Abstract

Optical isolators, reliably integrated on-chip, are crucial components for a wide range of optical systems and applications. We introduce a new class of wideband nonmagnetic and linear optical isolators based on nonlinear frequency conversion and spectral filtering among the pump, signal, and idler wavelengths. The scheme is experimentally demonstrated using difference-frequency generation in periodically poled thin-film lithium niobate integrated devices and short- and long-pass optical filters. We demonstrate a wide bandwidth of more than 150 nm, limited only by the measurement setup, and an optical isolation ratio of up to 18 dB for the involved idler and signal waves. The difference of transmittance at the signal wavelength between forward and backward propagation is 40 dB. We also discuss pathways for substantial isolation improvement using appropriate anti-reflection coatings. The integrable isolator, operating in the telecommunication band, is characterized by a perfectly linear output versus input power dependence and can be incorporated into high-speed telecom and datacom systems as well as a variety of other applications.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Optical isolator using two tandem phase modulators

Christopher R. Doerr, Nicolas Dupuis, and Liming Zhang
Opt. Lett. 36(21) 4293-4295 (2011)

Tunable optical wavelength conversion of OFDM signal using a periodically-poled lithium niobate waveguide

Xiaoxia Wu, Wei-Ren Peng, Vahid Arbab, Jian Wang, and Alan Willner
Opt. Express 17(11) 9177-9182 (2009)

References

  • View by:
  • |
  • |
  • |

  1. W. B. Ribbens, “An optical circulator,” Appl. Opt. 4, 1037–1038 (1965).
    [Crossref]
  2. D. A. Miller, “Rationale and challenges for optical interconnects to electronic chips,” Proc. IEEE 88, 728–749 (2000).
    [Crossref]
  3. D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baets, M. Popović, A. Melloni, and J. D. Joannopoulos, “What is—and what is not—an optical isolator,” Nat. Photonics 7, 579–582 (2013).
    [Crossref]
  4. Y. Shi, Z. Yu, and S. Fan, “Limitations of nonlinear optical isolators due to dynamic reciprocity,” Nat. Photonics 9, 388–392 (2015).
    [Crossref]
  5. D. L. Sounas and A. Alù, “Non-reciprocal photonics based on time modulation,” Nat. Photonics 11, 774–783 (2017).
    [Crossref]
  6. Y. Okamura, H. Inuzuka, T. Kikuchi, and S. Yamamoto, “Nonreciprocal propagation in magnetooptic YIG rib waveguides,” J. Lightwave Technol. 4, 711–714 (1986).
    [Crossref]
  7. T. Aichele, A. Lorenz, R. Hergt, and P. Görnert, “Garnet layers prepared by liquid phase epitaxy for microwave and magneto-optical applications–a review,” Cryst. Res. Technol. 38, 575–587 (2003).
    [Crossref]
  8. H. Dötsch, N. Bahlmann, O. Zhuromskyy, M. Hammer, L. Wilkens, R. Gerhardt, P. Hertel, and A. F. Popkov, “Applications of magneto-optical waveguides in integrated optics,” J. Opt. Soc. Am. B 22, 240–253 (2005).
    [Crossref]
  9. L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics 5, 758–762 (2011).
    [Crossref]
  10. B. J. Stadler and T. Mizumoto, “Integrated magneto-optical materials and isolators: a review,” IEEE Photon. J. 6, 1–15 (2013).
    [Crossref]
  11. P. Pintus, D. Huang, C. Zhang, Y. Shoji, T. Mizumoto, and J. E. Bowers, “Microring-based optical isolator and circulator with integrated electromagnet for silicon photonics,” J. Lightwave Technol. 35, 1429–1437 (2017).
    [Crossref]
  12. K. Gallo, G. Assanto, K. R. Parameswaran, and M. M. Fejer, “All-optical diode in a periodically poled lithium niobate waveguide,” Appl. Phys. Lett. 79, 314–316 (2001).
    [Crossref]
  13. L. Fan, J. Wang, L. T. Varghese, H. Shen, B. Niu, Y. Xuan, A. M. Weiner, and M. Qi, “An all-silicon passive optical diode,” Science 335, 447–450 (2012).
    [Crossref]
  14. S. Hua, J. Wen, X. Jiang, Q. Hua, L. Jiang, and M. Xiao, “Demonstration of a chip-based optical isolator with parametric amplification,” Nat. Commun. 7, 13657 (2016).
    [Crossref]
  15. P. Aleahmad, M. Khajavikhan, D. Christodoulides, and P. LiKamWa, “Integrated multi-port circulators for unidirectional optical information transport,” Sci. Rep. 7, 2129 (2017).
    [Crossref]
  16. F. Nazari, N. Bender, H. Ramezani, M. Moravvej-Farshi, D. Christodoulides, and T. Kottos, “Optical isolation via PT-symmetric nonlinear Fano resonances,” Opt. Express 22, 9574–9584 (2014).
    [Crossref]
  17. Z. Yu and S. Fan, “Complete optical isolation created by indirect interband photonic transitions,” Nat. Photonics 3, 91–94 (2009).
    [Crossref]
  18. H. Lira, Z. Yu, S. Fan, and M. Lipson, “Electrically driven nonreciprocity induced by interband photonic transition on a silicon chip,” Phys. Rev. Lett. 109, 033901 (2012).
    [Crossref]
  19. N. Chamanara, S. Taravati, Z.-L. Deck-Léger, and C. Caloz, “Optical isolation based on space-time engineered asymmetric photonic band gaps,” Phys. Rev. B 96, 155409 (2017).
    [Crossref]
  20. Q. Wang, F. Xu, Z.-Y. Yu, X.-S. Qian, X.-K. Hu, Y.-Q. Lu, and H.-T. Wang, “A bidirectional tunable optical diode based on periodically poled LiNbO3,” Opt. Express 18, 7340–7346 (2010).
    [Crossref]
  21. J. Kim, S. Kim, and G. Bahl, “Complete linear optical isolation at the microscale with ultralow loss,” Sci. Rep. 7, 1647 (2017).
    [Crossref]
  22. S. Bhandare, S. K. Ibrahim, D. Sandel, H. Zhang, F. Wust, and R. Noé, “Novel nonmagnetic 30-dB traveling-wave single-sideband optical isolator integrated in III/V material,” IEEE J. Sel. Top. Quantum Electron. 11, 417–421 (2005).
    [Crossref]
  23. C. R. Doerr, N. Dupuis, and L. Zhang, “Optical isolator using two tandem phase modulators,” Opt. Lett. 36, 4293–4295 (2011).
    [Crossref]
  24. D. L. Sounas and A. Alù, “Angular-momentum-biased nanorings to realize magnetic-free integrated optical isolation,” ACS Photon. 1, 198–204 (2014).
    [Crossref]
  25. N. A. Estep, D. L. Sounas, J. Soric, and A. Alù, “Magnetic-free non-reciprocity and isolation based on parametrically modulated coupled-resonator loops,” Nat. Phys. 10, 923–927 (2014).
    [Crossref]
  26. T. Li, K. Abdelsalam, S. Fathpour, and J. B. Khurgin, “Wide bandwidth, nonmagnetic linear optical isolators based on frequency conversion,” in CLEO: QELS_Fundamental Science (Optical Society of America, 2019), paper FW3B. 7.
  27. A. Rangelov and S. Longhi, “Nonlinear adiabatic optical isolator,” Appl. Opt. 56, 2991–2994 (2017).
    [Crossref]
  28. A. Rao, K. Abdelsalam, T. Sjaardema, A. Honardoost, G. F. Camacho-Gonzalez, and S. Fathpour, “Actively-monitored periodic-poling in thin-film lithium niobate photonic waveguides with ultrahigh nonlinear conversion efficiency of 4600% W−1 cm−2,” Opt. Express 27, 25920–25930 (2019).
    [Crossref]
  29. L. Chang, Y. Li, N. Volet, L. Wang, J. Peters, and J. E. Bowers, “Thin film wavelength converters for photonic integrated circuits,” Optica 3, 531–535 (2016).
    [Crossref]
  30. C. Wang, C. Langrock, A. Marandi, M. Jankowski, M. Zhang, B. Desiatov, M. M. Fejer, and M. Lončar, “Ultrahigh-efficiency wavelength conversion in nanophotonic periodically poled lithium niobate waveguides,” Optica 5, 1438–1441 (2018).
    [Crossref]
  31. S. Fathpour, “Heterogeneous nonlinear integrated photonics,” IEEE J. Quantum Electron. 54, 1–16 (2018).
    [Crossref]
  32. A. Rao, A. Patil, P. Rabiei, A. Honardoost, R. DeSalvo, A. Paolella, and S. Fathpour, “High-performance and linear thin-film lithium niobate Mach–Zehnder modulators on silicon up to 50  GHz,” Opt. Lett. 41, 5700–5703 (2016).
    [Crossref]
  33. P. O. Weigel, J. Zhao, K. Fang, H. Al-Rubaye, D. Trotter, D. Hood, J. Mudrick, C. Dallo, A. T. Pomerene, and A. L. Starbuck, “Bonded thin film lithium niobate modulator on a silicon photonics platform exceeding 100  GHz 3-dB electrical modulation bandwidth,” Opt. Express 26, 23728–23739 (2018).
    [Crossref]
  34. C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Lončar, “Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages,” Nature 562, 101–104 (2018).
    [Crossref]
  35. A. Honardoost, G. F. C. Gonzalez, S. Khan, M. Malinowski, A. Rao, J.-E. Tremblay, A. Yadav, K. Richardson, M. C. Wu, and S. Fathpour, “Cascaded integration of optical waveguides with third-order nonlinearity with lithium niobate waveguides on silicon substrates,” IEEE Photon. J. 10, 1–9 (2018).
    [Crossref]
  36. T. Sjaardema, A. Rao, and S. Fathpour, “Third-and fourth-harmonic generation in cascaded periodically-poled lithium niobate ultracompact waveguides on silicon,” in CLEO: Science and Innovations (Optical Society of America, 2019), paper STh1J. 1.
  37. J. Zhao, C. Ma, M. Rüsing, and S. Mookherjea, “Entangled photon-pair generation in periodically-poled thin-film lithium niobate waveguides,” arXiv:1910.03202 (2019).
  38. B. S. Elkus, K. Abdelsalam, A. Rao, V. Velev, S. Fathpour, P. Kumar, and G. S. Kanter, “Generation of broadband correlated photon-pairs in short thin-film lithium-niobate waveguides,” Opt. Express 27, 38521–38531 (2019).
    [Crossref]
  39. L. Cai, A. Mahmoud, M. Khan, M. Mahmoud, T. Mukherjee, J. Bain, and G. Piazza, “Acousto-optical modulation of thin film lithium niobate waveguide devices,” Photon. Res. 7, 1003–1013 (2019).
    [Crossref]
  40. L. Cai, A. Mahmoud, and G. Piazza, “Low-loss waveguides on Y-cut thin film lithium niobate: towards acousto-optic applications,” Opt. Express 27, 9794–9802 (2019).
    [Crossref]
  41. J. T. Nagy and R. M. Reano, “Periodic poling of ion-sliced X-cut magnesium oxide doped lithium niobate thin films,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2018), paper JTh3C. 2.
  42. J. Zhao, M. Rüsing, and S. Mookherjea, “Optical diagnostic methods for monitoring the poling of thin-film lithium niobate waveguides,” Opt. Express 27, 12025–12038 (2019).
    [Crossref]

2019 (5)

2018 (5)

C. Wang, C. Langrock, A. Marandi, M. Jankowski, M. Zhang, B. Desiatov, M. M. Fejer, and M. Lončar, “Ultrahigh-efficiency wavelength conversion in nanophotonic periodically poled lithium niobate waveguides,” Optica 5, 1438–1441 (2018).
[Crossref]

S. Fathpour, “Heterogeneous nonlinear integrated photonics,” IEEE J. Quantum Electron. 54, 1–16 (2018).
[Crossref]

P. O. Weigel, J. Zhao, K. Fang, H. Al-Rubaye, D. Trotter, D. Hood, J. Mudrick, C. Dallo, A. T. Pomerene, and A. L. Starbuck, “Bonded thin film lithium niobate modulator on a silicon photonics platform exceeding 100  GHz 3-dB electrical modulation bandwidth,” Opt. Express 26, 23728–23739 (2018).
[Crossref]

C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Lončar, “Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages,” Nature 562, 101–104 (2018).
[Crossref]

A. Honardoost, G. F. C. Gonzalez, S. Khan, M. Malinowski, A. Rao, J.-E. Tremblay, A. Yadav, K. Richardson, M. C. Wu, and S. Fathpour, “Cascaded integration of optical waveguides with third-order nonlinearity with lithium niobate waveguides on silicon substrates,” IEEE Photon. J. 10, 1–9 (2018).
[Crossref]

2017 (6)

A. Rangelov and S. Longhi, “Nonlinear adiabatic optical isolator,” Appl. Opt. 56, 2991–2994 (2017).
[Crossref]

N. Chamanara, S. Taravati, Z.-L. Deck-Léger, and C. Caloz, “Optical isolation based on space-time engineered asymmetric photonic band gaps,” Phys. Rev. B 96, 155409 (2017).
[Crossref]

J. Kim, S. Kim, and G. Bahl, “Complete linear optical isolation at the microscale with ultralow loss,” Sci. Rep. 7, 1647 (2017).
[Crossref]

D. L. Sounas and A. Alù, “Non-reciprocal photonics based on time modulation,” Nat. Photonics 11, 774–783 (2017).
[Crossref]

P. Pintus, D. Huang, C. Zhang, Y. Shoji, T. Mizumoto, and J. E. Bowers, “Microring-based optical isolator and circulator with integrated electromagnet for silicon photonics,” J. Lightwave Technol. 35, 1429–1437 (2017).
[Crossref]

P. Aleahmad, M. Khajavikhan, D. Christodoulides, and P. LiKamWa, “Integrated multi-port circulators for unidirectional optical information transport,” Sci. Rep. 7, 2129 (2017).
[Crossref]

2016 (3)

2015 (1)

Y. Shi, Z. Yu, and S. Fan, “Limitations of nonlinear optical isolators due to dynamic reciprocity,” Nat. Photonics 9, 388–392 (2015).
[Crossref]

2014 (3)

F. Nazari, N. Bender, H. Ramezani, M. Moravvej-Farshi, D. Christodoulides, and T. Kottos, “Optical isolation via PT-symmetric nonlinear Fano resonances,” Opt. Express 22, 9574–9584 (2014).
[Crossref]

D. L. Sounas and A. Alù, “Angular-momentum-biased nanorings to realize magnetic-free integrated optical isolation,” ACS Photon. 1, 198–204 (2014).
[Crossref]

N. A. Estep, D. L. Sounas, J. Soric, and A. Alù, “Magnetic-free non-reciprocity and isolation based on parametrically modulated coupled-resonator loops,” Nat. Phys. 10, 923–927 (2014).
[Crossref]

2013 (2)

B. J. Stadler and T. Mizumoto, “Integrated magneto-optical materials and isolators: a review,” IEEE Photon. J. 6, 1–15 (2013).
[Crossref]

D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baets, M. Popović, A. Melloni, and J. D. Joannopoulos, “What is—and what is not—an optical isolator,” Nat. Photonics 7, 579–582 (2013).
[Crossref]

2012 (2)

L. Fan, J. Wang, L. T. Varghese, H. Shen, B. Niu, Y. Xuan, A. M. Weiner, and M. Qi, “An all-silicon passive optical diode,” Science 335, 447–450 (2012).
[Crossref]

H. Lira, Z. Yu, S. Fan, and M. Lipson, “Electrically driven nonreciprocity induced by interband photonic transition on a silicon chip,” Phys. Rev. Lett. 109, 033901 (2012).
[Crossref]

2011 (2)

C. R. Doerr, N. Dupuis, and L. Zhang, “Optical isolator using two tandem phase modulators,” Opt. Lett. 36, 4293–4295 (2011).
[Crossref]

L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics 5, 758–762 (2011).
[Crossref]

2010 (1)

2009 (1)

Z. Yu and S. Fan, “Complete optical isolation created by indirect interband photonic transitions,” Nat. Photonics 3, 91–94 (2009).
[Crossref]

2005 (2)

H. Dötsch, N. Bahlmann, O. Zhuromskyy, M. Hammer, L. Wilkens, R. Gerhardt, P. Hertel, and A. F. Popkov, “Applications of magneto-optical waveguides in integrated optics,” J. Opt. Soc. Am. B 22, 240–253 (2005).
[Crossref]

S. Bhandare, S. K. Ibrahim, D. Sandel, H. Zhang, F. Wust, and R. Noé, “Novel nonmagnetic 30-dB traveling-wave single-sideband optical isolator integrated in III/V material,” IEEE J. Sel. Top. Quantum Electron. 11, 417–421 (2005).
[Crossref]

2003 (1)

T. Aichele, A. Lorenz, R. Hergt, and P. Görnert, “Garnet layers prepared by liquid phase epitaxy for microwave and magneto-optical applications–a review,” Cryst. Res. Technol. 38, 575–587 (2003).
[Crossref]

2001 (1)

K. Gallo, G. Assanto, K. R. Parameswaran, and M. M. Fejer, “All-optical diode in a periodically poled lithium niobate waveguide,” Appl. Phys. Lett. 79, 314–316 (2001).
[Crossref]

2000 (1)

D. A. Miller, “Rationale and challenges for optical interconnects to electronic chips,” Proc. IEEE 88, 728–749 (2000).
[Crossref]

1986 (1)

Y. Okamura, H. Inuzuka, T. Kikuchi, and S. Yamamoto, “Nonreciprocal propagation in magnetooptic YIG rib waveguides,” J. Lightwave Technol. 4, 711–714 (1986).
[Crossref]

1965 (1)

Abdelsalam, K.

Aichele, T.

T. Aichele, A. Lorenz, R. Hergt, and P. Görnert, “Garnet layers prepared by liquid phase epitaxy for microwave and magneto-optical applications–a review,” Cryst. Res. Technol. 38, 575–587 (2003).
[Crossref]

Aleahmad, P.

P. Aleahmad, M. Khajavikhan, D. Christodoulides, and P. LiKamWa, “Integrated multi-port circulators for unidirectional optical information transport,” Sci. Rep. 7, 2129 (2017).
[Crossref]

Al-Rubaye, H.

Alù, A.

D. L. Sounas and A. Alù, “Non-reciprocal photonics based on time modulation,” Nat. Photonics 11, 774–783 (2017).
[Crossref]

D. L. Sounas and A. Alù, “Angular-momentum-biased nanorings to realize magnetic-free integrated optical isolation,” ACS Photon. 1, 198–204 (2014).
[Crossref]

N. A. Estep, D. L. Sounas, J. Soric, and A. Alù, “Magnetic-free non-reciprocity and isolation based on parametrically modulated coupled-resonator loops,” Nat. Phys. 10, 923–927 (2014).
[Crossref]

Assanto, G.

K. Gallo, G. Assanto, K. R. Parameswaran, and M. M. Fejer, “All-optical diode in a periodically poled lithium niobate waveguide,” Appl. Phys. Lett. 79, 314–316 (2001).
[Crossref]

Baets, R.

D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baets, M. Popović, A. Melloni, and J. D. Joannopoulos, “What is—and what is not—an optical isolator,” Nat. Photonics 7, 579–582 (2013).
[Crossref]

Bahl, G.

J. Kim, S. Kim, and G. Bahl, “Complete linear optical isolation at the microscale with ultralow loss,” Sci. Rep. 7, 1647 (2017).
[Crossref]

Bahlmann, N.

Bain, J.

Bender, N.

Bertrand, M.

C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Lončar, “Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages,” Nature 562, 101–104 (2018).
[Crossref]

Bhandare, S.

S. Bhandare, S. K. Ibrahim, D. Sandel, H. Zhang, F. Wust, and R. Noé, “Novel nonmagnetic 30-dB traveling-wave single-sideband optical isolator integrated in III/V material,” IEEE J. Sel. Top. Quantum Electron. 11, 417–421 (2005).
[Crossref]

Bi, L.

L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics 5, 758–762 (2011).
[Crossref]

Bowers, J. E.

Cai, L.

Caloz, C.

N. Chamanara, S. Taravati, Z.-L. Deck-Léger, and C. Caloz, “Optical isolation based on space-time engineered asymmetric photonic band gaps,” Phys. Rev. B 96, 155409 (2017).
[Crossref]

Camacho-Gonzalez, G. F.

Chamanara, N.

N. Chamanara, S. Taravati, Z.-L. Deck-Léger, and C. Caloz, “Optical isolation based on space-time engineered asymmetric photonic band gaps,” Phys. Rev. B 96, 155409 (2017).
[Crossref]

Chandrasekhar, S.

C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Lončar, “Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages,” Nature 562, 101–104 (2018).
[Crossref]

Chang, L.

Chen, X.

C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Lončar, “Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages,” Nature 562, 101–104 (2018).
[Crossref]

Christodoulides, D.

P. Aleahmad, M. Khajavikhan, D. Christodoulides, and P. LiKamWa, “Integrated multi-port circulators for unidirectional optical information transport,” Sci. Rep. 7, 2129 (2017).
[Crossref]

F. Nazari, N. Bender, H. Ramezani, M. Moravvej-Farshi, D. Christodoulides, and T. Kottos, “Optical isolation via PT-symmetric nonlinear Fano resonances,” Opt. Express 22, 9574–9584 (2014).
[Crossref]

Dallo, C.

Deck-Léger, Z.-L.

N. Chamanara, S. Taravati, Z.-L. Deck-Léger, and C. Caloz, “Optical isolation based on space-time engineered asymmetric photonic band gaps,” Phys. Rev. B 96, 155409 (2017).
[Crossref]

DeSalvo, R.

Desiatov, B.

Dionne, G. F.

L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics 5, 758–762 (2011).
[Crossref]

Doerr, C. R.

Dötsch, H.

Dupuis, N.

Eich, M.

D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baets, M. Popović, A. Melloni, and J. D. Joannopoulos, “What is—and what is not—an optical isolator,” Nat. Photonics 7, 579–582 (2013).
[Crossref]

Elkus, B. S.

Estep, N. A.

N. A. Estep, D. L. Sounas, J. Soric, and A. Alù, “Magnetic-free non-reciprocity and isolation based on parametrically modulated coupled-resonator loops,” Nat. Phys. 10, 923–927 (2014).
[Crossref]

Fan, L.

L. Fan, J. Wang, L. T. Varghese, H. Shen, B. Niu, Y. Xuan, A. M. Weiner, and M. Qi, “An all-silicon passive optical diode,” Science 335, 447–450 (2012).
[Crossref]

Fan, S.

Y. Shi, Z. Yu, and S. Fan, “Limitations of nonlinear optical isolators due to dynamic reciprocity,” Nat. Photonics 9, 388–392 (2015).
[Crossref]

D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baets, M. Popović, A. Melloni, and J. D. Joannopoulos, “What is—and what is not—an optical isolator,” Nat. Photonics 7, 579–582 (2013).
[Crossref]

H. Lira, Z. Yu, S. Fan, and M. Lipson, “Electrically driven nonreciprocity induced by interband photonic transition on a silicon chip,” Phys. Rev. Lett. 109, 033901 (2012).
[Crossref]

Z. Yu and S. Fan, “Complete optical isolation created by indirect interband photonic transitions,” Nat. Photonics 3, 91–94 (2009).
[Crossref]

Fang, K.

Fathpour, S.

A. Rao, K. Abdelsalam, T. Sjaardema, A. Honardoost, G. F. Camacho-Gonzalez, and S. Fathpour, “Actively-monitored periodic-poling in thin-film lithium niobate photonic waveguides with ultrahigh nonlinear conversion efficiency of 4600% W−1 cm−2,” Opt. Express 27, 25920–25930 (2019).
[Crossref]

B. S. Elkus, K. Abdelsalam, A. Rao, V. Velev, S. Fathpour, P. Kumar, and G. S. Kanter, “Generation of broadband correlated photon-pairs in short thin-film lithium-niobate waveguides,” Opt. Express 27, 38521–38531 (2019).
[Crossref]

A. Honardoost, G. F. C. Gonzalez, S. Khan, M. Malinowski, A. Rao, J.-E. Tremblay, A. Yadav, K. Richardson, M. C. Wu, and S. Fathpour, “Cascaded integration of optical waveguides with third-order nonlinearity with lithium niobate waveguides on silicon substrates,” IEEE Photon. J. 10, 1–9 (2018).
[Crossref]

S. Fathpour, “Heterogeneous nonlinear integrated photonics,” IEEE J. Quantum Electron. 54, 1–16 (2018).
[Crossref]

A. Rao, A. Patil, P. Rabiei, A. Honardoost, R. DeSalvo, A. Paolella, and S. Fathpour, “High-performance and linear thin-film lithium niobate Mach–Zehnder modulators on silicon up to 50  GHz,” Opt. Lett. 41, 5700–5703 (2016).
[Crossref]

T. Li, K. Abdelsalam, S. Fathpour, and J. B. Khurgin, “Wide bandwidth, nonmagnetic linear optical isolators based on frequency conversion,” in CLEO: QELS_Fundamental Science (Optical Society of America, 2019), paper FW3B. 7.

T. Sjaardema, A. Rao, and S. Fathpour, “Third-and fourth-harmonic generation in cascaded periodically-poled lithium niobate ultracompact waveguides on silicon,” in CLEO: Science and Innovations (Optical Society of America, 2019), paper STh1J. 1.

Fejer, M. M.

C. Wang, C. Langrock, A. Marandi, M. Jankowski, M. Zhang, B. Desiatov, M. M. Fejer, and M. Lončar, “Ultrahigh-efficiency wavelength conversion in nanophotonic periodically poled lithium niobate waveguides,” Optica 5, 1438–1441 (2018).
[Crossref]

K. Gallo, G. Assanto, K. R. Parameswaran, and M. M. Fejer, “All-optical diode in a periodically poled lithium niobate waveguide,” Appl. Phys. Lett. 79, 314–316 (2001).
[Crossref]

Freude, W.

D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baets, M. Popović, A. Melloni, and J. D. Joannopoulos, “What is—and what is not—an optical isolator,” Nat. Photonics 7, 579–582 (2013).
[Crossref]

Gallo, K.

K. Gallo, G. Assanto, K. R. Parameswaran, and M. M. Fejer, “All-optical diode in a periodically poled lithium niobate waveguide,” Appl. Phys. Lett. 79, 314–316 (2001).
[Crossref]

Gerhardt, R.

Gonzalez, G. F. C.

A. Honardoost, G. F. C. Gonzalez, S. Khan, M. Malinowski, A. Rao, J.-E. Tremblay, A. Yadav, K. Richardson, M. C. Wu, and S. Fathpour, “Cascaded integration of optical waveguides with third-order nonlinearity with lithium niobate waveguides on silicon substrates,” IEEE Photon. J. 10, 1–9 (2018).
[Crossref]

Görnert, P.

T. Aichele, A. Lorenz, R. Hergt, and P. Görnert, “Garnet layers prepared by liquid phase epitaxy for microwave and magneto-optical applications–a review,” Cryst. Res. Technol. 38, 575–587 (2003).
[Crossref]

Hammer, M.

Hergt, R.

T. Aichele, A. Lorenz, R. Hergt, and P. Görnert, “Garnet layers prepared by liquid phase epitaxy for microwave and magneto-optical applications–a review,” Cryst. Res. Technol. 38, 575–587 (2003).
[Crossref]

Hertel, P.

Honardoost, A.

Hood, D.

Hu, J.

L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics 5, 758–762 (2011).
[Crossref]

Hu, X.-K.

Hua, Q.

S. Hua, J. Wen, X. Jiang, Q. Hua, L. Jiang, and M. Xiao, “Demonstration of a chip-based optical isolator with parametric amplification,” Nat. Commun. 7, 13657 (2016).
[Crossref]

Hua, S.

S. Hua, J. Wen, X. Jiang, Q. Hua, L. Jiang, and M. Xiao, “Demonstration of a chip-based optical isolator with parametric amplification,” Nat. Commun. 7, 13657 (2016).
[Crossref]

Huang, D.

Ibrahim, S. K.

S. Bhandare, S. K. Ibrahim, D. Sandel, H. Zhang, F. Wust, and R. Noé, “Novel nonmagnetic 30-dB traveling-wave single-sideband optical isolator integrated in III/V material,” IEEE J. Sel. Top. Quantum Electron. 11, 417–421 (2005).
[Crossref]

Inuzuka, H.

Y. Okamura, H. Inuzuka, T. Kikuchi, and S. Yamamoto, “Nonreciprocal propagation in magnetooptic YIG rib waveguides,” J. Lightwave Technol. 4, 711–714 (1986).
[Crossref]

Jalas, D.

D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baets, M. Popović, A. Melloni, and J. D. Joannopoulos, “What is—and what is not—an optical isolator,” Nat. Photonics 7, 579–582 (2013).
[Crossref]

Jankowski, M.

Jiang, L.

S. Hua, J. Wen, X. Jiang, Q. Hua, L. Jiang, and M. Xiao, “Demonstration of a chip-based optical isolator with parametric amplification,” Nat. Commun. 7, 13657 (2016).
[Crossref]

Jiang, P.

L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics 5, 758–762 (2011).
[Crossref]

Jiang, X.

S. Hua, J. Wen, X. Jiang, Q. Hua, L. Jiang, and M. Xiao, “Demonstration of a chip-based optical isolator with parametric amplification,” Nat. Commun. 7, 13657 (2016).
[Crossref]

Joannopoulos, J. D.

D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baets, M. Popović, A. Melloni, and J. D. Joannopoulos, “What is—and what is not—an optical isolator,” Nat. Photonics 7, 579–582 (2013).
[Crossref]

Kanter, G. S.

Khajavikhan, M.

P. Aleahmad, M. Khajavikhan, D. Christodoulides, and P. LiKamWa, “Integrated multi-port circulators for unidirectional optical information transport,” Sci. Rep. 7, 2129 (2017).
[Crossref]

Khan, M.

Khan, S.

A. Honardoost, G. F. C. Gonzalez, S. Khan, M. Malinowski, A. Rao, J.-E. Tremblay, A. Yadav, K. Richardson, M. C. Wu, and S. Fathpour, “Cascaded integration of optical waveguides with third-order nonlinearity with lithium niobate waveguides on silicon substrates,” IEEE Photon. J. 10, 1–9 (2018).
[Crossref]

Khurgin, J. B.

T. Li, K. Abdelsalam, S. Fathpour, and J. B. Khurgin, “Wide bandwidth, nonmagnetic linear optical isolators based on frequency conversion,” in CLEO: QELS_Fundamental Science (Optical Society of America, 2019), paper FW3B. 7.

Kikuchi, T.

Y. Okamura, H. Inuzuka, T. Kikuchi, and S. Yamamoto, “Nonreciprocal propagation in magnetooptic YIG rib waveguides,” J. Lightwave Technol. 4, 711–714 (1986).
[Crossref]

Kim, D. H.

L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics 5, 758–762 (2011).
[Crossref]

Kim, J.

J. Kim, S. Kim, and G. Bahl, “Complete linear optical isolation at the microscale with ultralow loss,” Sci. Rep. 7, 1647 (2017).
[Crossref]

Kim, S.

J. Kim, S. Kim, and G. Bahl, “Complete linear optical isolation at the microscale with ultralow loss,” Sci. Rep. 7, 1647 (2017).
[Crossref]

Kimerling, L. C.

L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics 5, 758–762 (2011).
[Crossref]

Kottos, T.

Kumar, P.

Langrock, C.

Li, T.

T. Li, K. Abdelsalam, S. Fathpour, and J. B. Khurgin, “Wide bandwidth, nonmagnetic linear optical isolators based on frequency conversion,” in CLEO: QELS_Fundamental Science (Optical Society of America, 2019), paper FW3B. 7.

Li, Y.

LiKamWa, P.

P. Aleahmad, M. Khajavikhan, D. Christodoulides, and P. LiKamWa, “Integrated multi-port circulators for unidirectional optical information transport,” Sci. Rep. 7, 2129 (2017).
[Crossref]

Lipson, M.

H. Lira, Z. Yu, S. Fan, and M. Lipson, “Electrically driven nonreciprocity induced by interband photonic transition on a silicon chip,” Phys. Rev. Lett. 109, 033901 (2012).
[Crossref]

Lira, H.

H. Lira, Z. Yu, S. Fan, and M. Lipson, “Electrically driven nonreciprocity induced by interband photonic transition on a silicon chip,” Phys. Rev. Lett. 109, 033901 (2012).
[Crossref]

Loncar, M.

C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Lončar, “Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages,” Nature 562, 101–104 (2018).
[Crossref]

C. Wang, C. Langrock, A. Marandi, M. Jankowski, M. Zhang, B. Desiatov, M. M. Fejer, and M. Lončar, “Ultrahigh-efficiency wavelength conversion in nanophotonic periodically poled lithium niobate waveguides,” Optica 5, 1438–1441 (2018).
[Crossref]

Longhi, S.

Lorenz, A.

T. Aichele, A. Lorenz, R. Hergt, and P. Görnert, “Garnet layers prepared by liquid phase epitaxy for microwave and magneto-optical applications–a review,” Cryst. Res. Technol. 38, 575–587 (2003).
[Crossref]

Lu, Y.-Q.

Ma, C.

J. Zhao, C. Ma, M. Rüsing, and S. Mookherjea, “Entangled photon-pair generation in periodically-poled thin-film lithium niobate waveguides,” arXiv:1910.03202 (2019).

Mahmoud, A.

Mahmoud, M.

Malinowski, M.

A. Honardoost, G. F. C. Gonzalez, S. Khan, M. Malinowski, A. Rao, J.-E. Tremblay, A. Yadav, K. Richardson, M. C. Wu, and S. Fathpour, “Cascaded integration of optical waveguides with third-order nonlinearity with lithium niobate waveguides on silicon substrates,” IEEE Photon. J. 10, 1–9 (2018).
[Crossref]

Marandi, A.

Melloni, A.

D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baets, M. Popović, A. Melloni, and J. D. Joannopoulos, “What is—and what is not—an optical isolator,” Nat. Photonics 7, 579–582 (2013).
[Crossref]

Miller, D. A.

D. A. Miller, “Rationale and challenges for optical interconnects to electronic chips,” Proc. IEEE 88, 728–749 (2000).
[Crossref]

Mizumoto, T.

Mookherjea, S.

J. Zhao, M. Rüsing, and S. Mookherjea, “Optical diagnostic methods for monitoring the poling of thin-film lithium niobate waveguides,” Opt. Express 27, 12025–12038 (2019).
[Crossref]

J. Zhao, C. Ma, M. Rüsing, and S. Mookherjea, “Entangled photon-pair generation in periodically-poled thin-film lithium niobate waveguides,” arXiv:1910.03202 (2019).

Moravvej-Farshi, M.

Mudrick, J.

Mukherjee, T.

Nagy, J. T.

J. T. Nagy and R. M. Reano, “Periodic poling of ion-sliced X-cut magnesium oxide doped lithium niobate thin films,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2018), paper JTh3C. 2.

Nazari, F.

Niu, B.

L. Fan, J. Wang, L. T. Varghese, H. Shen, B. Niu, Y. Xuan, A. M. Weiner, and M. Qi, “An all-silicon passive optical diode,” Science 335, 447–450 (2012).
[Crossref]

Noé, R.

S. Bhandare, S. K. Ibrahim, D. Sandel, H. Zhang, F. Wust, and R. Noé, “Novel nonmagnetic 30-dB traveling-wave single-sideband optical isolator integrated in III/V material,” IEEE J. Sel. Top. Quantum Electron. 11, 417–421 (2005).
[Crossref]

Okamura, Y.

Y. Okamura, H. Inuzuka, T. Kikuchi, and S. Yamamoto, “Nonreciprocal propagation in magnetooptic YIG rib waveguides,” J. Lightwave Technol. 4, 711–714 (1986).
[Crossref]

Paolella, A.

Parameswaran, K. R.

K. Gallo, G. Assanto, K. R. Parameswaran, and M. M. Fejer, “All-optical diode in a periodically poled lithium niobate waveguide,” Appl. Phys. Lett. 79, 314–316 (2001).
[Crossref]

Patil, A.

Peters, J.

Petrov, A.

D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baets, M. Popović, A. Melloni, and J. D. Joannopoulos, “What is—and what is not—an optical isolator,” Nat. Photonics 7, 579–582 (2013).
[Crossref]

Piazza, G.

Pintus, P.

Pomerene, A. T.

Popkov, A. F.

Popovic, M.

D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baets, M. Popović, A. Melloni, and J. D. Joannopoulos, “What is—and what is not—an optical isolator,” Nat. Photonics 7, 579–582 (2013).
[Crossref]

Qi, M.

L. Fan, J. Wang, L. T. Varghese, H. Shen, B. Niu, Y. Xuan, A. M. Weiner, and M. Qi, “An all-silicon passive optical diode,” Science 335, 447–450 (2012).
[Crossref]

Qian, X.-S.

Rabiei, P.

Ramezani, H.

Rangelov, A.

Rao, A.

A. Rao, K. Abdelsalam, T. Sjaardema, A. Honardoost, G. F. Camacho-Gonzalez, and S. Fathpour, “Actively-monitored periodic-poling in thin-film lithium niobate photonic waveguides with ultrahigh nonlinear conversion efficiency of 4600% W−1 cm−2,” Opt. Express 27, 25920–25930 (2019).
[Crossref]

B. S. Elkus, K. Abdelsalam, A. Rao, V. Velev, S. Fathpour, P. Kumar, and G. S. Kanter, “Generation of broadband correlated photon-pairs in short thin-film lithium-niobate waveguides,” Opt. Express 27, 38521–38531 (2019).
[Crossref]

A. Honardoost, G. F. C. Gonzalez, S. Khan, M. Malinowski, A. Rao, J.-E. Tremblay, A. Yadav, K. Richardson, M. C. Wu, and S. Fathpour, “Cascaded integration of optical waveguides with third-order nonlinearity with lithium niobate waveguides on silicon substrates,” IEEE Photon. J. 10, 1–9 (2018).
[Crossref]

A. Rao, A. Patil, P. Rabiei, A. Honardoost, R. DeSalvo, A. Paolella, and S. Fathpour, “High-performance and linear thin-film lithium niobate Mach–Zehnder modulators on silicon up to 50  GHz,” Opt. Lett. 41, 5700–5703 (2016).
[Crossref]

T. Sjaardema, A. Rao, and S. Fathpour, “Third-and fourth-harmonic generation in cascaded periodically-poled lithium niobate ultracompact waveguides on silicon,” in CLEO: Science and Innovations (Optical Society of America, 2019), paper STh1J. 1.

Reano, R. M.

J. T. Nagy and R. M. Reano, “Periodic poling of ion-sliced X-cut magnesium oxide doped lithium niobate thin films,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2018), paper JTh3C. 2.

Ribbens, W. B.

Richardson, K.

A. Honardoost, G. F. C. Gonzalez, S. Khan, M. Malinowski, A. Rao, J.-E. Tremblay, A. Yadav, K. Richardson, M. C. Wu, and S. Fathpour, “Cascaded integration of optical waveguides with third-order nonlinearity with lithium niobate waveguides on silicon substrates,” IEEE Photon. J. 10, 1–9 (2018).
[Crossref]

Ross, C.

L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics 5, 758–762 (2011).
[Crossref]

Rüsing, M.

J. Zhao, M. Rüsing, and S. Mookherjea, “Optical diagnostic methods for monitoring the poling of thin-film lithium niobate waveguides,” Opt. Express 27, 12025–12038 (2019).
[Crossref]

J. Zhao, C. Ma, M. Rüsing, and S. Mookherjea, “Entangled photon-pair generation in periodically-poled thin-film lithium niobate waveguides,” arXiv:1910.03202 (2019).

Sandel, D.

S. Bhandare, S. K. Ibrahim, D. Sandel, H. Zhang, F. Wust, and R. Noé, “Novel nonmagnetic 30-dB traveling-wave single-sideband optical isolator integrated in III/V material,” IEEE J. Sel. Top. Quantum Electron. 11, 417–421 (2005).
[Crossref]

Shams-Ansari, A.

C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Lončar, “Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages,” Nature 562, 101–104 (2018).
[Crossref]

Shen, H.

L. Fan, J. Wang, L. T. Varghese, H. Shen, B. Niu, Y. Xuan, A. M. Weiner, and M. Qi, “An all-silicon passive optical diode,” Science 335, 447–450 (2012).
[Crossref]

Shi, Y.

Y. Shi, Z. Yu, and S. Fan, “Limitations of nonlinear optical isolators due to dynamic reciprocity,” Nat. Photonics 9, 388–392 (2015).
[Crossref]

Shoji, Y.

Sjaardema, T.

A. Rao, K. Abdelsalam, T. Sjaardema, A. Honardoost, G. F. Camacho-Gonzalez, and S. Fathpour, “Actively-monitored periodic-poling in thin-film lithium niobate photonic waveguides with ultrahigh nonlinear conversion efficiency of 4600% W−1 cm−2,” Opt. Express 27, 25920–25930 (2019).
[Crossref]

T. Sjaardema, A. Rao, and S. Fathpour, “Third-and fourth-harmonic generation in cascaded periodically-poled lithium niobate ultracompact waveguides on silicon,” in CLEO: Science and Innovations (Optical Society of America, 2019), paper STh1J. 1.

Soric, J.

N. A. Estep, D. L. Sounas, J. Soric, and A. Alù, “Magnetic-free non-reciprocity and isolation based on parametrically modulated coupled-resonator loops,” Nat. Phys. 10, 923–927 (2014).
[Crossref]

Sounas, D. L.

D. L. Sounas and A. Alù, “Non-reciprocal photonics based on time modulation,” Nat. Photonics 11, 774–783 (2017).
[Crossref]

D. L. Sounas and A. Alù, “Angular-momentum-biased nanorings to realize magnetic-free integrated optical isolation,” ACS Photon. 1, 198–204 (2014).
[Crossref]

N. A. Estep, D. L. Sounas, J. Soric, and A. Alù, “Magnetic-free non-reciprocity and isolation based on parametrically modulated coupled-resonator loops,” Nat. Phys. 10, 923–927 (2014).
[Crossref]

Stadler, B. J.

B. J. Stadler and T. Mizumoto, “Integrated magneto-optical materials and isolators: a review,” IEEE Photon. J. 6, 1–15 (2013).
[Crossref]

Starbuck, A. L.

Taravati, S.

N. Chamanara, S. Taravati, Z.-L. Deck-Léger, and C. Caloz, “Optical isolation based on space-time engineered asymmetric photonic band gaps,” Phys. Rev. B 96, 155409 (2017).
[Crossref]

Tremblay, J.-E.

A. Honardoost, G. F. C. Gonzalez, S. Khan, M. Malinowski, A. Rao, J.-E. Tremblay, A. Yadav, K. Richardson, M. C. Wu, and S. Fathpour, “Cascaded integration of optical waveguides with third-order nonlinearity with lithium niobate waveguides on silicon substrates,” IEEE Photon. J. 10, 1–9 (2018).
[Crossref]

Trotter, D.

Varghese, L. T.

L. Fan, J. Wang, L. T. Varghese, H. Shen, B. Niu, Y. Xuan, A. M. Weiner, and M. Qi, “An all-silicon passive optical diode,” Science 335, 447–450 (2012).
[Crossref]

Velev, V.

Volet, N.

Wang, C.

C. Wang, C. Langrock, A. Marandi, M. Jankowski, M. Zhang, B. Desiatov, M. M. Fejer, and M. Lončar, “Ultrahigh-efficiency wavelength conversion in nanophotonic periodically poled lithium niobate waveguides,” Optica 5, 1438–1441 (2018).
[Crossref]

C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Lončar, “Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages,” Nature 562, 101–104 (2018).
[Crossref]

Wang, H.-T.

Wang, J.

L. Fan, J. Wang, L. T. Varghese, H. Shen, B. Niu, Y. Xuan, A. M. Weiner, and M. Qi, “An all-silicon passive optical diode,” Science 335, 447–450 (2012).
[Crossref]

Wang, L.

Wang, Q.

Weigel, P. O.

Weiner, A. M.

L. Fan, J. Wang, L. T. Varghese, H. Shen, B. Niu, Y. Xuan, A. M. Weiner, and M. Qi, “An all-silicon passive optical diode,” Science 335, 447–450 (2012).
[Crossref]

Wen, J.

S. Hua, J. Wen, X. Jiang, Q. Hua, L. Jiang, and M. Xiao, “Demonstration of a chip-based optical isolator with parametric amplification,” Nat. Commun. 7, 13657 (2016).
[Crossref]

Wilkens, L.

Winzer, P.

C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Lončar, “Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages,” Nature 562, 101–104 (2018).
[Crossref]

Wu, M. C.

A. Honardoost, G. F. C. Gonzalez, S. Khan, M. Malinowski, A. Rao, J.-E. Tremblay, A. Yadav, K. Richardson, M. C. Wu, and S. Fathpour, “Cascaded integration of optical waveguides with third-order nonlinearity with lithium niobate waveguides on silicon substrates,” IEEE Photon. J. 10, 1–9 (2018).
[Crossref]

Wust, F.

S. Bhandare, S. K. Ibrahim, D. Sandel, H. Zhang, F. Wust, and R. Noé, “Novel nonmagnetic 30-dB traveling-wave single-sideband optical isolator integrated in III/V material,” IEEE J. Sel. Top. Quantum Electron. 11, 417–421 (2005).
[Crossref]

Xiao, M.

S. Hua, J. Wen, X. Jiang, Q. Hua, L. Jiang, and M. Xiao, “Demonstration of a chip-based optical isolator with parametric amplification,” Nat. Commun. 7, 13657 (2016).
[Crossref]

Xu, F.

Xuan, Y.

L. Fan, J. Wang, L. T. Varghese, H. Shen, B. Niu, Y. Xuan, A. M. Weiner, and M. Qi, “An all-silicon passive optical diode,” Science 335, 447–450 (2012).
[Crossref]

Yadav, A.

A. Honardoost, G. F. C. Gonzalez, S. Khan, M. Malinowski, A. Rao, J.-E. Tremblay, A. Yadav, K. Richardson, M. C. Wu, and S. Fathpour, “Cascaded integration of optical waveguides with third-order nonlinearity with lithium niobate waveguides on silicon substrates,” IEEE Photon. J. 10, 1–9 (2018).
[Crossref]

Yamamoto, S.

Y. Okamura, H. Inuzuka, T. Kikuchi, and S. Yamamoto, “Nonreciprocal propagation in magnetooptic YIG rib waveguides,” J. Lightwave Technol. 4, 711–714 (1986).
[Crossref]

Yu, Z.

Y. Shi, Z. Yu, and S. Fan, “Limitations of nonlinear optical isolators due to dynamic reciprocity,” Nat. Photonics 9, 388–392 (2015).
[Crossref]

D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baets, M. Popović, A. Melloni, and J. D. Joannopoulos, “What is—and what is not—an optical isolator,” Nat. Photonics 7, 579–582 (2013).
[Crossref]

H. Lira, Z. Yu, S. Fan, and M. Lipson, “Electrically driven nonreciprocity induced by interband photonic transition on a silicon chip,” Phys. Rev. Lett. 109, 033901 (2012).
[Crossref]

Z. Yu and S. Fan, “Complete optical isolation created by indirect interband photonic transitions,” Nat. Photonics 3, 91–94 (2009).
[Crossref]

Yu, Z.-Y.

Zhang, C.

Zhang, H.

S. Bhandare, S. K. Ibrahim, D. Sandel, H. Zhang, F. Wust, and R. Noé, “Novel nonmagnetic 30-dB traveling-wave single-sideband optical isolator integrated in III/V material,” IEEE J. Sel. Top. Quantum Electron. 11, 417–421 (2005).
[Crossref]

Zhang, L.

Zhang, M.

C. Wang, C. Langrock, A. Marandi, M. Jankowski, M. Zhang, B. Desiatov, M. M. Fejer, and M. Lončar, “Ultrahigh-efficiency wavelength conversion in nanophotonic periodically poled lithium niobate waveguides,” Optica 5, 1438–1441 (2018).
[Crossref]

C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Lončar, “Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages,” Nature 562, 101–104 (2018).
[Crossref]

Zhao, J.

Zhuromskyy, O.

ACS Photon. (1)

D. L. Sounas and A. Alù, “Angular-momentum-biased nanorings to realize magnetic-free integrated optical isolation,” ACS Photon. 1, 198–204 (2014).
[Crossref]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

K. Gallo, G. Assanto, K. R. Parameswaran, and M. M. Fejer, “All-optical diode in a periodically poled lithium niobate waveguide,” Appl. Phys. Lett. 79, 314–316 (2001).
[Crossref]

Cryst. Res. Technol. (1)

T. Aichele, A. Lorenz, R. Hergt, and P. Görnert, “Garnet layers prepared by liquid phase epitaxy for microwave and magneto-optical applications–a review,” Cryst. Res. Technol. 38, 575–587 (2003).
[Crossref]

IEEE J. Quantum Electron. (1)

S. Fathpour, “Heterogeneous nonlinear integrated photonics,” IEEE J. Quantum Electron. 54, 1–16 (2018).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

S. Bhandare, S. K. Ibrahim, D. Sandel, H. Zhang, F. Wust, and R. Noé, “Novel nonmagnetic 30-dB traveling-wave single-sideband optical isolator integrated in III/V material,” IEEE J. Sel. Top. Quantum Electron. 11, 417–421 (2005).
[Crossref]

IEEE Photon. J. (2)

B. J. Stadler and T. Mizumoto, “Integrated magneto-optical materials and isolators: a review,” IEEE Photon. J. 6, 1–15 (2013).
[Crossref]

A. Honardoost, G. F. C. Gonzalez, S. Khan, M. Malinowski, A. Rao, J.-E. Tremblay, A. Yadav, K. Richardson, M. C. Wu, and S. Fathpour, “Cascaded integration of optical waveguides with third-order nonlinearity with lithium niobate waveguides on silicon substrates,” IEEE Photon. J. 10, 1–9 (2018).
[Crossref]

J. Lightwave Technol. (2)

P. Pintus, D. Huang, C. Zhang, Y. Shoji, T. Mizumoto, and J. E. Bowers, “Microring-based optical isolator and circulator with integrated electromagnet for silicon photonics,” J. Lightwave Technol. 35, 1429–1437 (2017).
[Crossref]

Y. Okamura, H. Inuzuka, T. Kikuchi, and S. Yamamoto, “Nonreciprocal propagation in magnetooptic YIG rib waveguides,” J. Lightwave Technol. 4, 711–714 (1986).
[Crossref]

J. Opt. Soc. Am. B (1)

Nat. Commun. (1)

S. Hua, J. Wen, X. Jiang, Q. Hua, L. Jiang, and M. Xiao, “Demonstration of a chip-based optical isolator with parametric amplification,” Nat. Commun. 7, 13657 (2016).
[Crossref]

Nat. Photonics (5)

D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baets, M. Popović, A. Melloni, and J. D. Joannopoulos, “What is—and what is not—an optical isolator,” Nat. Photonics 7, 579–582 (2013).
[Crossref]

Y. Shi, Z. Yu, and S. Fan, “Limitations of nonlinear optical isolators due to dynamic reciprocity,” Nat. Photonics 9, 388–392 (2015).
[Crossref]

D. L. Sounas and A. Alù, “Non-reciprocal photonics based on time modulation,” Nat. Photonics 11, 774–783 (2017).
[Crossref]

L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics 5, 758–762 (2011).
[Crossref]

Z. Yu and S. Fan, “Complete optical isolation created by indirect interband photonic transitions,” Nat. Photonics 3, 91–94 (2009).
[Crossref]

Nat. Phys. (1)

N. A. Estep, D. L. Sounas, J. Soric, and A. Alù, “Magnetic-free non-reciprocity and isolation based on parametrically modulated coupled-resonator loops,” Nat. Phys. 10, 923–927 (2014).
[Crossref]

Nature (1)

C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Lončar, “Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages,” Nature 562, 101–104 (2018).
[Crossref]

Opt. Express (7)

P. O. Weigel, J. Zhao, K. Fang, H. Al-Rubaye, D. Trotter, D. Hood, J. Mudrick, C. Dallo, A. T. Pomerene, and A. L. Starbuck, “Bonded thin film lithium niobate modulator on a silicon photonics platform exceeding 100  GHz 3-dB electrical modulation bandwidth,” Opt. Express 26, 23728–23739 (2018).
[Crossref]

Q. Wang, F. Xu, Z.-Y. Yu, X.-S. Qian, X.-K. Hu, Y.-Q. Lu, and H.-T. Wang, “A bidirectional tunable optical diode based on periodically poled LiNbO3,” Opt. Express 18, 7340–7346 (2010).
[Crossref]

F. Nazari, N. Bender, H. Ramezani, M. Moravvej-Farshi, D. Christodoulides, and T. Kottos, “Optical isolation via PT-symmetric nonlinear Fano resonances,” Opt. Express 22, 9574–9584 (2014).
[Crossref]

L. Cai, A. Mahmoud, and G. Piazza, “Low-loss waveguides on Y-cut thin film lithium niobate: towards acousto-optic applications,” Opt. Express 27, 9794–9802 (2019).
[Crossref]

J. Zhao, M. Rüsing, and S. Mookherjea, “Optical diagnostic methods for monitoring the poling of thin-film lithium niobate waveguides,” Opt. Express 27, 12025–12038 (2019).
[Crossref]

A. Rao, K. Abdelsalam, T. Sjaardema, A. Honardoost, G. F. Camacho-Gonzalez, and S. Fathpour, “Actively-monitored periodic-poling in thin-film lithium niobate photonic waveguides with ultrahigh nonlinear conversion efficiency of 4600% W−1 cm−2,” Opt. Express 27, 25920–25930 (2019).
[Crossref]

B. S. Elkus, K. Abdelsalam, A. Rao, V. Velev, S. Fathpour, P. Kumar, and G. S. Kanter, “Generation of broadband correlated photon-pairs in short thin-film lithium-niobate waveguides,” Opt. Express 27, 38521–38531 (2019).
[Crossref]

Opt. Lett. (2)

Optica (2)

Photon. Res. (1)

Phys. Rev. B (1)

N. Chamanara, S. Taravati, Z.-L. Deck-Léger, and C. Caloz, “Optical isolation based on space-time engineered asymmetric photonic band gaps,” Phys. Rev. B 96, 155409 (2017).
[Crossref]

Phys. Rev. Lett. (1)

H. Lira, Z. Yu, S. Fan, and M. Lipson, “Electrically driven nonreciprocity induced by interband photonic transition on a silicon chip,” Phys. Rev. Lett. 109, 033901 (2012).
[Crossref]

Proc. IEEE (1)

D. A. Miller, “Rationale and challenges for optical interconnects to electronic chips,” Proc. IEEE 88, 728–749 (2000).
[Crossref]

Sci. Rep. (2)

P. Aleahmad, M. Khajavikhan, D. Christodoulides, and P. LiKamWa, “Integrated multi-port circulators for unidirectional optical information transport,” Sci. Rep. 7, 2129 (2017).
[Crossref]

J. Kim, S. Kim, and G. Bahl, “Complete linear optical isolation at the microscale with ultralow loss,” Sci. Rep. 7, 1647 (2017).
[Crossref]

Science (1)

L. Fan, J. Wang, L. T. Varghese, H. Shen, B. Niu, Y. Xuan, A. M. Weiner, and M. Qi, “An all-silicon passive optical diode,” Science 335, 447–450 (2012).
[Crossref]

Other (4)

T. Li, K. Abdelsalam, S. Fathpour, and J. B. Khurgin, “Wide bandwidth, nonmagnetic linear optical isolators based on frequency conversion,” in CLEO: QELS_Fundamental Science (Optical Society of America, 2019), paper FW3B. 7.

T. Sjaardema, A. Rao, and S. Fathpour, “Third-and fourth-harmonic generation in cascaded periodically-poled lithium niobate ultracompact waveguides on silicon,” in CLEO: Science and Innovations (Optical Society of America, 2019), paper STh1J. 1.

J. Zhao, C. Ma, M. Rüsing, and S. Mookherjea, “Entangled photon-pair generation in periodically-poled thin-film lithium niobate waveguides,” arXiv:1910.03202 (2019).

J. T. Nagy and R. M. Reano, “Periodic poling of ion-sliced X-cut magnesium oxide doped lithium niobate thin films,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2018), paper JTh3C. 2.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Schematic diagram of the proposed optical isolator, showing operation principle in (a) forward and (b) backward directions. SPF, short-pass filter; LPF, long-pass filter.
Fig. 2.
Fig. 2. Experimental setup for the demonstrated optical isolator with (a) the general scheme for forward measurement, (b) the added components for input modulation, and (c) the detailed schematic diagram of the optical isolator.
Fig. 3.
Fig. 3. Measured SHG efficiency versus pump wavelength shows a peak conversion efficiency of ${95}\% {{\rm W}^{ - 1}}$ around 1570 nm.
Fig. 4.
Fig. 4. Characterization results of the proposed isolator: Generated idler (DFG) measured before the LPF with signal tuned from (a) 1570 to 1640 nm and (b) 1500 to 1560 nm. Measured Isolator output in the (c) forward direction, (d) backward direction with tuned signal from 1550 to 1565 nm, and (e) backward direction with the idler coupled back and tuned from 1575 to 1590 nm. Dotted yellow lines represent the LPF and SPF transmission windows.
Fig. 5.
Fig. 5. Isolator output with RF modulated input signal at (a) fixed RF speed of 5 GHz and tuned optical signal (1550–1565 nm) and (b) tuned RF signal (5–11 GHz) and fixed input signal at 1565 nm.

Metrics