Abstract

Powerful ultrashort pulses in the deep-ultraviolet (deep-UV) are beneficial for diverse applications from fundamental science to industrial materials processing. However, reaching high powers via conventional approaches is challenging due to three central issues: dispersion, multiphoton absorption, and optical damage. Here, we simultaneously overcome these issues with a novel fifth-harmonic generation architecture optimized for group velocity matching. We use tilted pulse fronts, including a noncollinear geometry in the final sum-frequency generation stage. This enables lower intensities and longer crystals, thereby favoring the birefringently phase matched ${\chi ^{(2)}}$ process over higher-order multiphoton absorption processes. Moreover, we demonstrate low-loss cascaded ${\chi ^{(2)}}$-based spatiotemporal flattening of the input pulses, which enhances the uniformity of the conversion efficiency throughout the beam profile. Through these techniques, we realize a picosecond deep-UV generation source at 206 nm with record-high 2.5 W average output power and a repetition rate of 100 kHz. This result paves the way for a new era of high-power ultrafast deep-UV lasers.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Herman, R. Marjoribanks, A. Oettl, K. Chen, I. Konovalov, and S. Ness, “Laser shaping of photonic materials: deep-ultraviolet and ultrafast lasers,” Appl. Surf. Sci. 154-155, 577–586 (2000).
    [Crossref]
  2. G. Raciukaitis and M. Gedvilas, “Processing of polymers by UV picosecond lasers,” in 24th International Congress on Applications of Lasers & Electro-Optics (ICALEO) (2005), pp. 191–199.
  3. R. Srinivasan, “Ablation of polymers and biological tissue by ultraviolet lasers,” Science 234, 559–565 (1986).
    [Crossref]
  4. T. Kobayashi and Y. Kida, “Ultrafast spectroscopy with sub-10 fs deep-ultraviolet pulses,” Phys. Chem. Chem. Phys. 14, 6200–6210 (2012).
    [Crossref]
  5. D. Sertore, S. Schreiber, K. Floettmann, F. Stephan, K. Zapfe, and P. Michelato, “First operation of cesium telluride photocathodes in the TTF injector RF gun,” Nucl. Instrum. Methods Phys. Res. A 445, 422–426 (2000).
    [Crossref]
  6. P. Eckle, M. Smolarski, P. Schlup, J. Biegert, A. Staudte, M. Schöffler, H. G. Muller, R. Dörner, and U. Keller, “Attosecond angular streaking,” Nat. Phys. 4, 565–570 (2008).
    [Crossref]
  7. P. Eckle, A. N. Pfeiffer, C. Cirelli, A. Staudte, R. Dörner, H. G. Muller, M. Büttiker, and U. Keller, “Attosecond ionization and tunneling delay time measurements in helium,” Science 322, 1525–1529 (2008).
    [Crossref]
  8. D. Basting and G. Marowsky, Excimer Laser Technology (Springer, 2005).
  9. N. Savage, “Ultraviolet lasers,” Nat. Photonics 1, 83–85 (2007).
    [Crossref]
  10. J.-P. Negel, A. Loescher, A. Voss, D. Bauer, D. Sutter, A. Killi, M. A. Ahmed, and T. Graf, “Ultrafast thin-disk multipass laser amplifier delivering 1.4 kW (4.7 mJ, 1030 nm) average power converted to 820 W at 515 nm and 234 W at 343 nm,” Opt. Express 23, 21064–21077 (2015).
    [Crossref]
  11. J. Rothhardt, C. Rothhardt, M. Müller, A. Klenke, M. Kienel, S. Demmler, T. Elsmann, M. Rothhardt, J. Limpert, and A. Tünnermann, “100 W average power femtosecond laser at 343 nm,” Opt. Lett. 41, 1885–1888 (2016).
    [Crossref]
  12. O. Novák, H. Turčičová, M. Smrž, T. Miura, A. Endo, and T. Mocek, “Picosecond green and deep ultraviolet pulses generated by a high-power 100 kHz thin-disk laser,” Opt. Lett. 41, 5210–5213 (2016).
    [Crossref]
  13. H. Turčičová, O. Novák, L. Roskot, J. Muzik, M. Smrž, A. Endo, and T. Mocek, “Picosecond deep ultraviolet pulses generated by a 100 kHz thin-disk laser system,” Proc. SPIE 11042, 110420H (2019).
    [Crossref]
  14. H. Turcicova, O. Novak, L. Roskot, M. Smrz, J. Muzik, M. Chyla, A. Endo, and T. Mocek, “New observations on DUV radiation at 257 nm and 206 nm produced by a picosecond diode pumped thin-disk laser,” Opt. Express 27, 24286–24299 (2019).
    [Crossref]
  15. S. C. Kumar, J. C. Casals, J. Wei, and M. Ebrahim-Zadeh, “High-power, high-repetition-rate performance characteristics of β-BaB2O4 for single-pass picosecond ultraviolet generation at 266 nm,” Opt. Express 23, 28091–28103 (2015).
    [Crossref]
  16. R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic, 2008).
  17. A. Shirakawa, I. Sakane, M. Takasaka, and T. Kobayashi, “Sub-5-fs visible pulse generation by pulse-front-matched noncollinear optical parametric amplification,” Appl. Phys. Lett. 74, 2268–2270 (1999).
    [Crossref]
  18. V. Volosov and E. Goryachkina, “Compensation of phase-matching dispersion in generation of nonmonochromatic radiation harmonics. I. Doubling of neodymium-glass radiation frequency under free-oscillation conditions,” Sov. J. Quantum Electron. 6, 854–857 (1976).
    [Crossref]
  19. O. E. Martinez, “Achromatic phase matching for second harmonic generation of femtosecond pulses,” IEEE J. Quantum Electron. 25, 2464–2468 (1989).
    [Crossref]
  20. B. E. Schmidt, N. Thiré, M. Boivin, A. Laramée, F. Poitras, G. Lebrun, T. Ozaki, H. Ibrahim, and F. Légaré, “Frequency domain optical parametric amplification,” Nat. Commun. 5, 3643 (2014).
    [Crossref]
  21. F. Köttig, F. Tani, C. M. Biersach, J. C. Travers, and P. St. J. Russell, “Generation of microjoule pulses in the deep ultraviolet at megahertz repetition rates,” Optica 4, 1272–1276 (2017).
    [Crossref]
  22. R. Danielius, A. Piskarskas, P. D. Trapani, A. Andreoni, C. Solcia, and P. Foggi, “Matching of group velocities by spatial walk-off in collinear three-wave interaction with tilted pulses,” Opt. Lett. 21, 973–975 (1996).
    [Crossref]
  23. R. C. Eckardt, H. Masuda, Y. X. Fan, and R. L. Byer, “Absolute and relative nonlinear optical coefficients of KDP, KD*P, BaB2O4, LiIO3, MgO:LiNbO3, and KTP measured by phase-matched second-harmonic generation,” IEEE J. Quantum Electron. 26, 922–933 (1990).
    [Crossref]
  24. I. Shoji, H. Nakamura, R. Ito, T. Kondo, M. Yoshimura, Y. Mori, and T. Sasaki, “Absolute measurement of second-order nonlinear-optical coefficients of for visible-to-ultraviolet second-harmonic wavelengths,” J. Opt. Soc. Am. B 18, 302–307 (2001).
    [Crossref]
  25. G. Kurdi, K. Osvay, J. Klebniczki, M. Divall, E. J. Divall, A. Péter, K. Polgár, and J. Bohus, “Two-photon-absorption of BBO, CLBO, KDP and LTB crystals,” in Advanced Solid-State Photonics (Optical Society of America, 2005), paper MF18.
  26. A. V. Smith, “Group-velocity-matched three-wave mixing in birefringent crystals,” Opt. Lett. 26, 719–721 (2001).
    [Crossref]
  27. A. V. Smith, Crystal Nonlinear Optics: With SNLO Examples (AS-Photonics, 2015).
  28. J. Moses and S.-W. Huang, “Conformal profile theory for performance scaling of ultrabroadband optical parametric chirped pulse amplification,” J. Opt. Soc. Am. B 28, 812–831 (2011).
    [Crossref]
  29. G. I. Stegeman, D. J. Hagan, and L. Torner, “χ(2) cascading phenomena and their applications to all-optical signal processing, mode-locking, pulse compression and solitons,” Opt. Quantum Electron. 28, 1691–1740 (1996).
    [Crossref]
  30. M. Sheik-Bahae and M. Ebrahimzadeh, “Measurements of nonlinear refraction in the second-order χ(2) materials KTiOPO4, KNbO3, β-BaB2O4, and LiB3O5,” Opt. Commun. 142, 294–298 (1997).
    [Crossref]
  31. K. Kato, “Temperature-tuned 90° phase-matching properties of LiB3O5,” IEEE J. Quantum Electron. 30, 2950–2952 (1994).
    [Crossref]
  32. G. Pretzler, A. Kasper, and K. Witte, “Angular chirp and tilted light pulses in CPA lasers,” Appl. Phys. B 70, 1–9 (2000).
    [Crossref]
  33. N. Bigler, J. Pupeikis, S. Hrisafov, L. Gallmann, C. R. Phillips, and U. Keller, “High-power OPCPA generating 1.7 cycle pulses at 2.5 µm,” Opt. Express 26, 26750–26757 (2018).
    [Crossref]
  34. J. Pupeikis, P.-A. Chevreuil, N. Bigler, L. Gallmann, C. R. Phillips, and U. Keller, “Water window soft x-ray source enabled by a 25 W few-cycle 2.2 µm OPCPA at 100 kHz,” Optica 7, 168–171 (2020).
    [Crossref]
  35. S. Ghavami Sabouri and A. Khorsandi, “Active control of thermal dephasing effect in high power continuous wave single-pass second harmonic generation,” IEEE J. Quantum Electron. 51, 1–8 (2015).
    [Crossref]
  36. R. Riedel, J. Rothhardt, K. Beil, B. Gronloh, A. Klenke, H. Höppner, M. Schulz, U. Teubner, C. Kränkel, J. Limpert, A. Tünnermann, M. Prandolini, and F. Tavella, “Thermal properties of borate crystals for high power optical parametric chirped-pulse amplification,” Opt. Express 22, 17607–17619 (2014).
    [Crossref]

2020 (1)

2019 (2)

H. Turčičová, O. Novák, L. Roskot, J. Muzik, M. Smrž, A. Endo, and T. Mocek, “Picosecond deep ultraviolet pulses generated by a 100 kHz thin-disk laser system,” Proc. SPIE 11042, 110420H (2019).
[Crossref]

H. Turcicova, O. Novak, L. Roskot, M. Smrz, J. Muzik, M. Chyla, A. Endo, and T. Mocek, “New observations on DUV radiation at 257 nm and 206 nm produced by a picosecond diode pumped thin-disk laser,” Opt. Express 27, 24286–24299 (2019).
[Crossref]

2018 (1)

2017 (1)

2016 (2)

2015 (3)

2014 (2)

2012 (1)

T. Kobayashi and Y. Kida, “Ultrafast spectroscopy with sub-10 fs deep-ultraviolet pulses,” Phys. Chem. Chem. Phys. 14, 6200–6210 (2012).
[Crossref]

2011 (1)

2008 (2)

P. Eckle, M. Smolarski, P. Schlup, J. Biegert, A. Staudte, M. Schöffler, H. G. Muller, R. Dörner, and U. Keller, “Attosecond angular streaking,” Nat. Phys. 4, 565–570 (2008).
[Crossref]

P. Eckle, A. N. Pfeiffer, C. Cirelli, A. Staudte, R. Dörner, H. G. Muller, M. Büttiker, and U. Keller, “Attosecond ionization and tunneling delay time measurements in helium,” Science 322, 1525–1529 (2008).
[Crossref]

2007 (1)

N. Savage, “Ultraviolet lasers,” Nat. Photonics 1, 83–85 (2007).
[Crossref]

2001 (2)

2000 (3)

G. Pretzler, A. Kasper, and K. Witte, “Angular chirp and tilted light pulses in CPA lasers,” Appl. Phys. B 70, 1–9 (2000).
[Crossref]

D. Sertore, S. Schreiber, K. Floettmann, F. Stephan, K. Zapfe, and P. Michelato, “First operation of cesium telluride photocathodes in the TTF injector RF gun,” Nucl. Instrum. Methods Phys. Res. A 445, 422–426 (2000).
[Crossref]

P. Herman, R. Marjoribanks, A. Oettl, K. Chen, I. Konovalov, and S. Ness, “Laser shaping of photonic materials: deep-ultraviolet and ultrafast lasers,” Appl. Surf. Sci. 154-155, 577–586 (2000).
[Crossref]

1999 (1)

A. Shirakawa, I. Sakane, M. Takasaka, and T. Kobayashi, “Sub-5-fs visible pulse generation by pulse-front-matched noncollinear optical parametric amplification,” Appl. Phys. Lett. 74, 2268–2270 (1999).
[Crossref]

1997 (1)

M. Sheik-Bahae and M. Ebrahimzadeh, “Measurements of nonlinear refraction in the second-order χ(2) materials KTiOPO4, KNbO3, β-BaB2O4, and LiB3O5,” Opt. Commun. 142, 294–298 (1997).
[Crossref]

1996 (2)

G. I. Stegeman, D. J. Hagan, and L. Torner, “χ(2) cascading phenomena and their applications to all-optical signal processing, mode-locking, pulse compression and solitons,” Opt. Quantum Electron. 28, 1691–1740 (1996).
[Crossref]

R. Danielius, A. Piskarskas, P. D. Trapani, A. Andreoni, C. Solcia, and P. Foggi, “Matching of group velocities by spatial walk-off in collinear three-wave interaction with tilted pulses,” Opt. Lett. 21, 973–975 (1996).
[Crossref]

1994 (1)

K. Kato, “Temperature-tuned 90° phase-matching properties of LiB3O5,” IEEE J. Quantum Electron. 30, 2950–2952 (1994).
[Crossref]

1990 (1)

R. C. Eckardt, H. Masuda, Y. X. Fan, and R. L. Byer, “Absolute and relative nonlinear optical coefficients of KDP, KD*P, BaB2O4, LiIO3, MgO:LiNbO3, and KTP measured by phase-matched second-harmonic generation,” IEEE J. Quantum Electron. 26, 922–933 (1990).
[Crossref]

1989 (1)

O. E. Martinez, “Achromatic phase matching for second harmonic generation of femtosecond pulses,” IEEE J. Quantum Electron. 25, 2464–2468 (1989).
[Crossref]

1986 (1)

R. Srinivasan, “Ablation of polymers and biological tissue by ultraviolet lasers,” Science 234, 559–565 (1986).
[Crossref]

1976 (1)

V. Volosov and E. Goryachkina, “Compensation of phase-matching dispersion in generation of nonmonochromatic radiation harmonics. I. Doubling of neodymium-glass radiation frequency under free-oscillation conditions,” Sov. J. Quantum Electron. 6, 854–857 (1976).
[Crossref]

Ahmed, M. A.

Andreoni, A.

Basting, D.

D. Basting and G. Marowsky, Excimer Laser Technology (Springer, 2005).

Bauer, D.

Beil, K.

Biegert, J.

P. Eckle, M. Smolarski, P. Schlup, J. Biegert, A. Staudte, M. Schöffler, H. G. Muller, R. Dörner, and U. Keller, “Attosecond angular streaking,” Nat. Phys. 4, 565–570 (2008).
[Crossref]

Biersach, C. M.

Bigler, N.

Bohus, J.

G. Kurdi, K. Osvay, J. Klebniczki, M. Divall, E. J. Divall, A. Péter, K. Polgár, and J. Bohus, “Two-photon-absorption of BBO, CLBO, KDP and LTB crystals,” in Advanced Solid-State Photonics (Optical Society of America, 2005), paper MF18.

Boivin, M.

B. E. Schmidt, N. Thiré, M. Boivin, A. Laramée, F. Poitras, G. Lebrun, T. Ozaki, H. Ibrahim, and F. Légaré, “Frequency domain optical parametric amplification,” Nat. Commun. 5, 3643 (2014).
[Crossref]

Boyd, R. W.

R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic, 2008).

Büttiker, M.

P. Eckle, A. N. Pfeiffer, C. Cirelli, A. Staudte, R. Dörner, H. G. Muller, M. Büttiker, and U. Keller, “Attosecond ionization and tunneling delay time measurements in helium,” Science 322, 1525–1529 (2008).
[Crossref]

Byer, R. L.

R. C. Eckardt, H. Masuda, Y. X. Fan, and R. L. Byer, “Absolute and relative nonlinear optical coefficients of KDP, KD*P, BaB2O4, LiIO3, MgO:LiNbO3, and KTP measured by phase-matched second-harmonic generation,” IEEE J. Quantum Electron. 26, 922–933 (1990).
[Crossref]

Casals, J. C.

Chen, K.

P. Herman, R. Marjoribanks, A. Oettl, K. Chen, I. Konovalov, and S. Ness, “Laser shaping of photonic materials: deep-ultraviolet and ultrafast lasers,” Appl. Surf. Sci. 154-155, 577–586 (2000).
[Crossref]

Chevreuil, P.-A.

Chyla, M.

Cirelli, C.

P. Eckle, A. N. Pfeiffer, C. Cirelli, A. Staudte, R. Dörner, H. G. Muller, M. Büttiker, and U. Keller, “Attosecond ionization and tunneling delay time measurements in helium,” Science 322, 1525–1529 (2008).
[Crossref]

Danielius, R.

Demmler, S.

Divall, E. J.

G. Kurdi, K. Osvay, J. Klebniczki, M. Divall, E. J. Divall, A. Péter, K. Polgár, and J. Bohus, “Two-photon-absorption of BBO, CLBO, KDP and LTB crystals,” in Advanced Solid-State Photonics (Optical Society of America, 2005), paper MF18.

Divall, M.

G. Kurdi, K. Osvay, J. Klebniczki, M. Divall, E. J. Divall, A. Péter, K. Polgár, and J. Bohus, “Two-photon-absorption of BBO, CLBO, KDP and LTB crystals,” in Advanced Solid-State Photonics (Optical Society of America, 2005), paper MF18.

Dörner, R.

P. Eckle, A. N. Pfeiffer, C. Cirelli, A. Staudte, R. Dörner, H. G. Muller, M. Büttiker, and U. Keller, “Attosecond ionization and tunneling delay time measurements in helium,” Science 322, 1525–1529 (2008).
[Crossref]

P. Eckle, M. Smolarski, P. Schlup, J. Biegert, A. Staudte, M. Schöffler, H. G. Muller, R. Dörner, and U. Keller, “Attosecond angular streaking,” Nat. Phys. 4, 565–570 (2008).
[Crossref]

Ebrahimzadeh, M.

M. Sheik-Bahae and M. Ebrahimzadeh, “Measurements of nonlinear refraction in the second-order χ(2) materials KTiOPO4, KNbO3, β-BaB2O4, and LiB3O5,” Opt. Commun. 142, 294–298 (1997).
[Crossref]

Ebrahim-Zadeh, M.

Eckardt, R. C.

R. C. Eckardt, H. Masuda, Y. X. Fan, and R. L. Byer, “Absolute and relative nonlinear optical coefficients of KDP, KD*P, BaB2O4, LiIO3, MgO:LiNbO3, and KTP measured by phase-matched second-harmonic generation,” IEEE J. Quantum Electron. 26, 922–933 (1990).
[Crossref]

Eckle, P.

P. Eckle, A. N. Pfeiffer, C. Cirelli, A. Staudte, R. Dörner, H. G. Muller, M. Büttiker, and U. Keller, “Attosecond ionization and tunneling delay time measurements in helium,” Science 322, 1525–1529 (2008).
[Crossref]

P. Eckle, M. Smolarski, P. Schlup, J. Biegert, A. Staudte, M. Schöffler, H. G. Muller, R. Dörner, and U. Keller, “Attosecond angular streaking,” Nat. Phys. 4, 565–570 (2008).
[Crossref]

Elsmann, T.

Endo, A.

Fan, Y. X.

R. C. Eckardt, H. Masuda, Y. X. Fan, and R. L. Byer, “Absolute and relative nonlinear optical coefficients of KDP, KD*P, BaB2O4, LiIO3, MgO:LiNbO3, and KTP measured by phase-matched second-harmonic generation,” IEEE J. Quantum Electron. 26, 922–933 (1990).
[Crossref]

Floettmann, K.

D. Sertore, S. Schreiber, K. Floettmann, F. Stephan, K. Zapfe, and P. Michelato, “First operation of cesium telluride photocathodes in the TTF injector RF gun,” Nucl. Instrum. Methods Phys. Res. A 445, 422–426 (2000).
[Crossref]

Foggi, P.

Gallmann, L.

Gedvilas, M.

G. Raciukaitis and M. Gedvilas, “Processing of polymers by UV picosecond lasers,” in 24th International Congress on Applications of Lasers & Electro-Optics (ICALEO) (2005), pp. 191–199.

Ghavami Sabouri, S.

S. Ghavami Sabouri and A. Khorsandi, “Active control of thermal dephasing effect in high power continuous wave single-pass second harmonic generation,” IEEE J. Quantum Electron. 51, 1–8 (2015).
[Crossref]

Goryachkina, E.

V. Volosov and E. Goryachkina, “Compensation of phase-matching dispersion in generation of nonmonochromatic radiation harmonics. I. Doubling of neodymium-glass radiation frequency under free-oscillation conditions,” Sov. J. Quantum Electron. 6, 854–857 (1976).
[Crossref]

Graf, T.

Gronloh, B.

Hagan, D. J.

G. I. Stegeman, D. J. Hagan, and L. Torner, “χ(2) cascading phenomena and their applications to all-optical signal processing, mode-locking, pulse compression and solitons,” Opt. Quantum Electron. 28, 1691–1740 (1996).
[Crossref]

Herman, P.

P. Herman, R. Marjoribanks, A. Oettl, K. Chen, I. Konovalov, and S. Ness, “Laser shaping of photonic materials: deep-ultraviolet and ultrafast lasers,” Appl. Surf. Sci. 154-155, 577–586 (2000).
[Crossref]

Höppner, H.

Hrisafov, S.

Huang, S.-W.

Ibrahim, H.

B. E. Schmidt, N. Thiré, M. Boivin, A. Laramée, F. Poitras, G. Lebrun, T. Ozaki, H. Ibrahim, and F. Légaré, “Frequency domain optical parametric amplification,” Nat. Commun. 5, 3643 (2014).
[Crossref]

Ito, R.

Kasper, A.

G. Pretzler, A. Kasper, and K. Witte, “Angular chirp and tilted light pulses in CPA lasers,” Appl. Phys. B 70, 1–9 (2000).
[Crossref]

Kato, K.

K. Kato, “Temperature-tuned 90° phase-matching properties of LiB3O5,” IEEE J. Quantum Electron. 30, 2950–2952 (1994).
[Crossref]

Keller, U.

J. Pupeikis, P.-A. Chevreuil, N. Bigler, L. Gallmann, C. R. Phillips, and U. Keller, “Water window soft x-ray source enabled by a 25 W few-cycle 2.2 µm OPCPA at 100 kHz,” Optica 7, 168–171 (2020).
[Crossref]

N. Bigler, J. Pupeikis, S. Hrisafov, L. Gallmann, C. R. Phillips, and U. Keller, “High-power OPCPA generating 1.7 cycle pulses at 2.5 µm,” Opt. Express 26, 26750–26757 (2018).
[Crossref]

P. Eckle, A. N. Pfeiffer, C. Cirelli, A. Staudte, R. Dörner, H. G. Muller, M. Büttiker, and U. Keller, “Attosecond ionization and tunneling delay time measurements in helium,” Science 322, 1525–1529 (2008).
[Crossref]

P. Eckle, M. Smolarski, P. Schlup, J. Biegert, A. Staudte, M. Schöffler, H. G. Muller, R. Dörner, and U. Keller, “Attosecond angular streaking,” Nat. Phys. 4, 565–570 (2008).
[Crossref]

Khorsandi, A.

S. Ghavami Sabouri and A. Khorsandi, “Active control of thermal dephasing effect in high power continuous wave single-pass second harmonic generation,” IEEE J. Quantum Electron. 51, 1–8 (2015).
[Crossref]

Kida, Y.

T. Kobayashi and Y. Kida, “Ultrafast spectroscopy with sub-10 fs deep-ultraviolet pulses,” Phys. Chem. Chem. Phys. 14, 6200–6210 (2012).
[Crossref]

Kienel, M.

Killi, A.

Klebniczki, J.

G. Kurdi, K. Osvay, J. Klebniczki, M. Divall, E. J. Divall, A. Péter, K. Polgár, and J. Bohus, “Two-photon-absorption of BBO, CLBO, KDP and LTB crystals,” in Advanced Solid-State Photonics (Optical Society of America, 2005), paper MF18.

Klenke, A.

Kobayashi, T.

T. Kobayashi and Y. Kida, “Ultrafast spectroscopy with sub-10 fs deep-ultraviolet pulses,” Phys. Chem. Chem. Phys. 14, 6200–6210 (2012).
[Crossref]

A. Shirakawa, I. Sakane, M. Takasaka, and T. Kobayashi, “Sub-5-fs visible pulse generation by pulse-front-matched noncollinear optical parametric amplification,” Appl. Phys. Lett. 74, 2268–2270 (1999).
[Crossref]

Kondo, T.

Konovalov, I.

P. Herman, R. Marjoribanks, A. Oettl, K. Chen, I. Konovalov, and S. Ness, “Laser shaping of photonic materials: deep-ultraviolet and ultrafast lasers,” Appl. Surf. Sci. 154-155, 577–586 (2000).
[Crossref]

Köttig, F.

Kränkel, C.

Kumar, S. C.

Kurdi, G.

G. Kurdi, K. Osvay, J. Klebniczki, M. Divall, E. J. Divall, A. Péter, K. Polgár, and J. Bohus, “Two-photon-absorption of BBO, CLBO, KDP and LTB crystals,” in Advanced Solid-State Photonics (Optical Society of America, 2005), paper MF18.

Laramée, A.

B. E. Schmidt, N. Thiré, M. Boivin, A. Laramée, F. Poitras, G. Lebrun, T. Ozaki, H. Ibrahim, and F. Légaré, “Frequency domain optical parametric amplification,” Nat. Commun. 5, 3643 (2014).
[Crossref]

Lebrun, G.

B. E. Schmidt, N. Thiré, M. Boivin, A. Laramée, F. Poitras, G. Lebrun, T. Ozaki, H. Ibrahim, and F. Légaré, “Frequency domain optical parametric amplification,” Nat. Commun. 5, 3643 (2014).
[Crossref]

Légaré, F.

B. E. Schmidt, N. Thiré, M. Boivin, A. Laramée, F. Poitras, G. Lebrun, T. Ozaki, H. Ibrahim, and F. Légaré, “Frequency domain optical parametric amplification,” Nat. Commun. 5, 3643 (2014).
[Crossref]

Limpert, J.

Loescher, A.

Marjoribanks, R.

P. Herman, R. Marjoribanks, A. Oettl, K. Chen, I. Konovalov, and S. Ness, “Laser shaping of photonic materials: deep-ultraviolet and ultrafast lasers,” Appl. Surf. Sci. 154-155, 577–586 (2000).
[Crossref]

Marowsky, G.

D. Basting and G. Marowsky, Excimer Laser Technology (Springer, 2005).

Martinez, O. E.

O. E. Martinez, “Achromatic phase matching for second harmonic generation of femtosecond pulses,” IEEE J. Quantum Electron. 25, 2464–2468 (1989).
[Crossref]

Masuda, H.

R. C. Eckardt, H. Masuda, Y. X. Fan, and R. L. Byer, “Absolute and relative nonlinear optical coefficients of KDP, KD*P, BaB2O4, LiIO3, MgO:LiNbO3, and KTP measured by phase-matched second-harmonic generation,” IEEE J. Quantum Electron. 26, 922–933 (1990).
[Crossref]

Michelato, P.

D. Sertore, S. Schreiber, K. Floettmann, F. Stephan, K. Zapfe, and P. Michelato, “First operation of cesium telluride photocathodes in the TTF injector RF gun,” Nucl. Instrum. Methods Phys. Res. A 445, 422–426 (2000).
[Crossref]

Miura, T.

Mocek, T.

Mori, Y.

Moses, J.

Muller, H. G.

P. Eckle, M. Smolarski, P. Schlup, J. Biegert, A. Staudte, M. Schöffler, H. G. Muller, R. Dörner, and U. Keller, “Attosecond angular streaking,” Nat. Phys. 4, 565–570 (2008).
[Crossref]

P. Eckle, A. N. Pfeiffer, C. Cirelli, A. Staudte, R. Dörner, H. G. Muller, M. Büttiker, and U. Keller, “Attosecond ionization and tunneling delay time measurements in helium,” Science 322, 1525–1529 (2008).
[Crossref]

Müller, M.

Muzik, J.

H. Turčičová, O. Novák, L. Roskot, J. Muzik, M. Smrž, A. Endo, and T. Mocek, “Picosecond deep ultraviolet pulses generated by a 100 kHz thin-disk laser system,” Proc. SPIE 11042, 110420H (2019).
[Crossref]

H. Turcicova, O. Novak, L. Roskot, M. Smrz, J. Muzik, M. Chyla, A. Endo, and T. Mocek, “New observations on DUV radiation at 257 nm and 206 nm produced by a picosecond diode pumped thin-disk laser,” Opt. Express 27, 24286–24299 (2019).
[Crossref]

Nakamura, H.

Negel, J.-P.

Ness, S.

P. Herman, R. Marjoribanks, A. Oettl, K. Chen, I. Konovalov, and S. Ness, “Laser shaping of photonic materials: deep-ultraviolet and ultrafast lasers,” Appl. Surf. Sci. 154-155, 577–586 (2000).
[Crossref]

Novak, O.

Novák, O.

H. Turčičová, O. Novák, L. Roskot, J. Muzik, M. Smrž, A. Endo, and T. Mocek, “Picosecond deep ultraviolet pulses generated by a 100 kHz thin-disk laser system,” Proc. SPIE 11042, 110420H (2019).
[Crossref]

O. Novák, H. Turčičová, M. Smrž, T. Miura, A. Endo, and T. Mocek, “Picosecond green and deep ultraviolet pulses generated by a high-power 100 kHz thin-disk laser,” Opt. Lett. 41, 5210–5213 (2016).
[Crossref]

Oettl, A.

P. Herman, R. Marjoribanks, A. Oettl, K. Chen, I. Konovalov, and S. Ness, “Laser shaping of photonic materials: deep-ultraviolet and ultrafast lasers,” Appl. Surf. Sci. 154-155, 577–586 (2000).
[Crossref]

Osvay, K.

G. Kurdi, K. Osvay, J. Klebniczki, M. Divall, E. J. Divall, A. Péter, K. Polgár, and J. Bohus, “Two-photon-absorption of BBO, CLBO, KDP and LTB crystals,” in Advanced Solid-State Photonics (Optical Society of America, 2005), paper MF18.

Ozaki, T.

B. E. Schmidt, N. Thiré, M. Boivin, A. Laramée, F. Poitras, G. Lebrun, T. Ozaki, H. Ibrahim, and F. Légaré, “Frequency domain optical parametric amplification,” Nat. Commun. 5, 3643 (2014).
[Crossref]

Péter, A.

G. Kurdi, K. Osvay, J. Klebniczki, M. Divall, E. J. Divall, A. Péter, K. Polgár, and J. Bohus, “Two-photon-absorption of BBO, CLBO, KDP and LTB crystals,” in Advanced Solid-State Photonics (Optical Society of America, 2005), paper MF18.

Pfeiffer, A. N.

P. Eckle, A. N. Pfeiffer, C. Cirelli, A. Staudte, R. Dörner, H. G. Muller, M. Büttiker, and U. Keller, “Attosecond ionization and tunneling delay time measurements in helium,” Science 322, 1525–1529 (2008).
[Crossref]

Phillips, C. R.

Piskarskas, A.

Poitras, F.

B. E. Schmidt, N. Thiré, M. Boivin, A. Laramée, F. Poitras, G. Lebrun, T. Ozaki, H. Ibrahim, and F. Légaré, “Frequency domain optical parametric amplification,” Nat. Commun. 5, 3643 (2014).
[Crossref]

Polgár, K.

G. Kurdi, K. Osvay, J. Klebniczki, M. Divall, E. J. Divall, A. Péter, K. Polgár, and J. Bohus, “Two-photon-absorption of BBO, CLBO, KDP and LTB crystals,” in Advanced Solid-State Photonics (Optical Society of America, 2005), paper MF18.

Prandolini, M.

Pretzler, G.

G. Pretzler, A. Kasper, and K. Witte, “Angular chirp and tilted light pulses in CPA lasers,” Appl. Phys. B 70, 1–9 (2000).
[Crossref]

Pupeikis, J.

Raciukaitis, G.

G. Raciukaitis and M. Gedvilas, “Processing of polymers by UV picosecond lasers,” in 24th International Congress on Applications of Lasers & Electro-Optics (ICALEO) (2005), pp. 191–199.

Riedel, R.

Roskot, L.

H. Turčičová, O. Novák, L. Roskot, J. Muzik, M. Smrž, A. Endo, and T. Mocek, “Picosecond deep ultraviolet pulses generated by a 100 kHz thin-disk laser system,” Proc. SPIE 11042, 110420H (2019).
[Crossref]

H. Turcicova, O. Novak, L. Roskot, M. Smrz, J. Muzik, M. Chyla, A. Endo, and T. Mocek, “New observations on DUV radiation at 257 nm and 206 nm produced by a picosecond diode pumped thin-disk laser,” Opt. Express 27, 24286–24299 (2019).
[Crossref]

Rothhardt, C.

Rothhardt, J.

Rothhardt, M.

Sakane, I.

A. Shirakawa, I. Sakane, M. Takasaka, and T. Kobayashi, “Sub-5-fs visible pulse generation by pulse-front-matched noncollinear optical parametric amplification,” Appl. Phys. Lett. 74, 2268–2270 (1999).
[Crossref]

Sasaki, T.

Savage, N.

N. Savage, “Ultraviolet lasers,” Nat. Photonics 1, 83–85 (2007).
[Crossref]

Schlup, P.

P. Eckle, M. Smolarski, P. Schlup, J. Biegert, A. Staudte, M. Schöffler, H. G. Muller, R. Dörner, and U. Keller, “Attosecond angular streaking,” Nat. Phys. 4, 565–570 (2008).
[Crossref]

Schmidt, B. E.

B. E. Schmidt, N. Thiré, M. Boivin, A. Laramée, F. Poitras, G. Lebrun, T. Ozaki, H. Ibrahim, and F. Légaré, “Frequency domain optical parametric amplification,” Nat. Commun. 5, 3643 (2014).
[Crossref]

Schöffler, M.

P. Eckle, M. Smolarski, P. Schlup, J. Biegert, A. Staudte, M. Schöffler, H. G. Muller, R. Dörner, and U. Keller, “Attosecond angular streaking,” Nat. Phys. 4, 565–570 (2008).
[Crossref]

Schreiber, S.

D. Sertore, S. Schreiber, K. Floettmann, F. Stephan, K. Zapfe, and P. Michelato, “First operation of cesium telluride photocathodes in the TTF injector RF gun,” Nucl. Instrum. Methods Phys. Res. A 445, 422–426 (2000).
[Crossref]

Schulz, M.

Sertore, D.

D. Sertore, S. Schreiber, K. Floettmann, F. Stephan, K. Zapfe, and P. Michelato, “First operation of cesium telluride photocathodes in the TTF injector RF gun,” Nucl. Instrum. Methods Phys. Res. A 445, 422–426 (2000).
[Crossref]

Sheik-Bahae, M.

M. Sheik-Bahae and M. Ebrahimzadeh, “Measurements of nonlinear refraction in the second-order χ(2) materials KTiOPO4, KNbO3, β-BaB2O4, and LiB3O5,” Opt. Commun. 142, 294–298 (1997).
[Crossref]

Shirakawa, A.

A. Shirakawa, I. Sakane, M. Takasaka, and T. Kobayashi, “Sub-5-fs visible pulse generation by pulse-front-matched noncollinear optical parametric amplification,” Appl. Phys. Lett. 74, 2268–2270 (1999).
[Crossref]

Shoji, I.

Smith, A. V.

Smolarski, M.

P. Eckle, M. Smolarski, P. Schlup, J. Biegert, A. Staudte, M. Schöffler, H. G. Muller, R. Dörner, and U. Keller, “Attosecond angular streaking,” Nat. Phys. 4, 565–570 (2008).
[Crossref]

Smrz, M.

Smrž, M.

H. Turčičová, O. Novák, L. Roskot, J. Muzik, M. Smrž, A. Endo, and T. Mocek, “Picosecond deep ultraviolet pulses generated by a 100 kHz thin-disk laser system,” Proc. SPIE 11042, 110420H (2019).
[Crossref]

O. Novák, H. Turčičová, M. Smrž, T. Miura, A. Endo, and T. Mocek, “Picosecond green and deep ultraviolet pulses generated by a high-power 100 kHz thin-disk laser,” Opt. Lett. 41, 5210–5213 (2016).
[Crossref]

Solcia, C.

Srinivasan, R.

R. Srinivasan, “Ablation of polymers and biological tissue by ultraviolet lasers,” Science 234, 559–565 (1986).
[Crossref]

St. J. Russell, P.

Staudte, A.

P. Eckle, M. Smolarski, P. Schlup, J. Biegert, A. Staudte, M. Schöffler, H. G. Muller, R. Dörner, and U. Keller, “Attosecond angular streaking,” Nat. Phys. 4, 565–570 (2008).
[Crossref]

P. Eckle, A. N. Pfeiffer, C. Cirelli, A. Staudte, R. Dörner, H. G. Muller, M. Büttiker, and U. Keller, “Attosecond ionization and tunneling delay time measurements in helium,” Science 322, 1525–1529 (2008).
[Crossref]

Stegeman, G. I.

G. I. Stegeman, D. J. Hagan, and L. Torner, “χ(2) cascading phenomena and their applications to all-optical signal processing, mode-locking, pulse compression and solitons,” Opt. Quantum Electron. 28, 1691–1740 (1996).
[Crossref]

Stephan, F.

D. Sertore, S. Schreiber, K. Floettmann, F. Stephan, K. Zapfe, and P. Michelato, “First operation of cesium telluride photocathodes in the TTF injector RF gun,” Nucl. Instrum. Methods Phys. Res. A 445, 422–426 (2000).
[Crossref]

Sutter, D.

Takasaka, M.

A. Shirakawa, I. Sakane, M. Takasaka, and T. Kobayashi, “Sub-5-fs visible pulse generation by pulse-front-matched noncollinear optical parametric amplification,” Appl. Phys. Lett. 74, 2268–2270 (1999).
[Crossref]

Tani, F.

Tavella, F.

Teubner, U.

Thiré, N.

B. E. Schmidt, N. Thiré, M. Boivin, A. Laramée, F. Poitras, G. Lebrun, T. Ozaki, H. Ibrahim, and F. Légaré, “Frequency domain optical parametric amplification,” Nat. Commun. 5, 3643 (2014).
[Crossref]

Torner, L.

G. I. Stegeman, D. J. Hagan, and L. Torner, “χ(2) cascading phenomena and their applications to all-optical signal processing, mode-locking, pulse compression and solitons,” Opt. Quantum Electron. 28, 1691–1740 (1996).
[Crossref]

Trapani, P. D.

Travers, J. C.

Tünnermann, A.

Turcicova, H.

Turcicová, H.

H. Turčičová, O. Novák, L. Roskot, J. Muzik, M. Smrž, A. Endo, and T. Mocek, “Picosecond deep ultraviolet pulses generated by a 100 kHz thin-disk laser system,” Proc. SPIE 11042, 110420H (2019).
[Crossref]

O. Novák, H. Turčičová, M. Smrž, T. Miura, A. Endo, and T. Mocek, “Picosecond green and deep ultraviolet pulses generated by a high-power 100 kHz thin-disk laser,” Opt. Lett. 41, 5210–5213 (2016).
[Crossref]

Volosov, V.

V. Volosov and E. Goryachkina, “Compensation of phase-matching dispersion in generation of nonmonochromatic radiation harmonics. I. Doubling of neodymium-glass radiation frequency under free-oscillation conditions,” Sov. J. Quantum Electron. 6, 854–857 (1976).
[Crossref]

Voss, A.

Wei, J.

Witte, K.

G. Pretzler, A. Kasper, and K. Witte, “Angular chirp and tilted light pulses in CPA lasers,” Appl. Phys. B 70, 1–9 (2000).
[Crossref]

Yoshimura, M.

Zapfe, K.

D. Sertore, S. Schreiber, K. Floettmann, F. Stephan, K. Zapfe, and P. Michelato, “First operation of cesium telluride photocathodes in the TTF injector RF gun,” Nucl. Instrum. Methods Phys. Res. A 445, 422–426 (2000).
[Crossref]

Appl. Phys. B (1)

G. Pretzler, A. Kasper, and K. Witte, “Angular chirp and tilted light pulses in CPA lasers,” Appl. Phys. B 70, 1–9 (2000).
[Crossref]

Appl. Phys. Lett. (1)

A. Shirakawa, I. Sakane, M. Takasaka, and T. Kobayashi, “Sub-5-fs visible pulse generation by pulse-front-matched noncollinear optical parametric amplification,” Appl. Phys. Lett. 74, 2268–2270 (1999).
[Crossref]

Appl. Surf. Sci. (1)

P. Herman, R. Marjoribanks, A. Oettl, K. Chen, I. Konovalov, and S. Ness, “Laser shaping of photonic materials: deep-ultraviolet and ultrafast lasers,” Appl. Surf. Sci. 154-155, 577–586 (2000).
[Crossref]

IEEE J. Quantum Electron. (4)

O. E. Martinez, “Achromatic phase matching for second harmonic generation of femtosecond pulses,” IEEE J. Quantum Electron. 25, 2464–2468 (1989).
[Crossref]

R. C. Eckardt, H. Masuda, Y. X. Fan, and R. L. Byer, “Absolute and relative nonlinear optical coefficients of KDP, KD*P, BaB2O4, LiIO3, MgO:LiNbO3, and KTP measured by phase-matched second-harmonic generation,” IEEE J. Quantum Electron. 26, 922–933 (1990).
[Crossref]

S. Ghavami Sabouri and A. Khorsandi, “Active control of thermal dephasing effect in high power continuous wave single-pass second harmonic generation,” IEEE J. Quantum Electron. 51, 1–8 (2015).
[Crossref]

K. Kato, “Temperature-tuned 90° phase-matching properties of LiB3O5,” IEEE J. Quantum Electron. 30, 2950–2952 (1994).
[Crossref]

J. Opt. Soc. Am. B (2)

Nat. Commun. (1)

B. E. Schmidt, N. Thiré, M. Boivin, A. Laramée, F. Poitras, G. Lebrun, T. Ozaki, H. Ibrahim, and F. Légaré, “Frequency domain optical parametric amplification,” Nat. Commun. 5, 3643 (2014).
[Crossref]

Nat. Photonics (1)

N. Savage, “Ultraviolet lasers,” Nat. Photonics 1, 83–85 (2007).
[Crossref]

Nat. Phys. (1)

P. Eckle, M. Smolarski, P. Schlup, J. Biegert, A. Staudte, M. Schöffler, H. G. Muller, R. Dörner, and U. Keller, “Attosecond angular streaking,” Nat. Phys. 4, 565–570 (2008).
[Crossref]

Nucl. Instrum. Methods Phys. Res. A (1)

D. Sertore, S. Schreiber, K. Floettmann, F. Stephan, K. Zapfe, and P. Michelato, “First operation of cesium telluride photocathodes in the TTF injector RF gun,” Nucl. Instrum. Methods Phys. Res. A 445, 422–426 (2000).
[Crossref]

Opt. Commun. (1)

M. Sheik-Bahae and M. Ebrahimzadeh, “Measurements of nonlinear refraction in the second-order χ(2) materials KTiOPO4, KNbO3, β-BaB2O4, and LiB3O5,” Opt. Commun. 142, 294–298 (1997).
[Crossref]

Opt. Express (5)

Opt. Lett. (4)

Opt. Quantum Electron. (1)

G. I. Stegeman, D. J. Hagan, and L. Torner, “χ(2) cascading phenomena and their applications to all-optical signal processing, mode-locking, pulse compression and solitons,” Opt. Quantum Electron. 28, 1691–1740 (1996).
[Crossref]

Optica (2)

Phys. Chem. Chem. Phys. (1)

T. Kobayashi and Y. Kida, “Ultrafast spectroscopy with sub-10 fs deep-ultraviolet pulses,” Phys. Chem. Chem. Phys. 14, 6200–6210 (2012).
[Crossref]

Proc. SPIE (1)

H. Turčičová, O. Novák, L. Roskot, J. Muzik, M. Smrž, A. Endo, and T. Mocek, “Picosecond deep ultraviolet pulses generated by a 100 kHz thin-disk laser system,” Proc. SPIE 11042, 110420H (2019).
[Crossref]

Science (2)

P. Eckle, A. N. Pfeiffer, C. Cirelli, A. Staudte, R. Dörner, H. G. Muller, M. Büttiker, and U. Keller, “Attosecond ionization and tunneling delay time measurements in helium,” Science 322, 1525–1529 (2008).
[Crossref]

R. Srinivasan, “Ablation of polymers and biological tissue by ultraviolet lasers,” Science 234, 559–565 (1986).
[Crossref]

Sov. J. Quantum Electron. (1)

V. Volosov and E. Goryachkina, “Compensation of phase-matching dispersion in generation of nonmonochromatic radiation harmonics. I. Doubling of neodymium-glass radiation frequency under free-oscillation conditions,” Sov. J. Quantum Electron. 6, 854–857 (1976).
[Crossref]

Other (5)

G. Kurdi, K. Osvay, J. Klebniczki, M. Divall, E. J. Divall, A. Péter, K. Polgár, and J. Bohus, “Two-photon-absorption of BBO, CLBO, KDP and LTB crystals,” in Advanced Solid-State Photonics (Optical Society of America, 2005), paper MF18.

A. V. Smith, Crystal Nonlinear Optics: With SNLO Examples (AS-Photonics, 2015).

G. Raciukaitis and M. Gedvilas, “Processing of polymers by UV picosecond lasers,” in 24th International Congress on Applications of Lasers & Electro-Optics (ICALEO) (2005), pp. 191–199.

D. Basting and G. Marowsky, Excimer Laser Technology (Springer, 2005).

R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic, 2008).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. Group velocity mismatch (GVM) as a function of the BBO crystal angle with respect to the generated fifth harmonic with an internal pulse front tilt of (a) 0° and (b) 42.5° of the fifth harmonic. The top axis shows the corresponding internal noncollinear angle between the fundamental and fourth harmonic ($\gamma + \delta$) that leads to phase matching at the corresponding crystal angle. Calculations according to SNLO at 400 K. (c) $\vec k$ vector diagram for noncollinear sum-frequency generation with matched pulse front tilts. The angles $\gamma$ and $\delta$ denote the noncollinear angles of the generating waves $\omega$ and $4\omega$ with respect to the generated $5\omega$ wave, and $\theta$ the phase matching angle. (d) Group velocity mismatch between the fundamental and the $4\omega$ wave as a function of the applied internal pulse front tilt; for each PFT value, we choose the optimum $\theta$ to minimize GVM, as described in the text.
Fig. 2.
Fig. 2. Schematic of the optical design for frequency conversion to the fifth harmonic via sum-frequency generation (SFG) including cascaded ${\chi ^{(2)}}$ beam flattening (BF), second-harmonic generation (SHG), fourth-harmonic generation (FHG), and introduction of pulse front tilts via diffraction gratings (G1, G2). The residual fundamentals in the different frequency conversion stages are filtered with dichroic mirrors (DMs). The pairs of lenses indicate elliptical beam shaping with reimaging between the labeled subsequent nonlinear crystals and gratings. The insets at the top center and top right depict, respectively, the k-vector diagram for the FHG and SFG stage including the pulse front tilt (PFT).
Fig. 3.
Fig. 3. Group velocity mismatch (GVM) as a function of the crystal rotation angle $\theta$ with respect to the generated fourth-harmonic beam for the two cases of internal pulse front tilt of (a) 0° and (b) 45° of the fourth harmonic. The corresponding internal noncollinear angle between the two incident $2\omega$ beams for optimal phase matching is indicated on the top axis.
Fig. 4.
Fig. 4. (a) Evolution of energy abundance contained in a 2D Gaussian beam with ${{\rm sech}^2}$ temporal shape after undergoing ${\chi ^{(2)}}$ beam flattening. The solid blue and yellow lines represent the contained energy fraction of the pulse with a 50% and 75% threshold (peak intensity), respectively, in contrast to the nonflattened case depicted by the corresponding dashed lines [see Eq. (2)]. (b) Temporal (slice at $y = 0$) and spatial (slice at $t = 0$) evolution of the beam profile after ${\chi ^{(2)}}$ beam flattening. The vertical black line at 0.12 m indicates the reimaging point used in the experiment. (c) Flattening effect on pump beam, monitored with the time integrating beam profiling camera placed 12 cm after beam-flattening crystal at low power—no beam flattening; and (d) at high power (65 W, 1030 nm, 900 µm beam radius)—with significant flattening of the input beam. The pulse parameters used for the simulation resemble the ones in the experiment.
Fig. 5.
Fig. 5. Internal conversion efficiencies of the (a) fourth-harmonic generation and (b) fifth-harmonic sum-frequency generation as a function of the corresponding pump power.
Fig. 6.
Fig. 6. Characterization of the SFG output at 2 W average power: (a) cross-correlation signal of the $4\omega$ and $1\omega$ beam, (b) output power versus crystal angle $\theta$ offset, and (c) spectrum of the generated output.
Fig. 7.
Fig. 7. Near-field beam profiles at 2.2 W output power of (a) the generated 257 nm beam measured ${\sim}15\;{\rm cm}$ after the crystal, and (b) the 206 nm beam at ${\sim}40\;{\rm cm}$ after the crystal.
Fig. 8.
Fig. 8. Power stability measurement at 2.2 W over 12 h for the $5\omega$ output at 206 nm.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

n 2 , e f f = n 2 , i n t r i n s i c 1 Δ k 4 π d e f f 2 ϵ 0 c n F W 2 n S H λ F W ,
ξ η = I / max ( I ) > η I ( x , y , t ) d x d y d t / I ( x , y , t ) d x d y d t .
tan α t = λ 0 d φ d λ | λ 0 .

Metrics