Abstract

We present a programmable silicon photonic integrated circuit (PIC) that can be configured to show nonlinear nonreciprocal transmission at high optical input power. Nonreciprocal transmission in PICs is of fundamental importance in various fields. Despite diverse approaches to generate nonreciprocal transmission, the research on efficient control of this effect is still scarce. The silicon PIC presented here has programmable linear and nonlinear behavior using integrated phase shifters. In the nonlinear regime (high optical power), the device can be configured to be either reciprocal or nonreciprocal between opposite propagation directions with over 30 dB extinction ratio and only 1.5 dB insertion loss. More importantly, the high/low transmission direction can be dynamically reconfigured. Furthermore, nonreciprocal transmission based on nonlinearities usually requires the optical field in both propagation directions to be high, in order to induce a large extinction ratio. For our circuit, only the forward-propagating light needs to have high power to enjoy low-loss transmission while the backward propagating light will always suffer a high rejection. Besides this nonreciprocal behavior, the circuit also offers the ability for all-optical functions, such as switching, optical compute gates, or optical flip-flops, thanks to its unique controllable nonlinear behavior. This work can trigger new research efforts in nonreciprocal photonics circuits.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Tunable electromagnetically induced transparency in integrated silicon photonics circuit

Ang Li and Wim Bogaerts
Opt. Express 25(25) 31688-31695 (2017)

All-optical spatial light modulator for reconfigurable silicon photonic circuits

Roman Bruck, Kevin Vynck, Philippe Lalanne, Ben Mills, David J. Thomson, Goran Z. Mashanovich, Graham T. Reed, and Otto L. Muskens
Optica 3(4) 396-402 (2016)

Flip-chip integration of tilted VCSELs onto a silicon photonic integrated circuit

Huihui Lu, Jun Su Lee, Yan Zhao, Carmelo Scarcella, Paolo Cardile, Aidan Daly, Markus Ortsiefer, Lee Carroll, and Peter O’Brien
Opt. Express 24(15) 16258-16266 (2016)

References

  • View by:
  • |
  • |
  • |

  1. S. Fan, R. Baets, A. Petrov, Z. Yu, J. D. Joannopoulos, W. Freude, A. Melloni, M. Popović, M. Vanwolleghem, D. Jalas, M. Eich, M. Krause, H. Renner, E. Brinkmeyer, and C. R. Doerr, “Comment on ‘nonreciprocal light propagation in a silicon photonic circuit’,” Science 335, 38 (2012).
    [Crossref]
  2. D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baets, M. Popović, A. Melloni, J. D. Joannopoulos, M. Vanwolleghem, C. R. Doerr, and H. Renner, “What is—and what is not—an optical isolator,” Nat. Photonics 7, 579–582 (2013).
    [Crossref]
  3. Z. Yu and S. Fan, “Complete optical isolation created by indirect interband photonic transitions,” Nat. Photonics 3, 91–94 (2009).
    [Crossref]
  4. N. A. Estep, D. L. Sounas, J. Soric, and A. Alù, “Magnetic-free non-reciprocity and isolation based on parametrically modulated coupled-resonator loops,” Nat. Phys. 10, 923–927 (2014).
    [Crossref]
  5. D. L. Sounas and A. Alù, “Non-reciprocal photonics based on time modulation,” Nat. Photonics 11, 774–783 (2017).
    [Crossref]
  6. S. Fan, Y. Shi, and Q. Lin, “Nonreciprocal photonics without magneto-optics,” IEEE Antennas Wireless Propag. Lett. 17, 1948–1952 (2018).
    [Crossref]
  7. M.-C. Tien, T. Mizumoto, P. Pintus, H. Kromer, and J. E. Bowers, “Silicon ring isolators with bonded nonreciprocal magneto-optic garnets,” Opt. Express 19, 11740–11745 (2011).
    [Crossref]
  8. S. Ghosh, S. Keyvavinia, W. Van Roy, T. Mizumoto, G. Roelkens, and R. Baets, “Ce:YIG/silicon-on-insulator waveguide optical isolator realized by adhesive bonding,” Opt. Express 20, 1839–1848 (2012).
    [Crossref]
  9. L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics 5, 758–762 (2011).
    [Crossref]
  10. Y. Shoji and T. Mizumoto, “Magneto-optical non-reciprocal devices in silicon photonics,” Sci. Tech. Adv. Mater. 15, 014602 (2014).
    [Crossref]
  11. D. Huang, P. Pintus, C. Zhang, P. Morton, Y. Shoji, T. Mizumoto, and J. E. Bowers, “Dynamically reconfigurable integrated optical circulators,” Optica 4, 23–30 (2017).
    [Crossref]
  12. T. Mizumoto, R. Baets, and J. E. Bowers, “Optical nonreciprocal devices for silicon photonics using wafer-bonded magneto-optical garnet materials,” MRS Bull. 43(6), 419–424 (2018).
    [Crossref]
  13. C.-H. Dong, Z. Shen, C.-L. Zou, Y.-L. Zhang, W. Fu, and G.-C. Guo, “Brillouin-scattering-induced transparency and non-reciprocal light storage,” Nat. Commun. 6, 6193 (2015).
    [Crossref]
  14. J. Kim, M. C. Kuzyk, K. Han, H. Wang, and G. Bahl, “Non-reciprocal Brillouin scattering induced transparency,” Nat. Phys. 11, 275–280 (2015).
    [Crossref]
  15. Z. Shen, Y.-L. Zhang, Y. Chen, C.-L. Zou, Y.-F. Xiao, X.-B. Zou, F.-W. Sun, G.-C. Guo, and C.-H. Dong, “Experimental realization of optomechanically induced non-reciprocity,” Nat. Photonics 10, 657–661 (2016).
    [Crossref]
  16. L. D. Bino, J. M. Silver, M. T. Woodley, S. L. Stebbings, X. Zhao, and P. Del’Haye, “Microresonator isolators and circulators based on the intrinsic nonreciprocity of the Kerr effect,” Optica 5, 279–282 (2018).
    [Crossref]
  17. F. Ruesink, J. P. Mathew, M.-A. Miri, A. Alù, and E. Verhagen, “Optical circulation in a multimode optomechanical resonator,” Nat. Commun. 9, 1798 (2018).
    [Crossref]
  18. L. Fan, J. Wang, L. T. Varghese, H. Shen, B. Niu, Y. Xuan, A. M. Weiner, and M. Qi, “An all-silicon passive optical diode,” Science 335, 447–450 (2012).
    [Crossref]
  19. A. M. Mahmoud, A. R. Davoyan, and N. Engheta, “All-passive nonreciprocal metastructure,” Nat. Commun. 6, 8359 (2015).
    [Crossref]
  20. B. Peng, Ş. K. Özdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, and L. Yang, “Parity–time-symmetric whispering-gallery microcavities,” Nat. Phys. 10, 394–398 (2014).
    [Crossref]
  21. X. Jiang, C. Yang, H. Wu, S. Hua, L. Chang, Y. Ding, Q. Hua, and M. Xiao, “On-chip optical nonreciprocity using an active microcavity,” Sci. Rep. 6, 38972 (2016).
    [Crossref]
  22. S. Ramelow, A. Farsi, Z. Vernon, S. Clemmen, X. Ji, J. Sipe, M. Liscidini, M. Lipson, and A. L. Gaeta, “Strong nonlinear coupling in a Si3N4 ring resonator,” Phys. Rev. Lett. 122, 153906 (2019).
    [Crossref]
  23. M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
    [Crossref]
  24. K. Totsuka, N. Kobayashi, and M. Tomita, “Slow light in coupled-resonator-induced transparency,” Phys. Rev. Lett. 98, 213904 (2007).
    [Crossref]
  25. Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96, 123901 (2006).
    [Crossref]
  26. X. Yang, M. Yu, D.-L. Kwong, and C. W. Wong, “All-optical analog to electromagnetically induced transparency in multiple coupled photonic crystal cavities,” Phys. Rev. Lett. 102, 173902 (2009).
    [Crossref]
  27. A. Li and W. Bogaerts, “Tunable electromagnetically induced transparency in integrated silicon photonics circuit,” Opt. Express 25, 31688–31695 (2017).
    [Crossref]
  28. M. Xu, J. Wu, T. Wang, X. Hu, X. Jiang, and Y. Su, “Push–pull optical nonreciprocal transmission in cascaded silicon microring resonators,” IEEE Photon. J. 5, 2200307 (2013).
    [Crossref]
  29. Z. Wu, J. Chen, M. Ji, Q. Huang, J. Xia, Y. Wu, and Y. Wang, “Optical nonreciprocal transmission in an asymmetric silicon photonic crystal structure,” Appl. Phys. Lett. 107, 221102 (2015).
    [Crossref]
  30. M. Fujii, A. Maitra, C. Poulton, J. Leuthold, and W. Freude, “Non-reciprocal transmission and Schmitt trigger operation in strongly modulated asymmetric WBGS,” Opt. Express 14, 12782–12793 (2006).
    [Crossref]
  31. C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3, 216–219 (2009).
    [Crossref]
  32. S. Phang, A. Vukovic, T. M. Benson, H. Susanto, and P. Sewell, “A versatile all-optical parity-time signal processing device using a Bragg grating induced using positive and negative Kerr-nonlinearity,” Opt. Quantum Electron. 47, 37–47 (2015).
    [Crossref]
  33. N. R. Bernier, L. D. Toth, A. Koottandavida, M. A. Ioannou, D. Malz, A. Nunnenkamp, A. Feofanov, and T. Kippenberg, “Nonreciprocal reconfigurable microwave optomechanical circuit,” Nat. Commun. 8, 604 (2017).
    [Crossref]
  34. Z. Li, M.-H. Kim, C. Wang, Z. Han, S. Shrestha, A. C. Overvig, M. Lu, A. Stein, A. M. Agarwal, M. Lončar, and N. Yu, “Controlling propagation and coupling of waveguide modes using phase-gradient metasurfaces,” Nat. Nanotechnol. 12, 675–683 (2017).
    [Crossref]
  35. F. Lecocq, L. Ranzani, G. Peterson, K. Cicak, R. Simmonds, J. Teufel, and J. Aumentado, “Nonreciprocal microwave signal processing with a field-programmable Josephson amplifier,” Phys. Rev. Appl. 7, 024028 (2017).
    [Crossref]
  36. P. Dumon, W. Bogaerts, R. Baets, J.-M. Fedeli, and L. Fulbert, “Towards foundry approach for silicon photonics: silicon photonics platform ePIXfab,” Electron. Lett. 45, 581–582 (2009).
    [Crossref]
  37. A. Li and W. Bogaerts, “Experimental demonstration of a single silicon ring resonator with an ultra-wide FSR and tuning range,” Opt. Lett. 42, 4986–4989 (2017).
    [Crossref]
  38. A. Li and W. Bogaerts, “Backcoupling manipulation in silicon ring resonators,” Photon. Res. 6, 620–629 (2018).
    [Crossref]
  39. A. Li, Q. Huang, and W. Bogaerts, “Design of a single all-silicon ring resonator with a 150 nm free spectral range and a 100 nm tuning range around 1550 nm,” Photon. Res. 4, 84–92 (2016).
    [Crossref]
  40. D. Vermeulen, Y. De Koninck, Y. Li, E. Lambert, W. Bogaerts, R. Baets, and G. Roelkens, “Reflectionless grating couplers for silicon-on-insulator photonic integrated circuits,” Opt. Express 20, 22278–22283 (2012).
    [Crossref]
  41. A. Li and W. Bogaerts, “An actively controlled silicon ring resonator with a fully tunable Fano resonance,” APL Photon. 2, 096101 (2017).
    [Crossref]
  42. A. Li and W. Bogaerts, “Using backscattering and backcoupling in silicon ring resonators as a new degree of design freedom,” Laser Photon. Rev. 13, 1800244 (2019).
    [Crossref]
  43. B. Peng, Ş. K. Özdemir, W. Chen, F. Nori, and L. Yang, “What is and what is not electromagnetically induced transparency in whispering-gallery microcavities,” Nat. Commun. 5, 5082 (2014).
    [Crossref]
  44. A. Li, T. Van Vaerenbergh, P. De Heyn, P. Bienstman, and W. Bogaerts, “Backscattering in silicon microring resonators: a quantitative analysis,” Laser Photon. Rev. 10, 420–431 (2016).
    [Crossref]
  45. A. Li and W. Bogaerts, “Fundamental suppression of backscattering in silicon microrings,” Opt. Express 25, 2092–2099 (2017).
    [Crossref]
  46. U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 124, 1866–1878 (1961).
    [Crossref]
  47. S. Fan, “Sharp asymmetric line shapes in side-coupled waveguide-cavity systems,” Appl. Phys. Lett. 80, 908–910 (2002).
    [Crossref]
  48. B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010).
    [Crossref]
  49. C. Qiu, P. Yu, T. Hu, F. Wang, X. Jiang, and J. Yang, “Asymmetric Fano resonance in eye-like microring system,” Appl. Phys. Lett. 101, 021110 (2012).
    [Crossref]
  50. B.-B. Li, Y.-F. Xiao, C.-L. Zou, X.-F. Jiang, Y.-C. Liu, F.-W. Sun, Y. Li, and Q. Gong, “Experimental controlling of Fano resonance in indirectly coupled whispering-gallery microresonators,” Appl. Phys. Lett. 100, 021108 (2012).
    [Crossref]
  51. W. Zhang, W. Li, and J. Yao, “Optically tunable Fano resonance in a grating-based Fabry–Perot cavity-coupled microring resonator on a silicon chip,” Opt. Lett. 41, 2474–2477 (2016).
    [Crossref]
  52. G. Zhao, T. Zhao, H. Xiao, Z. Liu, G. Liu, J. Yang, Z. Ren, J. Bai, and Y. Tian, “Tunable Fano resonances based on microring resonator with feedback coupled waveguide,” Opt. Express 24, 20187–20195 (2016).
    [Crossref]
  53. G. Priem, P. Dumon, W. Bogaerts, D. Van Thourhout, G. Morthier, and R. Baets, “Optical bistability and pulsating behaviour in silicon-on-insulator ring resonator structures,” Opt. Express 13, 9623–9628 (2005).
    [Crossref]
  54. V. R. Almeida and M. Lipson, “Optical bistability on a silicon chip,” Opt. Lett. 29, 2387–2389 (2004).
    [Crossref]
  55. Q. Xu and M. Lipson, “Carrier-induced optical bistability in silicon ring resonators,” Opt. Lett. 31, 341–343 (2006).
    [Crossref]
  56. J. Wang, L. Fan, L. T. Varghese, H. Shen, Y. Xuan, B. Niu, and M. Qi, “A theoretical model for an optical diode built with nonlinear silicon microrings,” J. Lightwave Technol. 31, 313–321 (2013).
    [Crossref]

2019 (2)

S. Ramelow, A. Farsi, Z. Vernon, S. Clemmen, X. Ji, J. Sipe, M. Liscidini, M. Lipson, and A. L. Gaeta, “Strong nonlinear coupling in a Si3N4 ring resonator,” Phys. Rev. Lett. 122, 153906 (2019).
[Crossref]

A. Li and W. Bogaerts, “Using backscattering and backcoupling in silicon ring resonators as a new degree of design freedom,” Laser Photon. Rev. 13, 1800244 (2019).
[Crossref]

2018 (5)

T. Mizumoto, R. Baets, and J. E. Bowers, “Optical nonreciprocal devices for silicon photonics using wafer-bonded magneto-optical garnet materials,” MRS Bull. 43(6), 419–424 (2018).
[Crossref]

S. Fan, Y. Shi, and Q. Lin, “Nonreciprocal photonics without magneto-optics,” IEEE Antennas Wireless Propag. Lett. 17, 1948–1952 (2018).
[Crossref]

F. Ruesink, J. P. Mathew, M.-A. Miri, A. Alù, and E. Verhagen, “Optical circulation in a multimode optomechanical resonator,” Nat. Commun. 9, 1798 (2018).
[Crossref]

L. D. Bino, J. M. Silver, M. T. Woodley, S. L. Stebbings, X. Zhao, and P. Del’Haye, “Microresonator isolators and circulators based on the intrinsic nonreciprocity of the Kerr effect,” Optica 5, 279–282 (2018).
[Crossref]

A. Li and W. Bogaerts, “Backcoupling manipulation in silicon ring resonators,” Photon. Res. 6, 620–629 (2018).
[Crossref]

2017 (9)

A. Li and W. Bogaerts, “An actively controlled silicon ring resonator with a fully tunable Fano resonance,” APL Photon. 2, 096101 (2017).
[Crossref]

D. Huang, P. Pintus, C. Zhang, P. Morton, Y. Shoji, T. Mizumoto, and J. E. Bowers, “Dynamically reconfigurable integrated optical circulators,” Optica 4, 23–30 (2017).
[Crossref]

A. Li and W. Bogaerts, “Fundamental suppression of backscattering in silicon microrings,” Opt. Express 25, 2092–2099 (2017).
[Crossref]

A. Li and W. Bogaerts, “Experimental demonstration of a single silicon ring resonator with an ultra-wide FSR and tuning range,” Opt. Lett. 42, 4986–4989 (2017).
[Crossref]

A. Li and W. Bogaerts, “Tunable electromagnetically induced transparency in integrated silicon photonics circuit,” Opt. Express 25, 31688–31695 (2017).
[Crossref]

D. L. Sounas and A. Alù, “Non-reciprocal photonics based on time modulation,” Nat. Photonics 11, 774–783 (2017).
[Crossref]

N. R. Bernier, L. D. Toth, A. Koottandavida, M. A. Ioannou, D. Malz, A. Nunnenkamp, A. Feofanov, and T. Kippenberg, “Nonreciprocal reconfigurable microwave optomechanical circuit,” Nat. Commun. 8, 604 (2017).
[Crossref]

Z. Li, M.-H. Kim, C. Wang, Z. Han, S. Shrestha, A. C. Overvig, M. Lu, A. Stein, A. M. Agarwal, M. Lončar, and N. Yu, “Controlling propagation and coupling of waveguide modes using phase-gradient metasurfaces,” Nat. Nanotechnol. 12, 675–683 (2017).
[Crossref]

F. Lecocq, L. Ranzani, G. Peterson, K. Cicak, R. Simmonds, J. Teufel, and J. Aumentado, “Nonreciprocal microwave signal processing with a field-programmable Josephson amplifier,” Phys. Rev. Appl. 7, 024028 (2017).
[Crossref]

2016 (6)

A. Li, T. Van Vaerenbergh, P. De Heyn, P. Bienstman, and W. Bogaerts, “Backscattering in silicon microring resonators: a quantitative analysis,” Laser Photon. Rev. 10, 420–431 (2016).
[Crossref]

Z. Shen, Y.-L. Zhang, Y. Chen, C.-L. Zou, Y.-F. Xiao, X.-B. Zou, F.-W. Sun, G.-C. Guo, and C.-H. Dong, “Experimental realization of optomechanically induced non-reciprocity,” Nat. Photonics 10, 657–661 (2016).
[Crossref]

X. Jiang, C. Yang, H. Wu, S. Hua, L. Chang, Y. Ding, Q. Hua, and M. Xiao, “On-chip optical nonreciprocity using an active microcavity,” Sci. Rep. 6, 38972 (2016).
[Crossref]

A. Li, Q. Huang, and W. Bogaerts, “Design of a single all-silicon ring resonator with a 150 nm free spectral range and a 100 nm tuning range around 1550 nm,” Photon. Res. 4, 84–92 (2016).
[Crossref]

W. Zhang, W. Li, and J. Yao, “Optically tunable Fano resonance in a grating-based Fabry–Perot cavity-coupled microring resonator on a silicon chip,” Opt. Lett. 41, 2474–2477 (2016).
[Crossref]

G. Zhao, T. Zhao, H. Xiao, Z. Liu, G. Liu, J. Yang, Z. Ren, J. Bai, and Y. Tian, “Tunable Fano resonances based on microring resonator with feedback coupled waveguide,” Opt. Express 24, 20187–20195 (2016).
[Crossref]

2015 (5)

C.-H. Dong, Z. Shen, C.-L. Zou, Y.-L. Zhang, W. Fu, and G.-C. Guo, “Brillouin-scattering-induced transparency and non-reciprocal light storage,” Nat. Commun. 6, 6193 (2015).
[Crossref]

J. Kim, M. C. Kuzyk, K. Han, H. Wang, and G. Bahl, “Non-reciprocal Brillouin scattering induced transparency,” Nat. Phys. 11, 275–280 (2015).
[Crossref]

A. M. Mahmoud, A. R. Davoyan, and N. Engheta, “All-passive nonreciprocal metastructure,” Nat. Commun. 6, 8359 (2015).
[Crossref]

Z. Wu, J. Chen, M. Ji, Q. Huang, J. Xia, Y. Wu, and Y. Wang, “Optical nonreciprocal transmission in an asymmetric silicon photonic crystal structure,” Appl. Phys. Lett. 107, 221102 (2015).
[Crossref]

S. Phang, A. Vukovic, T. M. Benson, H. Susanto, and P. Sewell, “A versatile all-optical parity-time signal processing device using a Bragg grating induced using positive and negative Kerr-nonlinearity,” Opt. Quantum Electron. 47, 37–47 (2015).
[Crossref]

2014 (4)

Y. Shoji and T. Mizumoto, “Magneto-optical non-reciprocal devices in silicon photonics,” Sci. Tech. Adv. Mater. 15, 014602 (2014).
[Crossref]

B. Peng, Ş. K. Özdemir, W. Chen, F. Nori, and L. Yang, “What is and what is not electromagnetically induced transparency in whispering-gallery microcavities,” Nat. Commun. 5, 5082 (2014).
[Crossref]

B. Peng, Ş. K. Özdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, and L. Yang, “Parity–time-symmetric whispering-gallery microcavities,” Nat. Phys. 10, 394–398 (2014).
[Crossref]

N. A. Estep, D. L. Sounas, J. Soric, and A. Alù, “Magnetic-free non-reciprocity and isolation based on parametrically modulated coupled-resonator loops,” Nat. Phys. 10, 923–927 (2014).
[Crossref]

2013 (3)

D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baets, M. Popović, A. Melloni, J. D. Joannopoulos, M. Vanwolleghem, C. R. Doerr, and H. Renner, “What is—and what is not—an optical isolator,” Nat. Photonics 7, 579–582 (2013).
[Crossref]

M. Xu, J. Wu, T. Wang, X. Hu, X. Jiang, and Y. Su, “Push–pull optical nonreciprocal transmission in cascaded silicon microring resonators,” IEEE Photon. J. 5, 2200307 (2013).
[Crossref]

J. Wang, L. Fan, L. T. Varghese, H. Shen, Y. Xuan, B. Niu, and M. Qi, “A theoretical model for an optical diode built with nonlinear silicon microrings,” J. Lightwave Technol. 31, 313–321 (2013).
[Crossref]

2012 (6)

S. Ghosh, S. Keyvavinia, W. Van Roy, T. Mizumoto, G. Roelkens, and R. Baets, “Ce:YIG/silicon-on-insulator waveguide optical isolator realized by adhesive bonding,” Opt. Express 20, 1839–1848 (2012).
[Crossref]

D. Vermeulen, Y. De Koninck, Y. Li, E. Lambert, W. Bogaerts, R. Baets, and G. Roelkens, “Reflectionless grating couplers for silicon-on-insulator photonic integrated circuits,” Opt. Express 20, 22278–22283 (2012).
[Crossref]

C. Qiu, P. Yu, T. Hu, F. Wang, X. Jiang, and J. Yang, “Asymmetric Fano resonance in eye-like microring system,” Appl. Phys. Lett. 101, 021110 (2012).
[Crossref]

B.-B. Li, Y.-F. Xiao, C.-L. Zou, X.-F. Jiang, Y.-C. Liu, F.-W. Sun, Y. Li, and Q. Gong, “Experimental controlling of Fano resonance in indirectly coupled whispering-gallery microresonators,” Appl. Phys. Lett. 100, 021108 (2012).
[Crossref]

S. Fan, R. Baets, A. Petrov, Z. Yu, J. D. Joannopoulos, W. Freude, A. Melloni, M. Popović, M. Vanwolleghem, D. Jalas, M. Eich, M. Krause, H. Renner, E. Brinkmeyer, and C. R. Doerr, “Comment on ‘nonreciprocal light propagation in a silicon photonic circuit’,” Science 335, 38 (2012).
[Crossref]

L. Fan, J. Wang, L. T. Varghese, H. Shen, B. Niu, Y. Xuan, A. M. Weiner, and M. Qi, “An all-silicon passive optical diode,” Science 335, 447–450 (2012).
[Crossref]

2011 (2)

L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics 5, 758–762 (2011).
[Crossref]

M.-C. Tien, T. Mizumoto, P. Pintus, H. Kromer, and J. E. Bowers, “Silicon ring isolators with bonded nonreciprocal magneto-optic garnets,” Opt. Express 19, 11740–11745 (2011).
[Crossref]

2010 (1)

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010).
[Crossref]

2009 (4)

X. Yang, M. Yu, D.-L. Kwong, and C. W. Wong, “All-optical analog to electromagnetically induced transparency in multiple coupled photonic crystal cavities,” Phys. Rev. Lett. 102, 173902 (2009).
[Crossref]

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3, 216–219 (2009).
[Crossref]

P. Dumon, W. Bogaerts, R. Baets, J.-M. Fedeli, and L. Fulbert, “Towards foundry approach for silicon photonics: silicon photonics platform ePIXfab,” Electron. Lett. 45, 581–582 (2009).
[Crossref]

Z. Yu and S. Fan, “Complete optical isolation created by indirect interband photonic transitions,” Nat. Photonics 3, 91–94 (2009).
[Crossref]

2007 (1)

K. Totsuka, N. Kobayashi, and M. Tomita, “Slow light in coupled-resonator-induced transparency,” Phys. Rev. Lett. 98, 213904 (2007).
[Crossref]

2006 (3)

2005 (2)

G. Priem, P. Dumon, W. Bogaerts, D. Van Thourhout, G. Morthier, and R. Baets, “Optical bistability and pulsating behaviour in silicon-on-insulator ring resonator structures,” Opt. Express 13, 9623–9628 (2005).
[Crossref]

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
[Crossref]

2004 (1)

2002 (1)

S. Fan, “Sharp asymmetric line shapes in side-coupled waveguide-cavity systems,” Appl. Phys. Lett. 80, 908–910 (2002).
[Crossref]

1961 (1)

U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 124, 1866–1878 (1961).
[Crossref]

Agarwal, A. M.

Z. Li, M.-H. Kim, C. Wang, Z. Han, S. Shrestha, A. C. Overvig, M. Lu, A. Stein, A. M. Agarwal, M. Lončar, and N. Yu, “Controlling propagation and coupling of waveguide modes using phase-gradient metasurfaces,” Nat. Nanotechnol. 12, 675–683 (2017).
[Crossref]

Almeida, V. R.

Alù, A.

F. Ruesink, J. P. Mathew, M.-A. Miri, A. Alù, and E. Verhagen, “Optical circulation in a multimode optomechanical resonator,” Nat. Commun. 9, 1798 (2018).
[Crossref]

D. L. Sounas and A. Alù, “Non-reciprocal photonics based on time modulation,” Nat. Photonics 11, 774–783 (2017).
[Crossref]

N. A. Estep, D. L. Sounas, J. Soric, and A. Alù, “Magnetic-free non-reciprocity and isolation based on parametrically modulated coupled-resonator loops,” Nat. Phys. 10, 923–927 (2014).
[Crossref]

Aumentado, J.

F. Lecocq, L. Ranzani, G. Peterson, K. Cicak, R. Simmonds, J. Teufel, and J. Aumentado, “Nonreciprocal microwave signal processing with a field-programmable Josephson amplifier,” Phys. Rev. Appl. 7, 024028 (2017).
[Crossref]

Baets, R.

T. Mizumoto, R. Baets, and J. E. Bowers, “Optical nonreciprocal devices for silicon photonics using wafer-bonded magneto-optical garnet materials,” MRS Bull. 43(6), 419–424 (2018).
[Crossref]

D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baets, M. Popović, A. Melloni, J. D. Joannopoulos, M. Vanwolleghem, C. R. Doerr, and H. Renner, “What is—and what is not—an optical isolator,” Nat. Photonics 7, 579–582 (2013).
[Crossref]

S. Fan, R. Baets, A. Petrov, Z. Yu, J. D. Joannopoulos, W. Freude, A. Melloni, M. Popović, M. Vanwolleghem, D. Jalas, M. Eich, M. Krause, H. Renner, E. Brinkmeyer, and C. R. Doerr, “Comment on ‘nonreciprocal light propagation in a silicon photonic circuit’,” Science 335, 38 (2012).
[Crossref]

S. Ghosh, S. Keyvavinia, W. Van Roy, T. Mizumoto, G. Roelkens, and R. Baets, “Ce:YIG/silicon-on-insulator waveguide optical isolator realized by adhesive bonding,” Opt. Express 20, 1839–1848 (2012).
[Crossref]

D. Vermeulen, Y. De Koninck, Y. Li, E. Lambert, W. Bogaerts, R. Baets, and G. Roelkens, “Reflectionless grating couplers for silicon-on-insulator photonic integrated circuits,” Opt. Express 20, 22278–22283 (2012).
[Crossref]

P. Dumon, W. Bogaerts, R. Baets, J.-M. Fedeli, and L. Fulbert, “Towards foundry approach for silicon photonics: silicon photonics platform ePIXfab,” Electron. Lett. 45, 581–582 (2009).
[Crossref]

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3, 216–219 (2009).
[Crossref]

G. Priem, P. Dumon, W. Bogaerts, D. Van Thourhout, G. Morthier, and R. Baets, “Optical bistability and pulsating behaviour in silicon-on-insulator ring resonator structures,” Opt. Express 13, 9623–9628 (2005).
[Crossref]

Bahl, G.

J. Kim, M. C. Kuzyk, K. Han, H. Wang, and G. Bahl, “Non-reciprocal Brillouin scattering induced transparency,” Nat. Phys. 11, 275–280 (2015).
[Crossref]

Bai, J.

Bender, C. M.

B. Peng, Ş. K. Özdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, and L. Yang, “Parity–time-symmetric whispering-gallery microcavities,” Nat. Phys. 10, 394–398 (2014).
[Crossref]

Benson, T. M.

S. Phang, A. Vukovic, T. M. Benson, H. Susanto, and P. Sewell, “A versatile all-optical parity-time signal processing device using a Bragg grating induced using positive and negative Kerr-nonlinearity,” Opt. Quantum Electron. 47, 37–47 (2015).
[Crossref]

Bernier, N. R.

N. R. Bernier, L. D. Toth, A. Koottandavida, M. A. Ioannou, D. Malz, A. Nunnenkamp, A. Feofanov, and T. Kippenberg, “Nonreciprocal reconfigurable microwave optomechanical circuit,” Nat. Commun. 8, 604 (2017).
[Crossref]

Bi, L.

L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics 5, 758–762 (2011).
[Crossref]

Biaggio, I.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3, 216–219 (2009).
[Crossref]

Bienstman, P.

A. Li, T. Van Vaerenbergh, P. De Heyn, P. Bienstman, and W. Bogaerts, “Backscattering in silicon microring resonators: a quantitative analysis,” Laser Photon. Rev. 10, 420–431 (2016).
[Crossref]

Bino, L. D.

Bogaerts, W.

A. Li and W. Bogaerts, “Using backscattering and backcoupling in silicon ring resonators as a new degree of design freedom,” Laser Photon. Rev. 13, 1800244 (2019).
[Crossref]

A. Li and W. Bogaerts, “Backcoupling manipulation in silicon ring resonators,” Photon. Res. 6, 620–629 (2018).
[Crossref]

A. Li and W. Bogaerts, “Fundamental suppression of backscattering in silicon microrings,” Opt. Express 25, 2092–2099 (2017).
[Crossref]

A. Li and W. Bogaerts, “Experimental demonstration of a single silicon ring resonator with an ultra-wide FSR and tuning range,” Opt. Lett. 42, 4986–4989 (2017).
[Crossref]

A. Li and W. Bogaerts, “Tunable electromagnetically induced transparency in integrated silicon photonics circuit,” Opt. Express 25, 31688–31695 (2017).
[Crossref]

A. Li and W. Bogaerts, “An actively controlled silicon ring resonator with a fully tunable Fano resonance,” APL Photon. 2, 096101 (2017).
[Crossref]

A. Li, T. Van Vaerenbergh, P. De Heyn, P. Bienstman, and W. Bogaerts, “Backscattering in silicon microring resonators: a quantitative analysis,” Laser Photon. Rev. 10, 420–431 (2016).
[Crossref]

A. Li, Q. Huang, and W. Bogaerts, “Design of a single all-silicon ring resonator with a 150 nm free spectral range and a 100 nm tuning range around 1550 nm,” Photon. Res. 4, 84–92 (2016).
[Crossref]

D. Vermeulen, Y. De Koninck, Y. Li, E. Lambert, W. Bogaerts, R. Baets, and G. Roelkens, “Reflectionless grating couplers for silicon-on-insulator photonic integrated circuits,” Opt. Express 20, 22278–22283 (2012).
[Crossref]

P. Dumon, W. Bogaerts, R. Baets, J.-M. Fedeli, and L. Fulbert, “Towards foundry approach for silicon photonics: silicon photonics platform ePIXfab,” Electron. Lett. 45, 581–582 (2009).
[Crossref]

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3, 216–219 (2009).
[Crossref]

G. Priem, P. Dumon, W. Bogaerts, D. Van Thourhout, G. Morthier, and R. Baets, “Optical bistability and pulsating behaviour in silicon-on-insulator ring resonator structures,” Opt. Express 13, 9623–9628 (2005).
[Crossref]

Bowers, J. E.

Brinkmeyer, E.

S. Fan, R. Baets, A. Petrov, Z. Yu, J. D. Joannopoulos, W. Freude, A. Melloni, M. Popović, M. Vanwolleghem, D. Jalas, M. Eich, M. Krause, H. Renner, E. Brinkmeyer, and C. R. Doerr, “Comment on ‘nonreciprocal light propagation in a silicon photonic circuit’,” Science 335, 38 (2012).
[Crossref]

Chang, L.

X. Jiang, C. Yang, H. Wu, S. Hua, L. Chang, Y. Ding, Q. Hua, and M. Xiao, “On-chip optical nonreciprocity using an active microcavity,” Sci. Rep. 6, 38972 (2016).
[Crossref]

Chen, J.

Z. Wu, J. Chen, M. Ji, Q. Huang, J. Xia, Y. Wu, and Y. Wang, “Optical nonreciprocal transmission in an asymmetric silicon photonic crystal structure,” Appl. Phys. Lett. 107, 221102 (2015).
[Crossref]

Chen, W.

B. Peng, Ş. K. Özdemir, W. Chen, F. Nori, and L. Yang, “What is and what is not electromagnetically induced transparency in whispering-gallery microcavities,” Nat. Commun. 5, 5082 (2014).
[Crossref]

Chen, Y.

Z. Shen, Y.-L. Zhang, Y. Chen, C.-L. Zou, Y.-F. Xiao, X.-B. Zou, F.-W. Sun, G.-C. Guo, and C.-H. Dong, “Experimental realization of optomechanically induced non-reciprocity,” Nat. Photonics 10, 657–661 (2016).
[Crossref]

Chong, C. T.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010).
[Crossref]

Cicak, K.

F. Lecocq, L. Ranzani, G. Peterson, K. Cicak, R. Simmonds, J. Teufel, and J. Aumentado, “Nonreciprocal microwave signal processing with a field-programmable Josephson amplifier,” Phys. Rev. Appl. 7, 024028 (2017).
[Crossref]

Clemmen, S.

S. Ramelow, A. Farsi, Z. Vernon, S. Clemmen, X. Ji, J. Sipe, M. Liscidini, M. Lipson, and A. L. Gaeta, “Strong nonlinear coupling in a Si3N4 ring resonator,” Phys. Rev. Lett. 122, 153906 (2019).
[Crossref]

Davoyan, A. R.

A. M. Mahmoud, A. R. Davoyan, and N. Engheta, “All-passive nonreciprocal metastructure,” Nat. Commun. 6, 8359 (2015).
[Crossref]

De Heyn, P.

A. Li, T. Van Vaerenbergh, P. De Heyn, P. Bienstman, and W. Bogaerts, “Backscattering in silicon microring resonators: a quantitative analysis,” Laser Photon. Rev. 10, 420–431 (2016).
[Crossref]

De Koninck, Y.

Del’Haye, P.

Diederich, F.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3, 216–219 (2009).
[Crossref]

Ding, Y.

X. Jiang, C. Yang, H. Wu, S. Hua, L. Chang, Y. Ding, Q. Hua, and M. Xiao, “On-chip optical nonreciprocity using an active microcavity,” Sci. Rep. 6, 38972 (2016).
[Crossref]

Dionne, G. F.

L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics 5, 758–762 (2011).
[Crossref]

Doerr, C. R.

D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baets, M. Popović, A. Melloni, J. D. Joannopoulos, M. Vanwolleghem, C. R. Doerr, and H. Renner, “What is—and what is not—an optical isolator,” Nat. Photonics 7, 579–582 (2013).
[Crossref]

S. Fan, R. Baets, A. Petrov, Z. Yu, J. D. Joannopoulos, W. Freude, A. Melloni, M. Popović, M. Vanwolleghem, D. Jalas, M. Eich, M. Krause, H. Renner, E. Brinkmeyer, and C. R. Doerr, “Comment on ‘nonreciprocal light propagation in a silicon photonic circuit’,” Science 335, 38 (2012).
[Crossref]

Dong, C.-H.

Z. Shen, Y.-L. Zhang, Y. Chen, C.-L. Zou, Y.-F. Xiao, X.-B. Zou, F.-W. Sun, G.-C. Guo, and C.-H. Dong, “Experimental realization of optomechanically induced non-reciprocity,” Nat. Photonics 10, 657–661 (2016).
[Crossref]

C.-H. Dong, Z. Shen, C.-L. Zou, Y.-L. Zhang, W. Fu, and G.-C. Guo, “Brillouin-scattering-induced transparency and non-reciprocal light storage,” Nat. Commun. 6, 6193 (2015).
[Crossref]

Dumon, P.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3, 216–219 (2009).
[Crossref]

P. Dumon, W. Bogaerts, R. Baets, J.-M. Fedeli, and L. Fulbert, “Towards foundry approach for silicon photonics: silicon photonics platform ePIXfab,” Electron. Lett. 45, 581–582 (2009).
[Crossref]

G. Priem, P. Dumon, W. Bogaerts, D. Van Thourhout, G. Morthier, and R. Baets, “Optical bistability and pulsating behaviour in silicon-on-insulator ring resonator structures,” Opt. Express 13, 9623–9628 (2005).
[Crossref]

Eich, M.

D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baets, M. Popović, A. Melloni, J. D. Joannopoulos, M. Vanwolleghem, C. R. Doerr, and H. Renner, “What is—and what is not—an optical isolator,” Nat. Photonics 7, 579–582 (2013).
[Crossref]

S. Fan, R. Baets, A. Petrov, Z. Yu, J. D. Joannopoulos, W. Freude, A. Melloni, M. Popović, M. Vanwolleghem, D. Jalas, M. Eich, M. Krause, H. Renner, E. Brinkmeyer, and C. R. Doerr, “Comment on ‘nonreciprocal light propagation in a silicon photonic circuit’,” Science 335, 38 (2012).
[Crossref]

Engheta, N.

A. M. Mahmoud, A. R. Davoyan, and N. Engheta, “All-passive nonreciprocal metastructure,” Nat. Commun. 6, 8359 (2015).
[Crossref]

Esembeson, B.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3, 216–219 (2009).
[Crossref]

Estep, N. A.

N. A. Estep, D. L. Sounas, J. Soric, and A. Alù, “Magnetic-free non-reciprocity and isolation based on parametrically modulated coupled-resonator loops,” Nat. Phys. 10, 923–927 (2014).
[Crossref]

Fan, L.

J. Wang, L. Fan, L. T. Varghese, H. Shen, Y. Xuan, B. Niu, and M. Qi, “A theoretical model for an optical diode built with nonlinear silicon microrings,” J. Lightwave Technol. 31, 313–321 (2013).
[Crossref]

L. Fan, J. Wang, L. T. Varghese, H. Shen, B. Niu, Y. Xuan, A. M. Weiner, and M. Qi, “An all-silicon passive optical diode,” Science 335, 447–450 (2012).
[Crossref]

Fan, S.

S. Fan, Y. Shi, and Q. Lin, “Nonreciprocal photonics without magneto-optics,” IEEE Antennas Wireless Propag. Lett. 17, 1948–1952 (2018).
[Crossref]

B. Peng, Ş. K. Özdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, and L. Yang, “Parity–time-symmetric whispering-gallery microcavities,” Nat. Phys. 10, 394–398 (2014).
[Crossref]

D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baets, M. Popović, A. Melloni, J. D. Joannopoulos, M. Vanwolleghem, C. R. Doerr, and H. Renner, “What is—and what is not—an optical isolator,” Nat. Photonics 7, 579–582 (2013).
[Crossref]

S. Fan, R. Baets, A. Petrov, Z. Yu, J. D. Joannopoulos, W. Freude, A. Melloni, M. Popović, M. Vanwolleghem, D. Jalas, M. Eich, M. Krause, H. Renner, E. Brinkmeyer, and C. R. Doerr, “Comment on ‘nonreciprocal light propagation in a silicon photonic circuit’,” Science 335, 38 (2012).
[Crossref]

Z. Yu and S. Fan, “Complete optical isolation created by indirect interband photonic transitions,” Nat. Photonics 3, 91–94 (2009).
[Crossref]

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96, 123901 (2006).
[Crossref]

S. Fan, “Sharp asymmetric line shapes in side-coupled waveguide-cavity systems,” Appl. Phys. Lett. 80, 908–910 (2002).
[Crossref]

Fano, U.

U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 124, 1866–1878 (1961).
[Crossref]

Farsi, A.

S. Ramelow, A. Farsi, Z. Vernon, S. Clemmen, X. Ji, J. Sipe, M. Liscidini, M. Lipson, and A. L. Gaeta, “Strong nonlinear coupling in a Si3N4 ring resonator,” Phys. Rev. Lett. 122, 153906 (2019).
[Crossref]

Fedeli, J.-M.

P. Dumon, W. Bogaerts, R. Baets, J.-M. Fedeli, and L. Fulbert, “Towards foundry approach for silicon photonics: silicon photonics platform ePIXfab,” Electron. Lett. 45, 581–582 (2009).
[Crossref]

Feofanov, A.

N. R. Bernier, L. D. Toth, A. Koottandavida, M. A. Ioannou, D. Malz, A. Nunnenkamp, A. Feofanov, and T. Kippenberg, “Nonreciprocal reconfigurable microwave optomechanical circuit,” Nat. Commun. 8, 604 (2017).
[Crossref]

Fleischhauer, M.

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
[Crossref]

Freude, W.

D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baets, M. Popović, A. Melloni, J. D. Joannopoulos, M. Vanwolleghem, C. R. Doerr, and H. Renner, “What is—and what is not—an optical isolator,” Nat. Photonics 7, 579–582 (2013).
[Crossref]

S. Fan, R. Baets, A. Petrov, Z. Yu, J. D. Joannopoulos, W. Freude, A. Melloni, M. Popović, M. Vanwolleghem, D. Jalas, M. Eich, M. Krause, H. Renner, E. Brinkmeyer, and C. R. Doerr, “Comment on ‘nonreciprocal light propagation in a silicon photonic circuit’,” Science 335, 38 (2012).
[Crossref]

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3, 216–219 (2009).
[Crossref]

M. Fujii, A. Maitra, C. Poulton, J. Leuthold, and W. Freude, “Non-reciprocal transmission and Schmitt trigger operation in strongly modulated asymmetric WBGS,” Opt. Express 14, 12782–12793 (2006).
[Crossref]

Fu, W.

C.-H. Dong, Z. Shen, C.-L. Zou, Y.-L. Zhang, W. Fu, and G.-C. Guo, “Brillouin-scattering-induced transparency and non-reciprocal light storage,” Nat. Commun. 6, 6193 (2015).
[Crossref]

Fujii, M.

Fulbert, L.

P. Dumon, W. Bogaerts, R. Baets, J.-M. Fedeli, and L. Fulbert, “Towards foundry approach for silicon photonics: silicon photonics platform ePIXfab,” Electron. Lett. 45, 581–582 (2009).
[Crossref]

Gaeta, A. L.

S. Ramelow, A. Farsi, Z. Vernon, S. Clemmen, X. Ji, J. Sipe, M. Liscidini, M. Lipson, and A. L. Gaeta, “Strong nonlinear coupling in a Si3N4 ring resonator,” Phys. Rev. Lett. 122, 153906 (2019).
[Crossref]

Ghosh, S.

Gianfreda, M.

B. Peng, Ş. K. Özdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, and L. Yang, “Parity–time-symmetric whispering-gallery microcavities,” Nat. Phys. 10, 394–398 (2014).
[Crossref]

Giessen, H.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010).
[Crossref]

Gong, Q.

B.-B. Li, Y.-F. Xiao, C.-L. Zou, X.-F. Jiang, Y.-C. Liu, F.-W. Sun, Y. Li, and Q. Gong, “Experimental controlling of Fano resonance in indirectly coupled whispering-gallery microresonators,” Appl. Phys. Lett. 100, 021108 (2012).
[Crossref]

Guo, G.-C.

Z. Shen, Y.-L. Zhang, Y. Chen, C.-L. Zou, Y.-F. Xiao, X.-B. Zou, F.-W. Sun, G.-C. Guo, and C.-H. Dong, “Experimental realization of optomechanically induced non-reciprocity,” Nat. Photonics 10, 657–661 (2016).
[Crossref]

C.-H. Dong, Z. Shen, C.-L. Zou, Y.-L. Zhang, W. Fu, and G.-C. Guo, “Brillouin-scattering-induced transparency and non-reciprocal light storage,” Nat. Commun. 6, 6193 (2015).
[Crossref]

Halas, N. J.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010).
[Crossref]

Han, K.

J. Kim, M. C. Kuzyk, K. Han, H. Wang, and G. Bahl, “Non-reciprocal Brillouin scattering induced transparency,” Nat. Phys. 11, 275–280 (2015).
[Crossref]

Han, Z.

Z. Li, M.-H. Kim, C. Wang, Z. Han, S. Shrestha, A. C. Overvig, M. Lu, A. Stein, A. M. Agarwal, M. Lončar, and N. Yu, “Controlling propagation and coupling of waveguide modes using phase-gradient metasurfaces,” Nat. Nanotechnol. 12, 675–683 (2017).
[Crossref]

Hu, J.

L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics 5, 758–762 (2011).
[Crossref]

Hu, T.

C. Qiu, P. Yu, T. Hu, F. Wang, X. Jiang, and J. Yang, “Asymmetric Fano resonance in eye-like microring system,” Appl. Phys. Lett. 101, 021110 (2012).
[Crossref]

Hu, X.

M. Xu, J. Wu, T. Wang, X. Hu, X. Jiang, and Y. Su, “Push–pull optical nonreciprocal transmission in cascaded silicon microring resonators,” IEEE Photon. J. 5, 2200307 (2013).
[Crossref]

Hua, Q.

X. Jiang, C. Yang, H. Wu, S. Hua, L. Chang, Y. Ding, Q. Hua, and M. Xiao, “On-chip optical nonreciprocity using an active microcavity,” Sci. Rep. 6, 38972 (2016).
[Crossref]

Hua, S.

X. Jiang, C. Yang, H. Wu, S. Hua, L. Chang, Y. Ding, Q. Hua, and M. Xiao, “On-chip optical nonreciprocity using an active microcavity,” Sci. Rep. 6, 38972 (2016).
[Crossref]

Huang, D.

Huang, Q.

A. Li, Q. Huang, and W. Bogaerts, “Design of a single all-silicon ring resonator with a 150 nm free spectral range and a 100 nm tuning range around 1550 nm,” Photon. Res. 4, 84–92 (2016).
[Crossref]

Z. Wu, J. Chen, M. Ji, Q. Huang, J. Xia, Y. Wu, and Y. Wang, “Optical nonreciprocal transmission in an asymmetric silicon photonic crystal structure,” Appl. Phys. Lett. 107, 221102 (2015).
[Crossref]

Imamoglu, A.

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
[Crossref]

Ioannou, M. A.

N. R. Bernier, L. D. Toth, A. Koottandavida, M. A. Ioannou, D. Malz, A. Nunnenkamp, A. Feofanov, and T. Kippenberg, “Nonreciprocal reconfigurable microwave optomechanical circuit,” Nat. Commun. 8, 604 (2017).
[Crossref]

Jalas, D.

D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baets, M. Popović, A. Melloni, J. D. Joannopoulos, M. Vanwolleghem, C. R. Doerr, and H. Renner, “What is—and what is not—an optical isolator,” Nat. Photonics 7, 579–582 (2013).
[Crossref]

S. Fan, R. Baets, A. Petrov, Z. Yu, J. D. Joannopoulos, W. Freude, A. Melloni, M. Popović, M. Vanwolleghem, D. Jalas, M. Eich, M. Krause, H. Renner, E. Brinkmeyer, and C. R. Doerr, “Comment on ‘nonreciprocal light propagation in a silicon photonic circuit’,” Science 335, 38 (2012).
[Crossref]

Ji, M.

Z. Wu, J. Chen, M. Ji, Q. Huang, J. Xia, Y. Wu, and Y. Wang, “Optical nonreciprocal transmission in an asymmetric silicon photonic crystal structure,” Appl. Phys. Lett. 107, 221102 (2015).
[Crossref]

Ji, X.

S. Ramelow, A. Farsi, Z. Vernon, S. Clemmen, X. Ji, J. Sipe, M. Liscidini, M. Lipson, and A. L. Gaeta, “Strong nonlinear coupling in a Si3N4 ring resonator,” Phys. Rev. Lett. 122, 153906 (2019).
[Crossref]

Jiang, P.

L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics 5, 758–762 (2011).
[Crossref]

Jiang, X.

X. Jiang, C. Yang, H. Wu, S. Hua, L. Chang, Y. Ding, Q. Hua, and M. Xiao, “On-chip optical nonreciprocity using an active microcavity,” Sci. Rep. 6, 38972 (2016).
[Crossref]

M. Xu, J. Wu, T. Wang, X. Hu, X. Jiang, and Y. Su, “Push–pull optical nonreciprocal transmission in cascaded silicon microring resonators,” IEEE Photon. J. 5, 2200307 (2013).
[Crossref]

C. Qiu, P. Yu, T. Hu, F. Wang, X. Jiang, and J. Yang, “Asymmetric Fano resonance in eye-like microring system,” Appl. Phys. Lett. 101, 021110 (2012).
[Crossref]

Jiang, X.-F.

B.-B. Li, Y.-F. Xiao, C.-L. Zou, X.-F. Jiang, Y.-C. Liu, F.-W. Sun, Y. Li, and Q. Gong, “Experimental controlling of Fano resonance in indirectly coupled whispering-gallery microresonators,” Appl. Phys. Lett. 100, 021108 (2012).
[Crossref]

Joannopoulos, J. D.

D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baets, M. Popović, A. Melloni, J. D. Joannopoulos, M. Vanwolleghem, C. R. Doerr, and H. Renner, “What is—and what is not—an optical isolator,” Nat. Photonics 7, 579–582 (2013).
[Crossref]

S. Fan, R. Baets, A. Petrov, Z. Yu, J. D. Joannopoulos, W. Freude, A. Melloni, M. Popović, M. Vanwolleghem, D. Jalas, M. Eich, M. Krause, H. Renner, E. Brinkmeyer, and C. R. Doerr, “Comment on ‘nonreciprocal light propagation in a silicon photonic circuit’,” Science 335, 38 (2012).
[Crossref]

Keyvavinia, S.

Kim, D. H.

L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics 5, 758–762 (2011).
[Crossref]

Kim, J.

J. Kim, M. C. Kuzyk, K. Han, H. Wang, and G. Bahl, “Non-reciprocal Brillouin scattering induced transparency,” Nat. Phys. 11, 275–280 (2015).
[Crossref]

Kim, M.-H.

Z. Li, M.-H. Kim, C. Wang, Z. Han, S. Shrestha, A. C. Overvig, M. Lu, A. Stein, A. M. Agarwal, M. Lončar, and N. Yu, “Controlling propagation and coupling of waveguide modes using phase-gradient metasurfaces,” Nat. Nanotechnol. 12, 675–683 (2017).
[Crossref]

Kimerling, L. C.

L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics 5, 758–762 (2011).
[Crossref]

Kippenberg, T.

N. R. Bernier, L. D. Toth, A. Koottandavida, M. A. Ioannou, D. Malz, A. Nunnenkamp, A. Feofanov, and T. Kippenberg, “Nonreciprocal reconfigurable microwave optomechanical circuit,” Nat. Commun. 8, 604 (2017).
[Crossref]

Kobayashi, N.

K. Totsuka, N. Kobayashi, and M. Tomita, “Slow light in coupled-resonator-induced transparency,” Phys. Rev. Lett. 98, 213904 (2007).
[Crossref]

Koos, C.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3, 216–219 (2009).
[Crossref]

Koottandavida, A.

N. R. Bernier, L. D. Toth, A. Koottandavida, M. A. Ioannou, D. Malz, A. Nunnenkamp, A. Feofanov, and T. Kippenberg, “Nonreciprocal reconfigurable microwave optomechanical circuit,” Nat. Commun. 8, 604 (2017).
[Crossref]

Krause, M.

S. Fan, R. Baets, A. Petrov, Z. Yu, J. D. Joannopoulos, W. Freude, A. Melloni, M. Popović, M. Vanwolleghem, D. Jalas, M. Eich, M. Krause, H. Renner, E. Brinkmeyer, and C. R. Doerr, “Comment on ‘nonreciprocal light propagation in a silicon photonic circuit’,” Science 335, 38 (2012).
[Crossref]

Kromer, H.

Kuzyk, M. C.

J. Kim, M. C. Kuzyk, K. Han, H. Wang, and G. Bahl, “Non-reciprocal Brillouin scattering induced transparency,” Nat. Phys. 11, 275–280 (2015).
[Crossref]

Kwong, D.-L.

X. Yang, M. Yu, D.-L. Kwong, and C. W. Wong, “All-optical analog to electromagnetically induced transparency in multiple coupled photonic crystal cavities,” Phys. Rev. Lett. 102, 173902 (2009).
[Crossref]

Lambert, E.

Lecocq, F.

F. Lecocq, L. Ranzani, G. Peterson, K. Cicak, R. Simmonds, J. Teufel, and J. Aumentado, “Nonreciprocal microwave signal processing with a field-programmable Josephson amplifier,” Phys. Rev. Appl. 7, 024028 (2017).
[Crossref]

Lei, F.

B. Peng, Ş. K. Özdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, and L. Yang, “Parity–time-symmetric whispering-gallery microcavities,” Nat. Phys. 10, 394–398 (2014).
[Crossref]

Leuthold, J.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3, 216–219 (2009).
[Crossref]

M. Fujii, A. Maitra, C. Poulton, J. Leuthold, and W. Freude, “Non-reciprocal transmission and Schmitt trigger operation in strongly modulated asymmetric WBGS,” Opt. Express 14, 12782–12793 (2006).
[Crossref]

Li, A.

Li, B.-B.

B.-B. Li, Y.-F. Xiao, C.-L. Zou, X.-F. Jiang, Y.-C. Liu, F.-W. Sun, Y. Li, and Q. Gong, “Experimental controlling of Fano resonance in indirectly coupled whispering-gallery microresonators,” Appl. Phys. Lett. 100, 021108 (2012).
[Crossref]

Li, W.

Li, Y.

D. Vermeulen, Y. De Koninck, Y. Li, E. Lambert, W. Bogaerts, R. Baets, and G. Roelkens, “Reflectionless grating couplers for silicon-on-insulator photonic integrated circuits,” Opt. Express 20, 22278–22283 (2012).
[Crossref]

B.-B. Li, Y.-F. Xiao, C.-L. Zou, X.-F. Jiang, Y.-C. Liu, F.-W. Sun, Y. Li, and Q. Gong, “Experimental controlling of Fano resonance in indirectly coupled whispering-gallery microresonators,” Appl. Phys. Lett. 100, 021108 (2012).
[Crossref]

Li, Z.

Z. Li, M.-H. Kim, C. Wang, Z. Han, S. Shrestha, A. C. Overvig, M. Lu, A. Stein, A. M. Agarwal, M. Lončar, and N. Yu, “Controlling propagation and coupling of waveguide modes using phase-gradient metasurfaces,” Nat. Nanotechnol. 12, 675–683 (2017).
[Crossref]

Lin, Q.

S. Fan, Y. Shi, and Q. Lin, “Nonreciprocal photonics without magneto-optics,” IEEE Antennas Wireless Propag. Lett. 17, 1948–1952 (2018).
[Crossref]

Lipson, M.

S. Ramelow, A. Farsi, Z. Vernon, S. Clemmen, X. Ji, J. Sipe, M. Liscidini, M. Lipson, and A. L. Gaeta, “Strong nonlinear coupling in a Si3N4 ring resonator,” Phys. Rev. Lett. 122, 153906 (2019).
[Crossref]

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96, 123901 (2006).
[Crossref]

Q. Xu and M. Lipson, “Carrier-induced optical bistability in silicon ring resonators,” Opt. Lett. 31, 341–343 (2006).
[Crossref]

V. R. Almeida and M. Lipson, “Optical bistability on a silicon chip,” Opt. Lett. 29, 2387–2389 (2004).
[Crossref]

Liscidini, M.

S. Ramelow, A. Farsi, Z. Vernon, S. Clemmen, X. Ji, J. Sipe, M. Liscidini, M. Lipson, and A. L. Gaeta, “Strong nonlinear coupling in a Si3N4 ring resonator,” Phys. Rev. Lett. 122, 153906 (2019).
[Crossref]

Liu, G.

Liu, Y.-C.

B.-B. Li, Y.-F. Xiao, C.-L. Zou, X.-F. Jiang, Y.-C. Liu, F.-W. Sun, Y. Li, and Q. Gong, “Experimental controlling of Fano resonance in indirectly coupled whispering-gallery microresonators,” Appl. Phys. Lett. 100, 021108 (2012).
[Crossref]

Liu, Z.

Loncar, M.

Z. Li, M.-H. Kim, C. Wang, Z. Han, S. Shrestha, A. C. Overvig, M. Lu, A. Stein, A. M. Agarwal, M. Lončar, and N. Yu, “Controlling propagation and coupling of waveguide modes using phase-gradient metasurfaces,” Nat. Nanotechnol. 12, 675–683 (2017).
[Crossref]

Long, G. L.

B. Peng, Ş. K. Özdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, and L. Yang, “Parity–time-symmetric whispering-gallery microcavities,” Nat. Phys. 10, 394–398 (2014).
[Crossref]

Lu, M.

Z. Li, M.-H. Kim, C. Wang, Z. Han, S. Shrestha, A. C. Overvig, M. Lu, A. Stein, A. M. Agarwal, M. Lončar, and N. Yu, “Controlling propagation and coupling of waveguide modes using phase-gradient metasurfaces,” Nat. Nanotechnol. 12, 675–683 (2017).
[Crossref]

Luk’yanchuk, B.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010).
[Crossref]

Mahmoud, A. M.

A. M. Mahmoud, A. R. Davoyan, and N. Engheta, “All-passive nonreciprocal metastructure,” Nat. Commun. 6, 8359 (2015).
[Crossref]

Maier, S. A.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010).
[Crossref]

Maitra, A.

Malz, D.

N. R. Bernier, L. D. Toth, A. Koottandavida, M. A. Ioannou, D. Malz, A. Nunnenkamp, A. Feofanov, and T. Kippenberg, “Nonreciprocal reconfigurable microwave optomechanical circuit,” Nat. Commun. 8, 604 (2017).
[Crossref]

Marangos, J. P.

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
[Crossref]

Mathew, J. P.

F. Ruesink, J. P. Mathew, M.-A. Miri, A. Alù, and E. Verhagen, “Optical circulation in a multimode optomechanical resonator,” Nat. Commun. 9, 1798 (2018).
[Crossref]

Melloni, A.

D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baets, M. Popović, A. Melloni, J. D. Joannopoulos, M. Vanwolleghem, C. R. Doerr, and H. Renner, “What is—and what is not—an optical isolator,” Nat. Photonics 7, 579–582 (2013).
[Crossref]

S. Fan, R. Baets, A. Petrov, Z. Yu, J. D. Joannopoulos, W. Freude, A. Melloni, M. Popović, M. Vanwolleghem, D. Jalas, M. Eich, M. Krause, H. Renner, E. Brinkmeyer, and C. R. Doerr, “Comment on ‘nonreciprocal light propagation in a silicon photonic circuit’,” Science 335, 38 (2012).
[Crossref]

Michinobu, T.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3, 216–219 (2009).
[Crossref]

Miri, M.-A.

F. Ruesink, J. P. Mathew, M.-A. Miri, A. Alù, and E. Verhagen, “Optical circulation in a multimode optomechanical resonator,” Nat. Commun. 9, 1798 (2018).
[Crossref]

Mizumoto, T.

Monifi, F.

B. Peng, Ş. K. Özdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, and L. Yang, “Parity–time-symmetric whispering-gallery microcavities,” Nat. Phys. 10, 394–398 (2014).
[Crossref]

Morthier, G.

Morton, P.

Niu, B.

J. Wang, L. Fan, L. T. Varghese, H. Shen, Y. Xuan, B. Niu, and M. Qi, “A theoretical model for an optical diode built with nonlinear silicon microrings,” J. Lightwave Technol. 31, 313–321 (2013).
[Crossref]

L. Fan, J. Wang, L. T. Varghese, H. Shen, B. Niu, Y. Xuan, A. M. Weiner, and M. Qi, “An all-silicon passive optical diode,” Science 335, 447–450 (2012).
[Crossref]

Nordlander, P.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010).
[Crossref]

Nori, F.

B. Peng, Ş. K. Özdemir, W. Chen, F. Nori, and L. Yang, “What is and what is not electromagnetically induced transparency in whispering-gallery microcavities,” Nat. Commun. 5, 5082 (2014).
[Crossref]

B. Peng, Ş. K. Özdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, and L. Yang, “Parity–time-symmetric whispering-gallery microcavities,” Nat. Phys. 10, 394–398 (2014).
[Crossref]

Nunnenkamp, A.

N. R. Bernier, L. D. Toth, A. Koottandavida, M. A. Ioannou, D. Malz, A. Nunnenkamp, A. Feofanov, and T. Kippenberg, “Nonreciprocal reconfigurable microwave optomechanical circuit,” Nat. Commun. 8, 604 (2017).
[Crossref]

Overvig, A. C.

Z. Li, M.-H. Kim, C. Wang, Z. Han, S. Shrestha, A. C. Overvig, M. Lu, A. Stein, A. M. Agarwal, M. Lončar, and N. Yu, “Controlling propagation and coupling of waveguide modes using phase-gradient metasurfaces,” Nat. Nanotechnol. 12, 675–683 (2017).
[Crossref]

Özdemir, S. K.

B. Peng, Ş. K. Özdemir, W. Chen, F. Nori, and L. Yang, “What is and what is not electromagnetically induced transparency in whispering-gallery microcavities,” Nat. Commun. 5, 5082 (2014).
[Crossref]

B. Peng, Ş. K. Özdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, and L. Yang, “Parity–time-symmetric whispering-gallery microcavities,” Nat. Phys. 10, 394–398 (2014).
[Crossref]

Peng, B.

B. Peng, Ş. K. Özdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, and L. Yang, “Parity–time-symmetric whispering-gallery microcavities,” Nat. Phys. 10, 394–398 (2014).
[Crossref]

B. Peng, Ş. K. Özdemir, W. Chen, F. Nori, and L. Yang, “What is and what is not electromagnetically induced transparency in whispering-gallery microcavities,” Nat. Commun. 5, 5082 (2014).
[Crossref]

Peterson, G.

F. Lecocq, L. Ranzani, G. Peterson, K. Cicak, R. Simmonds, J. Teufel, and J. Aumentado, “Nonreciprocal microwave signal processing with a field-programmable Josephson amplifier,” Phys. Rev. Appl. 7, 024028 (2017).
[Crossref]

Petrov, A.

D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baets, M. Popović, A. Melloni, J. D. Joannopoulos, M. Vanwolleghem, C. R. Doerr, and H. Renner, “What is—and what is not—an optical isolator,” Nat. Photonics 7, 579–582 (2013).
[Crossref]

S. Fan, R. Baets, A. Petrov, Z. Yu, J. D. Joannopoulos, W. Freude, A. Melloni, M. Popović, M. Vanwolleghem, D. Jalas, M. Eich, M. Krause, H. Renner, E. Brinkmeyer, and C. R. Doerr, “Comment on ‘nonreciprocal light propagation in a silicon photonic circuit’,” Science 335, 38 (2012).
[Crossref]

Phang, S.

S. Phang, A. Vukovic, T. M. Benson, H. Susanto, and P. Sewell, “A versatile all-optical parity-time signal processing device using a Bragg grating induced using positive and negative Kerr-nonlinearity,” Opt. Quantum Electron. 47, 37–47 (2015).
[Crossref]

Pintus, P.

Popovic, M.

D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baets, M. Popović, A. Melloni, J. D. Joannopoulos, M. Vanwolleghem, C. R. Doerr, and H. Renner, “What is—and what is not—an optical isolator,” Nat. Photonics 7, 579–582 (2013).
[Crossref]

S. Fan, R. Baets, A. Petrov, Z. Yu, J. D. Joannopoulos, W. Freude, A. Melloni, M. Popović, M. Vanwolleghem, D. Jalas, M. Eich, M. Krause, H. Renner, E. Brinkmeyer, and C. R. Doerr, “Comment on ‘nonreciprocal light propagation in a silicon photonic circuit’,” Science 335, 38 (2012).
[Crossref]

Poulton, C.

Povinelli, M. L.

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96, 123901 (2006).
[Crossref]

Priem, G.

Qi, M.

J. Wang, L. Fan, L. T. Varghese, H. Shen, Y. Xuan, B. Niu, and M. Qi, “A theoretical model for an optical diode built with nonlinear silicon microrings,” J. Lightwave Technol. 31, 313–321 (2013).
[Crossref]

L. Fan, J. Wang, L. T. Varghese, H. Shen, B. Niu, Y. Xuan, A. M. Weiner, and M. Qi, “An all-silicon passive optical diode,” Science 335, 447–450 (2012).
[Crossref]

Qiu, C.

C. Qiu, P. Yu, T. Hu, F. Wang, X. Jiang, and J. Yang, “Asymmetric Fano resonance in eye-like microring system,” Appl. Phys. Lett. 101, 021110 (2012).
[Crossref]

Ramelow, S.

S. Ramelow, A. Farsi, Z. Vernon, S. Clemmen, X. Ji, J. Sipe, M. Liscidini, M. Lipson, and A. L. Gaeta, “Strong nonlinear coupling in a Si3N4 ring resonator,” Phys. Rev. Lett. 122, 153906 (2019).
[Crossref]

Ranzani, L.

F. Lecocq, L. Ranzani, G. Peterson, K. Cicak, R. Simmonds, J. Teufel, and J. Aumentado, “Nonreciprocal microwave signal processing with a field-programmable Josephson amplifier,” Phys. Rev. Appl. 7, 024028 (2017).
[Crossref]

Ren, Z.

Renner, H.

D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baets, M. Popović, A. Melloni, J. D. Joannopoulos, M. Vanwolleghem, C. R. Doerr, and H. Renner, “What is—and what is not—an optical isolator,” Nat. Photonics 7, 579–582 (2013).
[Crossref]

S. Fan, R. Baets, A. Petrov, Z. Yu, J. D. Joannopoulos, W. Freude, A. Melloni, M. Popović, M. Vanwolleghem, D. Jalas, M. Eich, M. Krause, H. Renner, E. Brinkmeyer, and C. R. Doerr, “Comment on ‘nonreciprocal light propagation in a silicon photonic circuit’,” Science 335, 38 (2012).
[Crossref]

Roelkens, G.

Ross, C.

L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics 5, 758–762 (2011).
[Crossref]

Ruesink, F.

F. Ruesink, J. P. Mathew, M.-A. Miri, A. Alù, and E. Verhagen, “Optical circulation in a multimode optomechanical resonator,” Nat. Commun. 9, 1798 (2018).
[Crossref]

Sandhu, S.

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96, 123901 (2006).
[Crossref]

Sewell, P.

S. Phang, A. Vukovic, T. M. Benson, H. Susanto, and P. Sewell, “A versatile all-optical parity-time signal processing device using a Bragg grating induced using positive and negative Kerr-nonlinearity,” Opt. Quantum Electron. 47, 37–47 (2015).
[Crossref]

Shakya, J.

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96, 123901 (2006).
[Crossref]

Shen, H.

J. Wang, L. Fan, L. T. Varghese, H. Shen, Y. Xuan, B. Niu, and M. Qi, “A theoretical model for an optical diode built with nonlinear silicon microrings,” J. Lightwave Technol. 31, 313–321 (2013).
[Crossref]

L. Fan, J. Wang, L. T. Varghese, H. Shen, B. Niu, Y. Xuan, A. M. Weiner, and M. Qi, “An all-silicon passive optical diode,” Science 335, 447–450 (2012).
[Crossref]

Shen, Z.

Z. Shen, Y.-L. Zhang, Y. Chen, C.-L. Zou, Y.-F. Xiao, X.-B. Zou, F.-W. Sun, G.-C. Guo, and C.-H. Dong, “Experimental realization of optomechanically induced non-reciprocity,” Nat. Photonics 10, 657–661 (2016).
[Crossref]

C.-H. Dong, Z. Shen, C.-L. Zou, Y.-L. Zhang, W. Fu, and G.-C. Guo, “Brillouin-scattering-induced transparency and non-reciprocal light storage,” Nat. Commun. 6, 6193 (2015).
[Crossref]

Shi, Y.

S. Fan, Y. Shi, and Q. Lin, “Nonreciprocal photonics without magneto-optics,” IEEE Antennas Wireless Propag. Lett. 17, 1948–1952 (2018).
[Crossref]

Shoji, Y.

D. Huang, P. Pintus, C. Zhang, P. Morton, Y. Shoji, T. Mizumoto, and J. E. Bowers, “Dynamically reconfigurable integrated optical circulators,” Optica 4, 23–30 (2017).
[Crossref]

Y. Shoji and T. Mizumoto, “Magneto-optical non-reciprocal devices in silicon photonics,” Sci. Tech. Adv. Mater. 15, 014602 (2014).
[Crossref]

Shrestha, S.

Z. Li, M.-H. Kim, C. Wang, Z. Han, S. Shrestha, A. C. Overvig, M. Lu, A. Stein, A. M. Agarwal, M. Lončar, and N. Yu, “Controlling propagation and coupling of waveguide modes using phase-gradient metasurfaces,” Nat. Nanotechnol. 12, 675–683 (2017).
[Crossref]

Silver, J. M.

Simmonds, R.

F. Lecocq, L. Ranzani, G. Peterson, K. Cicak, R. Simmonds, J. Teufel, and J. Aumentado, “Nonreciprocal microwave signal processing with a field-programmable Josephson amplifier,” Phys. Rev. Appl. 7, 024028 (2017).
[Crossref]

Sipe, J.

S. Ramelow, A. Farsi, Z. Vernon, S. Clemmen, X. Ji, J. Sipe, M. Liscidini, M. Lipson, and A. L. Gaeta, “Strong nonlinear coupling in a Si3N4 ring resonator,” Phys. Rev. Lett. 122, 153906 (2019).
[Crossref]

Soric, J.

N. A. Estep, D. L. Sounas, J. Soric, and A. Alù, “Magnetic-free non-reciprocity and isolation based on parametrically modulated coupled-resonator loops,” Nat. Phys. 10, 923–927 (2014).
[Crossref]

Sounas, D. L.

D. L. Sounas and A. Alù, “Non-reciprocal photonics based on time modulation,” Nat. Photonics 11, 774–783 (2017).
[Crossref]

N. A. Estep, D. L. Sounas, J. Soric, and A. Alù, “Magnetic-free non-reciprocity and isolation based on parametrically modulated coupled-resonator loops,” Nat. Phys. 10, 923–927 (2014).
[Crossref]

Stebbings, S. L.

Stein, A.

Z. Li, M.-H. Kim, C. Wang, Z. Han, S. Shrestha, A. C. Overvig, M. Lu, A. Stein, A. M. Agarwal, M. Lončar, and N. Yu, “Controlling propagation and coupling of waveguide modes using phase-gradient metasurfaces,” Nat. Nanotechnol. 12, 675–683 (2017).
[Crossref]

Su, Y.

M. Xu, J. Wu, T. Wang, X. Hu, X. Jiang, and Y. Su, “Push–pull optical nonreciprocal transmission in cascaded silicon microring resonators,” IEEE Photon. J. 5, 2200307 (2013).
[Crossref]

Sun, F.-W.

Z. Shen, Y.-L. Zhang, Y. Chen, C.-L. Zou, Y.-F. Xiao, X.-B. Zou, F.-W. Sun, G.-C. Guo, and C.-H. Dong, “Experimental realization of optomechanically induced non-reciprocity,” Nat. Photonics 10, 657–661 (2016).
[Crossref]

B.-B. Li, Y.-F. Xiao, C.-L. Zou, X.-F. Jiang, Y.-C. Liu, F.-W. Sun, Y. Li, and Q. Gong, “Experimental controlling of Fano resonance in indirectly coupled whispering-gallery microresonators,” Appl. Phys. Lett. 100, 021108 (2012).
[Crossref]

Susanto, H.

S. Phang, A. Vukovic, T. M. Benson, H. Susanto, and P. Sewell, “A versatile all-optical parity-time signal processing device using a Bragg grating induced using positive and negative Kerr-nonlinearity,” Opt. Quantum Electron. 47, 37–47 (2015).
[Crossref]

Teufel, J.

F. Lecocq, L. Ranzani, G. Peterson, K. Cicak, R. Simmonds, J. Teufel, and J. Aumentado, “Nonreciprocal microwave signal processing with a field-programmable Josephson amplifier,” Phys. Rev. Appl. 7, 024028 (2017).
[Crossref]

Tian, Y.

Tien, M.-C.

Tomita, M.

K. Totsuka, N. Kobayashi, and M. Tomita, “Slow light in coupled-resonator-induced transparency,” Phys. Rev. Lett. 98, 213904 (2007).
[Crossref]

Toth, L. D.

N. R. Bernier, L. D. Toth, A. Koottandavida, M. A. Ioannou, D. Malz, A. Nunnenkamp, A. Feofanov, and T. Kippenberg, “Nonreciprocal reconfigurable microwave optomechanical circuit,” Nat. Commun. 8, 604 (2017).
[Crossref]

Totsuka, K.

K. Totsuka, N. Kobayashi, and M. Tomita, “Slow light in coupled-resonator-induced transparency,” Phys. Rev. Lett. 98, 213904 (2007).
[Crossref]

Vallaitis, T.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3, 216–219 (2009).
[Crossref]

Van Roy, W.

Van Thourhout, D.

Van Vaerenbergh, T.

A. Li, T. Van Vaerenbergh, P. De Heyn, P. Bienstman, and W. Bogaerts, “Backscattering in silicon microring resonators: a quantitative analysis,” Laser Photon. Rev. 10, 420–431 (2016).
[Crossref]

Vanwolleghem, M.

D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baets, M. Popović, A. Melloni, J. D. Joannopoulos, M. Vanwolleghem, C. R. Doerr, and H. Renner, “What is—and what is not—an optical isolator,” Nat. Photonics 7, 579–582 (2013).
[Crossref]

S. Fan, R. Baets, A. Petrov, Z. Yu, J. D. Joannopoulos, W. Freude, A. Melloni, M. Popović, M. Vanwolleghem, D. Jalas, M. Eich, M. Krause, H. Renner, E. Brinkmeyer, and C. R. Doerr, “Comment on ‘nonreciprocal light propagation in a silicon photonic circuit’,” Science 335, 38 (2012).
[Crossref]

Varghese, L. T.

J. Wang, L. Fan, L. T. Varghese, H. Shen, Y. Xuan, B. Niu, and M. Qi, “A theoretical model for an optical diode built with nonlinear silicon microrings,” J. Lightwave Technol. 31, 313–321 (2013).
[Crossref]

L. Fan, J. Wang, L. T. Varghese, H. Shen, B. Niu, Y. Xuan, A. M. Weiner, and M. Qi, “An all-silicon passive optical diode,” Science 335, 447–450 (2012).
[Crossref]

Verhagen, E.

F. Ruesink, J. P. Mathew, M.-A. Miri, A. Alù, and E. Verhagen, “Optical circulation in a multimode optomechanical resonator,” Nat. Commun. 9, 1798 (2018).
[Crossref]

Vermeulen, D.

Vernon, Z.

S. Ramelow, A. Farsi, Z. Vernon, S. Clemmen, X. Ji, J. Sipe, M. Liscidini, M. Lipson, and A. L. Gaeta, “Strong nonlinear coupling in a Si3N4 ring resonator,” Phys. Rev. Lett. 122, 153906 (2019).
[Crossref]

Vorreau, P.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3, 216–219 (2009).
[Crossref]

Vukovic, A.

S. Phang, A. Vukovic, T. M. Benson, H. Susanto, and P. Sewell, “A versatile all-optical parity-time signal processing device using a Bragg grating induced using positive and negative Kerr-nonlinearity,” Opt. Quantum Electron. 47, 37–47 (2015).
[Crossref]

Wang, C.

Z. Li, M.-H. Kim, C. Wang, Z. Han, S. Shrestha, A. C. Overvig, M. Lu, A. Stein, A. M. Agarwal, M. Lončar, and N. Yu, “Controlling propagation and coupling of waveguide modes using phase-gradient metasurfaces,” Nat. Nanotechnol. 12, 675–683 (2017).
[Crossref]

Wang, F.

C. Qiu, P. Yu, T. Hu, F. Wang, X. Jiang, and J. Yang, “Asymmetric Fano resonance in eye-like microring system,” Appl. Phys. Lett. 101, 021110 (2012).
[Crossref]

Wang, H.

J. Kim, M. C. Kuzyk, K. Han, H. Wang, and G. Bahl, “Non-reciprocal Brillouin scattering induced transparency,” Nat. Phys. 11, 275–280 (2015).
[Crossref]

Wang, J.

J. Wang, L. Fan, L. T. Varghese, H. Shen, Y. Xuan, B. Niu, and M. Qi, “A theoretical model for an optical diode built with nonlinear silicon microrings,” J. Lightwave Technol. 31, 313–321 (2013).
[Crossref]

L. Fan, J. Wang, L. T. Varghese, H. Shen, B. Niu, Y. Xuan, A. M. Weiner, and M. Qi, “An all-silicon passive optical diode,” Science 335, 447–450 (2012).
[Crossref]

Wang, T.

M. Xu, J. Wu, T. Wang, X. Hu, X. Jiang, and Y. Su, “Push–pull optical nonreciprocal transmission in cascaded silicon microring resonators,” IEEE Photon. J. 5, 2200307 (2013).
[Crossref]

Wang, Y.

Z. Wu, J. Chen, M. Ji, Q. Huang, J. Xia, Y. Wu, and Y. Wang, “Optical nonreciprocal transmission in an asymmetric silicon photonic crystal structure,” Appl. Phys. Lett. 107, 221102 (2015).
[Crossref]

Weiner, A. M.

L. Fan, J. Wang, L. T. Varghese, H. Shen, B. Niu, Y. Xuan, A. M. Weiner, and M. Qi, “An all-silicon passive optical diode,” Science 335, 447–450 (2012).
[Crossref]

Wong, C. W.

X. Yang, M. Yu, D.-L. Kwong, and C. W. Wong, “All-optical analog to electromagnetically induced transparency in multiple coupled photonic crystal cavities,” Phys. Rev. Lett. 102, 173902 (2009).
[Crossref]

Woodley, M. T.

Wu, H.

X. Jiang, C. Yang, H. Wu, S. Hua, L. Chang, Y. Ding, Q. Hua, and M. Xiao, “On-chip optical nonreciprocity using an active microcavity,” Sci. Rep. 6, 38972 (2016).
[Crossref]

Wu, J.

M. Xu, J. Wu, T. Wang, X. Hu, X. Jiang, and Y. Su, “Push–pull optical nonreciprocal transmission in cascaded silicon microring resonators,” IEEE Photon. J. 5, 2200307 (2013).
[Crossref]

Wu, Y.

Z. Wu, J. Chen, M. Ji, Q. Huang, J. Xia, Y. Wu, and Y. Wang, “Optical nonreciprocal transmission in an asymmetric silicon photonic crystal structure,” Appl. Phys. Lett. 107, 221102 (2015).
[Crossref]

Wu, Z.

Z. Wu, J. Chen, M. Ji, Q. Huang, J. Xia, Y. Wu, and Y. Wang, “Optical nonreciprocal transmission in an asymmetric silicon photonic crystal structure,” Appl. Phys. Lett. 107, 221102 (2015).
[Crossref]

Xia, J.

Z. Wu, J. Chen, M. Ji, Q. Huang, J. Xia, Y. Wu, and Y. Wang, “Optical nonreciprocal transmission in an asymmetric silicon photonic crystal structure,” Appl. Phys. Lett. 107, 221102 (2015).
[Crossref]

Xiao, H.

Xiao, M.

X. Jiang, C. Yang, H. Wu, S. Hua, L. Chang, Y. Ding, Q. Hua, and M. Xiao, “On-chip optical nonreciprocity using an active microcavity,” Sci. Rep. 6, 38972 (2016).
[Crossref]

Xiao, Y.-F.

Z. Shen, Y.-L. Zhang, Y. Chen, C.-L. Zou, Y.-F. Xiao, X.-B. Zou, F.-W. Sun, G.-C. Guo, and C.-H. Dong, “Experimental realization of optomechanically induced non-reciprocity,” Nat. Photonics 10, 657–661 (2016).
[Crossref]

B.-B. Li, Y.-F. Xiao, C.-L. Zou, X.-F. Jiang, Y.-C. Liu, F.-W. Sun, Y. Li, and Q. Gong, “Experimental controlling of Fano resonance in indirectly coupled whispering-gallery microresonators,” Appl. Phys. Lett. 100, 021108 (2012).
[Crossref]

Xu, M.

M. Xu, J. Wu, T. Wang, X. Hu, X. Jiang, and Y. Su, “Push–pull optical nonreciprocal transmission in cascaded silicon microring resonators,” IEEE Photon. J. 5, 2200307 (2013).
[Crossref]

Xu, Q.

Q. Xu and M. Lipson, “Carrier-induced optical bistability in silicon ring resonators,” Opt. Lett. 31, 341–343 (2006).
[Crossref]

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96, 123901 (2006).
[Crossref]

Xuan, Y.

J. Wang, L. Fan, L. T. Varghese, H. Shen, Y. Xuan, B. Niu, and M. Qi, “A theoretical model for an optical diode built with nonlinear silicon microrings,” J. Lightwave Technol. 31, 313–321 (2013).
[Crossref]

L. Fan, J. Wang, L. T. Varghese, H. Shen, B. Niu, Y. Xuan, A. M. Weiner, and M. Qi, “An all-silicon passive optical diode,” Science 335, 447–450 (2012).
[Crossref]

Yang, C.

X. Jiang, C. Yang, H. Wu, S. Hua, L. Chang, Y. Ding, Q. Hua, and M. Xiao, “On-chip optical nonreciprocity using an active microcavity,” Sci. Rep. 6, 38972 (2016).
[Crossref]

Yang, J.

G. Zhao, T. Zhao, H. Xiao, Z. Liu, G. Liu, J. Yang, Z. Ren, J. Bai, and Y. Tian, “Tunable Fano resonances based on microring resonator with feedback coupled waveguide,” Opt. Express 24, 20187–20195 (2016).
[Crossref]

C. Qiu, P. Yu, T. Hu, F. Wang, X. Jiang, and J. Yang, “Asymmetric Fano resonance in eye-like microring system,” Appl. Phys. Lett. 101, 021110 (2012).
[Crossref]

Yang, L.

B. Peng, Ş. K. Özdemir, W. Chen, F. Nori, and L. Yang, “What is and what is not electromagnetically induced transparency in whispering-gallery microcavities,” Nat. Commun. 5, 5082 (2014).
[Crossref]

B. Peng, Ş. K. Özdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, and L. Yang, “Parity–time-symmetric whispering-gallery microcavities,” Nat. Phys. 10, 394–398 (2014).
[Crossref]

Yang, X.

X. Yang, M. Yu, D.-L. Kwong, and C. W. Wong, “All-optical analog to electromagnetically induced transparency in multiple coupled photonic crystal cavities,” Phys. Rev. Lett. 102, 173902 (2009).
[Crossref]

Yao, J.

Yu, M.

X. Yang, M. Yu, D.-L. Kwong, and C. W. Wong, “All-optical analog to electromagnetically induced transparency in multiple coupled photonic crystal cavities,” Phys. Rev. Lett. 102, 173902 (2009).
[Crossref]

Yu, N.

Z. Li, M.-H. Kim, C. Wang, Z. Han, S. Shrestha, A. C. Overvig, M. Lu, A. Stein, A. M. Agarwal, M. Lončar, and N. Yu, “Controlling propagation and coupling of waveguide modes using phase-gradient metasurfaces,” Nat. Nanotechnol. 12, 675–683 (2017).
[Crossref]

Yu, P.

C. Qiu, P. Yu, T. Hu, F. Wang, X. Jiang, and J. Yang, “Asymmetric Fano resonance in eye-like microring system,” Appl. Phys. Lett. 101, 021110 (2012).
[Crossref]

Yu, Z.

D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baets, M. Popović, A. Melloni, J. D. Joannopoulos, M. Vanwolleghem, C. R. Doerr, and H. Renner, “What is—and what is not—an optical isolator,” Nat. Photonics 7, 579–582 (2013).
[Crossref]

S. Fan, R. Baets, A. Petrov, Z. Yu, J. D. Joannopoulos, W. Freude, A. Melloni, M. Popović, M. Vanwolleghem, D. Jalas, M. Eich, M. Krause, H. Renner, E. Brinkmeyer, and C. R. Doerr, “Comment on ‘nonreciprocal light propagation in a silicon photonic circuit’,” Science 335, 38 (2012).
[Crossref]

Z. Yu and S. Fan, “Complete optical isolation created by indirect interband photonic transitions,” Nat. Photonics 3, 91–94 (2009).
[Crossref]

Zhang, C.

Zhang, W.

Zhang, Y.-L.

Z. Shen, Y.-L. Zhang, Y. Chen, C.-L. Zou, Y.-F. Xiao, X.-B. Zou, F.-W. Sun, G.-C. Guo, and C.-H. Dong, “Experimental realization of optomechanically induced non-reciprocity,” Nat. Photonics 10, 657–661 (2016).
[Crossref]

C.-H. Dong, Z. Shen, C.-L. Zou, Y.-L. Zhang, W. Fu, and G.-C. Guo, “Brillouin-scattering-induced transparency and non-reciprocal light storage,” Nat. Commun. 6, 6193 (2015).
[Crossref]

Zhao, G.

Zhao, T.

Zhao, X.

Zheludev, N. I.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010).
[Crossref]

Zou, C.-L.

Z. Shen, Y.-L. Zhang, Y. Chen, C.-L. Zou, Y.-F. Xiao, X.-B. Zou, F.-W. Sun, G.-C. Guo, and C.-H. Dong, “Experimental realization of optomechanically induced non-reciprocity,” Nat. Photonics 10, 657–661 (2016).
[Crossref]

C.-H. Dong, Z. Shen, C.-L. Zou, Y.-L. Zhang, W. Fu, and G.-C. Guo, “Brillouin-scattering-induced transparency and non-reciprocal light storage,” Nat. Commun. 6, 6193 (2015).
[Crossref]

B.-B. Li, Y.-F. Xiao, C.-L. Zou, X.-F. Jiang, Y.-C. Liu, F.-W. Sun, Y. Li, and Q. Gong, “Experimental controlling of Fano resonance in indirectly coupled whispering-gallery microresonators,” Appl. Phys. Lett. 100, 021108 (2012).
[Crossref]

Zou, X.-B.

Z. Shen, Y.-L. Zhang, Y. Chen, C.-L. Zou, Y.-F. Xiao, X.-B. Zou, F.-W. Sun, G.-C. Guo, and C.-H. Dong, “Experimental realization of optomechanically induced non-reciprocity,” Nat. Photonics 10, 657–661 (2016).
[Crossref]

APL Photon. (1)

A. Li and W. Bogaerts, “An actively controlled silicon ring resonator with a fully tunable Fano resonance,” APL Photon. 2, 096101 (2017).
[Crossref]

Appl. Phys. Lett. (4)

S. Fan, “Sharp asymmetric line shapes in side-coupled waveguide-cavity systems,” Appl. Phys. Lett. 80, 908–910 (2002).
[Crossref]

C. Qiu, P. Yu, T. Hu, F. Wang, X. Jiang, and J. Yang, “Asymmetric Fano resonance in eye-like microring system,” Appl. Phys. Lett. 101, 021110 (2012).
[Crossref]

B.-B. Li, Y.-F. Xiao, C.-L. Zou, X.-F. Jiang, Y.-C. Liu, F.-W. Sun, Y. Li, and Q. Gong, “Experimental controlling of Fano resonance in indirectly coupled whispering-gallery microresonators,” Appl. Phys. Lett. 100, 021108 (2012).
[Crossref]

Z. Wu, J. Chen, M. Ji, Q. Huang, J. Xia, Y. Wu, and Y. Wang, “Optical nonreciprocal transmission in an asymmetric silicon photonic crystal structure,” Appl. Phys. Lett. 107, 221102 (2015).
[Crossref]

Electron. Lett. (1)

P. Dumon, W. Bogaerts, R. Baets, J.-M. Fedeli, and L. Fulbert, “Towards foundry approach for silicon photonics: silicon photonics platform ePIXfab,” Electron. Lett. 45, 581–582 (2009).
[Crossref]

IEEE Antennas Wireless Propag. Lett. (1)

S. Fan, Y. Shi, and Q. Lin, “Nonreciprocal photonics without magneto-optics,” IEEE Antennas Wireless Propag. Lett. 17, 1948–1952 (2018).
[Crossref]

IEEE Photon. J. (1)

M. Xu, J. Wu, T. Wang, X. Hu, X. Jiang, and Y. Su, “Push–pull optical nonreciprocal transmission in cascaded silicon microring resonators,” IEEE Photon. J. 5, 2200307 (2013).
[Crossref]

J. Lightwave Technol. (1)

Laser Photon. Rev. (2)

A. Li and W. Bogaerts, “Using backscattering and backcoupling in silicon ring resonators as a new degree of design freedom,” Laser Photon. Rev. 13, 1800244 (2019).
[Crossref]

A. Li, T. Van Vaerenbergh, P. De Heyn, P. Bienstman, and W. Bogaerts, “Backscattering in silicon microring resonators: a quantitative analysis,” Laser Photon. Rev. 10, 420–431 (2016).
[Crossref]

MRS Bull. (1)

T. Mizumoto, R. Baets, and J. E. Bowers, “Optical nonreciprocal devices for silicon photonics using wafer-bonded magneto-optical garnet materials,” MRS Bull. 43(6), 419–424 (2018).
[Crossref]

Nat. Commun. (5)

C.-H. Dong, Z. Shen, C.-L. Zou, Y.-L. Zhang, W. Fu, and G.-C. Guo, “Brillouin-scattering-induced transparency and non-reciprocal light storage,” Nat. Commun. 6, 6193 (2015).
[Crossref]

F. Ruesink, J. P. Mathew, M.-A. Miri, A. Alù, and E. Verhagen, “Optical circulation in a multimode optomechanical resonator,” Nat. Commun. 9, 1798 (2018).
[Crossref]

A. M. Mahmoud, A. R. Davoyan, and N. Engheta, “All-passive nonreciprocal metastructure,” Nat. Commun. 6, 8359 (2015).
[Crossref]

N. R. Bernier, L. D. Toth, A. Koottandavida, M. A. Ioannou, D. Malz, A. Nunnenkamp, A. Feofanov, and T. Kippenberg, “Nonreciprocal reconfigurable microwave optomechanical circuit,” Nat. Commun. 8, 604 (2017).
[Crossref]

B. Peng, Ş. K. Özdemir, W. Chen, F. Nori, and L. Yang, “What is and what is not electromagnetically induced transparency in whispering-gallery microcavities,” Nat. Commun. 5, 5082 (2014).
[Crossref]

Nat. Mater. (1)

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010).
[Crossref]

Nat. Nanotechnol. (1)

Z. Li, M.-H. Kim, C. Wang, Z. Han, S. Shrestha, A. C. Overvig, M. Lu, A. Stein, A. M. Agarwal, M. Lončar, and N. Yu, “Controlling propagation and coupling of waveguide modes using phase-gradient metasurfaces,” Nat. Nanotechnol. 12, 675–683 (2017).
[Crossref]

Nat. Photonics (6)

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3, 216–219 (2009).
[Crossref]

Z. Shen, Y.-L. Zhang, Y. Chen, C.-L. Zou, Y.-F. Xiao, X.-B. Zou, F.-W. Sun, G.-C. Guo, and C.-H. Dong, “Experimental realization of optomechanically induced non-reciprocity,” Nat. Photonics 10, 657–661 (2016).
[Crossref]

L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics 5, 758–762 (2011).
[Crossref]

D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baets, M. Popović, A. Melloni, J. D. Joannopoulos, M. Vanwolleghem, C. R. Doerr, and H. Renner, “What is—and what is not—an optical isolator,” Nat. Photonics 7, 579–582 (2013).
[Crossref]

Z. Yu and S. Fan, “Complete optical isolation created by indirect interband photonic transitions,” Nat. Photonics 3, 91–94 (2009).
[Crossref]

D. L. Sounas and A. Alù, “Non-reciprocal photonics based on time modulation,” Nat. Photonics 11, 774–783 (2017).
[Crossref]

Nat. Phys. (3)

N. A. Estep, D. L. Sounas, J. Soric, and A. Alù, “Magnetic-free non-reciprocity and isolation based on parametrically modulated coupled-resonator loops,” Nat. Phys. 10, 923–927 (2014).
[Crossref]

J. Kim, M. C. Kuzyk, K. Han, H. Wang, and G. Bahl, “Non-reciprocal Brillouin scattering induced transparency,” Nat. Phys. 11, 275–280 (2015).
[Crossref]

B. Peng, Ş. K. Özdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, and L. Yang, “Parity–time-symmetric whispering-gallery microcavities,” Nat. Phys. 10, 394–398 (2014).
[Crossref]

Opt. Express (8)

M.-C. Tien, T. Mizumoto, P. Pintus, H. Kromer, and J. E. Bowers, “Silicon ring isolators with bonded nonreciprocal magneto-optic garnets,” Opt. Express 19, 11740–11745 (2011).
[Crossref]

S. Ghosh, S. Keyvavinia, W. Van Roy, T. Mizumoto, G. Roelkens, and R. Baets, “Ce:YIG/silicon-on-insulator waveguide optical isolator realized by adhesive bonding,” Opt. Express 20, 1839–1848 (2012).
[Crossref]

M. Fujii, A. Maitra, C. Poulton, J. Leuthold, and W. Freude, “Non-reciprocal transmission and Schmitt trigger operation in strongly modulated asymmetric WBGS,” Opt. Express 14, 12782–12793 (2006).
[Crossref]

A. Li and W. Bogaerts, “Tunable electromagnetically induced transparency in integrated silicon photonics circuit,” Opt. Express 25, 31688–31695 (2017).
[Crossref]

A. Li and W. Bogaerts, “Fundamental suppression of backscattering in silicon microrings,” Opt. Express 25, 2092–2099 (2017).
[Crossref]

D. Vermeulen, Y. De Koninck, Y. Li, E. Lambert, W. Bogaerts, R. Baets, and G. Roelkens, “Reflectionless grating couplers for silicon-on-insulator photonic integrated circuits,” Opt. Express 20, 22278–22283 (2012).
[Crossref]

G. Zhao, T. Zhao, H. Xiao, Z. Liu, G. Liu, J. Yang, Z. Ren, J. Bai, and Y. Tian, “Tunable Fano resonances based on microring resonator with feedback coupled waveguide,” Opt. Express 24, 20187–20195 (2016).
[Crossref]

G. Priem, P. Dumon, W. Bogaerts, D. Van Thourhout, G. Morthier, and R. Baets, “Optical bistability and pulsating behaviour in silicon-on-insulator ring resonator structures,” Opt. Express 13, 9623–9628 (2005).
[Crossref]

Opt. Lett. (4)

Opt. Quantum Electron. (1)

S. Phang, A. Vukovic, T. M. Benson, H. Susanto, and P. Sewell, “A versatile all-optical parity-time signal processing device using a Bragg grating induced using positive and negative Kerr-nonlinearity,” Opt. Quantum Electron. 47, 37–47 (2015).
[Crossref]

Optica (2)

Photon. Res. (2)

Phys. Rev. (1)

U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 124, 1866–1878 (1961).
[Crossref]

Phys. Rev. Appl. (1)

F. Lecocq, L. Ranzani, G. Peterson, K. Cicak, R. Simmonds, J. Teufel, and J. Aumentado, “Nonreciprocal microwave signal processing with a field-programmable Josephson amplifier,” Phys. Rev. Appl. 7, 024028 (2017).
[Crossref]

Phys. Rev. Lett. (4)

S. Ramelow, A. Farsi, Z. Vernon, S. Clemmen, X. Ji, J. Sipe, M. Liscidini, M. Lipson, and A. L. Gaeta, “Strong nonlinear coupling in a Si3N4 ring resonator,” Phys. Rev. Lett. 122, 153906 (2019).
[Crossref]

K. Totsuka, N. Kobayashi, and M. Tomita, “Slow light in coupled-resonator-induced transparency,” Phys. Rev. Lett. 98, 213904 (2007).
[Crossref]

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96, 123901 (2006).
[Crossref]

X. Yang, M. Yu, D.-L. Kwong, and C. W. Wong, “All-optical analog to electromagnetically induced transparency in multiple coupled photonic crystal cavities,” Phys. Rev. Lett. 102, 173902 (2009).
[Crossref]

Rev. Mod. Phys. (1)

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
[Crossref]

Sci. Rep. (1)

X. Jiang, C. Yang, H. Wu, S. Hua, L. Chang, Y. Ding, Q. Hua, and M. Xiao, “On-chip optical nonreciprocity using an active microcavity,” Sci. Rep. 6, 38972 (2016).
[Crossref]

Sci. Tech. Adv. Mater. (1)

Y. Shoji and T. Mizumoto, “Magneto-optical non-reciprocal devices in silicon photonics,” Sci. Tech. Adv. Mater. 15, 014602 (2014).
[Crossref]

Science (2)

S. Fan, R. Baets, A. Petrov, Z. Yu, J. D. Joannopoulos, W. Freude, A. Melloni, M. Popović, M. Vanwolleghem, D. Jalas, M. Eich, M. Krause, H. Renner, E. Brinkmeyer, and C. R. Doerr, “Comment on ‘nonreciprocal light propagation in a silicon photonic circuit’,” Science 335, 38 (2012).
[Crossref]

L. Fan, J. Wang, L. T. Varghese, H. Shen, B. Niu, Y. Xuan, A. M. Weiner, and M. Qi, “An all-silicon passive optical diode,” Science 335, 447–450 (2012).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. (a) Setup to characterize the linear behavior of the device under test (DUT). TL, tunable laser; OBF, optical bandpass filter; Tap, a 1/99 splitter; PM, powermeter; PC, polarization controller. (b) The schematic of the DUT. GC, grating coupler. It is integrated on a silicon-on-insulator substrate. (c) The schematic of the tunable reflector in the DUT.
Fig. 2.
Fig. 2. Resonant modes in (a) a pure ring resonator, a ring resonator (b) with a single internal reflector and (c) with two internal reflectors. No matter whether light is injected into port 1 or port 2, (a) and (b) always have identical power distribution among their respective modes, while for (c), depending on the injection direction, the modes $ {\alpha _3} $ and $ {\alpha _4} $ could have very different intensity distribution. Thus, the structure generates a different transmission spectrum depending on transmission direction.
Fig. 3.
Fig. 3. When the input power is low such that no nonlinearities inside the cavity are triggered, there can be four kinds of resonances at its output, depending on the tuning conditions of the two phase shifters. (a) Lorentzian resonance with or without splitting. (b) Fano resonance with sharp slope. (c) Ultranarrow and deep EIT dip. Note that, in (a)–(c), the second peak can appear at either the left or right side of the original peak, depending on the tuning conditions.
Fig. 4.
Fig. 4. When the input power is high, nonlinearity-induced distortion will emerge for all types of resonances. The green curve represents the transmission from port 1 to port 2 at high input power, while the red curve shows the reverse transmission at high input power. The blue curve refers to the transmission from port 1 to port 2 at low input power (without nonlinearities). (a) and (b) confirm that the spectra are identical at the Lorentzian resonance and the Autler–Townes splitting case, irrespective of the transmission direction. The high-power curves, obtained with a wavelength sweep from blue to red, show the characteristic roll-over indicative of thermo-optic nonlinear bistable behavior in the ring [53]. However, when the ring is configured into a Fano resonance, the distortions of the Fano resonances in (c) and (d) become dependent on the transmission direction; thus, nonreciprocal transmission is generated. Note that the red and green curves are offset in (c) and (d) for clarity. In (e), both curves are overlaid.
Fig. 5.
Fig. 5. Measurements of the nonlinear nonreciprocal transmission through the circuit configured for EIT. (a) Transmission spectra from port 1 to port 2 at varying input power. Note how the EIT peak evolves to a Lorentzian resonance and ends up with high transmission for high powers. (b) Spectra from port 2 to port 1 with varying input power; the EIT peak with low transmission is always present. This leads to nonreciprocal behavior with transmission from port 1 to port 2 as the high transmission direction as plotted in (c). (d) Device transmission in a configuration where transmission from port 2 to port 1 is higher than the opposite direction to confirm the reconfigurability of the high/low transmission direction. (e) Manual scan of discrete wavelength points to confirm the nonreciprocal transmission.
Fig. 6.
Fig. 6. (a) Circuit model to capture the intensity distribution at different sections of the ring resonator. Black solid lines represent reflectors. (b) and (c) Intensity profile at the Lorentzian resonance condition of transmission direction $ {T_{12}} $ (from port 1 to port 2) and $ {T_{21}} $, respectively. (d) and (e) Results for when the ring operates at Autler–Townes splitting condition. Under both cases, the intensity profiles are identical for both transmission directions $ {T_{12}} $ and $ {T_{21}} $; thus, the device is reciprocal.
Fig. 7.
Fig. 7. (a) Linear power transmission spectrum under the EIT condition. (b) and (c) Intensity profile at four quadrants of the ring resonator at transmission directions $ {T_{12}} $ and $ {T_{21}} $, respectively. Now different transmission directions lead to asymmetric intensity distribution. With high input power, it is the left peak of $ {T_{12}} $ that exhibits thermal nonlinearity-induced resonance redshift and would gradually eliminate the EIT dip, resulting in high transmission, while it is the right peak at $ {T_{21}} $ that shows resonance shift, and the EIT dip persists. (d) and (e) Results for different EIT conditions, under which the high/low transmission direction is switched.
Fig. 8.
Fig. 8. Pump–signal measurement. (a) Measurement setup. A high-power pump laser and a low-power signal laser are mixed through a 50/50 coupler and fed into port 1 of the DUT together. The pump laser is fixed at a certain wavelength while the signal laser is swept at 1 pm step. (b) Spectra of the signal laser at different pump powers with the pump wavelength aligned to one of the resonance wavelengths. Clearly, when the pump power is high, the device generates a high transmission Lorentzian resonance. It behaves like a switch to the device to control the signal transmission. (c) Measured spectra at fixed pump power but with different pump wavelengths. Only when the pump is at the resonance wavelength, the transition from an EIT-like resonance to a Lorentzian resonance can happen.