Abstract

Low-threshold, room-temperature polariton lasing is crucial for future application of polaritonic devices. Conjugated polymers are attractive candidates for room-temperature polariton lasers, due to their high exciton binding energy, very high oscillator strength, easy fabrication, and tunability. However, to date, polariton lasing has only been reported in one conjugated polymer, ladder-type MeLPPP, whose very rigid structure gives an atypically narrow excitonic linewidth. Here, we observe polariton lasing in a highly disordered prototypical conjugated polymer, poly(9,9-dioctylfluorene), thereby opening up the field of polymer materials for polaritonics. The long-range spatial coherence of the emission shows a maximum fringe visibility contrast of 72%. The observed polariton lasing threshold (27.7μJ/cm2, corresponding to an absorbed pump fluence of 19.1μJ/cm2) is an order of magnitude smaller than for the previous polymer polariton laser, potentially bringing electrical pumping of such devices a step closer.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Room temperature polariton lasing vs. photon lasing in a ZnO-based hybrid microcavity

Tien-Chang Lu, Ying-Yu Lai, Yu-Pin Lan, Si-Wei Huang, Jun-Rong Chen, Yung-Chi Wu, Wen-Feng Hsieh, and Hui Deng
Opt. Express 20(5) 5530-5537 (2012)

Plasmon-exciton-polariton lasing

Mohammad Ramezani, Alexei Halpin, Antonio I. Fernández-Domínguez, Johannes Feist, Said Rahimzadeh-Kalaleh Rodriguez, Francisco J. Garcia-Vidal, and Jaime Gómez Rivas
Optica 4(1) 31-37 (2017)

Low threshold optically pumped lasing from MEH-PPV quasi-periodic photonic crystal microcavity

Yuanyuan Cai, Xiaoyan Jiao, Xiao Chen, Xiaoqing Wang, Shuai Feng, Zhi Wang, and Yiquan Wang
Appl. Opt. 58(18) 4853-4857 (2019)

References

  • View by:
  • |
  • |
  • |

  1. C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, “Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity,” Phys. Rev. Lett. 69, 3314–3317 (1992).
    [Crossref]
  2. H. Deng, J. Homan, A. J. S. Ser, H. Deng, G. Weihs, and C. Santori, “Condensation of semiconductor microcavity exciton polaritons,” Science 298, 199–202 (2002).
    [Crossref]
  3. R. J. Holmes and S. R. Forrest, “Strong exciton-photon coupling in organic materials,” Org. Electron. 8, 77–93 (2007).
    [Crossref]
  4. J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymánska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and L. S. Dang, “Bose–Einstein condensation of exciton polaritons,” Nature 443, 409–414 (2006).
    [Crossref]
  5. R. Balili, V. Hartwell, D. Snoke, L. Pfeiffer, and K. West, “Bose–Einstein condensation of microcavity polaritons in a trap,” Science 316, 1007–1011 (2007).
    [Crossref]
  6. B. Deveaud-Plédran, “On the condensation of polaritons,” J. Opt. Soc. Am. B 29, A138 (2012).
    [Crossref]
  7. A. Imamoglu, R. J. Ram, S. Pau, and Y. Yamamoto, “Nonequilibrium condensates and lasers without inversion: Exciton-polariton lasers,” Phys. Rev. A 53, 4250–4253 (1996).
    [Crossref]
  8. A. Das, J. Heo, M. Jankowski, W. Guo, L. Zhang, H. Deng, and P. Bhattacharya, “Room temperature ultralow threshold GaN nanowire polariton laser,” Phys. Rev. Lett. 107, 1–5 (2011).
    [Crossref]
  9. L. S. Dang, D. Heger, R. André, F. Bœuf, and R. Romestain, “Stimulation of polariton photoluminescence in semiconductor microcavity,” Phys. Rev. Lett. 81, 3920–3923 (1998).
    [Crossref]
  10. R. M. Stevenson, V. N. Astratov, M. S. Skolnick, D. M. Whittaker, M. Emam-Ismail, A. I. Tartakovskii, P. G. Savvidis, J. J. Baumberg, and J. S. Roberts, “Continuous wave observation of massive polariton redistribution by stimulated scattering in semiconductor microcavities,” Phys. Rev. Lett. 85, 3680–3683(2000).
    [Crossref]
  11. T.-C. Lu, Y.-Y. Lai, Y.-P. Lan, S.-W. Huang, J.-R. Chen, Y.-C. Wu, W.-F. Hsieh, and H. Deng, “Room temperature polariton lasing vs. photon lasing in a ZnO-based hybrid microcavity,” Opt. Express 20, 5530 (2012).
    [Crossref]
  12. A. Das, J. Heo, A. Bayraktaroglu, W. Guo, T.-K. Ng, J. Phillips, B. S. Ooi, and P. Bhattacharya, “Room temperature strong coupling effects from single ZnO nanowire microcavity,” Opt. Express 20, 11830 (2012).
    [Crossref]
  13. S. Christopoulos, G. B. H. Von Högersthal, A. J. D. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butté, E. Feltin, J. F. Carlin, and N. Grandjean, “Room-temperature polariton lasing in semiconductor microcavities,” Phys. Rev. Lett. 98, 1–4 (2007).
    [Crossref]
  14. P. Bhattacharya, T. Frost, S. Deshpande, M. Z. Baten, A. Hazari, and A. Das, “Room temperature electrically injected polariton laser,” Phys. Rev. Lett. 112, 29–31 (2014).
    [Crossref]
  15. A. Bhattacharya, M. Z. Baten, I. Iorsh, T. Frost, A. Kavokin, and P. Bhattacharya, “Output polarization characteristics of a GaN microcavity diode polariton laser,” Phys. Rev. B 94, 035203 (2016).
    [Crossref]
  16. R. Su, C. Diederichs, J. Wang, T. C. H. Liew, J. Zhao, S. Liu, W. Xu, Z. Chen, and Q. Xiong, “Room-temperature polariton lasing in all-inorganic perovskite nanoplatelets,” Nano Lett. 17, 3982–3988 (2017).
    [Crossref]
  17. D. G. Lidzey, D. D. C. Bradley, M. S. Skolnick, T. Virgili, S. Walker, and D. M. Whittaker, “Strong exciton-photon coupling in an organic semiconductor microcavity,” Nature 395, 53–55 (1998).
    [Crossref]
  18. S. Kéna-Cohen and S. R. Forrest, “Room-temperature polariton lasing in an organic single-crystal microcavity,” Nat. Photonics 4, 371–375 (2010).
    [Crossref]
  19. K. S. Daskalakis, S. A. Maier, R. Murray, and S. Kéna-Cohen, “Nonlinear interactions in an organic polariton condensate,” Nat. Mater. 13, 271–278 (2014).
    [Crossref]
  20. J. D. Plumhof, T. Stoeferle, L. Mai, U. Scherf, and R. Mahrt, “Roomtemperature Bose–Einstein condensation of cavity exciton–polaritons in a polymer,” Nat. Mater. 13, 247 (2014).
    [Crossref]
  21. C. P. Dietrich, A. Steude, L. Tropf, M. Schubert, N. M. Kronenberg, K. Ostermann, S. Höfling, and M. C. Gather, “An exciton–polariton laser based on biologically produced fluorescent protein,” Sci. Adv. 2, e1600666 (2016).
    [Crossref]
  22. T. Cookson, K. Georgiou, A. Zasedatelev, R. T. Grant, T. Virgili, M. Cavazzini, F. Galeotti, C. Clark, N. G. Berloff, D. G. Lidzey, and P. G. Lagoudakis, “A yellow polariton condensate in a dye filled microcavity,” Adv. Opt. Mater. 5, 1–6 (2017).
    [Crossref]
  23. J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. H. Friend, P. L. Burns, and A. B. Holmes, “Burroughes1990 Light-emitting diodes based on conjugated polymers.pdf,” Nature 347, 539–541 (1990).
    [Crossref]
  24. N. Sariciftci, L. Smilowitz, A. J. Heeger, and F. Wudl, “Photoinduced electron transfer from a conducting polymer to buckminsterfullerene,” Science 258, 1474–1476 (1992).
    [Crossref]
  25. N. Tessler, G. J. Denton, and R. H. Friend, “Lasing from conjugated polymer microcavities,” Nature 382, 695–697 (1996).
    [Crossref]
  26. M. Richard, J. Kasprzak, R. André, R. Romestain, L. S. Dang, G. Malpuech, and A. Kavokin, “Experimental evidence for nonequilibrium Bose condensation of exciton polaritons,” Phys. Rev. B 72, 1–4 (2005).
    [Crossref]
  27. J. Kasprzak, D. D. Solnyshkov, R. André, L. S. Dang, and G. Malpuech, “Formation of an exciton polariton condensate: Thermodynamic versus kinetic regimes,” Phys. Rev. Lett. 101, 3–6 (2008).
    [Crossref]
  28. A. Rahimi-Iman, A. V. Chernenko, J. Fischer, S. Brodbeck, M. Amthor, C. Schneider, A. Forchel, S. Höfling, S. Reitzenstein, and M. Kamp, “Coherence signatures and density-dependent interaction in a dynamical excitonpolariton condensate,” Phys. Rev. B 86, 1–10 (2012).
    [Crossref]
  29. N. C. Greenham, I. D. W. Samuel, G. R. Hayes, R. T. Phillips, Y. A. R. R. Kessener, S. C. Moratti, A. B. Holmes, and R. H. Friend, “Measurement of absolute photoluminescence quantum efficiencies in conjugated polymers,” Chem. Phys. Lett. 241, 89–96 (1995).
    [Crossref]
  30. P. E. Shaw, A. Ruseckas, J. Peet, G. C. Bazan, and I. D. W. Samuel, “Exciton - Exciton annihilation in mixed-phase polyfluorene films,” Adv. Funct. Mater. 20, 155–161 (2010).
    [Crossref]
  31. A. K. Bansal, A. Ruseckas, P. E. Shaw, and I. D. W. Samuel, “Fluorescence quenchers in mixed phase polyfluorene films,” J. Phys. Chem. C 114, 17864–17867 (2010).
    [Crossref]
  32. M. Grell, D. D. C. Bradley, G. Ungar, J. Hill, and K. S. Whitehead, “Interplay of physical structure and photophysics for a liquid crystalline polyfluorene,” Macromolecules 32, 5810–5817 (1999).
    [Crossref]
  33. J. Peet, E. Brocker, Y. Xu, and G. C. Bazan, “Controlled β-phase formation in poly(9,9-di-n-octylfluorene) by processing with alkyl additives,” Adv. Mater. 20, 1882–1885 (2008).
    [Crossref]
  34. R. Houdré, R. P. Stanley, and M. Ilegems, “Vacuum-field Rabi splitting in the presence of inhomogeneous broadening: Resolution of a homogeneous linewidth in an inhomogeneously broadened system,” Phys. Rev. A 53, 2711–2715 (1996).
    [Crossref]
  35. J. A. Cwik, P. Kirton, S. De Liberato, and J. Keeling, “Excitonic spectral features in strongly coupled organic polaritons,” Phys. Rev. A 93, 1–12 (2016).
    [Crossref]
  36. V. B. Timoffeev, “Bose condensation of exciton polaritons in microcavities,” Semiconductors 46, 843–860 (2012).
    [Crossref]
  37. N. Bobrovska, M. Matuszewski, K. S. Daskalakis, S. A. Maier, and S. Kéna-Cohen, “Dynamical instability of a nonequilibrium exciton-polariton condensate,” ACS Photon. 5, 111–118 (2017).
    [Crossref]
  38. T. C. H. Liew, O. A. Egorov, M. Matuszewski, O. Kyriienko, X. Ma, and E. A. Ostrovskaya, “Instability-induced formation and nonequilibrium dynamics of phase defects in polariton condensates,” Phys. Rev. B 91, 1–12 (2015).
    [Crossref]
  39. S. Kim, B. Zhang, Z. Wang, J. Fischer, S. Brodbeck, M. Kamp, C. Schneider, S. Höfling, and H. Deng, “Coherent polariton laser,” Phys. Rev. X 6, 011026 (2016).
    [Crossref]
  40. D. Porras and C. Tejedor, “Linewidth of a polariton laser: Theoretical analysis of self-interaction effects,” Phys. Rev. B 67, 1–4 (2003).
    [Crossref]
  41. M. Vladimirova, S. Cronenberger, D. Scalbert, K. V. Kavokin, A. Miard, A. Lemaître, J. Bloch, D. Solnyshkov, G. Malpuech, and A. V. Kavokin, “Polaritonpolariton interaction constants in microcavities,” Phys. Rev. B 82, 1–9 (2010).
    [Crossref]
  42. C. Schneider, A. Rahimi-Iman, N. Y. Kim, J. Fischer, I. G. Savenko, M. Amthor, M. Lermer, A. Wolf, L. Worschech, V. D. Kulakovskii, I. A. Shelykh, M. Kamp, S. Reitzenstein, A. Forchel, Y. Yamamoto, and S. Höfling, “An electrically pumped polariton laser,” Nature 497, 348–352 (2013).
    [Crossref]
  43. P. Bhattacharya, B. Xiao, A. Das, S. Bhowmick, and J. Heo, “Solid state electrically injected exciton-polariton laser,” Phys. Rev. Lett. 110, 1–5 (2013).
    [Crossref]
  44. A. Bhattacharya, M. Z. Baten, I. Iorsh, T. Frost, A. Kavokin, and P. Bhattacharya, “Room-temperature spin polariton diode laser,” Phys. Rev. Lett. 119, 1–6 (2017).
    [Crossref]
  45. M. Wei, S. K. Rajendran, H. Ohadi, L. Tropf, M. C. Gather, G. A. Turnbull, and I. D. W. Samuel, Low threshold polariton lasing in a highly disordered conjugated polymer (dataset), University of St Andrews Research Portal, 2019, https://doi.org/10.17630/786775ad-012e-4890-a029-73cdabd762b3 .

2017 (4)

R. Su, C. Diederichs, J. Wang, T. C. H. Liew, J. Zhao, S. Liu, W. Xu, Z. Chen, and Q. Xiong, “Room-temperature polariton lasing in all-inorganic perovskite nanoplatelets,” Nano Lett. 17, 3982–3988 (2017).
[Crossref]

T. Cookson, K. Georgiou, A. Zasedatelev, R. T. Grant, T. Virgili, M. Cavazzini, F. Galeotti, C. Clark, N. G. Berloff, D. G. Lidzey, and P. G. Lagoudakis, “A yellow polariton condensate in a dye filled microcavity,” Adv. Opt. Mater. 5, 1–6 (2017).
[Crossref]

N. Bobrovska, M. Matuszewski, K. S. Daskalakis, S. A. Maier, and S. Kéna-Cohen, “Dynamical instability of a nonequilibrium exciton-polariton condensate,” ACS Photon. 5, 111–118 (2017).
[Crossref]

A. Bhattacharya, M. Z. Baten, I. Iorsh, T. Frost, A. Kavokin, and P. Bhattacharya, “Room-temperature spin polariton diode laser,” Phys. Rev. Lett. 119, 1–6 (2017).
[Crossref]

2016 (4)

S. Kim, B. Zhang, Z. Wang, J. Fischer, S. Brodbeck, M. Kamp, C. Schneider, S. Höfling, and H. Deng, “Coherent polariton laser,” Phys. Rev. X 6, 011026 (2016).
[Crossref]

J. A. Cwik, P. Kirton, S. De Liberato, and J. Keeling, “Excitonic spectral features in strongly coupled organic polaritons,” Phys. Rev. A 93, 1–12 (2016).
[Crossref]

C. P. Dietrich, A. Steude, L. Tropf, M. Schubert, N. M. Kronenberg, K. Ostermann, S. Höfling, and M. C. Gather, “An exciton–polariton laser based on biologically produced fluorescent protein,” Sci. Adv. 2, e1600666 (2016).
[Crossref]

A. Bhattacharya, M. Z. Baten, I. Iorsh, T. Frost, A. Kavokin, and P. Bhattacharya, “Output polarization characteristics of a GaN microcavity diode polariton laser,” Phys. Rev. B 94, 035203 (2016).
[Crossref]

2015 (1)

T. C. H. Liew, O. A. Egorov, M. Matuszewski, O. Kyriienko, X. Ma, and E. A. Ostrovskaya, “Instability-induced formation and nonequilibrium dynamics of phase defects in polariton condensates,” Phys. Rev. B 91, 1–12 (2015).
[Crossref]

2014 (3)

K. S. Daskalakis, S. A. Maier, R. Murray, and S. Kéna-Cohen, “Nonlinear interactions in an organic polariton condensate,” Nat. Mater. 13, 271–278 (2014).
[Crossref]

J. D. Plumhof, T. Stoeferle, L. Mai, U. Scherf, and R. Mahrt, “Roomtemperature Bose–Einstein condensation of cavity exciton–polaritons in a polymer,” Nat. Mater. 13, 247 (2014).
[Crossref]

P. Bhattacharya, T. Frost, S. Deshpande, M. Z. Baten, A. Hazari, and A. Das, “Room temperature electrically injected polariton laser,” Phys. Rev. Lett. 112, 29–31 (2014).
[Crossref]

2013 (2)

C. Schneider, A. Rahimi-Iman, N. Y. Kim, J. Fischer, I. G. Savenko, M. Amthor, M. Lermer, A. Wolf, L. Worschech, V. D. Kulakovskii, I. A. Shelykh, M. Kamp, S. Reitzenstein, A. Forchel, Y. Yamamoto, and S. Höfling, “An electrically pumped polariton laser,” Nature 497, 348–352 (2013).
[Crossref]

P. Bhattacharya, B. Xiao, A. Das, S. Bhowmick, and J. Heo, “Solid state electrically injected exciton-polariton laser,” Phys. Rev. Lett. 110, 1–5 (2013).
[Crossref]

2012 (5)

V. B. Timoffeev, “Bose condensation of exciton polaritons in microcavities,” Semiconductors 46, 843–860 (2012).
[Crossref]

A. Rahimi-Iman, A. V. Chernenko, J. Fischer, S. Brodbeck, M. Amthor, C. Schneider, A. Forchel, S. Höfling, S. Reitzenstein, and M. Kamp, “Coherence signatures and density-dependent interaction in a dynamical excitonpolariton condensate,” Phys. Rev. B 86, 1–10 (2012).
[Crossref]

B. Deveaud-Plédran, “On the condensation of polaritons,” J. Opt. Soc. Am. B 29, A138 (2012).
[Crossref]

T.-C. Lu, Y.-Y. Lai, Y.-P. Lan, S.-W. Huang, J.-R. Chen, Y.-C. Wu, W.-F. Hsieh, and H. Deng, “Room temperature polariton lasing vs. photon lasing in a ZnO-based hybrid microcavity,” Opt. Express 20, 5530 (2012).
[Crossref]

A. Das, J. Heo, A. Bayraktaroglu, W. Guo, T.-K. Ng, J. Phillips, B. S. Ooi, and P. Bhattacharya, “Room temperature strong coupling effects from single ZnO nanowire microcavity,” Opt. Express 20, 11830 (2012).
[Crossref]

2011 (1)

A. Das, J. Heo, M. Jankowski, W. Guo, L. Zhang, H. Deng, and P. Bhattacharya, “Room temperature ultralow threshold GaN nanowire polariton laser,” Phys. Rev. Lett. 107, 1–5 (2011).
[Crossref]

2010 (4)

S. Kéna-Cohen and S. R. Forrest, “Room-temperature polariton lasing in an organic single-crystal microcavity,” Nat. Photonics 4, 371–375 (2010).
[Crossref]

P. E. Shaw, A. Ruseckas, J. Peet, G. C. Bazan, and I. D. W. Samuel, “Exciton - Exciton annihilation in mixed-phase polyfluorene films,” Adv. Funct. Mater. 20, 155–161 (2010).
[Crossref]

A. K. Bansal, A. Ruseckas, P. E. Shaw, and I. D. W. Samuel, “Fluorescence quenchers in mixed phase polyfluorene films,” J. Phys. Chem. C 114, 17864–17867 (2010).
[Crossref]

M. Vladimirova, S. Cronenberger, D. Scalbert, K. V. Kavokin, A. Miard, A. Lemaître, J. Bloch, D. Solnyshkov, G. Malpuech, and A. V. Kavokin, “Polaritonpolariton interaction constants in microcavities,” Phys. Rev. B 82, 1–9 (2010).
[Crossref]

2008 (2)

J. Kasprzak, D. D. Solnyshkov, R. André, L. S. Dang, and G. Malpuech, “Formation of an exciton polariton condensate: Thermodynamic versus kinetic regimes,” Phys. Rev. Lett. 101, 3–6 (2008).
[Crossref]

J. Peet, E. Brocker, Y. Xu, and G. C. Bazan, “Controlled β-phase formation in poly(9,9-di-n-octylfluorene) by processing with alkyl additives,” Adv. Mater. 20, 1882–1885 (2008).
[Crossref]

2007 (3)

S. Christopoulos, G. B. H. Von Högersthal, A. J. D. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butté, E. Feltin, J. F. Carlin, and N. Grandjean, “Room-temperature polariton lasing in semiconductor microcavities,” Phys. Rev. Lett. 98, 1–4 (2007).
[Crossref]

R. J. Holmes and S. R. Forrest, “Strong exciton-photon coupling in organic materials,” Org. Electron. 8, 77–93 (2007).
[Crossref]

R. Balili, V. Hartwell, D. Snoke, L. Pfeiffer, and K. West, “Bose–Einstein condensation of microcavity polaritons in a trap,” Science 316, 1007–1011 (2007).
[Crossref]

2006 (1)

J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymánska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and L. S. Dang, “Bose–Einstein condensation of exciton polaritons,” Nature 443, 409–414 (2006).
[Crossref]

2005 (1)

M. Richard, J. Kasprzak, R. André, R. Romestain, L. S. Dang, G. Malpuech, and A. Kavokin, “Experimental evidence for nonequilibrium Bose condensation of exciton polaritons,” Phys. Rev. B 72, 1–4 (2005).
[Crossref]

2003 (1)

D. Porras and C. Tejedor, “Linewidth of a polariton laser: Theoretical analysis of self-interaction effects,” Phys. Rev. B 67, 1–4 (2003).
[Crossref]

2002 (1)

H. Deng, J. Homan, A. J. S. Ser, H. Deng, G. Weihs, and C. Santori, “Condensation of semiconductor microcavity exciton polaritons,” Science 298, 199–202 (2002).
[Crossref]

2000 (1)

R. M. Stevenson, V. N. Astratov, M. S. Skolnick, D. M. Whittaker, M. Emam-Ismail, A. I. Tartakovskii, P. G. Savvidis, J. J. Baumberg, and J. S. Roberts, “Continuous wave observation of massive polariton redistribution by stimulated scattering in semiconductor microcavities,” Phys. Rev. Lett. 85, 3680–3683(2000).
[Crossref]

1999 (1)

M. Grell, D. D. C. Bradley, G. Ungar, J. Hill, and K. S. Whitehead, “Interplay of physical structure and photophysics for a liquid crystalline polyfluorene,” Macromolecules 32, 5810–5817 (1999).
[Crossref]

1998 (2)

D. G. Lidzey, D. D. C. Bradley, M. S. Skolnick, T. Virgili, S. Walker, and D. M. Whittaker, “Strong exciton-photon coupling in an organic semiconductor microcavity,” Nature 395, 53–55 (1998).
[Crossref]

L. S. Dang, D. Heger, R. André, F. Bœuf, and R. Romestain, “Stimulation of polariton photoluminescence in semiconductor microcavity,” Phys. Rev. Lett. 81, 3920–3923 (1998).
[Crossref]

1996 (3)

A. Imamoglu, R. J. Ram, S. Pau, and Y. Yamamoto, “Nonequilibrium condensates and lasers without inversion: Exciton-polariton lasers,” Phys. Rev. A 53, 4250–4253 (1996).
[Crossref]

N. Tessler, G. J. Denton, and R. H. Friend, “Lasing from conjugated polymer microcavities,” Nature 382, 695–697 (1996).
[Crossref]

R. Houdré, R. P. Stanley, and M. Ilegems, “Vacuum-field Rabi splitting in the presence of inhomogeneous broadening: Resolution of a homogeneous linewidth in an inhomogeneously broadened system,” Phys. Rev. A 53, 2711–2715 (1996).
[Crossref]

1995 (1)

N. C. Greenham, I. D. W. Samuel, G. R. Hayes, R. T. Phillips, Y. A. R. R. Kessener, S. C. Moratti, A. B. Holmes, and R. H. Friend, “Measurement of absolute photoluminescence quantum efficiencies in conjugated polymers,” Chem. Phys. Lett. 241, 89–96 (1995).
[Crossref]

1992 (2)

N. Sariciftci, L. Smilowitz, A. J. Heeger, and F. Wudl, “Photoinduced electron transfer from a conducting polymer to buckminsterfullerene,” Science 258, 1474–1476 (1992).
[Crossref]

C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, “Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity,” Phys. Rev. Lett. 69, 3314–3317 (1992).
[Crossref]

1990 (1)

J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. H. Friend, P. L. Burns, and A. B. Holmes, “Burroughes1990 Light-emitting diodes based on conjugated polymers.pdf,” Nature 347, 539–541 (1990).
[Crossref]

Amthor, M.

C. Schneider, A. Rahimi-Iman, N. Y. Kim, J. Fischer, I. G. Savenko, M. Amthor, M. Lermer, A. Wolf, L. Worschech, V. D. Kulakovskii, I. A. Shelykh, M. Kamp, S. Reitzenstein, A. Forchel, Y. Yamamoto, and S. Höfling, “An electrically pumped polariton laser,” Nature 497, 348–352 (2013).
[Crossref]

A. Rahimi-Iman, A. V. Chernenko, J. Fischer, S. Brodbeck, M. Amthor, C. Schneider, A. Forchel, S. Höfling, S. Reitzenstein, and M. Kamp, “Coherence signatures and density-dependent interaction in a dynamical excitonpolariton condensate,” Phys. Rev. B 86, 1–10 (2012).
[Crossref]

André, R.

J. Kasprzak, D. D. Solnyshkov, R. André, L. S. Dang, and G. Malpuech, “Formation of an exciton polariton condensate: Thermodynamic versus kinetic regimes,” Phys. Rev. Lett. 101, 3–6 (2008).
[Crossref]

J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymánska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and L. S. Dang, “Bose–Einstein condensation of exciton polaritons,” Nature 443, 409–414 (2006).
[Crossref]

M. Richard, J. Kasprzak, R. André, R. Romestain, L. S. Dang, G. Malpuech, and A. Kavokin, “Experimental evidence for nonequilibrium Bose condensation of exciton polaritons,” Phys. Rev. B 72, 1–4 (2005).
[Crossref]

L. S. Dang, D. Heger, R. André, F. Bœuf, and R. Romestain, “Stimulation of polariton photoluminescence in semiconductor microcavity,” Phys. Rev. Lett. 81, 3920–3923 (1998).
[Crossref]

Arakawa, Y.

C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, “Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity,” Phys. Rev. Lett. 69, 3314–3317 (1992).
[Crossref]

Astratov, V. N.

R. M. Stevenson, V. N. Astratov, M. S. Skolnick, D. M. Whittaker, M. Emam-Ismail, A. I. Tartakovskii, P. G. Savvidis, J. J. Baumberg, and J. S. Roberts, “Continuous wave observation of massive polariton redistribution by stimulated scattering in semiconductor microcavities,” Phys. Rev. Lett. 85, 3680–3683(2000).
[Crossref]

Baas, A.

J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymánska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and L. S. Dang, “Bose–Einstein condensation of exciton polaritons,” Nature 443, 409–414 (2006).
[Crossref]

Balili, R.

R. Balili, V. Hartwell, D. Snoke, L. Pfeiffer, and K. West, “Bose–Einstein condensation of microcavity polaritons in a trap,” Science 316, 1007–1011 (2007).
[Crossref]

Bansal, A. K.

A. K. Bansal, A. Ruseckas, P. E. Shaw, and I. D. W. Samuel, “Fluorescence quenchers in mixed phase polyfluorene films,” J. Phys. Chem. C 114, 17864–17867 (2010).
[Crossref]

Baten, M. Z.

A. Bhattacharya, M. Z. Baten, I. Iorsh, T. Frost, A. Kavokin, and P. Bhattacharya, “Room-temperature spin polariton diode laser,” Phys. Rev. Lett. 119, 1–6 (2017).
[Crossref]

A. Bhattacharya, M. Z. Baten, I. Iorsh, T. Frost, A. Kavokin, and P. Bhattacharya, “Output polarization characteristics of a GaN microcavity diode polariton laser,” Phys. Rev. B 94, 035203 (2016).
[Crossref]

P. Bhattacharya, T. Frost, S. Deshpande, M. Z. Baten, A. Hazari, and A. Das, “Room temperature electrically injected polariton laser,” Phys. Rev. Lett. 112, 29–31 (2014).
[Crossref]

Baumberg, J. J.

S. Christopoulos, G. B. H. Von Högersthal, A. J. D. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butté, E. Feltin, J. F. Carlin, and N. Grandjean, “Room-temperature polariton lasing in semiconductor microcavities,” Phys. Rev. Lett. 98, 1–4 (2007).
[Crossref]

R. M. Stevenson, V. N. Astratov, M. S. Skolnick, D. M. Whittaker, M. Emam-Ismail, A. I. Tartakovskii, P. G. Savvidis, J. J. Baumberg, and J. S. Roberts, “Continuous wave observation of massive polariton redistribution by stimulated scattering in semiconductor microcavities,” Phys. Rev. Lett. 85, 3680–3683(2000).
[Crossref]

Bayraktaroglu, A.

Bazan, G. C.

P. E. Shaw, A. Ruseckas, J. Peet, G. C. Bazan, and I. D. W. Samuel, “Exciton - Exciton annihilation in mixed-phase polyfluorene films,” Adv. Funct. Mater. 20, 155–161 (2010).
[Crossref]

J. Peet, E. Brocker, Y. Xu, and G. C. Bazan, “Controlled β-phase formation in poly(9,9-di-n-octylfluorene) by processing with alkyl additives,” Adv. Mater. 20, 1882–1885 (2008).
[Crossref]

Berloff, N. G.

T. Cookson, K. Georgiou, A. Zasedatelev, R. T. Grant, T. Virgili, M. Cavazzini, F. Galeotti, C. Clark, N. G. Berloff, D. G. Lidzey, and P. G. Lagoudakis, “A yellow polariton condensate in a dye filled microcavity,” Adv. Opt. Mater. 5, 1–6 (2017).
[Crossref]

Bhattacharya, A.

A. Bhattacharya, M. Z. Baten, I. Iorsh, T. Frost, A. Kavokin, and P. Bhattacharya, “Room-temperature spin polariton diode laser,” Phys. Rev. Lett. 119, 1–6 (2017).
[Crossref]

A. Bhattacharya, M. Z. Baten, I. Iorsh, T. Frost, A. Kavokin, and P. Bhattacharya, “Output polarization characteristics of a GaN microcavity diode polariton laser,” Phys. Rev. B 94, 035203 (2016).
[Crossref]

Bhattacharya, P.

A. Bhattacharya, M. Z. Baten, I. Iorsh, T. Frost, A. Kavokin, and P. Bhattacharya, “Room-temperature spin polariton diode laser,” Phys. Rev. Lett. 119, 1–6 (2017).
[Crossref]

A. Bhattacharya, M. Z. Baten, I. Iorsh, T. Frost, A. Kavokin, and P. Bhattacharya, “Output polarization characteristics of a GaN microcavity diode polariton laser,” Phys. Rev. B 94, 035203 (2016).
[Crossref]

P. Bhattacharya, T. Frost, S. Deshpande, M. Z. Baten, A. Hazari, and A. Das, “Room temperature electrically injected polariton laser,” Phys. Rev. Lett. 112, 29–31 (2014).
[Crossref]

P. Bhattacharya, B. Xiao, A. Das, S. Bhowmick, and J. Heo, “Solid state electrically injected exciton-polariton laser,” Phys. Rev. Lett. 110, 1–5 (2013).
[Crossref]

A. Das, J. Heo, A. Bayraktaroglu, W. Guo, T.-K. Ng, J. Phillips, B. S. Ooi, and P. Bhattacharya, “Room temperature strong coupling effects from single ZnO nanowire microcavity,” Opt. Express 20, 11830 (2012).
[Crossref]

A. Das, J. Heo, M. Jankowski, W. Guo, L. Zhang, H. Deng, and P. Bhattacharya, “Room temperature ultralow threshold GaN nanowire polariton laser,” Phys. Rev. Lett. 107, 1–5 (2011).
[Crossref]

Bhowmick, S.

P. Bhattacharya, B. Xiao, A. Das, S. Bhowmick, and J. Heo, “Solid state electrically injected exciton-polariton laser,” Phys. Rev. Lett. 110, 1–5 (2013).
[Crossref]

Bloch, J.

M. Vladimirova, S. Cronenberger, D. Scalbert, K. V. Kavokin, A. Miard, A. Lemaître, J. Bloch, D. Solnyshkov, G. Malpuech, and A. V. Kavokin, “Polaritonpolariton interaction constants in microcavities,” Phys. Rev. B 82, 1–9 (2010).
[Crossref]

Bobrovska, N.

N. Bobrovska, M. Matuszewski, K. S. Daskalakis, S. A. Maier, and S. Kéna-Cohen, “Dynamical instability of a nonequilibrium exciton-polariton condensate,” ACS Photon. 5, 111–118 (2017).
[Crossref]

Bœuf, F.

L. S. Dang, D. Heger, R. André, F. Bœuf, and R. Romestain, “Stimulation of polariton photoluminescence in semiconductor microcavity,” Phys. Rev. Lett. 81, 3920–3923 (1998).
[Crossref]

Bradley, D. D. C.

M. Grell, D. D. C. Bradley, G. Ungar, J. Hill, and K. S. Whitehead, “Interplay of physical structure and photophysics for a liquid crystalline polyfluorene,” Macromolecules 32, 5810–5817 (1999).
[Crossref]

D. G. Lidzey, D. D. C. Bradley, M. S. Skolnick, T. Virgili, S. Walker, and D. M. Whittaker, “Strong exciton-photon coupling in an organic semiconductor microcavity,” Nature 395, 53–55 (1998).
[Crossref]

J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. H. Friend, P. L. Burns, and A. B. Holmes, “Burroughes1990 Light-emitting diodes based on conjugated polymers.pdf,” Nature 347, 539–541 (1990).
[Crossref]

Brocker, E.

J. Peet, E. Brocker, Y. Xu, and G. C. Bazan, “Controlled β-phase formation in poly(9,9-di-n-octylfluorene) by processing with alkyl additives,” Adv. Mater. 20, 1882–1885 (2008).
[Crossref]

Brodbeck, S.

S. Kim, B. Zhang, Z. Wang, J. Fischer, S. Brodbeck, M. Kamp, C. Schneider, S. Höfling, and H. Deng, “Coherent polariton laser,” Phys. Rev. X 6, 011026 (2016).
[Crossref]

A. Rahimi-Iman, A. V. Chernenko, J. Fischer, S. Brodbeck, M. Amthor, C. Schneider, A. Forchel, S. Höfling, S. Reitzenstein, and M. Kamp, “Coherence signatures and density-dependent interaction in a dynamical excitonpolariton condensate,” Phys. Rev. B 86, 1–10 (2012).
[Crossref]

Brown, A. R.

J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. H. Friend, P. L. Burns, and A. B. Holmes, “Burroughes1990 Light-emitting diodes based on conjugated polymers.pdf,” Nature 347, 539–541 (1990).
[Crossref]

Burns, P. L.

J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. H. Friend, P. L. Burns, and A. B. Holmes, “Burroughes1990 Light-emitting diodes based on conjugated polymers.pdf,” Nature 347, 539–541 (1990).
[Crossref]

Burroughes, J. H.

J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. H. Friend, P. L. Burns, and A. B. Holmes, “Burroughes1990 Light-emitting diodes based on conjugated polymers.pdf,” Nature 347, 539–541 (1990).
[Crossref]

Butté, R.

S. Christopoulos, G. B. H. Von Högersthal, A. J. D. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butté, E. Feltin, J. F. Carlin, and N. Grandjean, “Room-temperature polariton lasing in semiconductor microcavities,” Phys. Rev. Lett. 98, 1–4 (2007).
[Crossref]

Carlin, J. F.

S. Christopoulos, G. B. H. Von Högersthal, A. J. D. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butté, E. Feltin, J. F. Carlin, and N. Grandjean, “Room-temperature polariton lasing in semiconductor microcavities,” Phys. Rev. Lett. 98, 1–4 (2007).
[Crossref]

Cavazzini, M.

T. Cookson, K. Georgiou, A. Zasedatelev, R. T. Grant, T. Virgili, M. Cavazzini, F. Galeotti, C. Clark, N. G. Berloff, D. G. Lidzey, and P. G. Lagoudakis, “A yellow polariton condensate in a dye filled microcavity,” Adv. Opt. Mater. 5, 1–6 (2017).
[Crossref]

Chen, J.-R.

Chen, Z.

R. Su, C. Diederichs, J. Wang, T. C. H. Liew, J. Zhao, S. Liu, W. Xu, Z. Chen, and Q. Xiong, “Room-temperature polariton lasing in all-inorganic perovskite nanoplatelets,” Nano Lett. 17, 3982–3988 (2017).
[Crossref]

Chernenko, A. V.

A. Rahimi-Iman, A. V. Chernenko, J. Fischer, S. Brodbeck, M. Amthor, C. Schneider, A. Forchel, S. Höfling, S. Reitzenstein, and M. Kamp, “Coherence signatures and density-dependent interaction in a dynamical excitonpolariton condensate,” Phys. Rev. B 86, 1–10 (2012).
[Crossref]

Christmann, G.

S. Christopoulos, G. B. H. Von Högersthal, A. J. D. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butté, E. Feltin, J. F. Carlin, and N. Grandjean, “Room-temperature polariton lasing in semiconductor microcavities,” Phys. Rev. Lett. 98, 1–4 (2007).
[Crossref]

Christopoulos, S.

S. Christopoulos, G. B. H. Von Högersthal, A. J. D. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butté, E. Feltin, J. F. Carlin, and N. Grandjean, “Room-temperature polariton lasing in semiconductor microcavities,” Phys. Rev. Lett. 98, 1–4 (2007).
[Crossref]

Clark, C.

T. Cookson, K. Georgiou, A. Zasedatelev, R. T. Grant, T. Virgili, M. Cavazzini, F. Galeotti, C. Clark, N. G. Berloff, D. G. Lidzey, and P. G. Lagoudakis, “A yellow polariton condensate in a dye filled microcavity,” Adv. Opt. Mater. 5, 1–6 (2017).
[Crossref]

Cookson, T.

T. Cookson, K. Georgiou, A. Zasedatelev, R. T. Grant, T. Virgili, M. Cavazzini, F. Galeotti, C. Clark, N. G. Berloff, D. G. Lidzey, and P. G. Lagoudakis, “A yellow polariton condensate in a dye filled microcavity,” Adv. Opt. Mater. 5, 1–6 (2017).
[Crossref]

Cronenberger, S.

M. Vladimirova, S. Cronenberger, D. Scalbert, K. V. Kavokin, A. Miard, A. Lemaître, J. Bloch, D. Solnyshkov, G. Malpuech, and A. V. Kavokin, “Polaritonpolariton interaction constants in microcavities,” Phys. Rev. B 82, 1–9 (2010).
[Crossref]

Cwik, J. A.

J. A. Cwik, P. Kirton, S. De Liberato, and J. Keeling, “Excitonic spectral features in strongly coupled organic polaritons,” Phys. Rev. A 93, 1–12 (2016).
[Crossref]

Dang, L. S.

J. Kasprzak, D. D. Solnyshkov, R. André, L. S. Dang, and G. Malpuech, “Formation of an exciton polariton condensate: Thermodynamic versus kinetic regimes,” Phys. Rev. Lett. 101, 3–6 (2008).
[Crossref]

J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymánska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and L. S. Dang, “Bose–Einstein condensation of exciton polaritons,” Nature 443, 409–414 (2006).
[Crossref]

M. Richard, J. Kasprzak, R. André, R. Romestain, L. S. Dang, G. Malpuech, and A. Kavokin, “Experimental evidence for nonequilibrium Bose condensation of exciton polaritons,” Phys. Rev. B 72, 1–4 (2005).
[Crossref]

L. S. Dang, D. Heger, R. André, F. Bœuf, and R. Romestain, “Stimulation of polariton photoluminescence in semiconductor microcavity,” Phys. Rev. Lett. 81, 3920–3923 (1998).
[Crossref]

Das, A.

P. Bhattacharya, T. Frost, S. Deshpande, M. Z. Baten, A. Hazari, and A. Das, “Room temperature electrically injected polariton laser,” Phys. Rev. Lett. 112, 29–31 (2014).
[Crossref]

P. Bhattacharya, B. Xiao, A. Das, S. Bhowmick, and J. Heo, “Solid state electrically injected exciton-polariton laser,” Phys. Rev. Lett. 110, 1–5 (2013).
[Crossref]

A. Das, J. Heo, A. Bayraktaroglu, W. Guo, T.-K. Ng, J. Phillips, B. S. Ooi, and P. Bhattacharya, “Room temperature strong coupling effects from single ZnO nanowire microcavity,” Opt. Express 20, 11830 (2012).
[Crossref]

A. Das, J. Heo, M. Jankowski, W. Guo, L. Zhang, H. Deng, and P. Bhattacharya, “Room temperature ultralow threshold GaN nanowire polariton laser,” Phys. Rev. Lett. 107, 1–5 (2011).
[Crossref]

Daskalakis, K. S.

N. Bobrovska, M. Matuszewski, K. S. Daskalakis, S. A. Maier, and S. Kéna-Cohen, “Dynamical instability of a nonequilibrium exciton-polariton condensate,” ACS Photon. 5, 111–118 (2017).
[Crossref]

K. S. Daskalakis, S. A. Maier, R. Murray, and S. Kéna-Cohen, “Nonlinear interactions in an organic polariton condensate,” Nat. Mater. 13, 271–278 (2014).
[Crossref]

De Liberato, S.

J. A. Cwik, P. Kirton, S. De Liberato, and J. Keeling, “Excitonic spectral features in strongly coupled organic polaritons,” Phys. Rev. A 93, 1–12 (2016).
[Crossref]

Deng, H.

S. Kim, B. Zhang, Z. Wang, J. Fischer, S. Brodbeck, M. Kamp, C. Schneider, S. Höfling, and H. Deng, “Coherent polariton laser,” Phys. Rev. X 6, 011026 (2016).
[Crossref]

T.-C. Lu, Y.-Y. Lai, Y.-P. Lan, S.-W. Huang, J.-R. Chen, Y.-C. Wu, W.-F. Hsieh, and H. Deng, “Room temperature polariton lasing vs. photon lasing in a ZnO-based hybrid microcavity,” Opt. Express 20, 5530 (2012).
[Crossref]

A. Das, J. Heo, M. Jankowski, W. Guo, L. Zhang, H. Deng, and P. Bhattacharya, “Room temperature ultralow threshold GaN nanowire polariton laser,” Phys. Rev. Lett. 107, 1–5 (2011).
[Crossref]

H. Deng, J. Homan, A. J. S. Ser, H. Deng, G. Weihs, and C. Santori, “Condensation of semiconductor microcavity exciton polaritons,” Science 298, 199–202 (2002).
[Crossref]

H. Deng, J. Homan, A. J. S. Ser, H. Deng, G. Weihs, and C. Santori, “Condensation of semiconductor microcavity exciton polaritons,” Science 298, 199–202 (2002).
[Crossref]

Denton, G. J.

N. Tessler, G. J. Denton, and R. H. Friend, “Lasing from conjugated polymer microcavities,” Nature 382, 695–697 (1996).
[Crossref]

Deshpande, S.

P. Bhattacharya, T. Frost, S. Deshpande, M. Z. Baten, A. Hazari, and A. Das, “Room temperature electrically injected polariton laser,” Phys. Rev. Lett. 112, 29–31 (2014).
[Crossref]

Deveaud, B.

J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymánska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and L. S. Dang, “Bose–Einstein condensation of exciton polaritons,” Nature 443, 409–414 (2006).
[Crossref]

Deveaud-Plédran, B.

Diederichs, C.

R. Su, C. Diederichs, J. Wang, T. C. H. Liew, J. Zhao, S. Liu, W. Xu, Z. Chen, and Q. Xiong, “Room-temperature polariton lasing in all-inorganic perovskite nanoplatelets,” Nano Lett. 17, 3982–3988 (2017).
[Crossref]

Dietrich, C. P.

C. P. Dietrich, A. Steude, L. Tropf, M. Schubert, N. M. Kronenberg, K. Ostermann, S. Höfling, and M. C. Gather, “An exciton–polariton laser based on biologically produced fluorescent protein,” Sci. Adv. 2, e1600666 (2016).
[Crossref]

Egorov, O. A.

T. C. H. Liew, O. A. Egorov, M. Matuszewski, O. Kyriienko, X. Ma, and E. A. Ostrovskaya, “Instability-induced formation and nonequilibrium dynamics of phase defects in polariton condensates,” Phys. Rev. B 91, 1–12 (2015).
[Crossref]

Emam-Ismail, M.

R. M. Stevenson, V. N. Astratov, M. S. Skolnick, D. M. Whittaker, M. Emam-Ismail, A. I. Tartakovskii, P. G. Savvidis, J. J. Baumberg, and J. S. Roberts, “Continuous wave observation of massive polariton redistribution by stimulated scattering in semiconductor microcavities,” Phys. Rev. Lett. 85, 3680–3683(2000).
[Crossref]

Feltin, E.

S. Christopoulos, G. B. H. Von Högersthal, A. J. D. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butté, E. Feltin, J. F. Carlin, and N. Grandjean, “Room-temperature polariton lasing in semiconductor microcavities,” Phys. Rev. Lett. 98, 1–4 (2007).
[Crossref]

Fischer, J.

S. Kim, B. Zhang, Z. Wang, J. Fischer, S. Brodbeck, M. Kamp, C. Schneider, S. Höfling, and H. Deng, “Coherent polariton laser,” Phys. Rev. X 6, 011026 (2016).
[Crossref]

C. Schneider, A. Rahimi-Iman, N. Y. Kim, J. Fischer, I. G. Savenko, M. Amthor, M. Lermer, A. Wolf, L. Worschech, V. D. Kulakovskii, I. A. Shelykh, M. Kamp, S. Reitzenstein, A. Forchel, Y. Yamamoto, and S. Höfling, “An electrically pumped polariton laser,” Nature 497, 348–352 (2013).
[Crossref]

A. Rahimi-Iman, A. V. Chernenko, J. Fischer, S. Brodbeck, M. Amthor, C. Schneider, A. Forchel, S. Höfling, S. Reitzenstein, and M. Kamp, “Coherence signatures and density-dependent interaction in a dynamical excitonpolariton condensate,” Phys. Rev. B 86, 1–10 (2012).
[Crossref]

Forchel, A.

C. Schneider, A. Rahimi-Iman, N. Y. Kim, J. Fischer, I. G. Savenko, M. Amthor, M. Lermer, A. Wolf, L. Worschech, V. D. Kulakovskii, I. A. Shelykh, M. Kamp, S. Reitzenstein, A. Forchel, Y. Yamamoto, and S. Höfling, “An electrically pumped polariton laser,” Nature 497, 348–352 (2013).
[Crossref]

A. Rahimi-Iman, A. V. Chernenko, J. Fischer, S. Brodbeck, M. Amthor, C. Schneider, A. Forchel, S. Höfling, S. Reitzenstein, and M. Kamp, “Coherence signatures and density-dependent interaction in a dynamical excitonpolariton condensate,” Phys. Rev. B 86, 1–10 (2012).
[Crossref]

Forrest, S. R.

S. Kéna-Cohen and S. R. Forrest, “Room-temperature polariton lasing in an organic single-crystal microcavity,” Nat. Photonics 4, 371–375 (2010).
[Crossref]

R. J. Holmes and S. R. Forrest, “Strong exciton-photon coupling in organic materials,” Org. Electron. 8, 77–93 (2007).
[Crossref]

Friend, R. H.

N. Tessler, G. J. Denton, and R. H. Friend, “Lasing from conjugated polymer microcavities,” Nature 382, 695–697 (1996).
[Crossref]

N. C. Greenham, I. D. W. Samuel, G. R. Hayes, R. T. Phillips, Y. A. R. R. Kessener, S. C. Moratti, A. B. Holmes, and R. H. Friend, “Measurement of absolute photoluminescence quantum efficiencies in conjugated polymers,” Chem. Phys. Lett. 241, 89–96 (1995).
[Crossref]

Friend, R. H. H.

J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. H. Friend, P. L. Burns, and A. B. Holmes, “Burroughes1990 Light-emitting diodes based on conjugated polymers.pdf,” Nature 347, 539–541 (1990).
[Crossref]

Frost, T.

A. Bhattacharya, M. Z. Baten, I. Iorsh, T. Frost, A. Kavokin, and P. Bhattacharya, “Room-temperature spin polariton diode laser,” Phys. Rev. Lett. 119, 1–6 (2017).
[Crossref]

A. Bhattacharya, M. Z. Baten, I. Iorsh, T. Frost, A. Kavokin, and P. Bhattacharya, “Output polarization characteristics of a GaN microcavity diode polariton laser,” Phys. Rev. B 94, 035203 (2016).
[Crossref]

P. Bhattacharya, T. Frost, S. Deshpande, M. Z. Baten, A. Hazari, and A. Das, “Room temperature electrically injected polariton laser,” Phys. Rev. Lett. 112, 29–31 (2014).
[Crossref]

Galeotti, F.

T. Cookson, K. Georgiou, A. Zasedatelev, R. T. Grant, T. Virgili, M. Cavazzini, F. Galeotti, C. Clark, N. G. Berloff, D. G. Lidzey, and P. G. Lagoudakis, “A yellow polariton condensate in a dye filled microcavity,” Adv. Opt. Mater. 5, 1–6 (2017).
[Crossref]

Gather, M. C.

C. P. Dietrich, A. Steude, L. Tropf, M. Schubert, N. M. Kronenberg, K. Ostermann, S. Höfling, and M. C. Gather, “An exciton–polariton laser based on biologically produced fluorescent protein,” Sci. Adv. 2, e1600666 (2016).
[Crossref]

Georgiou, K.

T. Cookson, K. Georgiou, A. Zasedatelev, R. T. Grant, T. Virgili, M. Cavazzini, F. Galeotti, C. Clark, N. G. Berloff, D. G. Lidzey, and P. G. Lagoudakis, “A yellow polariton condensate in a dye filled microcavity,” Adv. Opt. Mater. 5, 1–6 (2017).
[Crossref]

Grandjean, N.

S. Christopoulos, G. B. H. Von Högersthal, A. J. D. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butté, E. Feltin, J. F. Carlin, and N. Grandjean, “Room-temperature polariton lasing in semiconductor microcavities,” Phys. Rev. Lett. 98, 1–4 (2007).
[Crossref]

Grant, R. T.

T. Cookson, K. Georgiou, A. Zasedatelev, R. T. Grant, T. Virgili, M. Cavazzini, F. Galeotti, C. Clark, N. G. Berloff, D. G. Lidzey, and P. G. Lagoudakis, “A yellow polariton condensate in a dye filled microcavity,” Adv. Opt. Mater. 5, 1–6 (2017).
[Crossref]

Greenham, N. C.

N. C. Greenham, I. D. W. Samuel, G. R. Hayes, R. T. Phillips, Y. A. R. R. Kessener, S. C. Moratti, A. B. Holmes, and R. H. Friend, “Measurement of absolute photoluminescence quantum efficiencies in conjugated polymers,” Chem. Phys. Lett. 241, 89–96 (1995).
[Crossref]

Grell, M.

M. Grell, D. D. C. Bradley, G. Ungar, J. Hill, and K. S. Whitehead, “Interplay of physical structure and photophysics for a liquid crystalline polyfluorene,” Macromolecules 32, 5810–5817 (1999).
[Crossref]

Grundy, A. J. D.

S. Christopoulos, G. B. H. Von Högersthal, A. J. D. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butté, E. Feltin, J. F. Carlin, and N. Grandjean, “Room-temperature polariton lasing in semiconductor microcavities,” Phys. Rev. Lett. 98, 1–4 (2007).
[Crossref]

Guo, W.

A. Das, J. Heo, A. Bayraktaroglu, W. Guo, T.-K. Ng, J. Phillips, B. S. Ooi, and P. Bhattacharya, “Room temperature strong coupling effects from single ZnO nanowire microcavity,” Opt. Express 20, 11830 (2012).
[Crossref]

A. Das, J. Heo, M. Jankowski, W. Guo, L. Zhang, H. Deng, and P. Bhattacharya, “Room temperature ultralow threshold GaN nanowire polariton laser,” Phys. Rev. Lett. 107, 1–5 (2011).
[Crossref]

Hartwell, V.

R. Balili, V. Hartwell, D. Snoke, L. Pfeiffer, and K. West, “Bose–Einstein condensation of microcavity polaritons in a trap,” Science 316, 1007–1011 (2007).
[Crossref]

Hayes, G. R.

N. C. Greenham, I. D. W. Samuel, G. R. Hayes, R. T. Phillips, Y. A. R. R. Kessener, S. C. Moratti, A. B. Holmes, and R. H. Friend, “Measurement of absolute photoluminescence quantum efficiencies in conjugated polymers,” Chem. Phys. Lett. 241, 89–96 (1995).
[Crossref]

Hazari, A.

P. Bhattacharya, T. Frost, S. Deshpande, M. Z. Baten, A. Hazari, and A. Das, “Room temperature electrically injected polariton laser,” Phys. Rev. Lett. 112, 29–31 (2014).
[Crossref]

Heeger, A. J.

N. Sariciftci, L. Smilowitz, A. J. Heeger, and F. Wudl, “Photoinduced electron transfer from a conducting polymer to buckminsterfullerene,” Science 258, 1474–1476 (1992).
[Crossref]

Heger, D.

L. S. Dang, D. Heger, R. André, F. Bœuf, and R. Romestain, “Stimulation of polariton photoluminescence in semiconductor microcavity,” Phys. Rev. Lett. 81, 3920–3923 (1998).
[Crossref]

Heo, J.

P. Bhattacharya, B. Xiao, A. Das, S. Bhowmick, and J. Heo, “Solid state electrically injected exciton-polariton laser,” Phys. Rev. Lett. 110, 1–5 (2013).
[Crossref]

A. Das, J. Heo, A. Bayraktaroglu, W. Guo, T.-K. Ng, J. Phillips, B. S. Ooi, and P. Bhattacharya, “Room temperature strong coupling effects from single ZnO nanowire microcavity,” Opt. Express 20, 11830 (2012).
[Crossref]

A. Das, J. Heo, M. Jankowski, W. Guo, L. Zhang, H. Deng, and P. Bhattacharya, “Room temperature ultralow threshold GaN nanowire polariton laser,” Phys. Rev. Lett. 107, 1–5 (2011).
[Crossref]

Hill, J.

M. Grell, D. D. C. Bradley, G. Ungar, J. Hill, and K. S. Whitehead, “Interplay of physical structure and photophysics for a liquid crystalline polyfluorene,” Macromolecules 32, 5810–5817 (1999).
[Crossref]

Höfling, S.

C. P. Dietrich, A. Steude, L. Tropf, M. Schubert, N. M. Kronenberg, K. Ostermann, S. Höfling, and M. C. Gather, “An exciton–polariton laser based on biologically produced fluorescent protein,” Sci. Adv. 2, e1600666 (2016).
[Crossref]

S. Kim, B. Zhang, Z. Wang, J. Fischer, S. Brodbeck, M. Kamp, C. Schneider, S. Höfling, and H. Deng, “Coherent polariton laser,” Phys. Rev. X 6, 011026 (2016).
[Crossref]

C. Schneider, A. Rahimi-Iman, N. Y. Kim, J. Fischer, I. G. Savenko, M. Amthor, M. Lermer, A. Wolf, L. Worschech, V. D. Kulakovskii, I. A. Shelykh, M. Kamp, S. Reitzenstein, A. Forchel, Y. Yamamoto, and S. Höfling, “An electrically pumped polariton laser,” Nature 497, 348–352 (2013).
[Crossref]

A. Rahimi-Iman, A. V. Chernenko, J. Fischer, S. Brodbeck, M. Amthor, C. Schneider, A. Forchel, S. Höfling, S. Reitzenstein, and M. Kamp, “Coherence signatures and density-dependent interaction in a dynamical excitonpolariton condensate,” Phys. Rev. B 86, 1–10 (2012).
[Crossref]

Holmes, A. B.

N. C. Greenham, I. D. W. Samuel, G. R. Hayes, R. T. Phillips, Y. A. R. R. Kessener, S. C. Moratti, A. B. Holmes, and R. H. Friend, “Measurement of absolute photoluminescence quantum efficiencies in conjugated polymers,” Chem. Phys. Lett. 241, 89–96 (1995).
[Crossref]

J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. H. Friend, P. L. Burns, and A. B. Holmes, “Burroughes1990 Light-emitting diodes based on conjugated polymers.pdf,” Nature 347, 539–541 (1990).
[Crossref]

Holmes, R. J.

R. J. Holmes and S. R. Forrest, “Strong exciton-photon coupling in organic materials,” Org. Electron. 8, 77–93 (2007).
[Crossref]

Homan, J.

H. Deng, J. Homan, A. J. S. Ser, H. Deng, G. Weihs, and C. Santori, “Condensation of semiconductor microcavity exciton polaritons,” Science 298, 199–202 (2002).
[Crossref]

Houdré, R.

R. Houdré, R. P. Stanley, and M. Ilegems, “Vacuum-field Rabi splitting in the presence of inhomogeneous broadening: Resolution of a homogeneous linewidth in an inhomogeneously broadened system,” Phys. Rev. A 53, 2711–2715 (1996).
[Crossref]

Hsieh, W.-F.

Huang, S.-W.

Ilegems, M.

R. Houdré, R. P. Stanley, and M. Ilegems, “Vacuum-field Rabi splitting in the presence of inhomogeneous broadening: Resolution of a homogeneous linewidth in an inhomogeneously broadened system,” Phys. Rev. A 53, 2711–2715 (1996).
[Crossref]

Imamoglu, A.

A. Imamoglu, R. J. Ram, S. Pau, and Y. Yamamoto, “Nonequilibrium condensates and lasers without inversion: Exciton-polariton lasers,” Phys. Rev. A 53, 4250–4253 (1996).
[Crossref]

Iorsh, I.

A. Bhattacharya, M. Z. Baten, I. Iorsh, T. Frost, A. Kavokin, and P. Bhattacharya, “Room-temperature spin polariton diode laser,” Phys. Rev. Lett. 119, 1–6 (2017).
[Crossref]

A. Bhattacharya, M. Z. Baten, I. Iorsh, T. Frost, A. Kavokin, and P. Bhattacharya, “Output polarization characteristics of a GaN microcavity diode polariton laser,” Phys. Rev. B 94, 035203 (2016).
[Crossref]

Ishikawa, A.

C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, “Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity,” Phys. Rev. Lett. 69, 3314–3317 (1992).
[Crossref]

Jankowski, M.

A. Das, J. Heo, M. Jankowski, W. Guo, L. Zhang, H. Deng, and P. Bhattacharya, “Room temperature ultralow threshold GaN nanowire polariton laser,” Phys. Rev. Lett. 107, 1–5 (2011).
[Crossref]

Jeambrun, P.

J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymánska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and L. S. Dang, “Bose–Einstein condensation of exciton polaritons,” Nature 443, 409–414 (2006).
[Crossref]

Kamp, M.

S. Kim, B. Zhang, Z. Wang, J. Fischer, S. Brodbeck, M. Kamp, C. Schneider, S. Höfling, and H. Deng, “Coherent polariton laser,” Phys. Rev. X 6, 011026 (2016).
[Crossref]

C. Schneider, A. Rahimi-Iman, N. Y. Kim, J. Fischer, I. G. Savenko, M. Amthor, M. Lermer, A. Wolf, L. Worschech, V. D. Kulakovskii, I. A. Shelykh, M. Kamp, S. Reitzenstein, A. Forchel, Y. Yamamoto, and S. Höfling, “An electrically pumped polariton laser,” Nature 497, 348–352 (2013).
[Crossref]

A. Rahimi-Iman, A. V. Chernenko, J. Fischer, S. Brodbeck, M. Amthor, C. Schneider, A. Forchel, S. Höfling, S. Reitzenstein, and M. Kamp, “Coherence signatures and density-dependent interaction in a dynamical excitonpolariton condensate,” Phys. Rev. B 86, 1–10 (2012).
[Crossref]

Kasprzak, J.

J. Kasprzak, D. D. Solnyshkov, R. André, L. S. Dang, and G. Malpuech, “Formation of an exciton polariton condensate: Thermodynamic versus kinetic regimes,” Phys. Rev. Lett. 101, 3–6 (2008).
[Crossref]

J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymánska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and L. S. Dang, “Bose–Einstein condensation of exciton polaritons,” Nature 443, 409–414 (2006).
[Crossref]

M. Richard, J. Kasprzak, R. André, R. Romestain, L. S. Dang, G. Malpuech, and A. Kavokin, “Experimental evidence for nonequilibrium Bose condensation of exciton polaritons,” Phys. Rev. B 72, 1–4 (2005).
[Crossref]

Kavokin, A.

A. Bhattacharya, M. Z. Baten, I. Iorsh, T. Frost, A. Kavokin, and P. Bhattacharya, “Room-temperature spin polariton diode laser,” Phys. Rev. Lett. 119, 1–6 (2017).
[Crossref]

A. Bhattacharya, M. Z. Baten, I. Iorsh, T. Frost, A. Kavokin, and P. Bhattacharya, “Output polarization characteristics of a GaN microcavity diode polariton laser,” Phys. Rev. B 94, 035203 (2016).
[Crossref]

M. Richard, J. Kasprzak, R. André, R. Romestain, L. S. Dang, G. Malpuech, and A. Kavokin, “Experimental evidence for nonequilibrium Bose condensation of exciton polaritons,” Phys. Rev. B 72, 1–4 (2005).
[Crossref]

Kavokin, A. V.

M. Vladimirova, S. Cronenberger, D. Scalbert, K. V. Kavokin, A. Miard, A. Lemaître, J. Bloch, D. Solnyshkov, G. Malpuech, and A. V. Kavokin, “Polaritonpolariton interaction constants in microcavities,” Phys. Rev. B 82, 1–9 (2010).
[Crossref]

S. Christopoulos, G. B. H. Von Högersthal, A. J. D. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butté, E. Feltin, J. F. Carlin, and N. Grandjean, “Room-temperature polariton lasing in semiconductor microcavities,” Phys. Rev. Lett. 98, 1–4 (2007).
[Crossref]

Kavokin, K. V.

M. Vladimirova, S. Cronenberger, D. Scalbert, K. V. Kavokin, A. Miard, A. Lemaître, J. Bloch, D. Solnyshkov, G. Malpuech, and A. V. Kavokin, “Polaritonpolariton interaction constants in microcavities,” Phys. Rev. B 82, 1–9 (2010).
[Crossref]

Keeling, J.

J. A. Cwik, P. Kirton, S. De Liberato, and J. Keeling, “Excitonic spectral features in strongly coupled organic polaritons,” Phys. Rev. A 93, 1–12 (2016).
[Crossref]

Keeling, J. M. J.

J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymánska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and L. S. Dang, “Bose–Einstein condensation of exciton polaritons,” Nature 443, 409–414 (2006).
[Crossref]

Kéna-Cohen, S.

N. Bobrovska, M. Matuszewski, K. S. Daskalakis, S. A. Maier, and S. Kéna-Cohen, “Dynamical instability of a nonequilibrium exciton-polariton condensate,” ACS Photon. 5, 111–118 (2017).
[Crossref]

K. S. Daskalakis, S. A. Maier, R. Murray, and S. Kéna-Cohen, “Nonlinear interactions in an organic polariton condensate,” Nat. Mater. 13, 271–278 (2014).
[Crossref]

S. Kéna-Cohen and S. R. Forrest, “Room-temperature polariton lasing in an organic single-crystal microcavity,” Nat. Photonics 4, 371–375 (2010).
[Crossref]

Kessener, Y. A. R. R.

N. C. Greenham, I. D. W. Samuel, G. R. Hayes, R. T. Phillips, Y. A. R. R. Kessener, S. C. Moratti, A. B. Holmes, and R. H. Friend, “Measurement of absolute photoluminescence quantum efficiencies in conjugated polymers,” Chem. Phys. Lett. 241, 89–96 (1995).
[Crossref]

Kim, N. Y.

C. Schneider, A. Rahimi-Iman, N. Y. Kim, J. Fischer, I. G. Savenko, M. Amthor, M. Lermer, A. Wolf, L. Worschech, V. D. Kulakovskii, I. A. Shelykh, M. Kamp, S. Reitzenstein, A. Forchel, Y. Yamamoto, and S. Höfling, “An electrically pumped polariton laser,” Nature 497, 348–352 (2013).
[Crossref]

Kim, S.

S. Kim, B. Zhang, Z. Wang, J. Fischer, S. Brodbeck, M. Kamp, C. Schneider, S. Höfling, and H. Deng, “Coherent polariton laser,” Phys. Rev. X 6, 011026 (2016).
[Crossref]

Kirton, P.

J. A. Cwik, P. Kirton, S. De Liberato, and J. Keeling, “Excitonic spectral features in strongly coupled organic polaritons,” Phys. Rev. A 93, 1–12 (2016).
[Crossref]

Kronenberg, N. M.

C. P. Dietrich, A. Steude, L. Tropf, M. Schubert, N. M. Kronenberg, K. Ostermann, S. Höfling, and M. C. Gather, “An exciton–polariton laser based on biologically produced fluorescent protein,” Sci. Adv. 2, e1600666 (2016).
[Crossref]

Kulakovskii, V. D.

C. Schneider, A. Rahimi-Iman, N. Y. Kim, J. Fischer, I. G. Savenko, M. Amthor, M. Lermer, A. Wolf, L. Worschech, V. D. Kulakovskii, I. A. Shelykh, M. Kamp, S. Reitzenstein, A. Forchel, Y. Yamamoto, and S. Höfling, “An electrically pumped polariton laser,” Nature 497, 348–352 (2013).
[Crossref]

Kundermann, S.

J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymánska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and L. S. Dang, “Bose–Einstein condensation of exciton polaritons,” Nature 443, 409–414 (2006).
[Crossref]

Kyriienko, O.

T. C. H. Liew, O. A. Egorov, M. Matuszewski, O. Kyriienko, X. Ma, and E. A. Ostrovskaya, “Instability-induced formation and nonequilibrium dynamics of phase defects in polariton condensates,” Phys. Rev. B 91, 1–12 (2015).
[Crossref]

Lagoudakis, P. G.

T. Cookson, K. Georgiou, A. Zasedatelev, R. T. Grant, T. Virgili, M. Cavazzini, F. Galeotti, C. Clark, N. G. Berloff, D. G. Lidzey, and P. G. Lagoudakis, “A yellow polariton condensate in a dye filled microcavity,” Adv. Opt. Mater. 5, 1–6 (2017).
[Crossref]

S. Christopoulos, G. B. H. Von Högersthal, A. J. D. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butté, E. Feltin, J. F. Carlin, and N. Grandjean, “Room-temperature polariton lasing in semiconductor microcavities,” Phys. Rev. Lett. 98, 1–4 (2007).
[Crossref]

Lai, Y.-Y.

Lan, Y.-P.

Lemaître, A.

M. Vladimirova, S. Cronenberger, D. Scalbert, K. V. Kavokin, A. Miard, A. Lemaître, J. Bloch, D. Solnyshkov, G. Malpuech, and A. V. Kavokin, “Polaritonpolariton interaction constants in microcavities,” Phys. Rev. B 82, 1–9 (2010).
[Crossref]

Lermer, M.

C. Schneider, A. Rahimi-Iman, N. Y. Kim, J. Fischer, I. G. Savenko, M. Amthor, M. Lermer, A. Wolf, L. Worschech, V. D. Kulakovskii, I. A. Shelykh, M. Kamp, S. Reitzenstein, A. Forchel, Y. Yamamoto, and S. Höfling, “An electrically pumped polariton laser,” Nature 497, 348–352 (2013).
[Crossref]

Lidzey, D. G.

T. Cookson, K. Georgiou, A. Zasedatelev, R. T. Grant, T. Virgili, M. Cavazzini, F. Galeotti, C. Clark, N. G. Berloff, D. G. Lidzey, and P. G. Lagoudakis, “A yellow polariton condensate in a dye filled microcavity,” Adv. Opt. Mater. 5, 1–6 (2017).
[Crossref]

D. G. Lidzey, D. D. C. Bradley, M. S. Skolnick, T. Virgili, S. Walker, and D. M. Whittaker, “Strong exciton-photon coupling in an organic semiconductor microcavity,” Nature 395, 53–55 (1998).
[Crossref]

Liew, T. C. H.

R. Su, C. Diederichs, J. Wang, T. C. H. Liew, J. Zhao, S. Liu, W. Xu, Z. Chen, and Q. Xiong, “Room-temperature polariton lasing in all-inorganic perovskite nanoplatelets,” Nano Lett. 17, 3982–3988 (2017).
[Crossref]

T. C. H. Liew, O. A. Egorov, M. Matuszewski, O. Kyriienko, X. Ma, and E. A. Ostrovskaya, “Instability-induced formation and nonequilibrium dynamics of phase defects in polariton condensates,” Phys. Rev. B 91, 1–12 (2015).
[Crossref]

Littlewood, P. B.

J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymánska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and L. S. Dang, “Bose–Einstein condensation of exciton polaritons,” Nature 443, 409–414 (2006).
[Crossref]

Liu, S.

R. Su, C. Diederichs, J. Wang, T. C. H. Liew, J. Zhao, S. Liu, W. Xu, Z. Chen, and Q. Xiong, “Room-temperature polariton lasing in all-inorganic perovskite nanoplatelets,” Nano Lett. 17, 3982–3988 (2017).
[Crossref]

Lu, T.-C.

Ma, X.

T. C. H. Liew, O. A. Egorov, M. Matuszewski, O. Kyriienko, X. Ma, and E. A. Ostrovskaya, “Instability-induced formation and nonequilibrium dynamics of phase defects in polariton condensates,” Phys. Rev. B 91, 1–12 (2015).
[Crossref]

Mackay, K.

J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. H. Friend, P. L. Burns, and A. B. Holmes, “Burroughes1990 Light-emitting diodes based on conjugated polymers.pdf,” Nature 347, 539–541 (1990).
[Crossref]

Mahrt, R.

J. D. Plumhof, T. Stoeferle, L. Mai, U. Scherf, and R. Mahrt, “Roomtemperature Bose–Einstein condensation of cavity exciton–polaritons in a polymer,” Nat. Mater. 13, 247 (2014).
[Crossref]

Mai, L.

J. D. Plumhof, T. Stoeferle, L. Mai, U. Scherf, and R. Mahrt, “Roomtemperature Bose–Einstein condensation of cavity exciton–polaritons in a polymer,” Nat. Mater. 13, 247 (2014).
[Crossref]

Maier, S. A.

N. Bobrovska, M. Matuszewski, K. S. Daskalakis, S. A. Maier, and S. Kéna-Cohen, “Dynamical instability of a nonequilibrium exciton-polariton condensate,” ACS Photon. 5, 111–118 (2017).
[Crossref]

K. S. Daskalakis, S. A. Maier, R. Murray, and S. Kéna-Cohen, “Nonlinear interactions in an organic polariton condensate,” Nat. Mater. 13, 271–278 (2014).
[Crossref]

Malpuech, G.

M. Vladimirova, S. Cronenberger, D. Scalbert, K. V. Kavokin, A. Miard, A. Lemaître, J. Bloch, D. Solnyshkov, G. Malpuech, and A. V. Kavokin, “Polaritonpolariton interaction constants in microcavities,” Phys. Rev. B 82, 1–9 (2010).
[Crossref]

J. Kasprzak, D. D. Solnyshkov, R. André, L. S. Dang, and G. Malpuech, “Formation of an exciton polariton condensate: Thermodynamic versus kinetic regimes,” Phys. Rev. Lett. 101, 3–6 (2008).
[Crossref]

M. Richard, J. Kasprzak, R. André, R. Romestain, L. S. Dang, G. Malpuech, and A. Kavokin, “Experimental evidence for nonequilibrium Bose condensation of exciton polaritons,” Phys. Rev. B 72, 1–4 (2005).
[Crossref]

Marchetti, F. M.

J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymánska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and L. S. Dang, “Bose–Einstein condensation of exciton polaritons,” Nature 443, 409–414 (2006).
[Crossref]

Marks, R. N.

J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. H. Friend, P. L. Burns, and A. B. Holmes, “Burroughes1990 Light-emitting diodes based on conjugated polymers.pdf,” Nature 347, 539–541 (1990).
[Crossref]

Matuszewski, M.

N. Bobrovska, M. Matuszewski, K. S. Daskalakis, S. A. Maier, and S. Kéna-Cohen, “Dynamical instability of a nonequilibrium exciton-polariton condensate,” ACS Photon. 5, 111–118 (2017).
[Crossref]

T. C. H. Liew, O. A. Egorov, M. Matuszewski, O. Kyriienko, X. Ma, and E. A. Ostrovskaya, “Instability-induced formation and nonequilibrium dynamics of phase defects in polariton condensates,” Phys. Rev. B 91, 1–12 (2015).
[Crossref]

Miard, A.

M. Vladimirova, S. Cronenberger, D. Scalbert, K. V. Kavokin, A. Miard, A. Lemaître, J. Bloch, D. Solnyshkov, G. Malpuech, and A. V. Kavokin, “Polaritonpolariton interaction constants in microcavities,” Phys. Rev. B 82, 1–9 (2010).
[Crossref]

Moratti, S. C.

N. C. Greenham, I. D. W. Samuel, G. R. Hayes, R. T. Phillips, Y. A. R. R. Kessener, S. C. Moratti, A. B. Holmes, and R. H. Friend, “Measurement of absolute photoluminescence quantum efficiencies in conjugated polymers,” Chem. Phys. Lett. 241, 89–96 (1995).
[Crossref]

Murray, R.

K. S. Daskalakis, S. A. Maier, R. Murray, and S. Kéna-Cohen, “Nonlinear interactions in an organic polariton condensate,” Nat. Mater. 13, 271–278 (2014).
[Crossref]

Ng, T.-K.

Nishioka, M.

C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, “Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity,” Phys. Rev. Lett. 69, 3314–3317 (1992).
[Crossref]

Ooi, B. S.

Ostermann, K.

C. P. Dietrich, A. Steude, L. Tropf, M. Schubert, N. M. Kronenberg, K. Ostermann, S. Höfling, and M. C. Gather, “An exciton–polariton laser based on biologically produced fluorescent protein,” Sci. Adv. 2, e1600666 (2016).
[Crossref]

Ostrovskaya, E. A.

T. C. H. Liew, O. A. Egorov, M. Matuszewski, O. Kyriienko, X. Ma, and E. A. Ostrovskaya, “Instability-induced formation and nonequilibrium dynamics of phase defects in polariton condensates,” Phys. Rev. B 91, 1–12 (2015).
[Crossref]

Pau, S.

A. Imamoglu, R. J. Ram, S. Pau, and Y. Yamamoto, “Nonequilibrium condensates and lasers without inversion: Exciton-polariton lasers,” Phys. Rev. A 53, 4250–4253 (1996).
[Crossref]

Peet, J.

P. E. Shaw, A. Ruseckas, J. Peet, G. C. Bazan, and I. D. W. Samuel, “Exciton - Exciton annihilation in mixed-phase polyfluorene films,” Adv. Funct. Mater. 20, 155–161 (2010).
[Crossref]

J. Peet, E. Brocker, Y. Xu, and G. C. Bazan, “Controlled β-phase formation in poly(9,9-di-n-octylfluorene) by processing with alkyl additives,” Adv. Mater. 20, 1882–1885 (2008).
[Crossref]

Pfeiffer, L.

R. Balili, V. Hartwell, D. Snoke, L. Pfeiffer, and K. West, “Bose–Einstein condensation of microcavity polaritons in a trap,” Science 316, 1007–1011 (2007).
[Crossref]

Phillips, J.

Phillips, R. T.

N. C. Greenham, I. D. W. Samuel, G. R. Hayes, R. T. Phillips, Y. A. R. R. Kessener, S. C. Moratti, A. B. Holmes, and R. H. Friend, “Measurement of absolute photoluminescence quantum efficiencies in conjugated polymers,” Chem. Phys. Lett. 241, 89–96 (1995).
[Crossref]

Plumhof, J. D.

J. D. Plumhof, T. Stoeferle, L. Mai, U. Scherf, and R. Mahrt, “Roomtemperature Bose–Einstein condensation of cavity exciton–polaritons in a polymer,” Nat. Mater. 13, 247 (2014).
[Crossref]

Porras, D.

D. Porras and C. Tejedor, “Linewidth of a polariton laser: Theoretical analysis of self-interaction effects,” Phys. Rev. B 67, 1–4 (2003).
[Crossref]

Rahimi-Iman, A.

C. Schneider, A. Rahimi-Iman, N. Y. Kim, J. Fischer, I. G. Savenko, M. Amthor, M. Lermer, A. Wolf, L. Worschech, V. D. Kulakovskii, I. A. Shelykh, M. Kamp, S. Reitzenstein, A. Forchel, Y. Yamamoto, and S. Höfling, “An electrically pumped polariton laser,” Nature 497, 348–352 (2013).
[Crossref]

A. Rahimi-Iman, A. V. Chernenko, J. Fischer, S. Brodbeck, M. Amthor, C. Schneider, A. Forchel, S. Höfling, S. Reitzenstein, and M. Kamp, “Coherence signatures and density-dependent interaction in a dynamical excitonpolariton condensate,” Phys. Rev. B 86, 1–10 (2012).
[Crossref]

Ram, R. J.

A. Imamoglu, R. J. Ram, S. Pau, and Y. Yamamoto, “Nonequilibrium condensates and lasers without inversion: Exciton-polariton lasers,” Phys. Rev. A 53, 4250–4253 (1996).
[Crossref]

Reitzenstein, S.

C. Schneider, A. Rahimi-Iman, N. Y. Kim, J. Fischer, I. G. Savenko, M. Amthor, M. Lermer, A. Wolf, L. Worschech, V. D. Kulakovskii, I. A. Shelykh, M. Kamp, S. Reitzenstein, A. Forchel, Y. Yamamoto, and S. Höfling, “An electrically pumped polariton laser,” Nature 497, 348–352 (2013).
[Crossref]

A. Rahimi-Iman, A. V. Chernenko, J. Fischer, S. Brodbeck, M. Amthor, C. Schneider, A. Forchel, S. Höfling, S. Reitzenstein, and M. Kamp, “Coherence signatures and density-dependent interaction in a dynamical excitonpolariton condensate,” Phys. Rev. B 86, 1–10 (2012).
[Crossref]

Richard, M.

J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymánska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and L. S. Dang, “Bose–Einstein condensation of exciton polaritons,” Nature 443, 409–414 (2006).
[Crossref]

M. Richard, J. Kasprzak, R. André, R. Romestain, L. S. Dang, G. Malpuech, and A. Kavokin, “Experimental evidence for nonequilibrium Bose condensation of exciton polaritons,” Phys. Rev. B 72, 1–4 (2005).
[Crossref]

Roberts, J. S.

R. M. Stevenson, V. N. Astratov, M. S. Skolnick, D. M. Whittaker, M. Emam-Ismail, A. I. Tartakovskii, P. G. Savvidis, J. J. Baumberg, and J. S. Roberts, “Continuous wave observation of massive polariton redistribution by stimulated scattering in semiconductor microcavities,” Phys. Rev. Lett. 85, 3680–3683(2000).
[Crossref]

Romestain, R.

M. Richard, J. Kasprzak, R. André, R. Romestain, L. S. Dang, G. Malpuech, and A. Kavokin, “Experimental evidence for nonequilibrium Bose condensation of exciton polaritons,” Phys. Rev. B 72, 1–4 (2005).
[Crossref]

L. S. Dang, D. Heger, R. André, F. Bœuf, and R. Romestain, “Stimulation of polariton photoluminescence in semiconductor microcavity,” Phys. Rev. Lett. 81, 3920–3923 (1998).
[Crossref]

Ruseckas, A.

P. E. Shaw, A. Ruseckas, J. Peet, G. C. Bazan, and I. D. W. Samuel, “Exciton - Exciton annihilation in mixed-phase polyfluorene films,” Adv. Funct. Mater. 20, 155–161 (2010).
[Crossref]

A. K. Bansal, A. Ruseckas, P. E. Shaw, and I. D. W. Samuel, “Fluorescence quenchers in mixed phase polyfluorene films,” J. Phys. Chem. C 114, 17864–17867 (2010).
[Crossref]

Samuel, I. D. W.

P. E. Shaw, A. Ruseckas, J. Peet, G. C. Bazan, and I. D. W. Samuel, “Exciton - Exciton annihilation in mixed-phase polyfluorene films,” Adv. Funct. Mater. 20, 155–161 (2010).
[Crossref]

A. K. Bansal, A. Ruseckas, P. E. Shaw, and I. D. W. Samuel, “Fluorescence quenchers in mixed phase polyfluorene films,” J. Phys. Chem. C 114, 17864–17867 (2010).
[Crossref]

N. C. Greenham, I. D. W. Samuel, G. R. Hayes, R. T. Phillips, Y. A. R. R. Kessener, S. C. Moratti, A. B. Holmes, and R. H. Friend, “Measurement of absolute photoluminescence quantum efficiencies in conjugated polymers,” Chem. Phys. Lett. 241, 89–96 (1995).
[Crossref]

Santori, C.

H. Deng, J. Homan, A. J. S. Ser, H. Deng, G. Weihs, and C. Santori, “Condensation of semiconductor microcavity exciton polaritons,” Science 298, 199–202 (2002).
[Crossref]

Sariciftci, N.

N. Sariciftci, L. Smilowitz, A. J. Heeger, and F. Wudl, “Photoinduced electron transfer from a conducting polymer to buckminsterfullerene,” Science 258, 1474–1476 (1992).
[Crossref]

Savenko, I. G.

C. Schneider, A. Rahimi-Iman, N. Y. Kim, J. Fischer, I. G. Savenko, M. Amthor, M. Lermer, A. Wolf, L. Worschech, V. D. Kulakovskii, I. A. Shelykh, M. Kamp, S. Reitzenstein, A. Forchel, Y. Yamamoto, and S. Höfling, “An electrically pumped polariton laser,” Nature 497, 348–352 (2013).
[Crossref]

Savona, V.

J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymánska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and L. S. Dang, “Bose–Einstein condensation of exciton polaritons,” Nature 443, 409–414 (2006).
[Crossref]

Savvidis, P. G.

R. M. Stevenson, V. N. Astratov, M. S. Skolnick, D. M. Whittaker, M. Emam-Ismail, A. I. Tartakovskii, P. G. Savvidis, J. J. Baumberg, and J. S. Roberts, “Continuous wave observation of massive polariton redistribution by stimulated scattering in semiconductor microcavities,” Phys. Rev. Lett. 85, 3680–3683(2000).
[Crossref]

Scalbert, D.

M. Vladimirova, S. Cronenberger, D. Scalbert, K. V. Kavokin, A. Miard, A. Lemaître, J. Bloch, D. Solnyshkov, G. Malpuech, and A. V. Kavokin, “Polaritonpolariton interaction constants in microcavities,” Phys. Rev. B 82, 1–9 (2010).
[Crossref]

Scherf, U.

J. D. Plumhof, T. Stoeferle, L. Mai, U. Scherf, and R. Mahrt, “Roomtemperature Bose–Einstein condensation of cavity exciton–polaritons in a polymer,” Nat. Mater. 13, 247 (2014).
[Crossref]

Schneider, C.

S. Kim, B. Zhang, Z. Wang, J. Fischer, S. Brodbeck, M. Kamp, C. Schneider, S. Höfling, and H. Deng, “Coherent polariton laser,” Phys. Rev. X 6, 011026 (2016).
[Crossref]

C. Schneider, A. Rahimi-Iman, N. Y. Kim, J. Fischer, I. G. Savenko, M. Amthor, M. Lermer, A. Wolf, L. Worschech, V. D. Kulakovskii, I. A. Shelykh, M. Kamp, S. Reitzenstein, A. Forchel, Y. Yamamoto, and S. Höfling, “An electrically pumped polariton laser,” Nature 497, 348–352 (2013).
[Crossref]

A. Rahimi-Iman, A. V. Chernenko, J. Fischer, S. Brodbeck, M. Amthor, C. Schneider, A. Forchel, S. Höfling, S. Reitzenstein, and M. Kamp, “Coherence signatures and density-dependent interaction in a dynamical excitonpolariton condensate,” Phys. Rev. B 86, 1–10 (2012).
[Crossref]

Schubert, M.

C. P. Dietrich, A. Steude, L. Tropf, M. Schubert, N. M. Kronenberg, K. Ostermann, S. Höfling, and M. C. Gather, “An exciton–polariton laser based on biologically produced fluorescent protein,” Sci. Adv. 2, e1600666 (2016).
[Crossref]

Ser, A. J. S.

H. Deng, J. Homan, A. J. S. Ser, H. Deng, G. Weihs, and C. Santori, “Condensation of semiconductor microcavity exciton polaritons,” Science 298, 199–202 (2002).
[Crossref]

Shaw, P. E.

A. K. Bansal, A. Ruseckas, P. E. Shaw, and I. D. W. Samuel, “Fluorescence quenchers in mixed phase polyfluorene films,” J. Phys. Chem. C 114, 17864–17867 (2010).
[Crossref]

P. E. Shaw, A. Ruseckas, J. Peet, G. C. Bazan, and I. D. W. Samuel, “Exciton - Exciton annihilation in mixed-phase polyfluorene films,” Adv. Funct. Mater. 20, 155–161 (2010).
[Crossref]

Shelykh, I. A.

C. Schneider, A. Rahimi-Iman, N. Y. Kim, J. Fischer, I. G. Savenko, M. Amthor, M. Lermer, A. Wolf, L. Worschech, V. D. Kulakovskii, I. A. Shelykh, M. Kamp, S. Reitzenstein, A. Forchel, Y. Yamamoto, and S. Höfling, “An electrically pumped polariton laser,” Nature 497, 348–352 (2013).
[Crossref]

Skolnick, M. S.

R. M. Stevenson, V. N. Astratov, M. S. Skolnick, D. M. Whittaker, M. Emam-Ismail, A. I. Tartakovskii, P. G. Savvidis, J. J. Baumberg, and J. S. Roberts, “Continuous wave observation of massive polariton redistribution by stimulated scattering in semiconductor microcavities,” Phys. Rev. Lett. 85, 3680–3683(2000).
[Crossref]

D. G. Lidzey, D. D. C. Bradley, M. S. Skolnick, T. Virgili, S. Walker, and D. M. Whittaker, “Strong exciton-photon coupling in an organic semiconductor microcavity,” Nature 395, 53–55 (1998).
[Crossref]

Smilowitz, L.

N. Sariciftci, L. Smilowitz, A. J. Heeger, and F. Wudl, “Photoinduced electron transfer from a conducting polymer to buckminsterfullerene,” Science 258, 1474–1476 (1992).
[Crossref]

Snoke, D.

R. Balili, V. Hartwell, D. Snoke, L. Pfeiffer, and K. West, “Bose–Einstein condensation of microcavity polaritons in a trap,” Science 316, 1007–1011 (2007).
[Crossref]

Solnyshkov, D.

M. Vladimirova, S. Cronenberger, D. Scalbert, K. V. Kavokin, A. Miard, A. Lemaître, J. Bloch, D. Solnyshkov, G. Malpuech, and A. V. Kavokin, “Polaritonpolariton interaction constants in microcavities,” Phys. Rev. B 82, 1–9 (2010).
[Crossref]

Solnyshkov, D. D.

J. Kasprzak, D. D. Solnyshkov, R. André, L. S. Dang, and G. Malpuech, “Formation of an exciton polariton condensate: Thermodynamic versus kinetic regimes,” Phys. Rev. Lett. 101, 3–6 (2008).
[Crossref]

Staehli, J. L.

J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymánska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and L. S. Dang, “Bose–Einstein condensation of exciton polaritons,” Nature 443, 409–414 (2006).
[Crossref]

Stanley, R. P.

R. Houdré, R. P. Stanley, and M. Ilegems, “Vacuum-field Rabi splitting in the presence of inhomogeneous broadening: Resolution of a homogeneous linewidth in an inhomogeneously broadened system,” Phys. Rev. A 53, 2711–2715 (1996).
[Crossref]

Steude, A.

C. P. Dietrich, A. Steude, L. Tropf, M. Schubert, N. M. Kronenberg, K. Ostermann, S. Höfling, and M. C. Gather, “An exciton–polariton laser based on biologically produced fluorescent protein,” Sci. Adv. 2, e1600666 (2016).
[Crossref]

Stevenson, R. M.

R. M. Stevenson, V. N. Astratov, M. S. Skolnick, D. M. Whittaker, M. Emam-Ismail, A. I. Tartakovskii, P. G. Savvidis, J. J. Baumberg, and J. S. Roberts, “Continuous wave observation of massive polariton redistribution by stimulated scattering in semiconductor microcavities,” Phys. Rev. Lett. 85, 3680–3683(2000).
[Crossref]

Stoeferle, T.

J. D. Plumhof, T. Stoeferle, L. Mai, U. Scherf, and R. Mahrt, “Roomtemperature Bose–Einstein condensation of cavity exciton–polaritons in a polymer,” Nat. Mater. 13, 247 (2014).
[Crossref]

Su, R.

R. Su, C. Diederichs, J. Wang, T. C. H. Liew, J. Zhao, S. Liu, W. Xu, Z. Chen, and Q. Xiong, “Room-temperature polariton lasing in all-inorganic perovskite nanoplatelets,” Nano Lett. 17, 3982–3988 (2017).
[Crossref]

Szymánska, M. H.

J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymánska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and L. S. Dang, “Bose–Einstein condensation of exciton polaritons,” Nature 443, 409–414 (2006).
[Crossref]

Tartakovskii, A. I.

R. M. Stevenson, V. N. Astratov, M. S. Skolnick, D. M. Whittaker, M. Emam-Ismail, A. I. Tartakovskii, P. G. Savvidis, J. J. Baumberg, and J. S. Roberts, “Continuous wave observation of massive polariton redistribution by stimulated scattering in semiconductor microcavities,” Phys. Rev. Lett. 85, 3680–3683(2000).
[Crossref]

Tejedor, C.

D. Porras and C. Tejedor, “Linewidth of a polariton laser: Theoretical analysis of self-interaction effects,” Phys. Rev. B 67, 1–4 (2003).
[Crossref]

Tessler, N.

N. Tessler, G. J. Denton, and R. H. Friend, “Lasing from conjugated polymer microcavities,” Nature 382, 695–697 (1996).
[Crossref]

Timoffeev, V. B.

V. B. Timoffeev, “Bose condensation of exciton polaritons in microcavities,” Semiconductors 46, 843–860 (2012).
[Crossref]

Tropf, L.

C. P. Dietrich, A. Steude, L. Tropf, M. Schubert, N. M. Kronenberg, K. Ostermann, S. Höfling, and M. C. Gather, “An exciton–polariton laser based on biologically produced fluorescent protein,” Sci. Adv. 2, e1600666 (2016).
[Crossref]

Ungar, G.

M. Grell, D. D. C. Bradley, G. Ungar, J. Hill, and K. S. Whitehead, “Interplay of physical structure and photophysics for a liquid crystalline polyfluorene,” Macromolecules 32, 5810–5817 (1999).
[Crossref]

Virgili, T.

T. Cookson, K. Georgiou, A. Zasedatelev, R. T. Grant, T. Virgili, M. Cavazzini, F. Galeotti, C. Clark, N. G. Berloff, D. G. Lidzey, and P. G. Lagoudakis, “A yellow polariton condensate in a dye filled microcavity,” Adv. Opt. Mater. 5, 1–6 (2017).
[Crossref]

D. G. Lidzey, D. D. C. Bradley, M. S. Skolnick, T. Virgili, S. Walker, and D. M. Whittaker, “Strong exciton-photon coupling in an organic semiconductor microcavity,” Nature 395, 53–55 (1998).
[Crossref]

Vladimirova, M.

M. Vladimirova, S. Cronenberger, D. Scalbert, K. V. Kavokin, A. Miard, A. Lemaître, J. Bloch, D. Solnyshkov, G. Malpuech, and A. V. Kavokin, “Polaritonpolariton interaction constants in microcavities,” Phys. Rev. B 82, 1–9 (2010).
[Crossref]

Von Högersthal, G. B. H.

S. Christopoulos, G. B. H. Von Högersthal, A. J. D. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butté, E. Feltin, J. F. Carlin, and N. Grandjean, “Room-temperature polariton lasing in semiconductor microcavities,” Phys. Rev. Lett. 98, 1–4 (2007).
[Crossref]

Walker, S.

D. G. Lidzey, D. D. C. Bradley, M. S. Skolnick, T. Virgili, S. Walker, and D. M. Whittaker, “Strong exciton-photon coupling in an organic semiconductor microcavity,” Nature 395, 53–55 (1998).
[Crossref]

Wang, J.

R. Su, C. Diederichs, J. Wang, T. C. H. Liew, J. Zhao, S. Liu, W. Xu, Z. Chen, and Q. Xiong, “Room-temperature polariton lasing in all-inorganic perovskite nanoplatelets,” Nano Lett. 17, 3982–3988 (2017).
[Crossref]

Wang, Z.

S. Kim, B. Zhang, Z. Wang, J. Fischer, S. Brodbeck, M. Kamp, C. Schneider, S. Höfling, and H. Deng, “Coherent polariton laser,” Phys. Rev. X 6, 011026 (2016).
[Crossref]

Weihs, G.

H. Deng, J. Homan, A. J. S. Ser, H. Deng, G. Weihs, and C. Santori, “Condensation of semiconductor microcavity exciton polaritons,” Science 298, 199–202 (2002).
[Crossref]

Weisbuch, C.

C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, “Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity,” Phys. Rev. Lett. 69, 3314–3317 (1992).
[Crossref]

West, K.

R. Balili, V. Hartwell, D. Snoke, L. Pfeiffer, and K. West, “Bose–Einstein condensation of microcavity polaritons in a trap,” Science 316, 1007–1011 (2007).
[Crossref]

Whitehead, K. S.

M. Grell, D. D. C. Bradley, G. Ungar, J. Hill, and K. S. Whitehead, “Interplay of physical structure and photophysics for a liquid crystalline polyfluorene,” Macromolecules 32, 5810–5817 (1999).
[Crossref]

Whittaker, D. M.

R. M. Stevenson, V. N. Astratov, M. S. Skolnick, D. M. Whittaker, M. Emam-Ismail, A. I. Tartakovskii, P. G. Savvidis, J. J. Baumberg, and J. S. Roberts, “Continuous wave observation of massive polariton redistribution by stimulated scattering in semiconductor microcavities,” Phys. Rev. Lett. 85, 3680–3683(2000).
[Crossref]

D. G. Lidzey, D. D. C. Bradley, M. S. Skolnick, T. Virgili, S. Walker, and D. M. Whittaker, “Strong exciton-photon coupling in an organic semiconductor microcavity,” Nature 395, 53–55 (1998).
[Crossref]

Wolf, A.

C. Schneider, A. Rahimi-Iman, N. Y. Kim, J. Fischer, I. G. Savenko, M. Amthor, M. Lermer, A. Wolf, L. Worschech, V. D. Kulakovskii, I. A. Shelykh, M. Kamp, S. Reitzenstein, A. Forchel, Y. Yamamoto, and S. Höfling, “An electrically pumped polariton laser,” Nature 497, 348–352 (2013).
[Crossref]

Worschech, L.

C. Schneider, A. Rahimi-Iman, N. Y. Kim, J. Fischer, I. G. Savenko, M. Amthor, M. Lermer, A. Wolf, L. Worschech, V. D. Kulakovskii, I. A. Shelykh, M. Kamp, S. Reitzenstein, A. Forchel, Y. Yamamoto, and S. Höfling, “An electrically pumped polariton laser,” Nature 497, 348–352 (2013).
[Crossref]

Wu, Y.-C.

Wudl, F.

N. Sariciftci, L. Smilowitz, A. J. Heeger, and F. Wudl, “Photoinduced electron transfer from a conducting polymer to buckminsterfullerene,” Science 258, 1474–1476 (1992).
[Crossref]

Xiao, B.

P. Bhattacharya, B. Xiao, A. Das, S. Bhowmick, and J. Heo, “Solid state electrically injected exciton-polariton laser,” Phys. Rev. Lett. 110, 1–5 (2013).
[Crossref]

Xiong, Q.

R. Su, C. Diederichs, J. Wang, T. C. H. Liew, J. Zhao, S. Liu, W. Xu, Z. Chen, and Q. Xiong, “Room-temperature polariton lasing in all-inorganic perovskite nanoplatelets,” Nano Lett. 17, 3982–3988 (2017).
[Crossref]

Xu, W.

R. Su, C. Diederichs, J. Wang, T. C. H. Liew, J. Zhao, S. Liu, W. Xu, Z. Chen, and Q. Xiong, “Room-temperature polariton lasing in all-inorganic perovskite nanoplatelets,” Nano Lett. 17, 3982–3988 (2017).
[Crossref]

Xu, Y.

J. Peet, E. Brocker, Y. Xu, and G. C. Bazan, “Controlled β-phase formation in poly(9,9-di-n-octylfluorene) by processing with alkyl additives,” Adv. Mater. 20, 1882–1885 (2008).
[Crossref]

Yamamoto, Y.

C. Schneider, A. Rahimi-Iman, N. Y. Kim, J. Fischer, I. G. Savenko, M. Amthor, M. Lermer, A. Wolf, L. Worschech, V. D. Kulakovskii, I. A. Shelykh, M. Kamp, S. Reitzenstein, A. Forchel, Y. Yamamoto, and S. Höfling, “An electrically pumped polariton laser,” Nature 497, 348–352 (2013).
[Crossref]

A. Imamoglu, R. J. Ram, S. Pau, and Y. Yamamoto, “Nonequilibrium condensates and lasers without inversion: Exciton-polariton lasers,” Phys. Rev. A 53, 4250–4253 (1996).
[Crossref]

Zasedatelev, A.

T. Cookson, K. Georgiou, A. Zasedatelev, R. T. Grant, T. Virgili, M. Cavazzini, F. Galeotti, C. Clark, N. G. Berloff, D. G. Lidzey, and P. G. Lagoudakis, “A yellow polariton condensate in a dye filled microcavity,” Adv. Opt. Mater. 5, 1–6 (2017).
[Crossref]

Zhang, B.

S. Kim, B. Zhang, Z. Wang, J. Fischer, S. Brodbeck, M. Kamp, C. Schneider, S. Höfling, and H. Deng, “Coherent polariton laser,” Phys. Rev. X 6, 011026 (2016).
[Crossref]

Zhang, L.

A. Das, J. Heo, M. Jankowski, W. Guo, L. Zhang, H. Deng, and P. Bhattacharya, “Room temperature ultralow threshold GaN nanowire polariton laser,” Phys. Rev. Lett. 107, 1–5 (2011).
[Crossref]

Zhao, J.

R. Su, C. Diederichs, J. Wang, T. C. H. Liew, J. Zhao, S. Liu, W. Xu, Z. Chen, and Q. Xiong, “Room-temperature polariton lasing in all-inorganic perovskite nanoplatelets,” Nano Lett. 17, 3982–3988 (2017).
[Crossref]

ACS Photon. (1)

N. Bobrovska, M. Matuszewski, K. S. Daskalakis, S. A. Maier, and S. Kéna-Cohen, “Dynamical instability of a nonequilibrium exciton-polariton condensate,” ACS Photon. 5, 111–118 (2017).
[Crossref]

Adv. Funct. Mater. (1)

P. E. Shaw, A. Ruseckas, J. Peet, G. C. Bazan, and I. D. W. Samuel, “Exciton - Exciton annihilation in mixed-phase polyfluorene films,” Adv. Funct. Mater. 20, 155–161 (2010).
[Crossref]

Adv. Mater. (1)

J. Peet, E. Brocker, Y. Xu, and G. C. Bazan, “Controlled β-phase formation in poly(9,9-di-n-octylfluorene) by processing with alkyl additives,” Adv. Mater. 20, 1882–1885 (2008).
[Crossref]

Adv. Opt. Mater. (1)

T. Cookson, K. Georgiou, A. Zasedatelev, R. T. Grant, T. Virgili, M. Cavazzini, F. Galeotti, C. Clark, N. G. Berloff, D. G. Lidzey, and P. G. Lagoudakis, “A yellow polariton condensate in a dye filled microcavity,” Adv. Opt. Mater. 5, 1–6 (2017).
[Crossref]

Chem. Phys. Lett. (1)

N. C. Greenham, I. D. W. Samuel, G. R. Hayes, R. T. Phillips, Y. A. R. R. Kessener, S. C. Moratti, A. B. Holmes, and R. H. Friend, “Measurement of absolute photoluminescence quantum efficiencies in conjugated polymers,” Chem. Phys. Lett. 241, 89–96 (1995).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. C (1)

A. K. Bansal, A. Ruseckas, P. E. Shaw, and I. D. W. Samuel, “Fluorescence quenchers in mixed phase polyfluorene films,” J. Phys. Chem. C 114, 17864–17867 (2010).
[Crossref]

Macromolecules (1)

M. Grell, D. D. C. Bradley, G. Ungar, J. Hill, and K. S. Whitehead, “Interplay of physical structure and photophysics for a liquid crystalline polyfluorene,” Macromolecules 32, 5810–5817 (1999).
[Crossref]

Nano Lett. (1)

R. Su, C. Diederichs, J. Wang, T. C. H. Liew, J. Zhao, S. Liu, W. Xu, Z. Chen, and Q. Xiong, “Room-temperature polariton lasing in all-inorganic perovskite nanoplatelets,” Nano Lett. 17, 3982–3988 (2017).
[Crossref]

Nat. Mater. (2)

K. S. Daskalakis, S. A. Maier, R. Murray, and S. Kéna-Cohen, “Nonlinear interactions in an organic polariton condensate,” Nat. Mater. 13, 271–278 (2014).
[Crossref]

J. D. Plumhof, T. Stoeferle, L. Mai, U. Scherf, and R. Mahrt, “Roomtemperature Bose–Einstein condensation of cavity exciton–polaritons in a polymer,” Nat. Mater. 13, 247 (2014).
[Crossref]

Nat. Photonics (1)

S. Kéna-Cohen and S. R. Forrest, “Room-temperature polariton lasing in an organic single-crystal microcavity,” Nat. Photonics 4, 371–375 (2010).
[Crossref]

Nature (5)

D. G. Lidzey, D. D. C. Bradley, M. S. Skolnick, T. Virgili, S. Walker, and D. M. Whittaker, “Strong exciton-photon coupling in an organic semiconductor microcavity,” Nature 395, 53–55 (1998).
[Crossref]

J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. H. Friend, P. L. Burns, and A. B. Holmes, “Burroughes1990 Light-emitting diodes based on conjugated polymers.pdf,” Nature 347, 539–541 (1990).
[Crossref]

N. Tessler, G. J. Denton, and R. H. Friend, “Lasing from conjugated polymer microcavities,” Nature 382, 695–697 (1996).
[Crossref]

C. Schneider, A. Rahimi-Iman, N. Y. Kim, J. Fischer, I. G. Savenko, M. Amthor, M. Lermer, A. Wolf, L. Worschech, V. D. Kulakovskii, I. A. Shelykh, M. Kamp, S. Reitzenstein, A. Forchel, Y. Yamamoto, and S. Höfling, “An electrically pumped polariton laser,” Nature 497, 348–352 (2013).
[Crossref]

J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymánska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and L. S. Dang, “Bose–Einstein condensation of exciton polaritons,” Nature 443, 409–414 (2006).
[Crossref]

Opt. Express (2)

Org. Electron. (1)

R. J. Holmes and S. R. Forrest, “Strong exciton-photon coupling in organic materials,” Org. Electron. 8, 77–93 (2007).
[Crossref]

Phys. Rev. A (3)

A. Imamoglu, R. J. Ram, S. Pau, and Y. Yamamoto, “Nonequilibrium condensates and lasers without inversion: Exciton-polariton lasers,” Phys. Rev. A 53, 4250–4253 (1996).
[Crossref]

R. Houdré, R. P. Stanley, and M. Ilegems, “Vacuum-field Rabi splitting in the presence of inhomogeneous broadening: Resolution of a homogeneous linewidth in an inhomogeneously broadened system,” Phys. Rev. A 53, 2711–2715 (1996).
[Crossref]

J. A. Cwik, P. Kirton, S. De Liberato, and J. Keeling, “Excitonic spectral features in strongly coupled organic polaritons,” Phys. Rev. A 93, 1–12 (2016).
[Crossref]

Phys. Rev. B (6)

T. C. H. Liew, O. A. Egorov, M. Matuszewski, O. Kyriienko, X. Ma, and E. A. Ostrovskaya, “Instability-induced formation and nonequilibrium dynamics of phase defects in polariton condensates,” Phys. Rev. B 91, 1–12 (2015).
[Crossref]

D. Porras and C. Tejedor, “Linewidth of a polariton laser: Theoretical analysis of self-interaction effects,” Phys. Rev. B 67, 1–4 (2003).
[Crossref]

M. Vladimirova, S. Cronenberger, D. Scalbert, K. V. Kavokin, A. Miard, A. Lemaître, J. Bloch, D. Solnyshkov, G. Malpuech, and A. V. Kavokin, “Polaritonpolariton interaction constants in microcavities,” Phys. Rev. B 82, 1–9 (2010).
[Crossref]

M. Richard, J. Kasprzak, R. André, R. Romestain, L. S. Dang, G. Malpuech, and A. Kavokin, “Experimental evidence for nonequilibrium Bose condensation of exciton polaritons,” Phys. Rev. B 72, 1–4 (2005).
[Crossref]

A. Rahimi-Iman, A. V. Chernenko, J. Fischer, S. Brodbeck, M. Amthor, C. Schneider, A. Forchel, S. Höfling, S. Reitzenstein, and M. Kamp, “Coherence signatures and density-dependent interaction in a dynamical excitonpolariton condensate,” Phys. Rev. B 86, 1–10 (2012).
[Crossref]

A. Bhattacharya, M. Z. Baten, I. Iorsh, T. Frost, A. Kavokin, and P. Bhattacharya, “Output polarization characteristics of a GaN microcavity diode polariton laser,” Phys. Rev. B 94, 035203 (2016).
[Crossref]

Phys. Rev. Lett. (9)

S. Christopoulos, G. B. H. Von Högersthal, A. J. D. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butté, E. Feltin, J. F. Carlin, and N. Grandjean, “Room-temperature polariton lasing in semiconductor microcavities,” Phys. Rev. Lett. 98, 1–4 (2007).
[Crossref]

P. Bhattacharya, T. Frost, S. Deshpande, M. Z. Baten, A. Hazari, and A. Das, “Room temperature electrically injected polariton laser,” Phys. Rev. Lett. 112, 29–31 (2014).
[Crossref]

J. Kasprzak, D. D. Solnyshkov, R. André, L. S. Dang, and G. Malpuech, “Formation of an exciton polariton condensate: Thermodynamic versus kinetic regimes,” Phys. Rev. Lett. 101, 3–6 (2008).
[Crossref]

C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, “Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity,” Phys. Rev. Lett. 69, 3314–3317 (1992).
[Crossref]

P. Bhattacharya, B. Xiao, A. Das, S. Bhowmick, and J. Heo, “Solid state electrically injected exciton-polariton laser,” Phys. Rev. Lett. 110, 1–5 (2013).
[Crossref]

A. Bhattacharya, M. Z. Baten, I. Iorsh, T. Frost, A. Kavokin, and P. Bhattacharya, “Room-temperature spin polariton diode laser,” Phys. Rev. Lett. 119, 1–6 (2017).
[Crossref]

A. Das, J. Heo, M. Jankowski, W. Guo, L. Zhang, H. Deng, and P. Bhattacharya, “Room temperature ultralow threshold GaN nanowire polariton laser,” Phys. Rev. Lett. 107, 1–5 (2011).
[Crossref]

L. S. Dang, D. Heger, R. André, F. Bœuf, and R. Romestain, “Stimulation of polariton photoluminescence in semiconductor microcavity,” Phys. Rev. Lett. 81, 3920–3923 (1998).
[Crossref]

R. M. Stevenson, V. N. Astratov, M. S. Skolnick, D. M. Whittaker, M. Emam-Ismail, A. I. Tartakovskii, P. G. Savvidis, J. J. Baumberg, and J. S. Roberts, “Continuous wave observation of massive polariton redistribution by stimulated scattering in semiconductor microcavities,” Phys. Rev. Lett. 85, 3680–3683(2000).
[Crossref]

Phys. Rev. X (1)

S. Kim, B. Zhang, Z. Wang, J. Fischer, S. Brodbeck, M. Kamp, C. Schneider, S. Höfling, and H. Deng, “Coherent polariton laser,” Phys. Rev. X 6, 011026 (2016).
[Crossref]

Sci. Adv. (1)

C. P. Dietrich, A. Steude, L. Tropf, M. Schubert, N. M. Kronenberg, K. Ostermann, S. Höfling, and M. C. Gather, “An exciton–polariton laser based on biologically produced fluorescent protein,” Sci. Adv. 2, e1600666 (2016).
[Crossref]

Science (3)

N. Sariciftci, L. Smilowitz, A. J. Heeger, and F. Wudl, “Photoinduced electron transfer from a conducting polymer to buckminsterfullerene,” Science 258, 1474–1476 (1992).
[Crossref]

H. Deng, J. Homan, A. J. S. Ser, H. Deng, G. Weihs, and C. Santori, “Condensation of semiconductor microcavity exciton polaritons,” Science 298, 199–202 (2002).
[Crossref]

R. Balili, V. Hartwell, D. Snoke, L. Pfeiffer, and K. West, “Bose–Einstein condensation of microcavity polaritons in a trap,” Science 316, 1007–1011 (2007).
[Crossref]

Semiconductors (1)

V. B. Timoffeev, “Bose condensation of exciton polaritons in microcavities,” Semiconductors 46, 843–860 (2012).
[Crossref]

Other (1)

M. Wei, S. K. Rajendran, H. Ohadi, L. Tropf, M. C. Gather, G. A. Turnbull, and I. D. W. Samuel, Low threshold polariton lasing in a highly disordered conjugated polymer (dataset), University of St Andrews Research Portal, 2019, https://doi.org/10.17630/786775ad-012e-4890-a029-73cdabd762b3 .

Supplementary Material (1)

NameDescription
» Supplement 1       supplemental document

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. (a) Chemical structure of PFO. (b) Absorption and emission spectra of a 135-nm-thick bare PFO film and transmission of the bottom and top DBRs at normal incidence. The black arrow indicates the excitation wavelength. (c) Schematic of the DBR microcavity.
Fig. 2.
Fig. 2. Contour map of the p-polarized angle-resolved reflectivity for the 135-nm-thick microcavity. The experimental reflectivity minima are marked as open circles and squares in the map. Dotted yellow lines are matched results from a coupled oscillator model; the dashed and solid white lines are the uncoupled exciton and cavity photon, respectively. The fit parameters are given in the inset. Note: there is no valid data above 3.1 eV from 0 to 40° (gray region) because of the non-transparent microscope objective in ultraviolet region.
Fig. 3.
Fig. 3. Power-dependent angle-resolved PL spectra in Fourier-space and real-space images. The left panels (a)–(c) represent the lower polariton emission as a function of angle at incident pump fluence of 4.3μJ/cm2 (0.2Pth), 19.7μJ/cm2 (0.7Pth), and 33.8μJ/cm2 (1.2Pth). The dashed white lines indicate the measured lower polariton dispersion, and the solid white lines refer to the uncoupled cavity mode. The right panels (d)–(f) represent real-space images with corresponding excitation densities. The scale bars are 20 μm. The emission spot collapses to a smaller one when above threshold.
Fig. 4.
Fig. 4. (a) PL spectra at k//=0 extracted from the angle-resolved PL in Fourier space at different excitation energies. (b) The integrated area of emission spectrum at k//=0 and the full width at half maximum as functions of pump fluence. The transition from a linear regime to nonlinear regime defines the threshold at 27.7μJ/cm2. (c) Blue-shift of emission peak as a function of pump fluence.
Fig. 5.
Fig. 5. Interferograms recorded in a Michelson interferometer for increasing pump fluence, (a) at 9.9μJ/cm2, (b) 18.3μJ/cm2, and (c) 27.5μJ/cm2. All scale bars are 5 μm. (d) The black solid circles are the intensity profile along the white dashed line in (c), and the red line is the fit (see Section 2).
Fig. 6.
Fig. 6. Black solid and open squares, respectively, show the peak photoluminescence intensity of interferograms as a function of pump fluence in the first and second measurements. Red solid and open circles, respectively, show the fringe visibility for increasing pump fluence in the first and second measurements.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

LPfringe(x)=LP0(x)(1+acos(2πdx+ϕ)),