S. Ali Hassani Gangaraj, G. W. Hanson, M. G. Silveirinha, K. Shastri, M. Antezza, and F. Monticone, “Unidirectional and diffractionless surface plasmon polaritons on three-dimensional nonreciprocal plasmonic platforms,” Phys. Rev. B 99, 245414 (2019).

[Crossref]

D. E. Fernandes and M. G. Silveirinha, “Topological origin of electromagnetic energy sinks,” Phys. Rev. Appl. 12, 014021 (2019).

[Crossref]

J. B. Khurgin, “Hot carriers generated by plasmons: where are they generated and where do they go from there?” Faraday Discuss. 214, 35–58 (2019).

[Crossref]

S. A. Mann, D. L. Sounas, and A. Alu, “Nonreciprocal cavities and the time-bandwidth limit,” Optica 6, 104–110 (2019).

[Crossref]

K. Tsakmakidis, L. Shen, S. Schulz, X. X. Zheng, J. Upham, X. Deng, H. Altug, A. Vakakis, and R. Boyd, “Breaking Lorentz reciprocity to overcome the time-bandwidth limit in physics and engineering,” Science 356, 1260–1264 (2017).

[Crossref]

D. Jin, T. Christensen, M. Soljačić, N. X. Fang, L. Lu, and X. Zhang, “Infrared topological plasmons in graphene,” Phys. Rev. Lett. 118, 245301 (2017).

[Crossref]

S. A. Hassani Gangaraj, M. G. Silveirinha, and G. W. Hanson, “Berry phase, Berry connection, and Chern number for a continuum bianisotropic material from a classical electromagnetics perspective,” IEEE J. Multiscale Multiphys. Comput. Tech. 2, 3–17 (2017).

[Crossref]

J. Khurgin, W. Y. Tsai, D. P. Tsai, and G. Sun, “Landau damping and limit to field confinement and enhancement in plasmonic dimers,” ACS Photon. 4, 2871–2880 (2017).

[Crossref]

M. Marvasti and B. Rejaei, “Formation of hotspots in partially filled ferrite-loaded rectangular waveguides,” J. Appl. Phys. 122, 233901 (2017).

[Crossref]

D. Jin, L. Lu, Z. Wang, C. Fang, J. D. Joannopoulos, M. Soljacic, L. Fu, and N. X. Fang, “Topological magnetoplasmons,” Nat. Commun. 7, 13486 (2016).

[Crossref]

M. G. Silveiriniha, “Chern invariants for continuous media,” Phys. Rev. B 92, 125153 (2015).

[Crossref]

S. Raza, S. I. Bozhevolnyi, M. Wubs, and N. A. Mortensen, “Nonlocal optical response in metallic nanostructures,” J. Phys. Condens. Matter 27, 183204 (2015).

[Crossref]

F. Monticone and A. Alù, “Leaky-wave theory, techniques, and applications: from microwaves to visible frequencies,” Proc. IEEE 103, 793–821 (2015).

[Crossref]

L. Shen, Y. You, and X. Deng, “Backscattering-immune one-way surface magnetoplasmons at terahertz frequencies,” Opt. Express 23, 950–962 (2015).

[Crossref]

L. Shen, X. Zheng, and Z. Deng, “Stopping terahertz radiation without backscattering over a broad band,” Opt. Express 23, 11790–11798 (2015).

[Crossref]

A. Davoyan and N. Engheta, “Theory of wave propagation in magnetized near-zero-epsilon metamaterials: evidence for one-way photonic states and magnetically switched transparency and opacity,” Phys. Rev. Lett. 111, 257401 (2013).

[Crossref]

M. Z. Hasan and C. L. Kane, “Colloquium: topological insulators,” Rev. Mod. Phys. 82, 3045 (2010).

[Crossref]

Z. Yu, G. Veronis, Z. Wang, and S. Fan, “One-way electromagnetic waveguide formed at the interface between a plasmonic metal under a static magnetic field and a photonic crystal,” Phys. Rev. Lett. 100, 023902 (2008).

[Crossref]

J. Khurgin, “Optical isolating in surface plasmon polaritons,” Appl. Phys. Lett. 89, 251115 (2006).

[Crossref]

M. I. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett. 93, 137404 (2004).

[Crossref]

A. D. Boardman and R. Ruppin, “The boundary conditions between spatially dispersive media,” Surf. Sci. 112, 153 (1981).

[Crossref]

E. Palik, R. Kaplan, R. Gammon, H. Kaplan, R. Wallis, and J. Quinn, “Coupled surface magnetoplasmon-optic-phonon polariton modes on InSb,” Phys. Rev. B 13, 2497–2506 (1976).

[Crossref]

J. J. Brion, R. F. Wallis, A. Hartstein, and E. Burstein, “Theory of surface magnetoplasmons in semiconductors,” Phys. Rev. Lett. 28, 1455–1458 (1972).

[Crossref]

G. Barzilai and G. Gerosa, “Rectangular waveguides loaded with magnetised ferrite, and the so-called thermodynamic paradox,” Proc. IEE 113, 285–288 (1966).

[Crossref]

S. R. Seshadri, “Excitation of surface waves on a perfectly conducting screen covered with anisotropic plasma,” IRE Trans. Microwave Theory Tech. 10, 573–578 (1962).

[Crossref]

S. Ali Hassani Gangaraj, G. W. Hanson, M. G. Silveirinha, K. Shastri, M. Antezza, and F. Monticone, “Unidirectional and diffractionless surface plasmon polaritons on three-dimensional nonreciprocal plasmonic platforms,” Phys. Rev. B 99, 245414 (2019).

[Crossref]

K. Tsakmakidis, L. Shen, S. Schulz, X. X. Zheng, J. Upham, X. Deng, H. Altug, A. Vakakis, and R. Boyd, “Breaking Lorentz reciprocity to overcome the time-bandwidth limit in physics and engineering,” Science 356, 1260–1264 (2017).

[Crossref]

F. Monticone and A. Alù, “Leaky-wave theory, techniques, and applications: from microwaves to visible frequencies,” Proc. IEEE 103, 793–821 (2015).

[Crossref]

S. Ali Hassani Gangaraj, G. W. Hanson, M. G. Silveirinha, K. Shastri, M. Antezza, and F. Monticone, “Unidirectional and diffractionless surface plasmon polaritons on three-dimensional nonreciprocal plasmonic platforms,” Phys. Rev. B 99, 245414 (2019).

[Crossref]

S. A. Hassani Gangaraj, G. W. Hanson, M. Antezza, and M. G. Silveirinha, “Spontaneous lateral atomic recoil force close to a photonic topological material,” Phys. Rev. B 97, 201108 (2018).

[Crossref]

S. Pakniyat, A. M. Holmes, G. W. Hanson, S. A. Hassani Gangaraj, M. Antezza, M. G. Silveirinha, S. Jam, and F. Monticone, “Robust surface plasmon polaritons on gyrotropic interfaces,” arXiv:1902.09002v1 (2018).

G. Barzilai and G. Gerosa, “Rectangular waveguides loaded with magnetised ferrite, and the so-called thermodynamic paradox,” Proc. IEE 113, 285–288 (1966).

[Crossref]

J. A. Bittencourt, Fundamentals of Plasma Physics, 3rd ed. (Springer-Verlag, 2010).

A. D. Boardman and R. Ruppin, “The boundary conditions between spatially dispersive media,” Surf. Sci. 112, 153 (1981).

[Crossref]

K. Tsakmakidis, L. Shen, S. Schulz, X. X. Zheng, J. Upham, X. Deng, H. Altug, A. Vakakis, and R. Boyd, “Breaking Lorentz reciprocity to overcome the time-bandwidth limit in physics and engineering,” Science 356, 1260–1264 (2017).

[Crossref]

S. Raza, S. I. Bozhevolnyi, M. Wubs, and N. A. Mortensen, “Nonlocal optical response in metallic nanostructures,” J. Phys. Condens. Matter 27, 183204 (2015).

[Crossref]

S. I. Bozhevolnyi, L. Martin-Moreno, and F. Garcia-Vidal, Quantum Plasmonic (Springer, 2017).

J. J. Brion, R. F. Wallis, A. Hartstein, and E. Burstein, “Theory of surface magnetoplasmons in semiconductors,” Phys. Rev. Lett. 28, 1455–1458 (1972).

[Crossref]

S. Buddhiraju, Y. Shi, A. Song, C. Wojcik, M. Minkov, I. A. D. Williamson, A. Dutt, and S. Fan, “Absence of unidirectionally propagating surface plasmon-polaritons in nonreciprocal plasmonics,” arXiv:1809.05100v1 (2018).

J. J. Brion, R. F. Wallis, A. Hartstein, and E. Burstein, “Theory of surface magnetoplasmons in semiconductors,” Phys. Rev. Lett. 28, 1455–1458 (1972).

[Crossref]

D. Jin, T. Christensen, M. Soljačić, N. X. Fang, L. Lu, and X. Zhang, “Infrared topological plasmons in graphene,” Phys. Rev. Lett. 118, 245301 (2017).

[Crossref]

A. Davoyan and N. Engheta, “Theory of wave propagation in magnetized near-zero-epsilon metamaterials: evidence for one-way photonic states and magnetically switched transparency and opacity,” Phys. Rev. Lett. 111, 257401 (2013).

[Crossref]

K. Tsakmakidis, L. Shen, S. Schulz, X. X. Zheng, J. Upham, X. Deng, H. Altug, A. Vakakis, and R. Boyd, “Breaking Lorentz reciprocity to overcome the time-bandwidth limit in physics and engineering,” Science 356, 1260–1264 (2017).

[Crossref]

L. Shen, Y. You, and X. Deng, “Backscattering-immune one-way surface magnetoplasmons at terahertz frequencies,” Opt. Express 23, 950–962 (2015).

[Crossref]

S. Buddhiraju, Y. Shi, A. Song, C. Wojcik, M. Minkov, I. A. D. Williamson, A. Dutt, and S. Fan, “Absence of unidirectionally propagating surface plasmon-polaritons in nonreciprocal plasmonics,” arXiv:1809.05100v1 (2018).

Z. Yu, G. Veronis, Z. Wang, and S. Fan, “One-way electromagnetic waveguide formed at the interface between a plasmonic metal under a static magnetic field and a photonic crystal,” Phys. Rev. Lett. 100, 023902 (2008).

[Crossref]

S. Buddhiraju, Y. Shi, A. Song, C. Wojcik, M. Minkov, I. A. D. Williamson, A. Dutt, and S. Fan, “Absence of unidirectionally propagating surface plasmon-polaritons in nonreciprocal plasmonics,” arXiv:1809.05100v1 (2018).

D. Jin, L. Lu, Z. Wang, C. Fang, J. D. Joannopoulos, M. Soljacic, L. Fu, and N. X. Fang, “Topological magnetoplasmons,” Nat. Commun. 7, 13486 (2016).

[Crossref]

D. Jin, T. Christensen, M. Soljačić, N. X. Fang, L. Lu, and X. Zhang, “Infrared topological plasmons in graphene,” Phys. Rev. Lett. 118, 245301 (2017).

[Crossref]

D. Jin, L. Lu, Z. Wang, C. Fang, J. D. Joannopoulos, M. Soljacic, L. Fu, and N. X. Fang, “Topological magnetoplasmons,” Nat. Commun. 7, 13486 (2016).

[Crossref]

D. E. Fernandes and M. G. Silveirinha, “Topological origin of electromagnetic energy sinks,” Phys. Rev. Appl. 12, 014021 (2019).

[Crossref]

D. Jin, L. Lu, Z. Wang, C. Fang, J. D. Joannopoulos, M. Soljacic, L. Fu, and N. X. Fang, “Topological magnetoplasmons,” Nat. Commun. 7, 13486 (2016).

[Crossref]

E. Palik, R. Kaplan, R. Gammon, H. Kaplan, R. Wallis, and J. Quinn, “Coupled surface magnetoplasmon-optic-phonon polariton modes on InSb,” Phys. Rev. B 13, 2497–2506 (1976).

[Crossref]

S. I. Bozhevolnyi, L. Martin-Moreno, and F. Garcia-Vidal, Quantum Plasmonic (Springer, 2017).

G. Barzilai and G. Gerosa, “Rectangular waveguides loaded with magnetised ferrite, and the so-called thermodynamic paradox,” Proc. IEE 113, 285–288 (1966).

[Crossref]

D. Vasileska and S. M. Goodnick, Nano-Electronic Devices: Semiclassical and Quantum Transport Modeling (Springer, 2011).

S. Ali Hassani Gangaraj, G. W. Hanson, M. G. Silveirinha, K. Shastri, M. Antezza, and F. Monticone, “Unidirectional and diffractionless surface plasmon polaritons on three-dimensional nonreciprocal plasmonic platforms,” Phys. Rev. B 99, 245414 (2019).

[Crossref]

S. A. Hassani Gangaraj, G. W. Hanson, M. Antezza, and M. G. Silveirinha, “Spontaneous lateral atomic recoil force close to a photonic topological material,” Phys. Rev. B 97, 201108 (2018).

[Crossref]

S. A. Hassani Gangaraj, M. G. Silveirinha, and G. W. Hanson, “Berry phase, Berry connection, and Chern number for a continuum bianisotropic material from a classical electromagnetics perspective,” IEEE J. Multiscale Multiphys. Comput. Tech. 2, 3–17 (2017).

[Crossref]

S. Pakniyat, A. M. Holmes, G. W. Hanson, S. A. Hassani Gangaraj, M. Antezza, M. G. Silveirinha, S. Jam, and F. Monticone, “Robust surface plasmon polaritons on gyrotropic interfaces,” arXiv:1902.09002v1 (2018).

J. J. Brion, R. F. Wallis, A. Hartstein, and E. Burstein, “Theory of surface magnetoplasmons in semiconductors,” Phys. Rev. Lett. 28, 1455–1458 (1972).

[Crossref]

M. Z. Hasan and C. L. Kane, “Colloquium: topological insulators,” Rev. Mod. Phys. 82, 3045 (2010).

[Crossref]

S. A. Hassani Gangaraj, G. W. Hanson, M. Antezza, and M. G. Silveirinha, “Spontaneous lateral atomic recoil force close to a photonic topological material,” Phys. Rev. B 97, 201108 (2018).

[Crossref]

S. A. Hassani Gangaraj, M. G. Silveirinha, and G. W. Hanson, “Berry phase, Berry connection, and Chern number for a continuum bianisotropic material from a classical electromagnetics perspective,” IEEE J. Multiscale Multiphys. Comput. Tech. 2, 3–17 (2017).

[Crossref]

S. Pakniyat, A. M. Holmes, G. W. Hanson, S. A. Hassani Gangaraj, M. Antezza, M. G. Silveirinha, S. Jam, and F. Monticone, “Robust surface plasmon polaritons on gyrotropic interfaces,” arXiv:1902.09002v1 (2018).

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University, 2006).

S. Pakniyat, A. M. Holmes, G. W. Hanson, S. A. Hassani Gangaraj, M. Antezza, M. G. Silveirinha, S. Jam, and F. Monticone, “Robust surface plasmon polaritons on gyrotropic interfaces,” arXiv:1902.09002v1 (2018).

A. Ishimaru, “Unidirectional waves in anisotropic media and the resolution of the thermodynamic paradox,” (US Air Force, 1962).

T. Van Mechelen and Z. Jacob, “Unidirectional Maxwellian spin waves,” arXiv:1903.09278v1 (2019).

S. Pakniyat, A. M. Holmes, G. W. Hanson, S. A. Hassani Gangaraj, M. Antezza, M. G. Silveirinha, S. Jam, and F. Monticone, “Robust surface plasmon polaritons on gyrotropic interfaces,” arXiv:1902.09002v1 (2018).

D. Jin, T. Christensen, M. Soljačić, N. X. Fang, L. Lu, and X. Zhang, “Infrared topological plasmons in graphene,” Phys. Rev. Lett. 118, 245301 (2017).

[Crossref]

D. Jin, L. Lu, Z. Wang, C. Fang, J. D. Joannopoulos, M. Soljacic, L. Fu, and N. X. Fang, “Topological magnetoplasmons,” Nat. Commun. 7, 13486 (2016).

[Crossref]

D. Jin, L. Lu, Z. Wang, C. Fang, J. D. Joannopoulos, M. Soljacic, L. Fu, and N. X. Fang, “Topological magnetoplasmons,” Nat. Commun. 7, 13486 (2016).

[Crossref]

M. Z. Hasan and C. L. Kane, “Colloquium: topological insulators,” Rev. Mod. Phys. 82, 3045 (2010).

[Crossref]

E. Palik, R. Kaplan, R. Gammon, H. Kaplan, R. Wallis, and J. Quinn, “Coupled surface magnetoplasmon-optic-phonon polariton modes on InSb,” Phys. Rev. B 13, 2497–2506 (1976).

[Crossref]

E. Palik, R. Kaplan, R. Gammon, H. Kaplan, R. Wallis, and J. Quinn, “Coupled surface magnetoplasmon-optic-phonon polariton modes on InSb,” Phys. Rev. B 13, 2497–2506 (1976).

[Crossref]

J. Khurgin, W. Y. Tsai, D. P. Tsai, and G. Sun, “Landau damping and limit to field confinement and enhancement in plasmonic dimers,” ACS Photon. 4, 2871–2880 (2017).

[Crossref]

J. Khurgin, “Optical isolating in surface plasmon polaritons,” Appl. Phys. Lett. 89, 251115 (2006).

[Crossref]

J. B. Khurgin, “Hot carriers generated by plasmons: where are they generated and where do they go from there?” Faraday Discuss. 214, 35–58 (2019).

[Crossref]

L. D. Landau, L. P. Pitaevskii, and E. M. Lifshitz, Electrodynamics of Continuous Media (Butterworth-Heinemann, 1984).

L. D. Landau, L. P. Pitaevskii, and E. M. Lifshitz, Electrodynamics of Continuous Media (Butterworth-Heinemann, 1984).

D. Jin, T. Christensen, M. Soljačić, N. X. Fang, L. Lu, and X. Zhang, “Infrared topological plasmons in graphene,” Phys. Rev. Lett. 118, 245301 (2017).

[Crossref]

D. Jin, L. Lu, Z. Wang, C. Fang, J. D. Joannopoulos, M. Soljacic, L. Fu, and N. X. Fang, “Topological magnetoplasmons,” Nat. Commun. 7, 13486 (2016).

[Crossref]

S. I. Bozhevolnyi, L. Martin-Moreno, and F. Garcia-Vidal, Quantum Plasmonic (Springer, 2017).

M. Marvasti and B. Rejaei, “Formation of hotspots in partially filled ferrite-loaded rectangular waveguides,” J. Appl. Phys. 122, 233901 (2017).

[Crossref]

S. Buddhiraju, Y. Shi, A. Song, C. Wojcik, M. Minkov, I. A. D. Williamson, A. Dutt, and S. Fan, “Absence of unidirectionally propagating surface plasmon-polaritons in nonreciprocal plasmonics,” arXiv:1809.05100v1 (2018).

S. Ali Hassani Gangaraj, G. W. Hanson, M. G. Silveirinha, K. Shastri, M. Antezza, and F. Monticone, “Unidirectional and diffractionless surface plasmon polaritons on three-dimensional nonreciprocal plasmonic platforms,” Phys. Rev. B 99, 245414 (2019).

[Crossref]

F. Monticone and A. Alù, “Leaky-wave theory, techniques, and applications: from microwaves to visible frequencies,” Proc. IEEE 103, 793–821 (2015).

[Crossref]

S. Pakniyat, A. M. Holmes, G. W. Hanson, S. A. Hassani Gangaraj, M. Antezza, M. G. Silveirinha, S. Jam, and F. Monticone, “Robust surface plasmon polaritons on gyrotropic interfaces,” arXiv:1902.09002v1 (2018).

S. Raza, S. I. Bozhevolnyi, M. Wubs, and N. A. Mortensen, “Nonlocal optical response in metallic nanostructures,” J. Phys. Condens. Matter 27, 183204 (2015).

[Crossref]

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University, 2006).

S. Pakniyat, A. M. Holmes, G. W. Hanson, S. A. Hassani Gangaraj, M. Antezza, M. G. Silveirinha, S. Jam, and F. Monticone, “Robust surface plasmon polaritons on gyrotropic interfaces,” arXiv:1902.09002v1 (2018).

E. Palik, R. Kaplan, R. Gammon, H. Kaplan, R. Wallis, and J. Quinn, “Coupled surface magnetoplasmon-optic-phonon polariton modes on InSb,” Phys. Rev. B 13, 2497–2506 (1976).

[Crossref]

L. D. Landau, L. P. Pitaevskii, and E. M. Lifshitz, Electrodynamics of Continuous Media (Butterworth-Heinemann, 1984).

E. Palik, R. Kaplan, R. Gammon, H. Kaplan, R. Wallis, and J. Quinn, “Coupled surface magnetoplasmon-optic-phonon polariton modes on InSb,” Phys. Rev. B 13, 2497–2506 (1976).

[Crossref]

S. Raza, S. I. Bozhevolnyi, M. Wubs, and N. A. Mortensen, “Nonlocal optical response in metallic nanostructures,” J. Phys. Condens. Matter 27, 183204 (2015).

[Crossref]

M. Marvasti and B. Rejaei, “Formation of hotspots in partially filled ferrite-loaded rectangular waveguides,” J. Appl. Phys. 122, 233901 (2017).

[Crossref]

A. D. Boardman and R. Ruppin, “The boundary conditions between spatially dispersive media,” Surf. Sci. 112, 153 (1981).

[Crossref]

K. Tsakmakidis, L. Shen, S. Schulz, X. X. Zheng, J. Upham, X. Deng, H. Altug, A. Vakakis, and R. Boyd, “Breaking Lorentz reciprocity to overcome the time-bandwidth limit in physics and engineering,” Science 356, 1260–1264 (2017).

[Crossref]

S. R. Seshadri, “Excitation of surface waves on a perfectly conducting screen covered with anisotropic plasma,” IRE Trans. Microwave Theory Tech. 10, 573–578 (1962).

[Crossref]

S. Ali Hassani Gangaraj, G. W. Hanson, M. G. Silveirinha, K. Shastri, M. Antezza, and F. Monticone, “Unidirectional and diffractionless surface plasmon polaritons on three-dimensional nonreciprocal plasmonic platforms,” Phys. Rev. B 99, 245414 (2019).

[Crossref]

K. Tsakmakidis, L. Shen, S. Schulz, X. X. Zheng, J. Upham, X. Deng, H. Altug, A. Vakakis, and R. Boyd, “Breaking Lorentz reciprocity to overcome the time-bandwidth limit in physics and engineering,” Science 356, 1260–1264 (2017).

[Crossref]

L. Shen, Y. You, and X. Deng, “Backscattering-immune one-way surface magnetoplasmons at terahertz frequencies,” Opt. Express 23, 950–962 (2015).

[Crossref]

L. Shen, X. Zheng, and Z. Deng, “Stopping terahertz radiation without backscattering over a broad band,” Opt. Express 23, 11790–11798 (2015).

[Crossref]

S. Buddhiraju, Y. Shi, A. Song, C. Wojcik, M. Minkov, I. A. D. Williamson, A. Dutt, and S. Fan, “Absence of unidirectionally propagating surface plasmon-polaritons in nonreciprocal plasmonics,” arXiv:1809.05100v1 (2018).

D. E. Fernandes and M. G. Silveirinha, “Topological origin of electromagnetic energy sinks,” Phys. Rev. Appl. 12, 014021 (2019).

[Crossref]

S. Ali Hassani Gangaraj, G. W. Hanson, M. G. Silveirinha, K. Shastri, M. Antezza, and F. Monticone, “Unidirectional and diffractionless surface plasmon polaritons on three-dimensional nonreciprocal plasmonic platforms,” Phys. Rev. B 99, 245414 (2019).

[Crossref]

S. A. Hassani Gangaraj, G. W. Hanson, M. Antezza, and M. G. Silveirinha, “Spontaneous lateral atomic recoil force close to a photonic topological material,” Phys. Rev. B 97, 201108 (2018).

[Crossref]

S. A. Hassani Gangaraj, M. G. Silveirinha, and G. W. Hanson, “Berry phase, Berry connection, and Chern number for a continuum bianisotropic material from a classical electromagnetics perspective,” IEEE J. Multiscale Multiphys. Comput. Tech. 2, 3–17 (2017).

[Crossref]

S. Pakniyat, A. M. Holmes, G. W. Hanson, S. A. Hassani Gangaraj, M. Antezza, M. G. Silveirinha, S. Jam, and F. Monticone, “Robust surface plasmon polaritons on gyrotropic interfaces,” arXiv:1902.09002v1 (2018).

M. G. Silveiriniha, “Chern invariants for continuous media,” Phys. Rev. B 92, 125153 (2015).

[Crossref]

D. Jin, T. Christensen, M. Soljačić, N. X. Fang, L. Lu, and X. Zhang, “Infrared topological plasmons in graphene,” Phys. Rev. Lett. 118, 245301 (2017).

[Crossref]

D. Jin, L. Lu, Z. Wang, C. Fang, J. D. Joannopoulos, M. Soljacic, L. Fu, and N. X. Fang, “Topological magnetoplasmons,” Nat. Commun. 7, 13486 (2016).

[Crossref]

S. Buddhiraju, Y. Shi, A. Song, C. Wojcik, M. Minkov, I. A. D. Williamson, A. Dutt, and S. Fan, “Absence of unidirectionally propagating surface plasmon-polaritons in nonreciprocal plasmonics,” arXiv:1809.05100v1 (2018).

M. I. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett. 93, 137404 (2004).

[Crossref]

J. Khurgin, W. Y. Tsai, D. P. Tsai, and G. Sun, “Landau damping and limit to field confinement and enhancement in plasmonic dimers,” ACS Photon. 4, 2871–2880 (2017).

[Crossref]

J. Khurgin, W. Y. Tsai, D. P. Tsai, and G. Sun, “Landau damping and limit to field confinement and enhancement in plasmonic dimers,” ACS Photon. 4, 2871–2880 (2017).

[Crossref]

J. Khurgin, W. Y. Tsai, D. P. Tsai, and G. Sun, “Landau damping and limit to field confinement and enhancement in plasmonic dimers,” ACS Photon. 4, 2871–2880 (2017).

[Crossref]

K. Tsakmakidis, L. Shen, S. Schulz, X. X. Zheng, J. Upham, X. Deng, H. Altug, A. Vakakis, and R. Boyd, “Breaking Lorentz reciprocity to overcome the time-bandwidth limit in physics and engineering,” Science 356, 1260–1264 (2017).

[Crossref]

K. Tsakmakidis, L. Shen, S. Schulz, X. X. Zheng, J. Upham, X. Deng, H. Altug, A. Vakakis, and R. Boyd, “Breaking Lorentz reciprocity to overcome the time-bandwidth limit in physics and engineering,” Science 356, 1260–1264 (2017).

[Crossref]

K. Tsakmakidis, L. Shen, S. Schulz, X. X. Zheng, J. Upham, X. Deng, H. Altug, A. Vakakis, and R. Boyd, “Breaking Lorentz reciprocity to overcome the time-bandwidth limit in physics and engineering,” Science 356, 1260–1264 (2017).

[Crossref]

T. Van Mechelen and Z. Jacob, “Unidirectional Maxwellian spin waves,” arXiv:1903.09278v1 (2019).

D. Vasileska and S. M. Goodnick, Nano-Electronic Devices: Semiclassical and Quantum Transport Modeling (Springer, 2011).

Z. Yu, G. Veronis, Z. Wang, and S. Fan, “One-way electromagnetic waveguide formed at the interface between a plasmonic metal under a static magnetic field and a photonic crystal,” Phys. Rev. Lett. 100, 023902 (2008).

[Crossref]

E. Palik, R. Kaplan, R. Gammon, H. Kaplan, R. Wallis, and J. Quinn, “Coupled surface magnetoplasmon-optic-phonon polariton modes on InSb,” Phys. Rev. B 13, 2497–2506 (1976).

[Crossref]

J. J. Brion, R. F. Wallis, A. Hartstein, and E. Burstein, “Theory of surface magnetoplasmons in semiconductors,” Phys. Rev. Lett. 28, 1455–1458 (1972).

[Crossref]

D. Jin, L. Lu, Z. Wang, C. Fang, J. D. Joannopoulos, M. Soljacic, L. Fu, and N. X. Fang, “Topological magnetoplasmons,” Nat. Commun. 7, 13486 (2016).

[Crossref]

Z. Yu, G. Veronis, Z. Wang, and S. Fan, “One-way electromagnetic waveguide formed at the interface between a plasmonic metal under a static magnetic field and a photonic crystal,” Phys. Rev. Lett. 100, 023902 (2008).

[Crossref]

S. Buddhiraju, Y. Shi, A. Song, C. Wojcik, M. Minkov, I. A. D. Williamson, A. Dutt, and S. Fan, “Absence of unidirectionally propagating surface plasmon-polaritons in nonreciprocal plasmonics,” arXiv:1809.05100v1 (2018).

S. Buddhiraju, Y. Shi, A. Song, C. Wojcik, M. Minkov, I. A. D. Williamson, A. Dutt, and S. Fan, “Absence of unidirectionally propagating surface plasmon-polaritons in nonreciprocal plasmonics,” arXiv:1809.05100v1 (2018).

S. Raza, S. I. Bozhevolnyi, M. Wubs, and N. A. Mortensen, “Nonlocal optical response in metallic nanostructures,” J. Phys. Condens. Matter 27, 183204 (2015).

[Crossref]

Z. Yu, G. Veronis, Z. Wang, and S. Fan, “One-way electromagnetic waveguide formed at the interface between a plasmonic metal under a static magnetic field and a photonic crystal,” Phys. Rev. Lett. 100, 023902 (2008).

[Crossref]

D. Jin, T. Christensen, M. Soljačić, N. X. Fang, L. Lu, and X. Zhang, “Infrared topological plasmons in graphene,” Phys. Rev. Lett. 118, 245301 (2017).

[Crossref]

K. Tsakmakidis, L. Shen, S. Schulz, X. X. Zheng, J. Upham, X. Deng, H. Altug, A. Vakakis, and R. Boyd, “Breaking Lorentz reciprocity to overcome the time-bandwidth limit in physics and engineering,” Science 356, 1260–1264 (2017).

[Crossref]

J. Khurgin, W. Y. Tsai, D. P. Tsai, and G. Sun, “Landau damping and limit to field confinement and enhancement in plasmonic dimers,” ACS Photon. 4, 2871–2880 (2017).

[Crossref]

J. Khurgin, “Optical isolating in surface plasmon polaritons,” Appl. Phys. Lett. 89, 251115 (2006).

[Crossref]

J. B. Khurgin, “Hot carriers generated by plasmons: where are they generated and where do they go from there?” Faraday Discuss. 214, 35–58 (2019).

[Crossref]

S. A. Hassani Gangaraj, M. G. Silveirinha, and G. W. Hanson, “Berry phase, Berry connection, and Chern number for a continuum bianisotropic material from a classical electromagnetics perspective,” IEEE J. Multiscale Multiphys. Comput. Tech. 2, 3–17 (2017).

[Crossref]

S. R. Seshadri, “Excitation of surface waves on a perfectly conducting screen covered with anisotropic plasma,” IRE Trans. Microwave Theory Tech. 10, 573–578 (1962).

[Crossref]

M. Marvasti and B. Rejaei, “Formation of hotspots in partially filled ferrite-loaded rectangular waveguides,” J. Appl. Phys. 122, 233901 (2017).

[Crossref]

S. Raza, S. I. Bozhevolnyi, M. Wubs, and N. A. Mortensen, “Nonlocal optical response in metallic nanostructures,” J. Phys. Condens. Matter 27, 183204 (2015).

[Crossref]

D. Jin, L. Lu, Z. Wang, C. Fang, J. D. Joannopoulos, M. Soljacic, L. Fu, and N. X. Fang, “Topological magnetoplasmons,” Nat. Commun. 7, 13486 (2016).

[Crossref]

L. Shen, Y. You, and X. Deng, “Backscattering-immune one-way surface magnetoplasmons at terahertz frequencies,” Opt. Express 23, 950–962 (2015).

[Crossref]

L. Shen, X. Zheng, and Z. Deng, “Stopping terahertz radiation without backscattering over a broad band,” Opt. Express 23, 11790–11798 (2015).

[Crossref]

J. Gomez Rivas, C. Janke, P. Bolivar, and H. Kurz, “Transmission of THz radiation through InSb gratings of subwavelength apertures,” Opt. Express 13, 847–859 (2005).

[Crossref]

D. E. Fernandes and M. G. Silveirinha, “Topological origin of electromagnetic energy sinks,” Phys. Rev. Appl. 12, 014021 (2019).

[Crossref]

S. Ali Hassani Gangaraj, G. W. Hanson, M. G. Silveirinha, K. Shastri, M. Antezza, and F. Monticone, “Unidirectional and diffractionless surface plasmon polaritons on three-dimensional nonreciprocal plasmonic platforms,” Phys. Rev. B 99, 245414 (2019).

[Crossref]

M. G. Silveiriniha, “Chern invariants for continuous media,” Phys. Rev. B 92, 125153 (2015).

[Crossref]

E. Palik, R. Kaplan, R. Gammon, H. Kaplan, R. Wallis, and J. Quinn, “Coupled surface magnetoplasmon-optic-phonon polariton modes on InSb,” Phys. Rev. B 13, 2497–2506 (1976).

[Crossref]

S. A. Hassani Gangaraj, G. W. Hanson, M. Antezza, and M. G. Silveirinha, “Spontaneous lateral atomic recoil force close to a photonic topological material,” Phys. Rev. B 97, 201108 (2018).

[Crossref]

J. J. Brion, R. F. Wallis, A. Hartstein, and E. Burstein, “Theory of surface magnetoplasmons in semiconductors,” Phys. Rev. Lett. 28, 1455–1458 (1972).

[Crossref]

D. Jin, T. Christensen, M. Soljačić, N. X. Fang, L. Lu, and X. Zhang, “Infrared topological plasmons in graphene,” Phys. Rev. Lett. 118, 245301 (2017).

[Crossref]

M. I. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett. 93, 137404 (2004).

[Crossref]

Z. Yu, G. Veronis, Z. Wang, and S. Fan, “One-way electromagnetic waveguide formed at the interface between a plasmonic metal under a static magnetic field and a photonic crystal,” Phys. Rev. Lett. 100, 023902 (2008).

[Crossref]

A. Davoyan and N. Engheta, “Theory of wave propagation in magnetized near-zero-epsilon metamaterials: evidence for one-way photonic states and magnetically switched transparency and opacity,” Phys. Rev. Lett. 111, 257401 (2013).

[Crossref]

G. Barzilai and G. Gerosa, “Rectangular waveguides loaded with magnetised ferrite, and the so-called thermodynamic paradox,” Proc. IEE 113, 285–288 (1966).

[Crossref]

F. Monticone and A. Alù, “Leaky-wave theory, techniques, and applications: from microwaves to visible frequencies,” Proc. IEEE 103, 793–821 (2015).

[Crossref]

M. Z. Hasan and C. L. Kane, “Colloquium: topological insulators,” Rev. Mod. Phys. 82, 3045 (2010).

[Crossref]

K. Tsakmakidis, L. Shen, S. Schulz, X. X. Zheng, J. Upham, X. Deng, H. Altug, A. Vakakis, and R. Boyd, “Breaking Lorentz reciprocity to overcome the time-bandwidth limit in physics and engineering,” Science 356, 1260–1264 (2017).

[Crossref]

A. D. Boardman and R. Ruppin, “The boundary conditions between spatially dispersive media,” Surf. Sci. 112, 153 (1981).

[Crossref]

COMSOL, “Multiphysics ver. 5.4, COMSOL AB, Stockholm, Sweden,” http://www.comsol.com .

S. Buddhiraju, Y. Shi, A. Song, C. Wojcik, M. Minkov, I. A. D. Williamson, A. Dutt, and S. Fan, “Absence of unidirectionally propagating surface plasmon-polaritons in nonreciprocal plasmonics,” arXiv:1809.05100v1 (2018).

T. Van Mechelen and Z. Jacob, “Unidirectional Maxwellian spin waves,” arXiv:1903.09278v1 (2019).

S. I. Bozhevolnyi, L. Martin-Moreno, and F. Garcia-Vidal, Quantum Plasmonic (Springer, 2017).

D. Vasileska and S. M. Goodnick, Nano-Electronic Devices: Semiclassical and Quantum Transport Modeling (Springer, 2011).

L. D. Landau, L. P. Pitaevskii, and E. M. Lifshitz, Electrodynamics of Continuous Media (Butterworth-Heinemann, 1984).

J. A. Bittencourt, Fundamentals of Plasma Physics, 3rd ed. (Springer-Verlag, 2010).

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University, 2006).

S. Pakniyat, A. M. Holmes, G. W. Hanson, S. A. Hassani Gangaraj, M. Antezza, M. G. Silveirinha, S. Jam, and F. Monticone, “Robust surface plasmon polaritons on gyrotropic interfaces,” arXiv:1902.09002v1 (2018).

A. Ishimaru, “Unidirectional waves in anisotropic media and the resolution of the thermodynamic paradox,” (US Air Force, 1962).