Abstract

In real-life implementations of quantum key distribution (QKD), the physical systems with unwanted imperfections would be exploited by an eavesdropper. Based on imperfections in the detectors, detector-control attacks have been successfully launched on several QKD systems and attracted widespread concerns. Here, we propose a robust countermeasure against these attacks just by introducing a variable attenuator in front of the detector. This countermeasure is not only effective against attacks with blinding light, but it is also robust against attacks without blinding light, which are more concealed and threatening. Different from previous technical improvements, the single-photon detector in our countermeasure model is treated as a black box, and the eavesdropper can be detected by statistics of the detection and error rates of the QKD system. Besides theoretical proof, the countermeasure is also supported by an experimental demonstration. Our countermeasure is general in the sense that it is independent of the technical details of the detector, and can be easily applied to existing QKD systems.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Real-time monitoring of single-photon detectors against eavesdropping in quantum key distribution systems

Thiago Ferreira da Silva, Guilherme B. Xavier, Guilherme P. Temporão, and Jean Pierre von der Weid
Opt. Express 20(17) 18911-18924 (2012)

Countermeasure against tailored bright illumination attack for DPS-QKD

Toshimori Honjo, Mikio Fujiwara, Kaoru Shimizu, Kiyoshi Tamaki, Shigehito Miki, Taro Yamashita, Hirotaka Terai, Zhen Wang, and Masahide Sasaki
Opt. Express 21(3) 2667-2673 (2013)

Long-distance quantum key distribution secure against coherent attacks

Bernd Fröhlich, Marco Lucamarini, James F. Dynes, Lucian C. Comandar, Winci W.-S. Tam, Alan Plews, Andrew W. Sharpe, Zhiliang Yuan, and Andrew J. Shields
Optica 4(1) 163-167 (2017)

References

  • View by:
  • |
  • |
  • |

  1. N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145 (2002).
    [Crossref]
  2. H.-K. Lo and H. F. Chau, “Unconditional security of quantum key distribution over arbitrarily long distances,” Science 283, 2050–2056 (1999).
    [Crossref]
  3. V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dušek, N. Lütkenhaus, and M. Peev, “The security of practical quantum key distribution,” Rev. Mod. Phys. 81, 1301 (2009).
    [Crossref]
  4. D. Gottesman, H.-K. Lo, N. Lütkenhaus, and J. Preskill, “Security of quantum key distribution with imperfect devices,” Quantum Inf. Comput. 4, 325–360 (2004).
    [Crossref]
  5. B. Huttner, N. Imoto, N. Gisin, and T. Mor, “Quantum cryptography with coherent states,” Phys. Rev. A 51, 1863 (1995).
    [Crossref]
  6. N. Lütkenhaus and M. Jahma, “Quantum key distribution with realistic states: photon-number statistics in the photon-number splitting attack,” New J. Phys. 4, 44 (2002).
    [Crossref]
  7. C.-H. F. Fung, B. Qi, K. Tamaki, and H.-K. Lo, “Phase-remapping attack in practical quantum-key-distribution systems,” Phys. Rev. A 75, 032314 (2007).
    [Crossref]
  8. F. Xu, B. Qi, and H.-K. Lo, “Experimental demonstration of phase-remapping attack in a practical quantum key distribution system,” New J. Phys. 12, 113026 (2010).
    [Crossref]
  9. N. Gisin, S. Fasel, B. Kraus, H. Zbinden, and G. Ribordy, “Trojan-horse attacks on quantum-key-distribution systems,” Phys. Rev. A 73, 022320 (2006).
    [Crossref]
  10. B. Qi, C.-H. F. Fung, H.-K. Lo, and X. Ma, “Time-shift attack in practical quantum cryptosystems,” Quantum Inf. Comput. 7, 73–82 (2007).
  11. Y. Zhao, C.-H. F. Fung, B. Qi, C. Chen, and H.-K. Lo, “Quantum hacking: experimental demonstration of time-shift attack against practical quantum-key-distribution systems,” Phys. Rev. A 78, 042333 (2008).
    [Crossref]
  12. H. W. Li, S. Wang, J. Z. Huang, W. Chen, Z. Q. Yin, F. Y. Li, Z. Zhou, D. Liu, Y. Zhang, G. C. Guo, W. S. Bao, and Z. F. Han, “Attacking a practical quantum-key-distribution system with wavelength-dependent beam-splitter and multiwavelength sources,” Phys. Rev. A 84, 062308 (2011).
    [Crossref]
  13. L. Lydersen, C. Wiechers, C. Wittmann, D. Elser, J. Skaar, and V. Makarov, “Hacking commercial quantum cryptography systems by tailored bright illumination,” Nat. Photonics 4, 686–689 (2010).
    [Crossref]
  14. I. Gerhardt, Q. Liu, A. Lamas-Linares, J. Skaar, C. Kurtsiefer, and V. Makarov, “Full-field implementation of a perfect eavesdropper on a quantum cryptography system,” Nat. Commun. 2, 349 (2011).
    [Crossref]
  15. L. Lydersen, C. Wiechers, C. Wittmann, D. Elser, J. Skaar, and V. Makarov, “Thermal blinding of gated detectors in quantum cryptography,” Opt. Express 18, 27938 (2010).
    [Crossref]
  16. C. Wiechers, L. Lydersen, C. Wittmann, D. Elser, J. Skaar, C. Marquardt, V. Makarov, and G. Leuchs, “After-gate attack on a quantum cryptosystem,” New J. Phys. 13, 013043 (2011).
    [Crossref]
  17. L. Lydersen, N. Jain, C. Wittmann, Ø. Marøy, J. Skaar, C. Marquardt, V. Makarov, and G. Leuchs, “Superlinear threshold detectors in quantum cryptography,” Phys. Rev. A 84, 032320 (2011).
    [Crossref]
  18. A. N. Bugge, S. Sauge, A. M. M. Ghazali, J. Skaar, L. Lydersen, and V. Makarov, “Laser damage helps the eavesdropper in quantum cryptography,” Phys. Rev. Lett. 112, 070503 (2014).
    [Crossref]
  19. V. Makarov, “Controlling passively quenched single photon detectors by bright light,” New J. Phys. 11, 065003 (2009).
    [Crossref]
  20. S. Sauge, L. Lydersen, A. Anisimov, J. Skaar, and V. Makarov, “Controlling an actively-quenched single photon detector with bright light,” Opt. Express 19, 23590–23600 (2011).
    [Crossref]
  21. L. Lydersen, M. K. Akhlaghi, A. H. Majedi, J. Skaar, and V. Makarov, “Controlling a superconducting nanowire single-photon detector using tailored bright illumination,” New J. Phys. 13, 113042 (2011).
    [Crossref]
  22. M.-S. Jiang, S.-H. Sun, G.-Z. Tang, X.-C. Ma, C.-Y. Li, and L.-M. Liang, “Intrinsic imperfection of self-differencing single-photon detectors harms the security of high-speed quantum cryptography systems,” Phys. Rev. A 88, 062335 (2013).
    [Crossref]
  23. Y.-J. Qian, D.-Y. He, S. Wang, W. Chen, Z.-Q. Yin, G.-C. Guo, and Z.-F. Han, “Hacking the quantum key distribution system by exploiting the avalanche-transition region of single-photon detectors,” Phys. Rev. Appl 10, 064062 (2018).
    [Crossref]
  24. W.-Y. Hwang, “Quantum key distribution with high loss: toward global secure communication,” Phys. Rev. Lett. 91, 057901 (2003).
    [Crossref]
  25. H.-K. Lo, X. Ma, and K. Chen, “Decoy state quantum key distribution,” Phys. Rev. Lett. 94, 230504 (2005).
    [Crossref]
  26. X.-B. Wang, “Beating the photon-number-splitting attack in practical quantum cryptography,” Phys. Rev. Lett. 94, 230503 (2005).
    [Crossref]
  27. X. Ma, B. Qi, Y. Zhao, and H.-K. Lo, “Practical decoy state for quantum key distribution,” Phys. Rev. A 72, 012326 (2005).
    [Crossref]
  28. H. Weier, H. Krauss, M. Rau, M. Fürst, S. Nauerth, and H. Weinfurter, “Quantum eavesdropping without interception: an attack exploiting the dead time of single-photon detectors,” New J. Phys. 13, 073024 (2011).
    [Crossref]
  29. A. Acín, N. Brunner, N. Gisin, S. Massar, S. Pironio, and V. Scarani, “Device-independent security of quantum cryptography against collective attacks,” Phys. Rev. Lett. 98, 230501 (2007).
    [Crossref]
  30. L. Masanes, S. Pironio, and A. Acín, “Secure device-independent quantum key distribution with causally independent measurement devices,” Nat. Commun. 2, 238 (2011).
    [Crossref]
  31. H.-K. Lo, M. Curty, and B. Qi, “Measurement-device-independent quantum key distribution,” Phys. Rev. Lett. 108, 130503 (2012).
    [Crossref]
  32. L. Lydersen, V. Makarov, and J. Skaar, “Secure gated detection scheme for quantum cryptography,” Phys. Rev. A 83, 032306 (2011).
    [Crossref]
  33. C. C. W. Lim, N. Walenta, M. Legré, N. Gisin, and H. Zbinden, “Random variation of detector efficiency: a countermeasure against detector blinding attacks for quantum key distribution,” IEEE J. Sel. Top. Quantum Electron. 21, 192–196 (2015).
    [Crossref]
  34. M. Elezov, R. Ozhegov, Y. Kurochkin, G. Goltsman, and V. Makarov, “Countermeasures against blinding attack on superconducting nanowire detectors for QKD,” Eur. Phys. J. Conf. 103, 10002 (2015).
    [Crossref]
  35. M. S. Lee, B. K. Park, M. K. Woo, C. H. Park, Y.-S. Kim, S.-W. Han, and S. Moon, “Countermeasure against blinding attacks on low-noise detectors with a background-noise-cancellation scheme,” Phys. Rev. A 94, 062321 (2016).
    [Crossref]
  36. T. Honjo, M. Fujiwara, K. Shimizu, K. Tamaki, S. Miki, T. Yamashita, H. Terai, Z. Wang, and M. Sasaki, “Countermeasure against tailored bright illumination attack for DPS-QKD,” Opt. Express 21, 2667–2673 (2013).
    [Crossref]
  37. J. Wang, H. Wang, X. Qin, Z. Wei, and Z. Zhang, “The countermeasures against the blinding attack in quantum key distribution,” Eur. Phys. J. D 70, 5 (2016).
    [Crossref]
  38. T. F. da Silva, G. C. do Amaral, G. B. Xavier, G. P. Temporão, and J. P. von der Weid, “Safeguarding quantum key distribution through detection randomization,” IEEE J. Sel. Top. Quantum Electron 21, 159–167 (2015).
    [Crossref]
  39. Ø. Marøy, V. Makarov, and J. Skaar, “Secure detection in quantum key distribution by real-time calibration of receiver,” Quantum Sci. Technol. 2, 044013 (2017).
    [Crossref]
  40. Z. L. Yuan, J. Dynes, and A. Shields, “Resilience of gated avalanche photodiodes against bright illumination attacks in quantum cryptography,” Appl. Phys. Lett. 98, 231104 (2011).
    [Crossref]
  41. L. Lydersen, V. Makarov, and J. Skaar, “Comment on ‘Resilience of gated avalanche photodiodes against bright illumination attacks in quantum cryptography,” Appl. Phys. Lett. 99, 196101 (2011).
    [Crossref]
  42. Z. L. Yuan, J. Dynes, and A. Shields, “Response to ‘Comment on ‘Resilience of gated avalanche photodiodes against bright illumination attacks in quantum cryptography,” Appl. Phys. Lett. 99, 196102 (2011).
    [Crossref]
  43. T. F. da Silva, G. B. Xavier, G. P. Temporão, and J. P. von der Weid, “Real-time monitoring of single-photon detectors against eavesdropping in quantum key distribution systems,” Opt. Express 20, 18911–18924 (2012).
    [Crossref]
  44. S. Wang, W. Chen, Z.-Q. Yin, H.-W. Li, D.-Y. He, Y.-H. Li, Z. Zhou, X.-T. Song, F.-Y. Li, D. Wang, H. Chen, Y.-G. Han, J.-Z. Huang, J.-F. Guo, P.-L. Hao, M. Li, C.-M. Zhang, D. Liu, W.-Y. Liang, C.-H. Miao, P. Wu, G.-C. Guo, and Z.-F. Han, “Field and long-term demonstration of a wide area quantum key distribution network,” Opt. Express 22, 21739–21756 (2014).
    [Crossref]
  45. M. Fujiwara, T. Honjo, K. Shimizu, K. Tamaki, and M. Sasaki, “Characteristics of superconducting single photon detector in DPS-QKD system under bright illumination blinding attack,” Opt. Express 21, 6304–6312 (2013).
    [Crossref]
  46. A. Meda, I. P. Degiovanni, A. Tosi, Z. L. Yuan, G. Brida, and M. Genovese, “Quantifying backflash radiation to prevent zero-error attacks in quantum key distribution,” Light Sci. Appl. 6, e16261 (2017).
    [Crossref]
  47. H.-K. Lo, M. Curty, and K. Tamaki, “Secure quantum key distribution,” Nat. Photonics 8, 595–604 (2014).
    [Crossref]
  48. A. Koehler-Sidki, M. Lucamarini, J. Dynes, G. Roberts, A. Sharpe, Z. L. Yuan, and A. Shields, “Intensity modulation as a preemptive measure against blinding of single-photon detectors based on self-differencing cancellation,” Phys. Rev. A 98, 022327 (2018).
    [Crossref]
  49. A. Huang, S. Sajeed, P. Chaiwongkhot, M. Soucarros, M. Legré, and V. Makarov, “Testing random-detector-efficiency countermeasure in a commercial system reveals a breakable unrealistic assumption,” IEEE J. Quantum Electron. 52, 1 (2016).
    [Crossref]
  50. Q. Liu, A. Lamas-Linares, C. Kurtsiefer, J. Skaar, V. Makarov, and I. Gerhardt, “A universal setup for active control of a single-photon detector,” Rev. Sci. Instrum. 85, 013108 (2014).
    [Crossref]
  51. A. Lamas-Linares and C. Kurtsiefer, “Breaking a quantum key distribution system through a timing side channel,” Opt. Express 15, 9388–9393 (2007).
    [Crossref]
  52. S. Nauerth, M. Fürst, T. Schmitt-Manderbach, H. Weier, and H. Weinfurter, “Information leakage via side channels in freespace BB84 quantum cryptography,” New J. Phys. 11, 065001 (2009).
    [Crossref]
  53. S. Sajeed, P. Chaiwongkhot, J.-P. Bourgoin, T. Jennewein, N. Lütkenhaus, and V. Makarov, “Security loophole in free-space quantum key distribution due to spatial-mode detector-efficiency mismatch,” Phys. Rev. A 91, 062301 (2015).
    [Crossref]
  54. H.-K. Lo, H. F. Chau, and M. Ardehali, “Efficient quantum key distribution scheme and a proof of its unconditional security,” J. Cryptology 18, 133–165 (2005).
    [Crossref]
  55. B. Kraus, N. Gisin, and R. Renner, “Lower and upper bounds on the secret-key rate for quantum key distribution protocols using one-way classical communication,” Phys. Rev. Lett. 95, 080501 (2005).
    [Crossref]
  56. R. Renner, N. Gisin, and B. Kraus, “Information-theoretic security proof for quantum-key-distribution protocols,” Phys. Rev. A 72, 012332 (2005).
    [Crossref]

2018 (2)

Y.-J. Qian, D.-Y. He, S. Wang, W. Chen, Z.-Q. Yin, G.-C. Guo, and Z.-F. Han, “Hacking the quantum key distribution system by exploiting the avalanche-transition region of single-photon detectors,” Phys. Rev. Appl 10, 064062 (2018).
[Crossref]

A. Koehler-Sidki, M. Lucamarini, J. Dynes, G. Roberts, A. Sharpe, Z. L. Yuan, and A. Shields, “Intensity modulation as a preemptive measure against blinding of single-photon detectors based on self-differencing cancellation,” Phys. Rev. A 98, 022327 (2018).
[Crossref]

2017 (2)

A. Meda, I. P. Degiovanni, A. Tosi, Z. L. Yuan, G. Brida, and M. Genovese, “Quantifying backflash radiation to prevent zero-error attacks in quantum key distribution,” Light Sci. Appl. 6, e16261 (2017).
[Crossref]

Ø. Marøy, V. Makarov, and J. Skaar, “Secure detection in quantum key distribution by real-time calibration of receiver,” Quantum Sci. Technol. 2, 044013 (2017).
[Crossref]

2016 (3)

J. Wang, H. Wang, X. Qin, Z. Wei, and Z. Zhang, “The countermeasures against the blinding attack in quantum key distribution,” Eur. Phys. J. D 70, 5 (2016).
[Crossref]

M. S. Lee, B. K. Park, M. K. Woo, C. H. Park, Y.-S. Kim, S.-W. Han, and S. Moon, “Countermeasure against blinding attacks on low-noise detectors with a background-noise-cancellation scheme,” Phys. Rev. A 94, 062321 (2016).
[Crossref]

A. Huang, S. Sajeed, P. Chaiwongkhot, M. Soucarros, M. Legré, and V. Makarov, “Testing random-detector-efficiency countermeasure in a commercial system reveals a breakable unrealistic assumption,” IEEE J. Quantum Electron. 52, 1 (2016).
[Crossref]

2015 (4)

S. Sajeed, P. Chaiwongkhot, J.-P. Bourgoin, T. Jennewein, N. Lütkenhaus, and V. Makarov, “Security loophole in free-space quantum key distribution due to spatial-mode detector-efficiency mismatch,” Phys. Rev. A 91, 062301 (2015).
[Crossref]

C. C. W. Lim, N. Walenta, M. Legré, N. Gisin, and H. Zbinden, “Random variation of detector efficiency: a countermeasure against detector blinding attacks for quantum key distribution,” IEEE J. Sel. Top. Quantum Electron. 21, 192–196 (2015).
[Crossref]

M. Elezov, R. Ozhegov, Y. Kurochkin, G. Goltsman, and V. Makarov, “Countermeasures against blinding attack on superconducting nanowire detectors for QKD,” Eur. Phys. J. Conf. 103, 10002 (2015).
[Crossref]

T. F. da Silva, G. C. do Amaral, G. B. Xavier, G. P. Temporão, and J. P. von der Weid, “Safeguarding quantum key distribution through detection randomization,” IEEE J. Sel. Top. Quantum Electron 21, 159–167 (2015).
[Crossref]

2014 (4)

Q. Liu, A. Lamas-Linares, C. Kurtsiefer, J. Skaar, V. Makarov, and I. Gerhardt, “A universal setup for active control of a single-photon detector,” Rev. Sci. Instrum. 85, 013108 (2014).
[Crossref]

H.-K. Lo, M. Curty, and K. Tamaki, “Secure quantum key distribution,” Nat. Photonics 8, 595–604 (2014).
[Crossref]

A. N. Bugge, S. Sauge, A. M. M. Ghazali, J. Skaar, L. Lydersen, and V. Makarov, “Laser damage helps the eavesdropper in quantum cryptography,” Phys. Rev. Lett. 112, 070503 (2014).
[Crossref]

S. Wang, W. Chen, Z.-Q. Yin, H.-W. Li, D.-Y. He, Y.-H. Li, Z. Zhou, X.-T. Song, F.-Y. Li, D. Wang, H. Chen, Y.-G. Han, J.-Z. Huang, J.-F. Guo, P.-L. Hao, M. Li, C.-M. Zhang, D. Liu, W.-Y. Liang, C.-H. Miao, P. Wu, G.-C. Guo, and Z.-F. Han, “Field and long-term demonstration of a wide area quantum key distribution network,” Opt. Express 22, 21739–21756 (2014).
[Crossref]

2013 (3)

2012 (2)

2011 (12)

S. Sauge, L. Lydersen, A. Anisimov, J. Skaar, and V. Makarov, “Controlling an actively-quenched single photon detector with bright light,” Opt. Express 19, 23590–23600 (2011).
[Crossref]

L. Lydersen, V. Makarov, and J. Skaar, “Secure gated detection scheme for quantum cryptography,” Phys. Rev. A 83, 032306 (2011).
[Crossref]

L. Lydersen, M. K. Akhlaghi, A. H. Majedi, J. Skaar, and V. Makarov, “Controlling a superconducting nanowire single-photon detector using tailored bright illumination,” New J. Phys. 13, 113042 (2011).
[Crossref]

H. Weier, H. Krauss, M. Rau, M. Fürst, S. Nauerth, and H. Weinfurter, “Quantum eavesdropping without interception: an attack exploiting the dead time of single-photon detectors,” New J. Phys. 13, 073024 (2011).
[Crossref]

I. Gerhardt, Q. Liu, A. Lamas-Linares, J. Skaar, C. Kurtsiefer, and V. Makarov, “Full-field implementation of a perfect eavesdropper on a quantum cryptography system,” Nat. Commun. 2, 349 (2011).
[Crossref]

Z. L. Yuan, J. Dynes, and A. Shields, “Resilience of gated avalanche photodiodes against bright illumination attacks in quantum cryptography,” Appl. Phys. Lett. 98, 231104 (2011).
[Crossref]

L. Lydersen, V. Makarov, and J. Skaar, “Comment on ‘Resilience of gated avalanche photodiodes against bright illumination attacks in quantum cryptography,” Appl. Phys. Lett. 99, 196101 (2011).
[Crossref]

Z. L. Yuan, J. Dynes, and A. Shields, “Response to ‘Comment on ‘Resilience of gated avalanche photodiodes against bright illumination attacks in quantum cryptography,” Appl. Phys. Lett. 99, 196102 (2011).
[Crossref]

C. Wiechers, L. Lydersen, C. Wittmann, D. Elser, J. Skaar, C. Marquardt, V. Makarov, and G. Leuchs, “After-gate attack on a quantum cryptosystem,” New J. Phys. 13, 013043 (2011).
[Crossref]

L. Lydersen, N. Jain, C. Wittmann, Ø. Marøy, J. Skaar, C. Marquardt, V. Makarov, and G. Leuchs, “Superlinear threshold detectors in quantum cryptography,” Phys. Rev. A 84, 032320 (2011).
[Crossref]

L. Masanes, S. Pironio, and A. Acín, “Secure device-independent quantum key distribution with causally independent measurement devices,” Nat. Commun. 2, 238 (2011).
[Crossref]

H. W. Li, S. Wang, J. Z. Huang, W. Chen, Z. Q. Yin, F. Y. Li, Z. Zhou, D. Liu, Y. Zhang, G. C. Guo, W. S. Bao, and Z. F. Han, “Attacking a practical quantum-key-distribution system with wavelength-dependent beam-splitter and multiwavelength sources,” Phys. Rev. A 84, 062308 (2011).
[Crossref]

2010 (3)

L. Lydersen, C. Wiechers, C. Wittmann, D. Elser, J. Skaar, and V. Makarov, “Hacking commercial quantum cryptography systems by tailored bright illumination,” Nat. Photonics 4, 686–689 (2010).
[Crossref]

F. Xu, B. Qi, and H.-K. Lo, “Experimental demonstration of phase-remapping attack in a practical quantum key distribution system,” New J. Phys. 12, 113026 (2010).
[Crossref]

L. Lydersen, C. Wiechers, C. Wittmann, D. Elser, J. Skaar, and V. Makarov, “Thermal blinding of gated detectors in quantum cryptography,” Opt. Express 18, 27938 (2010).
[Crossref]

2009 (3)

V. Makarov, “Controlling passively quenched single photon detectors by bright light,” New J. Phys. 11, 065003 (2009).
[Crossref]

S. Nauerth, M. Fürst, T. Schmitt-Manderbach, H. Weier, and H. Weinfurter, “Information leakage via side channels in freespace BB84 quantum cryptography,” New J. Phys. 11, 065001 (2009).
[Crossref]

V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dušek, N. Lütkenhaus, and M. Peev, “The security of practical quantum key distribution,” Rev. Mod. Phys. 81, 1301 (2009).
[Crossref]

2008 (1)

Y. Zhao, C.-H. F. Fung, B. Qi, C. Chen, and H.-K. Lo, “Quantum hacking: experimental demonstration of time-shift attack against practical quantum-key-distribution systems,” Phys. Rev. A 78, 042333 (2008).
[Crossref]

2007 (4)

C.-H. F. Fung, B. Qi, K. Tamaki, and H.-K. Lo, “Phase-remapping attack in practical quantum-key-distribution systems,” Phys. Rev. A 75, 032314 (2007).
[Crossref]

B. Qi, C.-H. F. Fung, H.-K. Lo, and X. Ma, “Time-shift attack in practical quantum cryptosystems,” Quantum Inf. Comput. 7, 73–82 (2007).

A. Acín, N. Brunner, N. Gisin, S. Massar, S. Pironio, and V. Scarani, “Device-independent security of quantum cryptography against collective attacks,” Phys. Rev. Lett. 98, 230501 (2007).
[Crossref]

A. Lamas-Linares and C. Kurtsiefer, “Breaking a quantum key distribution system through a timing side channel,” Opt. Express 15, 9388–9393 (2007).
[Crossref]

2006 (1)

N. Gisin, S. Fasel, B. Kraus, H. Zbinden, and G. Ribordy, “Trojan-horse attacks on quantum-key-distribution systems,” Phys. Rev. A 73, 022320 (2006).
[Crossref]

2005 (6)

H.-K. Lo, X. Ma, and K. Chen, “Decoy state quantum key distribution,” Phys. Rev. Lett. 94, 230504 (2005).
[Crossref]

X.-B. Wang, “Beating the photon-number-splitting attack in practical quantum cryptography,” Phys. Rev. Lett. 94, 230503 (2005).
[Crossref]

X. Ma, B. Qi, Y. Zhao, and H.-K. Lo, “Practical decoy state for quantum key distribution,” Phys. Rev. A 72, 012326 (2005).
[Crossref]

H.-K. Lo, H. F. Chau, and M. Ardehali, “Efficient quantum key distribution scheme and a proof of its unconditional security,” J. Cryptology 18, 133–165 (2005).
[Crossref]

B. Kraus, N. Gisin, and R. Renner, “Lower and upper bounds on the secret-key rate for quantum key distribution protocols using one-way classical communication,” Phys. Rev. Lett. 95, 080501 (2005).
[Crossref]

R. Renner, N. Gisin, and B. Kraus, “Information-theoretic security proof for quantum-key-distribution protocols,” Phys. Rev. A 72, 012332 (2005).
[Crossref]

2004 (1)

D. Gottesman, H.-K. Lo, N. Lütkenhaus, and J. Preskill, “Security of quantum key distribution with imperfect devices,” Quantum Inf. Comput. 4, 325–360 (2004).
[Crossref]

2003 (1)

W.-Y. Hwang, “Quantum key distribution with high loss: toward global secure communication,” Phys. Rev. Lett. 91, 057901 (2003).
[Crossref]

2002 (2)

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145 (2002).
[Crossref]

N. Lütkenhaus and M. Jahma, “Quantum key distribution with realistic states: photon-number statistics in the photon-number splitting attack,” New J. Phys. 4, 44 (2002).
[Crossref]

1999 (1)

H.-K. Lo and H. F. Chau, “Unconditional security of quantum key distribution over arbitrarily long distances,” Science 283, 2050–2056 (1999).
[Crossref]

1995 (1)

B. Huttner, N. Imoto, N. Gisin, and T. Mor, “Quantum cryptography with coherent states,” Phys. Rev. A 51, 1863 (1995).
[Crossref]

Acín, A.

L. Masanes, S. Pironio, and A. Acín, “Secure device-independent quantum key distribution with causally independent measurement devices,” Nat. Commun. 2, 238 (2011).
[Crossref]

A. Acín, N. Brunner, N. Gisin, S. Massar, S. Pironio, and V. Scarani, “Device-independent security of quantum cryptography against collective attacks,” Phys. Rev. Lett. 98, 230501 (2007).
[Crossref]

Akhlaghi, M. K.

L. Lydersen, M. K. Akhlaghi, A. H. Majedi, J. Skaar, and V. Makarov, “Controlling a superconducting nanowire single-photon detector using tailored bright illumination,” New J. Phys. 13, 113042 (2011).
[Crossref]

Anisimov, A.

Ardehali, M.

H.-K. Lo, H. F. Chau, and M. Ardehali, “Efficient quantum key distribution scheme and a proof of its unconditional security,” J. Cryptology 18, 133–165 (2005).
[Crossref]

Bao, W. S.

H. W. Li, S. Wang, J. Z. Huang, W. Chen, Z. Q. Yin, F. Y. Li, Z. Zhou, D. Liu, Y. Zhang, G. C. Guo, W. S. Bao, and Z. F. Han, “Attacking a practical quantum-key-distribution system with wavelength-dependent beam-splitter and multiwavelength sources,” Phys. Rev. A 84, 062308 (2011).
[Crossref]

Bechmann-Pasquinucci, H.

V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dušek, N. Lütkenhaus, and M. Peev, “The security of practical quantum key distribution,” Rev. Mod. Phys. 81, 1301 (2009).
[Crossref]

Bourgoin, J.-P.

S. Sajeed, P. Chaiwongkhot, J.-P. Bourgoin, T. Jennewein, N. Lütkenhaus, and V. Makarov, “Security loophole in free-space quantum key distribution due to spatial-mode detector-efficiency mismatch,” Phys. Rev. A 91, 062301 (2015).
[Crossref]

Brida, G.

A. Meda, I. P. Degiovanni, A. Tosi, Z. L. Yuan, G. Brida, and M. Genovese, “Quantifying backflash radiation to prevent zero-error attacks in quantum key distribution,” Light Sci. Appl. 6, e16261 (2017).
[Crossref]

Brunner, N.

A. Acín, N. Brunner, N. Gisin, S. Massar, S. Pironio, and V. Scarani, “Device-independent security of quantum cryptography against collective attacks,” Phys. Rev. Lett. 98, 230501 (2007).
[Crossref]

Bugge, A. N.

A. N. Bugge, S. Sauge, A. M. M. Ghazali, J. Skaar, L. Lydersen, and V. Makarov, “Laser damage helps the eavesdropper in quantum cryptography,” Phys. Rev. Lett. 112, 070503 (2014).
[Crossref]

Cerf, N. J.

V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dušek, N. Lütkenhaus, and M. Peev, “The security of practical quantum key distribution,” Rev. Mod. Phys. 81, 1301 (2009).
[Crossref]

Chaiwongkhot, P.

A. Huang, S. Sajeed, P. Chaiwongkhot, M. Soucarros, M. Legré, and V. Makarov, “Testing random-detector-efficiency countermeasure in a commercial system reveals a breakable unrealistic assumption,” IEEE J. Quantum Electron. 52, 1 (2016).
[Crossref]

S. Sajeed, P. Chaiwongkhot, J.-P. Bourgoin, T. Jennewein, N. Lütkenhaus, and V. Makarov, “Security loophole in free-space quantum key distribution due to spatial-mode detector-efficiency mismatch,” Phys. Rev. A 91, 062301 (2015).
[Crossref]

Chau, H. F.

H.-K. Lo, H. F. Chau, and M. Ardehali, “Efficient quantum key distribution scheme and a proof of its unconditional security,” J. Cryptology 18, 133–165 (2005).
[Crossref]

H.-K. Lo and H. F. Chau, “Unconditional security of quantum key distribution over arbitrarily long distances,” Science 283, 2050–2056 (1999).
[Crossref]

Chen, C.

Y. Zhao, C.-H. F. Fung, B. Qi, C. Chen, and H.-K. Lo, “Quantum hacking: experimental demonstration of time-shift attack against practical quantum-key-distribution systems,” Phys. Rev. A 78, 042333 (2008).
[Crossref]

Chen, H.

Chen, K.

H.-K. Lo, X. Ma, and K. Chen, “Decoy state quantum key distribution,” Phys. Rev. Lett. 94, 230504 (2005).
[Crossref]

Chen, W.

Y.-J. Qian, D.-Y. He, S. Wang, W. Chen, Z.-Q. Yin, G.-C. Guo, and Z.-F. Han, “Hacking the quantum key distribution system by exploiting the avalanche-transition region of single-photon detectors,” Phys. Rev. Appl 10, 064062 (2018).
[Crossref]

S. Wang, W. Chen, Z.-Q. Yin, H.-W. Li, D.-Y. He, Y.-H. Li, Z. Zhou, X.-T. Song, F.-Y. Li, D. Wang, H. Chen, Y.-G. Han, J.-Z. Huang, J.-F. Guo, P.-L. Hao, M. Li, C.-M. Zhang, D. Liu, W.-Y. Liang, C.-H. Miao, P. Wu, G.-C. Guo, and Z.-F. Han, “Field and long-term demonstration of a wide area quantum key distribution network,” Opt. Express 22, 21739–21756 (2014).
[Crossref]

H. W. Li, S. Wang, J. Z. Huang, W. Chen, Z. Q. Yin, F. Y. Li, Z. Zhou, D. Liu, Y. Zhang, G. C. Guo, W. S. Bao, and Z. F. Han, “Attacking a practical quantum-key-distribution system with wavelength-dependent beam-splitter and multiwavelength sources,” Phys. Rev. A 84, 062308 (2011).
[Crossref]

Curty, M.

H.-K. Lo, M. Curty, and K. Tamaki, “Secure quantum key distribution,” Nat. Photonics 8, 595–604 (2014).
[Crossref]

H.-K. Lo, M. Curty, and B. Qi, “Measurement-device-independent quantum key distribution,” Phys. Rev. Lett. 108, 130503 (2012).
[Crossref]

da Silva, T. F.

T. F. da Silva, G. C. do Amaral, G. B. Xavier, G. P. Temporão, and J. P. von der Weid, “Safeguarding quantum key distribution through detection randomization,” IEEE J. Sel. Top. Quantum Electron 21, 159–167 (2015).
[Crossref]

T. F. da Silva, G. B. Xavier, G. P. Temporão, and J. P. von der Weid, “Real-time monitoring of single-photon detectors against eavesdropping in quantum key distribution systems,” Opt. Express 20, 18911–18924 (2012).
[Crossref]

Degiovanni, I. P.

A. Meda, I. P. Degiovanni, A. Tosi, Z. L. Yuan, G. Brida, and M. Genovese, “Quantifying backflash radiation to prevent zero-error attacks in quantum key distribution,” Light Sci. Appl. 6, e16261 (2017).
[Crossref]

do Amaral, G. C.

T. F. da Silva, G. C. do Amaral, G. B. Xavier, G. P. Temporão, and J. P. von der Weid, “Safeguarding quantum key distribution through detection randomization,” IEEE J. Sel. Top. Quantum Electron 21, 159–167 (2015).
[Crossref]

Dušek, M.

V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dušek, N. Lütkenhaus, and M. Peev, “The security of practical quantum key distribution,” Rev. Mod. Phys. 81, 1301 (2009).
[Crossref]

Dynes, J.

A. Koehler-Sidki, M. Lucamarini, J. Dynes, G. Roberts, A. Sharpe, Z. L. Yuan, and A. Shields, “Intensity modulation as a preemptive measure against blinding of single-photon detectors based on self-differencing cancellation,” Phys. Rev. A 98, 022327 (2018).
[Crossref]

Z. L. Yuan, J. Dynes, and A. Shields, “Resilience of gated avalanche photodiodes against bright illumination attacks in quantum cryptography,” Appl. Phys. Lett. 98, 231104 (2011).
[Crossref]

Z. L. Yuan, J. Dynes, and A. Shields, “Response to ‘Comment on ‘Resilience of gated avalanche photodiodes against bright illumination attacks in quantum cryptography,” Appl. Phys. Lett. 99, 196102 (2011).
[Crossref]

Elezov, M.

M. Elezov, R. Ozhegov, Y. Kurochkin, G. Goltsman, and V. Makarov, “Countermeasures against blinding attack on superconducting nanowire detectors for QKD,” Eur. Phys. J. Conf. 103, 10002 (2015).
[Crossref]

Elser, D.

C. Wiechers, L. Lydersen, C. Wittmann, D. Elser, J. Skaar, C. Marquardt, V. Makarov, and G. Leuchs, “After-gate attack on a quantum cryptosystem,” New J. Phys. 13, 013043 (2011).
[Crossref]

L. Lydersen, C. Wiechers, C. Wittmann, D. Elser, J. Skaar, and V. Makarov, “Thermal blinding of gated detectors in quantum cryptography,” Opt. Express 18, 27938 (2010).
[Crossref]

L. Lydersen, C. Wiechers, C. Wittmann, D. Elser, J. Skaar, and V. Makarov, “Hacking commercial quantum cryptography systems by tailored bright illumination,” Nat. Photonics 4, 686–689 (2010).
[Crossref]

Fasel, S.

N. Gisin, S. Fasel, B. Kraus, H. Zbinden, and G. Ribordy, “Trojan-horse attacks on quantum-key-distribution systems,” Phys. Rev. A 73, 022320 (2006).
[Crossref]

Fujiwara, M.

Fung, C.-H. F.

Y. Zhao, C.-H. F. Fung, B. Qi, C. Chen, and H.-K. Lo, “Quantum hacking: experimental demonstration of time-shift attack against practical quantum-key-distribution systems,” Phys. Rev. A 78, 042333 (2008).
[Crossref]

B. Qi, C.-H. F. Fung, H.-K. Lo, and X. Ma, “Time-shift attack in practical quantum cryptosystems,” Quantum Inf. Comput. 7, 73–82 (2007).

C.-H. F. Fung, B. Qi, K. Tamaki, and H.-K. Lo, “Phase-remapping attack in practical quantum-key-distribution systems,” Phys. Rev. A 75, 032314 (2007).
[Crossref]

Fürst, M.

H. Weier, H. Krauss, M. Rau, M. Fürst, S. Nauerth, and H. Weinfurter, “Quantum eavesdropping without interception: an attack exploiting the dead time of single-photon detectors,” New J. Phys. 13, 073024 (2011).
[Crossref]

S. Nauerth, M. Fürst, T. Schmitt-Manderbach, H. Weier, and H. Weinfurter, “Information leakage via side channels in freespace BB84 quantum cryptography,” New J. Phys. 11, 065001 (2009).
[Crossref]

Genovese, M.

A. Meda, I. P. Degiovanni, A. Tosi, Z. L. Yuan, G. Brida, and M. Genovese, “Quantifying backflash radiation to prevent zero-error attacks in quantum key distribution,” Light Sci. Appl. 6, e16261 (2017).
[Crossref]

Gerhardt, I.

Q. Liu, A. Lamas-Linares, C. Kurtsiefer, J. Skaar, V. Makarov, and I. Gerhardt, “A universal setup for active control of a single-photon detector,” Rev. Sci. Instrum. 85, 013108 (2014).
[Crossref]

I. Gerhardt, Q. Liu, A. Lamas-Linares, J. Skaar, C. Kurtsiefer, and V. Makarov, “Full-field implementation of a perfect eavesdropper on a quantum cryptography system,” Nat. Commun. 2, 349 (2011).
[Crossref]

Ghazali, A. M. M.

A. N. Bugge, S. Sauge, A. M. M. Ghazali, J. Skaar, L. Lydersen, and V. Makarov, “Laser damage helps the eavesdropper in quantum cryptography,” Phys. Rev. Lett. 112, 070503 (2014).
[Crossref]

Gisin, N.

C. C. W. Lim, N. Walenta, M. Legré, N. Gisin, and H. Zbinden, “Random variation of detector efficiency: a countermeasure against detector blinding attacks for quantum key distribution,” IEEE J. Sel. Top. Quantum Electron. 21, 192–196 (2015).
[Crossref]

A. Acín, N. Brunner, N. Gisin, S. Massar, S. Pironio, and V. Scarani, “Device-independent security of quantum cryptography against collective attacks,” Phys. Rev. Lett. 98, 230501 (2007).
[Crossref]

N. Gisin, S. Fasel, B. Kraus, H. Zbinden, and G. Ribordy, “Trojan-horse attacks on quantum-key-distribution systems,” Phys. Rev. A 73, 022320 (2006).
[Crossref]

R. Renner, N. Gisin, and B. Kraus, “Information-theoretic security proof for quantum-key-distribution protocols,” Phys. Rev. A 72, 012332 (2005).
[Crossref]

B. Kraus, N. Gisin, and R. Renner, “Lower and upper bounds on the secret-key rate for quantum key distribution protocols using one-way classical communication,” Phys. Rev. Lett. 95, 080501 (2005).
[Crossref]

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145 (2002).
[Crossref]

B. Huttner, N. Imoto, N. Gisin, and T. Mor, “Quantum cryptography with coherent states,” Phys. Rev. A 51, 1863 (1995).
[Crossref]

Goltsman, G.

M. Elezov, R. Ozhegov, Y. Kurochkin, G. Goltsman, and V. Makarov, “Countermeasures against blinding attack on superconducting nanowire detectors for QKD,” Eur. Phys. J. Conf. 103, 10002 (2015).
[Crossref]

Gottesman, D.

D. Gottesman, H.-K. Lo, N. Lütkenhaus, and J. Preskill, “Security of quantum key distribution with imperfect devices,” Quantum Inf. Comput. 4, 325–360 (2004).
[Crossref]

Guo, G. C.

H. W. Li, S. Wang, J. Z. Huang, W. Chen, Z. Q. Yin, F. Y. Li, Z. Zhou, D. Liu, Y. Zhang, G. C. Guo, W. S. Bao, and Z. F. Han, “Attacking a practical quantum-key-distribution system with wavelength-dependent beam-splitter and multiwavelength sources,” Phys. Rev. A 84, 062308 (2011).
[Crossref]

Guo, G.-C.

Guo, J.-F.

Han, S.-W.

M. S. Lee, B. K. Park, M. K. Woo, C. H. Park, Y.-S. Kim, S.-W. Han, and S. Moon, “Countermeasure against blinding attacks on low-noise detectors with a background-noise-cancellation scheme,” Phys. Rev. A 94, 062321 (2016).
[Crossref]

Han, Y.-G.

Han, Z. F.

H. W. Li, S. Wang, J. Z. Huang, W. Chen, Z. Q. Yin, F. Y. Li, Z. Zhou, D. Liu, Y. Zhang, G. C. Guo, W. S. Bao, and Z. F. Han, “Attacking a practical quantum-key-distribution system with wavelength-dependent beam-splitter and multiwavelength sources,” Phys. Rev. A 84, 062308 (2011).
[Crossref]

Han, Z.-F.

Hao, P.-L.

He, D.-Y.

Honjo, T.

Huang, A.

A. Huang, S. Sajeed, P. Chaiwongkhot, M. Soucarros, M. Legré, and V. Makarov, “Testing random-detector-efficiency countermeasure in a commercial system reveals a breakable unrealistic assumption,” IEEE J. Quantum Electron. 52, 1 (2016).
[Crossref]

Huang, J. Z.

H. W. Li, S. Wang, J. Z. Huang, W. Chen, Z. Q. Yin, F. Y. Li, Z. Zhou, D. Liu, Y. Zhang, G. C. Guo, W. S. Bao, and Z. F. Han, “Attacking a practical quantum-key-distribution system with wavelength-dependent beam-splitter and multiwavelength sources,” Phys. Rev. A 84, 062308 (2011).
[Crossref]

Huang, J.-Z.

Huttner, B.

B. Huttner, N. Imoto, N. Gisin, and T. Mor, “Quantum cryptography with coherent states,” Phys. Rev. A 51, 1863 (1995).
[Crossref]

Hwang, W.-Y.

W.-Y. Hwang, “Quantum key distribution with high loss: toward global secure communication,” Phys. Rev. Lett. 91, 057901 (2003).
[Crossref]

Imoto, N.

B. Huttner, N. Imoto, N. Gisin, and T. Mor, “Quantum cryptography with coherent states,” Phys. Rev. A 51, 1863 (1995).
[Crossref]

Jahma, M.

N. Lütkenhaus and M. Jahma, “Quantum key distribution with realistic states: photon-number statistics in the photon-number splitting attack,” New J. Phys. 4, 44 (2002).
[Crossref]

Jain, N.

L. Lydersen, N. Jain, C. Wittmann, Ø. Marøy, J. Skaar, C. Marquardt, V. Makarov, and G. Leuchs, “Superlinear threshold detectors in quantum cryptography,” Phys. Rev. A 84, 032320 (2011).
[Crossref]

Jennewein, T.

S. Sajeed, P. Chaiwongkhot, J.-P. Bourgoin, T. Jennewein, N. Lütkenhaus, and V. Makarov, “Security loophole in free-space quantum key distribution due to spatial-mode detector-efficiency mismatch,” Phys. Rev. A 91, 062301 (2015).
[Crossref]

Jiang, M.-S.

M.-S. Jiang, S.-H. Sun, G.-Z. Tang, X.-C. Ma, C.-Y. Li, and L.-M. Liang, “Intrinsic imperfection of self-differencing single-photon detectors harms the security of high-speed quantum cryptography systems,” Phys. Rev. A 88, 062335 (2013).
[Crossref]

Kim, Y.-S.

M. S. Lee, B. K. Park, M. K. Woo, C. H. Park, Y.-S. Kim, S.-W. Han, and S. Moon, “Countermeasure against blinding attacks on low-noise detectors with a background-noise-cancellation scheme,” Phys. Rev. A 94, 062321 (2016).
[Crossref]

Koehler-Sidki, A.

A. Koehler-Sidki, M. Lucamarini, J. Dynes, G. Roberts, A. Sharpe, Z. L. Yuan, and A. Shields, “Intensity modulation as a preemptive measure against blinding of single-photon detectors based on self-differencing cancellation,” Phys. Rev. A 98, 022327 (2018).
[Crossref]

Kraus, B.

N. Gisin, S. Fasel, B. Kraus, H. Zbinden, and G. Ribordy, “Trojan-horse attacks on quantum-key-distribution systems,” Phys. Rev. A 73, 022320 (2006).
[Crossref]

B. Kraus, N. Gisin, and R. Renner, “Lower and upper bounds on the secret-key rate for quantum key distribution protocols using one-way classical communication,” Phys. Rev. Lett. 95, 080501 (2005).
[Crossref]

R. Renner, N. Gisin, and B. Kraus, “Information-theoretic security proof for quantum-key-distribution protocols,” Phys. Rev. A 72, 012332 (2005).
[Crossref]

Krauss, H.

H. Weier, H. Krauss, M. Rau, M. Fürst, S. Nauerth, and H. Weinfurter, “Quantum eavesdropping without interception: an attack exploiting the dead time of single-photon detectors,” New J. Phys. 13, 073024 (2011).
[Crossref]

Kurochkin, Y.

M. Elezov, R. Ozhegov, Y. Kurochkin, G. Goltsman, and V. Makarov, “Countermeasures against blinding attack on superconducting nanowire detectors for QKD,” Eur. Phys. J. Conf. 103, 10002 (2015).
[Crossref]

Kurtsiefer, C.

Q. Liu, A. Lamas-Linares, C. Kurtsiefer, J. Skaar, V. Makarov, and I. Gerhardt, “A universal setup for active control of a single-photon detector,” Rev. Sci. Instrum. 85, 013108 (2014).
[Crossref]

I. Gerhardt, Q. Liu, A. Lamas-Linares, J. Skaar, C. Kurtsiefer, and V. Makarov, “Full-field implementation of a perfect eavesdropper on a quantum cryptography system,” Nat. Commun. 2, 349 (2011).
[Crossref]

A. Lamas-Linares and C. Kurtsiefer, “Breaking a quantum key distribution system through a timing side channel,” Opt. Express 15, 9388–9393 (2007).
[Crossref]

Lamas-Linares, A.

Q. Liu, A. Lamas-Linares, C. Kurtsiefer, J. Skaar, V. Makarov, and I. Gerhardt, “A universal setup for active control of a single-photon detector,” Rev. Sci. Instrum. 85, 013108 (2014).
[Crossref]

I. Gerhardt, Q. Liu, A. Lamas-Linares, J. Skaar, C. Kurtsiefer, and V. Makarov, “Full-field implementation of a perfect eavesdropper on a quantum cryptography system,” Nat. Commun. 2, 349 (2011).
[Crossref]

A. Lamas-Linares and C. Kurtsiefer, “Breaking a quantum key distribution system through a timing side channel,” Opt. Express 15, 9388–9393 (2007).
[Crossref]

Lee, M. S.

M. S. Lee, B. K. Park, M. K. Woo, C. H. Park, Y.-S. Kim, S.-W. Han, and S. Moon, “Countermeasure against blinding attacks on low-noise detectors with a background-noise-cancellation scheme,” Phys. Rev. A 94, 062321 (2016).
[Crossref]

Legré, M.

A. Huang, S. Sajeed, P. Chaiwongkhot, M. Soucarros, M. Legré, and V. Makarov, “Testing random-detector-efficiency countermeasure in a commercial system reveals a breakable unrealistic assumption,” IEEE J. Quantum Electron. 52, 1 (2016).
[Crossref]

C. C. W. Lim, N. Walenta, M. Legré, N. Gisin, and H. Zbinden, “Random variation of detector efficiency: a countermeasure against detector blinding attacks for quantum key distribution,” IEEE J. Sel. Top. Quantum Electron. 21, 192–196 (2015).
[Crossref]

Leuchs, G.

L. Lydersen, N. Jain, C. Wittmann, Ø. Marøy, J. Skaar, C. Marquardt, V. Makarov, and G. Leuchs, “Superlinear threshold detectors in quantum cryptography,” Phys. Rev. A 84, 032320 (2011).
[Crossref]

C. Wiechers, L. Lydersen, C. Wittmann, D. Elser, J. Skaar, C. Marquardt, V. Makarov, and G. Leuchs, “After-gate attack on a quantum cryptosystem,” New J. Phys. 13, 013043 (2011).
[Crossref]

Li, C.-Y.

M.-S. Jiang, S.-H. Sun, G.-Z. Tang, X.-C. Ma, C.-Y. Li, and L.-M. Liang, “Intrinsic imperfection of self-differencing single-photon detectors harms the security of high-speed quantum cryptography systems,” Phys. Rev. A 88, 062335 (2013).
[Crossref]

Li, F. Y.

H. W. Li, S. Wang, J. Z. Huang, W. Chen, Z. Q. Yin, F. Y. Li, Z. Zhou, D. Liu, Y. Zhang, G. C. Guo, W. S. Bao, and Z. F. Han, “Attacking a practical quantum-key-distribution system with wavelength-dependent beam-splitter and multiwavelength sources,” Phys. Rev. A 84, 062308 (2011).
[Crossref]

Li, F.-Y.

Li, H. W.

H. W. Li, S. Wang, J. Z. Huang, W. Chen, Z. Q. Yin, F. Y. Li, Z. Zhou, D. Liu, Y. Zhang, G. C. Guo, W. S. Bao, and Z. F. Han, “Attacking a practical quantum-key-distribution system with wavelength-dependent beam-splitter and multiwavelength sources,” Phys. Rev. A 84, 062308 (2011).
[Crossref]

Li, H.-W.

Li, M.

Li, Y.-H.

Liang, L.-M.

M.-S. Jiang, S.-H. Sun, G.-Z. Tang, X.-C. Ma, C.-Y. Li, and L.-M. Liang, “Intrinsic imperfection of self-differencing single-photon detectors harms the security of high-speed quantum cryptography systems,” Phys. Rev. A 88, 062335 (2013).
[Crossref]

Liang, W.-Y.

Lim, C. C. W.

C. C. W. Lim, N. Walenta, M. Legré, N. Gisin, and H. Zbinden, “Random variation of detector efficiency: a countermeasure against detector blinding attacks for quantum key distribution,” IEEE J. Sel. Top. Quantum Electron. 21, 192–196 (2015).
[Crossref]

Liu, D.

S. Wang, W. Chen, Z.-Q. Yin, H.-W. Li, D.-Y. He, Y.-H. Li, Z. Zhou, X.-T. Song, F.-Y. Li, D. Wang, H. Chen, Y.-G. Han, J.-Z. Huang, J.-F. Guo, P.-L. Hao, M. Li, C.-M. Zhang, D. Liu, W.-Y. Liang, C.-H. Miao, P. Wu, G.-C. Guo, and Z.-F. Han, “Field and long-term demonstration of a wide area quantum key distribution network,” Opt. Express 22, 21739–21756 (2014).
[Crossref]

H. W. Li, S. Wang, J. Z. Huang, W. Chen, Z. Q. Yin, F. Y. Li, Z. Zhou, D. Liu, Y. Zhang, G. C. Guo, W. S. Bao, and Z. F. Han, “Attacking a practical quantum-key-distribution system with wavelength-dependent beam-splitter and multiwavelength sources,” Phys. Rev. A 84, 062308 (2011).
[Crossref]

Liu, Q.

Q. Liu, A. Lamas-Linares, C. Kurtsiefer, J. Skaar, V. Makarov, and I. Gerhardt, “A universal setup for active control of a single-photon detector,” Rev. Sci. Instrum. 85, 013108 (2014).
[Crossref]

I. Gerhardt, Q. Liu, A. Lamas-Linares, J. Skaar, C. Kurtsiefer, and V. Makarov, “Full-field implementation of a perfect eavesdropper on a quantum cryptography system,” Nat. Commun. 2, 349 (2011).
[Crossref]

Lo, H.-K.

H.-K. Lo, M. Curty, and K. Tamaki, “Secure quantum key distribution,” Nat. Photonics 8, 595–604 (2014).
[Crossref]

H.-K. Lo, M. Curty, and B. Qi, “Measurement-device-independent quantum key distribution,” Phys. Rev. Lett. 108, 130503 (2012).
[Crossref]

F. Xu, B. Qi, and H.-K. Lo, “Experimental demonstration of phase-remapping attack in a practical quantum key distribution system,” New J. Phys. 12, 113026 (2010).
[Crossref]

Y. Zhao, C.-H. F. Fung, B. Qi, C. Chen, and H.-K. Lo, “Quantum hacking: experimental demonstration of time-shift attack against practical quantum-key-distribution systems,” Phys. Rev. A 78, 042333 (2008).
[Crossref]

B. Qi, C.-H. F. Fung, H.-K. Lo, and X. Ma, “Time-shift attack in practical quantum cryptosystems,” Quantum Inf. Comput. 7, 73–82 (2007).

C.-H. F. Fung, B. Qi, K. Tamaki, and H.-K. Lo, “Phase-remapping attack in practical quantum-key-distribution systems,” Phys. Rev. A 75, 032314 (2007).
[Crossref]

H.-K. Lo, X. Ma, and K. Chen, “Decoy state quantum key distribution,” Phys. Rev. Lett. 94, 230504 (2005).
[Crossref]

X. Ma, B. Qi, Y. Zhao, and H.-K. Lo, “Practical decoy state for quantum key distribution,” Phys. Rev. A 72, 012326 (2005).
[Crossref]

H.-K. Lo, H. F. Chau, and M. Ardehali, “Efficient quantum key distribution scheme and a proof of its unconditional security,” J. Cryptology 18, 133–165 (2005).
[Crossref]

D. Gottesman, H.-K. Lo, N. Lütkenhaus, and J. Preskill, “Security of quantum key distribution with imperfect devices,” Quantum Inf. Comput. 4, 325–360 (2004).
[Crossref]

H.-K. Lo and H. F. Chau, “Unconditional security of quantum key distribution over arbitrarily long distances,” Science 283, 2050–2056 (1999).
[Crossref]

Lucamarini, M.

A. Koehler-Sidki, M. Lucamarini, J. Dynes, G. Roberts, A. Sharpe, Z. L. Yuan, and A. Shields, “Intensity modulation as a preemptive measure against blinding of single-photon detectors based on self-differencing cancellation,” Phys. Rev. A 98, 022327 (2018).
[Crossref]

Lütkenhaus, N.

S. Sajeed, P. Chaiwongkhot, J.-P. Bourgoin, T. Jennewein, N. Lütkenhaus, and V. Makarov, “Security loophole in free-space quantum key distribution due to spatial-mode detector-efficiency mismatch,” Phys. Rev. A 91, 062301 (2015).
[Crossref]

V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dušek, N. Lütkenhaus, and M. Peev, “The security of practical quantum key distribution,” Rev. Mod. Phys. 81, 1301 (2009).
[Crossref]

D. Gottesman, H.-K. Lo, N. Lütkenhaus, and J. Preskill, “Security of quantum key distribution with imperfect devices,” Quantum Inf. Comput. 4, 325–360 (2004).
[Crossref]

N. Lütkenhaus and M. Jahma, “Quantum key distribution with realistic states: photon-number statistics in the photon-number splitting attack,” New J. Phys. 4, 44 (2002).
[Crossref]

Lydersen, L.

A. N. Bugge, S. Sauge, A. M. M. Ghazali, J. Skaar, L. Lydersen, and V. Makarov, “Laser damage helps the eavesdropper in quantum cryptography,” Phys. Rev. Lett. 112, 070503 (2014).
[Crossref]

L. Lydersen, N. Jain, C. Wittmann, Ø. Marøy, J. Skaar, C. Marquardt, V. Makarov, and G. Leuchs, “Superlinear threshold detectors in quantum cryptography,” Phys. Rev. A 84, 032320 (2011).
[Crossref]

C. Wiechers, L. Lydersen, C. Wittmann, D. Elser, J. Skaar, C. Marquardt, V. Makarov, and G. Leuchs, “After-gate attack on a quantum cryptosystem,” New J. Phys. 13, 013043 (2011).
[Crossref]

L. Lydersen, V. Makarov, and J. Skaar, “Comment on ‘Resilience of gated avalanche photodiodes against bright illumination attacks in quantum cryptography,” Appl. Phys. Lett. 99, 196101 (2011).
[Crossref]

S. Sauge, L. Lydersen, A. Anisimov, J. Skaar, and V. Makarov, “Controlling an actively-quenched single photon detector with bright light,” Opt. Express 19, 23590–23600 (2011).
[Crossref]

L. Lydersen, M. K. Akhlaghi, A. H. Majedi, J. Skaar, and V. Makarov, “Controlling a superconducting nanowire single-photon detector using tailored bright illumination,” New J. Phys. 13, 113042 (2011).
[Crossref]

L. Lydersen, V. Makarov, and J. Skaar, “Secure gated detection scheme for quantum cryptography,” Phys. Rev. A 83, 032306 (2011).
[Crossref]

L. Lydersen, C. Wiechers, C. Wittmann, D. Elser, J. Skaar, and V. Makarov, “Hacking commercial quantum cryptography systems by tailored bright illumination,” Nat. Photonics 4, 686–689 (2010).
[Crossref]

L. Lydersen, C. Wiechers, C. Wittmann, D. Elser, J. Skaar, and V. Makarov, “Thermal blinding of gated detectors in quantum cryptography,” Opt. Express 18, 27938 (2010).
[Crossref]

Ma, X.

B. Qi, C.-H. F. Fung, H.-K. Lo, and X. Ma, “Time-shift attack in practical quantum cryptosystems,” Quantum Inf. Comput. 7, 73–82 (2007).

X. Ma, B. Qi, Y. Zhao, and H.-K. Lo, “Practical decoy state for quantum key distribution,” Phys. Rev. A 72, 012326 (2005).
[Crossref]

H.-K. Lo, X. Ma, and K. Chen, “Decoy state quantum key distribution,” Phys. Rev. Lett. 94, 230504 (2005).
[Crossref]

Ma, X.-C.

M.-S. Jiang, S.-H. Sun, G.-Z. Tang, X.-C. Ma, C.-Y. Li, and L.-M. Liang, “Intrinsic imperfection of self-differencing single-photon detectors harms the security of high-speed quantum cryptography systems,” Phys. Rev. A 88, 062335 (2013).
[Crossref]

Majedi, A. H.

L. Lydersen, M. K. Akhlaghi, A. H. Majedi, J. Skaar, and V. Makarov, “Controlling a superconducting nanowire single-photon detector using tailored bright illumination,” New J. Phys. 13, 113042 (2011).
[Crossref]

Makarov, V.

Ø. Marøy, V. Makarov, and J. Skaar, “Secure detection in quantum key distribution by real-time calibration of receiver,” Quantum Sci. Technol. 2, 044013 (2017).
[Crossref]

A. Huang, S. Sajeed, P. Chaiwongkhot, M. Soucarros, M. Legré, and V. Makarov, “Testing random-detector-efficiency countermeasure in a commercial system reveals a breakable unrealistic assumption,” IEEE J. Quantum Electron. 52, 1 (2016).
[Crossref]

S. Sajeed, P. Chaiwongkhot, J.-P. Bourgoin, T. Jennewein, N. Lütkenhaus, and V. Makarov, “Security loophole in free-space quantum key distribution due to spatial-mode detector-efficiency mismatch,” Phys. Rev. A 91, 062301 (2015).
[Crossref]

M. Elezov, R. Ozhegov, Y. Kurochkin, G. Goltsman, and V. Makarov, “Countermeasures against blinding attack on superconducting nanowire detectors for QKD,” Eur. Phys. J. Conf. 103, 10002 (2015).
[Crossref]

A. N. Bugge, S. Sauge, A. M. M. Ghazali, J. Skaar, L. Lydersen, and V. Makarov, “Laser damage helps the eavesdropper in quantum cryptography,” Phys. Rev. Lett. 112, 070503 (2014).
[Crossref]

Q. Liu, A. Lamas-Linares, C. Kurtsiefer, J. Skaar, V. Makarov, and I. Gerhardt, “A universal setup for active control of a single-photon detector,” Rev. Sci. Instrum. 85, 013108 (2014).
[Crossref]

S. Sauge, L. Lydersen, A. Anisimov, J. Skaar, and V. Makarov, “Controlling an actively-quenched single photon detector with bright light,” Opt. Express 19, 23590–23600 (2011).
[Crossref]

L. Lydersen, N. Jain, C. Wittmann, Ø. Marøy, J. Skaar, C. Marquardt, V. Makarov, and G. Leuchs, “Superlinear threshold detectors in quantum cryptography,” Phys. Rev. A 84, 032320 (2011).
[Crossref]

L. Lydersen, V. Makarov, and J. Skaar, “Comment on ‘Resilience of gated avalanche photodiodes against bright illumination attacks in quantum cryptography,” Appl. Phys. Lett. 99, 196101 (2011).
[Crossref]

C. Wiechers, L. Lydersen, C. Wittmann, D. Elser, J. Skaar, C. Marquardt, V. Makarov, and G. Leuchs, “After-gate attack on a quantum cryptosystem,” New J. Phys. 13, 013043 (2011).
[Crossref]

L. Lydersen, V. Makarov, and J. Skaar, “Secure gated detection scheme for quantum cryptography,” Phys. Rev. A 83, 032306 (2011).
[Crossref]

L. Lydersen, M. K. Akhlaghi, A. H. Majedi, J. Skaar, and V. Makarov, “Controlling a superconducting nanowire single-photon detector using tailored bright illumination,” New J. Phys. 13, 113042 (2011).
[Crossref]

I. Gerhardt, Q. Liu, A. Lamas-Linares, J. Skaar, C. Kurtsiefer, and V. Makarov, “Full-field implementation of a perfect eavesdropper on a quantum cryptography system,” Nat. Commun. 2, 349 (2011).
[Crossref]

L. Lydersen, C. Wiechers, C. Wittmann, D. Elser, J. Skaar, and V. Makarov, “Hacking commercial quantum cryptography systems by tailored bright illumination,” Nat. Photonics 4, 686–689 (2010).
[Crossref]

L. Lydersen, C. Wiechers, C. Wittmann, D. Elser, J. Skaar, and V. Makarov, “Thermal blinding of gated detectors in quantum cryptography,” Opt. Express 18, 27938 (2010).
[Crossref]

V. Makarov, “Controlling passively quenched single photon detectors by bright light,” New J. Phys. 11, 065003 (2009).
[Crossref]

Marøy, Ø.

Ø. Marøy, V. Makarov, and J. Skaar, “Secure detection in quantum key distribution by real-time calibration of receiver,” Quantum Sci. Technol. 2, 044013 (2017).
[Crossref]

L. Lydersen, N. Jain, C. Wittmann, Ø. Marøy, J. Skaar, C. Marquardt, V. Makarov, and G. Leuchs, “Superlinear threshold detectors in quantum cryptography,” Phys. Rev. A 84, 032320 (2011).
[Crossref]

Marquardt, C.

L. Lydersen, N. Jain, C. Wittmann, Ø. Marøy, J. Skaar, C. Marquardt, V. Makarov, and G. Leuchs, “Superlinear threshold detectors in quantum cryptography,” Phys. Rev. A 84, 032320 (2011).
[Crossref]

C. Wiechers, L. Lydersen, C. Wittmann, D. Elser, J. Skaar, C. Marquardt, V. Makarov, and G. Leuchs, “After-gate attack on a quantum cryptosystem,” New J. Phys. 13, 013043 (2011).
[Crossref]

Masanes, L.

L. Masanes, S. Pironio, and A. Acín, “Secure device-independent quantum key distribution with causally independent measurement devices,” Nat. Commun. 2, 238 (2011).
[Crossref]

Massar, S.

A. Acín, N. Brunner, N. Gisin, S. Massar, S. Pironio, and V. Scarani, “Device-independent security of quantum cryptography against collective attacks,” Phys. Rev. Lett. 98, 230501 (2007).
[Crossref]

Meda, A.

A. Meda, I. P. Degiovanni, A. Tosi, Z. L. Yuan, G. Brida, and M. Genovese, “Quantifying backflash radiation to prevent zero-error attacks in quantum key distribution,” Light Sci. Appl. 6, e16261 (2017).
[Crossref]

Miao, C.-H.

Miki, S.

Moon, S.

M. S. Lee, B. K. Park, M. K. Woo, C. H. Park, Y.-S. Kim, S.-W. Han, and S. Moon, “Countermeasure against blinding attacks on low-noise detectors with a background-noise-cancellation scheme,” Phys. Rev. A 94, 062321 (2016).
[Crossref]

Mor, T.

B. Huttner, N. Imoto, N. Gisin, and T. Mor, “Quantum cryptography with coherent states,” Phys. Rev. A 51, 1863 (1995).
[Crossref]

Nauerth, S.

H. Weier, H. Krauss, M. Rau, M. Fürst, S. Nauerth, and H. Weinfurter, “Quantum eavesdropping without interception: an attack exploiting the dead time of single-photon detectors,” New J. Phys. 13, 073024 (2011).
[Crossref]

S. Nauerth, M. Fürst, T. Schmitt-Manderbach, H. Weier, and H. Weinfurter, “Information leakage via side channels in freespace BB84 quantum cryptography,” New J. Phys. 11, 065001 (2009).
[Crossref]

Ozhegov, R.

M. Elezov, R. Ozhegov, Y. Kurochkin, G. Goltsman, and V. Makarov, “Countermeasures against blinding attack on superconducting nanowire detectors for QKD,” Eur. Phys. J. Conf. 103, 10002 (2015).
[Crossref]

Park, B. K.

M. S. Lee, B. K. Park, M. K. Woo, C. H. Park, Y.-S. Kim, S.-W. Han, and S. Moon, “Countermeasure against blinding attacks on low-noise detectors with a background-noise-cancellation scheme,” Phys. Rev. A 94, 062321 (2016).
[Crossref]

Park, C. H.

M. S. Lee, B. K. Park, M. K. Woo, C. H. Park, Y.-S. Kim, S.-W. Han, and S. Moon, “Countermeasure against blinding attacks on low-noise detectors with a background-noise-cancellation scheme,” Phys. Rev. A 94, 062321 (2016).
[Crossref]

Peev, M.

V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dušek, N. Lütkenhaus, and M. Peev, “The security of practical quantum key distribution,” Rev. Mod. Phys. 81, 1301 (2009).
[Crossref]

Pironio, S.

L. Masanes, S. Pironio, and A. Acín, “Secure device-independent quantum key distribution with causally independent measurement devices,” Nat. Commun. 2, 238 (2011).
[Crossref]

A. Acín, N. Brunner, N. Gisin, S. Massar, S. Pironio, and V. Scarani, “Device-independent security of quantum cryptography against collective attacks,” Phys. Rev. Lett. 98, 230501 (2007).
[Crossref]

Preskill, J.

D. Gottesman, H.-K. Lo, N. Lütkenhaus, and J. Preskill, “Security of quantum key distribution with imperfect devices,” Quantum Inf. Comput. 4, 325–360 (2004).
[Crossref]

Qi, B.

H.-K. Lo, M. Curty, and B. Qi, “Measurement-device-independent quantum key distribution,” Phys. Rev. Lett. 108, 130503 (2012).
[Crossref]

F. Xu, B. Qi, and H.-K. Lo, “Experimental demonstration of phase-remapping attack in a practical quantum key distribution system,” New J. Phys. 12, 113026 (2010).
[Crossref]

Y. Zhao, C.-H. F. Fung, B. Qi, C. Chen, and H.-K. Lo, “Quantum hacking: experimental demonstration of time-shift attack against practical quantum-key-distribution systems,” Phys. Rev. A 78, 042333 (2008).
[Crossref]

B. Qi, C.-H. F. Fung, H.-K. Lo, and X. Ma, “Time-shift attack in practical quantum cryptosystems,” Quantum Inf. Comput. 7, 73–82 (2007).

C.-H. F. Fung, B. Qi, K. Tamaki, and H.-K. Lo, “Phase-remapping attack in practical quantum-key-distribution systems,” Phys. Rev. A 75, 032314 (2007).
[Crossref]

X. Ma, B. Qi, Y. Zhao, and H.-K. Lo, “Practical decoy state for quantum key distribution,” Phys. Rev. A 72, 012326 (2005).
[Crossref]

Qian, Y.-J.

Y.-J. Qian, D.-Y. He, S. Wang, W. Chen, Z.-Q. Yin, G.-C. Guo, and Z.-F. Han, “Hacking the quantum key distribution system by exploiting the avalanche-transition region of single-photon detectors,” Phys. Rev. Appl 10, 064062 (2018).
[Crossref]

Qin, X.

J. Wang, H. Wang, X. Qin, Z. Wei, and Z. Zhang, “The countermeasures against the blinding attack in quantum key distribution,” Eur. Phys. J. D 70, 5 (2016).
[Crossref]

Rau, M.

H. Weier, H. Krauss, M. Rau, M. Fürst, S. Nauerth, and H. Weinfurter, “Quantum eavesdropping without interception: an attack exploiting the dead time of single-photon detectors,” New J. Phys. 13, 073024 (2011).
[Crossref]

Renner, R.

B. Kraus, N. Gisin, and R. Renner, “Lower and upper bounds on the secret-key rate for quantum key distribution protocols using one-way classical communication,” Phys. Rev. Lett. 95, 080501 (2005).
[Crossref]

R. Renner, N. Gisin, and B. Kraus, “Information-theoretic security proof for quantum-key-distribution protocols,” Phys. Rev. A 72, 012332 (2005).
[Crossref]

Ribordy, G.

N. Gisin, S. Fasel, B. Kraus, H. Zbinden, and G. Ribordy, “Trojan-horse attacks on quantum-key-distribution systems,” Phys. Rev. A 73, 022320 (2006).
[Crossref]

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145 (2002).
[Crossref]

Roberts, G.

A. Koehler-Sidki, M. Lucamarini, J. Dynes, G. Roberts, A. Sharpe, Z. L. Yuan, and A. Shields, “Intensity modulation as a preemptive measure against blinding of single-photon detectors based on self-differencing cancellation,” Phys. Rev. A 98, 022327 (2018).
[Crossref]

Sajeed, S.

A. Huang, S. Sajeed, P. Chaiwongkhot, M. Soucarros, M. Legré, and V. Makarov, “Testing random-detector-efficiency countermeasure in a commercial system reveals a breakable unrealistic assumption,” IEEE J. Quantum Electron. 52, 1 (2016).
[Crossref]

S. Sajeed, P. Chaiwongkhot, J.-P. Bourgoin, T. Jennewein, N. Lütkenhaus, and V. Makarov, “Security loophole in free-space quantum key distribution due to spatial-mode detector-efficiency mismatch,” Phys. Rev. A 91, 062301 (2015).
[Crossref]

Sasaki, M.

Sauge, S.

A. N. Bugge, S. Sauge, A. M. M. Ghazali, J. Skaar, L. Lydersen, and V. Makarov, “Laser damage helps the eavesdropper in quantum cryptography,” Phys. Rev. Lett. 112, 070503 (2014).
[Crossref]

S. Sauge, L. Lydersen, A. Anisimov, J. Skaar, and V. Makarov, “Controlling an actively-quenched single photon detector with bright light,” Opt. Express 19, 23590–23600 (2011).
[Crossref]

Scarani, V.

V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dušek, N. Lütkenhaus, and M. Peev, “The security of practical quantum key distribution,” Rev. Mod. Phys. 81, 1301 (2009).
[Crossref]

A. Acín, N. Brunner, N. Gisin, S. Massar, S. Pironio, and V. Scarani, “Device-independent security of quantum cryptography against collective attacks,” Phys. Rev. Lett. 98, 230501 (2007).
[Crossref]

Schmitt-Manderbach, T.

S. Nauerth, M. Fürst, T. Schmitt-Manderbach, H. Weier, and H. Weinfurter, “Information leakage via side channels in freespace BB84 quantum cryptography,” New J. Phys. 11, 065001 (2009).
[Crossref]

Sharpe, A.

A. Koehler-Sidki, M. Lucamarini, J. Dynes, G. Roberts, A. Sharpe, Z. L. Yuan, and A. Shields, “Intensity modulation as a preemptive measure against blinding of single-photon detectors based on self-differencing cancellation,” Phys. Rev. A 98, 022327 (2018).
[Crossref]

Shields, A.

A. Koehler-Sidki, M. Lucamarini, J. Dynes, G. Roberts, A. Sharpe, Z. L. Yuan, and A. Shields, “Intensity modulation as a preemptive measure against blinding of single-photon detectors based on self-differencing cancellation,” Phys. Rev. A 98, 022327 (2018).
[Crossref]

Z. L. Yuan, J. Dynes, and A. Shields, “Response to ‘Comment on ‘Resilience of gated avalanche photodiodes against bright illumination attacks in quantum cryptography,” Appl. Phys. Lett. 99, 196102 (2011).
[Crossref]

Z. L. Yuan, J. Dynes, and A. Shields, “Resilience of gated avalanche photodiodes against bright illumination attacks in quantum cryptography,” Appl. Phys. Lett. 98, 231104 (2011).
[Crossref]

Shimizu, K.

Skaar, J.

Ø. Marøy, V. Makarov, and J. Skaar, “Secure detection in quantum key distribution by real-time calibration of receiver,” Quantum Sci. Technol. 2, 044013 (2017).
[Crossref]

A. N. Bugge, S. Sauge, A. M. M. Ghazali, J. Skaar, L. Lydersen, and V. Makarov, “Laser damage helps the eavesdropper in quantum cryptography,” Phys. Rev. Lett. 112, 070503 (2014).
[Crossref]

Q. Liu, A. Lamas-Linares, C. Kurtsiefer, J. Skaar, V. Makarov, and I. Gerhardt, “A universal setup for active control of a single-photon detector,” Rev. Sci. Instrum. 85, 013108 (2014).
[Crossref]

L. Lydersen, N. Jain, C. Wittmann, Ø. Marøy, J. Skaar, C. Marquardt, V. Makarov, and G. Leuchs, “Superlinear threshold detectors in quantum cryptography,” Phys. Rev. A 84, 032320 (2011).
[Crossref]

L. Lydersen, V. Makarov, and J. Skaar, “Comment on ‘Resilience of gated avalanche photodiodes against bright illumination attacks in quantum cryptography,” Appl. Phys. Lett. 99, 196101 (2011).
[Crossref]

C. Wiechers, L. Lydersen, C. Wittmann, D. Elser, J. Skaar, C. Marquardt, V. Makarov, and G. Leuchs, “After-gate attack on a quantum cryptosystem,” New J. Phys. 13, 013043 (2011).
[Crossref]

S. Sauge, L. Lydersen, A. Anisimov, J. Skaar, and V. Makarov, “Controlling an actively-quenched single photon detector with bright light,” Opt. Express 19, 23590–23600 (2011).
[Crossref]

L. Lydersen, V. Makarov, and J. Skaar, “Secure gated detection scheme for quantum cryptography,” Phys. Rev. A 83, 032306 (2011).
[Crossref]

L. Lydersen, M. K. Akhlaghi, A. H. Majedi, J. Skaar, and V. Makarov, “Controlling a superconducting nanowire single-photon detector using tailored bright illumination,” New J. Phys. 13, 113042 (2011).
[Crossref]

I. Gerhardt, Q. Liu, A. Lamas-Linares, J. Skaar, C. Kurtsiefer, and V. Makarov, “Full-field implementation of a perfect eavesdropper on a quantum cryptography system,” Nat. Commun. 2, 349 (2011).
[Crossref]

L. Lydersen, C. Wiechers, C. Wittmann, D. Elser, J. Skaar, and V. Makarov, “Hacking commercial quantum cryptography systems by tailored bright illumination,” Nat. Photonics 4, 686–689 (2010).
[Crossref]

L. Lydersen, C. Wiechers, C. Wittmann, D. Elser, J. Skaar, and V. Makarov, “Thermal blinding of gated detectors in quantum cryptography,” Opt. Express 18, 27938 (2010).
[Crossref]

Song, X.-T.

Soucarros, M.

A. Huang, S. Sajeed, P. Chaiwongkhot, M. Soucarros, M. Legré, and V. Makarov, “Testing random-detector-efficiency countermeasure in a commercial system reveals a breakable unrealistic assumption,” IEEE J. Quantum Electron. 52, 1 (2016).
[Crossref]

Sun, S.-H.

M.-S. Jiang, S.-H. Sun, G.-Z. Tang, X.-C. Ma, C.-Y. Li, and L.-M. Liang, “Intrinsic imperfection of self-differencing single-photon detectors harms the security of high-speed quantum cryptography systems,” Phys. Rev. A 88, 062335 (2013).
[Crossref]

Tamaki, K.

Tang, G.-Z.

M.-S. Jiang, S.-H. Sun, G.-Z. Tang, X.-C. Ma, C.-Y. Li, and L.-M. Liang, “Intrinsic imperfection of self-differencing single-photon detectors harms the security of high-speed quantum cryptography systems,” Phys. Rev. A 88, 062335 (2013).
[Crossref]

Temporão, G. P.

T. F. da Silva, G. C. do Amaral, G. B. Xavier, G. P. Temporão, and J. P. von der Weid, “Safeguarding quantum key distribution through detection randomization,” IEEE J. Sel. Top. Quantum Electron 21, 159–167 (2015).
[Crossref]

T. F. da Silva, G. B. Xavier, G. P. Temporão, and J. P. von der Weid, “Real-time monitoring of single-photon detectors against eavesdropping in quantum key distribution systems,” Opt. Express 20, 18911–18924 (2012).
[Crossref]

Terai, H.

Tittel, W.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145 (2002).
[Crossref]

Tosi, A.

A. Meda, I. P. Degiovanni, A. Tosi, Z. L. Yuan, G. Brida, and M. Genovese, “Quantifying backflash radiation to prevent zero-error attacks in quantum key distribution,” Light Sci. Appl. 6, e16261 (2017).
[Crossref]

von der Weid, J. P.

T. F. da Silva, G. C. do Amaral, G. B. Xavier, G. P. Temporão, and J. P. von der Weid, “Safeguarding quantum key distribution through detection randomization,” IEEE J. Sel. Top. Quantum Electron 21, 159–167 (2015).
[Crossref]

T. F. da Silva, G. B. Xavier, G. P. Temporão, and J. P. von der Weid, “Real-time monitoring of single-photon detectors against eavesdropping in quantum key distribution systems,” Opt. Express 20, 18911–18924 (2012).
[Crossref]

Walenta, N.

C. C. W. Lim, N. Walenta, M. Legré, N. Gisin, and H. Zbinden, “Random variation of detector efficiency: a countermeasure against detector blinding attacks for quantum key distribution,” IEEE J. Sel. Top. Quantum Electron. 21, 192–196 (2015).
[Crossref]

Wang, D.

Wang, H.

J. Wang, H. Wang, X. Qin, Z. Wei, and Z. Zhang, “The countermeasures against the blinding attack in quantum key distribution,” Eur. Phys. J. D 70, 5 (2016).
[Crossref]

Wang, J.

J. Wang, H. Wang, X. Qin, Z. Wei, and Z. Zhang, “The countermeasures against the blinding attack in quantum key distribution,” Eur. Phys. J. D 70, 5 (2016).
[Crossref]

Wang, S.

Y.-J. Qian, D.-Y. He, S. Wang, W. Chen, Z.-Q. Yin, G.-C. Guo, and Z.-F. Han, “Hacking the quantum key distribution system by exploiting the avalanche-transition region of single-photon detectors,” Phys. Rev. Appl 10, 064062 (2018).
[Crossref]

S. Wang, W. Chen, Z.-Q. Yin, H.-W. Li, D.-Y. He, Y.-H. Li, Z. Zhou, X.-T. Song, F.-Y. Li, D. Wang, H. Chen, Y.-G. Han, J.-Z. Huang, J.-F. Guo, P.-L. Hao, M. Li, C.-M. Zhang, D. Liu, W.-Y. Liang, C.-H. Miao, P. Wu, G.-C. Guo, and Z.-F. Han, “Field and long-term demonstration of a wide area quantum key distribution network,” Opt. Express 22, 21739–21756 (2014).
[Crossref]

H. W. Li, S. Wang, J. Z. Huang, W. Chen, Z. Q. Yin, F. Y. Li, Z. Zhou, D. Liu, Y. Zhang, G. C. Guo, W. S. Bao, and Z. F. Han, “Attacking a practical quantum-key-distribution system with wavelength-dependent beam-splitter and multiwavelength sources,” Phys. Rev. A 84, 062308 (2011).
[Crossref]

Wang, X.-B.

X.-B. Wang, “Beating the photon-number-splitting attack in practical quantum cryptography,” Phys. Rev. Lett. 94, 230503 (2005).
[Crossref]

Wang, Z.

Wei, Z.

J. Wang, H. Wang, X. Qin, Z. Wei, and Z. Zhang, “The countermeasures against the blinding attack in quantum key distribution,” Eur. Phys. J. D 70, 5 (2016).
[Crossref]

Weier, H.

H. Weier, H. Krauss, M. Rau, M. Fürst, S. Nauerth, and H. Weinfurter, “Quantum eavesdropping without interception: an attack exploiting the dead time of single-photon detectors,” New J. Phys. 13, 073024 (2011).
[Crossref]

S. Nauerth, M. Fürst, T. Schmitt-Manderbach, H. Weier, and H. Weinfurter, “Information leakage via side channels in freespace BB84 quantum cryptography,” New J. Phys. 11, 065001 (2009).
[Crossref]

Weinfurter, H.

H. Weier, H. Krauss, M. Rau, M. Fürst, S. Nauerth, and H. Weinfurter, “Quantum eavesdropping without interception: an attack exploiting the dead time of single-photon detectors,” New J. Phys. 13, 073024 (2011).
[Crossref]

S. Nauerth, M. Fürst, T. Schmitt-Manderbach, H. Weier, and H. Weinfurter, “Information leakage via side channels in freespace BB84 quantum cryptography,” New J. Phys. 11, 065001 (2009).
[Crossref]

Wiechers, C.

C. Wiechers, L. Lydersen, C. Wittmann, D. Elser, J. Skaar, C. Marquardt, V. Makarov, and G. Leuchs, “After-gate attack on a quantum cryptosystem,” New J. Phys. 13, 013043 (2011).
[Crossref]

L. Lydersen, C. Wiechers, C. Wittmann, D. Elser, J. Skaar, and V. Makarov, “Thermal blinding of gated detectors in quantum cryptography,” Opt. Express 18, 27938 (2010).
[Crossref]

L. Lydersen, C. Wiechers, C. Wittmann, D. Elser, J. Skaar, and V. Makarov, “Hacking commercial quantum cryptography systems by tailored bright illumination,” Nat. Photonics 4, 686–689 (2010).
[Crossref]

Wittmann, C.

C. Wiechers, L. Lydersen, C. Wittmann, D. Elser, J. Skaar, C. Marquardt, V. Makarov, and G. Leuchs, “After-gate attack on a quantum cryptosystem,” New J. Phys. 13, 013043 (2011).
[Crossref]

L. Lydersen, N. Jain, C. Wittmann, Ø. Marøy, J. Skaar, C. Marquardt, V. Makarov, and G. Leuchs, “Superlinear threshold detectors in quantum cryptography,” Phys. Rev. A 84, 032320 (2011).
[Crossref]

L. Lydersen, C. Wiechers, C. Wittmann, D. Elser, J. Skaar, and V. Makarov, “Thermal blinding of gated detectors in quantum cryptography,” Opt. Express 18, 27938 (2010).
[Crossref]

L. Lydersen, C. Wiechers, C. Wittmann, D. Elser, J. Skaar, and V. Makarov, “Hacking commercial quantum cryptography systems by tailored bright illumination,” Nat. Photonics 4, 686–689 (2010).
[Crossref]

Woo, M. K.

M. S. Lee, B. K. Park, M. K. Woo, C. H. Park, Y.-S. Kim, S.-W. Han, and S. Moon, “Countermeasure against blinding attacks on low-noise detectors with a background-noise-cancellation scheme,” Phys. Rev. A 94, 062321 (2016).
[Crossref]

Wu, P.

Xavier, G. B.

T. F. da Silva, G. C. do Amaral, G. B. Xavier, G. P. Temporão, and J. P. von der Weid, “Safeguarding quantum key distribution through detection randomization,” IEEE J. Sel. Top. Quantum Electron 21, 159–167 (2015).
[Crossref]

T. F. da Silva, G. B. Xavier, G. P. Temporão, and J. P. von der Weid, “Real-time monitoring of single-photon detectors against eavesdropping in quantum key distribution systems,” Opt. Express 20, 18911–18924 (2012).
[Crossref]

Xu, F.

F. Xu, B. Qi, and H.-K. Lo, “Experimental demonstration of phase-remapping attack in a practical quantum key distribution system,” New J. Phys. 12, 113026 (2010).
[Crossref]

Yamashita, T.

Yin, Z. Q.

H. W. Li, S. Wang, J. Z. Huang, W. Chen, Z. Q. Yin, F. Y. Li, Z. Zhou, D. Liu, Y. Zhang, G. C. Guo, W. S. Bao, and Z. F. Han, “Attacking a practical quantum-key-distribution system with wavelength-dependent beam-splitter and multiwavelength sources,” Phys. Rev. A 84, 062308 (2011).
[Crossref]

Yin, Z.-Q.

Yuan, Z. L.

A. Koehler-Sidki, M. Lucamarini, J. Dynes, G. Roberts, A. Sharpe, Z. L. Yuan, and A. Shields, “Intensity modulation as a preemptive measure against blinding of single-photon detectors based on self-differencing cancellation,” Phys. Rev. A 98, 022327 (2018).
[Crossref]

A. Meda, I. P. Degiovanni, A. Tosi, Z. L. Yuan, G. Brida, and M. Genovese, “Quantifying backflash radiation to prevent zero-error attacks in quantum key distribution,” Light Sci. Appl. 6, e16261 (2017).
[Crossref]

Z. L. Yuan, J. Dynes, and A. Shields, “Response to ‘Comment on ‘Resilience of gated avalanche photodiodes against bright illumination attacks in quantum cryptography,” Appl. Phys. Lett. 99, 196102 (2011).
[Crossref]

Z. L. Yuan, J. Dynes, and A. Shields, “Resilience of gated avalanche photodiodes against bright illumination attacks in quantum cryptography,” Appl. Phys. Lett. 98, 231104 (2011).
[Crossref]

Zbinden, H.

C. C. W. Lim, N. Walenta, M. Legré, N. Gisin, and H. Zbinden, “Random variation of detector efficiency: a countermeasure against detector blinding attacks for quantum key distribution,” IEEE J. Sel. Top. Quantum Electron. 21, 192–196 (2015).
[Crossref]

N. Gisin, S. Fasel, B. Kraus, H. Zbinden, and G. Ribordy, “Trojan-horse attacks on quantum-key-distribution systems,” Phys. Rev. A 73, 022320 (2006).
[Crossref]

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145 (2002).
[Crossref]

Zhang, C.-M.

Zhang, Y.

H. W. Li, S. Wang, J. Z. Huang, W. Chen, Z. Q. Yin, F. Y. Li, Z. Zhou, D. Liu, Y. Zhang, G. C. Guo, W. S. Bao, and Z. F. Han, “Attacking a practical quantum-key-distribution system with wavelength-dependent beam-splitter and multiwavelength sources,” Phys. Rev. A 84, 062308 (2011).
[Crossref]

Zhang, Z.

J. Wang, H. Wang, X. Qin, Z. Wei, and Z. Zhang, “The countermeasures against the blinding attack in quantum key distribution,” Eur. Phys. J. D 70, 5 (2016).
[Crossref]

Zhao, Y.

Y. Zhao, C.-H. F. Fung, B. Qi, C. Chen, and H.-K. Lo, “Quantum hacking: experimental demonstration of time-shift attack against practical quantum-key-distribution systems,” Phys. Rev. A 78, 042333 (2008).
[Crossref]

X. Ma, B. Qi, Y. Zhao, and H.-K. Lo, “Practical decoy state for quantum key distribution,” Phys. Rev. A 72, 012326 (2005).
[Crossref]

Zhou, Z.

S. Wang, W. Chen, Z.-Q. Yin, H.-W. Li, D.-Y. He, Y.-H. Li, Z. Zhou, X.-T. Song, F.-Y. Li, D. Wang, H. Chen, Y.-G. Han, J.-Z. Huang, J.-F. Guo, P.-L. Hao, M. Li, C.-M. Zhang, D. Liu, W.-Y. Liang, C.-H. Miao, P. Wu, G.-C. Guo, and Z.-F. Han, “Field and long-term demonstration of a wide area quantum key distribution network,” Opt. Express 22, 21739–21756 (2014).
[Crossref]

H. W. Li, S. Wang, J. Z. Huang, W. Chen, Z. Q. Yin, F. Y. Li, Z. Zhou, D. Liu, Y. Zhang, G. C. Guo, W. S. Bao, and Z. F. Han, “Attacking a practical quantum-key-distribution system with wavelength-dependent beam-splitter and multiwavelength sources,” Phys. Rev. A 84, 062308 (2011).
[Crossref]

Appl. Phys. Lett. (3)

Z. L. Yuan, J. Dynes, and A. Shields, “Resilience of gated avalanche photodiodes against bright illumination attacks in quantum cryptography,” Appl. Phys. Lett. 98, 231104 (2011).
[Crossref]

L. Lydersen, V. Makarov, and J. Skaar, “Comment on ‘Resilience of gated avalanche photodiodes against bright illumination attacks in quantum cryptography,” Appl. Phys. Lett. 99, 196101 (2011).
[Crossref]

Z. L. Yuan, J. Dynes, and A. Shields, “Response to ‘Comment on ‘Resilience of gated avalanche photodiodes against bright illumination attacks in quantum cryptography,” Appl. Phys. Lett. 99, 196102 (2011).
[Crossref]

Eur. Phys. J. Conf. (1)

M. Elezov, R. Ozhegov, Y. Kurochkin, G. Goltsman, and V. Makarov, “Countermeasures against blinding attack on superconducting nanowire detectors for QKD,” Eur. Phys. J. Conf. 103, 10002 (2015).
[Crossref]

Eur. Phys. J. D (1)

J. Wang, H. Wang, X. Qin, Z. Wei, and Z. Zhang, “The countermeasures against the blinding attack in quantum key distribution,” Eur. Phys. J. D 70, 5 (2016).
[Crossref]

IEEE J. Quantum Electron. (1)

A. Huang, S. Sajeed, P. Chaiwongkhot, M. Soucarros, M. Legré, and V. Makarov, “Testing random-detector-efficiency countermeasure in a commercial system reveals a breakable unrealistic assumption,” IEEE J. Quantum Electron. 52, 1 (2016).
[Crossref]

IEEE J. Sel. Top. Quantum Electron (1)

T. F. da Silva, G. C. do Amaral, G. B. Xavier, G. P. Temporão, and J. P. von der Weid, “Safeguarding quantum key distribution through detection randomization,” IEEE J. Sel. Top. Quantum Electron 21, 159–167 (2015).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

C. C. W. Lim, N. Walenta, M. Legré, N. Gisin, and H. Zbinden, “Random variation of detector efficiency: a countermeasure against detector blinding attacks for quantum key distribution,” IEEE J. Sel. Top. Quantum Electron. 21, 192–196 (2015).
[Crossref]

J. Cryptology (1)

H.-K. Lo, H. F. Chau, and M. Ardehali, “Efficient quantum key distribution scheme and a proof of its unconditional security,” J. Cryptology 18, 133–165 (2005).
[Crossref]

Light Sci. Appl. (1)

A. Meda, I. P. Degiovanni, A. Tosi, Z. L. Yuan, G. Brida, and M. Genovese, “Quantifying backflash radiation to prevent zero-error attacks in quantum key distribution,” Light Sci. Appl. 6, e16261 (2017).
[Crossref]

Nat. Commun. (2)

L. Masanes, S. Pironio, and A. Acín, “Secure device-independent quantum key distribution with causally independent measurement devices,” Nat. Commun. 2, 238 (2011).
[Crossref]

I. Gerhardt, Q. Liu, A. Lamas-Linares, J. Skaar, C. Kurtsiefer, and V. Makarov, “Full-field implementation of a perfect eavesdropper on a quantum cryptography system,” Nat. Commun. 2, 349 (2011).
[Crossref]

Nat. Photonics (2)

L. Lydersen, C. Wiechers, C. Wittmann, D. Elser, J. Skaar, and V. Makarov, “Hacking commercial quantum cryptography systems by tailored bright illumination,” Nat. Photonics 4, 686–689 (2010).
[Crossref]

H.-K. Lo, M. Curty, and K. Tamaki, “Secure quantum key distribution,” Nat. Photonics 8, 595–604 (2014).
[Crossref]

New J. Phys. (7)

S. Nauerth, M. Fürst, T. Schmitt-Manderbach, H. Weier, and H. Weinfurter, “Information leakage via side channels in freespace BB84 quantum cryptography,” New J. Phys. 11, 065001 (2009).
[Crossref]

V. Makarov, “Controlling passively quenched single photon detectors by bright light,” New J. Phys. 11, 065003 (2009).
[Crossref]

C. Wiechers, L. Lydersen, C. Wittmann, D. Elser, J. Skaar, C. Marquardt, V. Makarov, and G. Leuchs, “After-gate attack on a quantum cryptosystem,” New J. Phys. 13, 013043 (2011).
[Crossref]

N. Lütkenhaus and M. Jahma, “Quantum key distribution with realistic states: photon-number statistics in the photon-number splitting attack,” New J. Phys. 4, 44 (2002).
[Crossref]

F. Xu, B. Qi, and H.-K. Lo, “Experimental demonstration of phase-remapping attack in a practical quantum key distribution system,” New J. Phys. 12, 113026 (2010).
[Crossref]

H. Weier, H. Krauss, M. Rau, M. Fürst, S. Nauerth, and H. Weinfurter, “Quantum eavesdropping without interception: an attack exploiting the dead time of single-photon detectors,” New J. Phys. 13, 073024 (2011).
[Crossref]

L. Lydersen, M. K. Akhlaghi, A. H. Majedi, J. Skaar, and V. Makarov, “Controlling a superconducting nanowire single-photon detector using tailored bright illumination,” New J. Phys. 13, 113042 (2011).
[Crossref]

Opt. Express (7)

A. Lamas-Linares and C. Kurtsiefer, “Breaking a quantum key distribution system through a timing side channel,” Opt. Express 15, 9388–9393 (2007).
[Crossref]

L. Lydersen, C. Wiechers, C. Wittmann, D. Elser, J. Skaar, and V. Makarov, “Thermal blinding of gated detectors in quantum cryptography,” Opt. Express 18, 27938 (2010).
[Crossref]

S. Sauge, L. Lydersen, A. Anisimov, J. Skaar, and V. Makarov, “Controlling an actively-quenched single photon detector with bright light,” Opt. Express 19, 23590–23600 (2011).
[Crossref]

T. F. da Silva, G. B. Xavier, G. P. Temporão, and J. P. von der Weid, “Real-time monitoring of single-photon detectors against eavesdropping in quantum key distribution systems,” Opt. Express 20, 18911–18924 (2012).
[Crossref]

T. Honjo, M. Fujiwara, K. Shimizu, K. Tamaki, S. Miki, T. Yamashita, H. Terai, Z. Wang, and M. Sasaki, “Countermeasure against tailored bright illumination attack for DPS-QKD,” Opt. Express 21, 2667–2673 (2013).
[Crossref]

M. Fujiwara, T. Honjo, K. Shimizu, K. Tamaki, and M. Sasaki, “Characteristics of superconducting single photon detector in DPS-QKD system under bright illumination blinding attack,” Opt. Express 21, 6304–6312 (2013).
[Crossref]

S. Wang, W. Chen, Z.-Q. Yin, H.-W. Li, D.-Y. He, Y.-H. Li, Z. Zhou, X.-T. Song, F.-Y. Li, D. Wang, H. Chen, Y.-G. Han, J.-Z. Huang, J.-F. Guo, P.-L. Hao, M. Li, C.-M. Zhang, D. Liu, W.-Y. Liang, C.-H. Miao, P. Wu, G.-C. Guo, and Z.-F. Han, “Field and long-term demonstration of a wide area quantum key distribution network,” Opt. Express 22, 21739–21756 (2014).
[Crossref]

Phys. Rev. A (13)

R. Renner, N. Gisin, and B. Kraus, “Information-theoretic security proof for quantum-key-distribution protocols,” Phys. Rev. A 72, 012332 (2005).
[Crossref]

S. Sajeed, P. Chaiwongkhot, J.-P. Bourgoin, T. Jennewein, N. Lütkenhaus, and V. Makarov, “Security loophole in free-space quantum key distribution due to spatial-mode detector-efficiency mismatch,” Phys. Rev. A 91, 062301 (2015).
[Crossref]

A. Koehler-Sidki, M. Lucamarini, J. Dynes, G. Roberts, A. Sharpe, Z. L. Yuan, and A. Shields, “Intensity modulation as a preemptive measure against blinding of single-photon detectors based on self-differencing cancellation,” Phys. Rev. A 98, 022327 (2018).
[Crossref]

M.-S. Jiang, S.-H. Sun, G.-Z. Tang, X.-C. Ma, C.-Y. Li, and L.-M. Liang, “Intrinsic imperfection of self-differencing single-photon detectors harms the security of high-speed quantum cryptography systems,” Phys. Rev. A 88, 062335 (2013).
[Crossref]

X. Ma, B. Qi, Y. Zhao, and H.-K. Lo, “Practical decoy state for quantum key distribution,” Phys. Rev. A 72, 012326 (2005).
[Crossref]

L. Lydersen, V. Makarov, and J. Skaar, “Secure gated detection scheme for quantum cryptography,” Phys. Rev. A 83, 032306 (2011).
[Crossref]

M. S. Lee, B. K. Park, M. K. Woo, C. H. Park, Y.-S. Kim, S.-W. Han, and S. Moon, “Countermeasure against blinding attacks on low-noise detectors with a background-noise-cancellation scheme,” Phys. Rev. A 94, 062321 (2016).
[Crossref]

N. Gisin, S. Fasel, B. Kraus, H. Zbinden, and G. Ribordy, “Trojan-horse attacks on quantum-key-distribution systems,” Phys. Rev. A 73, 022320 (2006).
[Crossref]

Y. Zhao, C.-H. F. Fung, B. Qi, C. Chen, and H.-K. Lo, “Quantum hacking: experimental demonstration of time-shift attack against practical quantum-key-distribution systems,” Phys. Rev. A 78, 042333 (2008).
[Crossref]

H. W. Li, S. Wang, J. Z. Huang, W. Chen, Z. Q. Yin, F. Y. Li, Z. Zhou, D. Liu, Y. Zhang, G. C. Guo, W. S. Bao, and Z. F. Han, “Attacking a practical quantum-key-distribution system with wavelength-dependent beam-splitter and multiwavelength sources,” Phys. Rev. A 84, 062308 (2011).
[Crossref]

C.-H. F. Fung, B. Qi, K. Tamaki, and H.-K. Lo, “Phase-remapping attack in practical quantum-key-distribution systems,” Phys. Rev. A 75, 032314 (2007).
[Crossref]

B. Huttner, N. Imoto, N. Gisin, and T. Mor, “Quantum cryptography with coherent states,” Phys. Rev. A 51, 1863 (1995).
[Crossref]

L. Lydersen, N. Jain, C. Wittmann, Ø. Marøy, J. Skaar, C. Marquardt, V. Makarov, and G. Leuchs, “Superlinear threshold detectors in quantum cryptography,” Phys. Rev. A 84, 032320 (2011).
[Crossref]

Phys. Rev. Appl (1)

Y.-J. Qian, D.-Y. He, S. Wang, W. Chen, Z.-Q. Yin, G.-C. Guo, and Z.-F. Han, “Hacking the quantum key distribution system by exploiting the avalanche-transition region of single-photon detectors,” Phys. Rev. Appl 10, 064062 (2018).
[Crossref]

Phys. Rev. Lett. (7)

W.-Y. Hwang, “Quantum key distribution with high loss: toward global secure communication,” Phys. Rev. Lett. 91, 057901 (2003).
[Crossref]

H.-K. Lo, X. Ma, and K. Chen, “Decoy state quantum key distribution,” Phys. Rev. Lett. 94, 230504 (2005).
[Crossref]

X.-B. Wang, “Beating the photon-number-splitting attack in practical quantum cryptography,” Phys. Rev. Lett. 94, 230503 (2005).
[Crossref]

A. Acín, N. Brunner, N. Gisin, S. Massar, S. Pironio, and V. Scarani, “Device-independent security of quantum cryptography against collective attacks,” Phys. Rev. Lett. 98, 230501 (2007).
[Crossref]

H.-K. Lo, M. Curty, and B. Qi, “Measurement-device-independent quantum key distribution,” Phys. Rev. Lett. 108, 130503 (2012).
[Crossref]

A. N. Bugge, S. Sauge, A. M. M. Ghazali, J. Skaar, L. Lydersen, and V. Makarov, “Laser damage helps the eavesdropper in quantum cryptography,” Phys. Rev. Lett. 112, 070503 (2014).
[Crossref]

B. Kraus, N. Gisin, and R. Renner, “Lower and upper bounds on the secret-key rate for quantum key distribution protocols using one-way classical communication,” Phys. Rev. Lett. 95, 080501 (2005).
[Crossref]

Quantum Inf. Comput. (2)

D. Gottesman, H.-K. Lo, N. Lütkenhaus, and J. Preskill, “Security of quantum key distribution with imperfect devices,” Quantum Inf. Comput. 4, 325–360 (2004).
[Crossref]

B. Qi, C.-H. F. Fung, H.-K. Lo, and X. Ma, “Time-shift attack in practical quantum cryptosystems,” Quantum Inf. Comput. 7, 73–82 (2007).

Quantum Sci. Technol. (1)

Ø. Marøy, V. Makarov, and J. Skaar, “Secure detection in quantum key distribution by real-time calibration of receiver,” Quantum Sci. Technol. 2, 044013 (2017).
[Crossref]

Rev. Mod. Phys. (2)

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145 (2002).
[Crossref]

V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dušek, N. Lütkenhaus, and M. Peev, “The security of practical quantum key distribution,” Rev. Mod. Phys. 81, 1301 (2009).
[Crossref]

Rev. Sci. Instrum. (1)

Q. Liu, A. Lamas-Linares, C. Kurtsiefer, J. Skaar, V. Makarov, and I. Gerhardt, “A universal setup for active control of a single-photon detector,” Rev. Sci. Instrum. 85, 013108 (2014).
[Crossref]

Science (1)

H.-K. Lo and H. F. Chau, “Unconditional security of quantum key distribution over arbitrarily long distances,” Science 283, 2050–2056 (1999).
[Crossref]

Supplementary Material (1)

NameDescription
» Supplement 1       Supplemental document

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. (a) Schematic of the countermeasure model. The VA-SPD model consists of a VA and a SPD. (b) Application of the VA-SPD model to a polarization-encoding BB84 system. PC, polarization controller; BS, beam splitter; PBS, polarization beam splitter.
Fig. 2.
Fig. 2. Bound of the ratio between two detection rates when both QBERs are less than eth.
Fig. 3.
Fig. 3. Scales of QBERs with 0 dB (e0) and 3 dB (e3) attenuation when the ratio between two detection rates α locates in the secure region.
Fig. 4.
Fig. 4. Experimental demonstration of the effectiveness of the VA-SPD model against the attack with blinding light. VA, variable attenuator; BS, beam splitter; PD, high-speed photodiode; ATT, optical attenuator; Amp, amplifier; APD, avalanche photodiode; OSC, oscilloscope.
Fig. 5.
Fig. 5. Results recorded by the oscilloscope. (a) The dead time of SPD is 4.5 μs. (b) The dead time is set to bypass. The blue lines refer to the modulated blinding light, and the fuchsine ones refer to the electrical signals at the output of the APD.

Tables (2)

Tables Icon

Table 1. Detection Probabilities of Bob’s Two VA-SPDs When Eve Makes Both QBERs below the Thresholda

Tables Icon

Table 2. Detection Probabilities of Bob’s Two VA-SPDs When Eve Makes the Detection Rates around the Values in Normal Operation

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

R=1(1Y0)eμη,
1<αR0R3<2.
{e0,e3}<eth,
R0atk=14Pf,0+12Ph,0,
R3atk=14Pf,3+12Ph,3.
e0(s)atk=2Ph,0Ph,022Pf,0+2(2Ph,0Ph,02),
e3(s)atk=2Ph,3Ph,322Pf,3+2(2Ph,3Ph,32).
Pf,0+2Ph,0=α(Pf,3+2Ph,3).
2Ph,0Ph,02<2αeth(Ph,0+2Ph,3)2ethPh,02,
α(2Ph,3Ph,32)<2αeth(Ph,0+2Ph,3Ph,32).
(2Ph,04αeth)Ph,0+α(2Ph,38eth)Ph,3+2ethPh,02+2αethPh,32<0.
e0(opp)atk=2Ph,0Ph,0Ph,32Pf,0+2(2Ph,0Ph,0Ph,3),
e3(opp)atk=2Ph,3Ph,0Ph,32Pf,3+2(2Ph,3Ph,0Ph,3).