Abstract

We present a 1 Mpixel single-photon avalanche diode camera featuring 3.8 ns time gating and 24 kfps frame rate, fabricated in 180 nm CMOS image sensor technology. We designed two pixels with a pitch of 9.4 µm in 7 T and 5.75 T configurations respectively, achieving a maximum fill factor of 13.4%. The maximum photon detection probability is 27%, median dark count rate is 2.0 cps, variation in gating length is 120 ps, position skew is 410 ps, and rise/fall time is ${ \lt }{550}\;{\rm ps}$, all FWHM at 3.3 V excess bias. The sensor was used to capture 2D/3D scenes over 2 m with resolution (least significant bit) of 5.4 mm and precision better than 7.8 mm (rms). We demonstrate extended dynamic range in dual exposure operation mode and show spatially overlapped multi-object detection in single-photon time-gated time-of-flight experiments.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Architecture and applications of a high resolution gated SPAD image sensor

Samuel Burri, Yuki Maruyama, Xavier Michalet, Francesco Regazzoni, Claudio Bruschini, and Edoardo Charbon
Opt. Express 22(14) 17573-17589 (2014)

Photon-number-resolving megapixel image sensor at room temperature without avalanche gain

Jiaju Ma, Saleh Masoodian, Dakota A. Starkey, and Eric R. Fossum
Optica 4(12) 1474-1481 (2017)

High-resolution depth profiling using a range-gated CMOS SPAD quanta image sensor

Ximing Ren, Peter W. R. Connolly, Abderrahim Halimi, Yoann Altmann, Stephen McLaughlin, Istvan Gyongy, Robert K. Henderson, and Gerald S. Buller
Opt. Express 26(5) 5541-5557 (2018)

References

  • View by:
  • |
  • |
  • |

  1. A. Velten, T. Willwacher, O. Gupta, A. Veeraraghavan, M. G. Bawendi, and R. Raskar, “Recovering three-dimensional shape around a corner using ultrafast time-of-flight imaging,” Nat. Commun. 3, 745 (2012).
    [Crossref]
  2. M. O’Toole, D. B. Lindell, and G. Wetzstein, “Confocal non-line-of-sight imaging based on light-cone transform,” Nature 555, 338–341 (2018).
    [Crossref]
  3. C. Bruschini, H. Homulle, I. M. Antolovic, S. Burri, and E. Charbon, “Single-photon avalanche diode imagers in biophotonics: review and outlook,” Light Sci. Appl. 8, 87 (2019).
    [Crossref]
  4. H. Defienne, M. Reichert, J. W. Fleischer, and D. Faccio, “Quantum image distillation,” Sci. Adv. 5, eaax0307 (2019).
    [Crossref]
  5. A. Lyons, F. Tonolini, A. Boccolini, A. Repetti, R. Henderson, Y. Wiaux, and D. Faccio, “Computational time-of-flight diffuse optical tomography,” Nat. Photonics 13, 575–579 (2019).
    [Crossref]
  6. N. A. W. Dutton, I. Gyongy, L. Parmesan, S. Gnecchi, N. Calder, B. R. Rae, S. Pellegrini, L. A. Grant, and R. K. Henderson, “A SPAD-based QVGA image sensor for single-photon counting and quanta imaging,” IEEE Trans. Electron Devices 63, 189–196 (2016).
    [Crossref]
  7. M. Perenzoni, N. Massari, D. Perenzoni, L. Gasparini, and D. Stoppa, “A 160×120-pixel analog-counting single-photon imager with time-gating and self-referenced column-parallel A/D conversion for fluorescence lifetime imaging,” IEEE J. Solid-State Circuits 51, 155–167 (2016).
    [Crossref]
  8. I. Gyongy, N. Calder, A. Davies, N. A. W. Dutton, R. R. Duncan, C. Rickman, P. Dalgamo, and R. K. Henderson, “A 256×256, 100-kfps, 61% fill-factor SPAD image sensor for time-resolved microscopy applications,” IEEE Trans. Electron Devices 65, 547–554 (2018).
    [Crossref]
  9. Y. Hirose, S. Koyama, T. Okino, A. Inoue, S. Saito, Y. Nose, M. Ishii, S. Yamahira, S. Kasuga, M. Mori, T. Kabe, K. Nakanishi, M. Usuda, A. Odagawa, and T. Tanaka, “A 400×400-pixel 6µm-pitch vertical avalanche photodiodes CMOS image sensor based on 150  ps-fast capacitive relaxation quenching in Geiger mode for synthesis of arbitrary gain images,” in IEEE Int. Solid-State Circuits Conference (2019).
  10. A. C. Ulku, C. Bruschini, I. M. Antolovic, Y. Kuo, R. Ankri, S. Weiss, X. Michalet, and E. Charbon, “A 512×512 SPAD image sensor with integrated gating for widefield FLIM,” IEEE J. Sel. Top. Quantum Electron. 25, 1–12 (2019).
    [Crossref]
  11. J. M. Pavia, M. Scandini, S. Lindner, M. Wolf, and E. Charbon, “A 1 × 400 backside-illuminated SPAD sensor with 49.7  ps resolution, 30  pJ/sample TDCs fabricated in 3D CMOS technology for near-infrared optical tomography,” IEEE J. Solid-State Circuits 50, 2406–2418 (2015).
    [Crossref]
  12. T. Al Abbas, N. A. W. Dutton, O. Almer, S. Pellegrini, Y. Henrion, and R. K. Henderson, “Backside illuminated SPAD image sensor with 7.83  µm pitch in 3D-stacked CMOS technology,” in IEEE International Electron Devices Meeting (2016), pp. 811–814.
  13. A. R. Ximenes, P. Padmanabhan, M.-J. Lee, Y. Yamashita, D.-N. Yaung, and E. Charbon, “A modular, direct time-of-flight depth sensor in 45/65-nm 3-D-stacked CMOS technology,” IEEE J. Solid-State Circuits 54, 3203–3214 (2019).
    [Crossref]
  14. R. K. Henderson, N. Johnston, S. W. Hutchings, I. Gyongy, T. Al Abbas, N. Dutton, M. Tyler, S. Chan, and J. Leach, “A 256×256 40  nm/90  nm CMOS 3D-stacked 120  dB dynamic-range reconfigurable time-resolved SPAD imager,” in IEEE International Conference on Solid-State Circuits Conference (2019).
  15. E. R. Fossum, “What to do with sub-diffraction-limit (SDL) pixels? A proposal for a gigapixel digital film sensor (DFS),” in IEEE Workshop on Charge-Coupled Devices and Advanced Image Sensors (2005), pp. 214–217.
  16. E. R. Fossum, J. Ma, S. Masoodian, L. Anzagira, and R. Zizza, “The quanta image sensor: every photon counts,” Sensors 16, 1260 (2016).
    [Crossref]
  17. F. Yang, Y. M. Lu, L. Sbaiz, and M. Vetterli, “Bits from photons: oversampled image acquisition using binary Poisson statistics,” IEEE Trans. Image Process. 21, 1421–1436 (2012).
    [Crossref]
  18. J. Ma, S. Masoodian, D. A. Starkey, and E. R. Fossum, “Photon-number-resolving megapixel image sensor at room temperature without avalanche gain,” Optica 4, 1474–1481 (2017).
    [Crossref]
  19. A. Gnanasambandam, O. Elgendy, J. Ma, and S. H. Chan, “Megapixel photon-counting color imaging using quanta image sensor,” Opt. Express 27, 17298–17310 (2019).
    [Crossref]
  20. J. Richardson, R. Walker, L. Grant, D. Stoppa, F. Borghetti, E. Charbon, M. Gersbach, and R. K. Henderson, “A 32×32 50  ps resolution 10  bit time to digital converter array in 130  nm CMOS for time correlated imaging,” in IEEE Custom Integrated Circuits Conference (2009).
  21. C. Veerappan, J. Richardson, R. Walker, D.-U. Li, M. W. Fishburn, Y. Maruyama, D. Stoppa, F. Borghetti, M. Gersbach, R. K. Henderson, and E. Charbon, “A 160×128 single-photon image sensor with on-pixel 55  ps 10  b time-to-digital converter,” in IEEE International Solid-State Circuits Conference (2011).
  22. A. Carimatto, S. Mandai, E. Venialgo, T. Gong, G. Borghi, D. R. Schaart, and E. Charbon, “A 67,392-SPAD PVTB-compensated multi-channel digital SiPM with 432 column-parallel 48  ps 17b TDCs for endoscopic time-of-flight PET,” in IEEE International Solid-State Circuits Conference (2015).
  23. M. Perenzoni, D. Perenzoni, and D. Stoppa, “A 64×64-pixel digital silicon photomultiplier direct ToF sensor with 100Mphotons/s/pixel background rejection and imaging/altimeter mode with 0.14% precision up to 6km for spacecraft navigation and landing,” in IEEE International Solid-State Circuits Conference (2016).
  24. R. K. Henderson, N. Johnston, F. M. D. Rocca, H. Chen, D. D.-U. Li, G. Hungerford, R. Hirsch, D. McLoskey, P. Yip, and D. J. S. Birch, “A 192×128 time correlated SPAD image sensor in 40  nm CMOS technology,” IEEE J. Solid-State Circuits 54, 1907–1916 (2019).
    [Crossref]
  25. C. Veerappan and E. Charbon, “A low dark count p-i-n diode based SPAD in CMOS technology,” IEEE Trans. Electron Devices 63, 65–71 (2016).
    [Crossref]
  26. D. Bronzi, F. Villa, S. Bellisai, B. Markovic, S. Tisa, A. Tosi, F. Zappa, S. Weyers, D. Durini, W. Brockherde, and U. Paschen, “Low-noise and large-area CMOS SPADs with timing response free from slow tails,” in European Solid-State Device Research Conference (ESSDERC) (2012), pp. 230–233.
  27. F. Acerbi, G. Paternoster, A. Gola, N. Zorzi, and C. Piemonte, “Silicon photomultipliers and single-photon avalanche diodes with enhanced NIR detection efficiency at FBK,” Nucl. Instrum. Methods Phys. Res. A 912, 309–314 (2018).
    [Crossref]
  28. N. A. W. Dutton, T. Al Abbas, I. Gyongy, F. M. D. Rocca, and R. K. Henderson, “High dynamic range imaging at the quantum limit with single photon avalanche diode-based image sensors,” Sensors 18, 1166 (2018).
    [Crossref]
  29. I. M. Antolovic, C. Bruschini, and E. Charbon, “Dynamic range extension for photon counting arrays,” Opt. Express 26, 22234–22248 (2018).
    [Crossref]
  30. S. Kawahito, I. A. Halin, T. Ushinaga, T. Sawada, M. Homma, and Y. Maeda, “A CMOS time-of-flight range image sensor with gates-on-field-oxide structure,” IEEE Sens. J. 7, 1578–1586 (2007).
    [Crossref]
  31. W. van der Tempel, A. Ercan, T. Finateu, K. Fotopoulou, C. Mourad, F. Agavriloaie, S. Resimont, L. Cutrignelli, P. Thury, C. E. Medina, S. Xiao, J.-L. Loheac, J. Perhavc, T. Van de Hauwe, V. Belokonskiy, L. Bossuyt, W. Aerts, M. Pauwels, and D. Van Nieuwenhove, “A 320 × 240 10  um CAPD ToF image sensor with improved performance,” in International Image Sensor Workshop (2017).
  32. C. S. Bamji, S. Mehta, B. Thompson, T. Elkhatib, S. Wurster, O. Akkaya, A. Payne, J. Godbaz, M. Fenton, V. Rajasekaran, L. Prather, S. Nagaraja, V. Mogallapu, D. Snow, R. McCauley, M. Mukadam, I. Agi, S. McCarthy, Z. Xu, T. Perry, W. Qian, V.-H. Chan, P. Adepu, G. Ali, M. Ahmed, A. Mukherjee, S. Nayak, D. Gampell, S. Acharya, L. Kordus, and P. O’Connor, “1  Mpixel 65  nm BSI 320  MHz demodulated TOF image sensor with 3.5  µm global shutter pixels and analog binning,” in IEEE International Solid-State Circuits Conference (2018).
  33. D. Shin, F. Xu, F. N. C. Wong, J. H. Shapiro, and V. K. Goyal, “Computational multi-depth single-photon imaging,” Opt. Express 24, 1873–1888 (2016).
    [Crossref]
  34. J. Haase, M. Beer, J. Ruskowski, and H. Vogt, “Multi object detection in direct time-of-flight measurements with SPADs,” in 14th Conference on Ph.D. Research in Microelectronics and Electronics (2018).
  35. A. Kadambi, R. Whyte, A. Bhandari, L. Streeter, C. Barsi, A. Dorrington, and R. Raskar, “Coded time of flight cameras: sparse deconvolution to address multipath interference and recover time profiles,” ACM Trans. Graphics 32, 167 (2013).
    [Crossref]
  36. F. Mochizuki, K. Kagawa, R. Miyagi, M.-W. Seo, B. Zhang, T. Takasawa, K. Yasutomi, and S. Kawahito, “Separation of multi-path components in sweep-less time-of-flight depth imaging with a temporally-compressive multi-aperture image sensor,” ITE Trans. Media Technol. Appl. 6, 202–211 (2018).
    [Crossref]
  37. K. Kitano, T. Okamoto, K. Tanaka, T. Aoto, H. Kubo, T. Funatomi, and Y. Mukaigawa, “Recovering temporal PSF using ToF camera with delayed light emission,” IPSJ Trans. Comput. Vis. Appl. 9, 15 (2017).
    [Crossref]
  38. E. Charbon, “Will avalanche photodiode arrays ever reach 1 megapixel?” in International Image Sensor Workshop (2007).
  39. M. Perenzoni, M. Moreno-García, L. Gasparini, and N. Massari, “Time-resolved single-photon detectors: integration challenges in CMOS technologies,” in IEEE International Conference on IC Design and Technology (2018).
  40. J. M. Pavia, M. Wolf, and E. Charbon, “Measurement and modeling of microlenses fabricated on single-photon avalanche diode arrays for fill factor recovery,” Opt. Express 22, 4202–4213 (2014).
    [Crossref]
  41. I. Gyongy, A. Davies, B. Gallinet, N. A. W. Dutton, R. Duncan, C. Rickman, R. K. Henderson, and P. A. Dalgarno, “Cylindrical microlensing for enhanced collection efficiency of small pixel SPAD arrays in single-molecule localisation microscopy,” Opt. Express 26, 2280–2291 (2018).
    [Crossref]
  42. I. M. Antolovic, A. C. Ulku, E. Kizilkan, S. Lindner, F. Zanella, R. Ferrini, M. Schnieper, E. Charbon, and C. Bruschini, “Optical-stack optimization for improved SPAD photon detection efficiency,” Proc. SPIE 10926, 109262T (2019).
    [Crossref]
  43. C. Niclass, C. Favi, T. Kluter, M. Gersbach, and E. Charbon, “A 128 × 128 single-photon image sensor with column-level 10-bit time-to-digital converter array,” IEEE J. Solid-State Circuits 43, 2977–2989 (2008).
    [Crossref]
  44. S. Burri, Y. Maruyama, X. Michalet, F. Regazzoni, C. Bruschini, and E. Charbon, “Architecture and applications of a high resolution gated SPAD image sensor,” Opt. Express 22, 17573–17589 (2014).
    [Crossref]
  45. S. Lindner, C. Zhang, I. M. Antolovic, M. Wolf, and E. Charbon, “A 252 × 144 SPAD pixel FLASH LiDAR with 1728 dual-clock 48.8  ps TDCs, integrated histogramming and 14.9-to-1 compression in 180nm CMOS technology,” in IEEE Symposium on VLSI Circuits (2018).

2019 (8)

C. Bruschini, H. Homulle, I. M. Antolovic, S. Burri, and E. Charbon, “Single-photon avalanche diode imagers in biophotonics: review and outlook,” Light Sci. Appl. 8, 87 (2019).
[Crossref]

H. Defienne, M. Reichert, J. W. Fleischer, and D. Faccio, “Quantum image distillation,” Sci. Adv. 5, eaax0307 (2019).
[Crossref]

A. Lyons, F. Tonolini, A. Boccolini, A. Repetti, R. Henderson, Y. Wiaux, and D. Faccio, “Computational time-of-flight diffuse optical tomography,” Nat. Photonics 13, 575–579 (2019).
[Crossref]

A. C. Ulku, C. Bruschini, I. M. Antolovic, Y. Kuo, R. Ankri, S. Weiss, X. Michalet, and E. Charbon, “A 512×512 SPAD image sensor with integrated gating for widefield FLIM,” IEEE J. Sel. Top. Quantum Electron. 25, 1–12 (2019).
[Crossref]

A. R. Ximenes, P. Padmanabhan, M.-J. Lee, Y. Yamashita, D.-N. Yaung, and E. Charbon, “A modular, direct time-of-flight depth sensor in 45/65-nm 3-D-stacked CMOS technology,” IEEE J. Solid-State Circuits 54, 3203–3214 (2019).
[Crossref]

A. Gnanasambandam, O. Elgendy, J. Ma, and S. H. Chan, “Megapixel photon-counting color imaging using quanta image sensor,” Opt. Express 27, 17298–17310 (2019).
[Crossref]

R. K. Henderson, N. Johnston, F. M. D. Rocca, H. Chen, D. D.-U. Li, G. Hungerford, R. Hirsch, D. McLoskey, P. Yip, and D. J. S. Birch, “A 192×128 time correlated SPAD image sensor in 40  nm CMOS technology,” IEEE J. Solid-State Circuits 54, 1907–1916 (2019).
[Crossref]

I. M. Antolovic, A. C. Ulku, E. Kizilkan, S. Lindner, F. Zanella, R. Ferrini, M. Schnieper, E. Charbon, and C. Bruschini, “Optical-stack optimization for improved SPAD photon detection efficiency,” Proc. SPIE 10926, 109262T (2019).
[Crossref]

2018 (7)

F. Mochizuki, K. Kagawa, R. Miyagi, M.-W. Seo, B. Zhang, T. Takasawa, K. Yasutomi, and S. Kawahito, “Separation of multi-path components in sweep-less time-of-flight depth imaging with a temporally-compressive multi-aperture image sensor,” ITE Trans. Media Technol. Appl. 6, 202–211 (2018).
[Crossref]

I. Gyongy, A. Davies, B. Gallinet, N. A. W. Dutton, R. Duncan, C. Rickman, R. K. Henderson, and P. A. Dalgarno, “Cylindrical microlensing for enhanced collection efficiency of small pixel SPAD arrays in single-molecule localisation microscopy,” Opt. Express 26, 2280–2291 (2018).
[Crossref]

I. Gyongy, N. Calder, A. Davies, N. A. W. Dutton, R. R. Duncan, C. Rickman, P. Dalgamo, and R. K. Henderson, “A 256×256, 100-kfps, 61% fill-factor SPAD image sensor for time-resolved microscopy applications,” IEEE Trans. Electron Devices 65, 547–554 (2018).
[Crossref]

F. Acerbi, G. Paternoster, A. Gola, N. Zorzi, and C. Piemonte, “Silicon photomultipliers and single-photon avalanche diodes with enhanced NIR detection efficiency at FBK,” Nucl. Instrum. Methods Phys. Res. A 912, 309–314 (2018).
[Crossref]

N. A. W. Dutton, T. Al Abbas, I. Gyongy, F. M. D. Rocca, and R. K. Henderson, “High dynamic range imaging at the quantum limit with single photon avalanche diode-based image sensors,” Sensors 18, 1166 (2018).
[Crossref]

I. M. Antolovic, C. Bruschini, and E. Charbon, “Dynamic range extension for photon counting arrays,” Opt. Express 26, 22234–22248 (2018).
[Crossref]

M. O’Toole, D. B. Lindell, and G. Wetzstein, “Confocal non-line-of-sight imaging based on light-cone transform,” Nature 555, 338–341 (2018).
[Crossref]

2017 (2)

J. Ma, S. Masoodian, D. A. Starkey, and E. R. Fossum, “Photon-number-resolving megapixel image sensor at room temperature without avalanche gain,” Optica 4, 1474–1481 (2017).
[Crossref]

K. Kitano, T. Okamoto, K. Tanaka, T. Aoto, H. Kubo, T. Funatomi, and Y. Mukaigawa, “Recovering temporal PSF using ToF camera with delayed light emission,” IPSJ Trans. Comput. Vis. Appl. 9, 15 (2017).
[Crossref]

2016 (5)

C. Veerappan and E. Charbon, “A low dark count p-i-n diode based SPAD in CMOS technology,” IEEE Trans. Electron Devices 63, 65–71 (2016).
[Crossref]

D. Shin, F. Xu, F. N. C. Wong, J. H. Shapiro, and V. K. Goyal, “Computational multi-depth single-photon imaging,” Opt. Express 24, 1873–1888 (2016).
[Crossref]

E. R. Fossum, J. Ma, S. Masoodian, L. Anzagira, and R. Zizza, “The quanta image sensor: every photon counts,” Sensors 16, 1260 (2016).
[Crossref]

N. A. W. Dutton, I. Gyongy, L. Parmesan, S. Gnecchi, N. Calder, B. R. Rae, S. Pellegrini, L. A. Grant, and R. K. Henderson, “A SPAD-based QVGA image sensor for single-photon counting and quanta imaging,” IEEE Trans. Electron Devices 63, 189–196 (2016).
[Crossref]

M. Perenzoni, N. Massari, D. Perenzoni, L. Gasparini, and D. Stoppa, “A 160×120-pixel analog-counting single-photon imager with time-gating and self-referenced column-parallel A/D conversion for fluorescence lifetime imaging,” IEEE J. Solid-State Circuits 51, 155–167 (2016).
[Crossref]

2015 (1)

J. M. Pavia, M. Scandini, S. Lindner, M. Wolf, and E. Charbon, “A 1 × 400 backside-illuminated SPAD sensor with 49.7  ps resolution, 30  pJ/sample TDCs fabricated in 3D CMOS technology for near-infrared optical tomography,” IEEE J. Solid-State Circuits 50, 2406–2418 (2015).
[Crossref]

2014 (2)

2013 (1)

A. Kadambi, R. Whyte, A. Bhandari, L. Streeter, C. Barsi, A. Dorrington, and R. Raskar, “Coded time of flight cameras: sparse deconvolution to address multipath interference and recover time profiles,” ACM Trans. Graphics 32, 167 (2013).
[Crossref]

2012 (2)

A. Velten, T. Willwacher, O. Gupta, A. Veeraraghavan, M. G. Bawendi, and R. Raskar, “Recovering three-dimensional shape around a corner using ultrafast time-of-flight imaging,” Nat. Commun. 3, 745 (2012).
[Crossref]

F. Yang, Y. M. Lu, L. Sbaiz, and M. Vetterli, “Bits from photons: oversampled image acquisition using binary Poisson statistics,” IEEE Trans. Image Process. 21, 1421–1436 (2012).
[Crossref]

2008 (1)

C. Niclass, C. Favi, T. Kluter, M. Gersbach, and E. Charbon, “A 128 × 128 single-photon image sensor with column-level 10-bit time-to-digital converter array,” IEEE J. Solid-State Circuits 43, 2977–2989 (2008).
[Crossref]

2007 (1)

S. Kawahito, I. A. Halin, T. Ushinaga, T. Sawada, M. Homma, and Y. Maeda, “A CMOS time-of-flight range image sensor with gates-on-field-oxide structure,” IEEE Sens. J. 7, 1578–1586 (2007).
[Crossref]

Acerbi, F.

F. Acerbi, G. Paternoster, A. Gola, N. Zorzi, and C. Piemonte, “Silicon photomultipliers and single-photon avalanche diodes with enhanced NIR detection efficiency at FBK,” Nucl. Instrum. Methods Phys. Res. A 912, 309–314 (2018).
[Crossref]

Acharya, S.

C. S. Bamji, S. Mehta, B. Thompson, T. Elkhatib, S. Wurster, O. Akkaya, A. Payne, J. Godbaz, M. Fenton, V. Rajasekaran, L. Prather, S. Nagaraja, V. Mogallapu, D. Snow, R. McCauley, M. Mukadam, I. Agi, S. McCarthy, Z. Xu, T. Perry, W. Qian, V.-H. Chan, P. Adepu, G. Ali, M. Ahmed, A. Mukherjee, S. Nayak, D. Gampell, S. Acharya, L. Kordus, and P. O’Connor, “1  Mpixel 65  nm BSI 320  MHz demodulated TOF image sensor with 3.5  µm global shutter pixels and analog binning,” in IEEE International Solid-State Circuits Conference (2018).

Adepu, P.

C. S. Bamji, S. Mehta, B. Thompson, T. Elkhatib, S. Wurster, O. Akkaya, A. Payne, J. Godbaz, M. Fenton, V. Rajasekaran, L. Prather, S. Nagaraja, V. Mogallapu, D. Snow, R. McCauley, M. Mukadam, I. Agi, S. McCarthy, Z. Xu, T. Perry, W. Qian, V.-H. Chan, P. Adepu, G. Ali, M. Ahmed, A. Mukherjee, S. Nayak, D. Gampell, S. Acharya, L. Kordus, and P. O’Connor, “1  Mpixel 65  nm BSI 320  MHz demodulated TOF image sensor with 3.5  µm global shutter pixels and analog binning,” in IEEE International Solid-State Circuits Conference (2018).

Aerts, W.

W. van der Tempel, A. Ercan, T. Finateu, K. Fotopoulou, C. Mourad, F. Agavriloaie, S. Resimont, L. Cutrignelli, P. Thury, C. E. Medina, S. Xiao, J.-L. Loheac, J. Perhavc, T. Van de Hauwe, V. Belokonskiy, L. Bossuyt, W. Aerts, M. Pauwels, and D. Van Nieuwenhove, “A 320 × 240 10  um CAPD ToF image sensor with improved performance,” in International Image Sensor Workshop (2017).

Agavriloaie, F.

W. van der Tempel, A. Ercan, T. Finateu, K. Fotopoulou, C. Mourad, F. Agavriloaie, S. Resimont, L. Cutrignelli, P. Thury, C. E. Medina, S. Xiao, J.-L. Loheac, J. Perhavc, T. Van de Hauwe, V. Belokonskiy, L. Bossuyt, W. Aerts, M. Pauwels, and D. Van Nieuwenhove, “A 320 × 240 10  um CAPD ToF image sensor with improved performance,” in International Image Sensor Workshop (2017).

Agi, I.

C. S. Bamji, S. Mehta, B. Thompson, T. Elkhatib, S. Wurster, O. Akkaya, A. Payne, J. Godbaz, M. Fenton, V. Rajasekaran, L. Prather, S. Nagaraja, V. Mogallapu, D. Snow, R. McCauley, M. Mukadam, I. Agi, S. McCarthy, Z. Xu, T. Perry, W. Qian, V.-H. Chan, P. Adepu, G. Ali, M. Ahmed, A. Mukherjee, S. Nayak, D. Gampell, S. Acharya, L. Kordus, and P. O’Connor, “1  Mpixel 65  nm BSI 320  MHz demodulated TOF image sensor with 3.5  µm global shutter pixels and analog binning,” in IEEE International Solid-State Circuits Conference (2018).

Ahmed, M.

C. S. Bamji, S. Mehta, B. Thompson, T. Elkhatib, S. Wurster, O. Akkaya, A. Payne, J. Godbaz, M. Fenton, V. Rajasekaran, L. Prather, S. Nagaraja, V. Mogallapu, D. Snow, R. McCauley, M. Mukadam, I. Agi, S. McCarthy, Z. Xu, T. Perry, W. Qian, V.-H. Chan, P. Adepu, G. Ali, M. Ahmed, A. Mukherjee, S. Nayak, D. Gampell, S. Acharya, L. Kordus, and P. O’Connor, “1  Mpixel 65  nm BSI 320  MHz demodulated TOF image sensor with 3.5  µm global shutter pixels and analog binning,” in IEEE International Solid-State Circuits Conference (2018).

Akkaya, O.

C. S. Bamji, S. Mehta, B. Thompson, T. Elkhatib, S. Wurster, O. Akkaya, A. Payne, J. Godbaz, M. Fenton, V. Rajasekaran, L. Prather, S. Nagaraja, V. Mogallapu, D. Snow, R. McCauley, M. Mukadam, I. Agi, S. McCarthy, Z. Xu, T. Perry, W. Qian, V.-H. Chan, P. Adepu, G. Ali, M. Ahmed, A. Mukherjee, S. Nayak, D. Gampell, S. Acharya, L. Kordus, and P. O’Connor, “1  Mpixel 65  nm BSI 320  MHz demodulated TOF image sensor with 3.5  µm global shutter pixels and analog binning,” in IEEE International Solid-State Circuits Conference (2018).

Al Abbas, T.

N. A. W. Dutton, T. Al Abbas, I. Gyongy, F. M. D. Rocca, and R. K. Henderson, “High dynamic range imaging at the quantum limit with single photon avalanche diode-based image sensors,” Sensors 18, 1166 (2018).
[Crossref]

T. Al Abbas, N. A. W. Dutton, O. Almer, S. Pellegrini, Y. Henrion, and R. K. Henderson, “Backside illuminated SPAD image sensor with 7.83  µm pitch in 3D-stacked CMOS technology,” in IEEE International Electron Devices Meeting (2016), pp. 811–814.

R. K. Henderson, N. Johnston, S. W. Hutchings, I. Gyongy, T. Al Abbas, N. Dutton, M. Tyler, S. Chan, and J. Leach, “A 256×256 40  nm/90  nm CMOS 3D-stacked 120  dB dynamic-range reconfigurable time-resolved SPAD imager,” in IEEE International Conference on Solid-State Circuits Conference (2019).

Ali, G.

C. S. Bamji, S. Mehta, B. Thompson, T. Elkhatib, S. Wurster, O. Akkaya, A. Payne, J. Godbaz, M. Fenton, V. Rajasekaran, L. Prather, S. Nagaraja, V. Mogallapu, D. Snow, R. McCauley, M. Mukadam, I. Agi, S. McCarthy, Z. Xu, T. Perry, W. Qian, V.-H. Chan, P. Adepu, G. Ali, M. Ahmed, A. Mukherjee, S. Nayak, D. Gampell, S. Acharya, L. Kordus, and P. O’Connor, “1  Mpixel 65  nm BSI 320  MHz demodulated TOF image sensor with 3.5  µm global shutter pixels and analog binning,” in IEEE International Solid-State Circuits Conference (2018).

Almer, O.

T. Al Abbas, N. A. W. Dutton, O. Almer, S. Pellegrini, Y. Henrion, and R. K. Henderson, “Backside illuminated SPAD image sensor with 7.83  µm pitch in 3D-stacked CMOS technology,” in IEEE International Electron Devices Meeting (2016), pp. 811–814.

Ankri, R.

A. C. Ulku, C. Bruschini, I. M. Antolovic, Y. Kuo, R. Ankri, S. Weiss, X. Michalet, and E. Charbon, “A 512×512 SPAD image sensor with integrated gating for widefield FLIM,” IEEE J. Sel. Top. Quantum Electron. 25, 1–12 (2019).
[Crossref]

Antolovic, I. M.

A. C. Ulku, C. Bruschini, I. M. Antolovic, Y. Kuo, R. Ankri, S. Weiss, X. Michalet, and E. Charbon, “A 512×512 SPAD image sensor with integrated gating for widefield FLIM,” IEEE J. Sel. Top. Quantum Electron. 25, 1–12 (2019).
[Crossref]

C. Bruschini, H. Homulle, I. M. Antolovic, S. Burri, and E. Charbon, “Single-photon avalanche diode imagers in biophotonics: review and outlook,” Light Sci. Appl. 8, 87 (2019).
[Crossref]

I. M. Antolovic, A. C. Ulku, E. Kizilkan, S. Lindner, F. Zanella, R. Ferrini, M. Schnieper, E. Charbon, and C. Bruschini, “Optical-stack optimization for improved SPAD photon detection efficiency,” Proc. SPIE 10926, 109262T (2019).
[Crossref]

I. M. Antolovic, C. Bruschini, and E. Charbon, “Dynamic range extension for photon counting arrays,” Opt. Express 26, 22234–22248 (2018).
[Crossref]

S. Lindner, C. Zhang, I. M. Antolovic, M. Wolf, and E. Charbon, “A 252 × 144 SPAD pixel FLASH LiDAR with 1728 dual-clock 48.8  ps TDCs, integrated histogramming and 14.9-to-1 compression in 180nm CMOS technology,” in IEEE Symposium on VLSI Circuits (2018).

Anzagira, L.

E. R. Fossum, J. Ma, S. Masoodian, L. Anzagira, and R. Zizza, “The quanta image sensor: every photon counts,” Sensors 16, 1260 (2016).
[Crossref]

Aoto, T.

K. Kitano, T. Okamoto, K. Tanaka, T. Aoto, H. Kubo, T. Funatomi, and Y. Mukaigawa, “Recovering temporal PSF using ToF camera with delayed light emission,” IPSJ Trans. Comput. Vis. Appl. 9, 15 (2017).
[Crossref]

Bamji, C. S.

C. S. Bamji, S. Mehta, B. Thompson, T. Elkhatib, S. Wurster, O. Akkaya, A. Payne, J. Godbaz, M. Fenton, V. Rajasekaran, L. Prather, S. Nagaraja, V. Mogallapu, D. Snow, R. McCauley, M. Mukadam, I. Agi, S. McCarthy, Z. Xu, T. Perry, W. Qian, V.-H. Chan, P. Adepu, G. Ali, M. Ahmed, A. Mukherjee, S. Nayak, D. Gampell, S. Acharya, L. Kordus, and P. O’Connor, “1  Mpixel 65  nm BSI 320  MHz demodulated TOF image sensor with 3.5  µm global shutter pixels and analog binning,” in IEEE International Solid-State Circuits Conference (2018).

Barsi, C.

A. Kadambi, R. Whyte, A. Bhandari, L. Streeter, C. Barsi, A. Dorrington, and R. Raskar, “Coded time of flight cameras: sparse deconvolution to address multipath interference and recover time profiles,” ACM Trans. Graphics 32, 167 (2013).
[Crossref]

Bawendi, M. G.

A. Velten, T. Willwacher, O. Gupta, A. Veeraraghavan, M. G. Bawendi, and R. Raskar, “Recovering three-dimensional shape around a corner using ultrafast time-of-flight imaging,” Nat. Commun. 3, 745 (2012).
[Crossref]

Beer, M.

J. Haase, M. Beer, J. Ruskowski, and H. Vogt, “Multi object detection in direct time-of-flight measurements with SPADs,” in 14th Conference on Ph.D. Research in Microelectronics and Electronics (2018).

Bellisai, S.

D. Bronzi, F. Villa, S. Bellisai, B. Markovic, S. Tisa, A. Tosi, F. Zappa, S. Weyers, D. Durini, W. Brockherde, and U. Paschen, “Low-noise and large-area CMOS SPADs with timing response free from slow tails,” in European Solid-State Device Research Conference (ESSDERC) (2012), pp. 230–233.

Belokonskiy, V.

W. van der Tempel, A. Ercan, T. Finateu, K. Fotopoulou, C. Mourad, F. Agavriloaie, S. Resimont, L. Cutrignelli, P. Thury, C. E. Medina, S. Xiao, J.-L. Loheac, J. Perhavc, T. Van de Hauwe, V. Belokonskiy, L. Bossuyt, W. Aerts, M. Pauwels, and D. Van Nieuwenhove, “A 320 × 240 10  um CAPD ToF image sensor with improved performance,” in International Image Sensor Workshop (2017).

Bhandari, A.

A. Kadambi, R. Whyte, A. Bhandari, L. Streeter, C. Barsi, A. Dorrington, and R. Raskar, “Coded time of flight cameras: sparse deconvolution to address multipath interference and recover time profiles,” ACM Trans. Graphics 32, 167 (2013).
[Crossref]

Birch, D. J. S.

R. K. Henderson, N. Johnston, F. M. D. Rocca, H. Chen, D. D.-U. Li, G. Hungerford, R. Hirsch, D. McLoskey, P. Yip, and D. J. S. Birch, “A 192×128 time correlated SPAD image sensor in 40  nm CMOS technology,” IEEE J. Solid-State Circuits 54, 1907–1916 (2019).
[Crossref]

Boccolini, A.

A. Lyons, F. Tonolini, A. Boccolini, A. Repetti, R. Henderson, Y. Wiaux, and D. Faccio, “Computational time-of-flight diffuse optical tomography,” Nat. Photonics 13, 575–579 (2019).
[Crossref]

Borghetti, F.

J. Richardson, R. Walker, L. Grant, D. Stoppa, F. Borghetti, E. Charbon, M. Gersbach, and R. K. Henderson, “A 32×32 50  ps resolution 10  bit time to digital converter array in 130  nm CMOS for time correlated imaging,” in IEEE Custom Integrated Circuits Conference (2009).

C. Veerappan, J. Richardson, R. Walker, D.-U. Li, M. W. Fishburn, Y. Maruyama, D. Stoppa, F. Borghetti, M. Gersbach, R. K. Henderson, and E. Charbon, “A 160×128 single-photon image sensor with on-pixel 55  ps 10  b time-to-digital converter,” in IEEE International Solid-State Circuits Conference (2011).

Borghi, G.

A. Carimatto, S. Mandai, E. Venialgo, T. Gong, G. Borghi, D. R. Schaart, and E. Charbon, “A 67,392-SPAD PVTB-compensated multi-channel digital SiPM with 432 column-parallel 48  ps 17b TDCs for endoscopic time-of-flight PET,” in IEEE International Solid-State Circuits Conference (2015).

Bossuyt, L.

W. van der Tempel, A. Ercan, T. Finateu, K. Fotopoulou, C. Mourad, F. Agavriloaie, S. Resimont, L. Cutrignelli, P. Thury, C. E. Medina, S. Xiao, J.-L. Loheac, J. Perhavc, T. Van de Hauwe, V. Belokonskiy, L. Bossuyt, W. Aerts, M. Pauwels, and D. Van Nieuwenhove, “A 320 × 240 10  um CAPD ToF image sensor with improved performance,” in International Image Sensor Workshop (2017).

Brockherde, W.

D. Bronzi, F. Villa, S. Bellisai, B. Markovic, S. Tisa, A. Tosi, F. Zappa, S. Weyers, D. Durini, W. Brockherde, and U. Paschen, “Low-noise and large-area CMOS SPADs with timing response free from slow tails,” in European Solid-State Device Research Conference (ESSDERC) (2012), pp. 230–233.

Bronzi, D.

D. Bronzi, F. Villa, S. Bellisai, B. Markovic, S. Tisa, A. Tosi, F. Zappa, S. Weyers, D. Durini, W. Brockherde, and U. Paschen, “Low-noise and large-area CMOS SPADs with timing response free from slow tails,” in European Solid-State Device Research Conference (ESSDERC) (2012), pp. 230–233.

Bruschini, C.

C. Bruschini, H. Homulle, I. M. Antolovic, S. Burri, and E. Charbon, “Single-photon avalanche diode imagers in biophotonics: review and outlook,” Light Sci. Appl. 8, 87 (2019).
[Crossref]

A. C. Ulku, C. Bruschini, I. M. Antolovic, Y. Kuo, R. Ankri, S. Weiss, X. Michalet, and E. Charbon, “A 512×512 SPAD image sensor with integrated gating for widefield FLIM,” IEEE J. Sel. Top. Quantum Electron. 25, 1–12 (2019).
[Crossref]

I. M. Antolovic, A. C. Ulku, E. Kizilkan, S. Lindner, F. Zanella, R. Ferrini, M. Schnieper, E. Charbon, and C. Bruschini, “Optical-stack optimization for improved SPAD photon detection efficiency,” Proc. SPIE 10926, 109262T (2019).
[Crossref]

I. M. Antolovic, C. Bruschini, and E. Charbon, “Dynamic range extension for photon counting arrays,” Opt. Express 26, 22234–22248 (2018).
[Crossref]

S. Burri, Y. Maruyama, X. Michalet, F. Regazzoni, C. Bruschini, and E. Charbon, “Architecture and applications of a high resolution gated SPAD image sensor,” Opt. Express 22, 17573–17589 (2014).
[Crossref]

Burri, S.

C. Bruschini, H. Homulle, I. M. Antolovic, S. Burri, and E. Charbon, “Single-photon avalanche diode imagers in biophotonics: review and outlook,” Light Sci. Appl. 8, 87 (2019).
[Crossref]

S. Burri, Y. Maruyama, X. Michalet, F. Regazzoni, C. Bruschini, and E. Charbon, “Architecture and applications of a high resolution gated SPAD image sensor,” Opt. Express 22, 17573–17589 (2014).
[Crossref]

Calder, N.

I. Gyongy, N. Calder, A. Davies, N. A. W. Dutton, R. R. Duncan, C. Rickman, P. Dalgamo, and R. K. Henderson, “A 256×256, 100-kfps, 61% fill-factor SPAD image sensor for time-resolved microscopy applications,” IEEE Trans. Electron Devices 65, 547–554 (2018).
[Crossref]

N. A. W. Dutton, I. Gyongy, L. Parmesan, S. Gnecchi, N. Calder, B. R. Rae, S. Pellegrini, L. A. Grant, and R. K. Henderson, “A SPAD-based QVGA image sensor for single-photon counting and quanta imaging,” IEEE Trans. Electron Devices 63, 189–196 (2016).
[Crossref]

Carimatto, A.

A. Carimatto, S. Mandai, E. Venialgo, T. Gong, G. Borghi, D. R. Schaart, and E. Charbon, “A 67,392-SPAD PVTB-compensated multi-channel digital SiPM with 432 column-parallel 48  ps 17b TDCs for endoscopic time-of-flight PET,” in IEEE International Solid-State Circuits Conference (2015).

Chan, S.

R. K. Henderson, N. Johnston, S. W. Hutchings, I. Gyongy, T. Al Abbas, N. Dutton, M. Tyler, S. Chan, and J. Leach, “A 256×256 40  nm/90  nm CMOS 3D-stacked 120  dB dynamic-range reconfigurable time-resolved SPAD imager,” in IEEE International Conference on Solid-State Circuits Conference (2019).

Chan, S. H.

Chan, V.-H.

C. S. Bamji, S. Mehta, B. Thompson, T. Elkhatib, S. Wurster, O. Akkaya, A. Payne, J. Godbaz, M. Fenton, V. Rajasekaran, L. Prather, S. Nagaraja, V. Mogallapu, D. Snow, R. McCauley, M. Mukadam, I. Agi, S. McCarthy, Z. Xu, T. Perry, W. Qian, V.-H. Chan, P. Adepu, G. Ali, M. Ahmed, A. Mukherjee, S. Nayak, D. Gampell, S. Acharya, L. Kordus, and P. O’Connor, “1  Mpixel 65  nm BSI 320  MHz demodulated TOF image sensor with 3.5  µm global shutter pixels and analog binning,” in IEEE International Solid-State Circuits Conference (2018).

Charbon, E.

I. M. Antolovic, A. C. Ulku, E. Kizilkan, S. Lindner, F. Zanella, R. Ferrini, M. Schnieper, E. Charbon, and C. Bruschini, “Optical-stack optimization for improved SPAD photon detection efficiency,” Proc. SPIE 10926, 109262T (2019).
[Crossref]

A. R. Ximenes, P. Padmanabhan, M.-J. Lee, Y. Yamashita, D.-N. Yaung, and E. Charbon, “A modular, direct time-of-flight depth sensor in 45/65-nm 3-D-stacked CMOS technology,” IEEE J. Solid-State Circuits 54, 3203–3214 (2019).
[Crossref]

C. Bruschini, H. Homulle, I. M. Antolovic, S. Burri, and E. Charbon, “Single-photon avalanche diode imagers in biophotonics: review and outlook,” Light Sci. Appl. 8, 87 (2019).
[Crossref]

A. C. Ulku, C. Bruschini, I. M. Antolovic, Y. Kuo, R. Ankri, S. Weiss, X. Michalet, and E. Charbon, “A 512×512 SPAD image sensor with integrated gating for widefield FLIM,” IEEE J. Sel. Top. Quantum Electron. 25, 1–12 (2019).
[Crossref]

I. M. Antolovic, C. Bruschini, and E. Charbon, “Dynamic range extension for photon counting arrays,” Opt. Express 26, 22234–22248 (2018).
[Crossref]

C. Veerappan and E. Charbon, “A low dark count p-i-n diode based SPAD in CMOS technology,” IEEE Trans. Electron Devices 63, 65–71 (2016).
[Crossref]

J. M. Pavia, M. Scandini, S. Lindner, M. Wolf, and E. Charbon, “A 1 × 400 backside-illuminated SPAD sensor with 49.7  ps resolution, 30  pJ/sample TDCs fabricated in 3D CMOS technology for near-infrared optical tomography,” IEEE J. Solid-State Circuits 50, 2406–2418 (2015).
[Crossref]

J. M. Pavia, M. Wolf, and E. Charbon, “Measurement and modeling of microlenses fabricated on single-photon avalanche diode arrays for fill factor recovery,” Opt. Express 22, 4202–4213 (2014).
[Crossref]

S. Burri, Y. Maruyama, X. Michalet, F. Regazzoni, C. Bruschini, and E. Charbon, “Architecture and applications of a high resolution gated SPAD image sensor,” Opt. Express 22, 17573–17589 (2014).
[Crossref]

C. Niclass, C. Favi, T. Kluter, M. Gersbach, and E. Charbon, “A 128 × 128 single-photon image sensor with column-level 10-bit time-to-digital converter array,” IEEE J. Solid-State Circuits 43, 2977–2989 (2008).
[Crossref]

S. Lindner, C. Zhang, I. M. Antolovic, M. Wolf, and E. Charbon, “A 252 × 144 SPAD pixel FLASH LiDAR with 1728 dual-clock 48.8  ps TDCs, integrated histogramming and 14.9-to-1 compression in 180nm CMOS technology,” in IEEE Symposium on VLSI Circuits (2018).

E. Charbon, “Will avalanche photodiode arrays ever reach 1 megapixel?” in International Image Sensor Workshop (2007).

J. Richardson, R. Walker, L. Grant, D. Stoppa, F. Borghetti, E. Charbon, M. Gersbach, and R. K. Henderson, “A 32×32 50  ps resolution 10  bit time to digital converter array in 130  nm CMOS for time correlated imaging,” in IEEE Custom Integrated Circuits Conference (2009).

C. Veerappan, J. Richardson, R. Walker, D.-U. Li, M. W. Fishburn, Y. Maruyama, D. Stoppa, F. Borghetti, M. Gersbach, R. K. Henderson, and E. Charbon, “A 160×128 single-photon image sensor with on-pixel 55  ps 10  b time-to-digital converter,” in IEEE International Solid-State Circuits Conference (2011).

A. Carimatto, S. Mandai, E. Venialgo, T. Gong, G. Borghi, D. R. Schaart, and E. Charbon, “A 67,392-SPAD PVTB-compensated multi-channel digital SiPM with 432 column-parallel 48  ps 17b TDCs for endoscopic time-of-flight PET,” in IEEE International Solid-State Circuits Conference (2015).

Chen, H.

R. K. Henderson, N. Johnston, F. M. D. Rocca, H. Chen, D. D.-U. Li, G. Hungerford, R. Hirsch, D. McLoskey, P. Yip, and D. J. S. Birch, “A 192×128 time correlated SPAD image sensor in 40  nm CMOS technology,” IEEE J. Solid-State Circuits 54, 1907–1916 (2019).
[Crossref]

Cutrignelli, L.

W. van der Tempel, A. Ercan, T. Finateu, K. Fotopoulou, C. Mourad, F. Agavriloaie, S. Resimont, L. Cutrignelli, P. Thury, C. E. Medina, S. Xiao, J.-L. Loheac, J. Perhavc, T. Van de Hauwe, V. Belokonskiy, L. Bossuyt, W. Aerts, M. Pauwels, and D. Van Nieuwenhove, “A 320 × 240 10  um CAPD ToF image sensor with improved performance,” in International Image Sensor Workshop (2017).

Dalgamo, P.

I. Gyongy, N. Calder, A. Davies, N. A. W. Dutton, R. R. Duncan, C. Rickman, P. Dalgamo, and R. K. Henderson, “A 256×256, 100-kfps, 61% fill-factor SPAD image sensor for time-resolved microscopy applications,” IEEE Trans. Electron Devices 65, 547–554 (2018).
[Crossref]

Dalgarno, P. A.

Davies, A.

I. Gyongy, A. Davies, B. Gallinet, N. A. W. Dutton, R. Duncan, C. Rickman, R. K. Henderson, and P. A. Dalgarno, “Cylindrical microlensing for enhanced collection efficiency of small pixel SPAD arrays in single-molecule localisation microscopy,” Opt. Express 26, 2280–2291 (2018).
[Crossref]

I. Gyongy, N. Calder, A. Davies, N. A. W. Dutton, R. R. Duncan, C. Rickman, P. Dalgamo, and R. K. Henderson, “A 256×256, 100-kfps, 61% fill-factor SPAD image sensor for time-resolved microscopy applications,” IEEE Trans. Electron Devices 65, 547–554 (2018).
[Crossref]

Defienne, H.

H. Defienne, M. Reichert, J. W. Fleischer, and D. Faccio, “Quantum image distillation,” Sci. Adv. 5, eaax0307 (2019).
[Crossref]

Dorrington, A.

A. Kadambi, R. Whyte, A. Bhandari, L. Streeter, C. Barsi, A. Dorrington, and R. Raskar, “Coded time of flight cameras: sparse deconvolution to address multipath interference and recover time profiles,” ACM Trans. Graphics 32, 167 (2013).
[Crossref]

Duncan, R.

Duncan, R. R.

I. Gyongy, N. Calder, A. Davies, N. A. W. Dutton, R. R. Duncan, C. Rickman, P. Dalgamo, and R. K. Henderson, “A 256×256, 100-kfps, 61% fill-factor SPAD image sensor for time-resolved microscopy applications,” IEEE Trans. Electron Devices 65, 547–554 (2018).
[Crossref]

Durini, D.

D. Bronzi, F. Villa, S. Bellisai, B. Markovic, S. Tisa, A. Tosi, F. Zappa, S. Weyers, D. Durini, W. Brockherde, and U. Paschen, “Low-noise and large-area CMOS SPADs with timing response free from slow tails,” in European Solid-State Device Research Conference (ESSDERC) (2012), pp. 230–233.

Dutton, N.

R. K. Henderson, N. Johnston, S. W. Hutchings, I. Gyongy, T. Al Abbas, N. Dutton, M. Tyler, S. Chan, and J. Leach, “A 256×256 40  nm/90  nm CMOS 3D-stacked 120  dB dynamic-range reconfigurable time-resolved SPAD imager,” in IEEE International Conference on Solid-State Circuits Conference (2019).

Dutton, N. A. W.

I. Gyongy, N. Calder, A. Davies, N. A. W. Dutton, R. R. Duncan, C. Rickman, P. Dalgamo, and R. K. Henderson, “A 256×256, 100-kfps, 61% fill-factor SPAD image sensor for time-resolved microscopy applications,” IEEE Trans. Electron Devices 65, 547–554 (2018).
[Crossref]

N. A. W. Dutton, T. Al Abbas, I. Gyongy, F. M. D. Rocca, and R. K. Henderson, “High dynamic range imaging at the quantum limit with single photon avalanche diode-based image sensors,” Sensors 18, 1166 (2018).
[Crossref]

I. Gyongy, A. Davies, B. Gallinet, N. A. W. Dutton, R. Duncan, C. Rickman, R. K. Henderson, and P. A. Dalgarno, “Cylindrical microlensing for enhanced collection efficiency of small pixel SPAD arrays in single-molecule localisation microscopy,” Opt. Express 26, 2280–2291 (2018).
[Crossref]

N. A. W. Dutton, I. Gyongy, L. Parmesan, S. Gnecchi, N. Calder, B. R. Rae, S. Pellegrini, L. A. Grant, and R. K. Henderson, “A SPAD-based QVGA image sensor for single-photon counting and quanta imaging,” IEEE Trans. Electron Devices 63, 189–196 (2016).
[Crossref]

T. Al Abbas, N. A. W. Dutton, O. Almer, S. Pellegrini, Y. Henrion, and R. K. Henderson, “Backside illuminated SPAD image sensor with 7.83  µm pitch in 3D-stacked CMOS technology,” in IEEE International Electron Devices Meeting (2016), pp. 811–814.

Elgendy, O.

Elkhatib, T.

C. S. Bamji, S. Mehta, B. Thompson, T. Elkhatib, S. Wurster, O. Akkaya, A. Payne, J. Godbaz, M. Fenton, V. Rajasekaran, L. Prather, S. Nagaraja, V. Mogallapu, D. Snow, R. McCauley, M. Mukadam, I. Agi, S. McCarthy, Z. Xu, T. Perry, W. Qian, V.-H. Chan, P. Adepu, G. Ali, M. Ahmed, A. Mukherjee, S. Nayak, D. Gampell, S. Acharya, L. Kordus, and P. O’Connor, “1  Mpixel 65  nm BSI 320  MHz demodulated TOF image sensor with 3.5  µm global shutter pixels and analog binning,” in IEEE International Solid-State Circuits Conference (2018).

Ercan, A.

W. van der Tempel, A. Ercan, T. Finateu, K. Fotopoulou, C. Mourad, F. Agavriloaie, S. Resimont, L. Cutrignelli, P. Thury, C. E. Medina, S. Xiao, J.-L. Loheac, J. Perhavc, T. Van de Hauwe, V. Belokonskiy, L. Bossuyt, W. Aerts, M. Pauwels, and D. Van Nieuwenhove, “A 320 × 240 10  um CAPD ToF image sensor with improved performance,” in International Image Sensor Workshop (2017).

Faccio, D.

H. Defienne, M. Reichert, J. W. Fleischer, and D. Faccio, “Quantum image distillation,” Sci. Adv. 5, eaax0307 (2019).
[Crossref]

A. Lyons, F. Tonolini, A. Boccolini, A. Repetti, R. Henderson, Y. Wiaux, and D. Faccio, “Computational time-of-flight diffuse optical tomography,” Nat. Photonics 13, 575–579 (2019).
[Crossref]

Favi, C.

C. Niclass, C. Favi, T. Kluter, M. Gersbach, and E. Charbon, “A 128 × 128 single-photon image sensor with column-level 10-bit time-to-digital converter array,” IEEE J. Solid-State Circuits 43, 2977–2989 (2008).
[Crossref]

Fenton, M.

C. S. Bamji, S. Mehta, B. Thompson, T. Elkhatib, S. Wurster, O. Akkaya, A. Payne, J. Godbaz, M. Fenton, V. Rajasekaran, L. Prather, S. Nagaraja, V. Mogallapu, D. Snow, R. McCauley, M. Mukadam, I. Agi, S. McCarthy, Z. Xu, T. Perry, W. Qian, V.-H. Chan, P. Adepu, G. Ali, M. Ahmed, A. Mukherjee, S. Nayak, D. Gampell, S. Acharya, L. Kordus, and P. O’Connor, “1  Mpixel 65  nm BSI 320  MHz demodulated TOF image sensor with 3.5  µm global shutter pixels and analog binning,” in IEEE International Solid-State Circuits Conference (2018).

Ferrini, R.

I. M. Antolovic, A. C. Ulku, E. Kizilkan, S. Lindner, F. Zanella, R. Ferrini, M. Schnieper, E. Charbon, and C. Bruschini, “Optical-stack optimization for improved SPAD photon detection efficiency,” Proc. SPIE 10926, 109262T (2019).
[Crossref]

Finateu, T.

W. van der Tempel, A. Ercan, T. Finateu, K. Fotopoulou, C. Mourad, F. Agavriloaie, S. Resimont, L. Cutrignelli, P. Thury, C. E. Medina, S. Xiao, J.-L. Loheac, J. Perhavc, T. Van de Hauwe, V. Belokonskiy, L. Bossuyt, W. Aerts, M. Pauwels, and D. Van Nieuwenhove, “A 320 × 240 10  um CAPD ToF image sensor with improved performance,” in International Image Sensor Workshop (2017).

Fishburn, M. W.

C. Veerappan, J. Richardson, R. Walker, D.-U. Li, M. W. Fishburn, Y. Maruyama, D. Stoppa, F. Borghetti, M. Gersbach, R. K. Henderson, and E. Charbon, “A 160×128 single-photon image sensor with on-pixel 55  ps 10  b time-to-digital converter,” in IEEE International Solid-State Circuits Conference (2011).

Fleischer, J. W.

H. Defienne, M. Reichert, J. W. Fleischer, and D. Faccio, “Quantum image distillation,” Sci. Adv. 5, eaax0307 (2019).
[Crossref]

Fossum, E. R.

J. Ma, S. Masoodian, D. A. Starkey, and E. R. Fossum, “Photon-number-resolving megapixel image sensor at room temperature without avalanche gain,” Optica 4, 1474–1481 (2017).
[Crossref]

E. R. Fossum, J. Ma, S. Masoodian, L. Anzagira, and R. Zizza, “The quanta image sensor: every photon counts,” Sensors 16, 1260 (2016).
[Crossref]

E. R. Fossum, “What to do with sub-diffraction-limit (SDL) pixels? A proposal for a gigapixel digital film sensor (DFS),” in IEEE Workshop on Charge-Coupled Devices and Advanced Image Sensors (2005), pp. 214–217.

Fotopoulou, K.

W. van der Tempel, A. Ercan, T. Finateu, K. Fotopoulou, C. Mourad, F. Agavriloaie, S. Resimont, L. Cutrignelli, P. Thury, C. E. Medina, S. Xiao, J.-L. Loheac, J. Perhavc, T. Van de Hauwe, V. Belokonskiy, L. Bossuyt, W. Aerts, M. Pauwels, and D. Van Nieuwenhove, “A 320 × 240 10  um CAPD ToF image sensor with improved performance,” in International Image Sensor Workshop (2017).

Funatomi, T.

K. Kitano, T. Okamoto, K. Tanaka, T. Aoto, H. Kubo, T. Funatomi, and Y. Mukaigawa, “Recovering temporal PSF using ToF camera with delayed light emission,” IPSJ Trans. Comput. Vis. Appl. 9, 15 (2017).
[Crossref]

Gallinet, B.

Gampell, D.

C. S. Bamji, S. Mehta, B. Thompson, T. Elkhatib, S. Wurster, O. Akkaya, A. Payne, J. Godbaz, M. Fenton, V. Rajasekaran, L. Prather, S. Nagaraja, V. Mogallapu, D. Snow, R. McCauley, M. Mukadam, I. Agi, S. McCarthy, Z. Xu, T. Perry, W. Qian, V.-H. Chan, P. Adepu, G. Ali, M. Ahmed, A. Mukherjee, S. Nayak, D. Gampell, S. Acharya, L. Kordus, and P. O’Connor, “1  Mpixel 65  nm BSI 320  MHz demodulated TOF image sensor with 3.5  µm global shutter pixels and analog binning,” in IEEE International Solid-State Circuits Conference (2018).

Gasparini, L.

M. Perenzoni, N. Massari, D. Perenzoni, L. Gasparini, and D. Stoppa, “A 160×120-pixel analog-counting single-photon imager with time-gating and self-referenced column-parallel A/D conversion for fluorescence lifetime imaging,” IEEE J. Solid-State Circuits 51, 155–167 (2016).
[Crossref]

M. Perenzoni, M. Moreno-García, L. Gasparini, and N. Massari, “Time-resolved single-photon detectors: integration challenges in CMOS technologies,” in IEEE International Conference on IC Design and Technology (2018).

Gersbach, M.

C. Niclass, C. Favi, T. Kluter, M. Gersbach, and E. Charbon, “A 128 × 128 single-photon image sensor with column-level 10-bit time-to-digital converter array,” IEEE J. Solid-State Circuits 43, 2977–2989 (2008).
[Crossref]

C. Veerappan, J. Richardson, R. Walker, D.-U. Li, M. W. Fishburn, Y. Maruyama, D. Stoppa, F. Borghetti, M. Gersbach, R. K. Henderson, and E. Charbon, “A 160×128 single-photon image sensor with on-pixel 55  ps 10  b time-to-digital converter,” in IEEE International Solid-State Circuits Conference (2011).

J. Richardson, R. Walker, L. Grant, D. Stoppa, F. Borghetti, E. Charbon, M. Gersbach, and R. K. Henderson, “A 32×32 50  ps resolution 10  bit time to digital converter array in 130  nm CMOS for time correlated imaging,” in IEEE Custom Integrated Circuits Conference (2009).

Gnanasambandam, A.

Gnecchi, S.

N. A. W. Dutton, I. Gyongy, L. Parmesan, S. Gnecchi, N. Calder, B. R. Rae, S. Pellegrini, L. A. Grant, and R. K. Henderson, “A SPAD-based QVGA image sensor for single-photon counting and quanta imaging,” IEEE Trans. Electron Devices 63, 189–196 (2016).
[Crossref]

Godbaz, J.

C. S. Bamji, S. Mehta, B. Thompson, T. Elkhatib, S. Wurster, O. Akkaya, A. Payne, J. Godbaz, M. Fenton, V. Rajasekaran, L. Prather, S. Nagaraja, V. Mogallapu, D. Snow, R. McCauley, M. Mukadam, I. Agi, S. McCarthy, Z. Xu, T. Perry, W. Qian, V.-H. Chan, P. Adepu, G. Ali, M. Ahmed, A. Mukherjee, S. Nayak, D. Gampell, S. Acharya, L. Kordus, and P. O’Connor, “1  Mpixel 65  nm BSI 320  MHz demodulated TOF image sensor with 3.5  µm global shutter pixels and analog binning,” in IEEE International Solid-State Circuits Conference (2018).

Gola, A.

F. Acerbi, G. Paternoster, A. Gola, N. Zorzi, and C. Piemonte, “Silicon photomultipliers and single-photon avalanche diodes with enhanced NIR detection efficiency at FBK,” Nucl. Instrum. Methods Phys. Res. A 912, 309–314 (2018).
[Crossref]

Gong, T.

A. Carimatto, S. Mandai, E. Venialgo, T. Gong, G. Borghi, D. R. Schaart, and E. Charbon, “A 67,392-SPAD PVTB-compensated multi-channel digital SiPM with 432 column-parallel 48  ps 17b TDCs for endoscopic time-of-flight PET,” in IEEE International Solid-State Circuits Conference (2015).

Goyal, V. K.

Grant, L.

J. Richardson, R. Walker, L. Grant, D. Stoppa, F. Borghetti, E. Charbon, M. Gersbach, and R. K. Henderson, “A 32×32 50  ps resolution 10  bit time to digital converter array in 130  nm CMOS for time correlated imaging,” in IEEE Custom Integrated Circuits Conference (2009).

Grant, L. A.

N. A. W. Dutton, I. Gyongy, L. Parmesan, S. Gnecchi, N. Calder, B. R. Rae, S. Pellegrini, L. A. Grant, and R. K. Henderson, “A SPAD-based QVGA image sensor for single-photon counting and quanta imaging,” IEEE Trans. Electron Devices 63, 189–196 (2016).
[Crossref]

Gupta, O.

A. Velten, T. Willwacher, O. Gupta, A. Veeraraghavan, M. G. Bawendi, and R. Raskar, “Recovering three-dimensional shape around a corner using ultrafast time-of-flight imaging,” Nat. Commun. 3, 745 (2012).
[Crossref]

Gyongy, I.

I. Gyongy, N. Calder, A. Davies, N. A. W. Dutton, R. R. Duncan, C. Rickman, P. Dalgamo, and R. K. Henderson, “A 256×256, 100-kfps, 61% fill-factor SPAD image sensor for time-resolved microscopy applications,” IEEE Trans. Electron Devices 65, 547–554 (2018).
[Crossref]

I. Gyongy, A. Davies, B. Gallinet, N. A. W. Dutton, R. Duncan, C. Rickman, R. K. Henderson, and P. A. Dalgarno, “Cylindrical microlensing for enhanced collection efficiency of small pixel SPAD arrays in single-molecule localisation microscopy,” Opt. Express 26, 2280–2291 (2018).
[Crossref]

N. A. W. Dutton, T. Al Abbas, I. Gyongy, F. M. D. Rocca, and R. K. Henderson, “High dynamic range imaging at the quantum limit with single photon avalanche diode-based image sensors,” Sensors 18, 1166 (2018).
[Crossref]

N. A. W. Dutton, I. Gyongy, L. Parmesan, S. Gnecchi, N. Calder, B. R. Rae, S. Pellegrini, L. A. Grant, and R. K. Henderson, “A SPAD-based QVGA image sensor for single-photon counting and quanta imaging,” IEEE Trans. Electron Devices 63, 189–196 (2016).
[Crossref]

R. K. Henderson, N. Johnston, S. W. Hutchings, I. Gyongy, T. Al Abbas, N. Dutton, M. Tyler, S. Chan, and J. Leach, “A 256×256 40  nm/90  nm CMOS 3D-stacked 120  dB dynamic-range reconfigurable time-resolved SPAD imager,” in IEEE International Conference on Solid-State Circuits Conference (2019).

Haase, J.

J. Haase, M. Beer, J. Ruskowski, and H. Vogt, “Multi object detection in direct time-of-flight measurements with SPADs,” in 14th Conference on Ph.D. Research in Microelectronics and Electronics (2018).

Halin, I. A.

S. Kawahito, I. A. Halin, T. Ushinaga, T. Sawada, M. Homma, and Y. Maeda, “A CMOS time-of-flight range image sensor with gates-on-field-oxide structure,” IEEE Sens. J. 7, 1578–1586 (2007).
[Crossref]

Henderson, R.

A. Lyons, F. Tonolini, A. Boccolini, A. Repetti, R. Henderson, Y. Wiaux, and D. Faccio, “Computational time-of-flight diffuse optical tomography,” Nat. Photonics 13, 575–579 (2019).
[Crossref]

Henderson, R. K.

R. K. Henderson, N. Johnston, F. M. D. Rocca, H. Chen, D. D.-U. Li, G. Hungerford, R. Hirsch, D. McLoskey, P. Yip, and D. J. S. Birch, “A 192×128 time correlated SPAD image sensor in 40  nm CMOS technology,” IEEE J. Solid-State Circuits 54, 1907–1916 (2019).
[Crossref]

I. Gyongy, N. Calder, A. Davies, N. A. W. Dutton, R. R. Duncan, C. Rickman, P. Dalgamo, and R. K. Henderson, “A 256×256, 100-kfps, 61% fill-factor SPAD image sensor for time-resolved microscopy applications,” IEEE Trans. Electron Devices 65, 547–554 (2018).
[Crossref]

N. A. W. Dutton, T. Al Abbas, I. Gyongy, F. M. D. Rocca, and R. K. Henderson, “High dynamic range imaging at the quantum limit with single photon avalanche diode-based image sensors,” Sensors 18, 1166 (2018).
[Crossref]

I. Gyongy, A. Davies, B. Gallinet, N. A. W. Dutton, R. Duncan, C. Rickman, R. K. Henderson, and P. A. Dalgarno, “Cylindrical microlensing for enhanced collection efficiency of small pixel SPAD arrays in single-molecule localisation microscopy,” Opt. Express 26, 2280–2291 (2018).
[Crossref]

N. A. W. Dutton, I. Gyongy, L. Parmesan, S. Gnecchi, N. Calder, B. R. Rae, S. Pellegrini, L. A. Grant, and R. K. Henderson, “A SPAD-based QVGA image sensor for single-photon counting and quanta imaging,” IEEE Trans. Electron Devices 63, 189–196 (2016).
[Crossref]

C. Veerappan, J. Richardson, R. Walker, D.-U. Li, M. W. Fishburn, Y. Maruyama, D. Stoppa, F. Borghetti, M. Gersbach, R. K. Henderson, and E. Charbon, “A 160×128 single-photon image sensor with on-pixel 55  ps 10  b time-to-digital converter,” in IEEE International Solid-State Circuits Conference (2011).

J. Richardson, R. Walker, L. Grant, D. Stoppa, F. Borghetti, E. Charbon, M. Gersbach, and R. K. Henderson, “A 32×32 50  ps resolution 10  bit time to digital converter array in 130  nm CMOS for time correlated imaging,” in IEEE Custom Integrated Circuits Conference (2009).

R. K. Henderson, N. Johnston, S. W. Hutchings, I. Gyongy, T. Al Abbas, N. Dutton, M. Tyler, S. Chan, and J. Leach, “A 256×256 40  nm/90  nm CMOS 3D-stacked 120  dB dynamic-range reconfigurable time-resolved SPAD imager,” in IEEE International Conference on Solid-State Circuits Conference (2019).

T. Al Abbas, N. A. W. Dutton, O. Almer, S. Pellegrini, Y. Henrion, and R. K. Henderson, “Backside illuminated SPAD image sensor with 7.83  µm pitch in 3D-stacked CMOS technology,” in IEEE International Electron Devices Meeting (2016), pp. 811–814.

Henrion, Y.

T. Al Abbas, N. A. W. Dutton, O. Almer, S. Pellegrini, Y. Henrion, and R. K. Henderson, “Backside illuminated SPAD image sensor with 7.83  µm pitch in 3D-stacked CMOS technology,” in IEEE International Electron Devices Meeting (2016), pp. 811–814.

Hirose, Y.

Y. Hirose, S. Koyama, T. Okino, A. Inoue, S. Saito, Y. Nose, M. Ishii, S. Yamahira, S. Kasuga, M. Mori, T. Kabe, K. Nakanishi, M. Usuda, A. Odagawa, and T. Tanaka, “A 400×400-pixel 6µm-pitch vertical avalanche photodiodes CMOS image sensor based on 150  ps-fast capacitive relaxation quenching in Geiger mode for synthesis of arbitrary gain images,” in IEEE Int. Solid-State Circuits Conference (2019).

Hirsch, R.

R. K. Henderson, N. Johnston, F. M. D. Rocca, H. Chen, D. D.-U. Li, G. Hungerford, R. Hirsch, D. McLoskey, P. Yip, and D. J. S. Birch, “A 192×128 time correlated SPAD image sensor in 40  nm CMOS technology,” IEEE J. Solid-State Circuits 54, 1907–1916 (2019).
[Crossref]

Homma, M.

S. Kawahito, I. A. Halin, T. Ushinaga, T. Sawada, M. Homma, and Y. Maeda, “A CMOS time-of-flight range image sensor with gates-on-field-oxide structure,” IEEE Sens. J. 7, 1578–1586 (2007).
[Crossref]

Homulle, H.

C. Bruschini, H. Homulle, I. M. Antolovic, S. Burri, and E. Charbon, “Single-photon avalanche diode imagers in biophotonics: review and outlook,” Light Sci. Appl. 8, 87 (2019).
[Crossref]

Hungerford, G.

R. K. Henderson, N. Johnston, F. M. D. Rocca, H. Chen, D. D.-U. Li, G. Hungerford, R. Hirsch, D. McLoskey, P. Yip, and D. J. S. Birch, “A 192×128 time correlated SPAD image sensor in 40  nm CMOS technology,” IEEE J. Solid-State Circuits 54, 1907–1916 (2019).
[Crossref]

Hutchings, S. W.

R. K. Henderson, N. Johnston, S. W. Hutchings, I. Gyongy, T. Al Abbas, N. Dutton, M. Tyler, S. Chan, and J. Leach, “A 256×256 40  nm/90  nm CMOS 3D-stacked 120  dB dynamic-range reconfigurable time-resolved SPAD imager,” in IEEE International Conference on Solid-State Circuits Conference (2019).

Inoue, A.

Y. Hirose, S. Koyama, T. Okino, A. Inoue, S. Saito, Y. Nose, M. Ishii, S. Yamahira, S. Kasuga, M. Mori, T. Kabe, K. Nakanishi, M. Usuda, A. Odagawa, and T. Tanaka, “A 400×400-pixel 6µm-pitch vertical avalanche photodiodes CMOS image sensor based on 150  ps-fast capacitive relaxation quenching in Geiger mode for synthesis of arbitrary gain images,” in IEEE Int. Solid-State Circuits Conference (2019).

Ishii, M.

Y. Hirose, S. Koyama, T. Okino, A. Inoue, S. Saito, Y. Nose, M. Ishii, S. Yamahira, S. Kasuga, M. Mori, T. Kabe, K. Nakanishi, M. Usuda, A. Odagawa, and T. Tanaka, “A 400×400-pixel 6µm-pitch vertical avalanche photodiodes CMOS image sensor based on 150  ps-fast capacitive relaxation quenching in Geiger mode for synthesis of arbitrary gain images,” in IEEE Int. Solid-State Circuits Conference (2019).

Johnston, N.

R. K. Henderson, N. Johnston, F. M. D. Rocca, H. Chen, D. D.-U. Li, G. Hungerford, R. Hirsch, D. McLoskey, P. Yip, and D. J. S. Birch, “A 192×128 time correlated SPAD image sensor in 40  nm CMOS technology,” IEEE J. Solid-State Circuits 54, 1907–1916 (2019).
[Crossref]

R. K. Henderson, N. Johnston, S. W. Hutchings, I. Gyongy, T. Al Abbas, N. Dutton, M. Tyler, S. Chan, and J. Leach, “A 256×256 40  nm/90  nm CMOS 3D-stacked 120  dB dynamic-range reconfigurable time-resolved SPAD imager,” in IEEE International Conference on Solid-State Circuits Conference (2019).

Kabe, T.

Y. Hirose, S. Koyama, T. Okino, A. Inoue, S. Saito, Y. Nose, M. Ishii, S. Yamahira, S. Kasuga, M. Mori, T. Kabe, K. Nakanishi, M. Usuda, A. Odagawa, and T. Tanaka, “A 400×400-pixel 6µm-pitch vertical avalanche photodiodes CMOS image sensor based on 150  ps-fast capacitive relaxation quenching in Geiger mode for synthesis of arbitrary gain images,” in IEEE Int. Solid-State Circuits Conference (2019).

Kadambi, A.

A. Kadambi, R. Whyte, A. Bhandari, L. Streeter, C. Barsi, A. Dorrington, and R. Raskar, “Coded time of flight cameras: sparse deconvolution to address multipath interference and recover time profiles,” ACM Trans. Graphics 32, 167 (2013).
[Crossref]

Kagawa, K.

F. Mochizuki, K. Kagawa, R. Miyagi, M.-W. Seo, B. Zhang, T. Takasawa, K. Yasutomi, and S. Kawahito, “Separation of multi-path components in sweep-less time-of-flight depth imaging with a temporally-compressive multi-aperture image sensor,” ITE Trans. Media Technol. Appl. 6, 202–211 (2018).
[Crossref]

Kasuga, S.

Y. Hirose, S. Koyama, T. Okino, A. Inoue, S. Saito, Y. Nose, M. Ishii, S. Yamahira, S. Kasuga, M. Mori, T. Kabe, K. Nakanishi, M. Usuda, A. Odagawa, and T. Tanaka, “A 400×400-pixel 6µm-pitch vertical avalanche photodiodes CMOS image sensor based on 150  ps-fast capacitive relaxation quenching in Geiger mode for synthesis of arbitrary gain images,” in IEEE Int. Solid-State Circuits Conference (2019).

Kawahito, S.

F. Mochizuki, K. Kagawa, R. Miyagi, M.-W. Seo, B. Zhang, T. Takasawa, K. Yasutomi, and S. Kawahito, “Separation of multi-path components in sweep-less time-of-flight depth imaging with a temporally-compressive multi-aperture image sensor,” ITE Trans. Media Technol. Appl. 6, 202–211 (2018).
[Crossref]

S. Kawahito, I. A. Halin, T. Ushinaga, T. Sawada, M. Homma, and Y. Maeda, “A CMOS time-of-flight range image sensor with gates-on-field-oxide structure,” IEEE Sens. J. 7, 1578–1586 (2007).
[Crossref]

Kitano, K.

K. Kitano, T. Okamoto, K. Tanaka, T. Aoto, H. Kubo, T. Funatomi, and Y. Mukaigawa, “Recovering temporal PSF using ToF camera with delayed light emission,” IPSJ Trans. Comput. Vis. Appl. 9, 15 (2017).
[Crossref]

Kizilkan, E.

I. M. Antolovic, A. C. Ulku, E. Kizilkan, S. Lindner, F. Zanella, R. Ferrini, M. Schnieper, E. Charbon, and C. Bruschini, “Optical-stack optimization for improved SPAD photon detection efficiency,” Proc. SPIE 10926, 109262T (2019).
[Crossref]

Kluter, T.

C. Niclass, C. Favi, T. Kluter, M. Gersbach, and E. Charbon, “A 128 × 128 single-photon image sensor with column-level 10-bit time-to-digital converter array,” IEEE J. Solid-State Circuits 43, 2977–2989 (2008).
[Crossref]

Kordus, L.

C. S. Bamji, S. Mehta, B. Thompson, T. Elkhatib, S. Wurster, O. Akkaya, A. Payne, J. Godbaz, M. Fenton, V. Rajasekaran, L. Prather, S. Nagaraja, V. Mogallapu, D. Snow, R. McCauley, M. Mukadam, I. Agi, S. McCarthy, Z. Xu, T. Perry, W. Qian, V.-H. Chan, P. Adepu, G. Ali, M. Ahmed, A. Mukherjee, S. Nayak, D. Gampell, S. Acharya, L. Kordus, and P. O’Connor, “1  Mpixel 65  nm BSI 320  MHz demodulated TOF image sensor with 3.5  µm global shutter pixels and analog binning,” in IEEE International Solid-State Circuits Conference (2018).

Koyama, S.

Y. Hirose, S. Koyama, T. Okino, A. Inoue, S. Saito, Y. Nose, M. Ishii, S. Yamahira, S. Kasuga, M. Mori, T. Kabe, K. Nakanishi, M. Usuda, A. Odagawa, and T. Tanaka, “A 400×400-pixel 6µm-pitch vertical avalanche photodiodes CMOS image sensor based on 150  ps-fast capacitive relaxation quenching in Geiger mode for synthesis of arbitrary gain images,” in IEEE Int. Solid-State Circuits Conference (2019).

Kubo, H.

K. Kitano, T. Okamoto, K. Tanaka, T. Aoto, H. Kubo, T. Funatomi, and Y. Mukaigawa, “Recovering temporal PSF using ToF camera with delayed light emission,” IPSJ Trans. Comput. Vis. Appl. 9, 15 (2017).
[Crossref]

Kuo, Y.

A. C. Ulku, C. Bruschini, I. M. Antolovic, Y. Kuo, R. Ankri, S. Weiss, X. Michalet, and E. Charbon, “A 512×512 SPAD image sensor with integrated gating for widefield FLIM,” IEEE J. Sel. Top. Quantum Electron. 25, 1–12 (2019).
[Crossref]

Leach, J.

R. K. Henderson, N. Johnston, S. W. Hutchings, I. Gyongy, T. Al Abbas, N. Dutton, M. Tyler, S. Chan, and J. Leach, “A 256×256 40  nm/90  nm CMOS 3D-stacked 120  dB dynamic-range reconfigurable time-resolved SPAD imager,” in IEEE International Conference on Solid-State Circuits Conference (2019).

Lee, M.-J.

A. R. Ximenes, P. Padmanabhan, M.-J. Lee, Y. Yamashita, D.-N. Yaung, and E. Charbon, “A modular, direct time-of-flight depth sensor in 45/65-nm 3-D-stacked CMOS technology,” IEEE J. Solid-State Circuits 54, 3203–3214 (2019).
[Crossref]

Li, D. D.-U.

R. K. Henderson, N. Johnston, F. M. D. Rocca, H. Chen, D. D.-U. Li, G. Hungerford, R. Hirsch, D. McLoskey, P. Yip, and D. J. S. Birch, “A 192×128 time correlated SPAD image sensor in 40  nm CMOS technology,” IEEE J. Solid-State Circuits 54, 1907–1916 (2019).
[Crossref]

Li, D.-U.

C. Veerappan, J. Richardson, R. Walker, D.-U. Li, M. W. Fishburn, Y. Maruyama, D. Stoppa, F. Borghetti, M. Gersbach, R. K. Henderson, and E. Charbon, “A 160×128 single-photon image sensor with on-pixel 55  ps 10  b time-to-digital converter,” in IEEE International Solid-State Circuits Conference (2011).

Lindell, D. B.

M. O’Toole, D. B. Lindell, and G. Wetzstein, “Confocal non-line-of-sight imaging based on light-cone transform,” Nature 555, 338–341 (2018).
[Crossref]

Lindner, S.

I. M. Antolovic, A. C. Ulku, E. Kizilkan, S. Lindner, F. Zanella, R. Ferrini, M. Schnieper, E. Charbon, and C. Bruschini, “Optical-stack optimization for improved SPAD photon detection efficiency,” Proc. SPIE 10926, 109262T (2019).
[Crossref]

J. M. Pavia, M. Scandini, S. Lindner, M. Wolf, and E. Charbon, “A 1 × 400 backside-illuminated SPAD sensor with 49.7  ps resolution, 30  pJ/sample TDCs fabricated in 3D CMOS technology for near-infrared optical tomography,” IEEE J. Solid-State Circuits 50, 2406–2418 (2015).
[Crossref]

S. Lindner, C. Zhang, I. M. Antolovic, M. Wolf, and E. Charbon, “A 252 × 144 SPAD pixel FLASH LiDAR with 1728 dual-clock 48.8  ps TDCs, integrated histogramming and 14.9-to-1 compression in 180nm CMOS technology,” in IEEE Symposium on VLSI Circuits (2018).

Loheac, J.-L.

W. van der Tempel, A. Ercan, T. Finateu, K. Fotopoulou, C. Mourad, F. Agavriloaie, S. Resimont, L. Cutrignelli, P. Thury, C. E. Medina, S. Xiao, J.-L. Loheac, J. Perhavc, T. Van de Hauwe, V. Belokonskiy, L. Bossuyt, W. Aerts, M. Pauwels, and D. Van Nieuwenhove, “A 320 × 240 10  um CAPD ToF image sensor with improved performance,” in International Image Sensor Workshop (2017).

Lu, Y. M.

F. Yang, Y. M. Lu, L. Sbaiz, and M. Vetterli, “Bits from photons: oversampled image acquisition using binary Poisson statistics,” IEEE Trans. Image Process. 21, 1421–1436 (2012).
[Crossref]

Lyons, A.

A. Lyons, F. Tonolini, A. Boccolini, A. Repetti, R. Henderson, Y. Wiaux, and D. Faccio, “Computational time-of-flight diffuse optical tomography,” Nat. Photonics 13, 575–579 (2019).
[Crossref]

Ma, J.

Maeda, Y.

S. Kawahito, I. A. Halin, T. Ushinaga, T. Sawada, M. Homma, and Y. Maeda, “A CMOS time-of-flight range image sensor with gates-on-field-oxide structure,” IEEE Sens. J. 7, 1578–1586 (2007).
[Crossref]

Mandai, S.

A. Carimatto, S. Mandai, E. Venialgo, T. Gong, G. Borghi, D. R. Schaart, and E. Charbon, “A 67,392-SPAD PVTB-compensated multi-channel digital SiPM with 432 column-parallel 48  ps 17b TDCs for endoscopic time-of-flight PET,” in IEEE International Solid-State Circuits Conference (2015).

Markovic, B.

D. Bronzi, F. Villa, S. Bellisai, B. Markovic, S. Tisa, A. Tosi, F. Zappa, S. Weyers, D. Durini, W. Brockherde, and U. Paschen, “Low-noise and large-area CMOS SPADs with timing response free from slow tails,” in European Solid-State Device Research Conference (ESSDERC) (2012), pp. 230–233.

Maruyama, Y.

S. Burri, Y. Maruyama, X. Michalet, F. Regazzoni, C. Bruschini, and E. Charbon, “Architecture and applications of a high resolution gated SPAD image sensor,” Opt. Express 22, 17573–17589 (2014).
[Crossref]

C. Veerappan, J. Richardson, R. Walker, D.-U. Li, M. W. Fishburn, Y. Maruyama, D. Stoppa, F. Borghetti, M. Gersbach, R. K. Henderson, and E. Charbon, “A 160×128 single-photon image sensor with on-pixel 55  ps 10  b time-to-digital converter,” in IEEE International Solid-State Circuits Conference (2011).

Masoodian, S.

J. Ma, S. Masoodian, D. A. Starkey, and E. R. Fossum, “Photon-number-resolving megapixel image sensor at room temperature without avalanche gain,” Optica 4, 1474–1481 (2017).
[Crossref]

E. R. Fossum, J. Ma, S. Masoodian, L. Anzagira, and R. Zizza, “The quanta image sensor: every photon counts,” Sensors 16, 1260 (2016).
[Crossref]

Massari, N.

M. Perenzoni, N. Massari, D. Perenzoni, L. Gasparini, and D. Stoppa, “A 160×120-pixel analog-counting single-photon imager with time-gating and self-referenced column-parallel A/D conversion for fluorescence lifetime imaging,” IEEE J. Solid-State Circuits 51, 155–167 (2016).
[Crossref]

M. Perenzoni, M. Moreno-García, L. Gasparini, and N. Massari, “Time-resolved single-photon detectors: integration challenges in CMOS technologies,” in IEEE International Conference on IC Design and Technology (2018).

McCarthy, S.

C. S. Bamji, S. Mehta, B. Thompson, T. Elkhatib, S. Wurster, O. Akkaya, A. Payne, J. Godbaz, M. Fenton, V. Rajasekaran, L. Prather, S. Nagaraja, V. Mogallapu, D. Snow, R. McCauley, M. Mukadam, I. Agi, S. McCarthy, Z. Xu, T. Perry, W. Qian, V.-H. Chan, P. Adepu, G. Ali, M. Ahmed, A. Mukherjee, S. Nayak, D. Gampell, S. Acharya, L. Kordus, and P. O’Connor, “1  Mpixel 65  nm BSI 320  MHz demodulated TOF image sensor with 3.5  µm global shutter pixels and analog binning,” in IEEE International Solid-State Circuits Conference (2018).

McCauley, R.

C. S. Bamji, S. Mehta, B. Thompson, T. Elkhatib, S. Wurster, O. Akkaya, A. Payne, J. Godbaz, M. Fenton, V. Rajasekaran, L. Prather, S. Nagaraja, V. Mogallapu, D. Snow, R. McCauley, M. Mukadam, I. Agi, S. McCarthy, Z. Xu, T. Perry, W. Qian, V.-H. Chan, P. Adepu, G. Ali, M. Ahmed, A. Mukherjee, S. Nayak, D. Gampell, S. Acharya, L. Kordus, and P. O’Connor, “1  Mpixel 65  nm BSI 320  MHz demodulated TOF image sensor with 3.5  µm global shutter pixels and analog binning,” in IEEE International Solid-State Circuits Conference (2018).

McLoskey, D.

R. K. Henderson, N. Johnston, F. M. D. Rocca, H. Chen, D. D.-U. Li, G. Hungerford, R. Hirsch, D. McLoskey, P. Yip, and D. J. S. Birch, “A 192×128 time correlated SPAD image sensor in 40  nm CMOS technology,” IEEE J. Solid-State Circuits 54, 1907–1916 (2019).
[Crossref]

Medina, C. E.

W. van der Tempel, A. Ercan, T. Finateu, K. Fotopoulou, C. Mourad, F. Agavriloaie, S. Resimont, L. Cutrignelli, P. Thury, C. E. Medina, S. Xiao, J.-L. Loheac, J. Perhavc, T. Van de Hauwe, V. Belokonskiy, L. Bossuyt, W. Aerts, M. Pauwels, and D. Van Nieuwenhove, “A 320 × 240 10  um CAPD ToF image sensor with improved performance,” in International Image Sensor Workshop (2017).

Mehta, S.

C. S. Bamji, S. Mehta, B. Thompson, T. Elkhatib, S. Wurster, O. Akkaya, A. Payne, J. Godbaz, M. Fenton, V. Rajasekaran, L. Prather, S. Nagaraja, V. Mogallapu, D. Snow, R. McCauley, M. Mukadam, I. Agi, S. McCarthy, Z. Xu, T. Perry, W. Qian, V.-H. Chan, P. Adepu, G. Ali, M. Ahmed, A. Mukherjee, S. Nayak, D. Gampell, S. Acharya, L. Kordus, and P. O’Connor, “1  Mpixel 65  nm BSI 320  MHz demodulated TOF image sensor with 3.5  µm global shutter pixels and analog binning,” in IEEE International Solid-State Circuits Conference (2018).

Michalet, X.

A. C. Ulku, C. Bruschini, I. M. Antolovic, Y. Kuo, R. Ankri, S. Weiss, X. Michalet, and E. Charbon, “A 512×512 SPAD image sensor with integrated gating for widefield FLIM,” IEEE J. Sel. Top. Quantum Electron. 25, 1–12 (2019).
[Crossref]

S. Burri, Y. Maruyama, X. Michalet, F. Regazzoni, C. Bruschini, and E. Charbon, “Architecture and applications of a high resolution gated SPAD image sensor,” Opt. Express 22, 17573–17589 (2014).
[Crossref]

Miyagi, R.

F. Mochizuki, K. Kagawa, R. Miyagi, M.-W. Seo, B. Zhang, T. Takasawa, K. Yasutomi, and S. Kawahito, “Separation of multi-path components in sweep-less time-of-flight depth imaging with a temporally-compressive multi-aperture image sensor,” ITE Trans. Media Technol. Appl. 6, 202–211 (2018).
[Crossref]

Mochizuki, F.

F. Mochizuki, K. Kagawa, R. Miyagi, M.-W. Seo, B. Zhang, T. Takasawa, K. Yasutomi, and S. Kawahito, “Separation of multi-path components in sweep-less time-of-flight depth imaging with a temporally-compressive multi-aperture image sensor,” ITE Trans. Media Technol. Appl. 6, 202–211 (2018).
[Crossref]

Mogallapu, V.

C. S. Bamji, S. Mehta, B. Thompson, T. Elkhatib, S. Wurster, O. Akkaya, A. Payne, J. Godbaz, M. Fenton, V. Rajasekaran, L. Prather, S. Nagaraja, V. Mogallapu, D. Snow, R. McCauley, M. Mukadam, I. Agi, S. McCarthy, Z. Xu, T. Perry, W. Qian, V.-H. Chan, P. Adepu, G. Ali, M. Ahmed, A. Mukherjee, S. Nayak, D. Gampell, S. Acharya, L. Kordus, and P. O’Connor, “1  Mpixel 65  nm BSI 320  MHz demodulated TOF image sensor with 3.5  µm global shutter pixels and analog binning,” in IEEE International Solid-State Circuits Conference (2018).

Moreno-García, M.

M. Perenzoni, M. Moreno-García, L. Gasparini, and N. Massari, “Time-resolved single-photon detectors: integration challenges in CMOS technologies,” in IEEE International Conference on IC Design and Technology (2018).

Mori, M.

Y. Hirose, S. Koyama, T. Okino, A. Inoue, S. Saito, Y. Nose, M. Ishii, S. Yamahira, S. Kasuga, M. Mori, T. Kabe, K. Nakanishi, M. Usuda, A. Odagawa, and T. Tanaka, “A 400×400-pixel 6µm-pitch vertical avalanche photodiodes CMOS image sensor based on 150  ps-fast capacitive relaxation quenching in Geiger mode for synthesis of arbitrary gain images,” in IEEE Int. Solid-State Circuits Conference (2019).

Mourad, C.

W. van der Tempel, A. Ercan, T. Finateu, K. Fotopoulou, C. Mourad, F. Agavriloaie, S. Resimont, L. Cutrignelli, P. Thury, C. E. Medina, S. Xiao, J.-L. Loheac, J. Perhavc, T. Van de Hauwe, V. Belokonskiy, L. Bossuyt, W. Aerts, M. Pauwels, and D. Van Nieuwenhove, “A 320 × 240 10  um CAPD ToF image sensor with improved performance,” in International Image Sensor Workshop (2017).

Mukadam, M.

C. S. Bamji, S. Mehta, B. Thompson, T. Elkhatib, S. Wurster, O. Akkaya, A. Payne, J. Godbaz, M. Fenton, V. Rajasekaran, L. Prather, S. Nagaraja, V. Mogallapu, D. Snow, R. McCauley, M. Mukadam, I. Agi, S. McCarthy, Z. Xu, T. Perry, W. Qian, V.-H. Chan, P. Adepu, G. Ali, M. Ahmed, A. Mukherjee, S. Nayak, D. Gampell, S. Acharya, L. Kordus, and P. O’Connor, “1  Mpixel 65  nm BSI 320  MHz demodulated TOF image sensor with 3.5  µm global shutter pixels and analog binning,” in IEEE International Solid-State Circuits Conference (2018).

Mukaigawa, Y.

K. Kitano, T. Okamoto, K. Tanaka, T. Aoto, H. Kubo, T. Funatomi, and Y. Mukaigawa, “Recovering temporal PSF using ToF camera with delayed light emission,” IPSJ Trans. Comput. Vis. Appl. 9, 15 (2017).
[Crossref]

Mukherjee, A.

C. S. Bamji, S. Mehta, B. Thompson, T. Elkhatib, S. Wurster, O. Akkaya, A. Payne, J. Godbaz, M. Fenton, V. Rajasekaran, L. Prather, S. Nagaraja, V. Mogallapu, D. Snow, R. McCauley, M. Mukadam, I. Agi, S. McCarthy, Z. Xu, T. Perry, W. Qian, V.-H. Chan, P. Adepu, G. Ali, M. Ahmed, A. Mukherjee, S. Nayak, D. Gampell, S. Acharya, L. Kordus, and P. O’Connor, “1  Mpixel 65  nm BSI 320  MHz demodulated TOF image sensor with 3.5  µm global shutter pixels and analog binning,” in IEEE International Solid-State Circuits Conference (2018).

Nagaraja, S.

C. S. Bamji, S. Mehta, B. Thompson, T. Elkhatib, S. Wurster, O. Akkaya, A. Payne, J. Godbaz, M. Fenton, V. Rajasekaran, L. Prather, S. Nagaraja, V. Mogallapu, D. Snow, R. McCauley, M. Mukadam, I. Agi, S. McCarthy, Z. Xu, T. Perry, W. Qian, V.-H. Chan, P. Adepu, G. Ali, M. Ahmed, A. Mukherjee, S. Nayak, D. Gampell, S. Acharya, L. Kordus, and P. O’Connor, “1  Mpixel 65  nm BSI 320  MHz demodulated TOF image sensor with 3.5  µm global shutter pixels and analog binning,” in IEEE International Solid-State Circuits Conference (2018).

Nakanishi, K.

Y. Hirose, S. Koyama, T. Okino, A. Inoue, S. Saito, Y. Nose, M. Ishii, S. Yamahira, S. Kasuga, M. Mori, T. Kabe, K. Nakanishi, M. Usuda, A. Odagawa, and T. Tanaka, “A 400×400-pixel 6µm-pitch vertical avalanche photodiodes CMOS image sensor based on 150  ps-fast capacitive relaxation quenching in Geiger mode for synthesis of arbitrary gain images,” in IEEE Int. Solid-State Circuits Conference (2019).

Nayak, S.

C. S. Bamji, S. Mehta, B. Thompson, T. Elkhatib, S. Wurster, O. Akkaya, A. Payne, J. Godbaz, M. Fenton, V. Rajasekaran, L. Prather, S. Nagaraja, V. Mogallapu, D. Snow, R. McCauley, M. Mukadam, I. Agi, S. McCarthy, Z. Xu, T. Perry, W. Qian, V.-H. Chan, P. Adepu, G. Ali, M. Ahmed, A. Mukherjee, S. Nayak, D. Gampell, S. Acharya, L. Kordus, and P. O’Connor, “1  Mpixel 65  nm BSI 320  MHz demodulated TOF image sensor with 3.5  µm global shutter pixels and analog binning,” in IEEE International Solid-State Circuits Conference (2018).

Niclass, C.

C. Niclass, C. Favi, T. Kluter, M. Gersbach, and E. Charbon, “A 128 × 128 single-photon image sensor with column-level 10-bit time-to-digital converter array,” IEEE J. Solid-State Circuits 43, 2977–2989 (2008).
[Crossref]

Nose, Y.

Y. Hirose, S. Koyama, T. Okino, A. Inoue, S. Saito, Y. Nose, M. Ishii, S. Yamahira, S. Kasuga, M. Mori, T. Kabe, K. Nakanishi, M. Usuda, A. Odagawa, and T. Tanaka, “A 400×400-pixel 6µm-pitch vertical avalanche photodiodes CMOS image sensor based on 150  ps-fast capacitive relaxation quenching in Geiger mode for synthesis of arbitrary gain images,” in IEEE Int. Solid-State Circuits Conference (2019).

O’Connor, P.

C. S. Bamji, S. Mehta, B. Thompson, T. Elkhatib, S. Wurster, O. Akkaya, A. Payne, J. Godbaz, M. Fenton, V. Rajasekaran, L. Prather, S. Nagaraja, V. Mogallapu, D. Snow, R. McCauley, M. Mukadam, I. Agi, S. McCarthy, Z. Xu, T. Perry, W. Qian, V.-H. Chan, P. Adepu, G. Ali, M. Ahmed, A. Mukherjee, S. Nayak, D. Gampell, S. Acharya, L. Kordus, and P. O’Connor, “1  Mpixel 65  nm BSI 320  MHz demodulated TOF image sensor with 3.5  µm global shutter pixels and analog binning,” in IEEE International Solid-State Circuits Conference (2018).

O’Toole, M.

M. O’Toole, D. B. Lindell, and G. Wetzstein, “Confocal non-line-of-sight imaging based on light-cone transform,” Nature 555, 338–341 (2018).
[Crossref]

Odagawa, A.

Y. Hirose, S. Koyama, T. Okino, A. Inoue, S. Saito, Y. Nose, M. Ishii, S. Yamahira, S. Kasuga, M. Mori, T. Kabe, K. Nakanishi, M. Usuda, A. Odagawa, and T. Tanaka, “A 400×400-pixel 6µm-pitch vertical avalanche photodiodes CMOS image sensor based on 150  ps-fast capacitive relaxation quenching in Geiger mode for synthesis of arbitrary gain images,” in IEEE Int. Solid-State Circuits Conference (2019).

Okamoto, T.

K. Kitano, T. Okamoto, K. Tanaka, T. Aoto, H. Kubo, T. Funatomi, and Y. Mukaigawa, “Recovering temporal PSF using ToF camera with delayed light emission,” IPSJ Trans. Comput. Vis. Appl. 9, 15 (2017).
[Crossref]

Okino, T.

Y. Hirose, S. Koyama, T. Okino, A. Inoue, S. Saito, Y. Nose, M. Ishii, S. Yamahira, S. Kasuga, M. Mori, T. Kabe, K. Nakanishi, M. Usuda, A. Odagawa, and T. Tanaka, “A 400×400-pixel 6µm-pitch vertical avalanche photodiodes CMOS image sensor based on 150  ps-fast capacitive relaxation quenching in Geiger mode for synthesis of arbitrary gain images,” in IEEE Int. Solid-State Circuits Conference (2019).

Padmanabhan, P.

A. R. Ximenes, P. Padmanabhan, M.-J. Lee, Y. Yamashita, D.-N. Yaung, and E. Charbon, “A modular, direct time-of-flight depth sensor in 45/65-nm 3-D-stacked CMOS technology,” IEEE J. Solid-State Circuits 54, 3203–3214 (2019).
[Crossref]

Parmesan, L.

N. A. W. Dutton, I. Gyongy, L. Parmesan, S. Gnecchi, N. Calder, B. R. Rae, S. Pellegrini, L. A. Grant, and R. K. Henderson, “A SPAD-based QVGA image sensor for single-photon counting and quanta imaging,” IEEE Trans. Electron Devices 63, 189–196 (2016).
[Crossref]

Paschen, U.

D. Bronzi, F. Villa, S. Bellisai, B. Markovic, S. Tisa, A. Tosi, F. Zappa, S. Weyers, D. Durini, W. Brockherde, and U. Paschen, “Low-noise and large-area CMOS SPADs with timing response free from slow tails,” in European Solid-State Device Research Conference (ESSDERC) (2012), pp. 230–233.

Paternoster, G.

F. Acerbi, G. Paternoster, A. Gola, N. Zorzi, and C. Piemonte, “Silicon photomultipliers and single-photon avalanche diodes with enhanced NIR detection efficiency at FBK,” Nucl. Instrum. Methods Phys. Res. A 912, 309–314 (2018).
[Crossref]

Pauwels, M.

W. van der Tempel, A. Ercan, T. Finateu, K. Fotopoulou, C. Mourad, F. Agavriloaie, S. Resimont, L. Cutrignelli, P. Thury, C. E. Medina, S. Xiao, J.-L. Loheac, J. Perhavc, T. Van de Hauwe, V. Belokonskiy, L. Bossuyt, W. Aerts, M. Pauwels, and D. Van Nieuwenhove, “A 320 × 240 10  um CAPD ToF image sensor with improved performance,” in International Image Sensor Workshop (2017).

Pavia, J. M.

J. M. Pavia, M. Scandini, S. Lindner, M. Wolf, and E. Charbon, “A 1 × 400 backside-illuminated SPAD sensor with 49.7  ps resolution, 30  pJ/sample TDCs fabricated in 3D CMOS technology for near-infrared optical tomography,” IEEE J. Solid-State Circuits 50, 2406–2418 (2015).
[Crossref]

J. M. Pavia, M. Wolf, and E. Charbon, “Measurement and modeling of microlenses fabricated on single-photon avalanche diode arrays for fill factor recovery,” Opt. Express 22, 4202–4213 (2014).
[Crossref]

Payne, A.

C. S. Bamji, S. Mehta, B. Thompson, T. Elkhatib, S. Wurster, O. Akkaya, A. Payne, J. Godbaz, M. Fenton, V. Rajasekaran, L. Prather, S. Nagaraja, V. Mogallapu, D. Snow, R. McCauley, M. Mukadam, I. Agi, S. McCarthy, Z. Xu, T. Perry, W. Qian, V.-H. Chan, P. Adepu, G. Ali, M. Ahmed, A. Mukherjee, S. Nayak, D. Gampell, S. Acharya, L. Kordus, and P. O’Connor, “1  Mpixel 65  nm BSI 320  MHz demodulated TOF image sensor with 3.5  µm global shutter pixels and analog binning,” in IEEE International Solid-State Circuits Conference (2018).

Pellegrini, S.

N. A. W. Dutton, I. Gyongy, L. Parmesan, S. Gnecchi, N. Calder, B. R. Rae, S. Pellegrini, L. A. Grant, and R. K. Henderson, “A SPAD-based QVGA image sensor for single-photon counting and quanta imaging,” IEEE Trans. Electron Devices 63, 189–196 (2016).
[Crossref]

T. Al Abbas, N. A. W. Dutton, O. Almer, S. Pellegrini, Y. Henrion, and R. K. Henderson, “Backside illuminated SPAD image sensor with 7.83  µm pitch in 3D-stacked CMOS technology,” in IEEE International Electron Devices Meeting (2016), pp. 811–814.

Perenzoni, D.

M. Perenzoni, N. Massari, D. Perenzoni, L. Gasparini, and D. Stoppa, “A 160×120-pixel analog-counting single-photon imager with time-gating and self-referenced column-parallel A/D conversion for fluorescence lifetime imaging,” IEEE J. Solid-State Circuits 51, 155–167 (2016).
[Crossref]

M. Perenzoni, D. Perenzoni, and D. Stoppa, “A 64×64-pixel digital silicon photomultiplier direct ToF sensor with 100Mphotons/s/pixel background rejection and imaging/altimeter mode with 0.14% precision up to 6km for spacecraft navigation and landing,” in IEEE International Solid-State Circuits Conference (2016).

Perenzoni, M.

M. Perenzoni, N. Massari, D. Perenzoni, L. Gasparini, and D. Stoppa, “A 160×120-pixel analog-counting single-photon imager with time-gating and self-referenced column-parallel A/D conversion for fluorescence lifetime imaging,” IEEE J. Solid-State Circuits 51, 155–167 (2016).
[Crossref]

M. Perenzoni, D. Perenzoni, and D. Stoppa, “A 64×64-pixel digital silicon photomultiplier direct ToF sensor with 100Mphotons/s/pixel background rejection and imaging/altimeter mode with 0.14% precision up to 6km for spacecraft navigation and landing,” in IEEE International Solid-State Circuits Conference (2016).

M. Perenzoni, M. Moreno-García, L. Gasparini, and N. Massari, “Time-resolved single-photon detectors: integration challenges in CMOS technologies,” in IEEE International Conference on IC Design and Technology (2018).

Perhavc, J.

W. van der Tempel, A. Ercan, T. Finateu, K. Fotopoulou, C. Mourad, F. Agavriloaie, S. Resimont, L. Cutrignelli, P. Thury, C. E. Medina, S. Xiao, J.-L. Loheac, J. Perhavc, T. Van de Hauwe, V. Belokonskiy, L. Bossuyt, W. Aerts, M. Pauwels, and D. Van Nieuwenhove, “A 320 × 240 10  um CAPD ToF image sensor with improved performance,” in International Image Sensor Workshop (2017).

Perry, T.

C. S. Bamji, S. Mehta, B. Thompson, T. Elkhatib, S. Wurster, O. Akkaya, A. Payne, J. Godbaz, M. Fenton, V. Rajasekaran, L. Prather, S. Nagaraja, V. Mogallapu, D. Snow, R. McCauley, M. Mukadam, I. Agi, S. McCarthy, Z. Xu, T. Perry, W. Qian, V.-H. Chan, P. Adepu, G. Ali, M. Ahmed, A. Mukherjee, S. Nayak, D. Gampell, S. Acharya, L. Kordus, and P. O’Connor, “1  Mpixel 65  nm BSI 320  MHz demodulated TOF image sensor with 3.5  µm global shutter pixels and analog binning,” in IEEE International Solid-State Circuits Conference (2018).

Piemonte, C.

F. Acerbi, G. Paternoster, A. Gola, N. Zorzi, and C. Piemonte, “Silicon photomultipliers and single-photon avalanche diodes with enhanced NIR detection efficiency at FBK,” Nucl. Instrum. Methods Phys. Res. A 912, 309–314 (2018).
[Crossref]

Prather, L.

C. S. Bamji, S. Mehta, B. Thompson, T. Elkhatib, S. Wurster, O. Akkaya, A. Payne, J. Godbaz, M. Fenton, V. Rajasekaran, L. Prather, S. Nagaraja, V. Mogallapu, D. Snow, R. McCauley, M. Mukadam, I. Agi, S. McCarthy, Z. Xu, T. Perry, W. Qian, V.-H. Chan, P. Adepu, G. Ali, M. Ahmed, A. Mukherjee, S. Nayak, D. Gampell, S. Acharya, L. Kordus, and P. O’Connor, “1  Mpixel 65  nm BSI 320  MHz demodulated TOF image sensor with 3.5  µm global shutter pixels and analog binning,” in IEEE International Solid-State Circuits Conference (2018).

Qian, W.

C. S. Bamji, S. Mehta, B. Thompson, T. Elkhatib, S. Wurster, O. Akkaya, A. Payne, J. Godbaz, M. Fenton, V. Rajasekaran, L. Prather, S. Nagaraja, V. Mogallapu, D. Snow, R. McCauley, M. Mukadam, I. Agi, S. McCarthy, Z. Xu, T. Perry, W. Qian, V.-H. Chan, P. Adepu, G. Ali, M. Ahmed, A. Mukherjee, S. Nayak, D. Gampell, S. Acharya, L. Kordus, and P. O’Connor, “1  Mpixel 65  nm BSI 320  MHz demodulated TOF image sensor with 3.5  µm global shutter pixels and analog binning,” in IEEE International Solid-State Circuits Conference (2018).

Rae, B. R.

N. A. W. Dutton, I. Gyongy, L. Parmesan, S. Gnecchi, N. Calder, B. R. Rae, S. Pellegrini, L. A. Grant, and R. K. Henderson, “A SPAD-based QVGA image sensor for single-photon counting and quanta imaging,” IEEE Trans. Electron Devices 63, 189–196 (2016).
[Crossref]

Rajasekaran, V.

C. S. Bamji, S. Mehta, B. Thompson, T. Elkhatib, S. Wurster, O. Akkaya, A. Payne, J. Godbaz, M. Fenton, V. Rajasekaran, L. Prather, S. Nagaraja, V. Mogallapu, D. Snow, R. McCauley, M. Mukadam, I. Agi, S. McCarthy, Z. Xu, T. Perry, W. Qian, V.-H. Chan, P. Adepu, G. Ali, M. Ahmed, A. Mukherjee, S. Nayak, D. Gampell, S. Acharya, L. Kordus, and P. O’Connor, “1  Mpixel 65  nm BSI 320  MHz demodulated TOF image sensor with 3.5  µm global shutter pixels and analog binning,” in IEEE International Solid-State Circuits Conference (2018).

Raskar, R.

A. Kadambi, R. Whyte, A. Bhandari, L. Streeter, C. Barsi, A. Dorrington, and R. Raskar, “Coded time of flight cameras: sparse deconvolution to address multipath interference and recover time profiles,” ACM Trans. Graphics 32, 167 (2013).
[Crossref]

A. Velten, T. Willwacher, O. Gupta, A. Veeraraghavan, M. G. Bawendi, and R. Raskar, “Recovering three-dimensional shape around a corner using ultrafast time-of-flight imaging,” Nat. Commun. 3, 745 (2012).
[Crossref]

Regazzoni, F.

Reichert, M.

H. Defienne, M. Reichert, J. W. Fleischer, and D. Faccio, “Quantum image distillation,” Sci. Adv. 5, eaax0307 (2019).
[Crossref]

Repetti, A.

A. Lyons, F. Tonolini, A. Boccolini, A. Repetti, R. Henderson, Y. Wiaux, and D. Faccio, “Computational time-of-flight diffuse optical tomography,” Nat. Photonics 13, 575–579 (2019).
[Crossref]

Resimont, S.

W. van der Tempel, A. Ercan, T. Finateu, K. Fotopoulou, C. Mourad, F. Agavriloaie, S. Resimont, L. Cutrignelli, P. Thury, C. E. Medina, S. Xiao, J.-L. Loheac, J. Perhavc, T. Van de Hauwe, V. Belokonskiy, L. Bossuyt, W. Aerts, M. Pauwels, and D. Van Nieuwenhove, “A 320 × 240 10  um CAPD ToF image sensor with improved performance,” in International Image Sensor Workshop (2017).

Richardson, J.

C. Veerappan, J. Richardson, R. Walker, D.-U. Li, M. W. Fishburn, Y. Maruyama, D. Stoppa, F. Borghetti, M. Gersbach, R. K. Henderson, and E. Charbon, “A 160×128 single-photon image sensor with on-pixel 55  ps 10  b time-to-digital converter,” in IEEE International Solid-State Circuits Conference (2011).

J. Richardson, R. Walker, L. Grant, D. Stoppa, F. Borghetti, E. Charbon, M. Gersbach, and R. K. Henderson, “A 32×32 50  ps resolution 10  bit time to digital converter array in 130  nm CMOS for time correlated imaging,” in IEEE Custom Integrated Circuits Conference (2009).

Rickman, C.

I. Gyongy, N. Calder, A. Davies, N. A. W. Dutton, R. R. Duncan, C. Rickman, P. Dalgamo, and R. K. Henderson, “A 256×256, 100-kfps, 61% fill-factor SPAD image sensor for time-resolved microscopy applications,” IEEE Trans. Electron Devices 65, 547–554 (2018).
[Crossref]

I. Gyongy, A. Davies, B. Gallinet, N. A. W. Dutton, R. Duncan, C. Rickman, R. K. Henderson, and P. A. Dalgarno, “Cylindrical microlensing for enhanced collection efficiency of small pixel SPAD arrays in single-molecule localisation microscopy,” Opt. Express 26, 2280–2291 (2018).
[Crossref]

Rocca, F. M. D.

R. K. Henderson, N. Johnston, F. M. D. Rocca, H. Chen, D. D.-U. Li, G. Hungerford, R. Hirsch, D. McLoskey, P. Yip, and D. J. S. Birch, “A 192×128 time correlated SPAD image sensor in 40  nm CMOS technology,” IEEE J. Solid-State Circuits 54, 1907–1916 (2019).
[Crossref]

N. A. W. Dutton, T. Al Abbas, I. Gyongy, F. M. D. Rocca, and R. K. Henderson, “High dynamic range imaging at the quantum limit with single photon avalanche diode-based image sensors,” Sensors 18, 1166 (2018).
[Crossref]

Ruskowski, J.

J. Haase, M. Beer, J. Ruskowski, and H. Vogt, “Multi object detection in direct time-of-flight measurements with SPADs,” in 14th Conference on Ph.D. Research in Microelectronics and Electronics (2018).

Saito, S.

Y. Hirose, S. Koyama, T. Okino, A. Inoue, S. Saito, Y. Nose, M. Ishii, S. Yamahira, S. Kasuga, M. Mori, T. Kabe, K. Nakanishi, M. Usuda, A. Odagawa, and T. Tanaka, “A 400×400-pixel 6µm-pitch vertical avalanche photodiodes CMOS image sensor based on 150  ps-fast capacitive relaxation quenching in Geiger mode for synthesis of arbitrary gain images,” in IEEE Int. Solid-State Circuits Conference (2019).

Sawada, T.

S. Kawahito, I. A. Halin, T. Ushinaga, T. Sawada, M. Homma, and Y. Maeda, “A CMOS time-of-flight range image sensor with gates-on-field-oxide structure,” IEEE Sens. J. 7, 1578–1586 (2007).
[Crossref]

Sbaiz, L.

F. Yang, Y. M. Lu, L. Sbaiz, and M. Vetterli, “Bits from photons: oversampled image acquisition using binary Poisson statistics,” IEEE Trans. Image Process. 21, 1421–1436 (2012).
[Crossref]

Scandini, M.

J. M. Pavia, M. Scandini, S. Lindner, M. Wolf, and E. Charbon, “A 1 × 400 backside-illuminated SPAD sensor with 49.7  ps resolution, 30  pJ/sample TDCs fabricated in 3D CMOS technology for near-infrared optical tomography,” IEEE J. Solid-State Circuits 50, 2406–2418 (2015).
[Crossref]

Schaart, D. R.

A. Carimatto, S. Mandai, E. Venialgo, T. Gong, G. Borghi, D. R. Schaart, and E. Charbon, “A 67,392-SPAD PVTB-compensated multi-channel digital SiPM with 432 column-parallel 48  ps 17b TDCs for endoscopic time-of-flight PET,” in IEEE International Solid-State Circuits Conference (2015).

Schnieper, M.

I. M. Antolovic, A. C. Ulku, E. Kizilkan, S. Lindner, F. Zanella, R. Ferrini, M. Schnieper, E. Charbon, and C. Bruschini, “Optical-stack optimization for improved SPAD photon detection efficiency,” Proc. SPIE 10926, 109262T (2019).
[Crossref]

Seo, M.-W.

F. Mochizuki, K. Kagawa, R. Miyagi, M.-W. Seo, B. Zhang, T. Takasawa, K. Yasutomi, and S. Kawahito, “Separation of multi-path components in sweep-less time-of-flight depth imaging with a temporally-compressive multi-aperture image sensor,” ITE Trans. Media Technol. Appl. 6, 202–211 (2018).
[Crossref]

Shapiro, J. H.

Shin, D.

Snow, D.

C. S. Bamji, S. Mehta, B. Thompson, T. Elkhatib, S. Wurster, O. Akkaya, A. Payne, J. Godbaz, M. Fenton, V. Rajasekaran, L. Prather, S. Nagaraja, V. Mogallapu, D. Snow, R. McCauley, M. Mukadam, I. Agi, S. McCarthy, Z. Xu, T. Perry, W. Qian, V.-H. Chan, P. Adepu, G. Ali, M. Ahmed, A. Mukherjee, S. Nayak, D. Gampell, S. Acharya, L. Kordus, and P. O’Connor, “1  Mpixel 65  nm BSI 320  MHz demodulated TOF image sensor with 3.5  µm global shutter pixels and analog binning,” in IEEE International Solid-State Circuits Conference (2018).

Starkey, D. A.

Stoppa, D.

M. Perenzoni, N. Massari, D. Perenzoni, L. Gasparini, and D. Stoppa, “A 160×120-pixel analog-counting single-photon imager with time-gating and self-referenced column-parallel A/D conversion for fluorescence lifetime imaging,” IEEE J. Solid-State Circuits 51, 155–167 (2016).
[Crossref]

M. Perenzoni, D. Perenzoni, and D. Stoppa, “A 64×64-pixel digital silicon photomultiplier direct ToF sensor with 100Mphotons/s/pixel background rejection and imaging/altimeter mode with 0.14% precision up to 6km for spacecraft navigation and landing,” in IEEE International Solid-State Circuits Conference (2016).

J. Richardson, R. Walker, L. Grant, D. Stoppa, F. Borghetti, E. Charbon, M. Gersbach, and R. K. Henderson, “A 32×32 50  ps resolution 10  bit time to digital converter array in 130  nm CMOS for time correlated imaging,” in IEEE Custom Integrated Circuits Conference (2009).

C. Veerappan, J. Richardson, R. Walker, D.-U. Li, M. W. Fishburn, Y. Maruyama, D. Stoppa, F. Borghetti, M. Gersbach, R. K. Henderson, and E. Charbon, “A 160×128 single-photon image sensor with on-pixel 55  ps 10  b time-to-digital converter,” in IEEE International Solid-State Circuits Conference (2011).

Streeter, L.

A. Kadambi, R. Whyte, A. Bhandari, L. Streeter, C. Barsi, A. Dorrington, and R. Raskar, “Coded time of flight cameras: sparse deconvolution to address multipath interference and recover time profiles,” ACM Trans. Graphics 32, 167 (2013).
[Crossref]

Takasawa, T.

F. Mochizuki, K. Kagawa, R. Miyagi, M.-W. Seo, B. Zhang, T. Takasawa, K. Yasutomi, and S. Kawahito, “Separation of multi-path components in sweep-less time-of-flight depth imaging with a temporally-compressive multi-aperture image sensor,” ITE Trans. Media Technol. Appl. 6, 202–211 (2018).
[Crossref]

Tanaka, K.

K. Kitano, T. Okamoto, K. Tanaka, T. Aoto, H. Kubo, T. Funatomi, and Y. Mukaigawa, “Recovering temporal PSF using ToF camera with delayed light emission,” IPSJ Trans. Comput. Vis. Appl. 9, 15 (2017).
[Crossref]

Tanaka, T.

Y. Hirose, S. Koyama, T. Okino, A. Inoue, S. Saito, Y. Nose, M. Ishii, S. Yamahira, S. Kasuga, M. Mori, T. Kabe, K. Nakanishi, M. Usuda, A. Odagawa, and T. Tanaka, “A 400×400-pixel 6µm-pitch vertical avalanche photodiodes CMOS image sensor based on 150  ps-fast capacitive relaxation quenching in Geiger mode for synthesis of arbitrary gain images,” in IEEE Int. Solid-State Circuits Conference (2019).

Thompson, B.

C. S. Bamji, S. Mehta, B. Thompson, T. Elkhatib, S. Wurster, O. Akkaya, A. Payne, J. Godbaz, M. Fenton, V. Rajasekaran, L. Prather, S. Nagaraja, V. Mogallapu, D. Snow, R. McCauley, M. Mukadam, I. Agi, S. McCarthy, Z. Xu, T. Perry, W. Qian, V.-H. Chan, P. Adepu, G. Ali, M. Ahmed, A. Mukherjee, S. Nayak, D. Gampell, S. Acharya, L. Kordus, and P. O’Connor, “1  Mpixel 65  nm BSI 320  MHz demodulated TOF image sensor with 3.5  µm global shutter pixels and analog binning,” in IEEE International Solid-State Circuits Conference (2018).

Thury, P.

W. van der Tempel, A. Ercan, T. Finateu, K. Fotopoulou, C. Mourad, F. Agavriloaie, S. Resimont, L. Cutrignelli, P. Thury, C. E. Medina, S. Xiao, J.-L. Loheac, J. Perhavc, T. Van de Hauwe, V. Belokonskiy, L. Bossuyt, W. Aerts, M. Pauwels, and D. Van Nieuwenhove, “A 320 × 240 10  um CAPD ToF image sensor with improved performance,” in International Image Sensor Workshop (2017).

Tisa, S.

D. Bronzi, F. Villa, S. Bellisai, B. Markovic, S. Tisa, A. Tosi, F. Zappa, S. Weyers, D. Durini, W. Brockherde, and U. Paschen, “Low-noise and large-area CMOS SPADs with timing response free from slow tails,” in European Solid-State Device Research Conference (ESSDERC) (2012), pp. 230–233.

Tonolini, F.

A. Lyons, F. Tonolini, A. Boccolini, A. Repetti, R. Henderson, Y. Wiaux, and D. Faccio, “Computational time-of-flight diffuse optical tomography,” Nat. Photonics 13, 575–579 (2019).
[Crossref]

Tosi, A.

D. Bronzi, F. Villa, S. Bellisai, B. Markovic, S. Tisa, A. Tosi, F. Zappa, S. Weyers, D. Durini, W. Brockherde, and U. Paschen, “Low-noise and large-area CMOS SPADs with timing response free from slow tails,” in European Solid-State Device Research Conference (ESSDERC) (2012), pp. 230–233.

Tyler, M.

R. K. Henderson, N. Johnston, S. W. Hutchings, I. Gyongy, T. Al Abbas, N. Dutton, M. Tyler, S. Chan, and J. Leach, “A 256×256 40  nm/90  nm CMOS 3D-stacked 120  dB dynamic-range reconfigurable time-resolved SPAD imager,” in IEEE International Conference on Solid-State Circuits Conference (2019).

Ulku, A. C.

A. C. Ulku, C. Bruschini, I. M. Antolovic, Y. Kuo, R. Ankri, S. Weiss, X. Michalet, and E. Charbon, “A 512×512 SPAD image sensor with integrated gating for widefield FLIM,” IEEE J. Sel. Top. Quantum Electron. 25, 1–12 (2019).
[Crossref]

I. M. Antolovic, A. C. Ulku, E. Kizilkan, S. Lindner, F. Zanella, R. Ferrini, M. Schnieper, E. Charbon, and C. Bruschini, “Optical-stack optimization for improved SPAD photon detection efficiency,” Proc. SPIE 10926, 109262T (2019).
[Crossref]

Ushinaga, T.

S. Kawahito, I. A. Halin, T. Ushinaga, T. Sawada, M. Homma, and Y. Maeda, “A CMOS time-of-flight range image sensor with gates-on-field-oxide structure,” IEEE Sens. J. 7, 1578–1586 (2007).
[Crossref]

Usuda, M.

Y. Hirose, S. Koyama, T. Okino, A. Inoue, S. Saito, Y. Nose, M. Ishii, S. Yamahira, S. Kasuga, M. Mori, T. Kabe, K. Nakanishi, M. Usuda, A. Odagawa, and T. Tanaka, “A 400×400-pixel 6µm-pitch vertical avalanche photodiodes CMOS image sensor based on 150  ps-fast capacitive relaxation quenching in Geiger mode for synthesis of arbitrary gain images,” in IEEE Int. Solid-State Circuits Conference (2019).

Van de Hauwe, T.

W. van der Tempel, A. Ercan, T. Finateu, K. Fotopoulou, C. Mourad, F. Agavriloaie, S. Resimont, L. Cutrignelli, P. Thury, C. E. Medina, S. Xiao, J.-L. Loheac, J. Perhavc, T. Van de Hauwe, V. Belokonskiy, L. Bossuyt, W. Aerts, M. Pauwels, and D. Van Nieuwenhove, “A 320 × 240 10  um CAPD ToF image sensor with improved performance,” in International Image Sensor Workshop (2017).

van der Tempel, W.

W. van der Tempel, A. Ercan, T. Finateu, K. Fotopoulou, C. Mourad, F. Agavriloaie, S. Resimont, L. Cutrignelli, P. Thury, C. E. Medina, S. Xiao, J.-L. Loheac, J. Perhavc, T. Van de Hauwe, V. Belokonskiy, L. Bossuyt, W. Aerts, M. Pauwels, and D. Van Nieuwenhove, “A 320 × 240 10  um CAPD ToF image sensor with improved performance,” in International Image Sensor Workshop (2017).

Van Nieuwenhove, D.

W. van der Tempel, A. Ercan, T. Finateu, K. Fotopoulou, C. Mourad, F. Agavriloaie, S. Resimont, L. Cutrignelli, P. Thury, C. E. Medina, S. Xiao, J.-L. Loheac, J. Perhavc, T. Van de Hauwe, V. Belokonskiy, L. Bossuyt, W. Aerts, M. Pauwels, and D. Van Nieuwenhove, “A 320 × 240 10  um CAPD ToF image sensor with improved performance,” in International Image Sensor Workshop (2017).

Veerappan, C.

C. Veerappan and E. Charbon, “A low dark count p-i-n diode based SPAD in CMOS technology,” IEEE Trans. Electron Devices 63, 65–71 (2016).
[Crossref]

C. Veerappan, J. Richardson, R. Walker, D.-U. Li, M. W. Fishburn, Y. Maruyama, D. Stoppa, F. Borghetti, M. Gersbach, R. K. Henderson, and E. Charbon, “A 160×128 single-photon image sensor with on-pixel 55  ps 10  b time-to-digital converter,” in IEEE International Solid-State Circuits Conference (2011).

Veeraraghavan, A.

A. Velten, T. Willwacher, O. Gupta, A. Veeraraghavan, M. G. Bawendi, and R. Raskar, “Recovering three-dimensional shape around a corner using ultrafast time-of-flight imaging,” Nat. Commun. 3, 745 (2012).
[Crossref]

Velten, A.

A. Velten, T. Willwacher, O. Gupta, A. Veeraraghavan, M. G. Bawendi, and R. Raskar, “Recovering three-dimensional shape around a corner using ultrafast time-of-flight imaging,” Nat. Commun. 3, 745 (2012).
[Crossref]

Venialgo, E.

A. Carimatto, S. Mandai, E. Venialgo, T. Gong, G. Borghi, D. R. Schaart, and E. Charbon, “A 67,392-SPAD PVTB-compensated multi-channel digital SiPM with 432 column-parallel 48  ps 17b TDCs for endoscopic time-of-flight PET,” in IEEE International Solid-State Circuits Conference (2015).

Vetterli, M.

F. Yang, Y. M. Lu, L. Sbaiz, and M. Vetterli, “Bits from photons: oversampled image acquisition using binary Poisson statistics,” IEEE Trans. Image Process. 21, 1421–1436 (2012).
[Crossref]

Villa, F.

D. Bronzi, F. Villa, S. Bellisai, B. Markovic, S. Tisa, A. Tosi, F. Zappa, S. Weyers, D. Durini, W. Brockherde, and U. Paschen, “Low-noise and large-area CMOS SPADs with timing response free from slow tails,” in European Solid-State Device Research Conference (ESSDERC) (2012), pp. 230–233.

Vogt, H.

J. Haase, M. Beer, J. Ruskowski, and H. Vogt, “Multi object detection in direct time-of-flight measurements with SPADs,” in 14th Conference on Ph.D. Research in Microelectronics and Electronics (2018).

Walker, R.

J. Richardson, R. Walker, L. Grant, D. Stoppa, F. Borghetti, E. Charbon, M. Gersbach, and R. K. Henderson, “A 32×32 50  ps resolution 10  bit time to digital converter array in 130  nm CMOS for time correlated imaging,” in IEEE Custom Integrated Circuits Conference (2009).

C. Veerappan, J. Richardson, R. Walker, D.-U. Li, M. W. Fishburn, Y. Maruyama, D. Stoppa, F. Borghetti, M. Gersbach, R. K. Henderson, and E. Charbon, “A 160×128 single-photon image sensor with on-pixel 55  ps 10  b time-to-digital converter,” in IEEE International Solid-State Circuits Conference (2011).

Weiss, S.

A. C. Ulku, C. Bruschini, I. M. Antolovic, Y. Kuo, R. Ankri, S. Weiss, X. Michalet, and E. Charbon, “A 512×512 SPAD image sensor with integrated gating for widefield FLIM,” IEEE J. Sel. Top. Quantum Electron. 25, 1–12 (2019).
[Crossref]

Wetzstein, G.

M. O’Toole, D. B. Lindell, and G. Wetzstein, “Confocal non-line-of-sight imaging based on light-cone transform,” Nature 555, 338–341 (2018).
[Crossref]

Weyers, S.

D. Bronzi, F. Villa, S. Bellisai, B. Markovic, S. Tisa, A. Tosi, F. Zappa, S. Weyers, D. Durini, W. Brockherde, and U. Paschen, “Low-noise and large-area CMOS SPADs with timing response free from slow tails,” in European Solid-State Device Research Conference (ESSDERC) (2012), pp. 230–233.

Whyte, R.

A. Kadambi, R. Whyte, A. Bhandari, L. Streeter, C. Barsi, A. Dorrington, and R. Raskar, “Coded time of flight cameras: sparse deconvolution to address multipath interference and recover time profiles,” ACM Trans. Graphics 32, 167 (2013).
[Crossref]

Wiaux, Y.

A. Lyons, F. Tonolini, A. Boccolini, A. Repetti, R. Henderson, Y. Wiaux, and D. Faccio, “Computational time-of-flight diffuse optical tomography,” Nat. Photonics 13, 575–579 (2019).
[Crossref]

Willwacher, T.

A. Velten, T. Willwacher, O. Gupta, A. Veeraraghavan, M. G. Bawendi, and R. Raskar, “Recovering three-dimensional shape around a corner using ultrafast time-of-flight imaging,” Nat. Commun. 3, 745 (2012).
[Crossref]

Wolf, M.

J. M. Pavia, M. Scandini, S. Lindner, M. Wolf, and E. Charbon, “A 1 × 400 backside-illuminated SPAD sensor with 49.7  ps resolution, 30  pJ/sample TDCs fabricated in 3D CMOS technology for near-infrared optical tomography,” IEEE J. Solid-State Circuits 50, 2406–2418 (2015).
[Crossref]

J. M. Pavia, M. Wolf, and E. Charbon, “Measurement and modeling of microlenses fabricated on single-photon avalanche diode arrays for fill factor recovery,” Opt. Express 22, 4202–4213 (2014).
[Crossref]

S. Lindner, C. Zhang, I. M. Antolovic, M. Wolf, and E. Charbon, “A 252 × 144 SPAD pixel FLASH LiDAR with 1728 dual-clock 48.8  ps TDCs, integrated histogramming and 14.9-to-1 compression in 180nm CMOS technology,” in IEEE Symposium on VLSI Circuits (2018).

Wong, F. N. C.

Wurster, S.

C. S. Bamji, S. Mehta, B. Thompson, T. Elkhatib, S. Wurster, O. Akkaya, A. Payne, J. Godbaz, M. Fenton, V. Rajasekaran, L. Prather, S. Nagaraja, V. Mogallapu, D. Snow, R. McCauley, M. Mukadam, I. Agi, S. McCarthy, Z. Xu, T. Perry, W. Qian, V.-H. Chan, P. Adepu, G. Ali, M. Ahmed, A. Mukherjee, S. Nayak, D. Gampell, S. Acharya, L. Kordus, and P. O’Connor, “1  Mpixel 65  nm BSI 320  MHz demodulated TOF image sensor with 3.5  µm global shutter pixels and analog binning,” in IEEE International Solid-State Circuits Conference (2018).

Xiao, S.

W. van der Tempel, A. Ercan, T. Finateu, K. Fotopoulou, C. Mourad, F. Agavriloaie, S. Resimont, L. Cutrignelli, P. Thury, C. E. Medina, S. Xiao, J.-L. Loheac, J. Perhavc, T. Van de Hauwe, V. Belokonskiy, L. Bossuyt, W. Aerts, M. Pauwels, and D. Van Nieuwenhove, “A 320 × 240 10  um CAPD ToF image sensor with improved performance,” in International Image Sensor Workshop (2017).

Ximenes, A. R.

A. R. Ximenes, P. Padmanabhan, M.-J. Lee, Y. Yamashita, D.-N. Yaung, and E. Charbon, “A modular, direct time-of-flight depth sensor in 45/65-nm 3-D-stacked CMOS technology,” IEEE J. Solid-State Circuits 54, 3203–3214 (2019).
[Crossref]

Xu, F.

Xu, Z.

C. S. Bamji, S. Mehta, B. Thompson, T. Elkhatib, S. Wurster, O. Akkaya, A. Payne, J. Godbaz, M. Fenton, V. Rajasekaran, L. Prather, S. Nagaraja, V. Mogallapu, D. Snow, R. McCauley, M. Mukadam, I. Agi, S. McCarthy, Z. Xu, T. Perry, W. Qian, V.-H. Chan, P. Adepu, G. Ali, M. Ahmed, A. Mukherjee, S. Nayak, D. Gampell, S. Acharya, L. Kordus, and P. O’Connor, “1  Mpixel 65  nm BSI 320  MHz demodulated TOF image sensor with 3.5  µm global shutter pixels and analog binning,” in IEEE International Solid-State Circuits Conference (2018).

Yamahira, S.

Y. Hirose, S. Koyama, T. Okino, A. Inoue, S. Saito, Y. Nose, M. Ishii, S. Yamahira, S. Kasuga, M. Mori, T. Kabe, K. Nakanishi, M. Usuda, A. Odagawa, and T. Tanaka, “A 400×400-pixel 6µm-pitch vertical avalanche photodiodes CMOS image sensor based on 150  ps-fast capacitive relaxation quenching in Geiger mode for synthesis of arbitrary gain images,” in IEEE Int. Solid-State Circuits Conference (2019).

Yamashita, Y.

A. R. Ximenes, P. Padmanabhan, M.-J. Lee, Y. Yamashita, D.-N. Yaung, and E. Charbon, “A modular, direct time-of-flight depth sensor in 45/65-nm 3-D-stacked CMOS technology,” IEEE J. Solid-State Circuits 54, 3203–3214 (2019).
[Crossref]

Yang, F.

F. Yang, Y. M. Lu, L. Sbaiz, and M. Vetterli, “Bits from photons: oversampled image acquisition using binary Poisson statistics,” IEEE Trans. Image Process. 21, 1421–1436 (2012).
[Crossref]

Yasutomi, K.

F. Mochizuki, K. Kagawa, R. Miyagi, M.-W. Seo, B. Zhang, T. Takasawa, K. Yasutomi, and S. Kawahito, “Separation of multi-path components in sweep-less time-of-flight depth imaging with a temporally-compressive multi-aperture image sensor,” ITE Trans. Media Technol. Appl. 6, 202–211 (2018).
[Crossref]

Yaung, D.-N.

A. R. Ximenes, P. Padmanabhan, M.-J. Lee, Y. Yamashita, D.-N. Yaung, and E. Charbon, “A modular, direct time-of-flight depth sensor in 45/65-nm 3-D-stacked CMOS technology,” IEEE J. Solid-State Circuits 54, 3203–3214 (2019).
[Crossref]

Yip, P.

R. K. Henderson, N. Johnston, F. M. D. Rocca, H. Chen, D. D.-U. Li, G. Hungerford, R. Hirsch, D. McLoskey, P. Yip, and D. J. S. Birch, “A 192×128 time correlated SPAD image sensor in 40  nm CMOS technology,” IEEE J. Solid-State Circuits 54, 1907–1916 (2019).
[Crossref]

Zanella, F.

I. M. Antolovic, A. C. Ulku, E. Kizilkan, S. Lindner, F. Zanella, R. Ferrini, M. Schnieper, E. Charbon, and C. Bruschini, “Optical-stack optimization for improved SPAD photon detection efficiency,” Proc. SPIE 10926, 109262T (2019).
[Crossref]

Zappa, F.

D. Bronzi, F. Villa, S. Bellisai, B. Markovic, S. Tisa, A. Tosi, F. Zappa, S. Weyers, D. Durini, W. Brockherde, and U. Paschen, “Low-noise and large-area CMOS SPADs with timing response free from slow tails,” in European Solid-State Device Research Conference (ESSDERC) (2012), pp. 230–233.

Zhang, B.

F. Mochizuki, K. Kagawa, R. Miyagi, M.-W. Seo, B. Zhang, T. Takasawa, K. Yasutomi, and S. Kawahito, “Separation of multi-path components in sweep-less time-of-flight depth imaging with a temporally-compressive multi-aperture image sensor,” ITE Trans. Media Technol. Appl. 6, 202–211 (2018).
[Crossref]

Zhang, C.

S. Lindner, C. Zhang, I. M. Antolovic, M. Wolf, and E. Charbon, “A 252 × 144 SPAD pixel FLASH LiDAR with 1728 dual-clock 48.8  ps TDCs, integrated histogramming and 14.9-to-1 compression in 180nm CMOS technology,” in IEEE Symposium on VLSI Circuits (2018).

Zizza, R.

E. R. Fossum, J. Ma, S. Masoodian, L. Anzagira, and R. Zizza, “The quanta image sensor: every photon counts,” Sensors 16, 1260 (2016).
[Crossref]

Zorzi, N.

F. Acerbi, G. Paternoster, A. Gola, N. Zorzi, and C. Piemonte, “Silicon photomultipliers and single-photon avalanche diodes with enhanced NIR detection efficiency at FBK,” Nucl. Instrum. Methods Phys. Res. A 912, 309–314 (2018).
[Crossref]

ACM Trans. Graphics (1)

A. Kadambi, R. Whyte, A. Bhandari, L. Streeter, C. Barsi, A. Dorrington, and R. Raskar, “Coded time of flight cameras: sparse deconvolution to address multipath interference and recover time profiles,” ACM Trans. Graphics 32, 167 (2013).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

A. C. Ulku, C. Bruschini, I. M. Antolovic, Y. Kuo, R. Ankri, S. Weiss, X. Michalet, and E. Charbon, “A 512×512 SPAD image sensor with integrated gating for widefield FLIM,” IEEE J. Sel. Top. Quantum Electron. 25, 1–12 (2019).
[Crossref]

IEEE J. Solid-State Circuits (5)

J. M. Pavia, M. Scandini, S. Lindner, M. Wolf, and E. Charbon, “A 1 × 400 backside-illuminated SPAD sensor with 49.7  ps resolution, 30  pJ/sample TDCs fabricated in 3D CMOS technology for near-infrared optical tomography,” IEEE J. Solid-State Circuits 50, 2406–2418 (2015).
[Crossref]

A. R. Ximenes, P. Padmanabhan, M.-J. Lee, Y. Yamashita, D.-N. Yaung, and E. Charbon, “A modular, direct time-of-flight depth sensor in 45/65-nm 3-D-stacked CMOS technology,” IEEE J. Solid-State Circuits 54, 3203–3214 (2019).
[Crossref]

M. Perenzoni, N. Massari, D. Perenzoni, L. Gasparini, and D. Stoppa, “A 160×120-pixel analog-counting single-photon imager with time-gating and self-referenced column-parallel A/D conversion for fluorescence lifetime imaging,” IEEE J. Solid-State Circuits 51, 155–167 (2016).
[Crossref]

R. K. Henderson, N. Johnston, F. M. D. Rocca, H. Chen, D. D.-U. Li, G. Hungerford, R. Hirsch, D. McLoskey, P. Yip, and D. J. S. Birch, “A 192×128 time correlated SPAD image sensor in 40  nm CMOS technology,” IEEE J. Solid-State Circuits 54, 1907–1916 (2019).
[Crossref]

C. Niclass, C. Favi, T. Kluter, M. Gersbach, and E. Charbon, “A 128 × 128 single-photon image sensor with column-level 10-bit time-to-digital converter array,” IEEE J. Solid-State Circuits 43, 2977–2989 (2008).
[Crossref]

IEEE Sens. J. (1)

S. Kawahito, I. A. Halin, T. Ushinaga, T. Sawada, M. Homma, and Y. Maeda, “A CMOS time-of-flight range image sensor with gates-on-field-oxide structure,” IEEE Sens. J. 7, 1578–1586 (2007).
[Crossref]

IEEE Trans. Electron Devices (3)

C. Veerappan and E. Charbon, “A low dark count p-i-n diode based SPAD in CMOS technology,” IEEE Trans. Electron Devices 63, 65–71 (2016).
[Crossref]

I. Gyongy, N. Calder, A. Davies, N. A. W. Dutton, R. R. Duncan, C. Rickman, P. Dalgamo, and R. K. Henderson, “A 256×256, 100-kfps, 61% fill-factor SPAD image sensor for time-resolved microscopy applications,” IEEE Trans. Electron Devices 65, 547–554 (2018).
[Crossref]

N. A. W. Dutton, I. Gyongy, L. Parmesan, S. Gnecchi, N. Calder, B. R. Rae, S. Pellegrini, L. A. Grant, and R. K. Henderson, “A SPAD-based QVGA image sensor for single-photon counting and quanta imaging,” IEEE Trans. Electron Devices 63, 189–196 (2016).
[Crossref]

IEEE Trans. Image Process. (1)

F. Yang, Y. M. Lu, L. Sbaiz, and M. Vetterli, “Bits from photons: oversampled image acquisition using binary Poisson statistics,” IEEE Trans. Image Process. 21, 1421–1436 (2012).
[Crossref]

IPSJ Trans. Comput. Vis. Appl. (1)

K. Kitano, T. Okamoto, K. Tanaka, T. Aoto, H. Kubo, T. Funatomi, and Y. Mukaigawa, “Recovering temporal PSF using ToF camera with delayed light emission,” IPSJ Trans. Comput. Vis. Appl. 9, 15 (2017).
[Crossref]

ITE Trans. Media Technol. Appl. (1)

F. Mochizuki, K. Kagawa, R. Miyagi, M.-W. Seo, B. Zhang, T. Takasawa, K. Yasutomi, and S. Kawahito, “Separation of multi-path components in sweep-less time-of-flight depth imaging with a temporally-compressive multi-aperture image sensor,” ITE Trans. Media Technol. Appl. 6, 202–211 (2018).
[Crossref]

Light Sci. Appl. (1)

C. Bruschini, H. Homulle, I. M. Antolovic, S. Burri, and E. Charbon, “Single-photon avalanche diode imagers in biophotonics: review and outlook,” Light Sci. Appl. 8, 87 (2019).
[Crossref]

Nat. Commun. (1)

A. Velten, T. Willwacher, O. Gupta, A. Veeraraghavan, M. G. Bawendi, and R. Raskar, “Recovering three-dimensional shape around a corner using ultrafast time-of-flight imaging,” Nat. Commun. 3, 745 (2012).
[Crossref]

Nat. Photonics (1)

A. Lyons, F. Tonolini, A. Boccolini, A. Repetti, R. Henderson, Y. Wiaux, and D. Faccio, “Computational time-of-flight diffuse optical tomography,” Nat. Photonics 13, 575–579 (2019).
[Crossref]

Nature (1)

M. O’Toole, D. B. Lindell, and G. Wetzstein, “Confocal non-line-of-sight imaging based on light-cone transform,” Nature 555, 338–341 (2018).
[Crossref]

Nucl. Instrum. Methods Phys. Res. A (1)

F. Acerbi, G. Paternoster, A. Gola, N. Zorzi, and C. Piemonte, “Silicon photomultipliers and single-photon avalanche diodes with enhanced NIR detection efficiency at FBK,” Nucl. Instrum. Methods Phys. Res. A 912, 309–314 (2018).
[Crossref]

Opt. Express (6)

Optica (1)

Proc. SPIE (1)

I. M. Antolovic, A. C. Ulku, E. Kizilkan, S. Lindner, F. Zanella, R. Ferrini, M. Schnieper, E. Charbon, and C. Bruschini, “Optical-stack optimization for improved SPAD photon detection efficiency,” Proc. SPIE 10926, 109262T (2019).
[Crossref]

Sci. Adv. (1)

H. Defienne, M. Reichert, J. W. Fleischer, and D. Faccio, “Quantum image distillation,” Sci. Adv. 5, eaax0307 (2019).
[Crossref]

Sensors (2)

E. R. Fossum, J. Ma, S. Masoodian, L. Anzagira, and R. Zizza, “The quanta image sensor: every photon counts,” Sensors 16, 1260 (2016).
[Crossref]

N. A. W. Dutton, T. Al Abbas, I. Gyongy, F. M. D. Rocca, and R. K. Henderson, “High dynamic range imaging at the quantum limit with single photon avalanche diode-based image sensors,” Sensors 18, 1166 (2018).
[Crossref]

Other (15)

D. Bronzi, F. Villa, S. Bellisai, B. Markovic, S. Tisa, A. Tosi, F. Zappa, S. Weyers, D. Durini, W. Brockherde, and U. Paschen, “Low-noise and large-area CMOS SPADs with timing response free from slow tails,” in European Solid-State Device Research Conference (ESSDERC) (2012), pp. 230–233.

J. Haase, M. Beer, J. Ruskowski, and H. Vogt, “Multi object detection in direct time-of-flight measurements with SPADs,” in 14th Conference on Ph.D. Research in Microelectronics and Electronics (2018).

W. van der Tempel, A. Ercan, T. Finateu, K. Fotopoulou, C. Mourad, F. Agavriloaie, S. Resimont, L. Cutrignelli, P. Thury, C. E. Medina, S. Xiao, J.-L. Loheac, J. Perhavc, T. Van de Hauwe, V. Belokonskiy, L. Bossuyt, W. Aerts, M. Pauwels, and D. Van Nieuwenhove, “A 320 × 240 10  um CAPD ToF image sensor with improved performance,” in International Image Sensor Workshop (2017).

C. S. Bamji, S. Mehta, B. Thompson, T. Elkhatib, S. Wurster, O. Akkaya, A. Payne, J. Godbaz, M. Fenton, V. Rajasekaran, L. Prather, S. Nagaraja, V. Mogallapu, D. Snow, R. McCauley, M. Mukadam, I. Agi, S. McCarthy, Z. Xu, T. Perry, W. Qian, V.-H. Chan, P. Adepu, G. Ali, M. Ahmed, A. Mukherjee, S. Nayak, D. Gampell, S. Acharya, L. Kordus, and P. O’Connor, “1  Mpixel 65  nm BSI 320  MHz demodulated TOF image sensor with 3.5  µm global shutter pixels and analog binning,” in IEEE International Solid-State Circuits Conference (2018).

E. Charbon, “Will avalanche photodiode arrays ever reach 1 megapixel?” in International Image Sensor Workshop (2007).

M. Perenzoni, M. Moreno-García, L. Gasparini, and N. Massari, “Time-resolved single-photon detectors: integration challenges in CMOS technologies,” in IEEE International Conference on IC Design and Technology (2018).

Y. Hirose, S. Koyama, T. Okino, A. Inoue, S. Saito, Y. Nose, M. Ishii, S. Yamahira, S. Kasuga, M. Mori, T. Kabe, K. Nakanishi, M. Usuda, A. Odagawa, and T. Tanaka, “A 400×400-pixel 6µm-pitch vertical avalanche photodiodes CMOS image sensor based on 150  ps-fast capacitive relaxation quenching in Geiger mode for synthesis of arbitrary gain images,” in IEEE Int. Solid-State Circuits Conference (2019).

J. Richardson, R. Walker, L. Grant, D. Stoppa, F. Borghetti, E. Charbon, M. Gersbach, and R. K. Henderson, “A 32×32 50  ps resolution 10  bit time to digital converter array in 130  nm CMOS for time correlated imaging,” in IEEE Custom Integrated Circuits Conference (2009).

C. Veerappan, J. Richardson, R. Walker, D.-U. Li, M. W. Fishburn, Y. Maruyama, D. Stoppa, F. Borghetti, M. Gersbach, R. K. Henderson, and E. Charbon, “A 160×128 single-photon image sensor with on-pixel 55  ps 10  b time-to-digital converter,” in IEEE International Solid-State Circuits Conference (2011).

A. Carimatto, S. Mandai, E. Venialgo, T. Gong, G. Borghi, D. R. Schaart, and E. Charbon, “A 67,392-SPAD PVTB-compensated multi-channel digital SiPM with 432 column-parallel 48  ps 17b TDCs for endoscopic time-of-flight PET,” in IEEE International Solid-State Circuits Conference (2015).

M. Perenzoni, D. Perenzoni, and D. Stoppa, “A 64×64-pixel digital silicon photomultiplier direct ToF sensor with 100Mphotons/s/pixel background rejection and imaging/altimeter mode with 0.14% precision up to 6km for spacecraft navigation and landing,” in IEEE International Solid-State Circuits Conference (2016).

R. K. Henderson, N. Johnston, S. W. Hutchings, I. Gyongy, T. Al Abbas, N. Dutton, M. Tyler, S. Chan, and J. Leach, “A 256×256 40  nm/90  nm CMOS 3D-stacked 120  dB dynamic-range reconfigurable time-resolved SPAD imager,” in IEEE International Conference on Solid-State Circuits Conference (2019).

E. R. Fossum, “What to do with sub-diffraction-limit (SDL) pixels? A proposal for a gigapixel digital film sensor (DFS),” in IEEE Workshop on Charge-Coupled Devices and Advanced Image Sensors (2005), pp. 214–217.

T. Al Abbas, N. A. W. Dutton, O. Almer, S. Pellegrini, Y. Henrion, and R. K. Henderson, “Backside illuminated SPAD image sensor with 7.83  µm pitch in 3D-stacked CMOS technology,” in IEEE International Electron Devices Meeting (2016), pp. 811–814.

S. Lindner, C. Zhang, I. M. Antolovic, M. Wolf, and E. Charbon, “A 252 × 144 SPAD pixel FLASH LiDAR with 1728 dual-clock 48.8  ps TDCs, integrated histogramming and 14.9-to-1 compression in 180nm CMOS technology,” in IEEE Symposium on VLSI Circuits (2018).

Supplementary Material (1)

NameDescription
» Supplement 1       Supplement 1

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1.
Fig. 1. Conceptual views of time-gated ToF ranging. (a) Pixel circuit architecture of time-gated SPAD sensor. (b) Timing diagram of ToF ranging based on time gate scanning, where ${ N}$ is the number of repeated measurements in a single period. (c) Expected photon count distribution as a function of gate position. (d) Schematic views of the gating window profile, photon distribution, and measured intensity over time with single reflective object (top) and double reflective objects (bottom).
Fig. 2.
Fig. 2. Schematic views of designed SPAD pixels. (a) Pixel circuit schematics for pixel A and pixel B. Pixel A consists of thick- and thin-oxide transistors, whereas pixel B consists only of thick-oxide transistors. (b) Timing charts for pixel circuit operation.
Fig. 3.
Fig. 3. 1 Mpixel time-gated SPAD image sensor architecture. (a) Sensor block diagram. (b) Chip micrograph and magnified views of pixel arrays.
Fig. 4.
Fig. 4. Measured DCR and PDP for pixels A and B. (a) Room temperature cumulative histogram of DCR at excess bias of 3.3 V. (b) Excess bias dependence of median DCR at room temperature. (c) Wavelength dependence of PDP at an excess bias of 3.3 V. (d) Excess bias dependence of maximum PDP at room temperature.
Fig. 5.
Fig. 5. Measured time-gating performance for pixel A. (a) Gate window profiles for uniformly sampled 160 pixels. (b) Color plot of gate position distribution over ${1024}\; \times \;{500}$ pixels. (c) Color plot of gate length distribution over ${1024}\; \times \;{500}$ pixels. (d) Histograms for gate position, gate length, rise time, and fall time.
Fig. 6.
Fig. 6. 2D intensity imaging of a standard test chart with 1 Mpixel resolution. (a) Experimental setup. (b) A 14-bit image obtained by summing 16,320 binary images. Magnified views of two small areas, indicated by blue and red squares, are shown on the right.
Fig. 7.
Fig. 7. Conceptual view and measured or simulated results for the dynamic range extension technique. (a) Timing diagrams of single and dual exposure modes. (b) Measured (markers) and fitted (dotted lines) output photon counts as a function of incident photon counts for pixel A. (c) Measured (markers) and Monte Carlo-simulated (dotted lines) standard deviation. (d) Measured and simulated standard deviation after linearity correction. (e) Measured and simulated SNR. Green lines indicate the photon-shot noise limit.
Fig. 8.
Fig. 8. 2D images of a real-life scene captured with pixel A: (a) 18-bit image taken in single exposure mode; (b) 18-bit image taken in dual exposure mode.
Fig. 9.
Fig. 9. Measured results for time-gated ToF ranging: (a) real-life 2D intensity image; (b) color-coded 3D image of the same scene obtained with time-gated ToF; (c) measured distance versus actual distance; (d) measured distance accuracy versus actual distance; (e) measured distance precision versus actual distance.
Fig. 10.
Fig. 10. Experimental setup and measured results for time-gated ToF under multiple reflections. (a) Experimental setup to perform the multi-object detection. (b) Captured 2D images with and without the plastic plate. (c) Measured photon count profiles for three different pixels, with and without the plastic plate.
Fig. 11.
Fig. 11. Reconstructed 3D images in the multi-object detection experiment. (a) 3D images reconstructed based on the distance range of 0.3–0.6 m (central ${700}\; \times \;{500}\;{\rm pixels}$ cropped). Black color indicates that no laser reflection is detected in the measured range. (b) 3D images reconstructed based on the distance range of 0.6–0.9 m.
Fig. 12.
Fig. 12. State-of-the-art comparison of pixel array size and pixel pitch in SPAD sensors [610. 12, 13, 4345], based on published works as of December 2019.

Tables (1)

Tables Icon

Table 1. State-of-the-Art Comparison of Performance and Specifications in Large-Scale SPAD Arrays, Based on Published Works as of December 2019

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

L = c Δ t 2 ,
h ( t ) = f ( t ) g ( t ) ,
h ( t ) f ( t ) a δ ( t Δ t ) = a f ( t Δ t ) ,
h ( t ) f ( t ) [ i a i δ ( t Δ t i ) ] = i a i f ( t Δ t i ) ,
N o u t S = N s a t × ( 1 e N i n N s a t ) ,
N o u t D = N s a t 2 × [ ( 1 e 2 τ L ( τ L + τ S ) N i n N s a t ) + ( 1 e 2 τ S ( τ L + τ S ) N i n N s a t ) ] ,

Metrics