Abstract

Quantum emitters coupled to plasmonic nanostructures can act as exceptionally bright sources of single photons, operating at room temperature. Plasmonic mode volumes supported by these nanostructures can be several orders of magnitude smaller than the cubic wavelength, which leads to dramatically enhanced light–matter interactions and drastically increased photon production rates. However, when increasing the light localization further, these deeply subwavelength modes may in turn hinder the fast outcoupling of photons into free space. Plasmonic hybrid nanostructures combining a highly confined cavity mode and a larger antenna mode circumvent this issue. We establish the fundamental limits for quantum emission enhancement in such systems and find that the best performance is achieved when the cavity and antenna modes differ significantly in size. We experimentally support this idea by photomodifying a nanopatch antenna deterministically assembled around a nanodiamond known to contain a single nitrogen–vacancy (NV) center. As a result, the cavity mode shrinks, further shortening the NV fluorescence lifetime and increasing the single-photon brightness. Our analytical and numerical simulation results provide intuitive insight into the operation of these emitter–cavity–antenna systems and show that this approach could lead to single-photon sources with emission rates up to hundreds of THz and efficiencies close to unity.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. Aharonovich, D. Englund, and M. Toth, “Solid-state single-photon emitters,” Nat. Photonics 10, 631–641 (2016).
    [Crossref]
  2. L. Caspani, C. Xiong, B. J. Eggleton, D. Bajoni, M. Liscidini, M. Galli, R. Morandotti, and D. J. Moss, “Integrated sources of photon quantum states based on nonlinear optics,” Light: Sci. Appl. 6, e17100 (2017).
    [Crossref]
  3. S. I. Bogdanov, A. Boltasseva, and V. M. Shalaev, “Overcoming quantum decoherence with plasmonics,” Science 364, 532–533 (2019).
    [Crossref]
  4. S. Wein, N. Lauk, R. Ghobadi, and C. Simon, “Feasibility of efficient room-temperature solid-state sources of indistinguishable single photons using ultrasmall mode volume cavities,” Phys. Rev. B 97, 205418 (2018).
    [Crossref]
  5. Y. Luo, X. He, Y. Kim, J. L. Blackburn, S. K. Doorn, H. Htoon, and S. Strauf, “Carbon nanotube color centers in plasmonic nanocavities: a path to photon indistinguishability at telecom bands,” Nano Lett. 19, 9037–9044 (2019).
    [Crossref]
  6. Y. Luo, G. D. Shepard, J. V. Ardelean, D. A. Rhodes, B. Kim, K. Barmak, J. C. Hone, and S. Strauf, “Deterministic coupling of site-controlled quantum emitters in monolayer WSe 2 to plasmonic nanocavities,” Nat. Nanotechnol. 13, 1137 (2018).
    [Crossref]
  7. T. T. Tran, D. Wang, Z.-Q. Xu, A. Yang, M. Toth, T. W. Odom, and I. Aharonovich, “Deterministic coupling of quantum emitters in 2D materials to plasmonic nanocavity arrays,” Nano Lett. 17, 2634–2639 (2017).
    [Crossref]
  8. S. I. Bozhevolnyi and J. B. Khurgin, “Fundamental limitations in spontaneous emission rate of single-photon sources,” Optica 3, 1418–1421 (2016).
    [Crossref]
  9. S. I. Bozhevolnyi and J. B. Khurgin, “The case for quantum plasmonics,” Nat. Photonics 11, 398–400 (2017).
    [Crossref]
  10. G. Sun and J. B. Khurgin, “Theory of optical emission enhancement by coupled metal nanoparticles: an analytical approach,” Appl. Phys. Lett. 98, 113116 (2011).
    [Crossref]
  11. K. Li, M. I. Stockman, and D. J. Bergman, “Self-similar chain of metal nanospheres as an efficient nanolens,” Phys. Rev. Lett. 91, 227402 (2003).
    [Crossref]
  12. P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4, 899–903 (2004).
    [Crossref]
  13. S. K. H. Andersen, S. Kumar, and S. I. Bozhevolnyi, “Ultrabright linearly polarized photon generation from a nitrogen vacancy center in a nanocube dimer antenna,” Nano Lett. 17, 3889–3895 (2017).
    [Crossref]
  14. M. S. Eggleston, K. Messer, L. Zhang, E. Yablonovitch, and M. C. Wu, “Optical antenna enhanced spontaneous emission,” Proc. Natl. Acad. Sci. USA 112, 1704–1709 (2015).
    [Crossref]
  15. A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3, 654–657 (2009).
    [Crossref]
  16. T. B. Hoang, G. M. Akselrod, and M. H. Mikkelsen, “Ultrafast room-temperature single photon emission from quantum dots coupled to plasmonic nanocavities,” Nano Lett. 16, 270–275 (2016).
    [Crossref]
  17. S. I. Bogdanov, M. Y. Shalaginov, A. S. Lagutchev, C.-C. Chiang, D. Shah, A. S. Baburin, I. A. Ryzhikov, I. A. Rodionov, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Ultrabright room-temperature sub-nanosecond emission from single nitrogen-vacancy centers coupled to nanopatch antennas,” Nano Lett. 18, 4837–4844 (2018).
    [Crossref]
  18. Y. Yang, O. D. Miller, T. Christensen, J. D. Joannopoulos, and M. Soljačić, “Low-loss plasmonic dielectric nanoresonators,” Nano Lett. 17, 3238–3245 (2017).
    [Crossref]
  19. G. Albrecht, S. Kaiser, H. Giessen, and M. Hentschel, “Refractory plasmonics without refractory materials,” Nano Lett. 17, 6402–6408 (2017).
    [Crossref]
  20. A. Kuhlicke, S. Schietinger, C. Matyssek, K. Busch, and O. Benson, “In situ observation of plasmon tuning in a single gold nanoparticle during controlled melting,” Nano Lett. 13, 2041–2046 (2013).
    [Crossref]
  21. S. V. Makarov, V. A. Milichko, I. S. Mukhin, I. I. Shishkin, D. A. Zuev, A. M. Mozharov, A. E. Krasnok, and P. A. Belov, “Controllable femtosecond laser-induced dewetting for plasmonic applications,” Laser Photon. Rev. 10, 91–99 (2016).
    [Crossref]
  22. J. Mertens, M.-E. Kleemann, R. Chikkaraddy, P. Narang, and J. J. Baumberg, “How light is emitted by plasmonic metals,” Nano Lett. 17, 2568–2574 (2017).
    [Crossref]
  23. S. Schietinger, M. Barth, T. Aichele, and O. Benson, “Plasmon-enhanced single photon emission from a nanoassembled metal−diamond hybrid structure at room temperature,” Nano Lett. 9, 1694–1698 (2009).
    [Crossref]
  24. S. I. Bogdanov, O. A. Makarova, A. S. Lagutchev, D. Shah, C.-C. Chiang, S. Saha, A. S. Baburin, I. A. Ryzhikov, I. A. Rodionov, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Deterministic integration of single nitrogen-vacancy centers into nanopatch antennas,” arXiv:1902.05996 (2019).
  25. I. A. Rodionov, A. S. Baburin, A. R. Gabidullin, S. S. Maklakov, S. Peters, I. A. Ryzhikov, and A. V. Andriyash, “Quantum engineering of atomically smooth single-crystalline silver films,” Sci. Rep. 9, 12232 (2019).
    [Crossref]
  26. Y. Wu, C. Zhang, N. M. Estakhri, Y. Zhao, J. Kim, M. Zhang, X.-X. Liu, G. K. Pribil, A. Alù, C.-K. Shih, and X. Li, “Intrinsic optical properties and enhanced plasmonic response of epitaxial silver,” Adv. Mater. 26, 6106–6110 (2014).
    [Crossref]
  27. A. F. Koenderink, “On the use of Purcell factors for plasmon antennas,” Opt. Lett. 35, 4208–4210 (2010).
    [Crossref]
  28. T. Christensen, W. Yan, A.-P. Jauho, M. Soljačić, and N. A. Mortensen, “Quantum corrections in nanoplasmonics: shape, scale, and material,” Phys. Rev. Lett. 118, 157402 (2017).
    [Crossref]
  29. S. Hughes, S. Franke, C. Gustin, M. Kamandar Dezfouli, A. Knorr, and M. Richter, “Theory and limits of on-demand single-photon sources using plasmonic resonators: a quantized quasinormal mode approach,” ACS Photon. 6, 2168–2180 (2019).
    [Crossref]
  30. C. Zhang, J.-P. Hugonin, J.-J. Greffet, and C. Sauvan, “Surface plasmon polaritons emission with nanopatch antennas: enhancement by means of mode hybridization,” ACS Photon. 6, 2788–2796 (2019).
    [Crossref]
  31. A. Mohtashami and A. F. Koenderink, “Suitability of nanodiamond nitrogen–vacancy centers for spontaneous emission control experiments,” New J. Phys. 15, 043017 (2013).
    [Crossref]
  32. M. K. Bhaskar, D. D. Sukachev, A. Sipahigil, R. E. Evans, M. J. Burek, C. T. Nguyen, L. J. Rogers, P. Siyushev, M. H. Metsch, H. Park, F. Jelezko, M. Lončar, and M. D. Lukin, “Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide,” Phys. Rev. Lett. 118, 223603 (2017).
    [Crossref]
  33. N. H. Wan, S. Mouradian, and D. Englund, “Two-dimensional photonic crystal slab nanocavities on bulk single-crystal diamond,” Appl. Phys. Lett. 112, 141102 (2018).
    [Crossref]
  34. F. Balzarotti, Y. Eilers, K. C. Gwosch, A. H. Gynnå, V. Westphal, F. D. Stefani, J. Elf, and S. W. Hell, “Nanometer resolution imaging and tracking of fluorescent molecules with minimal photon fluxes,” Science 355, 606–612 (2017).
    [Crossref]
  35. R. Faggiani, J. Yang, and P. Lalanne, “Quenching, plasmonic, and radiative decays in nanogap emitting devices,” ACS Photon. 2, 1739–1744 (2015).
    [Crossref]
  36. F. Benz, M. K. Schmidt, A. Dreismann, R. Chikkaraddy, Y. Zhang, A. Demetriadou, C. Carnegie, H. Ohadi, B. de Nijs, R. Esteban, J. Aizpurua, and J. J. Baumberg, “Single-molecule optomechanics in “picocavities,”” Science 354, 726–729 (2016).
    [Crossref]
  37. K. D. Jahnke, A. Sipahigil, J. M. Binder, M. W. Doherty, M. Metsch, L. J. Rogers, N. B. Manson, M. D. Lukin, and F. Jelezko, “Electron–phonon processes of the silicon-vacancy centre in diamond,” New J. Phys. 17, 043011 (2015).
    [Crossref]
  38. I. I. Vlasov, A. A. Shiryaev, T. Rendler, S. Steinert, S.-Y. Lee, D. Antonov, M. Vörös, F. Jelezko, A. V. Fisenko, L. F. Semjonova, J. Biskupek, U. Kaiser, O. I. Lebedev, I. Sildos, P. R. Hemmer, V. I. Konov, A. Gali, and J. Wrachtrup, “Molecular-sized fluorescent nanodiamonds,” Nat. Nanotechnol. 9, 54–58 (2014).
    [Crossref]
  39. I. M. Palstra, H. M. Doeleman, and A. F. Koenderink, “Hybrid cavity-antenna systems for quantum optics outside the cryostat?” Nanophotonics 8, 1513–1531 (2019).
    [Crossref]
  40. G. Sun, J. B. Khurgin, and C. C. Yang, “Impact of high-order surface plasmon modes of metal nanoparticles on enhancement of optical emission,” Appl. Phys. Lett. 95, 171103 (2009).
    [Crossref]
  41. G. Sun, J. B. Khurgin, and A. Bratkovsky, “Coupled-mode theory of field enhancement in complex metal nanostructures,” Phys. Rev. B 84, 045415 (2011).
    [Crossref]

2019 (6)

S. I. Bogdanov, A. Boltasseva, and V. M. Shalaev, “Overcoming quantum decoherence with plasmonics,” Science 364, 532–533 (2019).
[Crossref]

Y. Luo, X. He, Y. Kim, J. L. Blackburn, S. K. Doorn, H. Htoon, and S. Strauf, “Carbon nanotube color centers in plasmonic nanocavities: a path to photon indistinguishability at telecom bands,” Nano Lett. 19, 9037–9044 (2019).
[Crossref]

I. A. Rodionov, A. S. Baburin, A. R. Gabidullin, S. S. Maklakov, S. Peters, I. A. Ryzhikov, and A. V. Andriyash, “Quantum engineering of atomically smooth single-crystalline silver films,” Sci. Rep. 9, 12232 (2019).
[Crossref]

S. Hughes, S. Franke, C. Gustin, M. Kamandar Dezfouli, A. Knorr, and M. Richter, “Theory and limits of on-demand single-photon sources using plasmonic resonators: a quantized quasinormal mode approach,” ACS Photon. 6, 2168–2180 (2019).
[Crossref]

C. Zhang, J.-P. Hugonin, J.-J. Greffet, and C. Sauvan, “Surface plasmon polaritons emission with nanopatch antennas: enhancement by means of mode hybridization,” ACS Photon. 6, 2788–2796 (2019).
[Crossref]

I. M. Palstra, H. M. Doeleman, and A. F. Koenderink, “Hybrid cavity-antenna systems for quantum optics outside the cryostat?” Nanophotonics 8, 1513–1531 (2019).
[Crossref]

2018 (4)

N. H. Wan, S. Mouradian, and D. Englund, “Two-dimensional photonic crystal slab nanocavities on bulk single-crystal diamond,” Appl. Phys. Lett. 112, 141102 (2018).
[Crossref]

Y. Luo, G. D. Shepard, J. V. Ardelean, D. A. Rhodes, B. Kim, K. Barmak, J. C. Hone, and S. Strauf, “Deterministic coupling of site-controlled quantum emitters in monolayer WSe 2 to plasmonic nanocavities,” Nat. Nanotechnol. 13, 1137 (2018).
[Crossref]

S. Wein, N. Lauk, R. Ghobadi, and C. Simon, “Feasibility of efficient room-temperature solid-state sources of indistinguishable single photons using ultrasmall mode volume cavities,” Phys. Rev. B 97, 205418 (2018).
[Crossref]

S. I. Bogdanov, M. Y. Shalaginov, A. S. Lagutchev, C.-C. Chiang, D. Shah, A. S. Baburin, I. A. Ryzhikov, I. A. Rodionov, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Ultrabright room-temperature sub-nanosecond emission from single nitrogen-vacancy centers coupled to nanopatch antennas,” Nano Lett. 18, 4837–4844 (2018).
[Crossref]

2017 (10)

Y. Yang, O. D. Miller, T. Christensen, J. D. Joannopoulos, and M. Soljačić, “Low-loss plasmonic dielectric nanoresonators,” Nano Lett. 17, 3238–3245 (2017).
[Crossref]

G. Albrecht, S. Kaiser, H. Giessen, and M. Hentschel, “Refractory plasmonics without refractory materials,” Nano Lett. 17, 6402–6408 (2017).
[Crossref]

S. I. Bozhevolnyi and J. B. Khurgin, “The case for quantum plasmonics,” Nat. Photonics 11, 398–400 (2017).
[Crossref]

S. K. H. Andersen, S. Kumar, and S. I. Bozhevolnyi, “Ultrabright linearly polarized photon generation from a nitrogen vacancy center in a nanocube dimer antenna,” Nano Lett. 17, 3889–3895 (2017).
[Crossref]

L. Caspani, C. Xiong, B. J. Eggleton, D. Bajoni, M. Liscidini, M. Galli, R. Morandotti, and D. J. Moss, “Integrated sources of photon quantum states based on nonlinear optics,” Light: Sci. Appl. 6, e17100 (2017).
[Crossref]

T. T. Tran, D. Wang, Z.-Q. Xu, A. Yang, M. Toth, T. W. Odom, and I. Aharonovich, “Deterministic coupling of quantum emitters in 2D materials to plasmonic nanocavity arrays,” Nano Lett. 17, 2634–2639 (2017).
[Crossref]

F. Balzarotti, Y. Eilers, K. C. Gwosch, A. H. Gynnå, V. Westphal, F. D. Stefani, J. Elf, and S. W. Hell, “Nanometer resolution imaging and tracking of fluorescent molecules with minimal photon fluxes,” Science 355, 606–612 (2017).
[Crossref]

T. Christensen, W. Yan, A.-P. Jauho, M. Soljačić, and N. A. Mortensen, “Quantum corrections in nanoplasmonics: shape, scale, and material,” Phys. Rev. Lett. 118, 157402 (2017).
[Crossref]

J. Mertens, M.-E. Kleemann, R. Chikkaraddy, P. Narang, and J. J. Baumberg, “How light is emitted by plasmonic metals,” Nano Lett. 17, 2568–2574 (2017).
[Crossref]

M. K. Bhaskar, D. D. Sukachev, A. Sipahigil, R. E. Evans, M. J. Burek, C. T. Nguyen, L. J. Rogers, P. Siyushev, M. H. Metsch, H. Park, F. Jelezko, M. Lončar, and M. D. Lukin, “Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide,” Phys. Rev. Lett. 118, 223603 (2017).
[Crossref]

2016 (5)

T. B. Hoang, G. M. Akselrod, and M. H. Mikkelsen, “Ultrafast room-temperature single photon emission from quantum dots coupled to plasmonic nanocavities,” Nano Lett. 16, 270–275 (2016).
[Crossref]

S. V. Makarov, V. A. Milichko, I. S. Mukhin, I. I. Shishkin, D. A. Zuev, A. M. Mozharov, A. E. Krasnok, and P. A. Belov, “Controllable femtosecond laser-induced dewetting for plasmonic applications,” Laser Photon. Rev. 10, 91–99 (2016).
[Crossref]

F. Benz, M. K. Schmidt, A. Dreismann, R. Chikkaraddy, Y. Zhang, A. Demetriadou, C. Carnegie, H. Ohadi, B. de Nijs, R. Esteban, J. Aizpurua, and J. J. Baumberg, “Single-molecule optomechanics in “picocavities,”” Science 354, 726–729 (2016).
[Crossref]

S. I. Bozhevolnyi and J. B. Khurgin, “Fundamental limitations in spontaneous emission rate of single-photon sources,” Optica 3, 1418–1421 (2016).
[Crossref]

I. Aharonovich, D. Englund, and M. Toth, “Solid-state single-photon emitters,” Nat. Photonics 10, 631–641 (2016).
[Crossref]

2015 (3)

M. S. Eggleston, K. Messer, L. Zhang, E. Yablonovitch, and M. C. Wu, “Optical antenna enhanced spontaneous emission,” Proc. Natl. Acad. Sci. USA 112, 1704–1709 (2015).
[Crossref]

K. D. Jahnke, A. Sipahigil, J. M. Binder, M. W. Doherty, M. Metsch, L. J. Rogers, N. B. Manson, M. D. Lukin, and F. Jelezko, “Electron–phonon processes of the silicon-vacancy centre in diamond,” New J. Phys. 17, 043011 (2015).
[Crossref]

R. Faggiani, J. Yang, and P. Lalanne, “Quenching, plasmonic, and radiative decays in nanogap emitting devices,” ACS Photon. 2, 1739–1744 (2015).
[Crossref]

2014 (2)

I. I. Vlasov, A. A. Shiryaev, T. Rendler, S. Steinert, S.-Y. Lee, D. Antonov, M. Vörös, F. Jelezko, A. V. Fisenko, L. F. Semjonova, J. Biskupek, U. Kaiser, O. I. Lebedev, I. Sildos, P. R. Hemmer, V. I. Konov, A. Gali, and J. Wrachtrup, “Molecular-sized fluorescent nanodiamonds,” Nat. Nanotechnol. 9, 54–58 (2014).
[Crossref]

Y. Wu, C. Zhang, N. M. Estakhri, Y. Zhao, J. Kim, M. Zhang, X.-X. Liu, G. K. Pribil, A. Alù, C.-K. Shih, and X. Li, “Intrinsic optical properties and enhanced plasmonic response of epitaxial silver,” Adv. Mater. 26, 6106–6110 (2014).
[Crossref]

2013 (2)

A. Mohtashami and A. F. Koenderink, “Suitability of nanodiamond nitrogen–vacancy centers for spontaneous emission control experiments,” New J. Phys. 15, 043017 (2013).
[Crossref]

A. Kuhlicke, S. Schietinger, C. Matyssek, K. Busch, and O. Benson, “In situ observation of plasmon tuning in a single gold nanoparticle during controlled melting,” Nano Lett. 13, 2041–2046 (2013).
[Crossref]

2011 (2)

G. Sun and J. B. Khurgin, “Theory of optical emission enhancement by coupled metal nanoparticles: an analytical approach,” Appl. Phys. Lett. 98, 113116 (2011).
[Crossref]

G. Sun, J. B. Khurgin, and A. Bratkovsky, “Coupled-mode theory of field enhancement in complex metal nanostructures,” Phys. Rev. B 84, 045415 (2011).
[Crossref]

2010 (1)

2009 (3)

S. Schietinger, M. Barth, T. Aichele, and O. Benson, “Plasmon-enhanced single photon emission from a nanoassembled metal−diamond hybrid structure at room temperature,” Nano Lett. 9, 1694–1698 (2009).
[Crossref]

G. Sun, J. B. Khurgin, and C. C. Yang, “Impact of high-order surface plasmon modes of metal nanoparticles on enhancement of optical emission,” Appl. Phys. Lett. 95, 171103 (2009).
[Crossref]

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3, 654–657 (2009).
[Crossref]

2004 (1)

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4, 899–903 (2004).
[Crossref]

2003 (1)

K. Li, M. I. Stockman, and D. J. Bergman, “Self-similar chain of metal nanospheres as an efficient nanolens,” Phys. Rev. Lett. 91, 227402 (2003).
[Crossref]

Aharonovich, I.

T. T. Tran, D. Wang, Z.-Q. Xu, A. Yang, M. Toth, T. W. Odom, and I. Aharonovich, “Deterministic coupling of quantum emitters in 2D materials to plasmonic nanocavity arrays,” Nano Lett. 17, 2634–2639 (2017).
[Crossref]

I. Aharonovich, D. Englund, and M. Toth, “Solid-state single-photon emitters,” Nat. Photonics 10, 631–641 (2016).
[Crossref]

Aichele, T.

S. Schietinger, M. Barth, T. Aichele, and O. Benson, “Plasmon-enhanced single photon emission from a nanoassembled metal−diamond hybrid structure at room temperature,” Nano Lett. 9, 1694–1698 (2009).
[Crossref]

Aizpurua, J.

F. Benz, M. K. Schmidt, A. Dreismann, R. Chikkaraddy, Y. Zhang, A. Demetriadou, C. Carnegie, H. Ohadi, B. de Nijs, R. Esteban, J. Aizpurua, and J. J. Baumberg, “Single-molecule optomechanics in “picocavities,”” Science 354, 726–729 (2016).
[Crossref]

Akselrod, G. M.

T. B. Hoang, G. M. Akselrod, and M. H. Mikkelsen, “Ultrafast room-temperature single photon emission from quantum dots coupled to plasmonic nanocavities,” Nano Lett. 16, 270–275 (2016).
[Crossref]

Albrecht, G.

G. Albrecht, S. Kaiser, H. Giessen, and M. Hentschel, “Refractory plasmonics without refractory materials,” Nano Lett. 17, 6402–6408 (2017).
[Crossref]

Alù, A.

Y. Wu, C. Zhang, N. M. Estakhri, Y. Zhao, J. Kim, M. Zhang, X.-X. Liu, G. K. Pribil, A. Alù, C.-K. Shih, and X. Li, “Intrinsic optical properties and enhanced plasmonic response of epitaxial silver,” Adv. Mater. 26, 6106–6110 (2014).
[Crossref]

Andersen, S. K. H.

S. K. H. Andersen, S. Kumar, and S. I. Bozhevolnyi, “Ultrabright linearly polarized photon generation from a nitrogen vacancy center in a nanocube dimer antenna,” Nano Lett. 17, 3889–3895 (2017).
[Crossref]

Andriyash, A. V.

I. A. Rodionov, A. S. Baburin, A. R. Gabidullin, S. S. Maklakov, S. Peters, I. A. Ryzhikov, and A. V. Andriyash, “Quantum engineering of atomically smooth single-crystalline silver films,” Sci. Rep. 9, 12232 (2019).
[Crossref]

Antonov, D.

I. I. Vlasov, A. A. Shiryaev, T. Rendler, S. Steinert, S.-Y. Lee, D. Antonov, M. Vörös, F. Jelezko, A. V. Fisenko, L. F. Semjonova, J. Biskupek, U. Kaiser, O. I. Lebedev, I. Sildos, P. R. Hemmer, V. I. Konov, A. Gali, and J. Wrachtrup, “Molecular-sized fluorescent nanodiamonds,” Nat. Nanotechnol. 9, 54–58 (2014).
[Crossref]

Ardelean, J. V.

Y. Luo, G. D. Shepard, J. V. Ardelean, D. A. Rhodes, B. Kim, K. Barmak, J. C. Hone, and S. Strauf, “Deterministic coupling of site-controlled quantum emitters in monolayer WSe 2 to plasmonic nanocavities,” Nat. Nanotechnol. 13, 1137 (2018).
[Crossref]

Avlasevich, Y.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3, 654–657 (2009).
[Crossref]

Baburin, A. S.

I. A. Rodionov, A. S. Baburin, A. R. Gabidullin, S. S. Maklakov, S. Peters, I. A. Ryzhikov, and A. V. Andriyash, “Quantum engineering of atomically smooth single-crystalline silver films,” Sci. Rep. 9, 12232 (2019).
[Crossref]

S. I. Bogdanov, M. Y. Shalaginov, A. S. Lagutchev, C.-C. Chiang, D. Shah, A. S. Baburin, I. A. Ryzhikov, I. A. Rodionov, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Ultrabright room-temperature sub-nanosecond emission from single nitrogen-vacancy centers coupled to nanopatch antennas,” Nano Lett. 18, 4837–4844 (2018).
[Crossref]

S. I. Bogdanov, O. A. Makarova, A. S. Lagutchev, D. Shah, C.-C. Chiang, S. Saha, A. S. Baburin, I. A. Ryzhikov, I. A. Rodionov, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Deterministic integration of single nitrogen-vacancy centers into nanopatch antennas,” arXiv:1902.05996 (2019).

Bajoni, D.

L. Caspani, C. Xiong, B. J. Eggleton, D. Bajoni, M. Liscidini, M. Galli, R. Morandotti, and D. J. Moss, “Integrated sources of photon quantum states based on nonlinear optics,” Light: Sci. Appl. 6, e17100 (2017).
[Crossref]

Balzarotti, F.

F. Balzarotti, Y. Eilers, K. C. Gwosch, A. H. Gynnå, V. Westphal, F. D. Stefani, J. Elf, and S. W. Hell, “Nanometer resolution imaging and tracking of fluorescent molecules with minimal photon fluxes,” Science 355, 606–612 (2017).
[Crossref]

Barmak, K.

Y. Luo, G. D. Shepard, J. V. Ardelean, D. A. Rhodes, B. Kim, K. Barmak, J. C. Hone, and S. Strauf, “Deterministic coupling of site-controlled quantum emitters in monolayer WSe 2 to plasmonic nanocavities,” Nat. Nanotechnol. 13, 1137 (2018).
[Crossref]

Barth, M.

S. Schietinger, M. Barth, T. Aichele, and O. Benson, “Plasmon-enhanced single photon emission from a nanoassembled metal−diamond hybrid structure at room temperature,” Nano Lett. 9, 1694–1698 (2009).
[Crossref]

Baumberg, J. J.

J. Mertens, M.-E. Kleemann, R. Chikkaraddy, P. Narang, and J. J. Baumberg, “How light is emitted by plasmonic metals,” Nano Lett. 17, 2568–2574 (2017).
[Crossref]

F. Benz, M. K. Schmidt, A. Dreismann, R. Chikkaraddy, Y. Zhang, A. Demetriadou, C. Carnegie, H. Ohadi, B. de Nijs, R. Esteban, J. Aizpurua, and J. J. Baumberg, “Single-molecule optomechanics in “picocavities,”” Science 354, 726–729 (2016).
[Crossref]

Belov, P. A.

S. V. Makarov, V. A. Milichko, I. S. Mukhin, I. I. Shishkin, D. A. Zuev, A. M. Mozharov, A. E. Krasnok, and P. A. Belov, “Controllable femtosecond laser-induced dewetting for plasmonic applications,” Laser Photon. Rev. 10, 91–99 (2016).
[Crossref]

Benson, O.

A. Kuhlicke, S. Schietinger, C. Matyssek, K. Busch, and O. Benson, “In situ observation of plasmon tuning in a single gold nanoparticle during controlled melting,” Nano Lett. 13, 2041–2046 (2013).
[Crossref]

S. Schietinger, M. Barth, T. Aichele, and O. Benson, “Plasmon-enhanced single photon emission from a nanoassembled metal−diamond hybrid structure at room temperature,” Nano Lett. 9, 1694–1698 (2009).
[Crossref]

Benz, F.

F. Benz, M. K. Schmidt, A. Dreismann, R. Chikkaraddy, Y. Zhang, A. Demetriadou, C. Carnegie, H. Ohadi, B. de Nijs, R. Esteban, J. Aizpurua, and J. J. Baumberg, “Single-molecule optomechanics in “picocavities,”” Science 354, 726–729 (2016).
[Crossref]

Bergman, D. J.

K. Li, M. I. Stockman, and D. J. Bergman, “Self-similar chain of metal nanospheres as an efficient nanolens,” Phys. Rev. Lett. 91, 227402 (2003).
[Crossref]

Bhaskar, M. K.

M. K. Bhaskar, D. D. Sukachev, A. Sipahigil, R. E. Evans, M. J. Burek, C. T. Nguyen, L. J. Rogers, P. Siyushev, M. H. Metsch, H. Park, F. Jelezko, M. Lončar, and M. D. Lukin, “Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide,” Phys. Rev. Lett. 118, 223603 (2017).
[Crossref]

Binder, J. M.

K. D. Jahnke, A. Sipahigil, J. M. Binder, M. W. Doherty, M. Metsch, L. J. Rogers, N. B. Manson, M. D. Lukin, and F. Jelezko, “Electron–phonon processes of the silicon-vacancy centre in diamond,” New J. Phys. 17, 043011 (2015).
[Crossref]

Biskupek, J.

I. I. Vlasov, A. A. Shiryaev, T. Rendler, S. Steinert, S.-Y. Lee, D. Antonov, M. Vörös, F. Jelezko, A. V. Fisenko, L. F. Semjonova, J. Biskupek, U. Kaiser, O. I. Lebedev, I. Sildos, P. R. Hemmer, V. I. Konov, A. Gali, and J. Wrachtrup, “Molecular-sized fluorescent nanodiamonds,” Nat. Nanotechnol. 9, 54–58 (2014).
[Crossref]

Blackburn, J. L.

Y. Luo, X. He, Y. Kim, J. L. Blackburn, S. K. Doorn, H. Htoon, and S. Strauf, “Carbon nanotube color centers in plasmonic nanocavities: a path to photon indistinguishability at telecom bands,” Nano Lett. 19, 9037–9044 (2019).
[Crossref]

Bogdanov, S. I.

S. I. Bogdanov, A. Boltasseva, and V. M. Shalaev, “Overcoming quantum decoherence with plasmonics,” Science 364, 532–533 (2019).
[Crossref]

S. I. Bogdanov, M. Y. Shalaginov, A. S. Lagutchev, C.-C. Chiang, D. Shah, A. S. Baburin, I. A. Ryzhikov, I. A. Rodionov, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Ultrabright room-temperature sub-nanosecond emission from single nitrogen-vacancy centers coupled to nanopatch antennas,” Nano Lett. 18, 4837–4844 (2018).
[Crossref]

S. I. Bogdanov, O. A. Makarova, A. S. Lagutchev, D. Shah, C.-C. Chiang, S. Saha, A. S. Baburin, I. A. Ryzhikov, I. A. Rodionov, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Deterministic integration of single nitrogen-vacancy centers into nanopatch antennas,” arXiv:1902.05996 (2019).

Boltasseva, A.

S. I. Bogdanov, A. Boltasseva, and V. M. Shalaev, “Overcoming quantum decoherence with plasmonics,” Science 364, 532–533 (2019).
[Crossref]

S. I. Bogdanov, M. Y. Shalaginov, A. S. Lagutchev, C.-C. Chiang, D. Shah, A. S. Baburin, I. A. Ryzhikov, I. A. Rodionov, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Ultrabright room-temperature sub-nanosecond emission from single nitrogen-vacancy centers coupled to nanopatch antennas,” Nano Lett. 18, 4837–4844 (2018).
[Crossref]

S. I. Bogdanov, O. A. Makarova, A. S. Lagutchev, D. Shah, C.-C. Chiang, S. Saha, A. S. Baburin, I. A. Ryzhikov, I. A. Rodionov, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Deterministic integration of single nitrogen-vacancy centers into nanopatch antennas,” arXiv:1902.05996 (2019).

Bozhevolnyi, S. I.

S. K. H. Andersen, S. Kumar, and S. I. Bozhevolnyi, “Ultrabright linearly polarized photon generation from a nitrogen vacancy center in a nanocube dimer antenna,” Nano Lett. 17, 3889–3895 (2017).
[Crossref]

S. I. Bozhevolnyi and J. B. Khurgin, “The case for quantum plasmonics,” Nat. Photonics 11, 398–400 (2017).
[Crossref]

S. I. Bozhevolnyi and J. B. Khurgin, “Fundamental limitations in spontaneous emission rate of single-photon sources,” Optica 3, 1418–1421 (2016).
[Crossref]

Bratkovsky, A.

G. Sun, J. B. Khurgin, and A. Bratkovsky, “Coupled-mode theory of field enhancement in complex metal nanostructures,” Phys. Rev. B 84, 045415 (2011).
[Crossref]

Burek, M. J.

M. K. Bhaskar, D. D. Sukachev, A. Sipahigil, R. E. Evans, M. J. Burek, C. T. Nguyen, L. J. Rogers, P. Siyushev, M. H. Metsch, H. Park, F. Jelezko, M. Lončar, and M. D. Lukin, “Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide,” Phys. Rev. Lett. 118, 223603 (2017).
[Crossref]

Busch, K.

A. Kuhlicke, S. Schietinger, C. Matyssek, K. Busch, and O. Benson, “In situ observation of plasmon tuning in a single gold nanoparticle during controlled melting,” Nano Lett. 13, 2041–2046 (2013).
[Crossref]

Carnegie, C.

F. Benz, M. K. Schmidt, A. Dreismann, R. Chikkaraddy, Y. Zhang, A. Demetriadou, C. Carnegie, H. Ohadi, B. de Nijs, R. Esteban, J. Aizpurua, and J. J. Baumberg, “Single-molecule optomechanics in “picocavities,”” Science 354, 726–729 (2016).
[Crossref]

Caspani, L.

L. Caspani, C. Xiong, B. J. Eggleton, D. Bajoni, M. Liscidini, M. Galli, R. Morandotti, and D. J. Moss, “Integrated sources of photon quantum states based on nonlinear optics,” Light: Sci. Appl. 6, e17100 (2017).
[Crossref]

Chiang, C.-C.

S. I. Bogdanov, M. Y. Shalaginov, A. S. Lagutchev, C.-C. Chiang, D. Shah, A. S. Baburin, I. A. Ryzhikov, I. A. Rodionov, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Ultrabright room-temperature sub-nanosecond emission from single nitrogen-vacancy centers coupled to nanopatch antennas,” Nano Lett. 18, 4837–4844 (2018).
[Crossref]

S. I. Bogdanov, O. A. Makarova, A. S. Lagutchev, D. Shah, C.-C. Chiang, S. Saha, A. S. Baburin, I. A. Ryzhikov, I. A. Rodionov, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Deterministic integration of single nitrogen-vacancy centers into nanopatch antennas,” arXiv:1902.05996 (2019).

Chikkaraddy, R.

J. Mertens, M.-E. Kleemann, R. Chikkaraddy, P. Narang, and J. J. Baumberg, “How light is emitted by plasmonic metals,” Nano Lett. 17, 2568–2574 (2017).
[Crossref]

F. Benz, M. K. Schmidt, A. Dreismann, R. Chikkaraddy, Y. Zhang, A. Demetriadou, C. Carnegie, H. Ohadi, B. de Nijs, R. Esteban, J. Aizpurua, and J. J. Baumberg, “Single-molecule optomechanics in “picocavities,”” Science 354, 726–729 (2016).
[Crossref]

Christensen, T.

T. Christensen, W. Yan, A.-P. Jauho, M. Soljačić, and N. A. Mortensen, “Quantum corrections in nanoplasmonics: shape, scale, and material,” Phys. Rev. Lett. 118, 157402 (2017).
[Crossref]

Y. Yang, O. D. Miller, T. Christensen, J. D. Joannopoulos, and M. Soljačić, “Low-loss plasmonic dielectric nanoresonators,” Nano Lett. 17, 3238–3245 (2017).
[Crossref]

de Nijs, B.

F. Benz, M. K. Schmidt, A. Dreismann, R. Chikkaraddy, Y. Zhang, A. Demetriadou, C. Carnegie, H. Ohadi, B. de Nijs, R. Esteban, J. Aizpurua, and J. J. Baumberg, “Single-molecule optomechanics in “picocavities,”” Science 354, 726–729 (2016).
[Crossref]

Demetriadou, A.

F. Benz, M. K. Schmidt, A. Dreismann, R. Chikkaraddy, Y. Zhang, A. Demetriadou, C. Carnegie, H. Ohadi, B. de Nijs, R. Esteban, J. Aizpurua, and J. J. Baumberg, “Single-molecule optomechanics in “picocavities,”” Science 354, 726–729 (2016).
[Crossref]

Doeleman, H. M.

I. M. Palstra, H. M. Doeleman, and A. F. Koenderink, “Hybrid cavity-antenna systems for quantum optics outside the cryostat?” Nanophotonics 8, 1513–1531 (2019).
[Crossref]

Doherty, M. W.

K. D. Jahnke, A. Sipahigil, J. M. Binder, M. W. Doherty, M. Metsch, L. J. Rogers, N. B. Manson, M. D. Lukin, and F. Jelezko, “Electron–phonon processes of the silicon-vacancy centre in diamond,” New J. Phys. 17, 043011 (2015).
[Crossref]

Doorn, S. K.

Y. Luo, X. He, Y. Kim, J. L. Blackburn, S. K. Doorn, H. Htoon, and S. Strauf, “Carbon nanotube color centers in plasmonic nanocavities: a path to photon indistinguishability at telecom bands,” Nano Lett. 19, 9037–9044 (2019).
[Crossref]

Dreismann, A.

F. Benz, M. K. Schmidt, A. Dreismann, R. Chikkaraddy, Y. Zhang, A. Demetriadou, C. Carnegie, H. Ohadi, B. de Nijs, R. Esteban, J. Aizpurua, and J. J. Baumberg, “Single-molecule optomechanics in “picocavities,”” Science 354, 726–729 (2016).
[Crossref]

Eggleston, M. S.

M. S. Eggleston, K. Messer, L. Zhang, E. Yablonovitch, and M. C. Wu, “Optical antenna enhanced spontaneous emission,” Proc. Natl. Acad. Sci. USA 112, 1704–1709 (2015).
[Crossref]

Eggleton, B. J.

L. Caspani, C. Xiong, B. J. Eggleton, D. Bajoni, M. Liscidini, M. Galli, R. Morandotti, and D. J. Moss, “Integrated sources of photon quantum states based on nonlinear optics,” Light: Sci. Appl. 6, e17100 (2017).
[Crossref]

Eilers, Y.

F. Balzarotti, Y. Eilers, K. C. Gwosch, A. H. Gynnå, V. Westphal, F. D. Stefani, J. Elf, and S. W. Hell, “Nanometer resolution imaging and tracking of fluorescent molecules with minimal photon fluxes,” Science 355, 606–612 (2017).
[Crossref]

Elf, J.

F. Balzarotti, Y. Eilers, K. C. Gwosch, A. H. Gynnå, V. Westphal, F. D. Stefani, J. Elf, and S. W. Hell, “Nanometer resolution imaging and tracking of fluorescent molecules with minimal photon fluxes,” Science 355, 606–612 (2017).
[Crossref]

Englund, D.

N. H. Wan, S. Mouradian, and D. Englund, “Two-dimensional photonic crystal slab nanocavities on bulk single-crystal diamond,” Appl. Phys. Lett. 112, 141102 (2018).
[Crossref]

I. Aharonovich, D. Englund, and M. Toth, “Solid-state single-photon emitters,” Nat. Photonics 10, 631–641 (2016).
[Crossref]

Estakhri, N. M.

Y. Wu, C. Zhang, N. M. Estakhri, Y. Zhao, J. Kim, M. Zhang, X.-X. Liu, G. K. Pribil, A. Alù, C.-K. Shih, and X. Li, “Intrinsic optical properties and enhanced plasmonic response of epitaxial silver,” Adv. Mater. 26, 6106–6110 (2014).
[Crossref]

Esteban, R.

F. Benz, M. K. Schmidt, A. Dreismann, R. Chikkaraddy, Y. Zhang, A. Demetriadou, C. Carnegie, H. Ohadi, B. de Nijs, R. Esteban, J. Aizpurua, and J. J. Baumberg, “Single-molecule optomechanics in “picocavities,”” Science 354, 726–729 (2016).
[Crossref]

Evans, R. E.

M. K. Bhaskar, D. D. Sukachev, A. Sipahigil, R. E. Evans, M. J. Burek, C. T. Nguyen, L. J. Rogers, P. Siyushev, M. H. Metsch, H. Park, F. Jelezko, M. Lončar, and M. D. Lukin, “Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide,” Phys. Rev. Lett. 118, 223603 (2017).
[Crossref]

Faggiani, R.

R. Faggiani, J. Yang, and P. Lalanne, “Quenching, plasmonic, and radiative decays in nanogap emitting devices,” ACS Photon. 2, 1739–1744 (2015).
[Crossref]

Fan, S.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3, 654–657 (2009).
[Crossref]

Fisenko, A. V.

I. I. Vlasov, A. A. Shiryaev, T. Rendler, S. Steinert, S.-Y. Lee, D. Antonov, M. Vörös, F. Jelezko, A. V. Fisenko, L. F. Semjonova, J. Biskupek, U. Kaiser, O. I. Lebedev, I. Sildos, P. R. Hemmer, V. I. Konov, A. Gali, and J. Wrachtrup, “Molecular-sized fluorescent nanodiamonds,” Nat. Nanotechnol. 9, 54–58 (2014).
[Crossref]

Franke, S.

S. Hughes, S. Franke, C. Gustin, M. Kamandar Dezfouli, A. Knorr, and M. Richter, “Theory and limits of on-demand single-photon sources using plasmonic resonators: a quantized quasinormal mode approach,” ACS Photon. 6, 2168–2180 (2019).
[Crossref]

Gabidullin, A. R.

I. A. Rodionov, A. S. Baburin, A. R. Gabidullin, S. S. Maklakov, S. Peters, I. A. Ryzhikov, and A. V. Andriyash, “Quantum engineering of atomically smooth single-crystalline silver films,” Sci. Rep. 9, 12232 (2019).
[Crossref]

Gali, A.

I. I. Vlasov, A. A. Shiryaev, T. Rendler, S. Steinert, S.-Y. Lee, D. Antonov, M. Vörös, F. Jelezko, A. V. Fisenko, L. F. Semjonova, J. Biskupek, U. Kaiser, O. I. Lebedev, I. Sildos, P. R. Hemmer, V. I. Konov, A. Gali, and J. Wrachtrup, “Molecular-sized fluorescent nanodiamonds,” Nat. Nanotechnol. 9, 54–58 (2014).
[Crossref]

Galli, M.

L. Caspani, C. Xiong, B. J. Eggleton, D. Bajoni, M. Liscidini, M. Galli, R. Morandotti, and D. J. Moss, “Integrated sources of photon quantum states based on nonlinear optics,” Light: Sci. Appl. 6, e17100 (2017).
[Crossref]

Ghobadi, R.

S. Wein, N. Lauk, R. Ghobadi, and C. Simon, “Feasibility of efficient room-temperature solid-state sources of indistinguishable single photons using ultrasmall mode volume cavities,” Phys. Rev. B 97, 205418 (2018).
[Crossref]

Giessen, H.

G. Albrecht, S. Kaiser, H. Giessen, and M. Hentschel, “Refractory plasmonics without refractory materials,” Nano Lett. 17, 6402–6408 (2017).
[Crossref]

Greffet, J.-J.

C. Zhang, J.-P. Hugonin, J.-J. Greffet, and C. Sauvan, “Surface plasmon polaritons emission with nanopatch antennas: enhancement by means of mode hybridization,” ACS Photon. 6, 2788–2796 (2019).
[Crossref]

Gustin, C.

S. Hughes, S. Franke, C. Gustin, M. Kamandar Dezfouli, A. Knorr, and M. Richter, “Theory and limits of on-demand single-photon sources using plasmonic resonators: a quantized quasinormal mode approach,” ACS Photon. 6, 2168–2180 (2019).
[Crossref]

Gwosch, K. C.

F. Balzarotti, Y. Eilers, K. C. Gwosch, A. H. Gynnå, V. Westphal, F. D. Stefani, J. Elf, and S. W. Hell, “Nanometer resolution imaging and tracking of fluorescent molecules with minimal photon fluxes,” Science 355, 606–612 (2017).
[Crossref]

Gynnå, A. H.

F. Balzarotti, Y. Eilers, K. C. Gwosch, A. H. Gynnå, V. Westphal, F. D. Stefani, J. Elf, and S. W. Hell, “Nanometer resolution imaging and tracking of fluorescent molecules with minimal photon fluxes,” Science 355, 606–612 (2017).
[Crossref]

He, X.

Y. Luo, X. He, Y. Kim, J. L. Blackburn, S. K. Doorn, H. Htoon, and S. Strauf, “Carbon nanotube color centers in plasmonic nanocavities: a path to photon indistinguishability at telecom bands,” Nano Lett. 19, 9037–9044 (2019).
[Crossref]

Hell, S. W.

F. Balzarotti, Y. Eilers, K. C. Gwosch, A. H. Gynnå, V. Westphal, F. D. Stefani, J. Elf, and S. W. Hell, “Nanometer resolution imaging and tracking of fluorescent molecules with minimal photon fluxes,” Science 355, 606–612 (2017).
[Crossref]

Hemmer, P. R.

I. I. Vlasov, A. A. Shiryaev, T. Rendler, S. Steinert, S.-Y. Lee, D. Antonov, M. Vörös, F. Jelezko, A. V. Fisenko, L. F. Semjonova, J. Biskupek, U. Kaiser, O. I. Lebedev, I. Sildos, P. R. Hemmer, V. I. Konov, A. Gali, and J. Wrachtrup, “Molecular-sized fluorescent nanodiamonds,” Nat. Nanotechnol. 9, 54–58 (2014).
[Crossref]

Hentschel, M.

G. Albrecht, S. Kaiser, H. Giessen, and M. Hentschel, “Refractory plasmonics without refractory materials,” Nano Lett. 17, 6402–6408 (2017).
[Crossref]

Hoang, T. B.

T. B. Hoang, G. M. Akselrod, and M. H. Mikkelsen, “Ultrafast room-temperature single photon emission from quantum dots coupled to plasmonic nanocavities,” Nano Lett. 16, 270–275 (2016).
[Crossref]

Hone, J. C.

Y. Luo, G. D. Shepard, J. V. Ardelean, D. A. Rhodes, B. Kim, K. Barmak, J. C. Hone, and S. Strauf, “Deterministic coupling of site-controlled quantum emitters in monolayer WSe 2 to plasmonic nanocavities,” Nat. Nanotechnol. 13, 1137 (2018).
[Crossref]

Htoon, H.

Y. Luo, X. He, Y. Kim, J. L. Blackburn, S. K. Doorn, H. Htoon, and S. Strauf, “Carbon nanotube color centers in plasmonic nanocavities: a path to photon indistinguishability at telecom bands,” Nano Lett. 19, 9037–9044 (2019).
[Crossref]

Hughes, S.

S. Hughes, S. Franke, C. Gustin, M. Kamandar Dezfouli, A. Knorr, and M. Richter, “Theory and limits of on-demand single-photon sources using plasmonic resonators: a quantized quasinormal mode approach,” ACS Photon. 6, 2168–2180 (2019).
[Crossref]

Hugonin, J.-P.

C. Zhang, J.-P. Hugonin, J.-J. Greffet, and C. Sauvan, “Surface plasmon polaritons emission with nanopatch antennas: enhancement by means of mode hybridization,” ACS Photon. 6, 2788–2796 (2019).
[Crossref]

Jahnke, K. D.

K. D. Jahnke, A. Sipahigil, J. M. Binder, M. W. Doherty, M. Metsch, L. J. Rogers, N. B. Manson, M. D. Lukin, and F. Jelezko, “Electron–phonon processes of the silicon-vacancy centre in diamond,” New J. Phys. 17, 043011 (2015).
[Crossref]

Jauho, A.-P.

T. Christensen, W. Yan, A.-P. Jauho, M. Soljačić, and N. A. Mortensen, “Quantum corrections in nanoplasmonics: shape, scale, and material,” Phys. Rev. Lett. 118, 157402 (2017).
[Crossref]

Jelezko, F.

M. K. Bhaskar, D. D. Sukachev, A. Sipahigil, R. E. Evans, M. J. Burek, C. T. Nguyen, L. J. Rogers, P. Siyushev, M. H. Metsch, H. Park, F. Jelezko, M. Lončar, and M. D. Lukin, “Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide,” Phys. Rev. Lett. 118, 223603 (2017).
[Crossref]

K. D. Jahnke, A. Sipahigil, J. M. Binder, M. W. Doherty, M. Metsch, L. J. Rogers, N. B. Manson, M. D. Lukin, and F. Jelezko, “Electron–phonon processes of the silicon-vacancy centre in diamond,” New J. Phys. 17, 043011 (2015).
[Crossref]

I. I. Vlasov, A. A. Shiryaev, T. Rendler, S. Steinert, S.-Y. Lee, D. Antonov, M. Vörös, F. Jelezko, A. V. Fisenko, L. F. Semjonova, J. Biskupek, U. Kaiser, O. I. Lebedev, I. Sildos, P. R. Hemmer, V. I. Konov, A. Gali, and J. Wrachtrup, “Molecular-sized fluorescent nanodiamonds,” Nat. Nanotechnol. 9, 54–58 (2014).
[Crossref]

Joannopoulos, J. D.

Y. Yang, O. D. Miller, T. Christensen, J. D. Joannopoulos, and M. Soljačić, “Low-loss plasmonic dielectric nanoresonators,” Nano Lett. 17, 3238–3245 (2017).
[Crossref]

Kaiser, S.

G. Albrecht, S. Kaiser, H. Giessen, and M. Hentschel, “Refractory plasmonics without refractory materials,” Nano Lett. 17, 6402–6408 (2017).
[Crossref]

Kaiser, U.

I. I. Vlasov, A. A. Shiryaev, T. Rendler, S. Steinert, S.-Y. Lee, D. Antonov, M. Vörös, F. Jelezko, A. V. Fisenko, L. F. Semjonova, J. Biskupek, U. Kaiser, O. I. Lebedev, I. Sildos, P. R. Hemmer, V. I. Konov, A. Gali, and J. Wrachtrup, “Molecular-sized fluorescent nanodiamonds,” Nat. Nanotechnol. 9, 54–58 (2014).
[Crossref]

Kamandar Dezfouli, M.

S. Hughes, S. Franke, C. Gustin, M. Kamandar Dezfouli, A. Knorr, and M. Richter, “Theory and limits of on-demand single-photon sources using plasmonic resonators: a quantized quasinormal mode approach,” ACS Photon. 6, 2168–2180 (2019).
[Crossref]

Khurgin, J. B.

S. I. Bozhevolnyi and J. B. Khurgin, “The case for quantum plasmonics,” Nat. Photonics 11, 398–400 (2017).
[Crossref]

S. I. Bozhevolnyi and J. B. Khurgin, “Fundamental limitations in spontaneous emission rate of single-photon sources,” Optica 3, 1418–1421 (2016).
[Crossref]

G. Sun and J. B. Khurgin, “Theory of optical emission enhancement by coupled metal nanoparticles: an analytical approach,” Appl. Phys. Lett. 98, 113116 (2011).
[Crossref]

G. Sun, J. B. Khurgin, and A. Bratkovsky, “Coupled-mode theory of field enhancement in complex metal nanostructures,” Phys. Rev. B 84, 045415 (2011).
[Crossref]

G. Sun, J. B. Khurgin, and C. C. Yang, “Impact of high-order surface plasmon modes of metal nanoparticles on enhancement of optical emission,” Appl. Phys. Lett. 95, 171103 (2009).
[Crossref]

Kildishev, A. V.

S. I. Bogdanov, M. Y. Shalaginov, A. S. Lagutchev, C.-C. Chiang, D. Shah, A. S. Baburin, I. A. Ryzhikov, I. A. Rodionov, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Ultrabright room-temperature sub-nanosecond emission from single nitrogen-vacancy centers coupled to nanopatch antennas,” Nano Lett. 18, 4837–4844 (2018).
[Crossref]

S. I. Bogdanov, O. A. Makarova, A. S. Lagutchev, D. Shah, C.-C. Chiang, S. Saha, A. S. Baburin, I. A. Ryzhikov, I. A. Rodionov, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Deterministic integration of single nitrogen-vacancy centers into nanopatch antennas,” arXiv:1902.05996 (2019).

Kim, B.

Y. Luo, G. D. Shepard, J. V. Ardelean, D. A. Rhodes, B. Kim, K. Barmak, J. C. Hone, and S. Strauf, “Deterministic coupling of site-controlled quantum emitters in monolayer WSe 2 to plasmonic nanocavities,” Nat. Nanotechnol. 13, 1137 (2018).
[Crossref]

Kim, J.

Y. Wu, C. Zhang, N. M. Estakhri, Y. Zhao, J. Kim, M. Zhang, X.-X. Liu, G. K. Pribil, A. Alù, C.-K. Shih, and X. Li, “Intrinsic optical properties and enhanced plasmonic response of epitaxial silver,” Adv. Mater. 26, 6106–6110 (2014).
[Crossref]

Kim, Y.

Y. Luo, X. He, Y. Kim, J. L. Blackburn, S. K. Doorn, H. Htoon, and S. Strauf, “Carbon nanotube color centers in plasmonic nanocavities: a path to photon indistinguishability at telecom bands,” Nano Lett. 19, 9037–9044 (2019).
[Crossref]

Kinkhabwala, A.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3, 654–657 (2009).
[Crossref]

Kleemann, M.-E.

J. Mertens, M.-E. Kleemann, R. Chikkaraddy, P. Narang, and J. J. Baumberg, “How light is emitted by plasmonic metals,” Nano Lett. 17, 2568–2574 (2017).
[Crossref]

Knorr, A.

S. Hughes, S. Franke, C. Gustin, M. Kamandar Dezfouli, A. Knorr, and M. Richter, “Theory and limits of on-demand single-photon sources using plasmonic resonators: a quantized quasinormal mode approach,” ACS Photon. 6, 2168–2180 (2019).
[Crossref]

Koenderink, A. F.

I. M. Palstra, H. M. Doeleman, and A. F. Koenderink, “Hybrid cavity-antenna systems for quantum optics outside the cryostat?” Nanophotonics 8, 1513–1531 (2019).
[Crossref]

A. Mohtashami and A. F. Koenderink, “Suitability of nanodiamond nitrogen–vacancy centers for spontaneous emission control experiments,” New J. Phys. 15, 043017 (2013).
[Crossref]

A. F. Koenderink, “On the use of Purcell factors for plasmon antennas,” Opt. Lett. 35, 4208–4210 (2010).
[Crossref]

Konov, V. I.

I. I. Vlasov, A. A. Shiryaev, T. Rendler, S. Steinert, S.-Y. Lee, D. Antonov, M. Vörös, F. Jelezko, A. V. Fisenko, L. F. Semjonova, J. Biskupek, U. Kaiser, O. I. Lebedev, I. Sildos, P. R. Hemmer, V. I. Konov, A. Gali, and J. Wrachtrup, “Molecular-sized fluorescent nanodiamonds,” Nat. Nanotechnol. 9, 54–58 (2014).
[Crossref]

Krasnok, A. E.

S. V. Makarov, V. A. Milichko, I. S. Mukhin, I. I. Shishkin, D. A. Zuev, A. M. Mozharov, A. E. Krasnok, and P. A. Belov, “Controllable femtosecond laser-induced dewetting for plasmonic applications,” Laser Photon. Rev. 10, 91–99 (2016).
[Crossref]

Kuhlicke, A.

A. Kuhlicke, S. Schietinger, C. Matyssek, K. Busch, and O. Benson, “In situ observation of plasmon tuning in a single gold nanoparticle during controlled melting,” Nano Lett. 13, 2041–2046 (2013).
[Crossref]

Kumar, S.

S. K. H. Andersen, S. Kumar, and S. I. Bozhevolnyi, “Ultrabright linearly polarized photon generation from a nitrogen vacancy center in a nanocube dimer antenna,” Nano Lett. 17, 3889–3895 (2017).
[Crossref]

Lagutchev, A. S.

S. I. Bogdanov, M. Y. Shalaginov, A. S. Lagutchev, C.-C. Chiang, D. Shah, A. S. Baburin, I. A. Ryzhikov, I. A. Rodionov, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Ultrabright room-temperature sub-nanosecond emission from single nitrogen-vacancy centers coupled to nanopatch antennas,” Nano Lett. 18, 4837–4844 (2018).
[Crossref]

S. I. Bogdanov, O. A. Makarova, A. S. Lagutchev, D. Shah, C.-C. Chiang, S. Saha, A. S. Baburin, I. A. Ryzhikov, I. A. Rodionov, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Deterministic integration of single nitrogen-vacancy centers into nanopatch antennas,” arXiv:1902.05996 (2019).

Lalanne, P.

R. Faggiani, J. Yang, and P. Lalanne, “Quenching, plasmonic, and radiative decays in nanogap emitting devices,” ACS Photon. 2, 1739–1744 (2015).
[Crossref]

Lauk, N.

S. Wein, N. Lauk, R. Ghobadi, and C. Simon, “Feasibility of efficient room-temperature solid-state sources of indistinguishable single photons using ultrasmall mode volume cavities,” Phys. Rev. B 97, 205418 (2018).
[Crossref]

Lebedev, O. I.

I. I. Vlasov, A. A. Shiryaev, T. Rendler, S. Steinert, S.-Y. Lee, D. Antonov, M. Vörös, F. Jelezko, A. V. Fisenko, L. F. Semjonova, J. Biskupek, U. Kaiser, O. I. Lebedev, I. Sildos, P. R. Hemmer, V. I. Konov, A. Gali, and J. Wrachtrup, “Molecular-sized fluorescent nanodiamonds,” Nat. Nanotechnol. 9, 54–58 (2014).
[Crossref]

Lee, S.-Y.

I. I. Vlasov, A. A. Shiryaev, T. Rendler, S. Steinert, S.-Y. Lee, D. Antonov, M. Vörös, F. Jelezko, A. V. Fisenko, L. F. Semjonova, J. Biskupek, U. Kaiser, O. I. Lebedev, I. Sildos, P. R. Hemmer, V. I. Konov, A. Gali, and J. Wrachtrup, “Molecular-sized fluorescent nanodiamonds,” Nat. Nanotechnol. 9, 54–58 (2014).
[Crossref]

Li, K.

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4, 899–903 (2004).
[Crossref]

K. Li, M. I. Stockman, and D. J. Bergman, “Self-similar chain of metal nanospheres as an efficient nanolens,” Phys. Rev. Lett. 91, 227402 (2003).
[Crossref]

Li, X.

Y. Wu, C. Zhang, N. M. Estakhri, Y. Zhao, J. Kim, M. Zhang, X.-X. Liu, G. K. Pribil, A. Alù, C.-K. Shih, and X. Li, “Intrinsic optical properties and enhanced plasmonic response of epitaxial silver,” Adv. Mater. 26, 6106–6110 (2014).
[Crossref]

Liscidini, M.

L. Caspani, C. Xiong, B. J. Eggleton, D. Bajoni, M. Liscidini, M. Galli, R. Morandotti, and D. J. Moss, “Integrated sources of photon quantum states based on nonlinear optics,” Light: Sci. Appl. 6, e17100 (2017).
[Crossref]

Liu, X.-X.

Y. Wu, C. Zhang, N. M. Estakhri, Y. Zhao, J. Kim, M. Zhang, X.-X. Liu, G. K. Pribil, A. Alù, C.-K. Shih, and X. Li, “Intrinsic optical properties and enhanced plasmonic response of epitaxial silver,” Adv. Mater. 26, 6106–6110 (2014).
[Crossref]

Loncar, M.

M. K. Bhaskar, D. D. Sukachev, A. Sipahigil, R. E. Evans, M. J. Burek, C. T. Nguyen, L. J. Rogers, P. Siyushev, M. H. Metsch, H. Park, F. Jelezko, M. Lončar, and M. D. Lukin, “Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide,” Phys. Rev. Lett. 118, 223603 (2017).
[Crossref]

Lukin, M. D.

M. K. Bhaskar, D. D. Sukachev, A. Sipahigil, R. E. Evans, M. J. Burek, C. T. Nguyen, L. J. Rogers, P. Siyushev, M. H. Metsch, H. Park, F. Jelezko, M. Lončar, and M. D. Lukin, “Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide,” Phys. Rev. Lett. 118, 223603 (2017).
[Crossref]

K. D. Jahnke, A. Sipahigil, J. M. Binder, M. W. Doherty, M. Metsch, L. J. Rogers, N. B. Manson, M. D. Lukin, and F. Jelezko, “Electron–phonon processes of the silicon-vacancy centre in diamond,” New J. Phys. 17, 043011 (2015).
[Crossref]

Luo, Y.

Y. Luo, X. He, Y. Kim, J. L. Blackburn, S. K. Doorn, H. Htoon, and S. Strauf, “Carbon nanotube color centers in plasmonic nanocavities: a path to photon indistinguishability at telecom bands,” Nano Lett. 19, 9037–9044 (2019).
[Crossref]

Y. Luo, G. D. Shepard, J. V. Ardelean, D. A. Rhodes, B. Kim, K. Barmak, J. C. Hone, and S. Strauf, “Deterministic coupling of site-controlled quantum emitters in monolayer WSe 2 to plasmonic nanocavities,” Nat. Nanotechnol. 13, 1137 (2018).
[Crossref]

Makarov, S. V.

S. V. Makarov, V. A. Milichko, I. S. Mukhin, I. I. Shishkin, D. A. Zuev, A. M. Mozharov, A. E. Krasnok, and P. A. Belov, “Controllable femtosecond laser-induced dewetting for plasmonic applications,” Laser Photon. Rev. 10, 91–99 (2016).
[Crossref]

Makarova, O. A.

S. I. Bogdanov, O. A. Makarova, A. S. Lagutchev, D. Shah, C.-C. Chiang, S. Saha, A. S. Baburin, I. A. Ryzhikov, I. A. Rodionov, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Deterministic integration of single nitrogen-vacancy centers into nanopatch antennas,” arXiv:1902.05996 (2019).

Maklakov, S. S.

I. A. Rodionov, A. S. Baburin, A. R. Gabidullin, S. S. Maklakov, S. Peters, I. A. Ryzhikov, and A. V. Andriyash, “Quantum engineering of atomically smooth single-crystalline silver films,” Sci. Rep. 9, 12232 (2019).
[Crossref]

Manson, N. B.

K. D. Jahnke, A. Sipahigil, J. M. Binder, M. W. Doherty, M. Metsch, L. J. Rogers, N. B. Manson, M. D. Lukin, and F. Jelezko, “Electron–phonon processes of the silicon-vacancy centre in diamond,” New J. Phys. 17, 043011 (2015).
[Crossref]

Matyssek, C.

A. Kuhlicke, S. Schietinger, C. Matyssek, K. Busch, and O. Benson, “In situ observation of plasmon tuning in a single gold nanoparticle during controlled melting,” Nano Lett. 13, 2041–2046 (2013).
[Crossref]

Mertens, J.

J. Mertens, M.-E. Kleemann, R. Chikkaraddy, P. Narang, and J. J. Baumberg, “How light is emitted by plasmonic metals,” Nano Lett. 17, 2568–2574 (2017).
[Crossref]

Messer, K.

M. S. Eggleston, K. Messer, L. Zhang, E. Yablonovitch, and M. C. Wu, “Optical antenna enhanced spontaneous emission,” Proc. Natl. Acad. Sci. USA 112, 1704–1709 (2015).
[Crossref]

Metsch, M.

K. D. Jahnke, A. Sipahigil, J. M. Binder, M. W. Doherty, M. Metsch, L. J. Rogers, N. B. Manson, M. D. Lukin, and F. Jelezko, “Electron–phonon processes of the silicon-vacancy centre in diamond,” New J. Phys. 17, 043011 (2015).
[Crossref]

Metsch, M. H.

M. K. Bhaskar, D. D. Sukachev, A. Sipahigil, R. E. Evans, M. J. Burek, C. T. Nguyen, L. J. Rogers, P. Siyushev, M. H. Metsch, H. Park, F. Jelezko, M. Lončar, and M. D. Lukin, “Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide,” Phys. Rev. Lett. 118, 223603 (2017).
[Crossref]

Mikkelsen, M. H.

T. B. Hoang, G. M. Akselrod, and M. H. Mikkelsen, “Ultrafast room-temperature single photon emission from quantum dots coupled to plasmonic nanocavities,” Nano Lett. 16, 270–275 (2016).
[Crossref]

Milichko, V. A.

S. V. Makarov, V. A. Milichko, I. S. Mukhin, I. I. Shishkin, D. A. Zuev, A. M. Mozharov, A. E. Krasnok, and P. A. Belov, “Controllable femtosecond laser-induced dewetting for plasmonic applications,” Laser Photon. Rev. 10, 91–99 (2016).
[Crossref]

Miller, O. D.

Y. Yang, O. D. Miller, T. Christensen, J. D. Joannopoulos, and M. Soljačić, “Low-loss plasmonic dielectric nanoresonators,” Nano Lett. 17, 3238–3245 (2017).
[Crossref]

Moerner, W. E.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3, 654–657 (2009).
[Crossref]

Mohtashami, A.

A. Mohtashami and A. F. Koenderink, “Suitability of nanodiamond nitrogen–vacancy centers for spontaneous emission control experiments,” New J. Phys. 15, 043017 (2013).
[Crossref]

Morandotti, R.

L. Caspani, C. Xiong, B. J. Eggleton, D. Bajoni, M. Liscidini, M. Galli, R. Morandotti, and D. J. Moss, “Integrated sources of photon quantum states based on nonlinear optics,” Light: Sci. Appl. 6, e17100 (2017).
[Crossref]

Mortensen, N. A.

T. Christensen, W. Yan, A.-P. Jauho, M. Soljačić, and N. A. Mortensen, “Quantum corrections in nanoplasmonics: shape, scale, and material,” Phys. Rev. Lett. 118, 157402 (2017).
[Crossref]

Moss, D. J.

L. Caspani, C. Xiong, B. J. Eggleton, D. Bajoni, M. Liscidini, M. Galli, R. Morandotti, and D. J. Moss, “Integrated sources of photon quantum states based on nonlinear optics,” Light: Sci. Appl. 6, e17100 (2017).
[Crossref]

Mouradian, S.

N. H. Wan, S. Mouradian, and D. Englund, “Two-dimensional photonic crystal slab nanocavities on bulk single-crystal diamond,” Appl. Phys. Lett. 112, 141102 (2018).
[Crossref]

Mozharov, A. M.

S. V. Makarov, V. A. Milichko, I. S. Mukhin, I. I. Shishkin, D. A. Zuev, A. M. Mozharov, A. E. Krasnok, and P. A. Belov, “Controllable femtosecond laser-induced dewetting for plasmonic applications,” Laser Photon. Rev. 10, 91–99 (2016).
[Crossref]

Mukhin, I. S.

S. V. Makarov, V. A. Milichko, I. S. Mukhin, I. I. Shishkin, D. A. Zuev, A. M. Mozharov, A. E. Krasnok, and P. A. Belov, “Controllable femtosecond laser-induced dewetting for plasmonic applications,” Laser Photon. Rev. 10, 91–99 (2016).
[Crossref]

Müllen, K.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3, 654–657 (2009).
[Crossref]

Narang, P.

J. Mertens, M.-E. Kleemann, R. Chikkaraddy, P. Narang, and J. J. Baumberg, “How light is emitted by plasmonic metals,” Nano Lett. 17, 2568–2574 (2017).
[Crossref]

Nguyen, C. T.

M. K. Bhaskar, D. D. Sukachev, A. Sipahigil, R. E. Evans, M. J. Burek, C. T. Nguyen, L. J. Rogers, P. Siyushev, M. H. Metsch, H. Park, F. Jelezko, M. Lončar, and M. D. Lukin, “Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide,” Phys. Rev. Lett. 118, 223603 (2017).
[Crossref]

Nordlander, P.

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4, 899–903 (2004).
[Crossref]

Odom, T. W.

T. T. Tran, D. Wang, Z.-Q. Xu, A. Yang, M. Toth, T. W. Odom, and I. Aharonovich, “Deterministic coupling of quantum emitters in 2D materials to plasmonic nanocavity arrays,” Nano Lett. 17, 2634–2639 (2017).
[Crossref]

Ohadi, H.

F. Benz, M. K. Schmidt, A. Dreismann, R. Chikkaraddy, Y. Zhang, A. Demetriadou, C. Carnegie, H. Ohadi, B. de Nijs, R. Esteban, J. Aizpurua, and J. J. Baumberg, “Single-molecule optomechanics in “picocavities,”” Science 354, 726–729 (2016).
[Crossref]

Oubre, C.

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4, 899–903 (2004).
[Crossref]

Palstra, I. M.

I. M. Palstra, H. M. Doeleman, and A. F. Koenderink, “Hybrid cavity-antenna systems for quantum optics outside the cryostat?” Nanophotonics 8, 1513–1531 (2019).
[Crossref]

Park, H.

M. K. Bhaskar, D. D. Sukachev, A. Sipahigil, R. E. Evans, M. J. Burek, C. T. Nguyen, L. J. Rogers, P. Siyushev, M. H. Metsch, H. Park, F. Jelezko, M. Lončar, and M. D. Lukin, “Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide,” Phys. Rev. Lett. 118, 223603 (2017).
[Crossref]

Peters, S.

I. A. Rodionov, A. S. Baburin, A. R. Gabidullin, S. S. Maklakov, S. Peters, I. A. Ryzhikov, and A. V. Andriyash, “Quantum engineering of atomically smooth single-crystalline silver films,” Sci. Rep. 9, 12232 (2019).
[Crossref]

Pribil, G. K.

Y. Wu, C. Zhang, N. M. Estakhri, Y. Zhao, J. Kim, M. Zhang, X.-X. Liu, G. K. Pribil, A. Alù, C.-K. Shih, and X. Li, “Intrinsic optical properties and enhanced plasmonic response of epitaxial silver,” Adv. Mater. 26, 6106–6110 (2014).
[Crossref]

Prodan, E.

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4, 899–903 (2004).
[Crossref]

Rendler, T.

I. I. Vlasov, A. A. Shiryaev, T. Rendler, S. Steinert, S.-Y. Lee, D. Antonov, M. Vörös, F. Jelezko, A. V. Fisenko, L. F. Semjonova, J. Biskupek, U. Kaiser, O. I. Lebedev, I. Sildos, P. R. Hemmer, V. I. Konov, A. Gali, and J. Wrachtrup, “Molecular-sized fluorescent nanodiamonds,” Nat. Nanotechnol. 9, 54–58 (2014).
[Crossref]

Rhodes, D. A.

Y. Luo, G. D. Shepard, J. V. Ardelean, D. A. Rhodes, B. Kim, K. Barmak, J. C. Hone, and S. Strauf, “Deterministic coupling of site-controlled quantum emitters in monolayer WSe 2 to plasmonic nanocavities,” Nat. Nanotechnol. 13, 1137 (2018).
[Crossref]

Richter, M.

S. Hughes, S. Franke, C. Gustin, M. Kamandar Dezfouli, A. Knorr, and M. Richter, “Theory and limits of on-demand single-photon sources using plasmonic resonators: a quantized quasinormal mode approach,” ACS Photon. 6, 2168–2180 (2019).
[Crossref]

Rodionov, I. A.

I. A. Rodionov, A. S. Baburin, A. R. Gabidullin, S. S. Maklakov, S. Peters, I. A. Ryzhikov, and A. V. Andriyash, “Quantum engineering of atomically smooth single-crystalline silver films,” Sci. Rep. 9, 12232 (2019).
[Crossref]

S. I. Bogdanov, M. Y. Shalaginov, A. S. Lagutchev, C.-C. Chiang, D. Shah, A. S. Baburin, I. A. Ryzhikov, I. A. Rodionov, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Ultrabright room-temperature sub-nanosecond emission from single nitrogen-vacancy centers coupled to nanopatch antennas,” Nano Lett. 18, 4837–4844 (2018).
[Crossref]

S. I. Bogdanov, O. A. Makarova, A. S. Lagutchev, D. Shah, C.-C. Chiang, S. Saha, A. S. Baburin, I. A. Ryzhikov, I. A. Rodionov, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Deterministic integration of single nitrogen-vacancy centers into nanopatch antennas,” arXiv:1902.05996 (2019).

Rogers, L. J.

M. K. Bhaskar, D. D. Sukachev, A. Sipahigil, R. E. Evans, M. J. Burek, C. T. Nguyen, L. J. Rogers, P. Siyushev, M. H. Metsch, H. Park, F. Jelezko, M. Lončar, and M. D. Lukin, “Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide,” Phys. Rev. Lett. 118, 223603 (2017).
[Crossref]

K. D. Jahnke, A. Sipahigil, J. M. Binder, M. W. Doherty, M. Metsch, L. J. Rogers, N. B. Manson, M. D. Lukin, and F. Jelezko, “Electron–phonon processes of the silicon-vacancy centre in diamond,” New J. Phys. 17, 043011 (2015).
[Crossref]

Ryzhikov, I. A.

I. A. Rodionov, A. S. Baburin, A. R. Gabidullin, S. S. Maklakov, S. Peters, I. A. Ryzhikov, and A. V. Andriyash, “Quantum engineering of atomically smooth single-crystalline silver films,” Sci. Rep. 9, 12232 (2019).
[Crossref]

S. I. Bogdanov, M. Y. Shalaginov, A. S. Lagutchev, C.-C. Chiang, D. Shah, A. S. Baburin, I. A. Ryzhikov, I. A. Rodionov, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Ultrabright room-temperature sub-nanosecond emission from single nitrogen-vacancy centers coupled to nanopatch antennas,” Nano Lett. 18, 4837–4844 (2018).
[Crossref]

S. I. Bogdanov, O. A. Makarova, A. S. Lagutchev, D. Shah, C.-C. Chiang, S. Saha, A. S. Baburin, I. A. Ryzhikov, I. A. Rodionov, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Deterministic integration of single nitrogen-vacancy centers into nanopatch antennas,” arXiv:1902.05996 (2019).

Saha, S.

S. I. Bogdanov, O. A. Makarova, A. S. Lagutchev, D. Shah, C.-C. Chiang, S. Saha, A. S. Baburin, I. A. Ryzhikov, I. A. Rodionov, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Deterministic integration of single nitrogen-vacancy centers into nanopatch antennas,” arXiv:1902.05996 (2019).

Sauvan, C.

C. Zhang, J.-P. Hugonin, J.-J. Greffet, and C. Sauvan, “Surface plasmon polaritons emission with nanopatch antennas: enhancement by means of mode hybridization,” ACS Photon. 6, 2788–2796 (2019).
[Crossref]

Schietinger, S.

A. Kuhlicke, S. Schietinger, C. Matyssek, K. Busch, and O. Benson, “In situ observation of plasmon tuning in a single gold nanoparticle during controlled melting,” Nano Lett. 13, 2041–2046 (2013).
[Crossref]

S. Schietinger, M. Barth, T. Aichele, and O. Benson, “Plasmon-enhanced single photon emission from a nanoassembled metal−diamond hybrid structure at room temperature,” Nano Lett. 9, 1694–1698 (2009).
[Crossref]

Schmidt, M. K.

F. Benz, M. K. Schmidt, A. Dreismann, R. Chikkaraddy, Y. Zhang, A. Demetriadou, C. Carnegie, H. Ohadi, B. de Nijs, R. Esteban, J. Aizpurua, and J. J. Baumberg, “Single-molecule optomechanics in “picocavities,”” Science 354, 726–729 (2016).
[Crossref]

Semjonova, L. F.

I. I. Vlasov, A. A. Shiryaev, T. Rendler, S. Steinert, S.-Y. Lee, D. Antonov, M. Vörös, F. Jelezko, A. V. Fisenko, L. F. Semjonova, J. Biskupek, U. Kaiser, O. I. Lebedev, I. Sildos, P. R. Hemmer, V. I. Konov, A. Gali, and J. Wrachtrup, “Molecular-sized fluorescent nanodiamonds,” Nat. Nanotechnol. 9, 54–58 (2014).
[Crossref]

Shah, D.

S. I. Bogdanov, M. Y. Shalaginov, A. S. Lagutchev, C.-C. Chiang, D. Shah, A. S. Baburin, I. A. Ryzhikov, I. A. Rodionov, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Ultrabright room-temperature sub-nanosecond emission from single nitrogen-vacancy centers coupled to nanopatch antennas,” Nano Lett. 18, 4837–4844 (2018).
[Crossref]

S. I. Bogdanov, O. A. Makarova, A. S. Lagutchev, D. Shah, C.-C. Chiang, S. Saha, A. S. Baburin, I. A. Ryzhikov, I. A. Rodionov, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Deterministic integration of single nitrogen-vacancy centers into nanopatch antennas,” arXiv:1902.05996 (2019).

Shalaev, V. M.

S. I. Bogdanov, A. Boltasseva, and V. M. Shalaev, “Overcoming quantum decoherence with plasmonics,” Science 364, 532–533 (2019).
[Crossref]

S. I. Bogdanov, M. Y. Shalaginov, A. S. Lagutchev, C.-C. Chiang, D. Shah, A. S. Baburin, I. A. Ryzhikov, I. A. Rodionov, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Ultrabright room-temperature sub-nanosecond emission from single nitrogen-vacancy centers coupled to nanopatch antennas,” Nano Lett. 18, 4837–4844 (2018).
[Crossref]

S. I. Bogdanov, O. A. Makarova, A. S. Lagutchev, D. Shah, C.-C. Chiang, S. Saha, A. S. Baburin, I. A. Ryzhikov, I. A. Rodionov, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Deterministic integration of single nitrogen-vacancy centers into nanopatch antennas,” arXiv:1902.05996 (2019).

Shalaginov, M. Y.

S. I. Bogdanov, M. Y. Shalaginov, A. S. Lagutchev, C.-C. Chiang, D. Shah, A. S. Baburin, I. A. Ryzhikov, I. A. Rodionov, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Ultrabright room-temperature sub-nanosecond emission from single nitrogen-vacancy centers coupled to nanopatch antennas,” Nano Lett. 18, 4837–4844 (2018).
[Crossref]

Shepard, G. D.

Y. Luo, G. D. Shepard, J. V. Ardelean, D. A. Rhodes, B. Kim, K. Barmak, J. C. Hone, and S. Strauf, “Deterministic coupling of site-controlled quantum emitters in monolayer WSe 2 to plasmonic nanocavities,” Nat. Nanotechnol. 13, 1137 (2018).
[Crossref]

Shih, C.-K.

Y. Wu, C. Zhang, N. M. Estakhri, Y. Zhao, J. Kim, M. Zhang, X.-X. Liu, G. K. Pribil, A. Alù, C.-K. Shih, and X. Li, “Intrinsic optical properties and enhanced plasmonic response of epitaxial silver,” Adv. Mater. 26, 6106–6110 (2014).
[Crossref]

Shiryaev, A. A.

I. I. Vlasov, A. A. Shiryaev, T. Rendler, S. Steinert, S.-Y. Lee, D. Antonov, M. Vörös, F. Jelezko, A. V. Fisenko, L. F. Semjonova, J. Biskupek, U. Kaiser, O. I. Lebedev, I. Sildos, P. R. Hemmer, V. I. Konov, A. Gali, and J. Wrachtrup, “Molecular-sized fluorescent nanodiamonds,” Nat. Nanotechnol. 9, 54–58 (2014).
[Crossref]

Shishkin, I. I.

S. V. Makarov, V. A. Milichko, I. S. Mukhin, I. I. Shishkin, D. A. Zuev, A. M. Mozharov, A. E. Krasnok, and P. A. Belov, “Controllable femtosecond laser-induced dewetting for plasmonic applications,” Laser Photon. Rev. 10, 91–99 (2016).
[Crossref]

Sildos, I.

I. I. Vlasov, A. A. Shiryaev, T. Rendler, S. Steinert, S.-Y. Lee, D. Antonov, M. Vörös, F. Jelezko, A. V. Fisenko, L. F. Semjonova, J. Biskupek, U. Kaiser, O. I. Lebedev, I. Sildos, P. R. Hemmer, V. I. Konov, A. Gali, and J. Wrachtrup, “Molecular-sized fluorescent nanodiamonds,” Nat. Nanotechnol. 9, 54–58 (2014).
[Crossref]

Simon, C.

S. Wein, N. Lauk, R. Ghobadi, and C. Simon, “Feasibility of efficient room-temperature solid-state sources of indistinguishable single photons using ultrasmall mode volume cavities,” Phys. Rev. B 97, 205418 (2018).
[Crossref]

Sipahigil, A.

M. K. Bhaskar, D. D. Sukachev, A. Sipahigil, R. E. Evans, M. J. Burek, C. T. Nguyen, L. J. Rogers, P. Siyushev, M. H. Metsch, H. Park, F. Jelezko, M. Lončar, and M. D. Lukin, “Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide,” Phys. Rev. Lett. 118, 223603 (2017).
[Crossref]

K. D. Jahnke, A. Sipahigil, J. M. Binder, M. W. Doherty, M. Metsch, L. J. Rogers, N. B. Manson, M. D. Lukin, and F. Jelezko, “Electron–phonon processes of the silicon-vacancy centre in diamond,” New J. Phys. 17, 043011 (2015).
[Crossref]

Siyushev, P.

M. K. Bhaskar, D. D. Sukachev, A. Sipahigil, R. E. Evans, M. J. Burek, C. T. Nguyen, L. J. Rogers, P. Siyushev, M. H. Metsch, H. Park, F. Jelezko, M. Lončar, and M. D. Lukin, “Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide,” Phys. Rev. Lett. 118, 223603 (2017).
[Crossref]

Soljacic, M.

T. Christensen, W. Yan, A.-P. Jauho, M. Soljačić, and N. A. Mortensen, “Quantum corrections in nanoplasmonics: shape, scale, and material,” Phys. Rev. Lett. 118, 157402 (2017).
[Crossref]

Y. Yang, O. D. Miller, T. Christensen, J. D. Joannopoulos, and M. Soljačić, “Low-loss plasmonic dielectric nanoresonators,” Nano Lett. 17, 3238–3245 (2017).
[Crossref]

Stefani, F. D.

F. Balzarotti, Y. Eilers, K. C. Gwosch, A. H. Gynnå, V. Westphal, F. D. Stefani, J. Elf, and S. W. Hell, “Nanometer resolution imaging and tracking of fluorescent molecules with minimal photon fluxes,” Science 355, 606–612 (2017).
[Crossref]

Steinert, S.

I. I. Vlasov, A. A. Shiryaev, T. Rendler, S. Steinert, S.-Y. Lee, D. Antonov, M. Vörös, F. Jelezko, A. V. Fisenko, L. F. Semjonova, J. Biskupek, U. Kaiser, O. I. Lebedev, I. Sildos, P. R. Hemmer, V. I. Konov, A. Gali, and J. Wrachtrup, “Molecular-sized fluorescent nanodiamonds,” Nat. Nanotechnol. 9, 54–58 (2014).
[Crossref]

Stockman, M. I.

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4, 899–903 (2004).
[Crossref]

K. Li, M. I. Stockman, and D. J. Bergman, “Self-similar chain of metal nanospheres as an efficient nanolens,” Phys. Rev. Lett. 91, 227402 (2003).
[Crossref]

Strauf, S.

Y. Luo, X. He, Y. Kim, J. L. Blackburn, S. K. Doorn, H. Htoon, and S. Strauf, “Carbon nanotube color centers in plasmonic nanocavities: a path to photon indistinguishability at telecom bands,” Nano Lett. 19, 9037–9044 (2019).
[Crossref]

Y. Luo, G. D. Shepard, J. V. Ardelean, D. A. Rhodes, B. Kim, K. Barmak, J. C. Hone, and S. Strauf, “Deterministic coupling of site-controlled quantum emitters in monolayer WSe 2 to plasmonic nanocavities,” Nat. Nanotechnol. 13, 1137 (2018).
[Crossref]

Sukachev, D. D.

M. K. Bhaskar, D. D. Sukachev, A. Sipahigil, R. E. Evans, M. J. Burek, C. T. Nguyen, L. J. Rogers, P. Siyushev, M. H. Metsch, H. Park, F. Jelezko, M. Lončar, and M. D. Lukin, “Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide,” Phys. Rev. Lett. 118, 223603 (2017).
[Crossref]

Sun, G.

G. Sun, J. B. Khurgin, and A. Bratkovsky, “Coupled-mode theory of field enhancement in complex metal nanostructures,” Phys. Rev. B 84, 045415 (2011).
[Crossref]

G. Sun and J. B. Khurgin, “Theory of optical emission enhancement by coupled metal nanoparticles: an analytical approach,” Appl. Phys. Lett. 98, 113116 (2011).
[Crossref]

G. Sun, J. B. Khurgin, and C. C. Yang, “Impact of high-order surface plasmon modes of metal nanoparticles on enhancement of optical emission,” Appl. Phys. Lett. 95, 171103 (2009).
[Crossref]

Toth, M.

T. T. Tran, D. Wang, Z.-Q. Xu, A. Yang, M. Toth, T. W. Odom, and I. Aharonovich, “Deterministic coupling of quantum emitters in 2D materials to plasmonic nanocavity arrays,” Nano Lett. 17, 2634–2639 (2017).
[Crossref]

I. Aharonovich, D. Englund, and M. Toth, “Solid-state single-photon emitters,” Nat. Photonics 10, 631–641 (2016).
[Crossref]

Tran, T. T.

T. T. Tran, D. Wang, Z.-Q. Xu, A. Yang, M. Toth, T. W. Odom, and I. Aharonovich, “Deterministic coupling of quantum emitters in 2D materials to plasmonic nanocavity arrays,” Nano Lett. 17, 2634–2639 (2017).
[Crossref]

Vlasov, I. I.

I. I. Vlasov, A. A. Shiryaev, T. Rendler, S. Steinert, S.-Y. Lee, D. Antonov, M. Vörös, F. Jelezko, A. V. Fisenko, L. F. Semjonova, J. Biskupek, U. Kaiser, O. I. Lebedev, I. Sildos, P. R. Hemmer, V. I. Konov, A. Gali, and J. Wrachtrup, “Molecular-sized fluorescent nanodiamonds,” Nat. Nanotechnol. 9, 54–58 (2014).
[Crossref]

Vörös, M.

I. I. Vlasov, A. A. Shiryaev, T. Rendler, S. Steinert, S.-Y. Lee, D. Antonov, M. Vörös, F. Jelezko, A. V. Fisenko, L. F. Semjonova, J. Biskupek, U. Kaiser, O. I. Lebedev, I. Sildos, P. R. Hemmer, V. I. Konov, A. Gali, and J. Wrachtrup, “Molecular-sized fluorescent nanodiamonds,” Nat. Nanotechnol. 9, 54–58 (2014).
[Crossref]

Wan, N. H.

N. H. Wan, S. Mouradian, and D. Englund, “Two-dimensional photonic crystal slab nanocavities on bulk single-crystal diamond,” Appl. Phys. Lett. 112, 141102 (2018).
[Crossref]

Wang, D.

T. T. Tran, D. Wang, Z.-Q. Xu, A. Yang, M. Toth, T. W. Odom, and I. Aharonovich, “Deterministic coupling of quantum emitters in 2D materials to plasmonic nanocavity arrays,” Nano Lett. 17, 2634–2639 (2017).
[Crossref]

Wein, S.

S. Wein, N. Lauk, R. Ghobadi, and C. Simon, “Feasibility of efficient room-temperature solid-state sources of indistinguishable single photons using ultrasmall mode volume cavities,” Phys. Rev. B 97, 205418 (2018).
[Crossref]

Westphal, V.

F. Balzarotti, Y. Eilers, K. C. Gwosch, A. H. Gynnå, V. Westphal, F. D. Stefani, J. Elf, and S. W. Hell, “Nanometer resolution imaging and tracking of fluorescent molecules with minimal photon fluxes,” Science 355, 606–612 (2017).
[Crossref]

Wrachtrup, J.

I. I. Vlasov, A. A. Shiryaev, T. Rendler, S. Steinert, S.-Y. Lee, D. Antonov, M. Vörös, F. Jelezko, A. V. Fisenko, L. F. Semjonova, J. Biskupek, U. Kaiser, O. I. Lebedev, I. Sildos, P. R. Hemmer, V. I. Konov, A. Gali, and J. Wrachtrup, “Molecular-sized fluorescent nanodiamonds,” Nat. Nanotechnol. 9, 54–58 (2014).
[Crossref]

Wu, M. C.

M. S. Eggleston, K. Messer, L. Zhang, E. Yablonovitch, and M. C. Wu, “Optical antenna enhanced spontaneous emission,” Proc. Natl. Acad. Sci. USA 112, 1704–1709 (2015).
[Crossref]

Wu, Y.

Y. Wu, C. Zhang, N. M. Estakhri, Y. Zhao, J. Kim, M. Zhang, X.-X. Liu, G. K. Pribil, A. Alù, C.-K. Shih, and X. Li, “Intrinsic optical properties and enhanced plasmonic response of epitaxial silver,” Adv. Mater. 26, 6106–6110 (2014).
[Crossref]

Xiong, C.

L. Caspani, C. Xiong, B. J. Eggleton, D. Bajoni, M. Liscidini, M. Galli, R. Morandotti, and D. J. Moss, “Integrated sources of photon quantum states based on nonlinear optics,” Light: Sci. Appl. 6, e17100 (2017).
[Crossref]

Xu, Z.-Q.

T. T. Tran, D. Wang, Z.-Q. Xu, A. Yang, M. Toth, T. W. Odom, and I. Aharonovich, “Deterministic coupling of quantum emitters in 2D materials to plasmonic nanocavity arrays,” Nano Lett. 17, 2634–2639 (2017).
[Crossref]

Yablonovitch, E.

M. S. Eggleston, K. Messer, L. Zhang, E. Yablonovitch, and M. C. Wu, “Optical antenna enhanced spontaneous emission,” Proc. Natl. Acad. Sci. USA 112, 1704–1709 (2015).
[Crossref]

Yan, W.

T. Christensen, W. Yan, A.-P. Jauho, M. Soljačić, and N. A. Mortensen, “Quantum corrections in nanoplasmonics: shape, scale, and material,” Phys. Rev. Lett. 118, 157402 (2017).
[Crossref]

Yang, A.

T. T. Tran, D. Wang, Z.-Q. Xu, A. Yang, M. Toth, T. W. Odom, and I. Aharonovich, “Deterministic coupling of quantum emitters in 2D materials to plasmonic nanocavity arrays,” Nano Lett. 17, 2634–2639 (2017).
[Crossref]

Yang, C. C.

G. Sun, J. B. Khurgin, and C. C. Yang, “Impact of high-order surface plasmon modes of metal nanoparticles on enhancement of optical emission,” Appl. Phys. Lett. 95, 171103 (2009).
[Crossref]

Yang, J.

R. Faggiani, J. Yang, and P. Lalanne, “Quenching, plasmonic, and radiative decays in nanogap emitting devices,” ACS Photon. 2, 1739–1744 (2015).
[Crossref]

Yang, Y.

Y. Yang, O. D. Miller, T. Christensen, J. D. Joannopoulos, and M. Soljačić, “Low-loss plasmonic dielectric nanoresonators,” Nano Lett. 17, 3238–3245 (2017).
[Crossref]

Yu, Z.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3, 654–657 (2009).
[Crossref]

Zhang, C.

C. Zhang, J.-P. Hugonin, J.-J. Greffet, and C. Sauvan, “Surface plasmon polaritons emission with nanopatch antennas: enhancement by means of mode hybridization,” ACS Photon. 6, 2788–2796 (2019).
[Crossref]

Y. Wu, C. Zhang, N. M. Estakhri, Y. Zhao, J. Kim, M. Zhang, X.-X. Liu, G. K. Pribil, A. Alù, C.-K. Shih, and X. Li, “Intrinsic optical properties and enhanced plasmonic response of epitaxial silver,” Adv. Mater. 26, 6106–6110 (2014).
[Crossref]

Zhang, L.

M. S. Eggleston, K. Messer, L. Zhang, E. Yablonovitch, and M. C. Wu, “Optical antenna enhanced spontaneous emission,” Proc. Natl. Acad. Sci. USA 112, 1704–1709 (2015).
[Crossref]

Zhang, M.

Y. Wu, C. Zhang, N. M. Estakhri, Y. Zhao, J. Kim, M. Zhang, X.-X. Liu, G. K. Pribil, A. Alù, C.-K. Shih, and X. Li, “Intrinsic optical properties and enhanced plasmonic response of epitaxial silver,” Adv. Mater. 26, 6106–6110 (2014).
[Crossref]

Zhang, Y.

F. Benz, M. K. Schmidt, A. Dreismann, R. Chikkaraddy, Y. Zhang, A. Demetriadou, C. Carnegie, H. Ohadi, B. de Nijs, R. Esteban, J. Aizpurua, and J. J. Baumberg, “Single-molecule optomechanics in “picocavities,”” Science 354, 726–729 (2016).
[Crossref]

Zhao, Y.

Y. Wu, C. Zhang, N. M. Estakhri, Y. Zhao, J. Kim, M. Zhang, X.-X. Liu, G. K. Pribil, A. Alù, C.-K. Shih, and X. Li, “Intrinsic optical properties and enhanced plasmonic response of epitaxial silver,” Adv. Mater. 26, 6106–6110 (2014).
[Crossref]

Zuev, D. A.

S. V. Makarov, V. A. Milichko, I. S. Mukhin, I. I. Shishkin, D. A. Zuev, A. M. Mozharov, A. E. Krasnok, and P. A. Belov, “Controllable femtosecond laser-induced dewetting for plasmonic applications,” Laser Photon. Rev. 10, 91–99 (2016).
[Crossref]

ACS Photon. (3)

S. Hughes, S. Franke, C. Gustin, M. Kamandar Dezfouli, A. Knorr, and M. Richter, “Theory and limits of on-demand single-photon sources using plasmonic resonators: a quantized quasinormal mode approach,” ACS Photon. 6, 2168–2180 (2019).
[Crossref]

C. Zhang, J.-P. Hugonin, J.-J. Greffet, and C. Sauvan, “Surface plasmon polaritons emission with nanopatch antennas: enhancement by means of mode hybridization,” ACS Photon. 6, 2788–2796 (2019).
[Crossref]

R. Faggiani, J. Yang, and P. Lalanne, “Quenching, plasmonic, and radiative decays in nanogap emitting devices,” ACS Photon. 2, 1739–1744 (2015).
[Crossref]

Adv. Mater. (1)

Y. Wu, C. Zhang, N. M. Estakhri, Y. Zhao, J. Kim, M. Zhang, X.-X. Liu, G. K. Pribil, A. Alù, C.-K. Shih, and X. Li, “Intrinsic optical properties and enhanced plasmonic response of epitaxial silver,” Adv. Mater. 26, 6106–6110 (2014).
[Crossref]

Appl. Phys. Lett. (3)

G. Sun and J. B. Khurgin, “Theory of optical emission enhancement by coupled metal nanoparticles: an analytical approach,” Appl. Phys. Lett. 98, 113116 (2011).
[Crossref]

N. H. Wan, S. Mouradian, and D. Englund, “Two-dimensional photonic crystal slab nanocavities on bulk single-crystal diamond,” Appl. Phys. Lett. 112, 141102 (2018).
[Crossref]

G. Sun, J. B. Khurgin, and C. C. Yang, “Impact of high-order surface plasmon modes of metal nanoparticles on enhancement of optical emission,” Appl. Phys. Lett. 95, 171103 (2009).
[Crossref]

Laser Photon. Rev. (1)

S. V. Makarov, V. A. Milichko, I. S. Mukhin, I. I. Shishkin, D. A. Zuev, A. M. Mozharov, A. E. Krasnok, and P. A. Belov, “Controllable femtosecond laser-induced dewetting for plasmonic applications,” Laser Photon. Rev. 10, 91–99 (2016).
[Crossref]

Light: Sci. Appl. (1)

L. Caspani, C. Xiong, B. J. Eggleton, D. Bajoni, M. Liscidini, M. Galli, R. Morandotti, and D. J. Moss, “Integrated sources of photon quantum states based on nonlinear optics,” Light: Sci. Appl. 6, e17100 (2017).
[Crossref]

Nano Lett. (11)

Y. Luo, X. He, Y. Kim, J. L. Blackburn, S. K. Doorn, H. Htoon, and S. Strauf, “Carbon nanotube color centers in plasmonic nanocavities: a path to photon indistinguishability at telecom bands,” Nano Lett. 19, 9037–9044 (2019).
[Crossref]

T. T. Tran, D. Wang, Z.-Q. Xu, A. Yang, M. Toth, T. W. Odom, and I. Aharonovich, “Deterministic coupling of quantum emitters in 2D materials to plasmonic nanocavity arrays,” Nano Lett. 17, 2634–2639 (2017).
[Crossref]

J. Mertens, M.-E. Kleemann, R. Chikkaraddy, P. Narang, and J. J. Baumberg, “How light is emitted by plasmonic metals,” Nano Lett. 17, 2568–2574 (2017).
[Crossref]

S. Schietinger, M. Barth, T. Aichele, and O. Benson, “Plasmon-enhanced single photon emission from a nanoassembled metal−diamond hybrid structure at room temperature,” Nano Lett. 9, 1694–1698 (2009).
[Crossref]

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4, 899–903 (2004).
[Crossref]

S. K. H. Andersen, S. Kumar, and S. I. Bozhevolnyi, “Ultrabright linearly polarized photon generation from a nitrogen vacancy center in a nanocube dimer antenna,” Nano Lett. 17, 3889–3895 (2017).
[Crossref]

T. B. Hoang, G. M. Akselrod, and M. H. Mikkelsen, “Ultrafast room-temperature single photon emission from quantum dots coupled to plasmonic nanocavities,” Nano Lett. 16, 270–275 (2016).
[Crossref]

S. I. Bogdanov, M. Y. Shalaginov, A. S. Lagutchev, C.-C. Chiang, D. Shah, A. S. Baburin, I. A. Ryzhikov, I. A. Rodionov, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Ultrabright room-temperature sub-nanosecond emission from single nitrogen-vacancy centers coupled to nanopatch antennas,” Nano Lett. 18, 4837–4844 (2018).
[Crossref]

Y. Yang, O. D. Miller, T. Christensen, J. D. Joannopoulos, and M. Soljačić, “Low-loss plasmonic dielectric nanoresonators,” Nano Lett. 17, 3238–3245 (2017).
[Crossref]

G. Albrecht, S. Kaiser, H. Giessen, and M. Hentschel, “Refractory plasmonics without refractory materials,” Nano Lett. 17, 6402–6408 (2017).
[Crossref]

A. Kuhlicke, S. Schietinger, C. Matyssek, K. Busch, and O. Benson, “In situ observation of plasmon tuning in a single gold nanoparticle during controlled melting,” Nano Lett. 13, 2041–2046 (2013).
[Crossref]

Nanophotonics (1)

I. M. Palstra, H. M. Doeleman, and A. F. Koenderink, “Hybrid cavity-antenna systems for quantum optics outside the cryostat?” Nanophotonics 8, 1513–1531 (2019).
[Crossref]

Nat. Nanotechnol. (2)

I. I. Vlasov, A. A. Shiryaev, T. Rendler, S. Steinert, S.-Y. Lee, D. Antonov, M. Vörös, F. Jelezko, A. V. Fisenko, L. F. Semjonova, J. Biskupek, U. Kaiser, O. I. Lebedev, I. Sildos, P. R. Hemmer, V. I. Konov, A. Gali, and J. Wrachtrup, “Molecular-sized fluorescent nanodiamonds,” Nat. Nanotechnol. 9, 54–58 (2014).
[Crossref]

Y. Luo, G. D. Shepard, J. V. Ardelean, D. A. Rhodes, B. Kim, K. Barmak, J. C. Hone, and S. Strauf, “Deterministic coupling of site-controlled quantum emitters in monolayer WSe 2 to plasmonic nanocavities,” Nat. Nanotechnol. 13, 1137 (2018).
[Crossref]

Nat. Photonics (3)

I. Aharonovich, D. Englund, and M. Toth, “Solid-state single-photon emitters,” Nat. Photonics 10, 631–641 (2016).
[Crossref]

S. I. Bozhevolnyi and J. B. Khurgin, “The case for quantum plasmonics,” Nat. Photonics 11, 398–400 (2017).
[Crossref]

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3, 654–657 (2009).
[Crossref]

New J. Phys. (2)

A. Mohtashami and A. F. Koenderink, “Suitability of nanodiamond nitrogen–vacancy centers for spontaneous emission control experiments,” New J. Phys. 15, 043017 (2013).
[Crossref]

K. D. Jahnke, A. Sipahigil, J. M. Binder, M. W. Doherty, M. Metsch, L. J. Rogers, N. B. Manson, M. D. Lukin, and F. Jelezko, “Electron–phonon processes of the silicon-vacancy centre in diamond,” New J. Phys. 17, 043011 (2015).
[Crossref]

Opt. Lett. (1)

Optica (1)

Phys. Rev. B (2)

G. Sun, J. B. Khurgin, and A. Bratkovsky, “Coupled-mode theory of field enhancement in complex metal nanostructures,” Phys. Rev. B 84, 045415 (2011).
[Crossref]

S. Wein, N. Lauk, R. Ghobadi, and C. Simon, “Feasibility of efficient room-temperature solid-state sources of indistinguishable single photons using ultrasmall mode volume cavities,” Phys. Rev. B 97, 205418 (2018).
[Crossref]

Phys. Rev. Lett. (3)

T. Christensen, W. Yan, A.-P. Jauho, M. Soljačić, and N. A. Mortensen, “Quantum corrections in nanoplasmonics: shape, scale, and material,” Phys. Rev. Lett. 118, 157402 (2017).
[Crossref]

M. K. Bhaskar, D. D. Sukachev, A. Sipahigil, R. E. Evans, M. J. Burek, C. T. Nguyen, L. J. Rogers, P. Siyushev, M. H. Metsch, H. Park, F. Jelezko, M. Lončar, and M. D. Lukin, “Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide,” Phys. Rev. Lett. 118, 223603 (2017).
[Crossref]

K. Li, M. I. Stockman, and D. J. Bergman, “Self-similar chain of metal nanospheres as an efficient nanolens,” Phys. Rev. Lett. 91, 227402 (2003).
[Crossref]

Proc. Natl. Acad. Sci. USA (1)

M. S. Eggleston, K. Messer, L. Zhang, E. Yablonovitch, and M. C. Wu, “Optical antenna enhanced spontaneous emission,” Proc. Natl. Acad. Sci. USA 112, 1704–1709 (2015).
[Crossref]

Sci. Rep. (1)

I. A. Rodionov, A. S. Baburin, A. R. Gabidullin, S. S. Maklakov, S. Peters, I. A. Ryzhikov, and A. V. Andriyash, “Quantum engineering of atomically smooth single-crystalline silver films,” Sci. Rep. 9, 12232 (2019).
[Crossref]

Science (3)

S. I. Bogdanov, A. Boltasseva, and V. M. Shalaev, “Overcoming quantum decoherence with plasmonics,” Science 364, 532–533 (2019).
[Crossref]

F. Balzarotti, Y. Eilers, K. C. Gwosch, A. H. Gynnå, V. Westphal, F. D. Stefani, J. Elf, and S. W. Hell, “Nanometer resolution imaging and tracking of fluorescent molecules with minimal photon fluxes,” Science 355, 606–612 (2017).
[Crossref]

F. Benz, M. K. Schmidt, A. Dreismann, R. Chikkaraddy, Y. Zhang, A. Demetriadou, C. Carnegie, H. Ohadi, B. de Nijs, R. Esteban, J. Aizpurua, and J. J. Baumberg, “Single-molecule optomechanics in “picocavities,”” Science 354, 726–729 (2016).
[Crossref]

Other (1)

S. I. Bogdanov, O. A. Makarova, A. S. Lagutchev, D. Shah, C.-C. Chiang, S. Saha, A. S. Baburin, I. A. Ryzhikov, I. A. Rodionov, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Deterministic integration of single nitrogen-vacancy centers into nanopatch antennas,” arXiv:1902.05996 (2019).

Supplementary Material (1)

NameDescription
» Supplement 1       Supplemental document containing supporting data and descriptions of simulation methods and experimental methods

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. Photomodification of a nanopatch antenna with an embedded single nitrogen–vacancy center in a nanodiamond. (a) Schematics of the nanopatch antenna before and after photomodification. (b) NV center fluorescence lifetime changes as a result of nanopatch antenna photomodification. (c) Photon antibunching of the NV photoluminescence is conserved during photomodification (red and green curves; data measured at an incident pump power of 3 µW). The antibunching data for the same NV center on glass substrate prior to NPA assembly is shown in blue (data measured at an incident pump power of 340 µW). (d) Photoluminescence saturation curves illustrate that NV brightness increases after photomodification.
Fig. 2.
Fig. 2. (a) Nanopatch antenna viewed as a cavity–antenna system enhancing the emission from a quantum emitter coupled to the gap plasmonic cavity; (b) formation of the coupled mode and the diagram of energy flow in a cavity–antenna system.
Fig. 3.
Fig. 3. (a) ${{{\gamma _{{\rm ff}}}} / {{\gamma _0}}}$ for a quantum emitter with unity internal quantum yield coupled to a plasmonic cavity–antenna system as a function of the normalized unitless mode volumes ${v_1}$ and ${v_2}$. Continuous black lines correspond to the different validity limits of our analytical description. Whitened areas represent phase space regions where our assumptions break down. The emitter–cavity strong coupling condition is plotted for ${\gamma _0} = 100\;{\rm MHz}$. The gray circle in the bottom of the map denotes the optimal point in the phase space (${v_1},{v_2}$) within the validity limits. White circles correspond to the numerically simulated cases of nanopatch antennas with nanocube inclination angles of 10.7° and 0°. (b) Radiative efficiency ${\eta _{{\rm rad}}}$ plotted along the emitter–cavity strong coupling limit.
Fig. 4.
Fig. 4. Simulations of total decay rate (solid lines) and total ohmic loss rates (dashed lines) for a quantum emitter in nanodiamond coupled to a progressively modified NPA. Four different NPA configurations are simulated corresponding to different degrees of photomodification labeled by the values of nanocube inclination angle $\theta $.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

γ f f γ 0 = ω p 2 γ o h m 2 v A / v C ( 1 + v A ω p 2 γ o h m ω ) 2 ,
γ f f o p t 1.7 ( ω p 2 ω 2 γ 0 ) 1 / 5 , η r a d o p t 1 γ o h m γ f f o p t