Abstract

Cataracts is a common ocular pathology where the crystalline lens tends to become opaque, degrading the quality of the retinal images because of the increase of both aberrations and scattering. In this work, we simultaneously generated and optically corrected the effects of cataracts in an optical bench by using a liquid crystal device spatial light modulator. The correction was carried out by implementing a feedback-based wavefront shaping technique with different spatial resolutions of the corrector phase maps. Its benefits were evaluated through objective and subjective descriptors of the quality of vision. The analysis of the experimental results, in addition to numerical calculations of the uncorrected and corrected ocular point spread functions, allowed us to understand the limitations of the technique and to present a strategy to overcome it for future in vivo applications.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Volumetric macro- and micro-scale assessment of crystalline lens opacities in cataract patients using long-depth-range swept source optical coherence tomography

Ireneusz Grulkowski, Silvestre Manzanera, Lukasz Cwiklinski, Juan Mompeán, Alberto de Castro, Jose Maria Marin, and Pablo Artal
Biomed. Opt. Express 9(8) 3821-3833 (2018)

Combined hardware and computational optical wavefront correction

Fredrick A. South, Kazuhiro Kurokawa, Zhuolin Liu, Yuan-Zhi Liu, Donald T. Miller, and Stephen A. Boppart
Biomed. Opt. Express 9(6) 2562-2574 (2018)

Binocular visual performance and summation after correcting higher order aberrations

Ramkumar Sabesan, Len Zheleznyak, and Geunyoung Yoon
Biomed. Opt. Express 3(12) 3176-3189 (2012)

References

  • View by:
  • |
  • |
  • |

  1. R. R. A. Bourne, S. R. Flaxman, T. Braithwaite, M. V. Cicinelli, A. Das, J. B. Jonas, J. Keeffe, J. H. Kempen, J. Leasher, H. Limburg, K. Naidoo, K. Pesudovs, S. Resnikoff, A. Silvester, G. A. Stevens, N. Tahhan, T. Y. Wong, and Y. Zheng, “Magnitude, temporal trends, and projections of the global prevalence of blindness and distance and near vision impairment: a systematic review and meta-analysis,” Lancet. Glob. Heal. 5, e888–e897 (2017).
    [Crossref]
  2. R. Michael and A. J. Bron, “The ageing lens and cataract: a model of normal and pathological ageing,” Philos. Trans. R. Soc. B. 366, 1278–1292 (2011).
    [Crossref]
  3. L. T. Chylack, J. K. Wolfe, D. M. Singer, M. C. Leske, M. A. Bullimore, I. L. Bailey, J. Friend, D. McCarthy, and S.-Y. Wu, “The lens opacities classification system III,” Arch. Ophthalmol. 111, 831 (1993).
    [Crossref]
  4. E. Chan, O. A. R. Mahroo, and D. J. Spalton, “Complications of cataract surgery,” Clin. Exp. Optom. 93, 379–389 (2010).
    [Crossref]
  5. Y. Liu, Y. Shen, H. Ruan, F. L. Brodie, T. T. W. Wong, C. Yang, and L. V. Wang, “Time-reversed ultrasonically encoded optical focusing through highly scattering ex vivo human cataractous lenses,” J. Biomed. Opt. 23, 010501 (2018).
    [Crossref]
  6. T. Mihashi, Y. Hirohara, K. Bessho, N. Maeda, T. Oshika, and T. Fujikado, “Intensity analysis of Hartmann-Shack images in cataractous, keratoconic, and normal eyes to investigate light scattering,” Jpn. J. Ophthalmol. 50, 323–333 (2006).
    [Crossref]
  7. D. Miller, J. L. Zuckerman, and G. O. Reynolds, “Phase aberration balancing of cataracts using holography,” Exp. Eye Res. 15, 157–160 (1973).
    [Crossref]
  8. I. M. Vellekoop and A. P. Mosk, “Focusing coherent light through opaque strongly scattering media,” Opt. Lett. 32, 2309–2311 (2007).
    [Crossref]
  9. J. Santamaría, P. Artal, and J. Bescós, “Determination of the point-spread function of human eyes using a hybrid optical-digital method,” J. Opt. Soc. Am. A 4, 1109–1114 (1987).
    [Crossref]
  10. R. Horstmeyer, H. Ruan, and C. Yang, “Guidestar-assisted wavefront-shaping methods for focusing light into biological tissue,” Nat. Photonics 9, 563–571 (2015).
    [Crossref]
  11. G. Stern and O. Katz, “Noninvasive focusing through scattering layers using speckle correlations,” Opt. Lett. 44, 143–146 (2019).
    [Crossref]
  12. J. Harriman, A. Linnenberger, and S. Serati, “Improving spatial light modulator performance through phase compensation,” Proc. SPIE 5553, 58–67 (2004).
    [Crossref]
  13. Y. Liu, J. Ma, B. Li, and J. Chu, “Hill-climbing algorithm based on Zernike modes for wavefront sensorless adaptive optics,” Opt. Eng. 52, 016601 (2013).
    [Crossref]
  14. L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, and R. Webb, and VSIA Standards Taskforce Members, “Standards for reporting the optical aberrations of eyes,” J. Refract. Surg. 18, S652–S660 (2002).
    [Crossref]
  15. I. M. Vellekoop and A. P. Mosk, “Phase control algorithms for focusing light through turbid media,” Opt. Commun. 281, 3071–3080 (2008).
    [Crossref]
  16. A. Arias, H. Ginis, and P. Artal, “Light scattering in the human eye modelled as random phase perturbations,” Biomed. Opt. Express 9, 2664–2670 (2018).
    [Crossref]
  17. J. J. Vos, B. L. Cole, H.-W. Bodmann, E. Colombo, T. Takeuchi, and T. J. T. P. van den Berg, CIE Equations for Disability Glare (2002).
  18. D. Mas, J. Garcia, C. Ferreira, L. M. Bernardo, and F. Marinho, “Fast algorithms for free-space diffraction patterns calculation,” Opt. Commun. 164, 233–245 (1999).
    [Crossref]
  19. A. Ravikumar, E. J. Sarver, and R. A. Applegate, “Change in visual acuity is highly correlated with change in six image quality metrics independent of wavefront error and/or pupil diameter,” J. Vis. 12(10):11 (2012).
    [Crossref]
  20. A. B. Watson and A. J. Ahumada, “A standard model for foveal detection of spatial contrast,” J. Vis. 5(9):6–740 (2005).
    [Crossref]
  21. G. D. Boreman and S. Yang, “Modulation transfer function measurement using three- and four-bar targets,” Appl. Opt. 34, 8050–8052 (1995).
    [Crossref]
  22. G. Yoon, “The use of metrics and adaptive optics to evaluate different correction strategies for highly aberrated eyes,” in Wavefront Congress (2008).
  23. J. L. Rodgers and W. A. N. Wander, “Thirteen ways to look at the correlation coefficient,” Am. Statist. 42, 59–66 (1988).
    [Crossref]
  24. H. R. Lieberman and A. P. Pentland, “Microcomputer-based estimation of psychophysical thresholds: the best PEST,” Behav. Res. Methods Instrum. 14, 21–25 (1982).
    [Crossref]
  25. S. Marcos, L. Sawides, E. Gambra, and C. Dorronsoro, “Influence of adaptive-optics ocular aberration correction on visual acuity at different luminances and contrast polarities,” J. Vis. 8(13):1 (2008).
    [Crossref]
  26. G. Osnabrugge, R. Horstmeyer, I. N. Papadopoulos, B. Judkewitz, and I. M. Vellekoop, “Generalized optical memory effect,” Optica 4, 886–892 (2017).
    [Crossref]

2019 (1)

2018 (2)

Y. Liu, Y. Shen, H. Ruan, F. L. Brodie, T. T. W. Wong, C. Yang, and L. V. Wang, “Time-reversed ultrasonically encoded optical focusing through highly scattering ex vivo human cataractous lenses,” J. Biomed. Opt. 23, 010501 (2018).
[Crossref]

A. Arias, H. Ginis, and P. Artal, “Light scattering in the human eye modelled as random phase perturbations,” Biomed. Opt. Express 9, 2664–2670 (2018).
[Crossref]

2017 (2)

G. Osnabrugge, R. Horstmeyer, I. N. Papadopoulos, B. Judkewitz, and I. M. Vellekoop, “Generalized optical memory effect,” Optica 4, 886–892 (2017).
[Crossref]

R. R. A. Bourne, S. R. Flaxman, T. Braithwaite, M. V. Cicinelli, A. Das, J. B. Jonas, J. Keeffe, J. H. Kempen, J. Leasher, H. Limburg, K. Naidoo, K. Pesudovs, S. Resnikoff, A. Silvester, G. A. Stevens, N. Tahhan, T. Y. Wong, and Y. Zheng, “Magnitude, temporal trends, and projections of the global prevalence of blindness and distance and near vision impairment: a systematic review and meta-analysis,” Lancet. Glob. Heal. 5, e888–e897 (2017).
[Crossref]

2015 (1)

R. Horstmeyer, H. Ruan, and C. Yang, “Guidestar-assisted wavefront-shaping methods for focusing light into biological tissue,” Nat. Photonics 9, 563–571 (2015).
[Crossref]

2013 (1)

Y. Liu, J. Ma, B. Li, and J. Chu, “Hill-climbing algorithm based on Zernike modes for wavefront sensorless adaptive optics,” Opt. Eng. 52, 016601 (2013).
[Crossref]

2012 (1)

A. Ravikumar, E. J. Sarver, and R. A. Applegate, “Change in visual acuity is highly correlated with change in six image quality metrics independent of wavefront error and/or pupil diameter,” J. Vis. 12(10):11 (2012).
[Crossref]

2011 (1)

R. Michael and A. J. Bron, “The ageing lens and cataract: a model of normal and pathological ageing,” Philos. Trans. R. Soc. B. 366, 1278–1292 (2011).
[Crossref]

2010 (1)

E. Chan, O. A. R. Mahroo, and D. J. Spalton, “Complications of cataract surgery,” Clin. Exp. Optom. 93, 379–389 (2010).
[Crossref]

2008 (2)

I. M. Vellekoop and A. P. Mosk, “Phase control algorithms for focusing light through turbid media,” Opt. Commun. 281, 3071–3080 (2008).
[Crossref]

S. Marcos, L. Sawides, E. Gambra, and C. Dorronsoro, “Influence of adaptive-optics ocular aberration correction on visual acuity at different luminances and contrast polarities,” J. Vis. 8(13):1 (2008).
[Crossref]

2007 (1)

2006 (1)

T. Mihashi, Y. Hirohara, K. Bessho, N. Maeda, T. Oshika, and T. Fujikado, “Intensity analysis of Hartmann-Shack images in cataractous, keratoconic, and normal eyes to investigate light scattering,” Jpn. J. Ophthalmol. 50, 323–333 (2006).
[Crossref]

2005 (1)

A. B. Watson and A. J. Ahumada, “A standard model for foveal detection of spatial contrast,” J. Vis. 5(9):6–740 (2005).
[Crossref]

2004 (1)

J. Harriman, A. Linnenberger, and S. Serati, “Improving spatial light modulator performance through phase compensation,” Proc. SPIE 5553, 58–67 (2004).
[Crossref]

2002 (1)

L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, and R. Webb, and VSIA Standards Taskforce Members, “Standards for reporting the optical aberrations of eyes,” J. Refract. Surg. 18, S652–S660 (2002).
[Crossref]

1999 (1)

D. Mas, J. Garcia, C. Ferreira, L. M. Bernardo, and F. Marinho, “Fast algorithms for free-space diffraction patterns calculation,” Opt. Commun. 164, 233–245 (1999).
[Crossref]

1995 (1)

1993 (1)

L. T. Chylack, J. K. Wolfe, D. M. Singer, M. C. Leske, M. A. Bullimore, I. L. Bailey, J. Friend, D. McCarthy, and S.-Y. Wu, “The lens opacities classification system III,” Arch. Ophthalmol. 111, 831 (1993).
[Crossref]

1988 (1)

J. L. Rodgers and W. A. N. Wander, “Thirteen ways to look at the correlation coefficient,” Am. Statist. 42, 59–66 (1988).
[Crossref]

1987 (1)

1982 (1)

H. R. Lieberman and A. P. Pentland, “Microcomputer-based estimation of psychophysical thresholds: the best PEST,” Behav. Res. Methods Instrum. 14, 21–25 (1982).
[Crossref]

1973 (1)

D. Miller, J. L. Zuckerman, and G. O. Reynolds, “Phase aberration balancing of cataracts using holography,” Exp. Eye Res. 15, 157–160 (1973).
[Crossref]

Ahumada, A. J.

A. B. Watson and A. J. Ahumada, “A standard model for foveal detection of spatial contrast,” J. Vis. 5(9):6–740 (2005).
[Crossref]

Applegate, R. A.

A. Ravikumar, E. J. Sarver, and R. A. Applegate, “Change in visual acuity is highly correlated with change in six image quality metrics independent of wavefront error and/or pupil diameter,” J. Vis. 12(10):11 (2012).
[Crossref]

L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, and R. Webb, and VSIA Standards Taskforce Members, “Standards for reporting the optical aberrations of eyes,” J. Refract. Surg. 18, S652–S660 (2002).
[Crossref]

Arias, A.

Artal, P.

Bailey, I. L.

L. T. Chylack, J. K. Wolfe, D. M. Singer, M. C. Leske, M. A. Bullimore, I. L. Bailey, J. Friend, D. McCarthy, and S.-Y. Wu, “The lens opacities classification system III,” Arch. Ophthalmol. 111, 831 (1993).
[Crossref]

Bernardo, L. M.

D. Mas, J. Garcia, C. Ferreira, L. M. Bernardo, and F. Marinho, “Fast algorithms for free-space diffraction patterns calculation,” Opt. Commun. 164, 233–245 (1999).
[Crossref]

Bescós, J.

Bessho, K.

T. Mihashi, Y. Hirohara, K. Bessho, N. Maeda, T. Oshika, and T. Fujikado, “Intensity analysis of Hartmann-Shack images in cataractous, keratoconic, and normal eyes to investigate light scattering,” Jpn. J. Ophthalmol. 50, 323–333 (2006).
[Crossref]

Bodmann, H.-W.

J. J. Vos, B. L. Cole, H.-W. Bodmann, E. Colombo, T. Takeuchi, and T. J. T. P. van den Berg, CIE Equations for Disability Glare (2002).

Boreman, G. D.

Bourne, R. R. A.

R. R. A. Bourne, S. R. Flaxman, T. Braithwaite, M. V. Cicinelli, A. Das, J. B. Jonas, J. Keeffe, J. H. Kempen, J. Leasher, H. Limburg, K. Naidoo, K. Pesudovs, S. Resnikoff, A. Silvester, G. A. Stevens, N. Tahhan, T. Y. Wong, and Y. Zheng, “Magnitude, temporal trends, and projections of the global prevalence of blindness and distance and near vision impairment: a systematic review and meta-analysis,” Lancet. Glob. Heal. 5, e888–e897 (2017).
[Crossref]

Braithwaite, T.

R. R. A. Bourne, S. R. Flaxman, T. Braithwaite, M. V. Cicinelli, A. Das, J. B. Jonas, J. Keeffe, J. H. Kempen, J. Leasher, H. Limburg, K. Naidoo, K. Pesudovs, S. Resnikoff, A. Silvester, G. A. Stevens, N. Tahhan, T. Y. Wong, and Y. Zheng, “Magnitude, temporal trends, and projections of the global prevalence of blindness and distance and near vision impairment: a systematic review and meta-analysis,” Lancet. Glob. Heal. 5, e888–e897 (2017).
[Crossref]

Brodie, F. L.

Y. Liu, Y. Shen, H. Ruan, F. L. Brodie, T. T. W. Wong, C. Yang, and L. V. Wang, “Time-reversed ultrasonically encoded optical focusing through highly scattering ex vivo human cataractous lenses,” J. Biomed. Opt. 23, 010501 (2018).
[Crossref]

Bron, A. J.

R. Michael and A. J. Bron, “The ageing lens and cataract: a model of normal and pathological ageing,” Philos. Trans. R. Soc. B. 366, 1278–1292 (2011).
[Crossref]

Bullimore, M. A.

L. T. Chylack, J. K. Wolfe, D. M. Singer, M. C. Leske, M. A. Bullimore, I. L. Bailey, J. Friend, D. McCarthy, and S.-Y. Wu, “The lens opacities classification system III,” Arch. Ophthalmol. 111, 831 (1993).
[Crossref]

Chan, E.

E. Chan, O. A. R. Mahroo, and D. J. Spalton, “Complications of cataract surgery,” Clin. Exp. Optom. 93, 379–389 (2010).
[Crossref]

Chu, J.

Y. Liu, J. Ma, B. Li, and J. Chu, “Hill-climbing algorithm based on Zernike modes for wavefront sensorless adaptive optics,” Opt. Eng. 52, 016601 (2013).
[Crossref]

Chylack, L. T.

L. T. Chylack, J. K. Wolfe, D. M. Singer, M. C. Leske, M. A. Bullimore, I. L. Bailey, J. Friend, D. McCarthy, and S.-Y. Wu, “The lens opacities classification system III,” Arch. Ophthalmol. 111, 831 (1993).
[Crossref]

Cicinelli, M. V.

R. R. A. Bourne, S. R. Flaxman, T. Braithwaite, M. V. Cicinelli, A. Das, J. B. Jonas, J. Keeffe, J. H. Kempen, J. Leasher, H. Limburg, K. Naidoo, K. Pesudovs, S. Resnikoff, A. Silvester, G. A. Stevens, N. Tahhan, T. Y. Wong, and Y. Zheng, “Magnitude, temporal trends, and projections of the global prevalence of blindness and distance and near vision impairment: a systematic review and meta-analysis,” Lancet. Glob. Heal. 5, e888–e897 (2017).
[Crossref]

Cole, B. L.

J. J. Vos, B. L. Cole, H.-W. Bodmann, E. Colombo, T. Takeuchi, and T. J. T. P. van den Berg, CIE Equations for Disability Glare (2002).

Colombo, E.

J. J. Vos, B. L. Cole, H.-W. Bodmann, E. Colombo, T. Takeuchi, and T. J. T. P. van den Berg, CIE Equations for Disability Glare (2002).

Das, A.

R. R. A. Bourne, S. R. Flaxman, T. Braithwaite, M. V. Cicinelli, A. Das, J. B. Jonas, J. Keeffe, J. H. Kempen, J. Leasher, H. Limburg, K. Naidoo, K. Pesudovs, S. Resnikoff, A. Silvester, G. A. Stevens, N. Tahhan, T. Y. Wong, and Y. Zheng, “Magnitude, temporal trends, and projections of the global prevalence of blindness and distance and near vision impairment: a systematic review and meta-analysis,” Lancet. Glob. Heal. 5, e888–e897 (2017).
[Crossref]

Dorronsoro, C.

S. Marcos, L. Sawides, E. Gambra, and C. Dorronsoro, “Influence of adaptive-optics ocular aberration correction on visual acuity at different luminances and contrast polarities,” J. Vis. 8(13):1 (2008).
[Crossref]

Ferreira, C.

D. Mas, J. Garcia, C. Ferreira, L. M. Bernardo, and F. Marinho, “Fast algorithms for free-space diffraction patterns calculation,” Opt. Commun. 164, 233–245 (1999).
[Crossref]

Flaxman, S. R.

R. R. A. Bourne, S. R. Flaxman, T. Braithwaite, M. V. Cicinelli, A. Das, J. B. Jonas, J. Keeffe, J. H. Kempen, J. Leasher, H. Limburg, K. Naidoo, K. Pesudovs, S. Resnikoff, A. Silvester, G. A. Stevens, N. Tahhan, T. Y. Wong, and Y. Zheng, “Magnitude, temporal trends, and projections of the global prevalence of blindness and distance and near vision impairment: a systematic review and meta-analysis,” Lancet. Glob. Heal. 5, e888–e897 (2017).
[Crossref]

Friend, J.

L. T. Chylack, J. K. Wolfe, D. M. Singer, M. C. Leske, M. A. Bullimore, I. L. Bailey, J. Friend, D. McCarthy, and S.-Y. Wu, “The lens opacities classification system III,” Arch. Ophthalmol. 111, 831 (1993).
[Crossref]

Fujikado, T.

T. Mihashi, Y. Hirohara, K. Bessho, N. Maeda, T. Oshika, and T. Fujikado, “Intensity analysis of Hartmann-Shack images in cataractous, keratoconic, and normal eyes to investigate light scattering,” Jpn. J. Ophthalmol. 50, 323–333 (2006).
[Crossref]

Gambra, E.

S. Marcos, L. Sawides, E. Gambra, and C. Dorronsoro, “Influence of adaptive-optics ocular aberration correction on visual acuity at different luminances and contrast polarities,” J. Vis. 8(13):1 (2008).
[Crossref]

Garcia, J.

D. Mas, J. Garcia, C. Ferreira, L. M. Bernardo, and F. Marinho, “Fast algorithms for free-space diffraction patterns calculation,” Opt. Commun. 164, 233–245 (1999).
[Crossref]

Ginis, H.

Harriman, J.

J. Harriman, A. Linnenberger, and S. Serati, “Improving spatial light modulator performance through phase compensation,” Proc. SPIE 5553, 58–67 (2004).
[Crossref]

Hirohara, Y.

T. Mihashi, Y. Hirohara, K. Bessho, N. Maeda, T. Oshika, and T. Fujikado, “Intensity analysis of Hartmann-Shack images in cataractous, keratoconic, and normal eyes to investigate light scattering,” Jpn. J. Ophthalmol. 50, 323–333 (2006).
[Crossref]

Horstmeyer, R.

G. Osnabrugge, R. Horstmeyer, I. N. Papadopoulos, B. Judkewitz, and I. M. Vellekoop, “Generalized optical memory effect,” Optica 4, 886–892 (2017).
[Crossref]

R. Horstmeyer, H. Ruan, and C. Yang, “Guidestar-assisted wavefront-shaping methods for focusing light into biological tissue,” Nat. Photonics 9, 563–571 (2015).
[Crossref]

Jonas, J. B.

R. R. A. Bourne, S. R. Flaxman, T. Braithwaite, M. V. Cicinelli, A. Das, J. B. Jonas, J. Keeffe, J. H. Kempen, J. Leasher, H. Limburg, K. Naidoo, K. Pesudovs, S. Resnikoff, A. Silvester, G. A. Stevens, N. Tahhan, T. Y. Wong, and Y. Zheng, “Magnitude, temporal trends, and projections of the global prevalence of blindness and distance and near vision impairment: a systematic review and meta-analysis,” Lancet. Glob. Heal. 5, e888–e897 (2017).
[Crossref]

Judkewitz, B.

Katz, O.

Keeffe, J.

R. R. A. Bourne, S. R. Flaxman, T. Braithwaite, M. V. Cicinelli, A. Das, J. B. Jonas, J. Keeffe, J. H. Kempen, J. Leasher, H. Limburg, K. Naidoo, K. Pesudovs, S. Resnikoff, A. Silvester, G. A. Stevens, N. Tahhan, T. Y. Wong, and Y. Zheng, “Magnitude, temporal trends, and projections of the global prevalence of blindness and distance and near vision impairment: a systematic review and meta-analysis,” Lancet. Glob. Heal. 5, e888–e897 (2017).
[Crossref]

Kempen, J. H.

R. R. A. Bourne, S. R. Flaxman, T. Braithwaite, M. V. Cicinelli, A. Das, J. B. Jonas, J. Keeffe, J. H. Kempen, J. Leasher, H. Limburg, K. Naidoo, K. Pesudovs, S. Resnikoff, A. Silvester, G. A. Stevens, N. Tahhan, T. Y. Wong, and Y. Zheng, “Magnitude, temporal trends, and projections of the global prevalence of blindness and distance and near vision impairment: a systematic review and meta-analysis,” Lancet. Glob. Heal. 5, e888–e897 (2017).
[Crossref]

Leasher, J.

R. R. A. Bourne, S. R. Flaxman, T. Braithwaite, M. V. Cicinelli, A. Das, J. B. Jonas, J. Keeffe, J. H. Kempen, J. Leasher, H. Limburg, K. Naidoo, K. Pesudovs, S. Resnikoff, A. Silvester, G. A. Stevens, N. Tahhan, T. Y. Wong, and Y. Zheng, “Magnitude, temporal trends, and projections of the global prevalence of blindness and distance and near vision impairment: a systematic review and meta-analysis,” Lancet. Glob. Heal. 5, e888–e897 (2017).
[Crossref]

Leske, M. C.

L. T. Chylack, J. K. Wolfe, D. M. Singer, M. C. Leske, M. A. Bullimore, I. L. Bailey, J. Friend, D. McCarthy, and S.-Y. Wu, “The lens opacities classification system III,” Arch. Ophthalmol. 111, 831 (1993).
[Crossref]

Li, B.

Y. Liu, J. Ma, B. Li, and J. Chu, “Hill-climbing algorithm based on Zernike modes for wavefront sensorless adaptive optics,” Opt. Eng. 52, 016601 (2013).
[Crossref]

Lieberman, H. R.

H. R. Lieberman and A. P. Pentland, “Microcomputer-based estimation of psychophysical thresholds: the best PEST,” Behav. Res. Methods Instrum. 14, 21–25 (1982).
[Crossref]

Limburg, H.

R. R. A. Bourne, S. R. Flaxman, T. Braithwaite, M. V. Cicinelli, A. Das, J. B. Jonas, J. Keeffe, J. H. Kempen, J. Leasher, H. Limburg, K. Naidoo, K. Pesudovs, S. Resnikoff, A. Silvester, G. A. Stevens, N. Tahhan, T. Y. Wong, and Y. Zheng, “Magnitude, temporal trends, and projections of the global prevalence of blindness and distance and near vision impairment: a systematic review and meta-analysis,” Lancet. Glob. Heal. 5, e888–e897 (2017).
[Crossref]

Linnenberger, A.

J. Harriman, A. Linnenberger, and S. Serati, “Improving spatial light modulator performance through phase compensation,” Proc. SPIE 5553, 58–67 (2004).
[Crossref]

Liu, Y.

Y. Liu, Y. Shen, H. Ruan, F. L. Brodie, T. T. W. Wong, C. Yang, and L. V. Wang, “Time-reversed ultrasonically encoded optical focusing through highly scattering ex vivo human cataractous lenses,” J. Biomed. Opt. 23, 010501 (2018).
[Crossref]

Y. Liu, J. Ma, B. Li, and J. Chu, “Hill-climbing algorithm based on Zernike modes for wavefront sensorless adaptive optics,” Opt. Eng. 52, 016601 (2013).
[Crossref]

Ma, J.

Y. Liu, J. Ma, B. Li, and J. Chu, “Hill-climbing algorithm based on Zernike modes for wavefront sensorless adaptive optics,” Opt. Eng. 52, 016601 (2013).
[Crossref]

Maeda, N.

T. Mihashi, Y. Hirohara, K. Bessho, N. Maeda, T. Oshika, and T. Fujikado, “Intensity analysis of Hartmann-Shack images in cataractous, keratoconic, and normal eyes to investigate light scattering,” Jpn. J. Ophthalmol. 50, 323–333 (2006).
[Crossref]

Mahroo, O. A. R.

E. Chan, O. A. R. Mahroo, and D. J. Spalton, “Complications of cataract surgery,” Clin. Exp. Optom. 93, 379–389 (2010).
[Crossref]

Marcos, S.

S. Marcos, L. Sawides, E. Gambra, and C. Dorronsoro, “Influence of adaptive-optics ocular aberration correction on visual acuity at different luminances and contrast polarities,” J. Vis. 8(13):1 (2008).
[Crossref]

Marinho, F.

D. Mas, J. Garcia, C. Ferreira, L. M. Bernardo, and F. Marinho, “Fast algorithms for free-space diffraction patterns calculation,” Opt. Commun. 164, 233–245 (1999).
[Crossref]

Mas, D.

D. Mas, J. Garcia, C. Ferreira, L. M. Bernardo, and F. Marinho, “Fast algorithms for free-space diffraction patterns calculation,” Opt. Commun. 164, 233–245 (1999).
[Crossref]

McCarthy, D.

L. T. Chylack, J. K. Wolfe, D. M. Singer, M. C. Leske, M. A. Bullimore, I. L. Bailey, J. Friend, D. McCarthy, and S.-Y. Wu, “The lens opacities classification system III,” Arch. Ophthalmol. 111, 831 (1993).
[Crossref]

Michael, R.

R. Michael and A. J. Bron, “The ageing lens and cataract: a model of normal and pathological ageing,” Philos. Trans. R. Soc. B. 366, 1278–1292 (2011).
[Crossref]

Mihashi, T.

T. Mihashi, Y. Hirohara, K. Bessho, N. Maeda, T. Oshika, and T. Fujikado, “Intensity analysis of Hartmann-Shack images in cataractous, keratoconic, and normal eyes to investigate light scattering,” Jpn. J. Ophthalmol. 50, 323–333 (2006).
[Crossref]

Miller, D.

D. Miller, J. L. Zuckerman, and G. O. Reynolds, “Phase aberration balancing of cataracts using holography,” Exp. Eye Res. 15, 157–160 (1973).
[Crossref]

Mosk, A. P.

I. M. Vellekoop and A. P. Mosk, “Phase control algorithms for focusing light through turbid media,” Opt. Commun. 281, 3071–3080 (2008).
[Crossref]

I. M. Vellekoop and A. P. Mosk, “Focusing coherent light through opaque strongly scattering media,” Opt. Lett. 32, 2309–2311 (2007).
[Crossref]

Naidoo, K.

R. R. A. Bourne, S. R. Flaxman, T. Braithwaite, M. V. Cicinelli, A. Das, J. B. Jonas, J. Keeffe, J. H. Kempen, J. Leasher, H. Limburg, K. Naidoo, K. Pesudovs, S. Resnikoff, A. Silvester, G. A. Stevens, N. Tahhan, T. Y. Wong, and Y. Zheng, “Magnitude, temporal trends, and projections of the global prevalence of blindness and distance and near vision impairment: a systematic review and meta-analysis,” Lancet. Glob. Heal. 5, e888–e897 (2017).
[Crossref]

Oshika, T.

T. Mihashi, Y. Hirohara, K. Bessho, N. Maeda, T. Oshika, and T. Fujikado, “Intensity analysis of Hartmann-Shack images in cataractous, keratoconic, and normal eyes to investigate light scattering,” Jpn. J. Ophthalmol. 50, 323–333 (2006).
[Crossref]

Osnabrugge, G.

Papadopoulos, I. N.

Pentland, A. P.

H. R. Lieberman and A. P. Pentland, “Microcomputer-based estimation of psychophysical thresholds: the best PEST,” Behav. Res. Methods Instrum. 14, 21–25 (1982).
[Crossref]

Pesudovs, K.

R. R. A. Bourne, S. R. Flaxman, T. Braithwaite, M. V. Cicinelli, A. Das, J. B. Jonas, J. Keeffe, J. H. Kempen, J. Leasher, H. Limburg, K. Naidoo, K. Pesudovs, S. Resnikoff, A. Silvester, G. A. Stevens, N. Tahhan, T. Y. Wong, and Y. Zheng, “Magnitude, temporal trends, and projections of the global prevalence of blindness and distance and near vision impairment: a systematic review and meta-analysis,” Lancet. Glob. Heal. 5, e888–e897 (2017).
[Crossref]

Ravikumar, A.

A. Ravikumar, E. J. Sarver, and R. A. Applegate, “Change in visual acuity is highly correlated with change in six image quality metrics independent of wavefront error and/or pupil diameter,” J. Vis. 12(10):11 (2012).
[Crossref]

Resnikoff, S.

R. R. A. Bourne, S. R. Flaxman, T. Braithwaite, M. V. Cicinelli, A. Das, J. B. Jonas, J. Keeffe, J. H. Kempen, J. Leasher, H. Limburg, K. Naidoo, K. Pesudovs, S. Resnikoff, A. Silvester, G. A. Stevens, N. Tahhan, T. Y. Wong, and Y. Zheng, “Magnitude, temporal trends, and projections of the global prevalence of blindness and distance and near vision impairment: a systematic review and meta-analysis,” Lancet. Glob. Heal. 5, e888–e897 (2017).
[Crossref]

Reynolds, G. O.

D. Miller, J. L. Zuckerman, and G. O. Reynolds, “Phase aberration balancing of cataracts using holography,” Exp. Eye Res. 15, 157–160 (1973).
[Crossref]

Rodgers, J. L.

J. L. Rodgers and W. A. N. Wander, “Thirteen ways to look at the correlation coefficient,” Am. Statist. 42, 59–66 (1988).
[Crossref]

Ruan, H.

Y. Liu, Y. Shen, H. Ruan, F. L. Brodie, T. T. W. Wong, C. Yang, and L. V. Wang, “Time-reversed ultrasonically encoded optical focusing through highly scattering ex vivo human cataractous lenses,” J. Biomed. Opt. 23, 010501 (2018).
[Crossref]

R. Horstmeyer, H. Ruan, and C. Yang, “Guidestar-assisted wavefront-shaping methods for focusing light into biological tissue,” Nat. Photonics 9, 563–571 (2015).
[Crossref]

Santamaría, J.

Sarver, E. J.

A. Ravikumar, E. J. Sarver, and R. A. Applegate, “Change in visual acuity is highly correlated with change in six image quality metrics independent of wavefront error and/or pupil diameter,” J. Vis. 12(10):11 (2012).
[Crossref]

Sawides, L.

S. Marcos, L. Sawides, E. Gambra, and C. Dorronsoro, “Influence of adaptive-optics ocular aberration correction on visual acuity at different luminances and contrast polarities,” J. Vis. 8(13):1 (2008).
[Crossref]

Schwiegerling, J. T.

L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, and R. Webb, and VSIA Standards Taskforce Members, “Standards for reporting the optical aberrations of eyes,” J. Refract. Surg. 18, S652–S660 (2002).
[Crossref]

Serati, S.

J. Harriman, A. Linnenberger, and S. Serati, “Improving spatial light modulator performance through phase compensation,” Proc. SPIE 5553, 58–67 (2004).
[Crossref]

Shen, Y.

Y. Liu, Y. Shen, H. Ruan, F. L. Brodie, T. T. W. Wong, C. Yang, and L. V. Wang, “Time-reversed ultrasonically encoded optical focusing through highly scattering ex vivo human cataractous lenses,” J. Biomed. Opt. 23, 010501 (2018).
[Crossref]

Silvester, A.

R. R. A. Bourne, S. R. Flaxman, T. Braithwaite, M. V. Cicinelli, A. Das, J. B. Jonas, J. Keeffe, J. H. Kempen, J. Leasher, H. Limburg, K. Naidoo, K. Pesudovs, S. Resnikoff, A. Silvester, G. A. Stevens, N. Tahhan, T. Y. Wong, and Y. Zheng, “Magnitude, temporal trends, and projections of the global prevalence of blindness and distance and near vision impairment: a systematic review and meta-analysis,” Lancet. Glob. Heal. 5, e888–e897 (2017).
[Crossref]

Singer, D. M.

L. T. Chylack, J. K. Wolfe, D. M. Singer, M. C. Leske, M. A. Bullimore, I. L. Bailey, J. Friend, D. McCarthy, and S.-Y. Wu, “The lens opacities classification system III,” Arch. Ophthalmol. 111, 831 (1993).
[Crossref]

Spalton, D. J.

E. Chan, O. A. R. Mahroo, and D. J. Spalton, “Complications of cataract surgery,” Clin. Exp. Optom. 93, 379–389 (2010).
[Crossref]

Stern, G.

Stevens, G. A.

R. R. A. Bourne, S. R. Flaxman, T. Braithwaite, M. V. Cicinelli, A. Das, J. B. Jonas, J. Keeffe, J. H. Kempen, J. Leasher, H. Limburg, K. Naidoo, K. Pesudovs, S. Resnikoff, A. Silvester, G. A. Stevens, N. Tahhan, T. Y. Wong, and Y. Zheng, “Magnitude, temporal trends, and projections of the global prevalence of blindness and distance and near vision impairment: a systematic review and meta-analysis,” Lancet. Glob. Heal. 5, e888–e897 (2017).
[Crossref]

Tahhan, N.

R. R. A. Bourne, S. R. Flaxman, T. Braithwaite, M. V. Cicinelli, A. Das, J. B. Jonas, J. Keeffe, J. H. Kempen, J. Leasher, H. Limburg, K. Naidoo, K. Pesudovs, S. Resnikoff, A. Silvester, G. A. Stevens, N. Tahhan, T. Y. Wong, and Y. Zheng, “Magnitude, temporal trends, and projections of the global prevalence of blindness and distance and near vision impairment: a systematic review and meta-analysis,” Lancet. Glob. Heal. 5, e888–e897 (2017).
[Crossref]

Takeuchi, T.

J. J. Vos, B. L. Cole, H.-W. Bodmann, E. Colombo, T. Takeuchi, and T. J. T. P. van den Berg, CIE Equations for Disability Glare (2002).

Thibos, L. N.

L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, and R. Webb, and VSIA Standards Taskforce Members, “Standards for reporting the optical aberrations of eyes,” J. Refract. Surg. 18, S652–S660 (2002).
[Crossref]

van den Berg, T. J. T. P.

J. J. Vos, B. L. Cole, H.-W. Bodmann, E. Colombo, T. Takeuchi, and T. J. T. P. van den Berg, CIE Equations for Disability Glare (2002).

Vellekoop, I. M.

Vos, J. J.

J. J. Vos, B. L. Cole, H.-W. Bodmann, E. Colombo, T. Takeuchi, and T. J. T. P. van den Berg, CIE Equations for Disability Glare (2002).

Wander, W. A. N.

J. L. Rodgers and W. A. N. Wander, “Thirteen ways to look at the correlation coefficient,” Am. Statist. 42, 59–66 (1988).
[Crossref]

Wang, L. V.

Y. Liu, Y. Shen, H. Ruan, F. L. Brodie, T. T. W. Wong, C. Yang, and L. V. Wang, “Time-reversed ultrasonically encoded optical focusing through highly scattering ex vivo human cataractous lenses,” J. Biomed. Opt. 23, 010501 (2018).
[Crossref]

Watson, A. B.

A. B. Watson and A. J. Ahumada, “A standard model for foveal detection of spatial contrast,” J. Vis. 5(9):6–740 (2005).
[Crossref]

Webb, R.

L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, and R. Webb, and VSIA Standards Taskforce Members, “Standards for reporting the optical aberrations of eyes,” J. Refract. Surg. 18, S652–S660 (2002).
[Crossref]

Wolfe, J. K.

L. T. Chylack, J. K. Wolfe, D. M. Singer, M. C. Leske, M. A. Bullimore, I. L. Bailey, J. Friend, D. McCarthy, and S.-Y. Wu, “The lens opacities classification system III,” Arch. Ophthalmol. 111, 831 (1993).
[Crossref]

Wong, T. T. W.

Y. Liu, Y. Shen, H. Ruan, F. L. Brodie, T. T. W. Wong, C. Yang, and L. V. Wang, “Time-reversed ultrasonically encoded optical focusing through highly scattering ex vivo human cataractous lenses,” J. Biomed. Opt. 23, 010501 (2018).
[Crossref]

Wong, T. Y.

R. R. A. Bourne, S. R. Flaxman, T. Braithwaite, M. V. Cicinelli, A. Das, J. B. Jonas, J. Keeffe, J. H. Kempen, J. Leasher, H. Limburg, K. Naidoo, K. Pesudovs, S. Resnikoff, A. Silvester, G. A. Stevens, N. Tahhan, T. Y. Wong, and Y. Zheng, “Magnitude, temporal trends, and projections of the global prevalence of blindness and distance and near vision impairment: a systematic review and meta-analysis,” Lancet. Glob. Heal. 5, e888–e897 (2017).
[Crossref]

Wu, S.-Y.

L. T. Chylack, J. K. Wolfe, D. M. Singer, M. C. Leske, M. A. Bullimore, I. L. Bailey, J. Friend, D. McCarthy, and S.-Y. Wu, “The lens opacities classification system III,” Arch. Ophthalmol. 111, 831 (1993).
[Crossref]

Yang, C.

Y. Liu, Y. Shen, H. Ruan, F. L. Brodie, T. T. W. Wong, C. Yang, and L. V. Wang, “Time-reversed ultrasonically encoded optical focusing through highly scattering ex vivo human cataractous lenses,” J. Biomed. Opt. 23, 010501 (2018).
[Crossref]

R. Horstmeyer, H. Ruan, and C. Yang, “Guidestar-assisted wavefront-shaping methods for focusing light into biological tissue,” Nat. Photonics 9, 563–571 (2015).
[Crossref]

Yang, S.

Yoon, G.

G. Yoon, “The use of metrics and adaptive optics to evaluate different correction strategies for highly aberrated eyes,” in Wavefront Congress (2008).

Zheng, Y.

R. R. A. Bourne, S. R. Flaxman, T. Braithwaite, M. V. Cicinelli, A. Das, J. B. Jonas, J. Keeffe, J. H. Kempen, J. Leasher, H. Limburg, K. Naidoo, K. Pesudovs, S. Resnikoff, A. Silvester, G. A. Stevens, N. Tahhan, T. Y. Wong, and Y. Zheng, “Magnitude, temporal trends, and projections of the global prevalence of blindness and distance and near vision impairment: a systematic review and meta-analysis,” Lancet. Glob. Heal. 5, e888–e897 (2017).
[Crossref]

Zuckerman, J. L.

D. Miller, J. L. Zuckerman, and G. O. Reynolds, “Phase aberration balancing of cataracts using holography,” Exp. Eye Res. 15, 157–160 (1973).
[Crossref]

Am. Statist. (1)

J. L. Rodgers and W. A. N. Wander, “Thirteen ways to look at the correlation coefficient,” Am. Statist. 42, 59–66 (1988).
[Crossref]

Appl. Opt. (1)

Arch. Ophthalmol. (1)

L. T. Chylack, J. K. Wolfe, D. M. Singer, M. C. Leske, M. A. Bullimore, I. L. Bailey, J. Friend, D. McCarthy, and S.-Y. Wu, “The lens opacities classification system III,” Arch. Ophthalmol. 111, 831 (1993).
[Crossref]

Behav. Res. Methods Instrum. (1)

H. R. Lieberman and A. P. Pentland, “Microcomputer-based estimation of psychophysical thresholds: the best PEST,” Behav. Res. Methods Instrum. 14, 21–25 (1982).
[Crossref]

Biomed. Opt. Express (1)

Clin. Exp. Optom. (1)

E. Chan, O. A. R. Mahroo, and D. J. Spalton, “Complications of cataract surgery,” Clin. Exp. Optom. 93, 379–389 (2010).
[Crossref]

Exp. Eye Res. (1)

D. Miller, J. L. Zuckerman, and G. O. Reynolds, “Phase aberration balancing of cataracts using holography,” Exp. Eye Res. 15, 157–160 (1973).
[Crossref]

J. Biomed. Opt. (1)

Y. Liu, Y. Shen, H. Ruan, F. L. Brodie, T. T. W. Wong, C. Yang, and L. V. Wang, “Time-reversed ultrasonically encoded optical focusing through highly scattering ex vivo human cataractous lenses,” J. Biomed. Opt. 23, 010501 (2018).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Refract. Surg. (1)

L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, and R. Webb, and VSIA Standards Taskforce Members, “Standards for reporting the optical aberrations of eyes,” J. Refract. Surg. 18, S652–S660 (2002).
[Crossref]

J. Vis. (3)

S. Marcos, L. Sawides, E. Gambra, and C. Dorronsoro, “Influence of adaptive-optics ocular aberration correction on visual acuity at different luminances and contrast polarities,” J. Vis. 8(13):1 (2008).
[Crossref]

A. Ravikumar, E. J. Sarver, and R. A. Applegate, “Change in visual acuity is highly correlated with change in six image quality metrics independent of wavefront error and/or pupil diameter,” J. Vis. 12(10):11 (2012).
[Crossref]

A. B. Watson and A. J. Ahumada, “A standard model for foveal detection of spatial contrast,” J. Vis. 5(9):6–740 (2005).
[Crossref]

Jpn. J. Ophthalmol. (1)

T. Mihashi, Y. Hirohara, K. Bessho, N. Maeda, T. Oshika, and T. Fujikado, “Intensity analysis of Hartmann-Shack images in cataractous, keratoconic, and normal eyes to investigate light scattering,” Jpn. J. Ophthalmol. 50, 323–333 (2006).
[Crossref]

Lancet. Glob. Heal. (1)

R. R. A. Bourne, S. R. Flaxman, T. Braithwaite, M. V. Cicinelli, A. Das, J. B. Jonas, J. Keeffe, J. H. Kempen, J. Leasher, H. Limburg, K. Naidoo, K. Pesudovs, S. Resnikoff, A. Silvester, G. A. Stevens, N. Tahhan, T. Y. Wong, and Y. Zheng, “Magnitude, temporal trends, and projections of the global prevalence of blindness and distance and near vision impairment: a systematic review and meta-analysis,” Lancet. Glob. Heal. 5, e888–e897 (2017).
[Crossref]

Nat. Photonics (1)

R. Horstmeyer, H. Ruan, and C. Yang, “Guidestar-assisted wavefront-shaping methods for focusing light into biological tissue,” Nat. Photonics 9, 563–571 (2015).
[Crossref]

Opt. Commun. (2)

I. M. Vellekoop and A. P. Mosk, “Phase control algorithms for focusing light through turbid media,” Opt. Commun. 281, 3071–3080 (2008).
[Crossref]

D. Mas, J. Garcia, C. Ferreira, L. M. Bernardo, and F. Marinho, “Fast algorithms for free-space diffraction patterns calculation,” Opt. Commun. 164, 233–245 (1999).
[Crossref]

Opt. Eng. (1)

Y. Liu, J. Ma, B. Li, and J. Chu, “Hill-climbing algorithm based on Zernike modes for wavefront sensorless adaptive optics,” Opt. Eng. 52, 016601 (2013).
[Crossref]

Opt. Lett. (2)

Optica (1)

Philos. Trans. R. Soc. B. (1)

R. Michael and A. J. Bron, “The ageing lens and cataract: a model of normal and pathological ageing,” Philos. Trans. R. Soc. B. 366, 1278–1292 (2011).
[Crossref]

Proc. SPIE (1)

J. Harriman, A. Linnenberger, and S. Serati, “Improving spatial light modulator performance through phase compensation,” Proc. SPIE 5553, 58–67 (2004).
[Crossref]

Other (2)

J. J. Vos, B. L. Cole, H.-W. Bodmann, E. Colombo, T. Takeuchi, and T. J. T. P. van den Berg, CIE Equations for Disability Glare (2002).

G. Yoon, “The use of metrics and adaptive optics to evaluate different correction strategies for highly aberrated eyes,” in Wavefront Congress (2008).

Supplementary Material (1)

NameDescription
» Supplement 1       Supplement

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. Experimental setup for the simultaneous generation and compensation of the effects of intraocular straylight. Label descriptions: FM, flip mirror; M, mirror; RD, rotating diffuser; BS, beam splitter; CA, circular aperture; POL, linear polarizer; IR LED, infrared light-emitting diode; FPC and LPC, frontal and lateral pupil cameras, respectively. The red dotted line depicts the path of the beam during the feedback-based WS correction.
Fig. 2.
Fig. 2. (a) Normalized uncorrected and corrected (by using a size of segment of 110 µm) PSFs for each amount of straylight. Length of the green bar is 5 arcmin. (b) Enhancement factor as function of the size of the segment. Error bars are standard deviation.
Fig. 3.
Fig. 3. (a) Comparison of the MTF profiles for the uncorrected (dashed line), corrected (continuous line), and without induced (black line) straylight. (b) LogVSMTF as function of the size of segment for each amount of straylight, depicting the uncorrected values with the dashed lines.
Fig. 4.
Fig. 4. (a) Uncorrected and corrected (by using a size of segment of 55 µm) small- and large-sized optotypes with both polarities. (b) Correlation coefficients as function of the size of the optotypes and segments for both polarities and the three induced amounts of straylight.
Fig. 5.
Fig. 5. (a) High-contrast visual acuity as function of the stimulus luminance. The cyan line depicts the luminance range of the corrected optotypes. (b) Comparison of inter-subject averaged visual acuity with uncorrected (dashed lines), corrected (continuous line) and without (blue line) straylight. Error bars are standard deviations.
Fig. 6.
Fig. 6. Numerical calculation of the uncorrected and corrected radially averaged wide-angle PSFs.
Fig. 7.
Fig. 7. Simulation of a scene seen through: (a) clear optics, (b) the advanced cataractous effects, and (c) their partial correction by WS. (d) Proposed simplification to lead (e) the increased contrast image.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

W = i = o N 1 j = 0 N 1 F ( f i , f j ) R j i cos ( π ϕ f i N i ) cos ( π ϕ f j N j ) ,
F ( f i , f j ) = B ( f i 2 + f j 2 ) β / 2 .
Log 10 ( s ) = 1.744 Log 10 ( B ) + 0.487.
LogVSMTF = Log 10 [ g MTF ( g ) NCSF ( g ) g MTF s ( g ) NCSF ( g ) ] ,
C C = i = 1 M ( O i O ¯ ) ( I i I ¯ ) i = 1 M ( O i O ¯ ) 2 i = 1 M ( I i I ¯ ) 2 ,

Metrics