Abstract

In this work, we revisit the topic of surface waves on nonreciprocal plasmonic structures, and clarify whether strictly unidirectional surface plasmon-polaritons are allowed to exist in this material platform. By investigating different three-dimensional configurations and frequency regimes, we theoretically show that, while conventional surface magneto-plasmons are not strictly unidirectional due to nonlocal effects, consistent with recent predictions made in the literature, another important class of one-way surface plasmon-polaritons, existing at an interface with an opaque isotropic material, robustly preserves their unidirectionality even in the presence of nonlocality, and for arbitrarily small levels of dissipation. We also investigate the extreme behavior of terminated unidirectional waveguiding structures, for both classes of surface waves, and discuss their counterintuitive implications.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
All-optical logic gates based on unidirectional surface plasmon polaritons

Ping Li, Yongxing Wang, and Ping Xu
Appl. Opt. 58(16) 4205-4210 (2019)

Long-range surface plasmon polaritons

Pierre Berini
Adv. Opt. Photon. 1(3) 484-588 (2009)

Elliptically polarized modes for the unidirectional excitation of surface plasmon polaritons

Paul J. Compaijen, Victor A. Malyshev, and Jasper Knoester
Opt. Express 24(4) 3858-3872 (2016)

References

  • View by:
  • |
  • |
  • |

  1. A. Ishimaru, “Unidirectional waves in anisotropic media and the resolution of the thermodynamic paradox,” (US Air Force, 1962).
  2. S. R. Seshadri, “Excitation of surface waves on a perfectly conducting screen covered with anisotropic plasma,” IRE Trans. Microwave Theory Tech. 10, 573–578 (1962).
    [Crossref]
  3. J. J. Brion, R. F. Wallis, A. Hartstein, and E. Burstein, “Theory of surface magnetoplasmons in semiconductors,” Phys. Rev. Lett. 28, 1455–1458 (1972).
    [Crossref]
  4. M. G. Silveiriniha, “Chern invariants for continuous media,” Phys. Rev. B 92, 125153 (2015).
    [Crossref]
  5. D. Jin, L. Lu, Z. Wang, C. Fang, J. D. Joannopoulos, M. Soljacic, L. Fu, and N. X. Fang, “Topological magnetoplasmons,” Nat. Commun. 7, 13486 (2016).
    [Crossref]
  6. D. Jin, T. Christensen, M. Soljačić, N. X. Fang, L. Lu, and X. Zhang, “Infrared topological plasmons in graphene,” Phys. Rev. Lett. 118, 245301 (2017).
    [Crossref]
  7. S. A. Hassani Gangaraj, M. G. Silveirinha, and G. W. Hanson, “Berry phase, Berry connection, and Chern number for a continuum bianisotropic material from a classical electromagnetics perspective,” IEEE J. Multiscale Multiphys. Comput. Tech. 2, 3–17 (2017).
    [Crossref]
  8. S. Ali Hassani Gangaraj, G. W. Hanson, M. G. Silveirinha, K. Shastri, M. Antezza, and F. Monticone, “Unidirectional and diffractionless surface plasmon polaritons on three-dimensional nonreciprocal plasmonic platforms,” Phys. Rev. B 99, 245414 (2019).
    [Crossref]
  9. S. Pakniyat, A. M. Holmes, G. W. Hanson, S. A. Hassani Gangaraj, M. Antezza, M. G. Silveirinha, S. Jam, and F. Monticone, “Robust surface plasmon polaritons on gyrotropic interfaces,” arXiv:1902.09002v1 (2018).
  10. S. A. Hassani Gangaraj, G. W. Hanson, M. Antezza, and M. G. Silveirinha, “Spontaneous lateral atomic recoil force close to a photonic topological material,” Phys. Rev. B 97, 201108 (2018).
    [Crossref]
  11. K. Tsakmakidis, L. Shen, S. Schulz, X. X. Zheng, J. Upham, X. Deng, H. Altug, A. Vakakis, and R. Boyd, “Breaking Lorentz reciprocity to overcome the time-bandwidth limit in physics and engineering,” Science 356, 1260–1264 (2017).
    [Crossref]
  12. M. Tsang, “Quantum limits on the time-bandwidth product of an optical resonator,” Opt. Lett. 43, 150–153 (2018).
    [Crossref]
  13. S. A. Mann, D. L. Sounas, and A. Alu, “Nonreciprocal cavities and the time-bandwidth limit,” Optica 6, 104–110 (2019).
    [Crossref]
  14. S. Buddhiraju, Y. Shi, A. Song, C. Wojcik, M. Minkov, I. A. D. Williamson, A. Dutt, and S. Fan, “Absence of unidirectionally propagating surface plasmon-polaritons in nonreciprocal plasmonics,” arXiv:1809.05100v1 (2018).
  15. T. Van Mechelen and Z. Jacob, “Unidirectional Maxwellian spin waves,” arXiv:1903.09278v1 (2019).
  16. D. E. Fernandes and M. G. Silveirinha, “Topological origin of electromagnetic energy sinks,” Phys. Rev. Appl. 12, 014021 (2019).
    [Crossref]
  17. J. Khurgin, “Optical isolating in surface plasmon polaritons,” Appl. Phys. Lett. 89, 251115 (2006).
    [Crossref]
  18. Z. Yu, G. Veronis, Z. Wang, and S. Fan, “One-way electromagnetic waveguide formed at the interface between a plasmonic metal under a static magnetic field and a photonic crystal,” Phys. Rev. Lett. 100, 023902 (2008).
    [Crossref]
  19. A. Davoyan and N. Engheta, “Theory of wave propagation in magnetized near-zero-epsilon metamaterials: evidence for one-way photonic states and magnetically switched transparency and opacity,” Phys. Rev. Lett. 111, 257401 (2013).
    [Crossref]
  20. L. Shen, Y. You, and X. Deng, “Backscattering-immune one-way surface magnetoplasmons at terahertz frequencies,” Opt. Express 23, 950–962 (2015).
    [Crossref]
  21. G. Barzilai and G. Gerosa, “Rectangular waveguides loaded with magnetised ferrite, and the so-called thermodynamic paradox,” Proc. IEE 113, 285–288 (1966).
    [Crossref]
  22. L. D. Landau, L. P. Pitaevskii, and E. M. Lifshitz, Electrodynamics of Continuous Media (Butterworth-Heinemann, 1984).
  23. J. A. Bittencourt, Fundamentals of Plasma Physics, 3rd ed. (Springer-Verlag, 2010).
  24. L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University, 2006).
  25. M. Z. Hasan and C. L. Kane, “Colloquium: topological insulators,” Rev. Mod. Phys. 82, 3045 (2010).
    [Crossref]
  26. S. Raza, S. I. Bozhevolnyi, M. Wubs, and N. A. Mortensen, “Nonlocal optical response in metallic nanostructures,” J. Phys. Condens. Matter 27, 183204 (2015).
    [Crossref]
  27. E. Palik, R. Kaplan, R. Gammon, H. Kaplan, R. Wallis, and J. Quinn, “Coupled surface magnetoplasmon-optic-phonon polariton modes on InSb,” Phys. Rev. B 13, 2497–2506 (1976).
    [Crossref]
  28. J. Gomez Rivas, C. Janke, P. Bolivar, and H. Kurz, “Transmission of THz radiation through InSb gratings of subwavelength apertures,” Opt. Express 13, 847–859 (2005).
    [Crossref]
  29. D. Vasileska and S. M. Goodnick, Nano-Electronic Devices: Semiclassical and Quantum Transport Modeling (Springer, 2011).
  30. A. D. Boardman and R. Ruppin, “The boundary conditions between spatially dispersive media,” Surf. Sci. 112, 153 (1981).
    [Crossref]
  31. COMSOL, “Multiphysics ver. 5.4, COMSOL AB, Stockholm, Sweden,” http://www.comsol.com .
  32. J. B. Khurgin, “Hot carriers generated by plasmons: where are they generated and where do they go from there?” Faraday Discuss. 214, 35–58 (2019).
    [Crossref]
  33. J. Khurgin, W. Y. Tsai, D. P. Tsai, and G. Sun, “Landau damping and limit to field confinement and enhancement in plasmonic dimers,” ACS Photon. 4, 2871–2880 (2017).
    [Crossref]
  34. S. I. Bozhevolnyi, L. Martin-Moreno, and F. Garcia-Vidal, Quantum Plasmonic (Springer, 2017).
  35. F. Monticone and A. Alù, “Leaky-wave theory, techniques, and applications: from microwaves to visible frequencies,” Proc. IEEE 103, 793–821 (2015).
    [Crossref]
  36. U. K. Chettiar, A. R. Davoyan, and N. Engheta, “Hotspots from nonreciprocal surface waves,” Opt. Lett. 39, 1760–1763 (2014).
    [Crossref]
  37. L. Shen, X. Zheng, and Z. Deng, “Stopping terahertz radiation without backscattering over a broad band,” Opt. Express 23, 11790–11798 (2015).
    [Crossref]
  38. M. Marvasti and B. Rejaei, “Formation of hotspots in partially filled ferrite-loaded rectangular waveguides,” J. Appl. Phys. 122, 233901 (2017).
    [Crossref]
  39. M. I. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett. 93, 137404 (2004).
    [Crossref]

2019 (4)

S. Ali Hassani Gangaraj, G. W. Hanson, M. G. Silveirinha, K. Shastri, M. Antezza, and F. Monticone, “Unidirectional and diffractionless surface plasmon polaritons on three-dimensional nonreciprocal plasmonic platforms,” Phys. Rev. B 99, 245414 (2019).
[Crossref]

D. E. Fernandes and M. G. Silveirinha, “Topological origin of electromagnetic energy sinks,” Phys. Rev. Appl. 12, 014021 (2019).
[Crossref]

J. B. Khurgin, “Hot carriers generated by plasmons: where are they generated and where do they go from there?” Faraday Discuss. 214, 35–58 (2019).
[Crossref]

S. A. Mann, D. L. Sounas, and A. Alu, “Nonreciprocal cavities and the time-bandwidth limit,” Optica 6, 104–110 (2019).
[Crossref]

2018 (2)

M. Tsang, “Quantum limits on the time-bandwidth product of an optical resonator,” Opt. Lett. 43, 150–153 (2018).
[Crossref]

S. A. Hassani Gangaraj, G. W. Hanson, M. Antezza, and M. G. Silveirinha, “Spontaneous lateral atomic recoil force close to a photonic topological material,” Phys. Rev. B 97, 201108 (2018).
[Crossref]

2017 (5)

K. Tsakmakidis, L. Shen, S. Schulz, X. X. Zheng, J. Upham, X. Deng, H. Altug, A. Vakakis, and R. Boyd, “Breaking Lorentz reciprocity to overcome the time-bandwidth limit in physics and engineering,” Science 356, 1260–1264 (2017).
[Crossref]

D. Jin, T. Christensen, M. Soljačić, N. X. Fang, L. Lu, and X. Zhang, “Infrared topological plasmons in graphene,” Phys. Rev. Lett. 118, 245301 (2017).
[Crossref]

S. A. Hassani Gangaraj, M. G. Silveirinha, and G. W. Hanson, “Berry phase, Berry connection, and Chern number for a continuum bianisotropic material from a classical electromagnetics perspective,” IEEE J. Multiscale Multiphys. Comput. Tech. 2, 3–17 (2017).
[Crossref]

J. Khurgin, W. Y. Tsai, D. P. Tsai, and G. Sun, “Landau damping and limit to field confinement and enhancement in plasmonic dimers,” ACS Photon. 4, 2871–2880 (2017).
[Crossref]

M. Marvasti and B. Rejaei, “Formation of hotspots in partially filled ferrite-loaded rectangular waveguides,” J. Appl. Phys. 122, 233901 (2017).
[Crossref]

2016 (1)

D. Jin, L. Lu, Z. Wang, C. Fang, J. D. Joannopoulos, M. Soljacic, L. Fu, and N. X. Fang, “Topological magnetoplasmons,” Nat. Commun. 7, 13486 (2016).
[Crossref]

2015 (5)

M. G. Silveiriniha, “Chern invariants for continuous media,” Phys. Rev. B 92, 125153 (2015).
[Crossref]

S. Raza, S. I. Bozhevolnyi, M. Wubs, and N. A. Mortensen, “Nonlocal optical response in metallic nanostructures,” J. Phys. Condens. Matter 27, 183204 (2015).
[Crossref]

F. Monticone and A. Alù, “Leaky-wave theory, techniques, and applications: from microwaves to visible frequencies,” Proc. IEEE 103, 793–821 (2015).
[Crossref]

L. Shen, Y. You, and X. Deng, “Backscattering-immune one-way surface magnetoplasmons at terahertz frequencies,” Opt. Express 23, 950–962 (2015).
[Crossref]

L. Shen, X. Zheng, and Z. Deng, “Stopping terahertz radiation without backscattering over a broad band,” Opt. Express 23, 11790–11798 (2015).
[Crossref]

2014 (1)

2013 (1)

A. Davoyan and N. Engheta, “Theory of wave propagation in magnetized near-zero-epsilon metamaterials: evidence for one-way photonic states and magnetically switched transparency and opacity,” Phys. Rev. Lett. 111, 257401 (2013).
[Crossref]

2010 (1)

M. Z. Hasan and C. L. Kane, “Colloquium: topological insulators,” Rev. Mod. Phys. 82, 3045 (2010).
[Crossref]

2008 (1)

Z. Yu, G. Veronis, Z. Wang, and S. Fan, “One-way electromagnetic waveguide formed at the interface between a plasmonic metal under a static magnetic field and a photonic crystal,” Phys. Rev. Lett. 100, 023902 (2008).
[Crossref]

2006 (1)

J. Khurgin, “Optical isolating in surface plasmon polaritons,” Appl. Phys. Lett. 89, 251115 (2006).
[Crossref]

2005 (1)

2004 (1)

M. I. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett. 93, 137404 (2004).
[Crossref]

1981 (1)

A. D. Boardman and R. Ruppin, “The boundary conditions between spatially dispersive media,” Surf. Sci. 112, 153 (1981).
[Crossref]

1976 (1)

E. Palik, R. Kaplan, R. Gammon, H. Kaplan, R. Wallis, and J. Quinn, “Coupled surface magnetoplasmon-optic-phonon polariton modes on InSb,” Phys. Rev. B 13, 2497–2506 (1976).
[Crossref]

1972 (1)

J. J. Brion, R. F. Wallis, A. Hartstein, and E. Burstein, “Theory of surface magnetoplasmons in semiconductors,” Phys. Rev. Lett. 28, 1455–1458 (1972).
[Crossref]

1966 (1)

G. Barzilai and G. Gerosa, “Rectangular waveguides loaded with magnetised ferrite, and the so-called thermodynamic paradox,” Proc. IEE 113, 285–288 (1966).
[Crossref]

1962 (1)

S. R. Seshadri, “Excitation of surface waves on a perfectly conducting screen covered with anisotropic plasma,” IRE Trans. Microwave Theory Tech. 10, 573–578 (1962).
[Crossref]

Ali Hassani Gangaraj, S.

S. Ali Hassani Gangaraj, G. W. Hanson, M. G. Silveirinha, K. Shastri, M. Antezza, and F. Monticone, “Unidirectional and diffractionless surface plasmon polaritons on three-dimensional nonreciprocal plasmonic platforms,” Phys. Rev. B 99, 245414 (2019).
[Crossref]

Altug, H.

K. Tsakmakidis, L. Shen, S. Schulz, X. X. Zheng, J. Upham, X. Deng, H. Altug, A. Vakakis, and R. Boyd, “Breaking Lorentz reciprocity to overcome the time-bandwidth limit in physics and engineering,” Science 356, 1260–1264 (2017).
[Crossref]

Alu, A.

Alù, A.

F. Monticone and A. Alù, “Leaky-wave theory, techniques, and applications: from microwaves to visible frequencies,” Proc. IEEE 103, 793–821 (2015).
[Crossref]

Antezza, M.

S. Ali Hassani Gangaraj, G. W. Hanson, M. G. Silveirinha, K. Shastri, M. Antezza, and F. Monticone, “Unidirectional and diffractionless surface plasmon polaritons on three-dimensional nonreciprocal plasmonic platforms,” Phys. Rev. B 99, 245414 (2019).
[Crossref]

S. A. Hassani Gangaraj, G. W. Hanson, M. Antezza, and M. G. Silveirinha, “Spontaneous lateral atomic recoil force close to a photonic topological material,” Phys. Rev. B 97, 201108 (2018).
[Crossref]

S. Pakniyat, A. M. Holmes, G. W. Hanson, S. A. Hassani Gangaraj, M. Antezza, M. G. Silveirinha, S. Jam, and F. Monticone, “Robust surface plasmon polaritons on gyrotropic interfaces,” arXiv:1902.09002v1 (2018).

Barzilai, G.

G. Barzilai and G. Gerosa, “Rectangular waveguides loaded with magnetised ferrite, and the so-called thermodynamic paradox,” Proc. IEE 113, 285–288 (1966).
[Crossref]

Bittencourt, J. A.

J. A. Bittencourt, Fundamentals of Plasma Physics, 3rd ed. (Springer-Verlag, 2010).

Boardman, A. D.

A. D. Boardman and R. Ruppin, “The boundary conditions between spatially dispersive media,” Surf. Sci. 112, 153 (1981).
[Crossref]

Bolivar, P.

Boyd, R.

K. Tsakmakidis, L. Shen, S. Schulz, X. X. Zheng, J. Upham, X. Deng, H. Altug, A. Vakakis, and R. Boyd, “Breaking Lorentz reciprocity to overcome the time-bandwidth limit in physics and engineering,” Science 356, 1260–1264 (2017).
[Crossref]

Bozhevolnyi, S. I.

S. Raza, S. I. Bozhevolnyi, M. Wubs, and N. A. Mortensen, “Nonlocal optical response in metallic nanostructures,” J. Phys. Condens. Matter 27, 183204 (2015).
[Crossref]

S. I. Bozhevolnyi, L. Martin-Moreno, and F. Garcia-Vidal, Quantum Plasmonic (Springer, 2017).

Brion, J. J.

J. J. Brion, R. F. Wallis, A. Hartstein, and E. Burstein, “Theory of surface magnetoplasmons in semiconductors,” Phys. Rev. Lett. 28, 1455–1458 (1972).
[Crossref]

Buddhiraju, S.

S. Buddhiraju, Y. Shi, A. Song, C. Wojcik, M. Minkov, I. A. D. Williamson, A. Dutt, and S. Fan, “Absence of unidirectionally propagating surface plasmon-polaritons in nonreciprocal plasmonics,” arXiv:1809.05100v1 (2018).

Burstein, E.

J. J. Brion, R. F. Wallis, A. Hartstein, and E. Burstein, “Theory of surface magnetoplasmons in semiconductors,” Phys. Rev. Lett. 28, 1455–1458 (1972).
[Crossref]

Chettiar, U. K.

Christensen, T.

D. Jin, T. Christensen, M. Soljačić, N. X. Fang, L. Lu, and X. Zhang, “Infrared topological plasmons in graphene,” Phys. Rev. Lett. 118, 245301 (2017).
[Crossref]

Davoyan, A.

A. Davoyan and N. Engheta, “Theory of wave propagation in magnetized near-zero-epsilon metamaterials: evidence for one-way photonic states and magnetically switched transparency and opacity,” Phys. Rev. Lett. 111, 257401 (2013).
[Crossref]

Davoyan, A. R.

Deng, X.

K. Tsakmakidis, L. Shen, S. Schulz, X. X. Zheng, J. Upham, X. Deng, H. Altug, A. Vakakis, and R. Boyd, “Breaking Lorentz reciprocity to overcome the time-bandwidth limit in physics and engineering,” Science 356, 1260–1264 (2017).
[Crossref]

L. Shen, Y. You, and X. Deng, “Backscattering-immune one-way surface magnetoplasmons at terahertz frequencies,” Opt. Express 23, 950–962 (2015).
[Crossref]

Deng, Z.

Dutt, A.

S. Buddhiraju, Y. Shi, A. Song, C. Wojcik, M. Minkov, I. A. D. Williamson, A. Dutt, and S. Fan, “Absence of unidirectionally propagating surface plasmon-polaritons in nonreciprocal plasmonics,” arXiv:1809.05100v1 (2018).

Engheta, N.

U. K. Chettiar, A. R. Davoyan, and N. Engheta, “Hotspots from nonreciprocal surface waves,” Opt. Lett. 39, 1760–1763 (2014).
[Crossref]

A. Davoyan and N. Engheta, “Theory of wave propagation in magnetized near-zero-epsilon metamaterials: evidence for one-way photonic states and magnetically switched transparency and opacity,” Phys. Rev. Lett. 111, 257401 (2013).
[Crossref]

Fan, S.

Z. Yu, G. Veronis, Z. Wang, and S. Fan, “One-way electromagnetic waveguide formed at the interface between a plasmonic metal under a static magnetic field and a photonic crystal,” Phys. Rev. Lett. 100, 023902 (2008).
[Crossref]

S. Buddhiraju, Y. Shi, A. Song, C. Wojcik, M. Minkov, I. A. D. Williamson, A. Dutt, and S. Fan, “Absence of unidirectionally propagating surface plasmon-polaritons in nonreciprocal plasmonics,” arXiv:1809.05100v1 (2018).

Fang, C.

D. Jin, L. Lu, Z. Wang, C. Fang, J. D. Joannopoulos, M. Soljacic, L. Fu, and N. X. Fang, “Topological magnetoplasmons,” Nat. Commun. 7, 13486 (2016).
[Crossref]

Fang, N. X.

D. Jin, T. Christensen, M. Soljačić, N. X. Fang, L. Lu, and X. Zhang, “Infrared topological plasmons in graphene,” Phys. Rev. Lett. 118, 245301 (2017).
[Crossref]

D. Jin, L. Lu, Z. Wang, C. Fang, J. D. Joannopoulos, M. Soljacic, L. Fu, and N. X. Fang, “Topological magnetoplasmons,” Nat. Commun. 7, 13486 (2016).
[Crossref]

Fernandes, D. E.

D. E. Fernandes and M. G. Silveirinha, “Topological origin of electromagnetic energy sinks,” Phys. Rev. Appl. 12, 014021 (2019).
[Crossref]

Fu, L.

D. Jin, L. Lu, Z. Wang, C. Fang, J. D. Joannopoulos, M. Soljacic, L. Fu, and N. X. Fang, “Topological magnetoplasmons,” Nat. Commun. 7, 13486 (2016).
[Crossref]

Gammon, R.

E. Palik, R. Kaplan, R. Gammon, H. Kaplan, R. Wallis, and J. Quinn, “Coupled surface magnetoplasmon-optic-phonon polariton modes on InSb,” Phys. Rev. B 13, 2497–2506 (1976).
[Crossref]

Garcia-Vidal, F.

S. I. Bozhevolnyi, L. Martin-Moreno, and F. Garcia-Vidal, Quantum Plasmonic (Springer, 2017).

Gerosa, G.

G. Barzilai and G. Gerosa, “Rectangular waveguides loaded with magnetised ferrite, and the so-called thermodynamic paradox,” Proc. IEE 113, 285–288 (1966).
[Crossref]

Gomez Rivas, J.

Goodnick, S. M.

D. Vasileska and S. M. Goodnick, Nano-Electronic Devices: Semiclassical and Quantum Transport Modeling (Springer, 2011).

Hanson, G. W.

S. Ali Hassani Gangaraj, G. W. Hanson, M. G. Silveirinha, K. Shastri, M. Antezza, and F. Monticone, “Unidirectional and diffractionless surface plasmon polaritons on three-dimensional nonreciprocal plasmonic platforms,” Phys. Rev. B 99, 245414 (2019).
[Crossref]

S. A. Hassani Gangaraj, G. W. Hanson, M. Antezza, and M. G. Silveirinha, “Spontaneous lateral atomic recoil force close to a photonic topological material,” Phys. Rev. B 97, 201108 (2018).
[Crossref]

S. A. Hassani Gangaraj, M. G. Silveirinha, and G. W. Hanson, “Berry phase, Berry connection, and Chern number for a continuum bianisotropic material from a classical electromagnetics perspective,” IEEE J. Multiscale Multiphys. Comput. Tech. 2, 3–17 (2017).
[Crossref]

S. Pakniyat, A. M. Holmes, G. W. Hanson, S. A. Hassani Gangaraj, M. Antezza, M. G. Silveirinha, S. Jam, and F. Monticone, “Robust surface plasmon polaritons on gyrotropic interfaces,” arXiv:1902.09002v1 (2018).

Hartstein, A.

J. J. Brion, R. F. Wallis, A. Hartstein, and E. Burstein, “Theory of surface magnetoplasmons in semiconductors,” Phys. Rev. Lett. 28, 1455–1458 (1972).
[Crossref]

Hasan, M. Z.

M. Z. Hasan and C. L. Kane, “Colloquium: topological insulators,” Rev. Mod. Phys. 82, 3045 (2010).
[Crossref]

Hassani Gangaraj, S. A.

S. A. Hassani Gangaraj, G. W. Hanson, M. Antezza, and M. G. Silveirinha, “Spontaneous lateral atomic recoil force close to a photonic topological material,” Phys. Rev. B 97, 201108 (2018).
[Crossref]

S. A. Hassani Gangaraj, M. G. Silveirinha, and G. W. Hanson, “Berry phase, Berry connection, and Chern number for a continuum bianisotropic material from a classical electromagnetics perspective,” IEEE J. Multiscale Multiphys. Comput. Tech. 2, 3–17 (2017).
[Crossref]

S. Pakniyat, A. M. Holmes, G. W. Hanson, S. A. Hassani Gangaraj, M. Antezza, M. G. Silveirinha, S. Jam, and F. Monticone, “Robust surface plasmon polaritons on gyrotropic interfaces,” arXiv:1902.09002v1 (2018).

Hecht, B.

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University, 2006).

Holmes, A. M.

S. Pakniyat, A. M. Holmes, G. W. Hanson, S. A. Hassani Gangaraj, M. Antezza, M. G. Silveirinha, S. Jam, and F. Monticone, “Robust surface plasmon polaritons on gyrotropic interfaces,” arXiv:1902.09002v1 (2018).

Ishimaru, A.

A. Ishimaru, “Unidirectional waves in anisotropic media and the resolution of the thermodynamic paradox,” (US Air Force, 1962).

Jacob, Z.

T. Van Mechelen and Z. Jacob, “Unidirectional Maxwellian spin waves,” arXiv:1903.09278v1 (2019).

Jam, S.

S. Pakniyat, A. M. Holmes, G. W. Hanson, S. A. Hassani Gangaraj, M. Antezza, M. G. Silveirinha, S. Jam, and F. Monticone, “Robust surface plasmon polaritons on gyrotropic interfaces,” arXiv:1902.09002v1 (2018).

Janke, C.

Jin, D.

D. Jin, T. Christensen, M. Soljačić, N. X. Fang, L. Lu, and X. Zhang, “Infrared topological plasmons in graphene,” Phys. Rev. Lett. 118, 245301 (2017).
[Crossref]

D. Jin, L. Lu, Z. Wang, C. Fang, J. D. Joannopoulos, M. Soljacic, L. Fu, and N. X. Fang, “Topological magnetoplasmons,” Nat. Commun. 7, 13486 (2016).
[Crossref]

Joannopoulos, J. D.

D. Jin, L. Lu, Z. Wang, C. Fang, J. D. Joannopoulos, M. Soljacic, L. Fu, and N. X. Fang, “Topological magnetoplasmons,” Nat. Commun. 7, 13486 (2016).
[Crossref]

Kane, C. L.

M. Z. Hasan and C. L. Kane, “Colloquium: topological insulators,” Rev. Mod. Phys. 82, 3045 (2010).
[Crossref]

Kaplan, H.

E. Palik, R. Kaplan, R. Gammon, H. Kaplan, R. Wallis, and J. Quinn, “Coupled surface magnetoplasmon-optic-phonon polariton modes on InSb,” Phys. Rev. B 13, 2497–2506 (1976).
[Crossref]

Kaplan, R.

E. Palik, R. Kaplan, R. Gammon, H. Kaplan, R. Wallis, and J. Quinn, “Coupled surface magnetoplasmon-optic-phonon polariton modes on InSb,” Phys. Rev. B 13, 2497–2506 (1976).
[Crossref]

Khurgin, J.

J. Khurgin, W. Y. Tsai, D. P. Tsai, and G. Sun, “Landau damping and limit to field confinement and enhancement in plasmonic dimers,” ACS Photon. 4, 2871–2880 (2017).
[Crossref]

J. Khurgin, “Optical isolating in surface plasmon polaritons,” Appl. Phys. Lett. 89, 251115 (2006).
[Crossref]

Khurgin, J. B.

J. B. Khurgin, “Hot carriers generated by plasmons: where are they generated and where do they go from there?” Faraday Discuss. 214, 35–58 (2019).
[Crossref]

Kurz, H.

Landau, L. D.

L. D. Landau, L. P. Pitaevskii, and E. M. Lifshitz, Electrodynamics of Continuous Media (Butterworth-Heinemann, 1984).

Lifshitz, E. M.

L. D. Landau, L. P. Pitaevskii, and E. M. Lifshitz, Electrodynamics of Continuous Media (Butterworth-Heinemann, 1984).

Lu, L.

D. Jin, T. Christensen, M. Soljačić, N. X. Fang, L. Lu, and X. Zhang, “Infrared topological plasmons in graphene,” Phys. Rev. Lett. 118, 245301 (2017).
[Crossref]

D. Jin, L. Lu, Z. Wang, C. Fang, J. D. Joannopoulos, M. Soljacic, L. Fu, and N. X. Fang, “Topological magnetoplasmons,” Nat. Commun. 7, 13486 (2016).
[Crossref]

Mann, S. A.

Martin-Moreno, L.

S. I. Bozhevolnyi, L. Martin-Moreno, and F. Garcia-Vidal, Quantum Plasmonic (Springer, 2017).

Marvasti, M.

M. Marvasti and B. Rejaei, “Formation of hotspots in partially filled ferrite-loaded rectangular waveguides,” J. Appl. Phys. 122, 233901 (2017).
[Crossref]

Minkov, M.

S. Buddhiraju, Y. Shi, A. Song, C. Wojcik, M. Minkov, I. A. D. Williamson, A. Dutt, and S. Fan, “Absence of unidirectionally propagating surface plasmon-polaritons in nonreciprocal plasmonics,” arXiv:1809.05100v1 (2018).

Monticone, F.

S. Ali Hassani Gangaraj, G. W. Hanson, M. G. Silveirinha, K. Shastri, M. Antezza, and F. Monticone, “Unidirectional and diffractionless surface plasmon polaritons on three-dimensional nonreciprocal plasmonic platforms,” Phys. Rev. B 99, 245414 (2019).
[Crossref]

F. Monticone and A. Alù, “Leaky-wave theory, techniques, and applications: from microwaves to visible frequencies,” Proc. IEEE 103, 793–821 (2015).
[Crossref]

S. Pakniyat, A. M. Holmes, G. W. Hanson, S. A. Hassani Gangaraj, M. Antezza, M. G. Silveirinha, S. Jam, and F. Monticone, “Robust surface plasmon polaritons on gyrotropic interfaces,” arXiv:1902.09002v1 (2018).

Mortensen, N. A.

S. Raza, S. I. Bozhevolnyi, M. Wubs, and N. A. Mortensen, “Nonlocal optical response in metallic nanostructures,” J. Phys. Condens. Matter 27, 183204 (2015).
[Crossref]

Novotny, L.

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University, 2006).

Pakniyat, S.

S. Pakniyat, A. M. Holmes, G. W. Hanson, S. A. Hassani Gangaraj, M. Antezza, M. G. Silveirinha, S. Jam, and F. Monticone, “Robust surface plasmon polaritons on gyrotropic interfaces,” arXiv:1902.09002v1 (2018).

Palik, E.

E. Palik, R. Kaplan, R. Gammon, H. Kaplan, R. Wallis, and J. Quinn, “Coupled surface magnetoplasmon-optic-phonon polariton modes on InSb,” Phys. Rev. B 13, 2497–2506 (1976).
[Crossref]

Pitaevskii, L. P.

L. D. Landau, L. P. Pitaevskii, and E. M. Lifshitz, Electrodynamics of Continuous Media (Butterworth-Heinemann, 1984).

Quinn, J.

E. Palik, R. Kaplan, R. Gammon, H. Kaplan, R. Wallis, and J. Quinn, “Coupled surface magnetoplasmon-optic-phonon polariton modes on InSb,” Phys. Rev. B 13, 2497–2506 (1976).
[Crossref]

Raza, S.

S. Raza, S. I. Bozhevolnyi, M. Wubs, and N. A. Mortensen, “Nonlocal optical response in metallic nanostructures,” J. Phys. Condens. Matter 27, 183204 (2015).
[Crossref]

Rejaei, B.

M. Marvasti and B. Rejaei, “Formation of hotspots in partially filled ferrite-loaded rectangular waveguides,” J. Appl. Phys. 122, 233901 (2017).
[Crossref]

Ruppin, R.

A. D. Boardman and R. Ruppin, “The boundary conditions between spatially dispersive media,” Surf. Sci. 112, 153 (1981).
[Crossref]

Schulz, S.

K. Tsakmakidis, L. Shen, S. Schulz, X. X. Zheng, J. Upham, X. Deng, H. Altug, A. Vakakis, and R. Boyd, “Breaking Lorentz reciprocity to overcome the time-bandwidth limit in physics and engineering,” Science 356, 1260–1264 (2017).
[Crossref]

Seshadri, S. R.

S. R. Seshadri, “Excitation of surface waves on a perfectly conducting screen covered with anisotropic plasma,” IRE Trans. Microwave Theory Tech. 10, 573–578 (1962).
[Crossref]

Shastri, K.

S. Ali Hassani Gangaraj, G. W. Hanson, M. G. Silveirinha, K. Shastri, M. Antezza, and F. Monticone, “Unidirectional and diffractionless surface plasmon polaritons on three-dimensional nonreciprocal plasmonic platforms,” Phys. Rev. B 99, 245414 (2019).
[Crossref]

Shen, L.

K. Tsakmakidis, L. Shen, S. Schulz, X. X. Zheng, J. Upham, X. Deng, H. Altug, A. Vakakis, and R. Boyd, “Breaking Lorentz reciprocity to overcome the time-bandwidth limit in physics and engineering,” Science 356, 1260–1264 (2017).
[Crossref]

L. Shen, Y. You, and X. Deng, “Backscattering-immune one-way surface magnetoplasmons at terahertz frequencies,” Opt. Express 23, 950–962 (2015).
[Crossref]

L. Shen, X. Zheng, and Z. Deng, “Stopping terahertz radiation without backscattering over a broad band,” Opt. Express 23, 11790–11798 (2015).
[Crossref]

Shi, Y.

S. Buddhiraju, Y. Shi, A. Song, C. Wojcik, M. Minkov, I. A. D. Williamson, A. Dutt, and S. Fan, “Absence of unidirectionally propagating surface plasmon-polaritons in nonreciprocal plasmonics,” arXiv:1809.05100v1 (2018).

Silveirinha, M. G.

D. E. Fernandes and M. G. Silveirinha, “Topological origin of electromagnetic energy sinks,” Phys. Rev. Appl. 12, 014021 (2019).
[Crossref]

S. Ali Hassani Gangaraj, G. W. Hanson, M. G. Silveirinha, K. Shastri, M. Antezza, and F. Monticone, “Unidirectional and diffractionless surface plasmon polaritons on three-dimensional nonreciprocal plasmonic platforms,” Phys. Rev. B 99, 245414 (2019).
[Crossref]

S. A. Hassani Gangaraj, G. W. Hanson, M. Antezza, and M. G. Silveirinha, “Spontaneous lateral atomic recoil force close to a photonic topological material,” Phys. Rev. B 97, 201108 (2018).
[Crossref]

S. A. Hassani Gangaraj, M. G. Silveirinha, and G. W. Hanson, “Berry phase, Berry connection, and Chern number for a continuum bianisotropic material from a classical electromagnetics perspective,” IEEE J. Multiscale Multiphys. Comput. Tech. 2, 3–17 (2017).
[Crossref]

S. Pakniyat, A. M. Holmes, G. W. Hanson, S. A. Hassani Gangaraj, M. Antezza, M. G. Silveirinha, S. Jam, and F. Monticone, “Robust surface plasmon polaritons on gyrotropic interfaces,” arXiv:1902.09002v1 (2018).

Silveiriniha, M. G.

M. G. Silveiriniha, “Chern invariants for continuous media,” Phys. Rev. B 92, 125153 (2015).
[Crossref]

Soljacic, M.

D. Jin, T. Christensen, M. Soljačić, N. X. Fang, L. Lu, and X. Zhang, “Infrared topological plasmons in graphene,” Phys. Rev. Lett. 118, 245301 (2017).
[Crossref]

D. Jin, L. Lu, Z. Wang, C. Fang, J. D. Joannopoulos, M. Soljacic, L. Fu, and N. X. Fang, “Topological magnetoplasmons,” Nat. Commun. 7, 13486 (2016).
[Crossref]

Song, A.

S. Buddhiraju, Y. Shi, A. Song, C. Wojcik, M. Minkov, I. A. D. Williamson, A. Dutt, and S. Fan, “Absence of unidirectionally propagating surface plasmon-polaritons in nonreciprocal plasmonics,” arXiv:1809.05100v1 (2018).

Sounas, D. L.

Stockman, M. I.

M. I. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett. 93, 137404 (2004).
[Crossref]

Sun, G.

J. Khurgin, W. Y. Tsai, D. P. Tsai, and G. Sun, “Landau damping and limit to field confinement and enhancement in plasmonic dimers,” ACS Photon. 4, 2871–2880 (2017).
[Crossref]

Tsai, D. P.

J. Khurgin, W. Y. Tsai, D. P. Tsai, and G. Sun, “Landau damping and limit to field confinement and enhancement in plasmonic dimers,” ACS Photon. 4, 2871–2880 (2017).
[Crossref]

Tsai, W. Y.

J. Khurgin, W. Y. Tsai, D. P. Tsai, and G. Sun, “Landau damping and limit to field confinement and enhancement in plasmonic dimers,” ACS Photon. 4, 2871–2880 (2017).
[Crossref]

Tsakmakidis, K.

K. Tsakmakidis, L. Shen, S. Schulz, X. X. Zheng, J. Upham, X. Deng, H. Altug, A. Vakakis, and R. Boyd, “Breaking Lorentz reciprocity to overcome the time-bandwidth limit in physics and engineering,” Science 356, 1260–1264 (2017).
[Crossref]

Tsang, M.

Upham, J.

K. Tsakmakidis, L. Shen, S. Schulz, X. X. Zheng, J. Upham, X. Deng, H. Altug, A. Vakakis, and R. Boyd, “Breaking Lorentz reciprocity to overcome the time-bandwidth limit in physics and engineering,” Science 356, 1260–1264 (2017).
[Crossref]

Vakakis, A.

K. Tsakmakidis, L. Shen, S. Schulz, X. X. Zheng, J. Upham, X. Deng, H. Altug, A. Vakakis, and R. Boyd, “Breaking Lorentz reciprocity to overcome the time-bandwidth limit in physics and engineering,” Science 356, 1260–1264 (2017).
[Crossref]

Van Mechelen, T.

T. Van Mechelen and Z. Jacob, “Unidirectional Maxwellian spin waves,” arXiv:1903.09278v1 (2019).

Vasileska, D.

D. Vasileska and S. M. Goodnick, Nano-Electronic Devices: Semiclassical and Quantum Transport Modeling (Springer, 2011).

Veronis, G.

Z. Yu, G. Veronis, Z. Wang, and S. Fan, “One-way electromagnetic waveguide formed at the interface between a plasmonic metal under a static magnetic field and a photonic crystal,” Phys. Rev. Lett. 100, 023902 (2008).
[Crossref]

Wallis, R.

E. Palik, R. Kaplan, R. Gammon, H. Kaplan, R. Wallis, and J. Quinn, “Coupled surface magnetoplasmon-optic-phonon polariton modes on InSb,” Phys. Rev. B 13, 2497–2506 (1976).
[Crossref]

Wallis, R. F.

J. J. Brion, R. F. Wallis, A. Hartstein, and E. Burstein, “Theory of surface magnetoplasmons in semiconductors,” Phys. Rev. Lett. 28, 1455–1458 (1972).
[Crossref]

Wang, Z.

D. Jin, L. Lu, Z. Wang, C. Fang, J. D. Joannopoulos, M. Soljacic, L. Fu, and N. X. Fang, “Topological magnetoplasmons,” Nat. Commun. 7, 13486 (2016).
[Crossref]

Z. Yu, G. Veronis, Z. Wang, and S. Fan, “One-way electromagnetic waveguide formed at the interface between a plasmonic metal under a static magnetic field and a photonic crystal,” Phys. Rev. Lett. 100, 023902 (2008).
[Crossref]

Williamson, I. A. D.

S. Buddhiraju, Y. Shi, A. Song, C. Wojcik, M. Minkov, I. A. D. Williamson, A. Dutt, and S. Fan, “Absence of unidirectionally propagating surface plasmon-polaritons in nonreciprocal plasmonics,” arXiv:1809.05100v1 (2018).

Wojcik, C.

S. Buddhiraju, Y. Shi, A. Song, C. Wojcik, M. Minkov, I. A. D. Williamson, A. Dutt, and S. Fan, “Absence of unidirectionally propagating surface plasmon-polaritons in nonreciprocal plasmonics,” arXiv:1809.05100v1 (2018).

Wubs, M.

S. Raza, S. I. Bozhevolnyi, M. Wubs, and N. A. Mortensen, “Nonlocal optical response in metallic nanostructures,” J. Phys. Condens. Matter 27, 183204 (2015).
[Crossref]

You, Y.

Yu, Z.

Z. Yu, G. Veronis, Z. Wang, and S. Fan, “One-way electromagnetic waveguide formed at the interface between a plasmonic metal under a static magnetic field and a photonic crystal,” Phys. Rev. Lett. 100, 023902 (2008).
[Crossref]

Zhang, X.

D. Jin, T. Christensen, M. Soljačić, N. X. Fang, L. Lu, and X. Zhang, “Infrared topological plasmons in graphene,” Phys. Rev. Lett. 118, 245301 (2017).
[Crossref]

Zheng, X.

Zheng, X. X.

K. Tsakmakidis, L. Shen, S. Schulz, X. X. Zheng, J. Upham, X. Deng, H. Altug, A. Vakakis, and R. Boyd, “Breaking Lorentz reciprocity to overcome the time-bandwidth limit in physics and engineering,” Science 356, 1260–1264 (2017).
[Crossref]

ACS Photon. (1)

J. Khurgin, W. Y. Tsai, D. P. Tsai, and G. Sun, “Landau damping and limit to field confinement and enhancement in plasmonic dimers,” ACS Photon. 4, 2871–2880 (2017).
[Crossref]

Appl. Phys. Lett. (1)

J. Khurgin, “Optical isolating in surface plasmon polaritons,” Appl. Phys. Lett. 89, 251115 (2006).
[Crossref]

Faraday Discuss. (1)

J. B. Khurgin, “Hot carriers generated by plasmons: where are they generated and where do they go from there?” Faraday Discuss. 214, 35–58 (2019).
[Crossref]

IEEE J. Multiscale Multiphys. Comput. Tech. (1)

S. A. Hassani Gangaraj, M. G. Silveirinha, and G. W. Hanson, “Berry phase, Berry connection, and Chern number for a continuum bianisotropic material from a classical electromagnetics perspective,” IEEE J. Multiscale Multiphys. Comput. Tech. 2, 3–17 (2017).
[Crossref]

IRE Trans. Microwave Theory Tech. (1)

S. R. Seshadri, “Excitation of surface waves on a perfectly conducting screen covered with anisotropic plasma,” IRE Trans. Microwave Theory Tech. 10, 573–578 (1962).
[Crossref]

J. Appl. Phys. (1)

M. Marvasti and B. Rejaei, “Formation of hotspots in partially filled ferrite-loaded rectangular waveguides,” J. Appl. Phys. 122, 233901 (2017).
[Crossref]

J. Phys. Condens. Matter (1)

S. Raza, S. I. Bozhevolnyi, M. Wubs, and N. A. Mortensen, “Nonlocal optical response in metallic nanostructures,” J. Phys. Condens. Matter 27, 183204 (2015).
[Crossref]

Nat. Commun. (1)

D. Jin, L. Lu, Z. Wang, C. Fang, J. D. Joannopoulos, M. Soljacic, L. Fu, and N. X. Fang, “Topological magnetoplasmons,” Nat. Commun. 7, 13486 (2016).
[Crossref]

Opt. Express (3)

Opt. Lett. (2)

Optica (1)

Phys. Rev. Appl. (1)

D. E. Fernandes and M. G. Silveirinha, “Topological origin of electromagnetic energy sinks,” Phys. Rev. Appl. 12, 014021 (2019).
[Crossref]

Phys. Rev. B (4)

S. Ali Hassani Gangaraj, G. W. Hanson, M. G. Silveirinha, K. Shastri, M. Antezza, and F. Monticone, “Unidirectional and diffractionless surface plasmon polaritons on three-dimensional nonreciprocal plasmonic platforms,” Phys. Rev. B 99, 245414 (2019).
[Crossref]

M. G. Silveiriniha, “Chern invariants for continuous media,” Phys. Rev. B 92, 125153 (2015).
[Crossref]

E. Palik, R. Kaplan, R. Gammon, H. Kaplan, R. Wallis, and J. Quinn, “Coupled surface magnetoplasmon-optic-phonon polariton modes on InSb,” Phys. Rev. B 13, 2497–2506 (1976).
[Crossref]

S. A. Hassani Gangaraj, G. W. Hanson, M. Antezza, and M. G. Silveirinha, “Spontaneous lateral atomic recoil force close to a photonic topological material,” Phys. Rev. B 97, 201108 (2018).
[Crossref]

Phys. Rev. Lett. (5)

J. J. Brion, R. F. Wallis, A. Hartstein, and E. Burstein, “Theory of surface magnetoplasmons in semiconductors,” Phys. Rev. Lett. 28, 1455–1458 (1972).
[Crossref]

D. Jin, T. Christensen, M. Soljačić, N. X. Fang, L. Lu, and X. Zhang, “Infrared topological plasmons in graphene,” Phys. Rev. Lett. 118, 245301 (2017).
[Crossref]

M. I. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett. 93, 137404 (2004).
[Crossref]

Z. Yu, G. Veronis, Z. Wang, and S. Fan, “One-way electromagnetic waveguide formed at the interface between a plasmonic metal under a static magnetic field and a photonic crystal,” Phys. Rev. Lett. 100, 023902 (2008).
[Crossref]

A. Davoyan and N. Engheta, “Theory of wave propagation in magnetized near-zero-epsilon metamaterials: evidence for one-way photonic states and magnetically switched transparency and opacity,” Phys. Rev. Lett. 111, 257401 (2013).
[Crossref]

Proc. IEE (1)

G. Barzilai and G. Gerosa, “Rectangular waveguides loaded with magnetised ferrite, and the so-called thermodynamic paradox,” Proc. IEE 113, 285–288 (1966).
[Crossref]

Proc. IEEE (1)

F. Monticone and A. Alù, “Leaky-wave theory, techniques, and applications: from microwaves to visible frequencies,” Proc. IEEE 103, 793–821 (2015).
[Crossref]

Rev. Mod. Phys. (1)

M. Z. Hasan and C. L. Kane, “Colloquium: topological insulators,” Rev. Mod. Phys. 82, 3045 (2010).
[Crossref]

Science (1)

K. Tsakmakidis, L. Shen, S. Schulz, X. X. Zheng, J. Upham, X. Deng, H. Altug, A. Vakakis, and R. Boyd, “Breaking Lorentz reciprocity to overcome the time-bandwidth limit in physics and engineering,” Science 356, 1260–1264 (2017).
[Crossref]

Surf. Sci. (1)

A. D. Boardman and R. Ruppin, “The boundary conditions between spatially dispersive media,” Surf. Sci. 112, 153 (1981).
[Crossref]

Other (10)

COMSOL, “Multiphysics ver. 5.4, COMSOL AB, Stockholm, Sweden,” http://www.comsol.com .

S. Buddhiraju, Y. Shi, A. Song, C. Wojcik, M. Minkov, I. A. D. Williamson, A. Dutt, and S. Fan, “Absence of unidirectionally propagating surface plasmon-polaritons in nonreciprocal plasmonics,” arXiv:1809.05100v1 (2018).

T. Van Mechelen and Z. Jacob, “Unidirectional Maxwellian spin waves,” arXiv:1903.09278v1 (2019).

S. I. Bozhevolnyi, L. Martin-Moreno, and F. Garcia-Vidal, Quantum Plasmonic (Springer, 2017).

D. Vasileska and S. M. Goodnick, Nano-Electronic Devices: Semiclassical and Quantum Transport Modeling (Springer, 2011).

L. D. Landau, L. P. Pitaevskii, and E. M. Lifshitz, Electrodynamics of Continuous Media (Butterworth-Heinemann, 1984).

J. A. Bittencourt, Fundamentals of Plasma Physics, 3rd ed. (Springer-Verlag, 2010).

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University, 2006).

S. Pakniyat, A. M. Holmes, G. W. Hanson, S. A. Hassani Gangaraj, M. Antezza, M. G. Silveirinha, S. Jam, and F. Monticone, “Robust surface plasmon polaritons on gyrotropic interfaces,” arXiv:1902.09002v1 (2018).

A. Ishimaru, “Unidirectional waves in anisotropic media and the resolution of the thermodynamic paradox,” (US Air Force, 1962).

Supplementary Material (3)

NameDescription
» Supplement 1       Analytical solution for bulk and surface modes supported by a nonlocal and nonreciprocal plasmonic platform; and additional dispersion diagrams for type-I and type-II SPP modes.
» Visualization 1       Surface-wave propagation on a terminated interface between a magnetized plasma and an isotropic material. Type-I surface plasmon-polariton, with PEC termination.
» Visualization 2       Surface-wave propagation on a terminated interface between a magnetized plasma and an isotropic material. Type-II surface plasmon-polariton, with PMC termination.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Nonreciprocal plasmonic platforms. (a, b) Two configurations that support surface plasmon-polaritons (SPPs) between a magnetized plasma and (a) a transparent (εd>0) or (b) an opaque (εd<0) isotropic material. (c, d) Illustration of the typical dispersion diagrams for the configurations in (a) and (b), respectively. The plots indicate the bulk modes (solid black curves), bound SPP modes (solid red), and light line (dashed green), as well as the bulk-mode bandgaps (shaded gray areas), and unidirectional frequency windows (yellow–gray areas) for the case of local materials.
Fig. 2.
Fig. 2. Dispersion diagram of the TM bulk modes for a homogeneous sample of magnetized InSb, with ωp/2π=2THz, |ωc|/ωp=0.2, and γ=0, in the plane orthogonal to the bias. Different curves are for increasing values of the nonlocal parameter, as indicated in the figure (the second number in the labels is the value of k at which the lower bulk mode reaches the frequency of the upper bulk mode). kp is the free-space wavenumber at the plasma frequency.
Fig. 3.
Fig. 3. (a) Dispersion diagram of type-I SPPs at the interface between magnetized InSb, with |ωc|/ωp=0.2, and a dielectric material (silicon, with εd=11.68), for both local (β=0) and nonlocal (β=1.07×106m/s) plasma models. (b, c, d) Real part of the magnetic field distributions (time snapshots) for type-I SPPs launched by a dipolar source (black arrow, indicating a vertically polarized 2D point source, i.e., a 3D line source) for different cases at ω/ωp=0.7: (b) local and low-loss plasma, with γ=0.002ωp; (c) nonlocal and low-loss plasma [γ as in (b)]; (d) nonlocal plasma with moderately high loss, γ=0.05ωp. (e, f) One-dimensional field profiles, corresponding to (b, c, d), at a distance of λp/100 below the interface.
Fig. 4.
Fig. 4. Similar to Fig. 3, but for type-II SPPs at the interface between a magnetized InSb and an opaque isotropic material. The parameters of the biased plasma are the same as in Fig. 3. The opaque material is an unbiased plasmonic medium with ωpm=2ωp, εm=ε, and nonlocal parameter β=βm. (a) Dispersion diagram. (b, c, d) Magnetic field-distributions (time snapshots) at ω/ωp=1.05, for local and nonlocal cases. (e) Corresponding time-averaged power flow distribution (absolute value of the real part of the complex Poynting vector along x), for the nonlocal case, demonstrating negligible power flow toward the negative x axis. The power “peak” around the source location originates from the fact that the field near the source is extremely intense (as seen in Fig. 6), and it gets rapidly attenuated by the small absorption losses included in our simulations.
Fig. 5.
Fig. 5. Dispersion diagram of type-II SPPs, for the local and nonlocal configurations considered in Fig. 4, over a much broader range of frequencies and wavenumbers. To capture all the surface modes, the dispersion diagrams are plotted as density plots of the inverse determinant of the boundary condition matrix. The bright lines correspond to the SPP poles. (a) Local case, with zoomed-in views (dashed white boxes) of the (c) ultralow-frequency SPP, and of the (d) SPP branches above the plasma frequency. (b, e, f) Corresponding plots for the nonlocal case. The white solid lines in (d) and (e) indicate the bulk mode bandgap. The dashed white boxes in (d) and (e) correspond to the dispersion diagram in Fig. 4(a). Supplement 1 includes corresponding dispersion diagrams for type-II SPPs in the unbiased reciprocal case, and for type-I SPPs.
Fig. 6.
Fig. 6. Surface wave propagation on a terminated interface between a magnetized plasma and an isotropic material. Left column, type-I SPPs, with PEC termination. Same parameters as in Fig. 3 for the nonlocal low-loss case. Right column, type-II SPPs, with PMC termination. Same parameters as in Fig. 4 for the nonlocal low-loss case. (a, d) Real part of the magnetic field distributions (time snapshots) for SPPs launched by a dipolar line source. (b, e) Corresponding electric field intensity distributions. (c, f) Field intensity profiles, corresponding to (b, e), at a distance λp/100 below the surface, normalized by the field intensity of a SPP on a lossless homogeneous interface. Field profiles for the local case are also shown in (c, f) for comparison. Longer/shorter arrows indicate the propagation direction of SPPs with larger/smaller wavenumber. Time-harmonic animations for (a, d) are available as Visualization 1 and Visualization 2.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

β2(·J)+ω(ω+iγ)J=iω(ωp2ε0εEJ×ωcz^),
k4β2ω2+k2[Ωb(ωp2+β2k02ε)+Ω0]k02εΩ0=0,
Δ=ωc/2+ωc2/4+ωp2ωc2+ωp2,