts the information of an optical data stream to an acoustic wave. (b) The acoustic wave propagates at a 5 orders of magnitude lower speed in the waveguide and decays with the acoustic lifetime. (c) In normal operation, the acoustic wave dissipates, and the read pulse cannot sufficiently interact with the acoustic wave; therefore, the information of the optical data is lost. (d) To counteract the acoustic decay, optical refresh pulses at ${\omega _{{\rm refresh}}} = {\omega _{{\rm data}}}$ transfer energy to the acoustic phonons. (e) An optical read pulse converts the information back to the optical domain, and the delayed optical information exits the waveguide.
Fig. 2.
Fig. 2. Experimental setup for the refreshed optoacoustic memory. SSB, single-sideband modulator; IM, intensity modulator; AWG, arbitrary waveform generator; BP, bandpass filter; OS, optical switch; LO, local oscillator; PD, photodiode.
Fig. 3.
Fig. 3. Experimental results for increasing the efficiency with help of the refreshed Brillouin-based memory with a readout after 8 ns (within the acoustic lifetime): comparison of the efficiency while using 0, 4, and 7 refresh pulses showing a 3 and 5 times enhancement, respectively. The four refresh pulses were sent after 1, 3, 5, and 7 nanoseconds compared to the data pulse. The seven refresh pulses were sent in with a 1 ns time difference after the data pulse.
Fig. 4.
Fig. 4. Experimental results of the refreshed memory with 40 ns storage time. (a) Direct detection of the original data pulse (black solid line) and its retrieval after 40 ns storage (red dashed line); (b) homodyne detection of the coherent phase of two original data pulses, encoded with phase 0 and $\pi$ (black solid line), and their retrieval after 40 ns storage (red dashed line).
Fig. 5.
Fig. 5. Refreshed memory for storage time of 20 ns. (a) Original data pulse with 19 refresh pulses (black solid line); retrieved data after 20 ns (red dashed line) with refresh pulses transferring energy to the acoustic phonon; (b) original data (black solid line) and retrieved data (red dashed line) with suppressed refresh pulses by an optical switch.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

S N R r e f r e s h e d ( n τ ) S N R i n i t i a l n [ 1 exp ( α τ ) ] .

Metrics