Abstract

Efficient III-V lasers directly grown on Si remain the “holy grail” for present Si-photonics research. In particular, a bufferless III-V laser grown on the Si-photonics 220 nm silicon-on-insulator (SOI) platform could seamlessly bridge the active III-V light sources with the passive Si-based photonic devices. Here we report on the direct growth of bufferless 1.5 µm III-V lasers on industry-standard 220 nm SOI platforms using metal organic chemical vapor deposition (MOCVD). Taking advantage of the constituent diffusivity at elevated growth temperatures, we first devised a MOCVD growth scheme for the direct hetero-epitaxy of high-quality III-V alloys on the 220 nm SOI wafers through synergizing the conventional aspect ratio trapping (ART) and the lateral ART methods. In contrast to prevalent epitaxy inside V-grooved pockets, our method features epitaxy inside trapezoidal troughs and thus enables the flexible integration of different III-V compounds on SOIs with different Si device layer thicknesses. Then, using InP as an example, we detailed the growth process and performed extensive study of the crystalline quality of the epitaxial III-V. Finally, we designed and fabricated both pure InP and InP/InGaAs lasers, and we achieved room-temperature lasing in both the 900 nm band and the 1500 nm band under pulsed optical excitation. Direct epitaxy of these in-plane and bufferless 1.5 µm III-V lasers on the 220 nm SOI platform suggests the imminent interfacing with Si-based photonic devices and the subsequent realization of fully integrated Si-based photonic circuits.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Room temperature III–V nanolasers with distributed Bragg reflectors epitaxially grown on (001) silicon-on-insulators

Yu Han, Wai Kit Ng, Ying Xue, Kam Sing Wong, and Kei May Lau
Photon. Res. 7(9) 1081-1086 (2019)

Room-temperature InP/InGaAs nano-ridge lasers grown on Si and emitting at telecom bands

Yu Han, Wai Kit Ng, Chao Ma, Qiang Li, Si Zhu, Christopher C. S. Chan, Kar Wei Ng, Stephen Lennon, Robert A. Taylor, Kam Sing Wong, and Kei May Lau
Optica 5(8) 918-923 (2018)

Optical pumped InGaAs/GaAs nano-ridge laser epitaxially grown on a standard 300-mm Si wafer

Yuting Shi, Zhechao Wang, Joris Van Campenhout, Marianna Pantouvaki, Weiming Guo, Bernardette Kunert, and Dries Van Thourhout
Optica 4(12) 1468-1473 (2017)

References

  • View by:
  • |
  • |
  • |

  1. Z. Zhou, B. Yin, and J. Michel, “On-chip light sources for silicon photonics,” Light Sci. Appl. 4, e358 (2015).
    [Crossref]
  2. A. H. Atabaki, S. Moazeni, F. Pavanello, H. Gevorgyan, J. Notaros, L. Alloatti, M. T. Wade, C. Sun, S. A. Kruger, H. Meng, K. A. Qubaisi, I. Wang, B. Zhang, A. Khilo, C. V. Baiocco, M. A. Popović, V. M. Stojanović, and R. J. Ram, “Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip,” Nature 556, 349–354 (2018).
    [Crossref]
  3. D. Liang and J. E. Bowers, “Recent progress in lasers on silicon,” Nat. Photonics 4, 511 (2010).
    [Crossref]
  4. D. Liang, G. Roelkens, R. Baets, and J. E. Bowers, “Hybrid integrated platforms for silicon photonics,” Materials 3, 1782–1802 (2010).
    [Crossref]
  5. A. Y. Liu and J. Bowers, “Photonic integration with epitaxial III-V on silicon,” IEEE J. Sel. Top. Quantum Electron. 24, 6000412 (2018).
    [Crossref]
  6. Z. Wang, A. Abbasi, U. Dave, A. De Groote, S. Kumari, B. Kunert, C. Merckling, M. Pantouvaki, Y. Shi, B. Tian, K. Van Gasse, J. Verbist, R. Wang, W. Xie, J. Zhang, Y. Zhu, J. Bauwelinck, X. Yin, Z. Hens, J. Van Campenhout, B. Kuyken, R. Baets, G. Morthier, D. Van Thourhout, and K. Van Gasse, “Novel light source integration approaches for silicon photonics,” Laser Photon. Rev. 11, 1700063 (2017).
    [Crossref]
  7. D. Jung, R. Herrick, J. Norman, K. Turnlund, C. Jan, K. Feng, A. C. Gossard, and J. E. Bowers, “Impact of threading dislocation density on the lifetime of InAs quantum dot lasers on Si,” Appl. Phys. Lett. 112, 153507 (2018).
    [Crossref]
  8. S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III-V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
    [Crossref]
  9. Y. Wan, J. Norman, Q. Li, M. J. Kennedy, D. Liang, C. Zhang, D. Huang, Z. Zhang, A. Y. Liu, A. Torres, D. Jung, A. C. Gossard, E. L. Hu, K. M. Lau, and J. E. Bowers, “1.3 µm submilliamp threshold quantum dot micro-lasers on Si,” Optica 4, 940–944 (2017).
    [Crossref]
  10. B. Shi, Y. Han, Q. Li, and K. M. Lau, “1.55-µm lasers epitaxially grown on silicon,” IEEE J. Sel. Top. Quantum Electron. 25, 1900711 (2019).
    [Crossref]
  11. J. Z. Li, J. Bai, J. S. Park, B. Adekore, K. Fox, M. Carroll, A. Lochtefeld, and Z. Shellenbarger, “Defect reduction of GaAs epitaxy on Si (001) using selective aspect ratio trapping,” Appl. Phys. Lett. 91, 021114 (2007).
    [Crossref]
  12. C. Merckling, N. Waldron, S. Jiang, W. Guo, N. Collaert, M. Caymax, E. Vancoille, K. Barla, A. Thean, M. Heyns, and W. Vandervorst, “Hetero-epitaxy of InP on Si (001) by selective-area metal organic vapor-phase epitaxy in sub-50  nm width trenches: the role of the nucleation layer and the recess engineering,” J. Appl. Phys. 115, 023710 (2014).
    [Crossref]
  13. B. Kunert, W. Guo, Y. Mols, B. Tian, Z. Wang, Y. Shi, D. Van Thourhout, M. Pantouvaki, J. Van Campenhout, R. Langer, and K. Barla, “III/V nano ridge structures for optical applications on patterned 300  mm silicon substrate,” Appl. Phys. Lett. 109, 091101 (2016).
    [Crossref]
  14. Y. Han, Q. Li, S. P. Chang, W. D. Hsu, and K. M. Lau, “Growing InGaAs quasi-quantum wires inside semi-rhombic shaped planar InP nanowires on exact (001) silicon,” Appl. Phys. Lett. 108, 242105 (2016).
    [Crossref]
  15. L. Megalini, B. Bonef, B. C. Cabinian, H. Zhao, A. Taylor, J. S. Speck, J. E. Bowers, and J. Klamkin, “1550-nm InGaAsP multi-quantum-well structures selectively grown on v-groove-patterned SOI substrates,” Appl. Phys. Lett. 111, 032105 (2017).
    [Crossref]
  16. S. Li, X. Zhou, M. Li, X. Kong, J. Mi, M. Wang, W. Wang, and J. Pan, “Ridge InGaAs/InP multi-quantum-well selective growth in nanoscale trenches on Si (001) substrate,” Appl. Phys. Lett. 108, 021902 (2016).
    [Crossref]
  17. T. Orzali, A. Vert, B. O’Brian, J. L. Herman, S. Vivekanand, S. S. P. Rao, and S. R. Oktyabrsky, “Epitaxial growth of GaSb and InAs fins on 300 mm Si (001) by aspect ratio trapping,” J. Appl. Phys. 120, 085308 (2016).
    [Crossref]
  18. Q. Li, B. Lai, and K. M. Lau, “Epitaxial growth of GaSb on V-grooved Si (001) substrates with an ultrathin GaAs stress relaxing layer,” Appl. Phys. Lett. 111, 172103 (2017).
    [Crossref]
  19. Z. Wang, B. Tian, M. Pantouvaki, W. Guo, P. Absil, J. Van Campenhout, C. Merckling, and D. Van Thourhout, “Room-temperature InP distributed feedback laser array directly grown on silicon,” Nat. Photonics 9,837–842 (2015).
    [Crossref]
  20. Y. Shi, Z. Wang, J. Van Campenhout, M. Pantouvaki, W. Guo, B. Kunert, and D. Van Thourhout, “Optical pumped InGaAs/GaAs nano-ridge laser epitaxially grown on a standard 300-mm Si wafer,” Optica 4, 1468–1473 (2017).
    [Crossref]
  21. S. Wirths, B. F. Mayer, H. Schmid, M. Sousa, J. Gooth, H. Riel, and K. E. Moselund, “Room-temperature lasing from monolithically integrated GaAs microdisks on silicon,” ACS nano 12, 2169–2175 (2018).
    [Crossref]
  22. Y. Han, W. K. Ng, C. Ma, Q. Li, S. Zhu, C. C. Chan, K. W. Ng, S. Lennon, R. A. Taylor, K. S. Wong, and K. M. Lau, “Room temperature InP/InGaAs nano-ridge lasers grown on Si and emitting at telecom bands,” Optica 5, 918–923 (2018).
    [Crossref]
  23. B. Tian, Z. Wang, M. Pantouvaki, P. Absil, J. Van Campenhout, C. Merckling, and D. Van Thourhout, “Room temperature O-band DFB laser array directly grown on (001) silicon,” Nano Lett. 17, 559–564 (2016).
    [Crossref]
  24. Y. Shi, B. Kunert, Y. D. Koninck, M. Pantouvaki, J. Van Campenhout, and D. Van Thourhout, “Novel adiabatic coupler for III-V nano-ridge laser grown on a Si photonics platform,” Opt. Express 27, 37781–37794 (2019).
    [Crossref]
  25. M. Paladugu, C. Merckling, R. Loo, O. Richard, H. Bender, J. Dekoster, W. Vandervorst, M. Caymax, and M. Heyns, “Site selective integration of III-V materials on Si for nanoscale logic and photonic devices,” Cryst. Growth Des. 12, 4696–4702 (2012).
    [Crossref]
  26. Y. Han, W. K. Ng, Y. Xue, K. S. Wong, and K. M. Lau, “Room temperature III-V nanolasers with distributed Bragg reflectors epitaxially grown on (001) silicon-on-insulators,” Photon. Res. 7, 1081–1086 (2019).
    [Crossref]
  27. N. Waldron, C. Merckling, L. Teugels, P. Ong, S. Ansar, U. Ibrahim, F. Sebaai, A. Pourghaderi, K. Barla, N. Collaert, and A. V.-Y. Thean, “InGaAs gate-all-around nanowire devices on 300  mm Si substrates,” IEEE Electron Device Lett. 35, 1097–1099 (2014).
    [Crossref]
  28. Y. Han, Q. Li, and K. M. Lau, “Tristate memory cells using double-peaked fin-array III-V tunnel diodes monolithically grown on (001) silicon substrates,” IEEE Trans. Electron Devices 64, 4078–4083 (2017).
    [Crossref]
  29. Q. Li, Y. Han, X. Lu, and K. M. Lau, “GaAs-InGaAs-GaAs fin-array tunnel diodes on (001) Si substrates with room-temperature peak-to-valley current ratio of 5.4,” IEEE Electron Device Lett. 37, 24–27 (2016).
    [Crossref]
  30. Y. Han, Y. Xue, and K. M. Lau, “Selective lateral epitaxy of dislocation free InP on silicon-on-insulator,” Appl. Phys. Lett. 114, 192105 (2019).
    [Crossref]
  31. G. Biasiol, A. Gustafsson, K. Leifer, and E. Kapon, “Mechanisms of self-ordering in nonplanar epitaxy of semiconductor nanostructures,” Phys. Rev. B 65, 205306 (2002).
    [Crossref]
  32. Y. Han, Q. Li, and K. M. Lau, “Highly ordered horizontal indium gallium arsenide/indium phosphide multi-quantum-well in wire structure on (001) silicon substrates,” J. Appl. Phys. 120, 245701 (2016).
    [Crossref]
  33. Y. Han, Q. Li, S. Zhu, K. W. Ng, and K. M. Lau, “Continuous-wave lasing from InP/InGaAs nanoridges at telecommunication wavelengths,” Appl. Phys. Lett. 111, 212101 (2017).
    [Crossref]
  34. B. Kunert, Y. Mols, M. Baryshniskova, N. Waldron, A. Schulze, and R. Langer, “How to control defect formation in monolithic III/V heteroepitaxy on (100) Si? A critical review on current approaches,” Semicond. Sci. Technol. 33, 093002 (2018).
    [Crossref]
  35. Y. Han, Q. Li, K. W. Ng, S. Zhu, and K. M. Lau, “InGaAs/InP quantum wires grown on silicon with adjustable emission wavelength at telecom bands,” Nanotechnology 29, 225601 (2018).
    [Crossref]
  36. Y. Li, M. Wang, X. Zhou, P. Wang, W. Yang, F. Meng, and W. Wang, “InGaAs/InP multi-quantum-well nanowires with a lower optical leakage loss on v-groove-patterned SOI substrates,” Opt. Express 27, 494–503 (2019).
    [Crossref]
  37. Y. Han, W. K. Ng, Y. Xue, Q. Li, K. S. Wong, and K. M. Lau, “Telecom InP/InGaAs nanolaser array directly grown on (001) silicon-on-insulator,” Opt. Lett. 44, 767–770 (2019).
    [Crossref]
  38. W. K. Ng, Y. Han, K. M. Lau, and K. S. Wong, “Broadband telecom emission from InP/InGaAs nano-ridge lasers on silicon-on-insulator substrate,” OSA Continuum 2, 3037–3043 (2019).
    [Crossref]
  39. G. Zhang, M. Takiguchi, K. Tateno, T. Tawara, M. Notomi, and H. Gotoh, “Telecom-band lasing in single InP/InAs heterostructure nanowires at room temperature,” Sci. Adv. 5, eaat8896 (2019).
    [Crossref]
  40. F. Lu, I. Bhattacharya, H. Sun, T. D. Tran, K. W. Ng, G. N. MalheirosSilveira, and C. C. Hasnain, “Nanopillar quantum well lasers directly grown on silicon and emitting at silicon-transparent wavelengths,” Optica 4, 717–723 (2017).
    [Crossref]

2019 (8)

B. Shi, Y. Han, Q. Li, and K. M. Lau, “1.55-µm lasers epitaxially grown on silicon,” IEEE J. Sel. Top. Quantum Electron. 25, 1900711 (2019).
[Crossref]

Y. Shi, B. Kunert, Y. D. Koninck, M. Pantouvaki, J. Van Campenhout, and D. Van Thourhout, “Novel adiabatic coupler for III-V nano-ridge laser grown on a Si photonics platform,” Opt. Express 27, 37781–37794 (2019).
[Crossref]

Y. Han, W. K. Ng, Y. Xue, K. S. Wong, and K. M. Lau, “Room temperature III-V nanolasers with distributed Bragg reflectors epitaxially grown on (001) silicon-on-insulators,” Photon. Res. 7, 1081–1086 (2019).
[Crossref]

Y. Han, Y. Xue, and K. M. Lau, “Selective lateral epitaxy of dislocation free InP on silicon-on-insulator,” Appl. Phys. Lett. 114, 192105 (2019).
[Crossref]

Y. Li, M. Wang, X. Zhou, P. Wang, W. Yang, F. Meng, and W. Wang, “InGaAs/InP multi-quantum-well nanowires with a lower optical leakage loss on v-groove-patterned SOI substrates,” Opt. Express 27, 494–503 (2019).
[Crossref]

Y. Han, W. K. Ng, Y. Xue, Q. Li, K. S. Wong, and K. M. Lau, “Telecom InP/InGaAs nanolaser array directly grown on (001) silicon-on-insulator,” Opt. Lett. 44, 767–770 (2019).
[Crossref]

W. K. Ng, Y. Han, K. M. Lau, and K. S. Wong, “Broadband telecom emission from InP/InGaAs nano-ridge lasers on silicon-on-insulator substrate,” OSA Continuum 2, 3037–3043 (2019).
[Crossref]

G. Zhang, M. Takiguchi, K. Tateno, T. Tawara, M. Notomi, and H. Gotoh, “Telecom-band lasing in single InP/InAs heterostructure nanowires at room temperature,” Sci. Adv. 5, eaat8896 (2019).
[Crossref]

2018 (7)

B. Kunert, Y. Mols, M. Baryshniskova, N. Waldron, A. Schulze, and R. Langer, “How to control defect formation in monolithic III/V heteroepitaxy on (100) Si? A critical review on current approaches,” Semicond. Sci. Technol. 33, 093002 (2018).
[Crossref]

Y. Han, Q. Li, K. W. Ng, S. Zhu, and K. M. Lau, “InGaAs/InP quantum wires grown on silicon with adjustable emission wavelength at telecom bands,” Nanotechnology 29, 225601 (2018).
[Crossref]

S. Wirths, B. F. Mayer, H. Schmid, M. Sousa, J. Gooth, H. Riel, and K. E. Moselund, “Room-temperature lasing from monolithically integrated GaAs microdisks on silicon,” ACS nano 12, 2169–2175 (2018).
[Crossref]

Y. Han, W. K. Ng, C. Ma, Q. Li, S. Zhu, C. C. Chan, K. W. Ng, S. Lennon, R. A. Taylor, K. S. Wong, and K. M. Lau, “Room temperature InP/InGaAs nano-ridge lasers grown on Si and emitting at telecom bands,” Optica 5, 918–923 (2018).
[Crossref]

A. H. Atabaki, S. Moazeni, F. Pavanello, H. Gevorgyan, J. Notaros, L. Alloatti, M. T. Wade, C. Sun, S. A. Kruger, H. Meng, K. A. Qubaisi, I. Wang, B. Zhang, A. Khilo, C. V. Baiocco, M. A. Popović, V. M. Stojanović, and R. J. Ram, “Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip,” Nature 556, 349–354 (2018).
[Crossref]

A. Y. Liu and J. Bowers, “Photonic integration with epitaxial III-V on silicon,” IEEE J. Sel. Top. Quantum Electron. 24, 6000412 (2018).
[Crossref]

D. Jung, R. Herrick, J. Norman, K. Turnlund, C. Jan, K. Feng, A. C. Gossard, and J. E. Bowers, “Impact of threading dislocation density on the lifetime of InAs quantum dot lasers on Si,” Appl. Phys. Lett. 112, 153507 (2018).
[Crossref]

2017 (8)

Y. Wan, J. Norman, Q. Li, M. J. Kennedy, D. Liang, C. Zhang, D. Huang, Z. Zhang, A. Y. Liu, A. Torres, D. Jung, A. C. Gossard, E. L. Hu, K. M. Lau, and J. E. Bowers, “1.3 µm submilliamp threshold quantum dot micro-lasers on Si,” Optica 4, 940–944 (2017).
[Crossref]

Z. Wang, A. Abbasi, U. Dave, A. De Groote, S. Kumari, B. Kunert, C. Merckling, M. Pantouvaki, Y. Shi, B. Tian, K. Van Gasse, J. Verbist, R. Wang, W. Xie, J. Zhang, Y. Zhu, J. Bauwelinck, X. Yin, Z. Hens, J. Van Campenhout, B. Kuyken, R. Baets, G. Morthier, D. Van Thourhout, and K. Van Gasse, “Novel light source integration approaches for silicon photonics,” Laser Photon. Rev. 11, 1700063 (2017).
[Crossref]

L. Megalini, B. Bonef, B. C. Cabinian, H. Zhao, A. Taylor, J. S. Speck, J. E. Bowers, and J. Klamkin, “1550-nm InGaAsP multi-quantum-well structures selectively grown on v-groove-patterned SOI substrates,” Appl. Phys. Lett. 111, 032105 (2017).
[Crossref]

Q. Li, B. Lai, and K. M. Lau, “Epitaxial growth of GaSb on V-grooved Si (001) substrates with an ultrathin GaAs stress relaxing layer,” Appl. Phys. Lett. 111, 172103 (2017).
[Crossref]

Y. Shi, Z. Wang, J. Van Campenhout, M. Pantouvaki, W. Guo, B. Kunert, and D. Van Thourhout, “Optical pumped InGaAs/GaAs nano-ridge laser epitaxially grown on a standard 300-mm Si wafer,” Optica 4, 1468–1473 (2017).
[Crossref]

Y. Han, Q. Li, S. Zhu, K. W. Ng, and K. M. Lau, “Continuous-wave lasing from InP/InGaAs nanoridges at telecommunication wavelengths,” Appl. Phys. Lett. 111, 212101 (2017).
[Crossref]

Y. Han, Q. Li, and K. M. Lau, “Tristate memory cells using double-peaked fin-array III-V tunnel diodes monolithically grown on (001) silicon substrates,” IEEE Trans. Electron Devices 64, 4078–4083 (2017).
[Crossref]

F. Lu, I. Bhattacharya, H. Sun, T. D. Tran, K. W. Ng, G. N. MalheirosSilveira, and C. C. Hasnain, “Nanopillar quantum well lasers directly grown on silicon and emitting at silicon-transparent wavelengths,” Optica 4, 717–723 (2017).
[Crossref]

2016 (8)

Q. Li, Y. Han, X. Lu, and K. M. Lau, “GaAs-InGaAs-GaAs fin-array tunnel diodes on (001) Si substrates with room-temperature peak-to-valley current ratio of 5.4,” IEEE Electron Device Lett. 37, 24–27 (2016).
[Crossref]

Y. Han, Q. Li, and K. M. Lau, “Highly ordered horizontal indium gallium arsenide/indium phosphide multi-quantum-well in wire structure on (001) silicon substrates,” J. Appl. Phys. 120, 245701 (2016).
[Crossref]

B. Tian, Z. Wang, M. Pantouvaki, P. Absil, J. Van Campenhout, C. Merckling, and D. Van Thourhout, “Room temperature O-band DFB laser array directly grown on (001) silicon,” Nano Lett. 17, 559–564 (2016).
[Crossref]

S. Li, X. Zhou, M. Li, X. Kong, J. Mi, M. Wang, W. Wang, and J. Pan, “Ridge InGaAs/InP multi-quantum-well selective growth in nanoscale trenches on Si (001) substrate,” Appl. Phys. Lett. 108, 021902 (2016).
[Crossref]

T. Orzali, A. Vert, B. O’Brian, J. L. Herman, S. Vivekanand, S. S. P. Rao, and S. R. Oktyabrsky, “Epitaxial growth of GaSb and InAs fins on 300 mm Si (001) by aspect ratio trapping,” J. Appl. Phys. 120, 085308 (2016).
[Crossref]

B. Kunert, W. Guo, Y. Mols, B. Tian, Z. Wang, Y. Shi, D. Van Thourhout, M. Pantouvaki, J. Van Campenhout, R. Langer, and K. Barla, “III/V nano ridge structures for optical applications on patterned 300  mm silicon substrate,” Appl. Phys. Lett. 109, 091101 (2016).
[Crossref]

Y. Han, Q. Li, S. P. Chang, W. D. Hsu, and K. M. Lau, “Growing InGaAs quasi-quantum wires inside semi-rhombic shaped planar InP nanowires on exact (001) silicon,” Appl. Phys. Lett. 108, 242105 (2016).
[Crossref]

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III-V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

2015 (2)

Z. Zhou, B. Yin, and J. Michel, “On-chip light sources for silicon photonics,” Light Sci. Appl. 4, e358 (2015).
[Crossref]

Z. Wang, B. Tian, M. Pantouvaki, W. Guo, P. Absil, J. Van Campenhout, C. Merckling, and D. Van Thourhout, “Room-temperature InP distributed feedback laser array directly grown on silicon,” Nat. Photonics 9,837–842 (2015).
[Crossref]

2014 (2)

C. Merckling, N. Waldron, S. Jiang, W. Guo, N. Collaert, M. Caymax, E. Vancoille, K. Barla, A. Thean, M. Heyns, and W. Vandervorst, “Hetero-epitaxy of InP on Si (001) by selective-area metal organic vapor-phase epitaxy in sub-50  nm width trenches: the role of the nucleation layer and the recess engineering,” J. Appl. Phys. 115, 023710 (2014).
[Crossref]

N. Waldron, C. Merckling, L. Teugels, P. Ong, S. Ansar, U. Ibrahim, F. Sebaai, A. Pourghaderi, K. Barla, N. Collaert, and A. V.-Y. Thean, “InGaAs gate-all-around nanowire devices on 300  mm Si substrates,” IEEE Electron Device Lett. 35, 1097–1099 (2014).
[Crossref]

2012 (1)

M. Paladugu, C. Merckling, R. Loo, O. Richard, H. Bender, J. Dekoster, W. Vandervorst, M. Caymax, and M. Heyns, “Site selective integration of III-V materials on Si for nanoscale logic and photonic devices,” Cryst. Growth Des. 12, 4696–4702 (2012).
[Crossref]

2010 (2)

D. Liang and J. E. Bowers, “Recent progress in lasers on silicon,” Nat. Photonics 4, 511 (2010).
[Crossref]

D. Liang, G. Roelkens, R. Baets, and J. E. Bowers, “Hybrid integrated platforms for silicon photonics,” Materials 3, 1782–1802 (2010).
[Crossref]

2007 (1)

J. Z. Li, J. Bai, J. S. Park, B. Adekore, K. Fox, M. Carroll, A. Lochtefeld, and Z. Shellenbarger, “Defect reduction of GaAs epitaxy on Si (001) using selective aspect ratio trapping,” Appl. Phys. Lett. 91, 021114 (2007).
[Crossref]

2002 (1)

G. Biasiol, A. Gustafsson, K. Leifer, and E. Kapon, “Mechanisms of self-ordering in nonplanar epitaxy of semiconductor nanostructures,” Phys. Rev. B 65, 205306 (2002).
[Crossref]

Abbasi, A.

Z. Wang, A. Abbasi, U. Dave, A. De Groote, S. Kumari, B. Kunert, C. Merckling, M. Pantouvaki, Y. Shi, B. Tian, K. Van Gasse, J. Verbist, R. Wang, W. Xie, J. Zhang, Y. Zhu, J. Bauwelinck, X. Yin, Z. Hens, J. Van Campenhout, B. Kuyken, R. Baets, G. Morthier, D. Van Thourhout, and K. Van Gasse, “Novel light source integration approaches for silicon photonics,” Laser Photon. Rev. 11, 1700063 (2017).
[Crossref]

Absil, P.

B. Tian, Z. Wang, M. Pantouvaki, P. Absil, J. Van Campenhout, C. Merckling, and D. Van Thourhout, “Room temperature O-band DFB laser array directly grown on (001) silicon,” Nano Lett. 17, 559–564 (2016).
[Crossref]

Z. Wang, B. Tian, M. Pantouvaki, W. Guo, P. Absil, J. Van Campenhout, C. Merckling, and D. Van Thourhout, “Room-temperature InP distributed feedback laser array directly grown on silicon,” Nat. Photonics 9,837–842 (2015).
[Crossref]

Adekore, B.

J. Z. Li, J. Bai, J. S. Park, B. Adekore, K. Fox, M. Carroll, A. Lochtefeld, and Z. Shellenbarger, “Defect reduction of GaAs epitaxy on Si (001) using selective aspect ratio trapping,” Appl. Phys. Lett. 91, 021114 (2007).
[Crossref]

Alloatti, L.

A. H. Atabaki, S. Moazeni, F. Pavanello, H. Gevorgyan, J. Notaros, L. Alloatti, M. T. Wade, C. Sun, S. A. Kruger, H. Meng, K. A. Qubaisi, I. Wang, B. Zhang, A. Khilo, C. V. Baiocco, M. A. Popović, V. M. Stojanović, and R. J. Ram, “Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip,” Nature 556, 349–354 (2018).
[Crossref]

Ansar, S.

N. Waldron, C. Merckling, L. Teugels, P. Ong, S. Ansar, U. Ibrahim, F. Sebaai, A. Pourghaderi, K. Barla, N. Collaert, and A. V.-Y. Thean, “InGaAs gate-all-around nanowire devices on 300  mm Si substrates,” IEEE Electron Device Lett. 35, 1097–1099 (2014).
[Crossref]

Atabaki, A. H.

A. H. Atabaki, S. Moazeni, F. Pavanello, H. Gevorgyan, J. Notaros, L. Alloatti, M. T. Wade, C. Sun, S. A. Kruger, H. Meng, K. A. Qubaisi, I. Wang, B. Zhang, A. Khilo, C. V. Baiocco, M. A. Popović, V. M. Stojanović, and R. J. Ram, “Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip,” Nature 556, 349–354 (2018).
[Crossref]

Baets, R.

Z. Wang, A. Abbasi, U. Dave, A. De Groote, S. Kumari, B. Kunert, C. Merckling, M. Pantouvaki, Y. Shi, B. Tian, K. Van Gasse, J. Verbist, R. Wang, W. Xie, J. Zhang, Y. Zhu, J. Bauwelinck, X. Yin, Z. Hens, J. Van Campenhout, B. Kuyken, R. Baets, G. Morthier, D. Van Thourhout, and K. Van Gasse, “Novel light source integration approaches for silicon photonics,” Laser Photon. Rev. 11, 1700063 (2017).
[Crossref]

D. Liang, G. Roelkens, R. Baets, and J. E. Bowers, “Hybrid integrated platforms for silicon photonics,” Materials 3, 1782–1802 (2010).
[Crossref]

Bai, J.

J. Z. Li, J. Bai, J. S. Park, B. Adekore, K. Fox, M. Carroll, A. Lochtefeld, and Z. Shellenbarger, “Defect reduction of GaAs epitaxy on Si (001) using selective aspect ratio trapping,” Appl. Phys. Lett. 91, 021114 (2007).
[Crossref]

Baiocco, C. V.

A. H. Atabaki, S. Moazeni, F. Pavanello, H. Gevorgyan, J. Notaros, L. Alloatti, M. T. Wade, C. Sun, S. A. Kruger, H. Meng, K. A. Qubaisi, I. Wang, B. Zhang, A. Khilo, C. V. Baiocco, M. A. Popović, V. M. Stojanović, and R. J. Ram, “Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip,” Nature 556, 349–354 (2018).
[Crossref]

Barla, K.

B. Kunert, W. Guo, Y. Mols, B. Tian, Z. Wang, Y. Shi, D. Van Thourhout, M. Pantouvaki, J. Van Campenhout, R. Langer, and K. Barla, “III/V nano ridge structures for optical applications on patterned 300  mm silicon substrate,” Appl. Phys. Lett. 109, 091101 (2016).
[Crossref]

C. Merckling, N. Waldron, S. Jiang, W. Guo, N. Collaert, M. Caymax, E. Vancoille, K. Barla, A. Thean, M. Heyns, and W. Vandervorst, “Hetero-epitaxy of InP on Si (001) by selective-area metal organic vapor-phase epitaxy in sub-50  nm width trenches: the role of the nucleation layer and the recess engineering,” J. Appl. Phys. 115, 023710 (2014).
[Crossref]

N. Waldron, C. Merckling, L. Teugels, P. Ong, S. Ansar, U. Ibrahim, F. Sebaai, A. Pourghaderi, K. Barla, N. Collaert, and A. V.-Y. Thean, “InGaAs gate-all-around nanowire devices on 300  mm Si substrates,” IEEE Electron Device Lett. 35, 1097–1099 (2014).
[Crossref]

Baryshniskova, M.

B. Kunert, Y. Mols, M. Baryshniskova, N. Waldron, A. Schulze, and R. Langer, “How to control defect formation in monolithic III/V heteroepitaxy on (100) Si? A critical review on current approaches,” Semicond. Sci. Technol. 33, 093002 (2018).
[Crossref]

Bauwelinck, J.

Z. Wang, A. Abbasi, U. Dave, A. De Groote, S. Kumari, B. Kunert, C. Merckling, M. Pantouvaki, Y. Shi, B. Tian, K. Van Gasse, J. Verbist, R. Wang, W. Xie, J. Zhang, Y. Zhu, J. Bauwelinck, X. Yin, Z. Hens, J. Van Campenhout, B. Kuyken, R. Baets, G. Morthier, D. Van Thourhout, and K. Van Gasse, “Novel light source integration approaches for silicon photonics,” Laser Photon. Rev. 11, 1700063 (2017).
[Crossref]

Bender, H.

M. Paladugu, C. Merckling, R. Loo, O. Richard, H. Bender, J. Dekoster, W. Vandervorst, M. Caymax, and M. Heyns, “Site selective integration of III-V materials on Si for nanoscale logic and photonic devices,” Cryst. Growth Des. 12, 4696–4702 (2012).
[Crossref]

Bhattacharya, I.

Biasiol, G.

G. Biasiol, A. Gustafsson, K. Leifer, and E. Kapon, “Mechanisms of self-ordering in nonplanar epitaxy of semiconductor nanostructures,” Phys. Rev. B 65, 205306 (2002).
[Crossref]

Bonef, B.

L. Megalini, B. Bonef, B. C. Cabinian, H. Zhao, A. Taylor, J. S. Speck, J. E. Bowers, and J. Klamkin, “1550-nm InGaAsP multi-quantum-well structures selectively grown on v-groove-patterned SOI substrates,” Appl. Phys. Lett. 111, 032105 (2017).
[Crossref]

Bowers, J.

A. Y. Liu and J. Bowers, “Photonic integration with epitaxial III-V on silicon,” IEEE J. Sel. Top. Quantum Electron. 24, 6000412 (2018).
[Crossref]

Bowers, J. E.

D. Jung, R. Herrick, J. Norman, K. Turnlund, C. Jan, K. Feng, A. C. Gossard, and J. E. Bowers, “Impact of threading dislocation density on the lifetime of InAs quantum dot lasers on Si,” Appl. Phys. Lett. 112, 153507 (2018).
[Crossref]

L. Megalini, B. Bonef, B. C. Cabinian, H. Zhao, A. Taylor, J. S. Speck, J. E. Bowers, and J. Klamkin, “1550-nm InGaAsP multi-quantum-well structures selectively grown on v-groove-patterned SOI substrates,” Appl. Phys. Lett. 111, 032105 (2017).
[Crossref]

Y. Wan, J. Norman, Q. Li, M. J. Kennedy, D. Liang, C. Zhang, D. Huang, Z. Zhang, A. Y. Liu, A. Torres, D. Jung, A. C. Gossard, E. L. Hu, K. M. Lau, and J. E. Bowers, “1.3 µm submilliamp threshold quantum dot micro-lasers on Si,” Optica 4, 940–944 (2017).
[Crossref]

D. Liang, G. Roelkens, R. Baets, and J. E. Bowers, “Hybrid integrated platforms for silicon photonics,” Materials 3, 1782–1802 (2010).
[Crossref]

D. Liang and J. E. Bowers, “Recent progress in lasers on silicon,” Nat. Photonics 4, 511 (2010).
[Crossref]

Cabinian, B. C.

L. Megalini, B. Bonef, B. C. Cabinian, H. Zhao, A. Taylor, J. S. Speck, J. E. Bowers, and J. Klamkin, “1550-nm InGaAsP multi-quantum-well structures selectively grown on v-groove-patterned SOI substrates,” Appl. Phys. Lett. 111, 032105 (2017).
[Crossref]

Carroll, M.

J. Z. Li, J. Bai, J. S. Park, B. Adekore, K. Fox, M. Carroll, A. Lochtefeld, and Z. Shellenbarger, “Defect reduction of GaAs epitaxy on Si (001) using selective aspect ratio trapping,” Appl. Phys. Lett. 91, 021114 (2007).
[Crossref]

Caymax, M.

C. Merckling, N. Waldron, S. Jiang, W. Guo, N. Collaert, M. Caymax, E. Vancoille, K. Barla, A. Thean, M. Heyns, and W. Vandervorst, “Hetero-epitaxy of InP on Si (001) by selective-area metal organic vapor-phase epitaxy in sub-50  nm width trenches: the role of the nucleation layer and the recess engineering,” J. Appl. Phys. 115, 023710 (2014).
[Crossref]

M. Paladugu, C. Merckling, R. Loo, O. Richard, H. Bender, J. Dekoster, W. Vandervorst, M. Caymax, and M. Heyns, “Site selective integration of III-V materials on Si for nanoscale logic and photonic devices,” Cryst. Growth Des. 12, 4696–4702 (2012).
[Crossref]

Chan, C. C.

Chang, S. P.

Y. Han, Q. Li, S. P. Chang, W. D. Hsu, and K. M. Lau, “Growing InGaAs quasi-quantum wires inside semi-rhombic shaped planar InP nanowires on exact (001) silicon,” Appl. Phys. Lett. 108, 242105 (2016).
[Crossref]

Chen, S.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III-V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

Collaert, N.

C. Merckling, N. Waldron, S. Jiang, W. Guo, N. Collaert, M. Caymax, E. Vancoille, K. Barla, A. Thean, M. Heyns, and W. Vandervorst, “Hetero-epitaxy of InP on Si (001) by selective-area metal organic vapor-phase epitaxy in sub-50  nm width trenches: the role of the nucleation layer and the recess engineering,” J. Appl. Phys. 115, 023710 (2014).
[Crossref]

N. Waldron, C. Merckling, L. Teugels, P. Ong, S. Ansar, U. Ibrahim, F. Sebaai, A. Pourghaderi, K. Barla, N. Collaert, and A. V.-Y. Thean, “InGaAs gate-all-around nanowire devices on 300  mm Si substrates,” IEEE Electron Device Lett. 35, 1097–1099 (2014).
[Crossref]

Dave, U.

Z. Wang, A. Abbasi, U. Dave, A. De Groote, S. Kumari, B. Kunert, C. Merckling, M. Pantouvaki, Y. Shi, B. Tian, K. Van Gasse, J. Verbist, R. Wang, W. Xie, J. Zhang, Y. Zhu, J. Bauwelinck, X. Yin, Z. Hens, J. Van Campenhout, B. Kuyken, R. Baets, G. Morthier, D. Van Thourhout, and K. Van Gasse, “Novel light source integration approaches for silicon photonics,” Laser Photon. Rev. 11, 1700063 (2017).
[Crossref]

De Groote, A.

Z. Wang, A. Abbasi, U. Dave, A. De Groote, S. Kumari, B. Kunert, C. Merckling, M. Pantouvaki, Y. Shi, B. Tian, K. Van Gasse, J. Verbist, R. Wang, W. Xie, J. Zhang, Y. Zhu, J. Bauwelinck, X. Yin, Z. Hens, J. Van Campenhout, B. Kuyken, R. Baets, G. Morthier, D. Van Thourhout, and K. Van Gasse, “Novel light source integration approaches for silicon photonics,” Laser Photon. Rev. 11, 1700063 (2017).
[Crossref]

Dekoster, J.

M. Paladugu, C. Merckling, R. Loo, O. Richard, H. Bender, J. Dekoster, W. Vandervorst, M. Caymax, and M. Heyns, “Site selective integration of III-V materials on Si for nanoscale logic and photonic devices,” Cryst. Growth Des. 12, 4696–4702 (2012).
[Crossref]

Elliott, S. N.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III-V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

Feng, K.

D. Jung, R. Herrick, J. Norman, K. Turnlund, C. Jan, K. Feng, A. C. Gossard, and J. E. Bowers, “Impact of threading dislocation density on the lifetime of InAs quantum dot lasers on Si,” Appl. Phys. Lett. 112, 153507 (2018).
[Crossref]

Fox, K.

J. Z. Li, J. Bai, J. S. Park, B. Adekore, K. Fox, M. Carroll, A. Lochtefeld, and Z. Shellenbarger, “Defect reduction of GaAs epitaxy on Si (001) using selective aspect ratio trapping,” Appl. Phys. Lett. 91, 021114 (2007).
[Crossref]

Gevorgyan, H.

A. H. Atabaki, S. Moazeni, F. Pavanello, H. Gevorgyan, J. Notaros, L. Alloatti, M. T. Wade, C. Sun, S. A. Kruger, H. Meng, K. A. Qubaisi, I. Wang, B. Zhang, A. Khilo, C. V. Baiocco, M. A. Popović, V. M. Stojanović, and R. J. Ram, “Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip,” Nature 556, 349–354 (2018).
[Crossref]

Gooth, J.

S. Wirths, B. F. Mayer, H. Schmid, M. Sousa, J. Gooth, H. Riel, and K. E. Moselund, “Room-temperature lasing from monolithically integrated GaAs microdisks on silicon,” ACS nano 12, 2169–2175 (2018).
[Crossref]

Gossard, A. C.

D. Jung, R. Herrick, J. Norman, K. Turnlund, C. Jan, K. Feng, A. C. Gossard, and J. E. Bowers, “Impact of threading dislocation density on the lifetime of InAs quantum dot lasers on Si,” Appl. Phys. Lett. 112, 153507 (2018).
[Crossref]

Y. Wan, J. Norman, Q. Li, M. J. Kennedy, D. Liang, C. Zhang, D. Huang, Z. Zhang, A. Y. Liu, A. Torres, D. Jung, A. C. Gossard, E. L. Hu, K. M. Lau, and J. E. Bowers, “1.3 µm submilliamp threshold quantum dot micro-lasers on Si,” Optica 4, 940–944 (2017).
[Crossref]

Gotoh, H.

G. Zhang, M. Takiguchi, K. Tateno, T. Tawara, M. Notomi, and H. Gotoh, “Telecom-band lasing in single InP/InAs heterostructure nanowires at room temperature,” Sci. Adv. 5, eaat8896 (2019).
[Crossref]

Guo, W.

Y. Shi, Z. Wang, J. Van Campenhout, M. Pantouvaki, W. Guo, B. Kunert, and D. Van Thourhout, “Optical pumped InGaAs/GaAs nano-ridge laser epitaxially grown on a standard 300-mm Si wafer,” Optica 4, 1468–1473 (2017).
[Crossref]

B. Kunert, W. Guo, Y. Mols, B. Tian, Z. Wang, Y. Shi, D. Van Thourhout, M. Pantouvaki, J. Van Campenhout, R. Langer, and K. Barla, “III/V nano ridge structures for optical applications on patterned 300  mm silicon substrate,” Appl. Phys. Lett. 109, 091101 (2016).
[Crossref]

Z. Wang, B. Tian, M. Pantouvaki, W. Guo, P. Absil, J. Van Campenhout, C. Merckling, and D. Van Thourhout, “Room-temperature InP distributed feedback laser array directly grown on silicon,” Nat. Photonics 9,837–842 (2015).
[Crossref]

C. Merckling, N. Waldron, S. Jiang, W. Guo, N. Collaert, M. Caymax, E. Vancoille, K. Barla, A. Thean, M. Heyns, and W. Vandervorst, “Hetero-epitaxy of InP on Si (001) by selective-area metal organic vapor-phase epitaxy in sub-50  nm width trenches: the role of the nucleation layer and the recess engineering,” J. Appl. Phys. 115, 023710 (2014).
[Crossref]

Gustafsson, A.

G. Biasiol, A. Gustafsson, K. Leifer, and E. Kapon, “Mechanisms of self-ordering in nonplanar epitaxy of semiconductor nanostructures,” Phys. Rev. B 65, 205306 (2002).
[Crossref]

Han, Y.

Y. Han, Y. Xue, and K. M. Lau, “Selective lateral epitaxy of dislocation free InP on silicon-on-insulator,” Appl. Phys. Lett. 114, 192105 (2019).
[Crossref]

W. K. Ng, Y. Han, K. M. Lau, and K. S. Wong, “Broadband telecom emission from InP/InGaAs nano-ridge lasers on silicon-on-insulator substrate,” OSA Continuum 2, 3037–3043 (2019).
[Crossref]

Y. Han, W. K. Ng, Y. Xue, Q. Li, K. S. Wong, and K. M. Lau, “Telecom InP/InGaAs nanolaser array directly grown on (001) silicon-on-insulator,” Opt. Lett. 44, 767–770 (2019).
[Crossref]

Y. Han, W. K. Ng, Y. Xue, K. S. Wong, and K. M. Lau, “Room temperature III-V nanolasers with distributed Bragg reflectors epitaxially grown on (001) silicon-on-insulators,” Photon. Res. 7, 1081–1086 (2019).
[Crossref]

B. Shi, Y. Han, Q. Li, and K. M. Lau, “1.55-µm lasers epitaxially grown on silicon,” IEEE J. Sel. Top. Quantum Electron. 25, 1900711 (2019).
[Crossref]

Y. Han, W. K. Ng, C. Ma, Q. Li, S. Zhu, C. C. Chan, K. W. Ng, S. Lennon, R. A. Taylor, K. S. Wong, and K. M. Lau, “Room temperature InP/InGaAs nano-ridge lasers grown on Si and emitting at telecom bands,” Optica 5, 918–923 (2018).
[Crossref]

Y. Han, Q. Li, K. W. Ng, S. Zhu, and K. M. Lau, “InGaAs/InP quantum wires grown on silicon with adjustable emission wavelength at telecom bands,” Nanotechnology 29, 225601 (2018).
[Crossref]

Y. Han, Q. Li, and K. M. Lau, “Tristate memory cells using double-peaked fin-array III-V tunnel diodes monolithically grown on (001) silicon substrates,” IEEE Trans. Electron Devices 64, 4078–4083 (2017).
[Crossref]

Y. Han, Q. Li, S. Zhu, K. W. Ng, and K. M. Lau, “Continuous-wave lasing from InP/InGaAs nanoridges at telecommunication wavelengths,” Appl. Phys. Lett. 111, 212101 (2017).
[Crossref]

Y. Han, Q. Li, and K. M. Lau, “Highly ordered horizontal indium gallium arsenide/indium phosphide multi-quantum-well in wire structure on (001) silicon substrates,” J. Appl. Phys. 120, 245701 (2016).
[Crossref]

Q. Li, Y. Han, X. Lu, and K. M. Lau, “GaAs-InGaAs-GaAs fin-array tunnel diodes on (001) Si substrates with room-temperature peak-to-valley current ratio of 5.4,” IEEE Electron Device Lett. 37, 24–27 (2016).
[Crossref]

Y. Han, Q. Li, S. P. Chang, W. D. Hsu, and K. M. Lau, “Growing InGaAs quasi-quantum wires inside semi-rhombic shaped planar InP nanowires on exact (001) silicon,” Appl. Phys. Lett. 108, 242105 (2016).
[Crossref]

Hasnain, C. C.

Hens, Z.

Z. Wang, A. Abbasi, U. Dave, A. De Groote, S. Kumari, B. Kunert, C. Merckling, M. Pantouvaki, Y. Shi, B. Tian, K. Van Gasse, J. Verbist, R. Wang, W. Xie, J. Zhang, Y. Zhu, J. Bauwelinck, X. Yin, Z. Hens, J. Van Campenhout, B. Kuyken, R. Baets, G. Morthier, D. Van Thourhout, and K. Van Gasse, “Novel light source integration approaches for silicon photonics,” Laser Photon. Rev. 11, 1700063 (2017).
[Crossref]

Herman, J. L.

T. Orzali, A. Vert, B. O’Brian, J. L. Herman, S. Vivekanand, S. S. P. Rao, and S. R. Oktyabrsky, “Epitaxial growth of GaSb and InAs fins on 300 mm Si (001) by aspect ratio trapping,” J. Appl. Phys. 120, 085308 (2016).
[Crossref]

Herrick, R.

D. Jung, R. Herrick, J. Norman, K. Turnlund, C. Jan, K. Feng, A. C. Gossard, and J. E. Bowers, “Impact of threading dislocation density on the lifetime of InAs quantum dot lasers on Si,” Appl. Phys. Lett. 112, 153507 (2018).
[Crossref]

Heyns, M.

C. Merckling, N. Waldron, S. Jiang, W. Guo, N. Collaert, M. Caymax, E. Vancoille, K. Barla, A. Thean, M. Heyns, and W. Vandervorst, “Hetero-epitaxy of InP on Si (001) by selective-area metal organic vapor-phase epitaxy in sub-50  nm width trenches: the role of the nucleation layer and the recess engineering,” J. Appl. Phys. 115, 023710 (2014).
[Crossref]

M. Paladugu, C. Merckling, R. Loo, O. Richard, H. Bender, J. Dekoster, W. Vandervorst, M. Caymax, and M. Heyns, “Site selective integration of III-V materials on Si for nanoscale logic and photonic devices,” Cryst. Growth Des. 12, 4696–4702 (2012).
[Crossref]

Hsu, W. D.

Y. Han, Q. Li, S. P. Chang, W. D. Hsu, and K. M. Lau, “Growing InGaAs quasi-quantum wires inside semi-rhombic shaped planar InP nanowires on exact (001) silicon,” Appl. Phys. Lett. 108, 242105 (2016).
[Crossref]

Hu, E. L.

Huang, D.

Ibrahim, U.

N. Waldron, C. Merckling, L. Teugels, P. Ong, S. Ansar, U. Ibrahim, F. Sebaai, A. Pourghaderi, K. Barla, N. Collaert, and A. V.-Y. Thean, “InGaAs gate-all-around nanowire devices on 300  mm Si substrates,” IEEE Electron Device Lett. 35, 1097–1099 (2014).
[Crossref]

Jan, C.

D. Jung, R. Herrick, J. Norman, K. Turnlund, C. Jan, K. Feng, A. C. Gossard, and J. E. Bowers, “Impact of threading dislocation density on the lifetime of InAs quantum dot lasers on Si,” Appl. Phys. Lett. 112, 153507 (2018).
[Crossref]

Jiang, Q.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III-V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

Jiang, S.

C. Merckling, N. Waldron, S. Jiang, W. Guo, N. Collaert, M. Caymax, E. Vancoille, K. Barla, A. Thean, M. Heyns, and W. Vandervorst, “Hetero-epitaxy of InP on Si (001) by selective-area metal organic vapor-phase epitaxy in sub-50  nm width trenches: the role of the nucleation layer and the recess engineering,” J. Appl. Phys. 115, 023710 (2014).
[Crossref]

Jung, D.

D. Jung, R. Herrick, J. Norman, K. Turnlund, C. Jan, K. Feng, A. C. Gossard, and J. E. Bowers, “Impact of threading dislocation density on the lifetime of InAs quantum dot lasers on Si,” Appl. Phys. Lett. 112, 153507 (2018).
[Crossref]

Y. Wan, J. Norman, Q. Li, M. J. Kennedy, D. Liang, C. Zhang, D. Huang, Z. Zhang, A. Y. Liu, A. Torres, D. Jung, A. C. Gossard, E. L. Hu, K. M. Lau, and J. E. Bowers, “1.3 µm submilliamp threshold quantum dot micro-lasers on Si,” Optica 4, 940–944 (2017).
[Crossref]

Kapon, E.

G. Biasiol, A. Gustafsson, K. Leifer, and E. Kapon, “Mechanisms of self-ordering in nonplanar epitaxy of semiconductor nanostructures,” Phys. Rev. B 65, 205306 (2002).
[Crossref]

Kennedy, M. J.

Khilo, A.

A. H. Atabaki, S. Moazeni, F. Pavanello, H. Gevorgyan, J. Notaros, L. Alloatti, M. T. Wade, C. Sun, S. A. Kruger, H. Meng, K. A. Qubaisi, I. Wang, B. Zhang, A. Khilo, C. V. Baiocco, M. A. Popović, V. M. Stojanović, and R. J. Ram, “Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip,” Nature 556, 349–354 (2018).
[Crossref]

Klamkin, J.

L. Megalini, B. Bonef, B. C. Cabinian, H. Zhao, A. Taylor, J. S. Speck, J. E. Bowers, and J. Klamkin, “1550-nm InGaAsP multi-quantum-well structures selectively grown on v-groove-patterned SOI substrates,” Appl. Phys. Lett. 111, 032105 (2017).
[Crossref]

Kong, X.

S. Li, X. Zhou, M. Li, X. Kong, J. Mi, M. Wang, W. Wang, and J. Pan, “Ridge InGaAs/InP multi-quantum-well selective growth in nanoscale trenches on Si (001) substrate,” Appl. Phys. Lett. 108, 021902 (2016).
[Crossref]

Koninck, Y. D.

Kruger, S. A.

A. H. Atabaki, S. Moazeni, F. Pavanello, H. Gevorgyan, J. Notaros, L. Alloatti, M. T. Wade, C. Sun, S. A. Kruger, H. Meng, K. A. Qubaisi, I. Wang, B. Zhang, A. Khilo, C. V. Baiocco, M. A. Popović, V. M. Stojanović, and R. J. Ram, “Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip,” Nature 556, 349–354 (2018).
[Crossref]

Kumari, S.

Z. Wang, A. Abbasi, U. Dave, A. De Groote, S. Kumari, B. Kunert, C. Merckling, M. Pantouvaki, Y. Shi, B. Tian, K. Van Gasse, J. Verbist, R. Wang, W. Xie, J. Zhang, Y. Zhu, J. Bauwelinck, X. Yin, Z. Hens, J. Van Campenhout, B. Kuyken, R. Baets, G. Morthier, D. Van Thourhout, and K. Van Gasse, “Novel light source integration approaches for silicon photonics,” Laser Photon. Rev. 11, 1700063 (2017).
[Crossref]

Kunert, B.

Y. Shi, B. Kunert, Y. D. Koninck, M. Pantouvaki, J. Van Campenhout, and D. Van Thourhout, “Novel adiabatic coupler for III-V nano-ridge laser grown on a Si photonics platform,” Opt. Express 27, 37781–37794 (2019).
[Crossref]

B. Kunert, Y. Mols, M. Baryshniskova, N. Waldron, A. Schulze, and R. Langer, “How to control defect formation in monolithic III/V heteroepitaxy on (100) Si? A critical review on current approaches,” Semicond. Sci. Technol. 33, 093002 (2018).
[Crossref]

Y. Shi, Z. Wang, J. Van Campenhout, M. Pantouvaki, W. Guo, B. Kunert, and D. Van Thourhout, “Optical pumped InGaAs/GaAs nano-ridge laser epitaxially grown on a standard 300-mm Si wafer,” Optica 4, 1468–1473 (2017).
[Crossref]

Z. Wang, A. Abbasi, U. Dave, A. De Groote, S. Kumari, B. Kunert, C. Merckling, M. Pantouvaki, Y. Shi, B. Tian, K. Van Gasse, J. Verbist, R. Wang, W. Xie, J. Zhang, Y. Zhu, J. Bauwelinck, X. Yin, Z. Hens, J. Van Campenhout, B. Kuyken, R. Baets, G. Morthier, D. Van Thourhout, and K. Van Gasse, “Novel light source integration approaches for silicon photonics,” Laser Photon. Rev. 11, 1700063 (2017).
[Crossref]

B. Kunert, W. Guo, Y. Mols, B. Tian, Z. Wang, Y. Shi, D. Van Thourhout, M. Pantouvaki, J. Van Campenhout, R. Langer, and K. Barla, “III/V nano ridge structures for optical applications on patterned 300  mm silicon substrate,” Appl. Phys. Lett. 109, 091101 (2016).
[Crossref]

Kuyken, B.

Z. Wang, A. Abbasi, U. Dave, A. De Groote, S. Kumari, B. Kunert, C. Merckling, M. Pantouvaki, Y. Shi, B. Tian, K. Van Gasse, J. Verbist, R. Wang, W. Xie, J. Zhang, Y. Zhu, J. Bauwelinck, X. Yin, Z. Hens, J. Van Campenhout, B. Kuyken, R. Baets, G. Morthier, D. Van Thourhout, and K. Van Gasse, “Novel light source integration approaches for silicon photonics,” Laser Photon. Rev. 11, 1700063 (2017).
[Crossref]

Lai, B.

Q. Li, B. Lai, and K. M. Lau, “Epitaxial growth of GaSb on V-grooved Si (001) substrates with an ultrathin GaAs stress relaxing layer,” Appl. Phys. Lett. 111, 172103 (2017).
[Crossref]

Langer, R.

B. Kunert, Y. Mols, M. Baryshniskova, N. Waldron, A. Schulze, and R. Langer, “How to control defect formation in monolithic III/V heteroepitaxy on (100) Si? A critical review on current approaches,” Semicond. Sci. Technol. 33, 093002 (2018).
[Crossref]

B. Kunert, W. Guo, Y. Mols, B. Tian, Z. Wang, Y. Shi, D. Van Thourhout, M. Pantouvaki, J. Van Campenhout, R. Langer, and K. Barla, “III/V nano ridge structures for optical applications on patterned 300  mm silicon substrate,” Appl. Phys. Lett. 109, 091101 (2016).
[Crossref]

Lau, K. M.

B. Shi, Y. Han, Q. Li, and K. M. Lau, “1.55-µm lasers epitaxially grown on silicon,” IEEE J. Sel. Top. Quantum Electron. 25, 1900711 (2019).
[Crossref]

Y. Han, Y. Xue, and K. M. Lau, “Selective lateral epitaxy of dislocation free InP on silicon-on-insulator,” Appl. Phys. Lett. 114, 192105 (2019).
[Crossref]

W. K. Ng, Y. Han, K. M. Lau, and K. S. Wong, “Broadband telecom emission from InP/InGaAs nano-ridge lasers on silicon-on-insulator substrate,” OSA Continuum 2, 3037–3043 (2019).
[Crossref]

Y. Han, W. K. Ng, Y. Xue, Q. Li, K. S. Wong, and K. M. Lau, “Telecom InP/InGaAs nanolaser array directly grown on (001) silicon-on-insulator,” Opt. Lett. 44, 767–770 (2019).
[Crossref]

Y. Han, W. K. Ng, Y. Xue, K. S. Wong, and K. M. Lau, “Room temperature III-V nanolasers with distributed Bragg reflectors epitaxially grown on (001) silicon-on-insulators,” Photon. Res. 7, 1081–1086 (2019).
[Crossref]

Y. Han, W. K. Ng, C. Ma, Q. Li, S. Zhu, C. C. Chan, K. W. Ng, S. Lennon, R. A. Taylor, K. S. Wong, and K. M. Lau, “Room temperature InP/InGaAs nano-ridge lasers grown on Si and emitting at telecom bands,” Optica 5, 918–923 (2018).
[Crossref]

Y. Han, Q. Li, K. W. Ng, S. Zhu, and K. M. Lau, “InGaAs/InP quantum wires grown on silicon with adjustable emission wavelength at telecom bands,” Nanotechnology 29, 225601 (2018).
[Crossref]

Y. Han, Q. Li, and K. M. Lau, “Tristate memory cells using double-peaked fin-array III-V tunnel diodes monolithically grown on (001) silicon substrates,” IEEE Trans. Electron Devices 64, 4078–4083 (2017).
[Crossref]

Y. Han, Q. Li, S. Zhu, K. W. Ng, and K. M. Lau, “Continuous-wave lasing from InP/InGaAs nanoridges at telecommunication wavelengths,” Appl. Phys. Lett. 111, 212101 (2017).
[Crossref]

Q. Li, B. Lai, and K. M. Lau, “Epitaxial growth of GaSb on V-grooved Si (001) substrates with an ultrathin GaAs stress relaxing layer,” Appl. Phys. Lett. 111, 172103 (2017).
[Crossref]

Y. Wan, J. Norman, Q. Li, M. J. Kennedy, D. Liang, C. Zhang, D. Huang, Z. Zhang, A. Y. Liu, A. Torres, D. Jung, A. C. Gossard, E. L. Hu, K. M. Lau, and J. E. Bowers, “1.3 µm submilliamp threshold quantum dot micro-lasers on Si,” Optica 4, 940–944 (2017).
[Crossref]

Y. Han, Q. Li, S. P. Chang, W. D. Hsu, and K. M. Lau, “Growing InGaAs quasi-quantum wires inside semi-rhombic shaped planar InP nanowires on exact (001) silicon,” Appl. Phys. Lett. 108, 242105 (2016).
[Crossref]

Y. Han, Q. Li, and K. M. Lau, “Highly ordered horizontal indium gallium arsenide/indium phosphide multi-quantum-well in wire structure on (001) silicon substrates,” J. Appl. Phys. 120, 245701 (2016).
[Crossref]

Q. Li, Y. Han, X. Lu, and K. M. Lau, “GaAs-InGaAs-GaAs fin-array tunnel diodes on (001) Si substrates with room-temperature peak-to-valley current ratio of 5.4,” IEEE Electron Device Lett. 37, 24–27 (2016).
[Crossref]

Leifer, K.

G. Biasiol, A. Gustafsson, K. Leifer, and E. Kapon, “Mechanisms of self-ordering in nonplanar epitaxy of semiconductor nanostructures,” Phys. Rev. B 65, 205306 (2002).
[Crossref]

Lennon, S.

Li, J. Z.

J. Z. Li, J. Bai, J. S. Park, B. Adekore, K. Fox, M. Carroll, A. Lochtefeld, and Z. Shellenbarger, “Defect reduction of GaAs epitaxy on Si (001) using selective aspect ratio trapping,” Appl. Phys. Lett. 91, 021114 (2007).
[Crossref]

Li, M.

S. Li, X. Zhou, M. Li, X. Kong, J. Mi, M. Wang, W. Wang, and J. Pan, “Ridge InGaAs/InP multi-quantum-well selective growth in nanoscale trenches on Si (001) substrate,” Appl. Phys. Lett. 108, 021902 (2016).
[Crossref]

Li, Q.

B. Shi, Y. Han, Q. Li, and K. M. Lau, “1.55-µm lasers epitaxially grown on silicon,” IEEE J. Sel. Top. Quantum Electron. 25, 1900711 (2019).
[Crossref]

Y. Han, W. K. Ng, Y. Xue, Q. Li, K. S. Wong, and K. M. Lau, “Telecom InP/InGaAs nanolaser array directly grown on (001) silicon-on-insulator,” Opt. Lett. 44, 767–770 (2019).
[Crossref]

Y. Han, Q. Li, K. W. Ng, S. Zhu, and K. M. Lau, “InGaAs/InP quantum wires grown on silicon with adjustable emission wavelength at telecom bands,” Nanotechnology 29, 225601 (2018).
[Crossref]

Y. Han, W. K. Ng, C. Ma, Q. Li, S. Zhu, C. C. Chan, K. W. Ng, S. Lennon, R. A. Taylor, K. S. Wong, and K. M. Lau, “Room temperature InP/InGaAs nano-ridge lasers grown on Si and emitting at telecom bands,” Optica 5, 918–923 (2018).
[Crossref]

Q. Li, B. Lai, and K. M. Lau, “Epitaxial growth of GaSb on V-grooved Si (001) substrates with an ultrathin GaAs stress relaxing layer,” Appl. Phys. Lett. 111, 172103 (2017).
[Crossref]

Y. Han, Q. Li, S. Zhu, K. W. Ng, and K. M. Lau, “Continuous-wave lasing from InP/InGaAs nanoridges at telecommunication wavelengths,” Appl. Phys. Lett. 111, 212101 (2017).
[Crossref]

Y. Han, Q. Li, and K. M. Lau, “Tristate memory cells using double-peaked fin-array III-V tunnel diodes monolithically grown on (001) silicon substrates,” IEEE Trans. Electron Devices 64, 4078–4083 (2017).
[Crossref]

Y. Wan, J. Norman, Q. Li, M. J. Kennedy, D. Liang, C. Zhang, D. Huang, Z. Zhang, A. Y. Liu, A. Torres, D. Jung, A. C. Gossard, E. L. Hu, K. M. Lau, and J. E. Bowers, “1.3 µm submilliamp threshold quantum dot micro-lasers on Si,” Optica 4, 940–944 (2017).
[Crossref]

Y. Han, Q. Li, S. P. Chang, W. D. Hsu, and K. M. Lau, “Growing InGaAs quasi-quantum wires inside semi-rhombic shaped planar InP nanowires on exact (001) silicon,” Appl. Phys. Lett. 108, 242105 (2016).
[Crossref]

Q. Li, Y. Han, X. Lu, and K. M. Lau, “GaAs-InGaAs-GaAs fin-array tunnel diodes on (001) Si substrates with room-temperature peak-to-valley current ratio of 5.4,” IEEE Electron Device Lett. 37, 24–27 (2016).
[Crossref]

Y. Han, Q. Li, and K. M. Lau, “Highly ordered horizontal indium gallium arsenide/indium phosphide multi-quantum-well in wire structure on (001) silicon substrates,” J. Appl. Phys. 120, 245701 (2016).
[Crossref]

Li, S.

S. Li, X. Zhou, M. Li, X. Kong, J. Mi, M. Wang, W. Wang, and J. Pan, “Ridge InGaAs/InP multi-quantum-well selective growth in nanoscale trenches on Si (001) substrate,” Appl. Phys. Lett. 108, 021902 (2016).
[Crossref]

Li, W.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III-V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

Li, Y.

Liang, D.

Y. Wan, J. Norman, Q. Li, M. J. Kennedy, D. Liang, C. Zhang, D. Huang, Z. Zhang, A. Y. Liu, A. Torres, D. Jung, A. C. Gossard, E. L. Hu, K. M. Lau, and J. E. Bowers, “1.3 µm submilliamp threshold quantum dot micro-lasers on Si,” Optica 4, 940–944 (2017).
[Crossref]

D. Liang and J. E. Bowers, “Recent progress in lasers on silicon,” Nat. Photonics 4, 511 (2010).
[Crossref]

D. Liang, G. Roelkens, R. Baets, and J. E. Bowers, “Hybrid integrated platforms for silicon photonics,” Materials 3, 1782–1802 (2010).
[Crossref]

Liu, A. Y.

Liu, H.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III-V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

Lochtefeld, A.

J. Z. Li, J. Bai, J. S. Park, B. Adekore, K. Fox, M. Carroll, A. Lochtefeld, and Z. Shellenbarger, “Defect reduction of GaAs epitaxy on Si (001) using selective aspect ratio trapping,” Appl. Phys. Lett. 91, 021114 (2007).
[Crossref]

Loo, R.

M. Paladugu, C. Merckling, R. Loo, O. Richard, H. Bender, J. Dekoster, W. Vandervorst, M. Caymax, and M. Heyns, “Site selective integration of III-V materials on Si for nanoscale logic and photonic devices,” Cryst. Growth Des. 12, 4696–4702 (2012).
[Crossref]

Lu, F.

Lu, X.

Q. Li, Y. Han, X. Lu, and K. M. Lau, “GaAs-InGaAs-GaAs fin-array tunnel diodes on (001) Si substrates with room-temperature peak-to-valley current ratio of 5.4,” IEEE Electron Device Lett. 37, 24–27 (2016).
[Crossref]

Ma, C.

MalheirosSilveira, G. N.

Mayer, B. F.

S. Wirths, B. F. Mayer, H. Schmid, M. Sousa, J. Gooth, H. Riel, and K. E. Moselund, “Room-temperature lasing from monolithically integrated GaAs microdisks on silicon,” ACS nano 12, 2169–2175 (2018).
[Crossref]

Megalini, L.

L. Megalini, B. Bonef, B. C. Cabinian, H. Zhao, A. Taylor, J. S. Speck, J. E. Bowers, and J. Klamkin, “1550-nm InGaAsP multi-quantum-well structures selectively grown on v-groove-patterned SOI substrates,” Appl. Phys. Lett. 111, 032105 (2017).
[Crossref]

Meng, F.

Meng, H.

A. H. Atabaki, S. Moazeni, F. Pavanello, H. Gevorgyan, J. Notaros, L. Alloatti, M. T. Wade, C. Sun, S. A. Kruger, H. Meng, K. A. Qubaisi, I. Wang, B. Zhang, A. Khilo, C. V. Baiocco, M. A. Popović, V. M. Stojanović, and R. J. Ram, “Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip,” Nature 556, 349–354 (2018).
[Crossref]

Merckling, C.

Z. Wang, A. Abbasi, U. Dave, A. De Groote, S. Kumari, B. Kunert, C. Merckling, M. Pantouvaki, Y. Shi, B. Tian, K. Van Gasse, J. Verbist, R. Wang, W. Xie, J. Zhang, Y. Zhu, J. Bauwelinck, X. Yin, Z. Hens, J. Van Campenhout, B. Kuyken, R. Baets, G. Morthier, D. Van Thourhout, and K. Van Gasse, “Novel light source integration approaches for silicon photonics,” Laser Photon. Rev. 11, 1700063 (2017).
[Crossref]

B. Tian, Z. Wang, M. Pantouvaki, P. Absil, J. Van Campenhout, C. Merckling, and D. Van Thourhout, “Room temperature O-band DFB laser array directly grown on (001) silicon,” Nano Lett. 17, 559–564 (2016).
[Crossref]

Z. Wang, B. Tian, M. Pantouvaki, W. Guo, P. Absil, J. Van Campenhout, C. Merckling, and D. Van Thourhout, “Room-temperature InP distributed feedback laser array directly grown on silicon,” Nat. Photonics 9,837–842 (2015).
[Crossref]

N. Waldron, C. Merckling, L. Teugels, P. Ong, S. Ansar, U. Ibrahim, F. Sebaai, A. Pourghaderi, K. Barla, N. Collaert, and A. V.-Y. Thean, “InGaAs gate-all-around nanowire devices on 300  mm Si substrates,” IEEE Electron Device Lett. 35, 1097–1099 (2014).
[Crossref]

C. Merckling, N. Waldron, S. Jiang, W. Guo, N. Collaert, M. Caymax, E. Vancoille, K. Barla, A. Thean, M. Heyns, and W. Vandervorst, “Hetero-epitaxy of InP on Si (001) by selective-area metal organic vapor-phase epitaxy in sub-50  nm width trenches: the role of the nucleation layer and the recess engineering,” J. Appl. Phys. 115, 023710 (2014).
[Crossref]

M. Paladugu, C. Merckling, R. Loo, O. Richard, H. Bender, J. Dekoster, W. Vandervorst, M. Caymax, and M. Heyns, “Site selective integration of III-V materials on Si for nanoscale logic and photonic devices,” Cryst. Growth Des. 12, 4696–4702 (2012).
[Crossref]

Mi, J.

S. Li, X. Zhou, M. Li, X. Kong, J. Mi, M. Wang, W. Wang, and J. Pan, “Ridge InGaAs/InP multi-quantum-well selective growth in nanoscale trenches on Si (001) substrate,” Appl. Phys. Lett. 108, 021902 (2016).
[Crossref]

Michel, J.

Z. Zhou, B. Yin, and J. Michel, “On-chip light sources for silicon photonics,” Light Sci. Appl. 4, e358 (2015).
[Crossref]

Moazeni, S.

A. H. Atabaki, S. Moazeni, F. Pavanello, H. Gevorgyan, J. Notaros, L. Alloatti, M. T. Wade, C. Sun, S. A. Kruger, H. Meng, K. A. Qubaisi, I. Wang, B. Zhang, A. Khilo, C. V. Baiocco, M. A. Popović, V. M. Stojanović, and R. J. Ram, “Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip,” Nature 556, 349–354 (2018).
[Crossref]

Mols, Y.

B. Kunert, Y. Mols, M. Baryshniskova, N. Waldron, A. Schulze, and R. Langer, “How to control defect formation in monolithic III/V heteroepitaxy on (100) Si? A critical review on current approaches,” Semicond. Sci. Technol. 33, 093002 (2018).
[Crossref]

B. Kunert, W. Guo, Y. Mols, B. Tian, Z. Wang, Y. Shi, D. Van Thourhout, M. Pantouvaki, J. Van Campenhout, R. Langer, and K. Barla, “III/V nano ridge structures for optical applications on patterned 300  mm silicon substrate,” Appl. Phys. Lett. 109, 091101 (2016).
[Crossref]

Morthier, G.

Z. Wang, A. Abbasi, U. Dave, A. De Groote, S. Kumari, B. Kunert, C. Merckling, M. Pantouvaki, Y. Shi, B. Tian, K. Van Gasse, J. Verbist, R. Wang, W. Xie, J. Zhang, Y. Zhu, J. Bauwelinck, X. Yin, Z. Hens, J. Van Campenhout, B. Kuyken, R. Baets, G. Morthier, D. Van Thourhout, and K. Van Gasse, “Novel light source integration approaches for silicon photonics,” Laser Photon. Rev. 11, 1700063 (2017).
[Crossref]

Moselund, K. E.

S. Wirths, B. F. Mayer, H. Schmid, M. Sousa, J. Gooth, H. Riel, and K. E. Moselund, “Room-temperature lasing from monolithically integrated GaAs microdisks on silicon,” ACS nano 12, 2169–2175 (2018).
[Crossref]

Ng, K. W.

Y. Han, W. K. Ng, C. Ma, Q. Li, S. Zhu, C. C. Chan, K. W. Ng, S. Lennon, R. A. Taylor, K. S. Wong, and K. M. Lau, “Room temperature InP/InGaAs nano-ridge lasers grown on Si and emitting at telecom bands,” Optica 5, 918–923 (2018).
[Crossref]

Y. Han, Q. Li, K. W. Ng, S. Zhu, and K. M. Lau, “InGaAs/InP quantum wires grown on silicon with adjustable emission wavelength at telecom bands,” Nanotechnology 29, 225601 (2018).
[Crossref]

F. Lu, I. Bhattacharya, H. Sun, T. D. Tran, K. W. Ng, G. N. MalheirosSilveira, and C. C. Hasnain, “Nanopillar quantum well lasers directly grown on silicon and emitting at silicon-transparent wavelengths,” Optica 4, 717–723 (2017).
[Crossref]

Y. Han, Q. Li, S. Zhu, K. W. Ng, and K. M. Lau, “Continuous-wave lasing from InP/InGaAs nanoridges at telecommunication wavelengths,” Appl. Phys. Lett. 111, 212101 (2017).
[Crossref]

Ng, W. K.

Norman, J.

D. Jung, R. Herrick, J. Norman, K. Turnlund, C. Jan, K. Feng, A. C. Gossard, and J. E. Bowers, “Impact of threading dislocation density on the lifetime of InAs quantum dot lasers on Si,” Appl. Phys. Lett. 112, 153507 (2018).
[Crossref]

Y. Wan, J. Norman, Q. Li, M. J. Kennedy, D. Liang, C. Zhang, D. Huang, Z. Zhang, A. Y. Liu, A. Torres, D. Jung, A. C. Gossard, E. L. Hu, K. M. Lau, and J. E. Bowers, “1.3 µm submilliamp threshold quantum dot micro-lasers on Si,” Optica 4, 940–944 (2017).
[Crossref]

Notaros, J.

A. H. Atabaki, S. Moazeni, F. Pavanello, H. Gevorgyan, J. Notaros, L. Alloatti, M. T. Wade, C. Sun, S. A. Kruger, H. Meng, K. A. Qubaisi, I. Wang, B. Zhang, A. Khilo, C. V. Baiocco, M. A. Popović, V. M. Stojanović, and R. J. Ram, “Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip,” Nature 556, 349–354 (2018).
[Crossref]

Notomi, M.

G. Zhang, M. Takiguchi, K. Tateno, T. Tawara, M. Notomi, and H. Gotoh, “Telecom-band lasing in single InP/InAs heterostructure nanowires at room temperature,” Sci. Adv. 5, eaat8896 (2019).
[Crossref]

O’Brian, B.

T. Orzali, A. Vert, B. O’Brian, J. L. Herman, S. Vivekanand, S. S. P. Rao, and S. R. Oktyabrsky, “Epitaxial growth of GaSb and InAs fins on 300 mm Si (001) by aspect ratio trapping,” J. Appl. Phys. 120, 085308 (2016).
[Crossref]

Oktyabrsky, S. R.

T. Orzali, A. Vert, B. O’Brian, J. L. Herman, S. Vivekanand, S. S. P. Rao, and S. R. Oktyabrsky, “Epitaxial growth of GaSb and InAs fins on 300 mm Si (001) by aspect ratio trapping,” J. Appl. Phys. 120, 085308 (2016).
[Crossref]

Ong, P.

N. Waldron, C. Merckling, L. Teugels, P. Ong, S. Ansar, U. Ibrahim, F. Sebaai, A. Pourghaderi, K. Barla, N. Collaert, and A. V.-Y. Thean, “InGaAs gate-all-around nanowire devices on 300  mm Si substrates,” IEEE Electron Device Lett. 35, 1097–1099 (2014).
[Crossref]

Orzali, T.

T. Orzali, A. Vert, B. O’Brian, J. L. Herman, S. Vivekanand, S. S. P. Rao, and S. R. Oktyabrsky, “Epitaxial growth of GaSb and InAs fins on 300 mm Si (001) by aspect ratio trapping,” J. Appl. Phys. 120, 085308 (2016).
[Crossref]

Paladugu, M.

M. Paladugu, C. Merckling, R. Loo, O. Richard, H. Bender, J. Dekoster, W. Vandervorst, M. Caymax, and M. Heyns, “Site selective integration of III-V materials on Si for nanoscale logic and photonic devices,” Cryst. Growth Des. 12, 4696–4702 (2012).
[Crossref]

Pan, J.

S. Li, X. Zhou, M. Li, X. Kong, J. Mi, M. Wang, W. Wang, and J. Pan, “Ridge InGaAs/InP multi-quantum-well selective growth in nanoscale trenches on Si (001) substrate,” Appl. Phys. Lett. 108, 021902 (2016).
[Crossref]

Pantouvaki, M.

Y. Shi, B. Kunert, Y. D. Koninck, M. Pantouvaki, J. Van Campenhout, and D. Van Thourhout, “Novel adiabatic coupler for III-V nano-ridge laser grown on a Si photonics platform,” Opt. Express 27, 37781–37794 (2019).
[Crossref]

Y. Shi, Z. Wang, J. Van Campenhout, M. Pantouvaki, W. Guo, B. Kunert, and D. Van Thourhout, “Optical pumped InGaAs/GaAs nano-ridge laser epitaxially grown on a standard 300-mm Si wafer,” Optica 4, 1468–1473 (2017).
[Crossref]

Z. Wang, A. Abbasi, U. Dave, A. De Groote, S. Kumari, B. Kunert, C. Merckling, M. Pantouvaki, Y. Shi, B. Tian, K. Van Gasse, J. Verbist, R. Wang, W. Xie, J. Zhang, Y. Zhu, J. Bauwelinck, X. Yin, Z. Hens, J. Van Campenhout, B. Kuyken, R. Baets, G. Morthier, D. Van Thourhout, and K. Van Gasse, “Novel light source integration approaches for silicon photonics,” Laser Photon. Rev. 11, 1700063 (2017).
[Crossref]

B. Kunert, W. Guo, Y. Mols, B. Tian, Z. Wang, Y. Shi, D. Van Thourhout, M. Pantouvaki, J. Van Campenhout, R. Langer, and K. Barla, “III/V nano ridge structures for optical applications on patterned 300  mm silicon substrate,” Appl. Phys. Lett. 109, 091101 (2016).
[Crossref]

B. Tian, Z. Wang, M. Pantouvaki, P. Absil, J. Van Campenhout, C. Merckling, and D. Van Thourhout, “Room temperature O-band DFB laser array directly grown on (001) silicon,” Nano Lett. 17, 559–564 (2016).
[Crossref]

Z. Wang, B. Tian, M. Pantouvaki, W. Guo, P. Absil, J. Van Campenhout, C. Merckling, and D. Van Thourhout, “Room-temperature InP distributed feedback laser array directly grown on silicon,” Nat. Photonics 9,837–842 (2015).
[Crossref]

Park, J. S.

J. Z. Li, J. Bai, J. S. Park, B. Adekore, K. Fox, M. Carroll, A. Lochtefeld, and Z. Shellenbarger, “Defect reduction of GaAs epitaxy on Si (001) using selective aspect ratio trapping,” Appl. Phys. Lett. 91, 021114 (2007).
[Crossref]

Pavanello, F.

A. H. Atabaki, S. Moazeni, F. Pavanello, H. Gevorgyan, J. Notaros, L. Alloatti, M. T. Wade, C. Sun, S. A. Kruger, H. Meng, K. A. Qubaisi, I. Wang, B. Zhang, A. Khilo, C. V. Baiocco, M. A. Popović, V. M. Stojanović, and R. J. Ram, “Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip,” Nature 556, 349–354 (2018).
[Crossref]

Popovic, M. A.

A. H. Atabaki, S. Moazeni, F. Pavanello, H. Gevorgyan, J. Notaros, L. Alloatti, M. T. Wade, C. Sun, S. A. Kruger, H. Meng, K. A. Qubaisi, I. Wang, B. Zhang, A. Khilo, C. V. Baiocco, M. A. Popović, V. M. Stojanović, and R. J. Ram, “Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip,” Nature 556, 349–354 (2018).
[Crossref]

Pourghaderi, A.

N. Waldron, C. Merckling, L. Teugels, P. Ong, S. Ansar, U. Ibrahim, F. Sebaai, A. Pourghaderi, K. Barla, N. Collaert, and A. V.-Y. Thean, “InGaAs gate-all-around nanowire devices on 300  mm Si substrates,” IEEE Electron Device Lett. 35, 1097–1099 (2014).
[Crossref]

Qubaisi, K. A.

A. H. Atabaki, S. Moazeni, F. Pavanello, H. Gevorgyan, J. Notaros, L. Alloatti, M. T. Wade, C. Sun, S. A. Kruger, H. Meng, K. A. Qubaisi, I. Wang, B. Zhang, A. Khilo, C. V. Baiocco, M. A. Popović, V. M. Stojanović, and R. J. Ram, “Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip,” Nature 556, 349–354 (2018).
[Crossref]

Ram, R. J.

A. H. Atabaki, S. Moazeni, F. Pavanello, H. Gevorgyan, J. Notaros, L. Alloatti, M. T. Wade, C. Sun, S. A. Kruger, H. Meng, K. A. Qubaisi, I. Wang, B. Zhang, A. Khilo, C. V. Baiocco, M. A. Popović, V. M. Stojanović, and R. J. Ram, “Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip,” Nature 556, 349–354 (2018).
[Crossref]

Rao, S. S. P.

T. Orzali, A. Vert, B. O’Brian, J. L. Herman, S. Vivekanand, S. S. P. Rao, and S. R. Oktyabrsky, “Epitaxial growth of GaSb and InAs fins on 300 mm Si (001) by aspect ratio trapping,” J. Appl. Phys. 120, 085308 (2016).
[Crossref]

Richard, O.

M. Paladugu, C. Merckling, R. Loo, O. Richard, H. Bender, J. Dekoster, W. Vandervorst, M. Caymax, and M. Heyns, “Site selective integration of III-V materials on Si for nanoscale logic and photonic devices,” Cryst. Growth Des. 12, 4696–4702 (2012).
[Crossref]

Riel, H.

S. Wirths, B. F. Mayer, H. Schmid, M. Sousa, J. Gooth, H. Riel, and K. E. Moselund, “Room-temperature lasing from monolithically integrated GaAs microdisks on silicon,” ACS nano 12, 2169–2175 (2018).
[Crossref]

Roelkens, G.

D. Liang, G. Roelkens, R. Baets, and J. E. Bowers, “Hybrid integrated platforms for silicon photonics,” Materials 3, 1782–1802 (2010).
[Crossref]

Ross, I.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III-V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

Schmid, H.

S. Wirths, B. F. Mayer, H. Schmid, M. Sousa, J. Gooth, H. Riel, and K. E. Moselund, “Room-temperature lasing from monolithically integrated GaAs microdisks on silicon,” ACS nano 12, 2169–2175 (2018).
[Crossref]

Schulze, A.

B. Kunert, Y. Mols, M. Baryshniskova, N. Waldron, A. Schulze, and R. Langer, “How to control defect formation in monolithic III/V heteroepitaxy on (100) Si? A critical review on current approaches,” Semicond. Sci. Technol. 33, 093002 (2018).
[Crossref]

Sebaai, F.

N. Waldron, C. Merckling, L. Teugels, P. Ong, S. Ansar, U. Ibrahim, F. Sebaai, A. Pourghaderi, K. Barla, N. Collaert, and A. V.-Y. Thean, “InGaAs gate-all-around nanowire devices on 300  mm Si substrates,” IEEE Electron Device Lett. 35, 1097–1099 (2014).
[Crossref]

Seeds, A. J.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III-V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

Shellenbarger, Z.

J. Z. Li, J. Bai, J. S. Park, B. Adekore, K. Fox, M. Carroll, A. Lochtefeld, and Z. Shellenbarger, “Defect reduction of GaAs epitaxy on Si (001) using selective aspect ratio trapping,” Appl. Phys. Lett. 91, 021114 (2007).
[Crossref]

Shi, B.

B. Shi, Y. Han, Q. Li, and K. M. Lau, “1.55-µm lasers epitaxially grown on silicon,” IEEE J. Sel. Top. Quantum Electron. 25, 1900711 (2019).
[Crossref]

Shi, Y.

Y. Shi, B. Kunert, Y. D. Koninck, M. Pantouvaki, J. Van Campenhout, and D. Van Thourhout, “Novel adiabatic coupler for III-V nano-ridge laser grown on a Si photonics platform,” Opt. Express 27, 37781–37794 (2019).
[Crossref]

Y. Shi, Z. Wang, J. Van Campenhout, M. Pantouvaki, W. Guo, B. Kunert, and D. Van Thourhout, “Optical pumped InGaAs/GaAs nano-ridge laser epitaxially grown on a standard 300-mm Si wafer,” Optica 4, 1468–1473 (2017).
[Crossref]

Z. Wang, A. Abbasi, U. Dave, A. De Groote, S. Kumari, B. Kunert, C. Merckling, M. Pantouvaki, Y. Shi, B. Tian, K. Van Gasse, J. Verbist, R. Wang, W. Xie, J. Zhang, Y. Zhu, J. Bauwelinck, X. Yin, Z. Hens, J. Van Campenhout, B. Kuyken, R. Baets, G. Morthier, D. Van Thourhout, and K. Van Gasse, “Novel light source integration approaches for silicon photonics,” Laser Photon. Rev. 11, 1700063 (2017).
[Crossref]

B. Kunert, W. Guo, Y. Mols, B. Tian, Z. Wang, Y. Shi, D. Van Thourhout, M. Pantouvaki, J. Van Campenhout, R. Langer, and K. Barla, “III/V nano ridge structures for optical applications on patterned 300  mm silicon substrate,” Appl. Phys. Lett. 109, 091101 (2016).
[Crossref]

Shutts, S.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III-V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

Smowton, P. M.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III-V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

Sobiesierski, A.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III-V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

Sousa, M.

S. Wirths, B. F. Mayer, H. Schmid, M. Sousa, J. Gooth, H. Riel, and K. E. Moselund, “Room-temperature lasing from monolithically integrated GaAs microdisks on silicon,” ACS nano 12, 2169–2175 (2018).
[Crossref]

Speck, J. S.

L. Megalini, B. Bonef, B. C. Cabinian, H. Zhao, A. Taylor, J. S. Speck, J. E. Bowers, and J. Klamkin, “1550-nm InGaAsP multi-quantum-well structures selectively grown on v-groove-patterned SOI substrates,” Appl. Phys. Lett. 111, 032105 (2017).
[Crossref]

Stojanovic, V. M.

A. H. Atabaki, S. Moazeni, F. Pavanello, H. Gevorgyan, J. Notaros, L. Alloatti, M. T. Wade, C. Sun, S. A. Kruger, H. Meng, K. A. Qubaisi, I. Wang, B. Zhang, A. Khilo, C. V. Baiocco, M. A. Popović, V. M. Stojanović, and R. J. Ram, “Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip,” Nature 556, 349–354 (2018).
[Crossref]

Sun, C.

A. H. Atabaki, S. Moazeni, F. Pavanello, H. Gevorgyan, J. Notaros, L. Alloatti, M. T. Wade, C. Sun, S. A. Kruger, H. Meng, K. A. Qubaisi, I. Wang, B. Zhang, A. Khilo, C. V. Baiocco, M. A. Popović, V. M. Stojanović, and R. J. Ram, “Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip,” Nature 556, 349–354 (2018).
[Crossref]

Sun, H.

Takiguchi, M.

G. Zhang, M. Takiguchi, K. Tateno, T. Tawara, M. Notomi, and H. Gotoh, “Telecom-band lasing in single InP/InAs heterostructure nanowires at room temperature,” Sci. Adv. 5, eaat8896 (2019).
[Crossref]

Tang, M.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III-V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

Tateno, K.

G. Zhang, M. Takiguchi, K. Tateno, T. Tawara, M. Notomi, and H. Gotoh, “Telecom-band lasing in single InP/InAs heterostructure nanowires at room temperature,” Sci. Adv. 5, eaat8896 (2019).
[Crossref]

Tawara, T.

G. Zhang, M. Takiguchi, K. Tateno, T. Tawara, M. Notomi, and H. Gotoh, “Telecom-band lasing in single InP/InAs heterostructure nanowires at room temperature,” Sci. Adv. 5, eaat8896 (2019).
[Crossref]

Taylor, A.

L. Megalini, B. Bonef, B. C. Cabinian, H. Zhao, A. Taylor, J. S. Speck, J. E. Bowers, and J. Klamkin, “1550-nm InGaAsP multi-quantum-well structures selectively grown on v-groove-patterned SOI substrates,” Appl. Phys. Lett. 111, 032105 (2017).
[Crossref]

Taylor, R. A.

Teugels, L.

N. Waldron, C. Merckling, L. Teugels, P. Ong, S. Ansar, U. Ibrahim, F. Sebaai, A. Pourghaderi, K. Barla, N. Collaert, and A. V.-Y. Thean, “InGaAs gate-all-around nanowire devices on 300  mm Si substrates,” IEEE Electron Device Lett. 35, 1097–1099 (2014).
[Crossref]

Thean, A.

C. Merckling, N. Waldron, S. Jiang, W. Guo, N. Collaert, M. Caymax, E. Vancoille, K. Barla, A. Thean, M. Heyns, and W. Vandervorst, “Hetero-epitaxy of InP on Si (001) by selective-area metal organic vapor-phase epitaxy in sub-50  nm width trenches: the role of the nucleation layer and the recess engineering,” J. Appl. Phys. 115, 023710 (2014).
[Crossref]

Thean, A. V.-Y.

N. Waldron, C. Merckling, L. Teugels, P. Ong, S. Ansar, U. Ibrahim, F. Sebaai, A. Pourghaderi, K. Barla, N. Collaert, and A. V.-Y. Thean, “InGaAs gate-all-around nanowire devices on 300  mm Si substrates,” IEEE Electron Device Lett. 35, 1097–1099 (2014).
[Crossref]

Tian, B.

Z. Wang, A. Abbasi, U. Dave, A. De Groote, S. Kumari, B. Kunert, C. Merckling, M. Pantouvaki, Y. Shi, B. Tian, K. Van Gasse, J. Verbist, R. Wang, W. Xie, J. Zhang, Y. Zhu, J. Bauwelinck, X. Yin, Z. Hens, J. Van Campenhout, B. Kuyken, R. Baets, G. Morthier, D. Van Thourhout, and K. Van Gasse, “Novel light source integration approaches for silicon photonics,” Laser Photon. Rev. 11, 1700063 (2017).
[Crossref]

B. Kunert, W. Guo, Y. Mols, B. Tian, Z. Wang, Y. Shi, D. Van Thourhout, M. Pantouvaki, J. Van Campenhout, R. Langer, and K. Barla, “III/V nano ridge structures for optical applications on patterned 300  mm silicon substrate,” Appl. Phys. Lett. 109, 091101 (2016).
[Crossref]

B. Tian, Z. Wang, M. Pantouvaki, P. Absil, J. Van Campenhout, C. Merckling, and D. Van Thourhout, “Room temperature O-band DFB laser array directly grown on (001) silicon,” Nano Lett. 17, 559–564 (2016).
[Crossref]

Z. Wang, B. Tian, M. Pantouvaki, W. Guo, P. Absil, J. Van Campenhout, C. Merckling, and D. Van Thourhout, “Room-temperature InP distributed feedback laser array directly grown on silicon,” Nat. Photonics 9,837–842 (2015).
[Crossref]

Torres, A.

Tran, T. D.

Turnlund, K.

D. Jung, R. Herrick, J. Norman, K. Turnlund, C. Jan, K. Feng, A. C. Gossard, and J. E. Bowers, “Impact of threading dislocation density on the lifetime of InAs quantum dot lasers on Si,” Appl. Phys. Lett. 112, 153507 (2018).
[Crossref]

Van Campenhout, J.

Y. Shi, B. Kunert, Y. D. Koninck, M. Pantouvaki, J. Van Campenhout, and D. Van Thourhout, “Novel adiabatic coupler for III-V nano-ridge laser grown on a Si photonics platform,” Opt. Express 27, 37781–37794 (2019).
[Crossref]

Y. Shi, Z. Wang, J. Van Campenhout, M. Pantouvaki, W. Guo, B. Kunert, and D. Van Thourhout, “Optical pumped InGaAs/GaAs nano-ridge laser epitaxially grown on a standard 300-mm Si wafer,” Optica 4, 1468–1473 (2017).
[Crossref]

Z. Wang, A. Abbasi, U. Dave, A. De Groote, S. Kumari, B. Kunert, C. Merckling, M. Pantouvaki, Y. Shi, B. Tian, K. Van Gasse, J. Verbist, R. Wang, W. Xie, J. Zhang, Y. Zhu, J. Bauwelinck, X. Yin, Z. Hens, J. Van Campenhout, B. Kuyken, R. Baets, G. Morthier, D. Van Thourhout, and K. Van Gasse, “Novel light source integration approaches for silicon photonics,” Laser Photon. Rev. 11, 1700063 (2017).
[Crossref]

B. Kunert, W. Guo, Y. Mols, B. Tian, Z. Wang, Y. Shi, D. Van Thourhout, M. Pantouvaki, J. Van Campenhout, R. Langer, and K. Barla, “III/V nano ridge structures for optical applications on patterned 300  mm silicon substrate,” Appl. Phys. Lett. 109, 091101 (2016).
[Crossref]

B. Tian, Z. Wang, M. Pantouvaki, P. Absil, J. Van Campenhout, C. Merckling, and D. Van Thourhout, “Room temperature O-band DFB laser array directly grown on (001) silicon,” Nano Lett. 17, 559–564 (2016).
[Crossref]

Z. Wang, B. Tian, M. Pantouvaki, W. Guo, P. Absil, J. Van Campenhout, C. Merckling, and D. Van Thourhout, “Room-temperature InP distributed feedback laser array directly grown on silicon,” Nat. Photonics 9,837–842 (2015).
[Crossref]

Van Gasse, K.

Z. Wang, A. Abbasi, U. Dave, A. De Groote, S. Kumari, B. Kunert, C. Merckling, M. Pantouvaki, Y. Shi, B. Tian, K. Van Gasse, J. Verbist, R. Wang, W. Xie, J. Zhang, Y. Zhu, J. Bauwelinck, X. Yin, Z. Hens, J. Van Campenhout, B. Kuyken, R. Baets, G. Morthier, D. Van Thourhout, and K. Van Gasse, “Novel light source integration approaches for silicon photonics,” Laser Photon. Rev. 11, 1700063 (2017).
[Crossref]

Z. Wang, A. Abbasi, U. Dave, A. De Groote, S. Kumari, B. Kunert, C. Merckling, M. Pantouvaki, Y. Shi, B. Tian, K. Van Gasse, J. Verbist, R. Wang, W. Xie, J. Zhang, Y. Zhu, J. Bauwelinck, X. Yin, Z. Hens, J. Van Campenhout, B. Kuyken, R. Baets, G. Morthier, D. Van Thourhout, and K. Van Gasse, “Novel light source integration approaches for silicon photonics,” Laser Photon. Rev. 11, 1700063 (2017).
[Crossref]

Van Thourhout, D.

Y. Shi, B. Kunert, Y. D. Koninck, M. Pantouvaki, J. Van Campenhout, and D. Van Thourhout, “Novel adiabatic coupler for III-V nano-ridge laser grown on a Si photonics platform,” Opt. Express 27, 37781–37794 (2019).
[Crossref]

Y. Shi, Z. Wang, J. Van Campenhout, M. Pantouvaki, W. Guo, B. Kunert, and D. Van Thourhout, “Optical pumped InGaAs/GaAs nano-ridge laser epitaxially grown on a standard 300-mm Si wafer,” Optica 4, 1468–1473 (2017).
[Crossref]

Z. Wang, A. Abbasi, U. Dave, A. De Groote, S. Kumari, B. Kunert, C. Merckling, M. Pantouvaki, Y. Shi, B. Tian, K. Van Gasse, J. Verbist, R. Wang, W. Xie, J. Zhang, Y. Zhu, J. Bauwelinck, X. Yin, Z. Hens, J. Van Campenhout, B. Kuyken, R. Baets, G. Morthier, D. Van Thourhout, and K. Van Gasse, “Novel light source integration approaches for silicon photonics,” Laser Photon. Rev. 11, 1700063 (2017).
[Crossref]

B. Kunert, W. Guo, Y. Mols, B. Tian, Z. Wang, Y. Shi, D. Van Thourhout, M. Pantouvaki, J. Van Campenhout, R. Langer, and K. Barla, “III/V nano ridge structures for optical applications on patterned 300  mm silicon substrate,” Appl. Phys. Lett. 109, 091101 (2016).
[Crossref]

B. Tian, Z. Wang, M. Pantouvaki, P. Absil, J. Van Campenhout, C. Merckling, and D. Van Thourhout, “Room temperature O-band DFB laser array directly grown on (001) silicon,” Nano Lett. 17, 559–564 (2016).
[Crossref]

Z. Wang, B. Tian, M. Pantouvaki, W. Guo, P. Absil, J. Van Campenhout, C. Merckling, and D. Van Thourhout, “Room-temperature InP distributed feedback laser array directly grown on silicon,” Nat. Photonics 9,837–842 (2015).
[Crossref]

Vancoille, E.

C. Merckling, N. Waldron, S. Jiang, W. Guo, N. Collaert, M. Caymax, E. Vancoille, K. Barla, A. Thean, M. Heyns, and W. Vandervorst, “Hetero-epitaxy of InP on Si (001) by selective-area metal organic vapor-phase epitaxy in sub-50  nm width trenches: the role of the nucleation layer and the recess engineering,” J. Appl. Phys. 115, 023710 (2014).
[Crossref]

Vandervorst, W.

C. Merckling, N. Waldron, S. Jiang, W. Guo, N. Collaert, M. Caymax, E. Vancoille, K. Barla, A. Thean, M. Heyns, and W. Vandervorst, “Hetero-epitaxy of InP on Si (001) by selective-area metal organic vapor-phase epitaxy in sub-50  nm width trenches: the role of the nucleation layer and the recess engineering,” J. Appl. Phys. 115, 023710 (2014).
[Crossref]

M. Paladugu, C. Merckling, R. Loo, O. Richard, H. Bender, J. Dekoster, W. Vandervorst, M. Caymax, and M. Heyns, “Site selective integration of III-V materials on Si for nanoscale logic and photonic devices,” Cryst. Growth Des. 12, 4696–4702 (2012).
[Crossref]

Verbist, J.

Z. Wang, A. Abbasi, U. Dave, A. De Groote, S. Kumari, B. Kunert, C. Merckling, M. Pantouvaki, Y. Shi, B. Tian, K. Van Gasse, J. Verbist, R. Wang, W. Xie, J. Zhang, Y. Zhu, J. Bauwelinck, X. Yin, Z. Hens, J. Van Campenhout, B. Kuyken, R. Baets, G. Morthier, D. Van Thourhout, and K. Van Gasse, “Novel light source integration approaches for silicon photonics,” Laser Photon. Rev. 11, 1700063 (2017).
[Crossref]

Vert, A.

T. Orzali, A. Vert, B. O’Brian, J. L. Herman, S. Vivekanand, S. S. P. Rao, and S. R. Oktyabrsky, “Epitaxial growth of GaSb and InAs fins on 300 mm Si (001) by aspect ratio trapping,” J. Appl. Phys. 120, 085308 (2016).
[Crossref]

Vivekanand, S.

T. Orzali, A. Vert, B. O’Brian, J. L. Herman, S. Vivekanand, S. S. P. Rao, and S. R. Oktyabrsky, “Epitaxial growth of GaSb and InAs fins on 300 mm Si (001) by aspect ratio trapping,” J. Appl. Phys. 120, 085308 (2016).
[Crossref]

Wade, M. T.

A. H. Atabaki, S. Moazeni, F. Pavanello, H. Gevorgyan, J. Notaros, L. Alloatti, M. T. Wade, C. Sun, S. A. Kruger, H. Meng, K. A. Qubaisi, I. Wang, B. Zhang, A. Khilo, C. V. Baiocco, M. A. Popović, V. M. Stojanović, and R. J. Ram, “Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip,” Nature 556, 349–354 (2018).
[Crossref]

Waldron, N.

B. Kunert, Y. Mols, M. Baryshniskova, N. Waldron, A. Schulze, and R. Langer, “How to control defect formation in monolithic III/V heteroepitaxy on (100) Si? A critical review on current approaches,” Semicond. Sci. Technol. 33, 093002 (2018).
[Crossref]

N. Waldron, C. Merckling, L. Teugels, P. Ong, S. Ansar, U. Ibrahim, F. Sebaai, A. Pourghaderi, K. Barla, N. Collaert, and A. V.-Y. Thean, “InGaAs gate-all-around nanowire devices on 300  mm Si substrates,” IEEE Electron Device Lett. 35, 1097–1099 (2014).
[Crossref]

C. Merckling, N. Waldron, S. Jiang, W. Guo, N. Collaert, M. Caymax, E. Vancoille, K. Barla, A. Thean, M. Heyns, and W. Vandervorst, “Hetero-epitaxy of InP on Si (001) by selective-area metal organic vapor-phase epitaxy in sub-50  nm width trenches: the role of the nucleation layer and the recess engineering,” J. Appl. Phys. 115, 023710 (2014).
[Crossref]

Wan, Y.

Wang, I.

A. H. Atabaki, S. Moazeni, F. Pavanello, H. Gevorgyan, J. Notaros, L. Alloatti, M. T. Wade, C. Sun, S. A. Kruger, H. Meng, K. A. Qubaisi, I. Wang, B. Zhang, A. Khilo, C. V. Baiocco, M. A. Popović, V. M. Stojanović, and R. J. Ram, “Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip,” Nature 556, 349–354 (2018).
[Crossref]

Wang, M.

Y. Li, M. Wang, X. Zhou, P. Wang, W. Yang, F. Meng, and W. Wang, “InGaAs/InP multi-quantum-well nanowires with a lower optical leakage loss on v-groove-patterned SOI substrates,” Opt. Express 27, 494–503 (2019).
[Crossref]

S. Li, X. Zhou, M. Li, X. Kong, J. Mi, M. Wang, W. Wang, and J. Pan, “Ridge InGaAs/InP multi-quantum-well selective growth in nanoscale trenches on Si (001) substrate,” Appl. Phys. Lett. 108, 021902 (2016).
[Crossref]

Wang, P.

Wang, R.

Z. Wang, A. Abbasi, U. Dave, A. De Groote, S. Kumari, B. Kunert, C. Merckling, M. Pantouvaki, Y. Shi, B. Tian, K. Van Gasse, J. Verbist, R. Wang, W. Xie, J. Zhang, Y. Zhu, J. Bauwelinck, X. Yin, Z. Hens, J. Van Campenhout, B. Kuyken, R. Baets, G. Morthier, D. Van Thourhout, and K. Van Gasse, “Novel light source integration approaches for silicon photonics,” Laser Photon. Rev. 11, 1700063 (2017).
[Crossref]

Wang, W.

Y. Li, M. Wang, X. Zhou, P. Wang, W. Yang, F. Meng, and W. Wang, “InGaAs/InP multi-quantum-well nanowires with a lower optical leakage loss on v-groove-patterned SOI substrates,” Opt. Express 27, 494–503 (2019).
[Crossref]

S. Li, X. Zhou, M. Li, X. Kong, J. Mi, M. Wang, W. Wang, and J. Pan, “Ridge InGaAs/InP multi-quantum-well selective growth in nanoscale trenches on Si (001) substrate,” Appl. Phys. Lett. 108, 021902 (2016).
[Crossref]

Wang, Z.

Z. Wang, A. Abbasi, U. Dave, A. De Groote, S. Kumari, B. Kunert, C. Merckling, M. Pantouvaki, Y. Shi, B. Tian, K. Van Gasse, J. Verbist, R. Wang, W. Xie, J. Zhang, Y. Zhu, J. Bauwelinck, X. Yin, Z. Hens, J. Van Campenhout, B. Kuyken, R. Baets, G. Morthier, D. Van Thourhout, and K. Van Gasse, “Novel light source integration approaches for silicon photonics,” Laser Photon. Rev. 11, 1700063 (2017).
[Crossref]

Y. Shi, Z. Wang, J. Van Campenhout, M. Pantouvaki, W. Guo, B. Kunert, and D. Van Thourhout, “Optical pumped InGaAs/GaAs nano-ridge laser epitaxially grown on a standard 300-mm Si wafer,” Optica 4, 1468–1473 (2017).
[Crossref]

B. Tian, Z. Wang, M. Pantouvaki, P. Absil, J. Van Campenhout, C. Merckling, and D. Van Thourhout, “Room temperature O-band DFB laser array directly grown on (001) silicon,” Nano Lett. 17, 559–564 (2016).
[Crossref]

B. Kunert, W. Guo, Y. Mols, B. Tian, Z. Wang, Y. Shi, D. Van Thourhout, M. Pantouvaki, J. Van Campenhout, R. Langer, and K. Barla, “III/V nano ridge structures for optical applications on patterned 300  mm silicon substrate,” Appl. Phys. Lett. 109, 091101 (2016).
[Crossref]

Z. Wang, B. Tian, M. Pantouvaki, W. Guo, P. Absil, J. Van Campenhout, C. Merckling, and D. Van Thourhout, “Room-temperature InP distributed feedback laser array directly grown on silicon,” Nat. Photonics 9,837–842 (2015).
[Crossref]

Wirths, S.

S. Wirths, B. F. Mayer, H. Schmid, M. Sousa, J. Gooth, H. Riel, and K. E. Moselund, “Room-temperature lasing from monolithically integrated GaAs microdisks on silicon,” ACS nano 12, 2169–2175 (2018).
[Crossref]

Wong, K. S.

Wu, J.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III-V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

Xie, W.

Z. Wang, A. Abbasi, U. Dave, A. De Groote, S. Kumari, B. Kunert, C. Merckling, M. Pantouvaki, Y. Shi, B. Tian, K. Van Gasse, J. Verbist, R. Wang, W. Xie, J. Zhang, Y. Zhu, J. Bauwelinck, X. Yin, Z. Hens, J. Van Campenhout, B. Kuyken, R. Baets, G. Morthier, D. Van Thourhout, and K. Van Gasse, “Novel light source integration approaches for silicon photonics,” Laser Photon. Rev. 11, 1700063 (2017).
[Crossref]

Xue, Y.

Yang, W.

Yin, B.

Z. Zhou, B. Yin, and J. Michel, “On-chip light sources for silicon photonics,” Light Sci. Appl. 4, e358 (2015).
[Crossref]

Yin, X.

Z. Wang, A. Abbasi, U. Dave, A. De Groote, S. Kumari, B. Kunert, C. Merckling, M. Pantouvaki, Y. Shi, B. Tian, K. Van Gasse, J. Verbist, R. Wang, W. Xie, J. Zhang, Y. Zhu, J. Bauwelinck, X. Yin, Z. Hens, J. Van Campenhout, B. Kuyken, R. Baets, G. Morthier, D. Van Thourhout, and K. Van Gasse, “Novel light source integration approaches for silicon photonics,” Laser Photon. Rev. 11, 1700063 (2017).
[Crossref]

Zhang, B.

A. H. Atabaki, S. Moazeni, F. Pavanello, H. Gevorgyan, J. Notaros, L. Alloatti, M. T. Wade, C. Sun, S. A. Kruger, H. Meng, K. A. Qubaisi, I. Wang, B. Zhang, A. Khilo, C. V. Baiocco, M. A. Popović, V. M. Stojanović, and R. J. Ram, “Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip,” Nature 556, 349–354 (2018).
[Crossref]

Zhang, C.

Zhang, G.

G. Zhang, M. Takiguchi, K. Tateno, T. Tawara, M. Notomi, and H. Gotoh, “Telecom-band lasing in single InP/InAs heterostructure nanowires at room temperature,” Sci. Adv. 5, eaat8896 (2019).
[Crossref]

Zhang, J.

Z. Wang, A. Abbasi, U. Dave, A. De Groote, S. Kumari, B. Kunert, C. Merckling, M. Pantouvaki, Y. Shi, B. Tian, K. Van Gasse, J. Verbist, R. Wang, W. Xie, J. Zhang, Y. Zhu, J. Bauwelinck, X. Yin, Z. Hens, J. Van Campenhout, B. Kuyken, R. Baets, G. Morthier, D. Van Thourhout, and K. Van Gasse, “Novel light source integration approaches for silicon photonics,” Laser Photon. Rev. 11, 1700063 (2017).
[Crossref]

Zhang, Z.

Zhao, H.

L. Megalini, B. Bonef, B. C. Cabinian, H. Zhao, A. Taylor, J. S. Speck, J. E. Bowers, and J. Klamkin, “1550-nm InGaAsP multi-quantum-well structures selectively grown on v-groove-patterned SOI substrates,” Appl. Phys. Lett. 111, 032105 (2017).
[Crossref]

Zhou, X.

Y. Li, M. Wang, X. Zhou, P. Wang, W. Yang, F. Meng, and W. Wang, “InGaAs/InP multi-quantum-well nanowires with a lower optical leakage loss on v-groove-patterned SOI substrates,” Opt. Express 27, 494–503 (2019).
[Crossref]

S. Li, X. Zhou, M. Li, X. Kong, J. Mi, M. Wang, W. Wang, and J. Pan, “Ridge InGaAs/InP multi-quantum-well selective growth in nanoscale trenches on Si (001) substrate,” Appl. Phys. Lett. 108, 021902 (2016).
[Crossref]

Zhou, Z.

Z. Zhou, B. Yin, and J. Michel, “On-chip light sources for silicon photonics,” Light Sci. Appl. 4, e358 (2015).
[Crossref]

Zhu, S.

Y. Han, Q. Li, K. W. Ng, S. Zhu, and K. M. Lau, “InGaAs/InP quantum wires grown on silicon with adjustable emission wavelength at telecom bands,” Nanotechnology 29, 225601 (2018).
[Crossref]

Y. Han, W. K. Ng, C. Ma, Q. Li, S. Zhu, C. C. Chan, K. W. Ng, S. Lennon, R. A. Taylor, K. S. Wong, and K. M. Lau, “Room temperature InP/InGaAs nano-ridge lasers grown on Si and emitting at telecom bands,” Optica 5, 918–923 (2018).
[Crossref]

Y. Han, Q. Li, S. Zhu, K. W. Ng, and K. M. Lau, “Continuous-wave lasing from InP/InGaAs nanoridges at telecommunication wavelengths,” Appl. Phys. Lett. 111, 212101 (2017).
[Crossref]

Zhu, Y.

Z. Wang, A. Abbasi, U. Dave, A. De Groote, S. Kumari, B. Kunert, C. Merckling, M. Pantouvaki, Y. Shi, B. Tian, K. Van Gasse, J. Verbist, R. Wang, W. Xie, J. Zhang, Y. Zhu, J. Bauwelinck, X. Yin, Z. Hens, J. Van Campenhout, B. Kuyken, R. Baets, G. Morthier, D. Van Thourhout, and K. Van Gasse, “Novel light source integration approaches for silicon photonics,” Laser Photon. Rev. 11, 1700063 (2017).
[Crossref]

ACS nano (1)

S. Wirths, B. F. Mayer, H. Schmid, M. Sousa, J. Gooth, H. Riel, and K. E. Moselund, “Room-temperature lasing from monolithically integrated GaAs microdisks on silicon,” ACS nano 12, 2169–2175 (2018).
[Crossref]

Appl. Phys. Lett. (9)

Y. Han, Y. Xue, and K. M. Lau, “Selective lateral epitaxy of dislocation free InP on silicon-on-insulator,” Appl. Phys. Lett. 114, 192105 (2019).
[Crossref]

D. Jung, R. Herrick, J. Norman, K. Turnlund, C. Jan, K. Feng, A. C. Gossard, and J. E. Bowers, “Impact of threading dislocation density on the lifetime of InAs quantum dot lasers on Si,” Appl. Phys. Lett. 112, 153507 (2018).
[Crossref]

B. Kunert, W. Guo, Y. Mols, B. Tian, Z. Wang, Y. Shi, D. Van Thourhout, M. Pantouvaki, J. Van Campenhout, R. Langer, and K. Barla, “III/V nano ridge structures for optical applications on patterned 300  mm silicon substrate,” Appl. Phys. Lett. 109, 091101 (2016).
[Crossref]

Y. Han, Q. Li, S. P. Chang, W. D. Hsu, and K. M. Lau, “Growing InGaAs quasi-quantum wires inside semi-rhombic shaped planar InP nanowires on exact (001) silicon,” Appl. Phys. Lett. 108, 242105 (2016).
[Crossref]

L. Megalini, B. Bonef, B. C. Cabinian, H. Zhao, A. Taylor, J. S. Speck, J. E. Bowers, and J. Klamkin, “1550-nm InGaAsP multi-quantum-well structures selectively grown on v-groove-patterned SOI substrates,” Appl. Phys. Lett. 111, 032105 (2017).
[Crossref]

S. Li, X. Zhou, M. Li, X. Kong, J. Mi, M. Wang, W. Wang, and J. Pan, “Ridge InGaAs/InP multi-quantum-well selective growth in nanoscale trenches on Si (001) substrate,” Appl. Phys. Lett. 108, 021902 (2016).
[Crossref]

J. Z. Li, J. Bai, J. S. Park, B. Adekore, K. Fox, M. Carroll, A. Lochtefeld, and Z. Shellenbarger, “Defect reduction of GaAs epitaxy on Si (001) using selective aspect ratio trapping,” Appl. Phys. Lett. 91, 021114 (2007).
[Crossref]

Q. Li, B. Lai, and K. M. Lau, “Epitaxial growth of GaSb on V-grooved Si (001) substrates with an ultrathin GaAs stress relaxing layer,” Appl. Phys. Lett. 111, 172103 (2017).
[Crossref]

Y. Han, Q. Li, S. Zhu, K. W. Ng, and K. M. Lau, “Continuous-wave lasing from InP/InGaAs nanoridges at telecommunication wavelengths,” Appl. Phys. Lett. 111, 212101 (2017).
[Crossref]

Cryst. Growth Des. (1)

M. Paladugu, C. Merckling, R. Loo, O. Richard, H. Bender, J. Dekoster, W. Vandervorst, M. Caymax, and M. Heyns, “Site selective integration of III-V materials on Si for nanoscale logic and photonic devices,” Cryst. Growth Des. 12, 4696–4702 (2012).
[Crossref]

IEEE Electron Device Lett. (2)

N. Waldron, C. Merckling, L. Teugels, P. Ong, S. Ansar, U. Ibrahim, F. Sebaai, A. Pourghaderi, K. Barla, N. Collaert, and A. V.-Y. Thean, “InGaAs gate-all-around nanowire devices on 300  mm Si substrates,” IEEE Electron Device Lett. 35, 1097–1099 (2014).
[Crossref]

Q. Li, Y. Han, X. Lu, and K. M. Lau, “GaAs-InGaAs-GaAs fin-array tunnel diodes on (001) Si substrates with room-temperature peak-to-valley current ratio of 5.4,” IEEE Electron Device Lett. 37, 24–27 (2016).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

B. Shi, Y. Han, Q. Li, and K. M. Lau, “1.55-µm lasers epitaxially grown on silicon,” IEEE J. Sel. Top. Quantum Electron. 25, 1900711 (2019).
[Crossref]

A. Y. Liu and J. Bowers, “Photonic integration with epitaxial III-V on silicon,” IEEE J. Sel. Top. Quantum Electron. 24, 6000412 (2018).
[Crossref]

IEEE Trans. Electron Devices (1)

Y. Han, Q. Li, and K. M. Lau, “Tristate memory cells using double-peaked fin-array III-V tunnel diodes monolithically grown on (001) silicon substrates,” IEEE Trans. Electron Devices 64, 4078–4083 (2017).
[Crossref]

J. Appl. Phys. (3)

C. Merckling, N. Waldron, S. Jiang, W. Guo, N. Collaert, M. Caymax, E. Vancoille, K. Barla, A. Thean, M. Heyns, and W. Vandervorst, “Hetero-epitaxy of InP on Si (001) by selective-area metal organic vapor-phase epitaxy in sub-50  nm width trenches: the role of the nucleation layer and the recess engineering,” J. Appl. Phys. 115, 023710 (2014).
[Crossref]

T. Orzali, A. Vert, B. O’Brian, J. L. Herman, S. Vivekanand, S. S. P. Rao, and S. R. Oktyabrsky, “Epitaxial growth of GaSb and InAs fins on 300 mm Si (001) by aspect ratio trapping,” J. Appl. Phys. 120, 085308 (2016).
[Crossref]

Y. Han, Q. Li, and K. M. Lau, “Highly ordered horizontal indium gallium arsenide/indium phosphide multi-quantum-well in wire structure on (001) silicon substrates,” J. Appl. Phys. 120, 245701 (2016).
[Crossref]

Laser Photon. Rev. (1)

Z. Wang, A. Abbasi, U. Dave, A. De Groote, S. Kumari, B. Kunert, C. Merckling, M. Pantouvaki, Y. Shi, B. Tian, K. Van Gasse, J. Verbist, R. Wang, W. Xie, J. Zhang, Y. Zhu, J. Bauwelinck, X. Yin, Z. Hens, J. Van Campenhout, B. Kuyken, R. Baets, G. Morthier, D. Van Thourhout, and K. Van Gasse, “Novel light source integration approaches for silicon photonics,” Laser Photon. Rev. 11, 1700063 (2017).
[Crossref]

Light Sci. Appl. (1)

Z. Zhou, B. Yin, and J. Michel, “On-chip light sources for silicon photonics,” Light Sci. Appl. 4, e358 (2015).
[Crossref]

Materials (1)

D. Liang, G. Roelkens, R. Baets, and J. E. Bowers, “Hybrid integrated platforms for silicon photonics,” Materials 3, 1782–1802 (2010).
[Crossref]

Nano Lett. (1)

B. Tian, Z. Wang, M. Pantouvaki, P. Absil, J. Van Campenhout, C. Merckling, and D. Van Thourhout, “Room temperature O-band DFB laser array directly grown on (001) silicon,” Nano Lett. 17, 559–564 (2016).
[Crossref]

Nanotechnology (1)

Y. Han, Q. Li, K. W. Ng, S. Zhu, and K. M. Lau, “InGaAs/InP quantum wires grown on silicon with adjustable emission wavelength at telecom bands,” Nanotechnology 29, 225601 (2018).
[Crossref]

Nat. Photonics (3)

D. Liang and J. E. Bowers, “Recent progress in lasers on silicon,” Nat. Photonics 4, 511 (2010).
[Crossref]

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III-V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

Z. Wang, B. Tian, M. Pantouvaki, W. Guo, P. Absil, J. Van Campenhout, C. Merckling, and D. Van Thourhout, “Room-temperature InP distributed feedback laser array directly grown on silicon,” Nat. Photonics 9,837–842 (2015).
[Crossref]

Nature (1)

A. H. Atabaki, S. Moazeni, F. Pavanello, H. Gevorgyan, J. Notaros, L. Alloatti, M. T. Wade, C. Sun, S. A. Kruger, H. Meng, K. A. Qubaisi, I. Wang, B. Zhang, A. Khilo, C. V. Baiocco, M. A. Popović, V. M. Stojanović, and R. J. Ram, “Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip,” Nature 556, 349–354 (2018).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Optica (4)

OSA Continuum (1)

Photon. Res. (1)

Phys. Rev. B (1)

G. Biasiol, A. Gustafsson, K. Leifer, and E. Kapon, “Mechanisms of self-ordering in nonplanar epitaxy of semiconductor nanostructures,” Phys. Rev. B 65, 205306 (2002).
[Crossref]

Sci. Adv. (1)

G. Zhang, M. Takiguchi, K. Tateno, T. Tawara, M. Notomi, and H. Gotoh, “Telecom-band lasing in single InP/InAs heterostructure nanowires at room temperature,” Sci. Adv. 5, eaat8896 (2019).
[Crossref]

Semicond. Sci. Technol. (1)

B. Kunert, Y. Mols, M. Baryshniskova, N. Waldron, A. Schulze, and R. Langer, “How to control defect formation in monolithic III/V heteroepitaxy on (100) Si? A critical review on current approaches,” Semicond. Sci. Technol. 33, 093002 (2018).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. (a) III-V nanoridges grown inside Si V-grooves by the conventional ART method. (b) Schematic of the Si-photonics 220 nm SOI platform. (c) Trapezoidal Si trenches on the 220 nm SOI enclosed by two lateral {111} facets. (d) Schematics showing the designed growth sequence of bufferless III-V on the Si-photonics 220 nm SOI platforms.
Fig. 2.
Fig. 2. (a) Tilted-view SEM photo of the as-grown InP on Si-photonics 220 nm SOI wafers. (b) Cross-sectional TEM image of the InP grown on Si-photonics 220 nm SOI wafers, showing the formation of high density of stacking faults (SFs) instead of threading dislocations at the III-V/Si interface. The TEM specimen was prepared by conventional mechanical polishing and ion milling. (c) Zoomed-in TEM image showing the coalescence of two lateral InP crystals and the resultant formation of planar defects. (d) Zoomed-in TEM image of the III-V/Si interface. (e) A close-up TEM photo of the coalescence front of the two lateral InP crystals. (f) TEM photo along the trench direction showing the confinement of threading dislocations (TDs) at the bottom part of the InP. The TEM specimen was prepared by FIB. (g) Zoomed-in TEM image of one stacking fault. (h) Top-view SEM photo of the selectively etched nanoridge, revealing planar defects perpendicular to the trench direction.
Fig. 3.
Fig. 3. (a) Schematics showing the fabrication process of bufferless III-V lasers on the 220 nm SOI. (b) Tilted-view SEM image of the finalized laser array directly grown on the 220 nm SOI. (c) Top-view SEM image of fabricated laser array. (d) Zoomed-in SEM photo showing the smooth end facets defined by FIB and the two supporting Si pedestals.
Fig. 4.
Fig. 4. (a) Room-temperature PL spectra of the optically pumped InP lasers below and above threshold. Inset shows the emission images below and above threshold taken by a Si-based CCD camera. (b) Peak intensity and linewidth of the dominant lasing peak plotted in a linear scale. Inset shows the calculated lasing mode profiles.
Fig. 5.
Fig. 5. (a) Room-temperature PL spectra of the as grown InP/InGaAs nanoridge on 220 nm SOI. The emission peak resides at 1500 nm. (b) Room-temperature PL spectra of the optically pumped InP/InGaAs lasers below and above threshold. (c) Peak intensity and linewidth of the dominant lasing peak plotted in a logarithmic and liner scale, respectively. (d) Calculated quantum well confinement factors of the first three transverse modes. The ${{\rm TE}_{01}}$ mode exhibits the highest confinement factor and is thus most likely to lase.

Tables (1)

Tables Icon

Table 1. Comparison of III-V Lasers Grown Inside Trapezoidal Troughs and V-Groove Pockets

Metrics