Abstract

Stimulated Raman spectroscopy has become a powerful tool to study the spatiodynamics of molecular bonds with high sensitivity, resolution, and speed. However, the sensitivity and speed of state-of-the-art stimulated Raman scattering spectroscopy are currently limited by the shot-noise of the light beam probing the Raman process. Here, we demonstrate in a proof-of-principle experiment an enhancement of the sensitivity of continuous-wave stimulated Raman spectroscopy by reducing the quantum noise of the probing light below the shot-noise limit by means of amplitude squeezed states of light. Probing polymer samples with Raman shifts around $2950\;{{\rm cm}^{- 1}}$ with squeezed states, we demonstrate a quantum enhancement of the stimulated Raman signal-to-noise ratio (SNR) of 3.60 dB relative to the shot-noise limited SNR. Our proof-of-concept demonstration of quantum-enhanced continuous-wave Raman spectroscopy paves the way for more elaborate demonstrations using state-of-the-art stimulated Raman scattering microscopes, and thus constitutes the very first step towards a new generation of Raman microscopes, where weak Raman transitions can be imaged without the use of markers or an increase in the total optical power.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. J. Lawrie, P. D. Lett, A. M. Marino, and R. C. Pooser, “Quantum sensing with squeezed light,” ACS Photon. 6, 1307–1318 (2019).
    [Crossref]
  2. S. Pirandola, B. R. Bardhan, T. Gehring, C. Weedbrook, and S. Lloyd, “Advances in photonic quantum sensing,” Nat. Photonics 12, 724–733 (2018).
    [Crossref]
  3. K. Marshall, C. S. Jacobsen, C. Schäfermeier, T. Gehring, C. Weedbrook, and U. L. Andersen, “Continuous-variable quantum computing on encrypted data,” Nat. Commun. 7, 13795 (2016).
    [Crossref]
  4. M. A. Taylor and W. P. Bowen, “Quantum metrology and its application in biology,” Phys. Rep. 615, 1–59 (2016).
    [Crossref]
  5. U. B. Hoff, G. I. Harris, L. S. Madsen, H. Kerdoncuff, M. Lassen, B. M. Nielsen, W. P. Bowen, and U. L. Andersen, “Quantum-enhanced micromechanical displacement sensitivity,” Opt. Lett. 38, 1413–1415 (2013).
    [Crossref]
  6. A. I. Lvovsky, “Squeezed light,” in Photonics, D. L. Andrews, ed. (Wiley, 2015), Chap. 5, pp. 121–163.
  7. U. L. Andersen, T. Gehring, C. Marquardt, and G. Leuchs, “30 years of squeezed light generation,” Phys. Scripta 91, 053001 (2016).
    [Crossref]
  8. R. Schnabel, “Squeezed states of light and their applications in laser interferometers,” Phys. Rep. 684, 1–51 (2017).
    [Crossref]
  9. R. C. Pooser and B. Lawrie, “Ultrasensitive measurement of microcantilever displacement below the shot-noise limit,” Optica 2, 393–399 (2015).
    [Crossref]
  10. F. Wolfgramm, A. Cerè, F. A. Beduini, A. Predojević, M. Koschorreck, and M. W. Mitchell, “Squeezed-light optical magnetometry,” Phys. Rev. Lett. 105, 053601 (2010).
    [Crossref]
  11. B.-B. Li, J. Bílek, U. B. Hoff, L. S. Madsen, S. Forstner, V. Prakash, C. Schäfermeier, T. Gehring, W. P. Bowen, and U. L. Andersen, “Quantum enhanced optomechanical magnetometry,” Optica 5, 850–856 (2018).
    [Crossref]
  12. M. A. Taylor, J. Janousek, V. Daria, J. Knittel, B. Hage, H.-A. Bachor, and W. P. Bowen, “Biological measurement beyond the quantum limit,” Nat. Photonics 7, 229–233 (2013).
    [Crossref]
  13. T. L. S. Collaboration, “Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light,” Nat. Photonics 7, 613–619 (2013).
    [Crossref]
  14. C. W. Freudiger, W. Yang, G. R. Holtom, N. Peyghambarian, X. S. Xie, and K. Q. Kieu, “Stimulated Raman scattering microscopy with a robust fibre laser source,” Nat. Photonics 8, 153–159 (2014).
    [Crossref]
  15. C. H. Camp and M. T. Cicerone, “Chemically sensitive bioimaging with coherent Raman scattering,” Nat. Photonics 9, 295–305 (2015).
    [Crossref]
  16. J. X. Cheng and X. S. Xie, Coherent Raman Scattering Microscopy, 1st ed. (CRC Press, 2016).
  17. R. R. Jones, D. C. Hooper, L. Zhang, D. Wolverson, and V. K. Valev, “Raman techniques: fundamentals and frontiers,” Nanoscale Res. Lett. 14, 231 (2019).
    [Crossref]
  18. H. J. Lee and J.-X. Cheng, “Imaging chemistry inside living cells by stimulated Raman scattering microscopy,” Methods 128, 119–128 (2017).
    [Crossref]
  19. W. Dou, D. Zhang, Y. Jung, J.-X. Cheng, and D. Umulis, “Label-free imaging of lipid-droplet intracellular motion in early drosophila embryos using femtosecond-stimulated Raman loss microscopy,” Biophys. J. 102, 1666–1675 (2012).
    [Crossref]
  20. M. C. Wang, W. Min, C. W. Freudiger, G. Ruvkun, and X. S. Xie, “RNAi screening for fat regulatory genes with SRS microscopy,” Nat. Methods 8, 135–138 (2011).
    [Crossref]
  21. M. Ji, D. A. Orringer, C. W. Freudiger, S. Ramkissoon, X. Liu, D. Lau, A. J. Golby, I. Norton, M. Hayashi, N. Y. R. Agar, G. S. Young, C. Spino, S. Santagata, S. Camelo-Piragua, K. L. Ligon, O. Sagher, and X. S. Xie, “Rapid, label-free detection of brain tumors with stimulated Raman scattering microscopy,” Sci. Trans. Med. 5, 201ra119 (2013).
    [Crossref]
  22. F.-K. Lu, D. Calligaris, O. I. Olubiyi, I. Norton, W. Yang, S. Santagata, X. S. Xie, A. J. Golby, and N. Y. Agar, “Label-free neurosurgical pathology with stimulated Raman imaging,” Cancer Res. 76, 3451–3462 (2016).
    [Crossref]
  23. M. Moester, F. Ariese, and J. de Boer, “Optimized signal-to-noise ratio with shot noise limited detection in stimulated Raman scattering microscopy,” J. Eur. Opt. Soc. Rapid Publ. 10, 15022 (2015).
    [Crossref]
  24. H. Kerdoncuff, M. Lassen, and J. C. Petersen, “Continuous-wave coherent Raman spectroscopy for improving the accuracy of Raman shifts,” Opt. Lett. 44, 5057–5060 (2019).
    [Crossref]
  25. R. W. Boyd, Nonlinear Optics (Academic, 2008).
  26. C. Schäfermeier, M. Ježek, L. S. Madsen, T. Gehring, and U. L. Andersen, “Deterministic phase measurements exhibiting super-sensitivity and super-resolution,” Optica 5, 60–64 (2018).
    [Crossref]
  27. S. Dirlikov and J. L. Koenig, “Carbon-hydrogen stretching and bending vibrations in the Raman spectra of poly (methylmethacrylate),” J. Raman Spectrosc. 9, 150–154 (1980).
    [Crossref]
  28. A. L. Smith and D. R. Anderson, “Vibrational spectra of Me2SiCl2, Me3SiCl, Me3SiOSiMe3, (Me2SiO)3, (Me2SiO)4, (Me2SiO)x, and their deuterated analogs,” Appl. Spectrosc. 38, 822–834 (1984).
    [Crossref]
  29. M. Tanaka and R. J. Young, “Review polarised Raman spectroscopy for the study of molecular orientation distributions in polymers,” J. Mater. Sci. 41, 963–991 (2006).
    [Crossref]
  30. H. Kerdoncuff, M. R. Pollard, P. G. Westergaard, J. C. Petersen, and M. Lassen, “Compact and versatile laser system for polarization-sensitive stimulated Raman spectroscopy,” Opt. Express 25, 5618–5625 (2017).
    [Crossref]
  31. T. Ono, R. Okamoto, and S. Takeuchi, “An entanglement-enhanced microscope,” Nat. Commun. 4, 2426 (2013).
    [Crossref]
  32. R. Tenne, U. Rossman, B. Rephael, Y. Israel, A. Krupinski-Ptaszek, R. Lapkiewicz, Y. Silberberg, and D. Oron, “Super-resolution enhancement by quantum image scanning microscopy,” Nat. Photonics 4, 116–122 (2019).
    [Crossref]
  33. B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-rate molecular imaging in vivo with stimulated Raman scattering,” Science 330, 1368–1370 (2010).
    [Crossref]
  34. C.-R. Hu, M. N. Slipchenko, P. Wang, P. Wang, J. D. Lin, G. Simpson, B. Hu, and J.-X. Cheng, “Stimulated Raman scattering imaging by continuous-wave laser excitation,” Opt. Lett. 38, 1479–1481 (2013).
    [Crossref]

2019 (4)

B. J. Lawrie, P. D. Lett, A. M. Marino, and R. C. Pooser, “Quantum sensing with squeezed light,” ACS Photon. 6, 1307–1318 (2019).
[Crossref]

R. R. Jones, D. C. Hooper, L. Zhang, D. Wolverson, and V. K. Valev, “Raman techniques: fundamentals and frontiers,” Nanoscale Res. Lett. 14, 231 (2019).
[Crossref]

H. Kerdoncuff, M. Lassen, and J. C. Petersen, “Continuous-wave coherent Raman spectroscopy for improving the accuracy of Raman shifts,” Opt. Lett. 44, 5057–5060 (2019).
[Crossref]

R. Tenne, U. Rossman, B. Rephael, Y. Israel, A. Krupinski-Ptaszek, R. Lapkiewicz, Y. Silberberg, and D. Oron, “Super-resolution enhancement by quantum image scanning microscopy,” Nat. Photonics 4, 116–122 (2019).
[Crossref]

2018 (3)

2017 (3)

R. Schnabel, “Squeezed states of light and their applications in laser interferometers,” Phys. Rep. 684, 1–51 (2017).
[Crossref]

H. J. Lee and J.-X. Cheng, “Imaging chemistry inside living cells by stimulated Raman scattering microscopy,” Methods 128, 119–128 (2017).
[Crossref]

H. Kerdoncuff, M. R. Pollard, P. G. Westergaard, J. C. Petersen, and M. Lassen, “Compact and versatile laser system for polarization-sensitive stimulated Raman spectroscopy,” Opt. Express 25, 5618–5625 (2017).
[Crossref]

2016 (4)

F.-K. Lu, D. Calligaris, O. I. Olubiyi, I. Norton, W. Yang, S. Santagata, X. S. Xie, A. J. Golby, and N. Y. Agar, “Label-free neurosurgical pathology with stimulated Raman imaging,” Cancer Res. 76, 3451–3462 (2016).
[Crossref]

U. L. Andersen, T. Gehring, C. Marquardt, and G. Leuchs, “30 years of squeezed light generation,” Phys. Scripta 91, 053001 (2016).
[Crossref]

K. Marshall, C. S. Jacobsen, C. Schäfermeier, T. Gehring, C. Weedbrook, and U. L. Andersen, “Continuous-variable quantum computing on encrypted data,” Nat. Commun. 7, 13795 (2016).
[Crossref]

M. A. Taylor and W. P. Bowen, “Quantum metrology and its application in biology,” Phys. Rep. 615, 1–59 (2016).
[Crossref]

2015 (3)

R. C. Pooser and B. Lawrie, “Ultrasensitive measurement of microcantilever displacement below the shot-noise limit,” Optica 2, 393–399 (2015).
[Crossref]

C. H. Camp and M. T. Cicerone, “Chemically sensitive bioimaging with coherent Raman scattering,” Nat. Photonics 9, 295–305 (2015).
[Crossref]

M. Moester, F. Ariese, and J. de Boer, “Optimized signal-to-noise ratio with shot noise limited detection in stimulated Raman scattering microscopy,” J. Eur. Opt. Soc. Rapid Publ. 10, 15022 (2015).
[Crossref]

2014 (1)

C. W. Freudiger, W. Yang, G. R. Holtom, N. Peyghambarian, X. S. Xie, and K. Q. Kieu, “Stimulated Raman scattering microscopy with a robust fibre laser source,” Nat. Photonics 8, 153–159 (2014).
[Crossref]

2013 (6)

M. Ji, D. A. Orringer, C. W. Freudiger, S. Ramkissoon, X. Liu, D. Lau, A. J. Golby, I. Norton, M. Hayashi, N. Y. R. Agar, G. S. Young, C. Spino, S. Santagata, S. Camelo-Piragua, K. L. Ligon, O. Sagher, and X. S. Xie, “Rapid, label-free detection of brain tumors with stimulated Raman scattering microscopy,” Sci. Trans. Med. 5, 201ra119 (2013).
[Crossref]

M. A. Taylor, J. Janousek, V. Daria, J. Knittel, B. Hage, H.-A. Bachor, and W. P. Bowen, “Biological measurement beyond the quantum limit,” Nat. Photonics 7, 229–233 (2013).
[Crossref]

T. L. S. Collaboration, “Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light,” Nat. Photonics 7, 613–619 (2013).
[Crossref]

U. B. Hoff, G. I. Harris, L. S. Madsen, H. Kerdoncuff, M. Lassen, B. M. Nielsen, W. P. Bowen, and U. L. Andersen, “Quantum-enhanced micromechanical displacement sensitivity,” Opt. Lett. 38, 1413–1415 (2013).
[Crossref]

T. Ono, R. Okamoto, and S. Takeuchi, “An entanglement-enhanced microscope,” Nat. Commun. 4, 2426 (2013).
[Crossref]

C.-R. Hu, M. N. Slipchenko, P. Wang, P. Wang, J. D. Lin, G. Simpson, B. Hu, and J.-X. Cheng, “Stimulated Raman scattering imaging by continuous-wave laser excitation,” Opt. Lett. 38, 1479–1481 (2013).
[Crossref]

2012 (1)

W. Dou, D. Zhang, Y. Jung, J.-X. Cheng, and D. Umulis, “Label-free imaging of lipid-droplet intracellular motion in early drosophila embryos using femtosecond-stimulated Raman loss microscopy,” Biophys. J. 102, 1666–1675 (2012).
[Crossref]

2011 (1)

M. C. Wang, W. Min, C. W. Freudiger, G. Ruvkun, and X. S. Xie, “RNAi screening for fat regulatory genes with SRS microscopy,” Nat. Methods 8, 135–138 (2011).
[Crossref]

2010 (2)

F. Wolfgramm, A. Cerè, F. A. Beduini, A. Predojević, M. Koschorreck, and M. W. Mitchell, “Squeezed-light optical magnetometry,” Phys. Rev. Lett. 105, 053601 (2010).
[Crossref]

B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-rate molecular imaging in vivo with stimulated Raman scattering,” Science 330, 1368–1370 (2010).
[Crossref]

2006 (1)

M. Tanaka and R. J. Young, “Review polarised Raman spectroscopy for the study of molecular orientation distributions in polymers,” J. Mater. Sci. 41, 963–991 (2006).
[Crossref]

1984 (1)

1980 (1)

S. Dirlikov and J. L. Koenig, “Carbon-hydrogen stretching and bending vibrations in the Raman spectra of poly (methylmethacrylate),” J. Raman Spectrosc. 9, 150–154 (1980).
[Crossref]

Agar, N. Y.

F.-K. Lu, D. Calligaris, O. I. Olubiyi, I. Norton, W. Yang, S. Santagata, X. S. Xie, A. J. Golby, and N. Y. Agar, “Label-free neurosurgical pathology with stimulated Raman imaging,” Cancer Res. 76, 3451–3462 (2016).
[Crossref]

Agar, N. Y. R.

M. Ji, D. A. Orringer, C. W. Freudiger, S. Ramkissoon, X. Liu, D. Lau, A. J. Golby, I. Norton, M. Hayashi, N. Y. R. Agar, G. S. Young, C. Spino, S. Santagata, S. Camelo-Piragua, K. L. Ligon, O. Sagher, and X. S. Xie, “Rapid, label-free detection of brain tumors with stimulated Raman scattering microscopy,” Sci. Trans. Med. 5, 201ra119 (2013).
[Crossref]

Andersen, U. L.

Anderson, D. R.

Ariese, F.

M. Moester, F. Ariese, and J. de Boer, “Optimized signal-to-noise ratio with shot noise limited detection in stimulated Raman scattering microscopy,” J. Eur. Opt. Soc. Rapid Publ. 10, 15022 (2015).
[Crossref]

Bachor, H.-A.

M. A. Taylor, J. Janousek, V. Daria, J. Knittel, B. Hage, H.-A. Bachor, and W. P. Bowen, “Biological measurement beyond the quantum limit,” Nat. Photonics 7, 229–233 (2013).
[Crossref]

Bardhan, B. R.

S. Pirandola, B. R. Bardhan, T. Gehring, C. Weedbrook, and S. Lloyd, “Advances in photonic quantum sensing,” Nat. Photonics 12, 724–733 (2018).
[Crossref]

Beduini, F. A.

F. Wolfgramm, A. Cerè, F. A. Beduini, A. Predojević, M. Koschorreck, and M. W. Mitchell, “Squeezed-light optical magnetometry,” Phys. Rev. Lett. 105, 053601 (2010).
[Crossref]

Bílek, J.

Bowen, W. P.

Boyd, R. W.

R. W. Boyd, Nonlinear Optics (Academic, 2008).

Calligaris, D.

F.-K. Lu, D. Calligaris, O. I. Olubiyi, I. Norton, W. Yang, S. Santagata, X. S. Xie, A. J. Golby, and N. Y. Agar, “Label-free neurosurgical pathology with stimulated Raman imaging,” Cancer Res. 76, 3451–3462 (2016).
[Crossref]

Camelo-Piragua, S.

M. Ji, D. A. Orringer, C. W. Freudiger, S. Ramkissoon, X. Liu, D. Lau, A. J. Golby, I. Norton, M. Hayashi, N. Y. R. Agar, G. S. Young, C. Spino, S. Santagata, S. Camelo-Piragua, K. L. Ligon, O. Sagher, and X. S. Xie, “Rapid, label-free detection of brain tumors with stimulated Raman scattering microscopy,” Sci. Trans. Med. 5, 201ra119 (2013).
[Crossref]

Camp, C. H.

C. H. Camp and M. T. Cicerone, “Chemically sensitive bioimaging with coherent Raman scattering,” Nat. Photonics 9, 295–305 (2015).
[Crossref]

Cerè, A.

F. Wolfgramm, A. Cerè, F. A. Beduini, A. Predojević, M. Koschorreck, and M. W. Mitchell, “Squeezed-light optical magnetometry,” Phys. Rev. Lett. 105, 053601 (2010).
[Crossref]

Cheng, J. X.

J. X. Cheng and X. S. Xie, Coherent Raman Scattering Microscopy, 1st ed. (CRC Press, 2016).

Cheng, J.-X.

H. J. Lee and J.-X. Cheng, “Imaging chemistry inside living cells by stimulated Raman scattering microscopy,” Methods 128, 119–128 (2017).
[Crossref]

C.-R. Hu, M. N. Slipchenko, P. Wang, P. Wang, J. D. Lin, G. Simpson, B. Hu, and J.-X. Cheng, “Stimulated Raman scattering imaging by continuous-wave laser excitation,” Opt. Lett. 38, 1479–1481 (2013).
[Crossref]

W. Dou, D. Zhang, Y. Jung, J.-X. Cheng, and D. Umulis, “Label-free imaging of lipid-droplet intracellular motion in early drosophila embryos using femtosecond-stimulated Raman loss microscopy,” Biophys. J. 102, 1666–1675 (2012).
[Crossref]

Cicerone, M. T.

C. H. Camp and M. T. Cicerone, “Chemically sensitive bioimaging with coherent Raman scattering,” Nat. Photonics 9, 295–305 (2015).
[Crossref]

Daria, V.

M. A. Taylor, J. Janousek, V. Daria, J. Knittel, B. Hage, H.-A. Bachor, and W. P. Bowen, “Biological measurement beyond the quantum limit,” Nat. Photonics 7, 229–233 (2013).
[Crossref]

de Boer, J.

M. Moester, F. Ariese, and J. de Boer, “Optimized signal-to-noise ratio with shot noise limited detection in stimulated Raman scattering microscopy,” J. Eur. Opt. Soc. Rapid Publ. 10, 15022 (2015).
[Crossref]

Dirlikov, S.

S. Dirlikov and J. L. Koenig, “Carbon-hydrogen stretching and bending vibrations in the Raman spectra of poly (methylmethacrylate),” J. Raman Spectrosc. 9, 150–154 (1980).
[Crossref]

Dou, W.

W. Dou, D. Zhang, Y. Jung, J.-X. Cheng, and D. Umulis, “Label-free imaging of lipid-droplet intracellular motion in early drosophila embryos using femtosecond-stimulated Raman loss microscopy,” Biophys. J. 102, 1666–1675 (2012).
[Crossref]

Forstner, S.

Freudiger, C. W.

C. W. Freudiger, W. Yang, G. R. Holtom, N. Peyghambarian, X. S. Xie, and K. Q. Kieu, “Stimulated Raman scattering microscopy with a robust fibre laser source,” Nat. Photonics 8, 153–159 (2014).
[Crossref]

M. Ji, D. A. Orringer, C. W. Freudiger, S. Ramkissoon, X. Liu, D. Lau, A. J. Golby, I. Norton, M. Hayashi, N. Y. R. Agar, G. S. Young, C. Spino, S. Santagata, S. Camelo-Piragua, K. L. Ligon, O. Sagher, and X. S. Xie, “Rapid, label-free detection of brain tumors with stimulated Raman scattering microscopy,” Sci. Trans. Med. 5, 201ra119 (2013).
[Crossref]

M. C. Wang, W. Min, C. W. Freudiger, G. Ruvkun, and X. S. Xie, “RNAi screening for fat regulatory genes with SRS microscopy,” Nat. Methods 8, 135–138 (2011).
[Crossref]

B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-rate molecular imaging in vivo with stimulated Raman scattering,” Science 330, 1368–1370 (2010).
[Crossref]

Gehring, T.

C. Schäfermeier, M. Ježek, L. S. Madsen, T. Gehring, and U. L. Andersen, “Deterministic phase measurements exhibiting super-sensitivity and super-resolution,” Optica 5, 60–64 (2018).
[Crossref]

B.-B. Li, J. Bílek, U. B. Hoff, L. S. Madsen, S. Forstner, V. Prakash, C. Schäfermeier, T. Gehring, W. P. Bowen, and U. L. Andersen, “Quantum enhanced optomechanical magnetometry,” Optica 5, 850–856 (2018).
[Crossref]

S. Pirandola, B. R. Bardhan, T. Gehring, C. Weedbrook, and S. Lloyd, “Advances in photonic quantum sensing,” Nat. Photonics 12, 724–733 (2018).
[Crossref]

K. Marshall, C. S. Jacobsen, C. Schäfermeier, T. Gehring, C. Weedbrook, and U. L. Andersen, “Continuous-variable quantum computing on encrypted data,” Nat. Commun. 7, 13795 (2016).
[Crossref]

U. L. Andersen, T. Gehring, C. Marquardt, and G. Leuchs, “30 years of squeezed light generation,” Phys. Scripta 91, 053001 (2016).
[Crossref]

Golby, A. J.

F.-K. Lu, D. Calligaris, O. I. Olubiyi, I. Norton, W. Yang, S. Santagata, X. S. Xie, A. J. Golby, and N. Y. Agar, “Label-free neurosurgical pathology with stimulated Raman imaging,” Cancer Res. 76, 3451–3462 (2016).
[Crossref]

M. Ji, D. A. Orringer, C. W. Freudiger, S. Ramkissoon, X. Liu, D. Lau, A. J. Golby, I. Norton, M. Hayashi, N. Y. R. Agar, G. S. Young, C. Spino, S. Santagata, S. Camelo-Piragua, K. L. Ligon, O. Sagher, and X. S. Xie, “Rapid, label-free detection of brain tumors with stimulated Raman scattering microscopy,” Sci. Trans. Med. 5, 201ra119 (2013).
[Crossref]

Hage, B.

M. A. Taylor, J. Janousek, V. Daria, J. Knittel, B. Hage, H.-A. Bachor, and W. P. Bowen, “Biological measurement beyond the quantum limit,” Nat. Photonics 7, 229–233 (2013).
[Crossref]

Harris, G. I.

Hayashi, M.

M. Ji, D. A. Orringer, C. W. Freudiger, S. Ramkissoon, X. Liu, D. Lau, A. J. Golby, I. Norton, M. Hayashi, N. Y. R. Agar, G. S. Young, C. Spino, S. Santagata, S. Camelo-Piragua, K. L. Ligon, O. Sagher, and X. S. Xie, “Rapid, label-free detection of brain tumors with stimulated Raman scattering microscopy,” Sci. Trans. Med. 5, 201ra119 (2013).
[Crossref]

Hoff, U. B.

Holtom, G. R.

C. W. Freudiger, W. Yang, G. R. Holtom, N. Peyghambarian, X. S. Xie, and K. Q. Kieu, “Stimulated Raman scattering microscopy with a robust fibre laser source,” Nat. Photonics 8, 153–159 (2014).
[Crossref]

B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-rate molecular imaging in vivo with stimulated Raman scattering,” Science 330, 1368–1370 (2010).
[Crossref]

Hooper, D. C.

R. R. Jones, D. C. Hooper, L. Zhang, D. Wolverson, and V. K. Valev, “Raman techniques: fundamentals and frontiers,” Nanoscale Res. Lett. 14, 231 (2019).
[Crossref]

Hu, B.

Hu, C.-R.

Israel, Y.

R. Tenne, U. Rossman, B. Rephael, Y. Israel, A. Krupinski-Ptaszek, R. Lapkiewicz, Y. Silberberg, and D. Oron, “Super-resolution enhancement by quantum image scanning microscopy,” Nat. Photonics 4, 116–122 (2019).
[Crossref]

Jacobsen, C. S.

K. Marshall, C. S. Jacobsen, C. Schäfermeier, T. Gehring, C. Weedbrook, and U. L. Andersen, “Continuous-variable quantum computing on encrypted data,” Nat. Commun. 7, 13795 (2016).
[Crossref]

Janousek, J.

M. A. Taylor, J. Janousek, V. Daria, J. Knittel, B. Hage, H.-A. Bachor, and W. P. Bowen, “Biological measurement beyond the quantum limit,” Nat. Photonics 7, 229–233 (2013).
[Crossref]

Ježek, M.

Ji, M.

M. Ji, D. A. Orringer, C. W. Freudiger, S. Ramkissoon, X. Liu, D. Lau, A. J. Golby, I. Norton, M. Hayashi, N. Y. R. Agar, G. S. Young, C. Spino, S. Santagata, S. Camelo-Piragua, K. L. Ligon, O. Sagher, and X. S. Xie, “Rapid, label-free detection of brain tumors with stimulated Raman scattering microscopy,” Sci. Trans. Med. 5, 201ra119 (2013).
[Crossref]

Jones, R. R.

R. R. Jones, D. C. Hooper, L. Zhang, D. Wolverson, and V. K. Valev, “Raman techniques: fundamentals and frontiers,” Nanoscale Res. Lett. 14, 231 (2019).
[Crossref]

Jung, Y.

W. Dou, D. Zhang, Y. Jung, J.-X. Cheng, and D. Umulis, “Label-free imaging of lipid-droplet intracellular motion in early drosophila embryos using femtosecond-stimulated Raman loss microscopy,” Biophys. J. 102, 1666–1675 (2012).
[Crossref]

Kerdoncuff, H.

Kieu, K. Q.

C. W. Freudiger, W. Yang, G. R. Holtom, N. Peyghambarian, X. S. Xie, and K. Q. Kieu, “Stimulated Raman scattering microscopy with a robust fibre laser source,” Nat. Photonics 8, 153–159 (2014).
[Crossref]

Knittel, J.

M. A. Taylor, J. Janousek, V. Daria, J. Knittel, B. Hage, H.-A. Bachor, and W. P. Bowen, “Biological measurement beyond the quantum limit,” Nat. Photonics 7, 229–233 (2013).
[Crossref]

Koenig, J. L.

S. Dirlikov and J. L. Koenig, “Carbon-hydrogen stretching and bending vibrations in the Raman spectra of poly (methylmethacrylate),” J. Raman Spectrosc. 9, 150–154 (1980).
[Crossref]

Koschorreck, M.

F. Wolfgramm, A. Cerè, F. A. Beduini, A. Predojević, M. Koschorreck, and M. W. Mitchell, “Squeezed-light optical magnetometry,” Phys. Rev. Lett. 105, 053601 (2010).
[Crossref]

Krupinski-Ptaszek, A.

R. Tenne, U. Rossman, B. Rephael, Y. Israel, A. Krupinski-Ptaszek, R. Lapkiewicz, Y. Silberberg, and D. Oron, “Super-resolution enhancement by quantum image scanning microscopy,” Nat. Photonics 4, 116–122 (2019).
[Crossref]

Lapkiewicz, R.

R. Tenne, U. Rossman, B. Rephael, Y. Israel, A. Krupinski-Ptaszek, R. Lapkiewicz, Y. Silberberg, and D. Oron, “Super-resolution enhancement by quantum image scanning microscopy,” Nat. Photonics 4, 116–122 (2019).
[Crossref]

Lassen, M.

Lau, D.

M. Ji, D. A. Orringer, C. W. Freudiger, S. Ramkissoon, X. Liu, D. Lau, A. J. Golby, I. Norton, M. Hayashi, N. Y. R. Agar, G. S. Young, C. Spino, S. Santagata, S. Camelo-Piragua, K. L. Ligon, O. Sagher, and X. S. Xie, “Rapid, label-free detection of brain tumors with stimulated Raman scattering microscopy,” Sci. Trans. Med. 5, 201ra119 (2013).
[Crossref]

Lawrie, B.

Lawrie, B. J.

B. J. Lawrie, P. D. Lett, A. M. Marino, and R. C. Pooser, “Quantum sensing with squeezed light,” ACS Photon. 6, 1307–1318 (2019).
[Crossref]

Lee, H. J.

H. J. Lee and J.-X. Cheng, “Imaging chemistry inside living cells by stimulated Raman scattering microscopy,” Methods 128, 119–128 (2017).
[Crossref]

Lett, P. D.

B. J. Lawrie, P. D. Lett, A. M. Marino, and R. C. Pooser, “Quantum sensing with squeezed light,” ACS Photon. 6, 1307–1318 (2019).
[Crossref]

Leuchs, G.

U. L. Andersen, T. Gehring, C. Marquardt, and G. Leuchs, “30 years of squeezed light generation,” Phys. Scripta 91, 053001 (2016).
[Crossref]

Li, B.-B.

Ligon, K. L.

M. Ji, D. A. Orringer, C. W. Freudiger, S. Ramkissoon, X. Liu, D. Lau, A. J. Golby, I. Norton, M. Hayashi, N. Y. R. Agar, G. S. Young, C. Spino, S. Santagata, S. Camelo-Piragua, K. L. Ligon, O. Sagher, and X. S. Xie, “Rapid, label-free detection of brain tumors with stimulated Raman scattering microscopy,” Sci. Trans. Med. 5, 201ra119 (2013).
[Crossref]

Lin, J. D.

Liu, X.

M. Ji, D. A. Orringer, C. W. Freudiger, S. Ramkissoon, X. Liu, D. Lau, A. J. Golby, I. Norton, M. Hayashi, N. Y. R. Agar, G. S. Young, C. Spino, S. Santagata, S. Camelo-Piragua, K. L. Ligon, O. Sagher, and X. S. Xie, “Rapid, label-free detection of brain tumors with stimulated Raman scattering microscopy,” Sci. Trans. Med. 5, 201ra119 (2013).
[Crossref]

Lloyd, S.

S. Pirandola, B. R. Bardhan, T. Gehring, C. Weedbrook, and S. Lloyd, “Advances in photonic quantum sensing,” Nat. Photonics 12, 724–733 (2018).
[Crossref]

Lu, F.-K.

F.-K. Lu, D. Calligaris, O. I. Olubiyi, I. Norton, W. Yang, S. Santagata, X. S. Xie, A. J. Golby, and N. Y. Agar, “Label-free neurosurgical pathology with stimulated Raman imaging,” Cancer Res. 76, 3451–3462 (2016).
[Crossref]

Lvovsky, A. I.

A. I. Lvovsky, “Squeezed light,” in Photonics, D. L. Andrews, ed. (Wiley, 2015), Chap. 5, pp. 121–163.

Madsen, L. S.

Marino, A. M.

B. J. Lawrie, P. D. Lett, A. M. Marino, and R. C. Pooser, “Quantum sensing with squeezed light,” ACS Photon. 6, 1307–1318 (2019).
[Crossref]

Marquardt, C.

U. L. Andersen, T. Gehring, C. Marquardt, and G. Leuchs, “30 years of squeezed light generation,” Phys. Scripta 91, 053001 (2016).
[Crossref]

Marshall, K.

K. Marshall, C. S. Jacobsen, C. Schäfermeier, T. Gehring, C. Weedbrook, and U. L. Andersen, “Continuous-variable quantum computing on encrypted data,” Nat. Commun. 7, 13795 (2016).
[Crossref]

Min, W.

M. C. Wang, W. Min, C. W. Freudiger, G. Ruvkun, and X. S. Xie, “RNAi screening for fat regulatory genes with SRS microscopy,” Nat. Methods 8, 135–138 (2011).
[Crossref]

Mitchell, M. W.

F. Wolfgramm, A. Cerè, F. A. Beduini, A. Predojević, M. Koschorreck, and M. W. Mitchell, “Squeezed-light optical magnetometry,” Phys. Rev. Lett. 105, 053601 (2010).
[Crossref]

Moester, M.

M. Moester, F. Ariese, and J. de Boer, “Optimized signal-to-noise ratio with shot noise limited detection in stimulated Raman scattering microscopy,” J. Eur. Opt. Soc. Rapid Publ. 10, 15022 (2015).
[Crossref]

Nielsen, B. M.

Norton, I.

F.-K. Lu, D. Calligaris, O. I. Olubiyi, I. Norton, W. Yang, S. Santagata, X. S. Xie, A. J. Golby, and N. Y. Agar, “Label-free neurosurgical pathology with stimulated Raman imaging,” Cancer Res. 76, 3451–3462 (2016).
[Crossref]

M. Ji, D. A. Orringer, C. W. Freudiger, S. Ramkissoon, X. Liu, D. Lau, A. J. Golby, I. Norton, M. Hayashi, N. Y. R. Agar, G. S. Young, C. Spino, S. Santagata, S. Camelo-Piragua, K. L. Ligon, O. Sagher, and X. S. Xie, “Rapid, label-free detection of brain tumors with stimulated Raman scattering microscopy,” Sci. Trans. Med. 5, 201ra119 (2013).
[Crossref]

Okamoto, R.

T. Ono, R. Okamoto, and S. Takeuchi, “An entanglement-enhanced microscope,” Nat. Commun. 4, 2426 (2013).
[Crossref]

Olubiyi, O. I.

F.-K. Lu, D. Calligaris, O. I. Olubiyi, I. Norton, W. Yang, S. Santagata, X. S. Xie, A. J. Golby, and N. Y. Agar, “Label-free neurosurgical pathology with stimulated Raman imaging,” Cancer Res. 76, 3451–3462 (2016).
[Crossref]

Ono, T.

T. Ono, R. Okamoto, and S. Takeuchi, “An entanglement-enhanced microscope,” Nat. Commun. 4, 2426 (2013).
[Crossref]

Oron, D.

R. Tenne, U. Rossman, B. Rephael, Y. Israel, A. Krupinski-Ptaszek, R. Lapkiewicz, Y. Silberberg, and D. Oron, “Super-resolution enhancement by quantum image scanning microscopy,” Nat. Photonics 4, 116–122 (2019).
[Crossref]

Orringer, D. A.

M. Ji, D. A. Orringer, C. W. Freudiger, S. Ramkissoon, X. Liu, D. Lau, A. J. Golby, I. Norton, M. Hayashi, N. Y. R. Agar, G. S. Young, C. Spino, S. Santagata, S. Camelo-Piragua, K. L. Ligon, O. Sagher, and X. S. Xie, “Rapid, label-free detection of brain tumors with stimulated Raman scattering microscopy,” Sci. Trans. Med. 5, 201ra119 (2013).
[Crossref]

Petersen, J. C.

Peyghambarian, N.

C. W. Freudiger, W. Yang, G. R. Holtom, N. Peyghambarian, X. S. Xie, and K. Q. Kieu, “Stimulated Raman scattering microscopy with a robust fibre laser source,” Nat. Photonics 8, 153–159 (2014).
[Crossref]

Pirandola, S.

S. Pirandola, B. R. Bardhan, T. Gehring, C. Weedbrook, and S. Lloyd, “Advances in photonic quantum sensing,” Nat. Photonics 12, 724–733 (2018).
[Crossref]

Pollard, M. R.

Pooser, R. C.

B. J. Lawrie, P. D. Lett, A. M. Marino, and R. C. Pooser, “Quantum sensing with squeezed light,” ACS Photon. 6, 1307–1318 (2019).
[Crossref]

R. C. Pooser and B. Lawrie, “Ultrasensitive measurement of microcantilever displacement below the shot-noise limit,” Optica 2, 393–399 (2015).
[Crossref]

Prakash, V.

Predojevic, A.

F. Wolfgramm, A. Cerè, F. A. Beduini, A. Predojević, M. Koschorreck, and M. W. Mitchell, “Squeezed-light optical magnetometry,” Phys. Rev. Lett. 105, 053601 (2010).
[Crossref]

Ramkissoon, S.

M. Ji, D. A. Orringer, C. W. Freudiger, S. Ramkissoon, X. Liu, D. Lau, A. J. Golby, I. Norton, M. Hayashi, N. Y. R. Agar, G. S. Young, C. Spino, S. Santagata, S. Camelo-Piragua, K. L. Ligon, O. Sagher, and X. S. Xie, “Rapid, label-free detection of brain tumors with stimulated Raman scattering microscopy,” Sci. Trans. Med. 5, 201ra119 (2013).
[Crossref]

Reichman, J.

B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-rate molecular imaging in vivo with stimulated Raman scattering,” Science 330, 1368–1370 (2010).
[Crossref]

Rephael, B.

R. Tenne, U. Rossman, B. Rephael, Y. Israel, A. Krupinski-Ptaszek, R. Lapkiewicz, Y. Silberberg, and D. Oron, “Super-resolution enhancement by quantum image scanning microscopy,” Nat. Photonics 4, 116–122 (2019).
[Crossref]

Rossman, U.

R. Tenne, U. Rossman, B. Rephael, Y. Israel, A. Krupinski-Ptaszek, R. Lapkiewicz, Y. Silberberg, and D. Oron, “Super-resolution enhancement by quantum image scanning microscopy,” Nat. Photonics 4, 116–122 (2019).
[Crossref]

Ruvkun, G.

M. C. Wang, W. Min, C. W. Freudiger, G. Ruvkun, and X. S. Xie, “RNAi screening for fat regulatory genes with SRS microscopy,” Nat. Methods 8, 135–138 (2011).
[Crossref]

Saar, B. G.

B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-rate molecular imaging in vivo with stimulated Raman scattering,” Science 330, 1368–1370 (2010).
[Crossref]

Sagher, O.

M. Ji, D. A. Orringer, C. W. Freudiger, S. Ramkissoon, X. Liu, D. Lau, A. J. Golby, I. Norton, M. Hayashi, N. Y. R. Agar, G. S. Young, C. Spino, S. Santagata, S. Camelo-Piragua, K. L. Ligon, O. Sagher, and X. S. Xie, “Rapid, label-free detection of brain tumors with stimulated Raman scattering microscopy,” Sci. Trans. Med. 5, 201ra119 (2013).
[Crossref]

Santagata, S.

F.-K. Lu, D. Calligaris, O. I. Olubiyi, I. Norton, W. Yang, S. Santagata, X. S. Xie, A. J. Golby, and N. Y. Agar, “Label-free neurosurgical pathology with stimulated Raman imaging,” Cancer Res. 76, 3451–3462 (2016).
[Crossref]

M. Ji, D. A. Orringer, C. W. Freudiger, S. Ramkissoon, X. Liu, D. Lau, A. J. Golby, I. Norton, M. Hayashi, N. Y. R. Agar, G. S. Young, C. Spino, S. Santagata, S. Camelo-Piragua, K. L. Ligon, O. Sagher, and X. S. Xie, “Rapid, label-free detection of brain tumors with stimulated Raman scattering microscopy,” Sci. Trans. Med. 5, 201ra119 (2013).
[Crossref]

Schäfermeier, C.

Schnabel, R.

R. Schnabel, “Squeezed states of light and their applications in laser interferometers,” Phys. Rep. 684, 1–51 (2017).
[Crossref]

Silberberg, Y.

R. Tenne, U. Rossman, B. Rephael, Y. Israel, A. Krupinski-Ptaszek, R. Lapkiewicz, Y. Silberberg, and D. Oron, “Super-resolution enhancement by quantum image scanning microscopy,” Nat. Photonics 4, 116–122 (2019).
[Crossref]

Simpson, G.

Slipchenko, M. N.

Smith, A. L.

Spino, C.

M. Ji, D. A. Orringer, C. W. Freudiger, S. Ramkissoon, X. Liu, D. Lau, A. J. Golby, I. Norton, M. Hayashi, N. Y. R. Agar, G. S. Young, C. Spino, S. Santagata, S. Camelo-Piragua, K. L. Ligon, O. Sagher, and X. S. Xie, “Rapid, label-free detection of brain tumors with stimulated Raman scattering microscopy,” Sci. Trans. Med. 5, 201ra119 (2013).
[Crossref]

Stanley, C. M.

B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-rate molecular imaging in vivo with stimulated Raman scattering,” Science 330, 1368–1370 (2010).
[Crossref]

Takeuchi, S.

T. Ono, R. Okamoto, and S. Takeuchi, “An entanglement-enhanced microscope,” Nat. Commun. 4, 2426 (2013).
[Crossref]

Tanaka, M.

M. Tanaka and R. J. Young, “Review polarised Raman spectroscopy for the study of molecular orientation distributions in polymers,” J. Mater. Sci. 41, 963–991 (2006).
[Crossref]

Taylor, M. A.

M. A. Taylor and W. P. Bowen, “Quantum metrology and its application in biology,” Phys. Rep. 615, 1–59 (2016).
[Crossref]

M. A. Taylor, J. Janousek, V. Daria, J. Knittel, B. Hage, H.-A. Bachor, and W. P. Bowen, “Biological measurement beyond the quantum limit,” Nat. Photonics 7, 229–233 (2013).
[Crossref]

Tenne, R.

R. Tenne, U. Rossman, B. Rephael, Y. Israel, A. Krupinski-Ptaszek, R. Lapkiewicz, Y. Silberberg, and D. Oron, “Super-resolution enhancement by quantum image scanning microscopy,” Nat. Photonics 4, 116–122 (2019).
[Crossref]

Umulis, D.

W. Dou, D. Zhang, Y. Jung, J.-X. Cheng, and D. Umulis, “Label-free imaging of lipid-droplet intracellular motion in early drosophila embryos using femtosecond-stimulated Raman loss microscopy,” Biophys. J. 102, 1666–1675 (2012).
[Crossref]

Valev, V. K.

R. R. Jones, D. C. Hooper, L. Zhang, D. Wolverson, and V. K. Valev, “Raman techniques: fundamentals and frontiers,” Nanoscale Res. Lett. 14, 231 (2019).
[Crossref]

Wang, M. C.

M. C. Wang, W. Min, C. W. Freudiger, G. Ruvkun, and X. S. Xie, “RNAi screening for fat regulatory genes with SRS microscopy,” Nat. Methods 8, 135–138 (2011).
[Crossref]

Wang, P.

Weedbrook, C.

S. Pirandola, B. R. Bardhan, T. Gehring, C. Weedbrook, and S. Lloyd, “Advances in photonic quantum sensing,” Nat. Photonics 12, 724–733 (2018).
[Crossref]

K. Marshall, C. S. Jacobsen, C. Schäfermeier, T. Gehring, C. Weedbrook, and U. L. Andersen, “Continuous-variable quantum computing on encrypted data,” Nat. Commun. 7, 13795 (2016).
[Crossref]

Westergaard, P. G.

Wolfgramm, F.

F. Wolfgramm, A. Cerè, F. A. Beduini, A. Predojević, M. Koschorreck, and M. W. Mitchell, “Squeezed-light optical magnetometry,” Phys. Rev. Lett. 105, 053601 (2010).
[Crossref]

Wolverson, D.

R. R. Jones, D. C. Hooper, L. Zhang, D. Wolverson, and V. K. Valev, “Raman techniques: fundamentals and frontiers,” Nanoscale Res. Lett. 14, 231 (2019).
[Crossref]

Xie, X. S.

F.-K. Lu, D. Calligaris, O. I. Olubiyi, I. Norton, W. Yang, S. Santagata, X. S. Xie, A. J. Golby, and N. Y. Agar, “Label-free neurosurgical pathology with stimulated Raman imaging,” Cancer Res. 76, 3451–3462 (2016).
[Crossref]

C. W. Freudiger, W. Yang, G. R. Holtom, N. Peyghambarian, X. S. Xie, and K. Q. Kieu, “Stimulated Raman scattering microscopy with a robust fibre laser source,” Nat. Photonics 8, 153–159 (2014).
[Crossref]

M. Ji, D. A. Orringer, C. W. Freudiger, S. Ramkissoon, X. Liu, D. Lau, A. J. Golby, I. Norton, M. Hayashi, N. Y. R. Agar, G. S. Young, C. Spino, S. Santagata, S. Camelo-Piragua, K. L. Ligon, O. Sagher, and X. S. Xie, “Rapid, label-free detection of brain tumors with stimulated Raman scattering microscopy,” Sci. Trans. Med. 5, 201ra119 (2013).
[Crossref]

M. C. Wang, W. Min, C. W. Freudiger, G. Ruvkun, and X. S. Xie, “RNAi screening for fat regulatory genes with SRS microscopy,” Nat. Methods 8, 135–138 (2011).
[Crossref]

B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-rate molecular imaging in vivo with stimulated Raman scattering,” Science 330, 1368–1370 (2010).
[Crossref]

J. X. Cheng and X. S. Xie, Coherent Raman Scattering Microscopy, 1st ed. (CRC Press, 2016).

Yang, W.

F.-K. Lu, D. Calligaris, O. I. Olubiyi, I. Norton, W. Yang, S. Santagata, X. S. Xie, A. J. Golby, and N. Y. Agar, “Label-free neurosurgical pathology with stimulated Raman imaging,” Cancer Res. 76, 3451–3462 (2016).
[Crossref]

C. W. Freudiger, W. Yang, G. R. Holtom, N. Peyghambarian, X. S. Xie, and K. Q. Kieu, “Stimulated Raman scattering microscopy with a robust fibre laser source,” Nat. Photonics 8, 153–159 (2014).
[Crossref]

Young, G. S.

M. Ji, D. A. Orringer, C. W. Freudiger, S. Ramkissoon, X. Liu, D. Lau, A. J. Golby, I. Norton, M. Hayashi, N. Y. R. Agar, G. S. Young, C. Spino, S. Santagata, S. Camelo-Piragua, K. L. Ligon, O. Sagher, and X. S. Xie, “Rapid, label-free detection of brain tumors with stimulated Raman scattering microscopy,” Sci. Trans. Med. 5, 201ra119 (2013).
[Crossref]

Young, R. J.

M. Tanaka and R. J. Young, “Review polarised Raman spectroscopy for the study of molecular orientation distributions in polymers,” J. Mater. Sci. 41, 963–991 (2006).
[Crossref]

Zhang, D.

W. Dou, D. Zhang, Y. Jung, J.-X. Cheng, and D. Umulis, “Label-free imaging of lipid-droplet intracellular motion in early drosophila embryos using femtosecond-stimulated Raman loss microscopy,” Biophys. J. 102, 1666–1675 (2012).
[Crossref]

Zhang, L.

R. R. Jones, D. C. Hooper, L. Zhang, D. Wolverson, and V. K. Valev, “Raman techniques: fundamentals and frontiers,” Nanoscale Res. Lett. 14, 231 (2019).
[Crossref]

ACS Photon. (1)

B. J. Lawrie, P. D. Lett, A. M. Marino, and R. C. Pooser, “Quantum sensing with squeezed light,” ACS Photon. 6, 1307–1318 (2019).
[Crossref]

Appl. Spectrosc. (1)

Biophys. J. (1)

W. Dou, D. Zhang, Y. Jung, J.-X. Cheng, and D. Umulis, “Label-free imaging of lipid-droplet intracellular motion in early drosophila embryos using femtosecond-stimulated Raman loss microscopy,” Biophys. J. 102, 1666–1675 (2012).
[Crossref]

Cancer Res. (1)

F.-K. Lu, D. Calligaris, O. I. Olubiyi, I. Norton, W. Yang, S. Santagata, X. S. Xie, A. J. Golby, and N. Y. Agar, “Label-free neurosurgical pathology with stimulated Raman imaging,” Cancer Res. 76, 3451–3462 (2016).
[Crossref]

J. Eur. Opt. Soc. Rapid Publ. (1)

M. Moester, F. Ariese, and J. de Boer, “Optimized signal-to-noise ratio with shot noise limited detection in stimulated Raman scattering microscopy,” J. Eur. Opt. Soc. Rapid Publ. 10, 15022 (2015).
[Crossref]

J. Mater. Sci. (1)

M. Tanaka and R. J. Young, “Review polarised Raman spectroscopy for the study of molecular orientation distributions in polymers,” J. Mater. Sci. 41, 963–991 (2006).
[Crossref]

J. Raman Spectrosc. (1)

S. Dirlikov and J. L. Koenig, “Carbon-hydrogen stretching and bending vibrations in the Raman spectra of poly (methylmethacrylate),” J. Raman Spectrosc. 9, 150–154 (1980).
[Crossref]

Methods (1)

H. J. Lee and J.-X. Cheng, “Imaging chemistry inside living cells by stimulated Raman scattering microscopy,” Methods 128, 119–128 (2017).
[Crossref]

Nanoscale Res. Lett. (1)

R. R. Jones, D. C. Hooper, L. Zhang, D. Wolverson, and V. K. Valev, “Raman techniques: fundamentals and frontiers,” Nanoscale Res. Lett. 14, 231 (2019).
[Crossref]

Nat. Commun. (2)

K. Marshall, C. S. Jacobsen, C. Schäfermeier, T. Gehring, C. Weedbrook, and U. L. Andersen, “Continuous-variable quantum computing on encrypted data,” Nat. Commun. 7, 13795 (2016).
[Crossref]

T. Ono, R. Okamoto, and S. Takeuchi, “An entanglement-enhanced microscope,” Nat. Commun. 4, 2426 (2013).
[Crossref]

Nat. Methods (1)

M. C. Wang, W. Min, C. W. Freudiger, G. Ruvkun, and X. S. Xie, “RNAi screening for fat regulatory genes with SRS microscopy,” Nat. Methods 8, 135–138 (2011).
[Crossref]

Nat. Photonics (6)

S. Pirandola, B. R. Bardhan, T. Gehring, C. Weedbrook, and S. Lloyd, “Advances in photonic quantum sensing,” Nat. Photonics 12, 724–733 (2018).
[Crossref]

M. A. Taylor, J. Janousek, V. Daria, J. Knittel, B. Hage, H.-A. Bachor, and W. P. Bowen, “Biological measurement beyond the quantum limit,” Nat. Photonics 7, 229–233 (2013).
[Crossref]

T. L. S. Collaboration, “Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light,” Nat. Photonics 7, 613–619 (2013).
[Crossref]

C. W. Freudiger, W. Yang, G. R. Holtom, N. Peyghambarian, X. S. Xie, and K. Q. Kieu, “Stimulated Raman scattering microscopy with a robust fibre laser source,” Nat. Photonics 8, 153–159 (2014).
[Crossref]

C. H. Camp and M. T. Cicerone, “Chemically sensitive bioimaging with coherent Raman scattering,” Nat. Photonics 9, 295–305 (2015).
[Crossref]

R. Tenne, U. Rossman, B. Rephael, Y. Israel, A. Krupinski-Ptaszek, R. Lapkiewicz, Y. Silberberg, and D. Oron, “Super-resolution enhancement by quantum image scanning microscopy,” Nat. Photonics 4, 116–122 (2019).
[Crossref]

Opt. Express (1)

Opt. Lett. (3)

Optica (3)

Phys. Rep. (2)

M. A. Taylor and W. P. Bowen, “Quantum metrology and its application in biology,” Phys. Rep. 615, 1–59 (2016).
[Crossref]

R. Schnabel, “Squeezed states of light and their applications in laser interferometers,” Phys. Rep. 684, 1–51 (2017).
[Crossref]

Phys. Rev. Lett. (1)

F. Wolfgramm, A. Cerè, F. A. Beduini, A. Predojević, M. Koschorreck, and M. W. Mitchell, “Squeezed-light optical magnetometry,” Phys. Rev. Lett. 105, 053601 (2010).
[Crossref]

Phys. Scripta (1)

U. L. Andersen, T. Gehring, C. Marquardt, and G. Leuchs, “30 years of squeezed light generation,” Phys. Scripta 91, 053001 (2016).
[Crossref]

Sci. Trans. Med. (1)

M. Ji, D. A. Orringer, C. W. Freudiger, S. Ramkissoon, X. Liu, D. Lau, A. J. Golby, I. Norton, M. Hayashi, N. Y. R. Agar, G. S. Young, C. Spino, S. Santagata, S. Camelo-Piragua, K. L. Ligon, O. Sagher, and X. S. Xie, “Rapid, label-free detection of brain tumors with stimulated Raman scattering microscopy,” Sci. Trans. Med. 5, 201ra119 (2013).
[Crossref]

Science (1)

B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-rate molecular imaging in vivo with stimulated Raman scattering,” Science 330, 1368–1370 (2010).
[Crossref]

Other (3)

R. W. Boyd, Nonlinear Optics (Academic, 2008).

A. I. Lvovsky, “Squeezed light,” in Photonics, D. L. Andrews, ed. (Wiley, 2015), Chap. 5, pp. 121–163.

J. X. Cheng and X. S. Xie, Coherent Raman Scattering Microscopy, 1st ed. (CRC Press, 2016).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Experimental setup to measure the SRS signal enhanced by squeezed light. (a) Bright squeezed beam preparation at 1064 nm. The squeezed state is combined with the coherent beam in a 99/1 beam splitter (BS) to generate a bright squeezed state at one output serving as the probe for the SRS setup, while the other output is used to phase-lock the relative phase of the two beams (using a phase modulation at 37.22 MHz). (b) SRS setup. A wavelength-tunable Ti:Sapphire laser is intensity modulated at the frequency of 10.45 MHz and serve as the pump beam. The pump and probe beams are overlapped in a dichroic mirror (DM) and focused into the sample using a microscope objective (FO). The SRS signal is collected using a second objective; the pump beam is filtered off and the probe beam is measured using a high-quantum-efficiency (HQE) photodiode. The results are acquired by an electronic spectrum analyzer (ESA) by which a power spectrum of the signal is attained. HWP, half wave plate; PBS, polarizing beam splitter; PD, photodiode; BS, beam splitter; QWP, quarter-wave plate; DM, dichroic mirror; FO, focal objective; EOM, electro-optical modulator; MM lenses, mode-matching lenses.
Fig. 2.
Fig. 2. Characterization of the SRS signal using an average pump power of 38 mW. (a) Intensity of the SRS signal as a function of the probe power. (b) Polarization behavior of the SRS signal using 1.35 mW of power in the probe beam. The red trace represents the signal when the probe and pump beams are parallel polarized, while the blue trace is associated with orthogonal polarized beams. All traces are normalized to the shot-noise level.
Fig. 3.
Fig. 3. Demonstration of quantum enhanced SRS spectroscopy using probe powers of 1.3 mW and pump powers of (a) 24 mW and (b) 11 mW. The red SRS traces correspond to the realizations where the probe beams are in a coherent state while the blue traces correspond to the beams being in a squeezed state with $-3.60\; {\rm dB}$ noise suppression below the shot-noise. In both cases, the signals are normalized to the shot-noise level.
Fig. 4.
Fig. 4. Linear dependence of the SNR in terms of the pump power for the PMMA vibrational mode at $2948.75\;{{\rm cm}^{- 1}}$. The red data points and theoretically estimated line correspond to the probe beam being in a coherent state, while the blue points and line correspond to the beam being in a squeezed state. The realizations illustrated in Fig. 3 are marked by stars.
Fig. 5.
Fig. 5. SRS spectrum of PDMS. The pump beam is scanned around the C-H stretching region with pump and probe powers of 28 and 1.3 mW, respectively. The traces are normalized to the shot-noise level.
Fig. 6.
Fig. 6. SRS spatially distributed Raman measurements of different polymers in a sample comprising PDMS, PMMA, and polystyrene using coherent (left side) and squeezed (right side) probe beams. (a) Measurements of the SNR attained when the pump laser frequency was set to reach the PDMS vibrational mode $2904.76\;{{\rm cm}^{- 1}}$ and (b) the vibrational mode $2948.75\;{{\rm cm}^{- 1}}$ of PMMA. The remaining area (polystyrene) does not produce an SRS signal. The gray areas in the background are optical microscope images of the sample. In (a), we denote the material system with blue font.

Tables (1)

Tables Icon

Table 1. Raman Resonances of PDMS: Peak A and Peak Ba

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

I S R S = K N σ I p I s ,
I 2 ( ω ) = I s 2 δ ( ω ) + I s X s 2 ( ω ) + K 2 N 2 σ 2 I p 2 I s 2 δ ( ω ω L ) ,
S N R = K N σ I p I s I s X s 2 ,
δ N = X s 2 K σ I p I s .

Metrics