Abstract

A lattice-shifted photonic crystal waveguide (LSPCW) maintains slow light as a guided mode and works as an optical antenna when a kind of double periodicity is introduced. Selecting one LSPCW from its array and converting the fan beam to a spot beam using a collimator lens allows non-mechanical, two-dimensional beam steering. We employed a shallow-etched grating into the LSPCW as the double periodicity to increase the upward emission efficiency and designed a bespoke prism lens to convert the steering angle in a desired direction while maintaining the collimation condition for the steered beam. As a result, a sharp spot beam with an average beam divergence of 0.15° was steered in the range of ${40}^\circ \; \times \;{4.4}^\circ $ without precise adjustment of the lens position. The number of resolution points obtained was 4256. This method did not require complicated and power-consuming optical phase control like that in optical phased arrays, so it is expected to be applied in complete solid-state light detection and ranging.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Thermally controlled Si photonic crystal slow light waveguide beam steering device

Goro Takeuchi, Yosuke Terada, Moe Takeuchi, Hiroshi Abe, Hiroyuki Ito, and Toshihiko Baba
Opt. Express 26(9) 11529-11537 (2018)

Two-dimensional beam-steering device using a doubly periodic Si photonic-crystal waveguide

Hiroshi Abe, Moe Takeuchi, Goro Takeuchi, Hiroyuki Ito, Tomoki Yokokawa, Keisuke Kondo, Yuya Furukado, and Toshihiko Baba
Opt. Express 26(8) 9389-9397 (2018)

Prism lens for beam collimation in a silicon photonic crystal beam-steering device

Jun Maeda, Daichi Akiyama, Hiroyuki Ito, Hiroshi Abe, and Toshihiko Baba
Opt. Lett. 44(23) 5780-5783 (2019)

References

  • View by:
  • |
  • |
  • |

  1. I. Puente, H. Gonzalez-Jorge, J. Martinez-Sanchez, and P. Arias, “Review of mobile mapping and surveying technologies,” Measurement 46, 2127–2145 (2013).
    [Crossref]
  2. Y. Wang, G. Zhou, X. Zhang, K. Kwon, P. Blanche, N. Triesault, K. Yu, and M. C. Wu, “2D broadband beamsteering with large-scale MEMS optical phased array,” Optica 6, 557–562 (2019).
    [Crossref]
  3. K. V. Acoleyen, W. Bogaerts, J. Jágerská, N. L. Thomas, R. Houdré, and R. Baets, “Off-chip beam steering with a one-dimensional optical phased array on silicon-on-insulator,” Opt. Lett. 34, 1477–1479 (2009).
    [Crossref]
  4. J. K. Doylend, M. J. R. Heck, J. T. Bovington, J. D. Peters, M. L. Davenport, L. A. Coldren, and J. E. Bowers, “Hybrid III/V silicon photonic source with integrated 1D free-space beam steering,” Opt. Lett. 37, 4257–4259 (2012).
    [Crossref]
  5. J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493, 195–199 (2013).
    [Crossref]
  6. D. Kwong, A. Hosseini, J. Covey, Y. Zhang, X. Xu, H. Subbaraman, and R. T. Chen, “On-chip silicon optical phased array for two-dimensional beam steering,” Opt. Lett. 39, 941–944 (2014).
    [Crossref]
  7. H. Abediasl and H. Hashemi, “Monolithic optical phased-array transceiver in a standard SOI CMOS process,” Opt. Express 23, 6509–6519 (2015).
    [Crossref]
  8. D. N. Hutchison, J. Sun, J. K. Doylend, R. Kumar, J. Heck, W. Kim, C. T. Phare, A. Feshali, and H. Rong, “High-resolution aliasing-free optical beam steering,” Optica 3, 887–890 (2016).
    [Crossref]
  9. M. Zadka, Y. Chang, A. Mohanty, C. T. Phare, S. P. Roberts, and M. Lipson, “On-chip platform for a phased array with minimal beam divergence and wide field-of-view,” Opt. Express 26, 2528–2534 (2018).
    [Crossref]
  10. C. V. Poulton, P. Russo, B. Moss, M. Khandaker, M. J. Byrd, J. Tran, E. Timurdogan, D. Vermeulen, and M. R. Watts, “Small-form-factor optical phased array module for technology adoption in custom applications,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (Optical Society of America, 2019), paper JTh5B.6.
  11. J. J. López, S. A. Skirlo, D. Kharas, J. Sloan, J. Herd, P. Juodawlkis, M. Soljačić, and C. Sorace-Agaskar, “Planar-lens enabled beam steering for chip-scale LIDAR,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (online) (Optical Society of America, 2018), paper SM3I.1.
  12. D. Inoue, T. Ichikawa, A. Kawasaki, and T. Yamashita, “Demonstration of a new optical scanner using silicon photonics integrated circuit,” Opt. Express 27, 2499–2508 (2019).
    [Crossref]
  13. C. V. Poulton, A. Yaacobi, D. B. Cole, M. J. Byrd, M. Raval, D. Vermeulen, and M. R. Watts, “Coherent solid-state LIDAR with silicon photonic optical phased arrays,” Opt. Lett. 42, 4091–4094 (2017).
    [Crossref]
  14. C. V. Poulton, M. J. Byrd, P. Russo, E. Timurdogan, M. Khandaker, D. Vermeulen, and M. R. Watts, “Long-range LiDAR and free-space data communication with high-performance optical phased arrays,” IEEE J. Sel. Top. Quantum Electron 25, 7700108 (2019).
    [Crossref]
  15. K. Kondo, T. Tatebe, S. Hachuda, H. Abe, F. Koyama, and T. Baba, “Fan beam steering device using a photonic crystal slow-light waveguide with surface diffraction grating,” Opt. Lett. 42, 4990–4993 (2017).
    [Crossref]
  16. H. Abe, M. Takeuchi, G. Takeuchi, H. Ito, T. Yokokawa, K. Kondo, Y. Furukado, and T. Baba, “Two-dimensional beam-steering device using a doubly periodic Si photonic-crystal waveguide,” Opt. Express 26, 9389–9397 (2018).
    [Crossref]
  17. J. Maeda, D. Akiyama, H. Ito, H. Abe, and T. Baba, “Prism lens for beam collimation in silicon photonic crystal beam-steering device,” Opt. Lett. 44, 5780–5783 (2019).
    [Crossref]
  18. Y. Terada, K. Miyasaka, K. Kondo, N. Ishikura, T. Tamura, and T. Baba, “Optimized optical coupling to silica-clad photonic crystal waveguide,” Opt. Lett. 42, 4695–4698 (2017).
    [Crossref]
  19. T. DiLazaro and G. Nehmetallah, “Multi-terahertz frequency sweeps for high-resolution, frequency-modulated continuous wave ladar using a distributed feedback laser array,” Opt. Express 25, 2327–2340 (2017).
    [Crossref]
  20. G. Takeuchi, Y. Terada, M. Takeuchi, H. Abe, H. Ito, and T. Baba, “Thermally controlled Si photonic crystal slow light waveguide beam steering device,” Opt. Express 26, 11529–11537 (2018).
    [Crossref]
  21. R. Tetsuya, H. Abe, H. Ito, and T. Baba, “Efficient light transmission, reception and beam forming in photonic crystal beam steering device in a phased array configuration,” Jpn. J. Appl. Phys. 58, 082002 (2019).
    [Crossref]

2019 (5)

C. V. Poulton, M. J. Byrd, P. Russo, E. Timurdogan, M. Khandaker, D. Vermeulen, and M. R. Watts, “Long-range LiDAR and free-space data communication with high-performance optical phased arrays,” IEEE J. Sel. Top. Quantum Electron 25, 7700108 (2019).
[Crossref]

R. Tetsuya, H. Abe, H. Ito, and T. Baba, “Efficient light transmission, reception and beam forming in photonic crystal beam steering device in a phased array configuration,” Jpn. J. Appl. Phys. 58, 082002 (2019).
[Crossref]

D. Inoue, T. Ichikawa, A. Kawasaki, and T. Yamashita, “Demonstration of a new optical scanner using silicon photonics integrated circuit,” Opt. Express 27, 2499–2508 (2019).
[Crossref]

Y. Wang, G. Zhou, X. Zhang, K. Kwon, P. Blanche, N. Triesault, K. Yu, and M. C. Wu, “2D broadband beamsteering with large-scale MEMS optical phased array,” Optica 6, 557–562 (2019).
[Crossref]

J. Maeda, D. Akiyama, H. Ito, H. Abe, and T. Baba, “Prism lens for beam collimation in silicon photonic crystal beam-steering device,” Opt. Lett. 44, 5780–5783 (2019).
[Crossref]

2018 (3)

2017 (4)

2016 (1)

2015 (1)

2014 (1)

2013 (2)

I. Puente, H. Gonzalez-Jorge, J. Martinez-Sanchez, and P. Arias, “Review of mobile mapping and surveying technologies,” Measurement 46, 2127–2145 (2013).
[Crossref]

J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493, 195–199 (2013).
[Crossref]

2012 (1)

2009 (1)

Abe, H.

Abediasl, H.

Acoleyen, K. V.

Akiyama, D.

Arias, P.

I. Puente, H. Gonzalez-Jorge, J. Martinez-Sanchez, and P. Arias, “Review of mobile mapping and surveying technologies,” Measurement 46, 2127–2145 (2013).
[Crossref]

Baba, T.

Baets, R.

Blanche, P.

Bogaerts, W.

Bovington, J. T.

Bowers, J. E.

Byrd, M. J.

C. V. Poulton, M. J. Byrd, P. Russo, E. Timurdogan, M. Khandaker, D. Vermeulen, and M. R. Watts, “Long-range LiDAR and free-space data communication with high-performance optical phased arrays,” IEEE J. Sel. Top. Quantum Electron 25, 7700108 (2019).
[Crossref]

C. V. Poulton, A. Yaacobi, D. B. Cole, M. J. Byrd, M. Raval, D. Vermeulen, and M. R. Watts, “Coherent solid-state LIDAR with silicon photonic optical phased arrays,” Opt. Lett. 42, 4091–4094 (2017).
[Crossref]

C. V. Poulton, P. Russo, B. Moss, M. Khandaker, M. J. Byrd, J. Tran, E. Timurdogan, D. Vermeulen, and M. R. Watts, “Small-form-factor optical phased array module for technology adoption in custom applications,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (Optical Society of America, 2019), paper JTh5B.6.

Chang, Y.

Chen, R. T.

Coldren, L. A.

Cole, D. B.

Covey, J.

Davenport, M. L.

DiLazaro, T.

Doylend, J. K.

Feshali, A.

Furukado, Y.

Gonzalez-Jorge, H.

I. Puente, H. Gonzalez-Jorge, J. Martinez-Sanchez, and P. Arias, “Review of mobile mapping and surveying technologies,” Measurement 46, 2127–2145 (2013).
[Crossref]

Hachuda, S.

Hashemi, H.

Heck, J.

Heck, M. J. R.

Herd, J.

J. J. López, S. A. Skirlo, D. Kharas, J. Sloan, J. Herd, P. Juodawlkis, M. Soljačić, and C. Sorace-Agaskar, “Planar-lens enabled beam steering for chip-scale LIDAR,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (online) (Optical Society of America, 2018), paper SM3I.1.

Hosseini, A.

Hosseini, E. S.

J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493, 195–199 (2013).
[Crossref]

Houdré, R.

Hutchison, D. N.

Ichikawa, T.

Inoue, D.

Ishikura, N.

Ito, H.

Jágerská, J.

Juodawlkis, P.

J. J. López, S. A. Skirlo, D. Kharas, J. Sloan, J. Herd, P. Juodawlkis, M. Soljačić, and C. Sorace-Agaskar, “Planar-lens enabled beam steering for chip-scale LIDAR,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (online) (Optical Society of America, 2018), paper SM3I.1.

Kawasaki, A.

Khandaker, M.

C. V. Poulton, M. J. Byrd, P. Russo, E. Timurdogan, M. Khandaker, D. Vermeulen, and M. R. Watts, “Long-range LiDAR and free-space data communication with high-performance optical phased arrays,” IEEE J. Sel. Top. Quantum Electron 25, 7700108 (2019).
[Crossref]

C. V. Poulton, P. Russo, B. Moss, M. Khandaker, M. J. Byrd, J. Tran, E. Timurdogan, D. Vermeulen, and M. R. Watts, “Small-form-factor optical phased array module for technology adoption in custom applications,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (Optical Society of America, 2019), paper JTh5B.6.

Kharas, D.

J. J. López, S. A. Skirlo, D. Kharas, J. Sloan, J. Herd, P. Juodawlkis, M. Soljačić, and C. Sorace-Agaskar, “Planar-lens enabled beam steering for chip-scale LIDAR,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (online) (Optical Society of America, 2018), paper SM3I.1.

Kim, W.

Kondo, K.

Koyama, F.

Kumar, R.

Kwon, K.

Kwong, D.

Lipson, M.

López, J. J.

J. J. López, S. A. Skirlo, D. Kharas, J. Sloan, J. Herd, P. Juodawlkis, M. Soljačić, and C. Sorace-Agaskar, “Planar-lens enabled beam steering for chip-scale LIDAR,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (online) (Optical Society of America, 2018), paper SM3I.1.

Maeda, J.

Martinez-Sanchez, J.

I. Puente, H. Gonzalez-Jorge, J. Martinez-Sanchez, and P. Arias, “Review of mobile mapping and surveying technologies,” Measurement 46, 2127–2145 (2013).
[Crossref]

Miyasaka, K.

Mohanty, A.

Moss, B.

C. V. Poulton, P. Russo, B. Moss, M. Khandaker, M. J. Byrd, J. Tran, E. Timurdogan, D. Vermeulen, and M. R. Watts, “Small-form-factor optical phased array module for technology adoption in custom applications,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (Optical Society of America, 2019), paper JTh5B.6.

Nehmetallah, G.

Peters, J. D.

Phare, C. T.

Poulton, C. V.

C. V. Poulton, M. J. Byrd, P. Russo, E. Timurdogan, M. Khandaker, D. Vermeulen, and M. R. Watts, “Long-range LiDAR and free-space data communication with high-performance optical phased arrays,” IEEE J. Sel. Top. Quantum Electron 25, 7700108 (2019).
[Crossref]

C. V. Poulton, A. Yaacobi, D. B. Cole, M. J. Byrd, M. Raval, D. Vermeulen, and M. R. Watts, “Coherent solid-state LIDAR with silicon photonic optical phased arrays,” Opt. Lett. 42, 4091–4094 (2017).
[Crossref]

C. V. Poulton, P. Russo, B. Moss, M. Khandaker, M. J. Byrd, J. Tran, E. Timurdogan, D. Vermeulen, and M. R. Watts, “Small-form-factor optical phased array module for technology adoption in custom applications,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (Optical Society of America, 2019), paper JTh5B.6.

Puente, I.

I. Puente, H. Gonzalez-Jorge, J. Martinez-Sanchez, and P. Arias, “Review of mobile mapping and surveying technologies,” Measurement 46, 2127–2145 (2013).
[Crossref]

Raval, M.

Roberts, S. P.

Rong, H.

Russo, P.

C. V. Poulton, M. J. Byrd, P. Russo, E. Timurdogan, M. Khandaker, D. Vermeulen, and M. R. Watts, “Long-range LiDAR and free-space data communication with high-performance optical phased arrays,” IEEE J. Sel. Top. Quantum Electron 25, 7700108 (2019).
[Crossref]

C. V. Poulton, P. Russo, B. Moss, M. Khandaker, M. J. Byrd, J. Tran, E. Timurdogan, D. Vermeulen, and M. R. Watts, “Small-form-factor optical phased array module for technology adoption in custom applications,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (Optical Society of America, 2019), paper JTh5B.6.

Skirlo, S. A.

J. J. López, S. A. Skirlo, D. Kharas, J. Sloan, J. Herd, P. Juodawlkis, M. Soljačić, and C. Sorace-Agaskar, “Planar-lens enabled beam steering for chip-scale LIDAR,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (online) (Optical Society of America, 2018), paper SM3I.1.

Sloan, J.

J. J. López, S. A. Skirlo, D. Kharas, J. Sloan, J. Herd, P. Juodawlkis, M. Soljačić, and C. Sorace-Agaskar, “Planar-lens enabled beam steering for chip-scale LIDAR,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (online) (Optical Society of America, 2018), paper SM3I.1.

Soljacic, M.

J. J. López, S. A. Skirlo, D. Kharas, J. Sloan, J. Herd, P. Juodawlkis, M. Soljačić, and C. Sorace-Agaskar, “Planar-lens enabled beam steering for chip-scale LIDAR,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (online) (Optical Society of America, 2018), paper SM3I.1.

Sorace-Agaskar, C.

J. J. López, S. A. Skirlo, D. Kharas, J. Sloan, J. Herd, P. Juodawlkis, M. Soljačić, and C. Sorace-Agaskar, “Planar-lens enabled beam steering for chip-scale LIDAR,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (online) (Optical Society of America, 2018), paper SM3I.1.

Subbaraman, H.

Sun, J.

D. N. Hutchison, J. Sun, J. K. Doylend, R. Kumar, J. Heck, W. Kim, C. T. Phare, A. Feshali, and H. Rong, “High-resolution aliasing-free optical beam steering,” Optica 3, 887–890 (2016).
[Crossref]

J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493, 195–199 (2013).
[Crossref]

Takeuchi, G.

Takeuchi, M.

Tamura, T.

Tatebe, T.

Terada, Y.

Tetsuya, R.

R. Tetsuya, H. Abe, H. Ito, and T. Baba, “Efficient light transmission, reception and beam forming in photonic crystal beam steering device in a phased array configuration,” Jpn. J. Appl. Phys. 58, 082002 (2019).
[Crossref]

Thomas, N. L.

Timurdogan, E.

C. V. Poulton, M. J. Byrd, P. Russo, E. Timurdogan, M. Khandaker, D. Vermeulen, and M. R. Watts, “Long-range LiDAR and free-space data communication with high-performance optical phased arrays,” IEEE J. Sel. Top. Quantum Electron 25, 7700108 (2019).
[Crossref]

J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493, 195–199 (2013).
[Crossref]

C. V. Poulton, P. Russo, B. Moss, M. Khandaker, M. J. Byrd, J. Tran, E. Timurdogan, D. Vermeulen, and M. R. Watts, “Small-form-factor optical phased array module for technology adoption in custom applications,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (Optical Society of America, 2019), paper JTh5B.6.

Tran, J.

C. V. Poulton, P. Russo, B. Moss, M. Khandaker, M. J. Byrd, J. Tran, E. Timurdogan, D. Vermeulen, and M. R. Watts, “Small-form-factor optical phased array module for technology adoption in custom applications,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (Optical Society of America, 2019), paper JTh5B.6.

Triesault, N.

Vermeulen, D.

C. V. Poulton, M. J. Byrd, P. Russo, E. Timurdogan, M. Khandaker, D. Vermeulen, and M. R. Watts, “Long-range LiDAR and free-space data communication with high-performance optical phased arrays,” IEEE J. Sel. Top. Quantum Electron 25, 7700108 (2019).
[Crossref]

C. V. Poulton, A. Yaacobi, D. B. Cole, M. J. Byrd, M. Raval, D. Vermeulen, and M. R. Watts, “Coherent solid-state LIDAR with silicon photonic optical phased arrays,” Opt. Lett. 42, 4091–4094 (2017).
[Crossref]

C. V. Poulton, P. Russo, B. Moss, M. Khandaker, M. J. Byrd, J. Tran, E. Timurdogan, D. Vermeulen, and M. R. Watts, “Small-form-factor optical phased array module for technology adoption in custom applications,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (Optical Society of America, 2019), paper JTh5B.6.

Wang, Y.

Watts, M. R.

C. V. Poulton, M. J. Byrd, P. Russo, E. Timurdogan, M. Khandaker, D. Vermeulen, and M. R. Watts, “Long-range LiDAR and free-space data communication with high-performance optical phased arrays,” IEEE J. Sel. Top. Quantum Electron 25, 7700108 (2019).
[Crossref]

C. V. Poulton, A. Yaacobi, D. B. Cole, M. J. Byrd, M. Raval, D. Vermeulen, and M. R. Watts, “Coherent solid-state LIDAR with silicon photonic optical phased arrays,” Opt. Lett. 42, 4091–4094 (2017).
[Crossref]

J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493, 195–199 (2013).
[Crossref]

C. V. Poulton, P. Russo, B. Moss, M. Khandaker, M. J. Byrd, J. Tran, E. Timurdogan, D. Vermeulen, and M. R. Watts, “Small-form-factor optical phased array module for technology adoption in custom applications,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (Optical Society of America, 2019), paper JTh5B.6.

Wu, M. C.

Xu, X.

Yaacobi, A.

Yamashita, T.

Yokokawa, T.

Yu, K.

Zadka, M.

Zhang, X.

Zhang, Y.

Zhou, G.

IEEE J. Sel. Top. Quantum Electron (1)

C. V. Poulton, M. J. Byrd, P. Russo, E. Timurdogan, M. Khandaker, D. Vermeulen, and M. R. Watts, “Long-range LiDAR and free-space data communication with high-performance optical phased arrays,” IEEE J. Sel. Top. Quantum Electron 25, 7700108 (2019).
[Crossref]

Jpn. J. Appl. Phys. (1)

R. Tetsuya, H. Abe, H. Ito, and T. Baba, “Efficient light transmission, reception and beam forming in photonic crystal beam steering device in a phased array configuration,” Jpn. J. Appl. Phys. 58, 082002 (2019).
[Crossref]

Measurement (1)

I. Puente, H. Gonzalez-Jorge, J. Martinez-Sanchez, and P. Arias, “Review of mobile mapping and surveying technologies,” Measurement 46, 2127–2145 (2013).
[Crossref]

Nature (1)

J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493, 195–199 (2013).
[Crossref]

Opt. Express (6)

Opt. Lett. (7)

Optica (2)

Other (2)

C. V. Poulton, P. Russo, B. Moss, M. Khandaker, M. J. Byrd, J. Tran, E. Timurdogan, D. Vermeulen, and M. R. Watts, “Small-form-factor optical phased array module for technology adoption in custom applications,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (Optical Society of America, 2019), paper JTh5B.6.

J. J. López, S. A. Skirlo, D. Kharas, J. Sloan, J. Herd, P. Juodawlkis, M. Soljačić, and C. Sorace-Agaskar, “Planar-lens enabled beam steering for chip-scale LIDAR,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (online) (Optical Society of America, 2018), paper SM3I.1.

Supplementary Material (3)

NameDescription
» Visualization 1       Raster scanning of an emitted optical beam on graph paper
» Visualization 2       Zigzag scanning of an emitted optical beam on graph paper
» Visualization 3       Figure eight scanning of an emitted optical beam on graph paper

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Schematics of a slow-light beam steering device and 2D beam steering, where (I)–(III) are the solutions for problems in the previous study [16] and for wider 2D beam steering. (a) LSPCW with shallow grating, which improves the upper emission intensity. (b) 2D beam steering by LSPCW array and prism lens that maintains the collimation condition for the wide range of $\theta $. (c) Beam steering in the $\phi $ direction by selecting one LSPCW from its array, which is the same concept as in Ref. [16]. (d) Continuous beam steering in the ${\pm }\theta^{\prime}$ direction including $\theta^{\prime}={0}^\circ $ by converting $\theta $ into $\theta^{\prime}$ using the prism lens and switching the direction of light incidence on the LSPCW.
Fig. 2.
Fig. 2. Fabricated device and 1D beam steering. (a) Top view of fabricated chip. (b) SEM image of LSPCW. Magnified view shows the third-row lattice shifts and shallow grating. (c) Prism lens loaded above the device. (d) 1D steering of fan beam without lens for wavelength sweeping. The FFPs are overlapped with 0.1° spacing. (e) Wavelength dependence of $\theta $. Attached FFPs show a fan beam and a spot beam at $\lambda ={1.53}\;\unicode{x00B5}{\rm m}$. (f), (g) Beam divergence $\delta \theta $ and $\delta \phi $. Red and black show with and without the lens, respectively.
Fig. 3.
Fig. 3. Switching of light. (a) Top view of MZ switch. (b) Temperature distribution at the switch, which was observed by thermal microscope at $P={51}\;{\rm mW}$. (c) Emission from LSPCW. Light is coupled via a spot size converter on the left (shown by arrow) and emitted from the first LSPCW after passing through the switch tree along the dotted line. Similar switching is confirmed for other LSPCWs.
Fig. 4.
Fig. 4. Observed 2D beam steering characteristics. (a) Overlapped FFP image of steered spots. (b) Steering angle $\theta $. (c) Beam divergence $\delta \theta $ (black) and $\delta \phi $ (red).
Fig. 5.
Fig. 5. Flexible 2D beam steering: (a) 256 spot beams projected onto the screen. The distance from the device to the screen is approximately 2.3 m. (b)–(d) Various types of scanning: (b) zigzag, (c) spiral, (d) figure eight. The spots arranged in a trapezoidal area were due to the beam irradiating obliquely on the paper.