D. Kosters, A. de Hoogh, H. Zeijlemaker, H. Acar, N. Rotenberg, and L. Kuipers, “Core-shell plasmonic nanohelices,” ACS Photon. 4, 1858–1863 (2017).
[Crossref]
H.-E. Lee, H.-Y. Ahn, J. Mun, Y. Y. Lee, M. Kim, N. H. Cho, K. Chang, W. S. Kim, J. Rho, and K. T. Nam, “Amino-acid- and peptide-directed synthesis of chiral plasmonic gold nanoparticles,” Nature 556, 360–365 (2018).
[Crossref]
J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, M. Wegener, and G. V. Freymann, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325, 1513–1515 (2009).
[Crossref]
C. A. Balanis, Antenna Theory. Analysis and Design (Harper & Row, 1982).
P. Woźniak, I. De Leon, K. Höflich, C. Haverkamp, S. Christiansen, G. Leuchs, and P. Banzer, “Chiroptical response of a single plasmonic nanohelix,” Optics Express 26, 1513–1515 (2018).
[Crossref]
L. D. Barron, Molecular Light Scattering and Optical Activity, 2nd ed. (Cambridge University, 2009).
K. Höflich, M. Becker, G. Leuchs, and S. Christiansen, “Plasmonic dimer antennas for surface enhanced Raman scattering,” Nanotechnology 23, 185303 (2012).
[Crossref]
J. M. Caridad, D. Mccloskey, F. Rossella, V. Bellani, J. F. Donegan, and V. Krstic, “Effective wavelength scaling of and damping in plasmonic helical antennae,” ACS Photon. 2, 675 (2015).
[Crossref]
K. Höflich, R. B. Yang, A. Berger, G. Leuchs, and S. Christiansen, “The direct writing of plasmonic gold nanostructures via electron beam induced deposition,” Adv. Mater. 23, 2657–2661 (2011).
[Crossref]
C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).
B. Frank, X. Yin, M. Schäferling, J. Zhao, S. M. Hein, P. V. Braun, and H. Giessen, “Large-area 3D chiral plasmonic structures,” ACS Nano 7, 6321–6329 (2013).
[Crossref]
S. P. Rodrigues, S. Lan, L. Kang, Y. Cui, P. W. Panuski, S. Wang, A. M. Urbas, and W. Cai, “Intensity-dependent modulation of optically active signals in a chiral metamaterial,” Nat. Commun. 8, 14602 (2017).
[Crossref]
L. Kang, S. Lan, Y. Cui, S. P. Rodrigues, Y. Liu, D. H. Werner, and W. Cai, “An active metamaterial platform for chiral responsive optoelectronics,” Adv. Mater. 27, 4377–4383 (2015).
[Crossref]
Y. Cui, L. Kang, S. Lan, S. Rodrigues, and W. Cai, “Giant chiral optical response from a twisted-arc metamaterial,” Nano Lett. 14, 1021–1025 (2014).
[Crossref]
J. M. Caridad, D. Mccloskey, F. Rossella, V. Bellani, J. F. Donegan, and V. Krstic, “Effective wavelength scaling of and damping in plasmonic helical antennae,” ACS Photon. 2, 675 (2015).
[Crossref]
J. T. Collins, C. Kuppe, D. C. Hooper, C. Sibilia, M. Centini, and V. K. Valev, “Chirality and chiroptical effects in metal nanostructures: fundamentals and current trends,” Adv. Opt. Mater. 5, 1700182 (2017).
[Crossref]
H.-E. Lee, H.-Y. Ahn, J. Mun, Y. Y. Lee, M. Kim, N. H. Cho, K. Chang, W. S. Kim, J. Rho, and K. T. Nam, “Amino-acid- and peptide-directed synthesis of chiral plasmonic gold nanoparticles,” Nature 556, 360–365 (2018).
[Crossref]
Z. Wang, F. Cheng, T. Winsor, Y. Wang, X. Wen, Y. Qu, T. Fu, and Z. Zhang, “Direct and indirect coupling mechanisms in a chiral plasmonic system,” J. Phys. D 49, 405104 (2016).
[Crossref]
H.-E. Lee, H.-Y. Ahn, J. Mun, Y. Y. Lee, M. Kim, N. H. Cho, K. Chang, W. S. Kim, J. Rho, and K. T. Nam, “Amino-acid- and peptide-directed synthesis of chiral plasmonic gold nanoparticles,” Nature 556, 360–365 (2018).
[Crossref]
P. Woźniak, I. De Leon, K. Höflich, C. Haverkamp, S. Christiansen, G. Leuchs, and P. Banzer, “Chiroptical response of a single plasmonic nanohelix,” Optics Express 26, 1513–1515 (2018).
[Crossref]
T. Feichtner, S. Christiansen, and B. Hecht, “Mode matching for optical antennas,” Phys. Rev. Lett. 119, 217401 (2017).
[Crossref]
C. Haverkamp, K. Höflich, S. Jäckle, A. Manzoni, and S. Christiansen, “Plasmonic gold helices for the visible range fabricated by oxygen plasma purification of electron beam induced deposits,” Nanotechnology 28, 55303 (2017).
[Crossref]
K. Höflich, M. Becker, G. Leuchs, and S. Christiansen, “Plasmonic dimer antennas for surface enhanced Raman scattering,” Nanotechnology 23, 185303 (2012).
[Crossref]
K. Höflich, R. B. Yang, A. Berger, G. Leuchs, and S. Christiansen, “The direct writing of plasmonic gold nanostructures via electron beam induced deposition,” Adv. Mater. 23, 2657–2661 (2011).
[Crossref]
P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]
Y. Tang and A. E. Cohen, “Optical chirality and its interaction with matter,” Phys. Rev. Lett. 104, 163901 (2010).
[Crossref]
J. T. Collins, C. Kuppe, D. C. Hooper, C. Sibilia, M. Centini, and V. K. Valev, “Chirality and chiroptical effects in metal nanostructures: fundamentals and current trends,” Adv. Opt. Mater. 5, 1700182 (2017).
[Crossref]
S. P. Rodrigues, S. Lan, L. Kang, Y. Cui, P. W. Panuski, S. Wang, A. M. Urbas, and W. Cai, “Intensity-dependent modulation of optically active signals in a chiral metamaterial,” Nat. Commun. 8, 14602 (2017).
[Crossref]
L. Kang, S. Lan, Y. Cui, S. P. Rodrigues, Y. Liu, D. H. Werner, and W. Cai, “An active metamaterial platform for chiral responsive optoelectronics,” Adv. Mater. 27, 4377–4383 (2015).
[Crossref]
Y. Cui, L. Kang, S. Lan, S. Rodrigues, and W. Cai, “Giant chiral optical response from a twisted-arc metamaterial,” Nano Lett. 14, 1021–1025 (2014).
[Crossref]
M. Esposito, V. Tasco, and M. Cuscuna, “Nanoscale 3D chiral plasmonic helices with circular dichroism at visible frequencies,” ACS Photon. 17, 105–114 (2014).
[Crossref]
D. Kosters, A. de Hoogh, H. Zeijlemaker, H. Acar, N. Rotenberg, and L. Kuipers, “Core-shell plasmonic nanohelices,” ACS Photon. 4, 1858–1863 (2017).
[Crossref]
P. Woźniak, I. De Leon, K. Höflich, C. Haverkamp, S. Christiansen, G. Leuchs, and P. Banzer, “Chiroptical response of a single plasmonic nanohelix,” Optics Express 26, 1513–1515 (2018).
[Crossref]
J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, M. Wegener, and G. V. Freymann, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325, 1513–1515 (2009).
[Crossref]
O. D. Miller, A. G. Polimeridis, M. T. Homer Reid, C. W. Hsu, B. G. DeLacy, J. D. Joannopoulos, M. Soljačić, and S. G. Johnson, “Fundamental limits to optical response in absorptive systems,” Opt. Express 24, 3329–3364 (2016).
[Crossref]
J. M. Caridad, D. Mccloskey, F. Rossella, V. Bellani, J. F. Donegan, and V. Krstic, “Effective wavelength scaling of and damping in plasmonic helical antennae,” ACS Photon. 2, 675 (2015).
[Crossref]
R. Vogelgesang, R. T. Weitz, C. Rockstuhl, C. Etrich, T. Pertsch, F. Lederer, K. Kern, and J. Dorfmüller, “Fabry-Pérot resonances in one-dimensional plasmonic,” Nano Lett. 9, 2372–2377 (2009).
[Crossref]
X. Duan, S. Yue, and N. Liu, “Understanding complex chiral plasmonics,” Nanoscale 7, 17237–17243 (2015).
[Crossref]
M. Schäferling, X. Yin, N. Engheta, and H. Giessen, “Helical plasmonic nanostructures as prototypical chiral near-field sources,” ACS Photon. 1, 530–537 (2014).
[Crossref]
J. G. Gibbs, A. G. Mark, S. Eslami, and P. Fischer, “Plasmonic nanohelix metamaterials with tailorable giant circular dichroism,” Appl. Phys. Lett. 103, 103–106 (2013).
[Crossref]
M. Esposito, V. Tasco, and M. Cuscuna, “Nanoscale 3D chiral plasmonic helices with circular dichroism at visible frequencies,” ACS Photon. 17, 105–114 (2014).
[Crossref]
R. Vogelgesang, R. T. Weitz, C. Rockstuhl, C. Etrich, T. Pertsch, F. Lederer, K. Kern, and J. Dorfmüller, “Fabry-Pérot resonances in one-dimensional plasmonic,” Nano Lett. 9, 2372–2377 (2009).
[Crossref]
C. Rockstuhl, F. Lederer, C. Etrich, T. Zentgraf, J. J. Kuhl, and H. Giessen, “On the reinterpretation of resonances in split-ring-resonators at normal incidence,” Opt. Express 14, 8827–8836 (2006).
[Crossref]
Z. Fan and A. O. Govorov, “Helical metal nanoparticle assemblies with defects: plasmonic chirality and circular dichroism,” J. Phys. Chem. C 115, 13254–13261 (2011).
[Crossref]
Z. Fan and A. O. Govorov, “Plasmonic circular dichroism of chiral metal nanoparticle assemblies,” Nano Lett. 10, 2580–2587 (2010).
[Crossref]
T. Feichtner, S. Christiansen, and B. Hecht, “Mode matching for optical antennas,” Phys. Rev. Lett. 119, 217401 (2017).
[Crossref]
I. Fernandez-Corbaton, M. Fruhnert, and C. Rockstuhl, “Objects of maximum electromagnetic chirality,” Phys. Rev. X 6, 031013 (2016).
[Crossref]
J. G. Gibbs, A. G. Mark, S. Eslami, and P. Fischer, “Plasmonic nanohelix metamaterials with tailorable giant circular dichroism,” Appl. Phys. Lett. 103, 103–106 (2013).
[Crossref]
A. G. Mark, J. G. Gibbs, T.-C. Lee, and P. Fischer, “Hybrid nanocolloids with programmed three-dimensional shape and material composition,” Nat. Mater. 12, 802–807 (2013).
[Crossref]
J. D. Fowlkes, R. Winkler, B. B. Lewis, M. G. Stanford, H. Plank, and P. D. Rack, “Simulation-guided 3D nanomanufacturing via focused electron beam induced deposition,” ACS Nano 10, 6163–6172 (2016).
[Crossref]
B. Frank, X. Yin, M. Schäferling, J. Zhao, S. M. Hein, P. V. Braun, and H. Giessen, “Large-area 3D chiral plasmonic structures,” ACS Nano 7, 6321–6329 (2013).
[Crossref]
J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, M. Wegener, and G. V. Freymann, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325, 1513–1515 (2009).
[Crossref]
I. Fernandez-Corbaton, M. Fruhnert, and C. Rockstuhl, “Objects of maximum electromagnetic chirality,” Phys. Rev. X 6, 031013 (2016).
[Crossref]
Z. Wang, F. Cheng, T. Winsor, Y. Wang, X. Wen, Y. Qu, T. Fu, and Z. Zhang, “Direct and indirect coupling mechanisms in a chiral plasmonic system,” J. Phys. D 49, 405104 (2016).
[Crossref]
J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, M. Wegener, and G. V. Freymann, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325, 1513–1515 (2009).
[Crossref]
A. G. Mark, J. G. Gibbs, T.-C. Lee, and P. Fischer, “Hybrid nanocolloids with programmed three-dimensional shape and material composition,” Nat. Mater. 12, 802–807 (2013).
[Crossref]
J. G. Gibbs, A. G. Mark, S. Eslami, and P. Fischer, “Plasmonic nanohelix metamaterials with tailorable giant circular dichroism,” Appl. Phys. Lett. 103, 103–106 (2013).
[Crossref]
M. Schäferling, X. Yin, N. Engheta, and H. Giessen, “Helical plasmonic nanostructures as prototypical chiral near-field sources,” ACS Photon. 1, 530–537 (2014).
[Crossref]
X. Yin, M. Schäferling, B. Metzger, and H. Giessen, “Interpreting chiral nanophotonic spectra: the plasmonic Born–Kuhn model,” Nano Lett. 13, 6238–6243 (2013).
[Crossref]
B. Frank, X. Yin, M. Schäferling, J. Zhao, S. M. Hein, P. V. Braun, and H. Giessen, “Large-area 3D chiral plasmonic structures,” ACS Nano 7, 6321–6329 (2013).
[Crossref]
C. Rockstuhl, F. Lederer, C. Etrich, T. Zentgraf, J. J. Kuhl, and H. Giessen, “On the reinterpretation of resonances in split-ring-resonators at normal incidence,” Opt. Express 14, 8827–8836 (2006).
[Crossref]
Z. Fan and A. O. Govorov, “Helical metal nanoparticle assemblies with defects: plasmonic chirality and circular dichroism,” J. Phys. Chem. C 115, 13254–13261 (2011).
[Crossref]
Z. Fan and A. O. Govorov, “Plasmonic circular dichroism of chiral metal nanoparticle assemblies,” Nano Lett. 10, 2580–2587 (2010).
[Crossref]
E. Krauss, G. Razinskas, D. Köck, S. Grossmann, and B. Hecht, “Reversible mapping and sorting the spin of photons on the nanoscale: a spin-optical nanodevice,” Nano Lett. 19, 3364–3369 (2019).
[Crossref]
P. Woźniak, I. De Leon, K. Höflich, C. Haverkamp, S. Christiansen, G. Leuchs, and P. Banzer, “Chiroptical response of a single plasmonic nanohelix,” Optics Express 26, 1513–1515 (2018).
[Crossref]
C. Haverkamp, K. Höflich, S. Jäckle, A. Manzoni, and S. Christiansen, “Plasmonic gold helices for the visible range fabricated by oxygen plasma purification of electron beam induced deposits,” Nanotechnology 28, 55303 (2017).
[Crossref]
E. Krauss, G. Razinskas, D. Köck, S. Grossmann, and B. Hecht, “Reversible mapping and sorting the spin of photons on the nanoscale: a spin-optical nanodevice,” Nano Lett. 19, 3364–3369 (2019).
[Crossref]
T. Feichtner, S. Christiansen, and B. Hecht, “Mode matching for optical antennas,” Phys. Rev. Lett. 119, 217401 (2017).
[Crossref]
L. Novotny and B. Hecht, Principles of Nano-Optics, 2nd ed. (Cambridge University, 2012).
E. Hecht, Optics, 4th ed. (Addison Wesley, 1998).
B. Frank, X. Yin, M. Schäferling, J. Zhao, S. M. Hein, P. V. Braun, and H. Giessen, “Large-area 3D chiral plasmonic structures,” ACS Nano 7, 6321–6329 (2013).
[Crossref]
C. Menzel, C. Helgert, C. Rockstuhl, E. B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett. 104, 253902 (2010).
[Crossref]
S. A. Tretyakov, F. Mariotte, S. Member, C. R. Simovski, T. G. Kharina, and J.-P. Heliot, “Analytical antenna model for chiral scatterers: comparison with numerical and experimental data,” IEEE Trans. Antennas Propag. 44, 1006–1014 (1996).
[Crossref]
I. Utke, P. Hoffmann, and J. Melngailis, “Gas-assisted focused electron beam and ion beam processing and fabrication,” J. Vac. Sci. Technol. B 26, 1197–1276 (2008).
[Crossref]
P. Woźniak, I. De Leon, K. Höflich, C. Haverkamp, S. Christiansen, G. Leuchs, and P. Banzer, “Chiroptical response of a single plasmonic nanohelix,” Optics Express 26, 1513–1515 (2018).
[Crossref]
C. Haverkamp, K. Höflich, S. Jäckle, A. Manzoni, and S. Christiansen, “Plasmonic gold helices for the visible range fabricated by oxygen plasma purification of electron beam induced deposits,” Nanotechnology 28, 55303 (2017).
[Crossref]
K. Höflich, M. Becker, G. Leuchs, and S. Christiansen, “Plasmonic dimer antennas for surface enhanced Raman scattering,” Nanotechnology 23, 185303 (2012).
[Crossref]
K. Höflich, R. B. Yang, A. Berger, G. Leuchs, and S. Christiansen, “The direct writing of plasmonic gold nanostructures via electron beam induced deposition,” Adv. Mater. 23, 2657–2661 (2011).
[Crossref]
O. D. Miller, A. G. Polimeridis, M. T. Homer Reid, C. W. Hsu, B. G. DeLacy, J. D. Joannopoulos, M. Soljačić, and S. G. Johnson, “Fundamental limits to optical response in absorptive systems,” Opt. Express 24, 3329–3364 (2016).
[Crossref]
J. T. Collins, C. Kuppe, D. C. Hooper, C. Sibilia, M. Centini, and V. K. Valev, “Chirality and chiroptical effects in metal nanostructures: fundamentals and current trends,” Adv. Opt. Mater. 5, 1700182 (2017).
[Crossref]
O. D. Miller, A. G. Polimeridis, M. T. Homer Reid, C. W. Hsu, B. G. DeLacy, J. D. Joannopoulos, M. Soljačić, and S. G. Johnson, “Fundamental limits to optical response in absorptive systems,” Opt. Express 24, 3329–3364 (2016).
[Crossref]
C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).
C. Haverkamp, K. Höflich, S. Jäckle, A. Manzoni, and S. Christiansen, “Plasmonic gold helices for the visible range fabricated by oxygen plasma purification of electron beam induced deposits,” Nanotechnology 28, 55303 (2017).
[Crossref]
O. D. Miller, A. G. Polimeridis, M. T. Homer Reid, C. W. Hsu, B. G. DeLacy, J. D. Joannopoulos, M. Soljačić, and S. G. Johnson, “Fundamental limits to optical response in absorptive systems,” Opt. Express 24, 3329–3364 (2016).
[Crossref]
P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]
O. D. Miller, A. G. Polimeridis, M. T. Homer Reid, C. W. Hsu, B. G. DeLacy, J. D. Joannopoulos, M. Soljačić, and S. G. Johnson, “Fundamental limits to optical response in absorptive systems,” Opt. Express 24, 3329–3364 (2016).
[Crossref]
S. P. Rodrigues, S. Lan, L. Kang, Y. Cui, P. W. Panuski, S. Wang, A. M. Urbas, and W. Cai, “Intensity-dependent modulation of optically active signals in a chiral metamaterial,” Nat. Commun. 8, 14602 (2017).
[Crossref]
L. Kang, S. Lan, Y. Cui, S. P. Rodrigues, Y. Liu, D. H. Werner, and W. Cai, “An active metamaterial platform for chiral responsive optoelectronics,” Adv. Mater. 27, 4377–4383 (2015).
[Crossref]
Y. Cui, L. Kang, S. Lan, S. Rodrigues, and W. Cai, “Giant chiral optical response from a twisted-arc metamaterial,” Nano Lett. 14, 1021–1025 (2014).
[Crossref]
R. Vogelgesang, R. T. Weitz, C. Rockstuhl, C. Etrich, T. Pertsch, F. Lederer, K. Kern, and J. Dorfmüller, “Fabry-Pérot resonances in one-dimensional plasmonic,” Nano Lett. 9, 2372–2377 (2009).
[Crossref]
S. A. Tretyakov, F. Mariotte, S. Member, C. R. Simovski, T. G. Kharina, and J.-P. Heliot, “Analytical antenna model for chiral scatterers: comparison with numerical and experimental data,” IEEE Trans. Antennas Propag. 44, 1006–1014 (1996).
[Crossref]
H.-E. Lee, H.-Y. Ahn, J. Mun, Y. Y. Lee, M. Kim, N. H. Cho, K. Chang, W. S. Kim, J. Rho, and K. T. Nam, “Amino-acid- and peptide-directed synthesis of chiral plasmonic gold nanoparticles,” Nature 556, 360–365 (2018).
[Crossref]
H.-E. Lee, H.-Y. Ahn, J. Mun, Y. Y. Lee, M. Kim, N. H. Cho, K. Chang, W. S. Kim, J. Rho, and K. T. Nam, “Amino-acid- and peptide-directed synthesis of chiral plasmonic gold nanoparticles,” Nature 556, 360–365 (2018).
[Crossref]
C. Menzel, C. Helgert, C. Rockstuhl, E. B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett. 104, 253902 (2010).
[Crossref]
E. Krauss, G. Razinskas, D. Köck, S. Grossmann, and B. Hecht, “Reversible mapping and sorting the spin of photons on the nanoscale: a spin-optical nanodevice,” Nano Lett. 19, 3364–3369 (2019).
[Crossref]
D. Kosters, A. de Hoogh, H. Zeijlemaker, H. Acar, N. Rotenberg, and L. Kuipers, “Core-shell plasmonic nanohelices,” ACS Photon. 4, 1858–1863 (2017).
[Crossref]
E. Krauss, G. Razinskas, D. Köck, S. Grossmann, and B. Hecht, “Reversible mapping and sorting the spin of photons on the nanoscale: a spin-optical nanodevice,” Nano Lett. 19, 3364–3369 (2019).
[Crossref]
U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters, Vol. 25 of Springer Series in Material Science (Springer, 2005).
J. M. Caridad, D. Mccloskey, F. Rossella, V. Bellani, J. F. Donegan, and V. Krstic, “Effective wavelength scaling of and damping in plasmonic helical antennae,” ACS Photon. 2, 675 (2015).
[Crossref]
W. Kuhn, “The physical significance of optical rotatory power,” Trans. Faraday Soc. 26, 293 (1930).
[Crossref]
D. Kosters, A. de Hoogh, H. Zeijlemaker, H. Acar, N. Rotenberg, and L. Kuipers, “Core-shell plasmonic nanohelices,” ACS Photon. 4, 1858–1863 (2017).
[Crossref]
J. T. Collins, C. Kuppe, D. C. Hooper, C. Sibilia, M. Centini, and V. K. Valev, “Chirality and chiroptical effects in metal nanostructures: fundamentals and current trends,” Adv. Opt. Mater. 5, 1700182 (2017).
[Crossref]
S. P. Rodrigues, S. Lan, L. Kang, Y. Cui, P. W. Panuski, S. Wang, A. M. Urbas, and W. Cai, “Intensity-dependent modulation of optically active signals in a chiral metamaterial,” Nat. Commun. 8, 14602 (2017).
[Crossref]
L. Kang, S. Lan, Y. Cui, S. P. Rodrigues, Y. Liu, D. H. Werner, and W. Cai, “An active metamaterial platform for chiral responsive optoelectronics,” Adv. Mater. 27, 4377–4383 (2015).
[Crossref]
Y. Cui, L. Kang, S. Lan, S. Rodrigues, and W. Cai, “Giant chiral optical response from a twisted-arc metamaterial,” Nano Lett. 14, 1021–1025 (2014).
[Crossref]
C. Menzel, C. Helgert, C. Rockstuhl, E. B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett. 104, 253902 (2010).
[Crossref]
R. Vogelgesang, R. T. Weitz, C. Rockstuhl, C. Etrich, T. Pertsch, F. Lederer, K. Kern, and J. Dorfmüller, “Fabry-Pérot resonances in one-dimensional plasmonic,” Nano Lett. 9, 2372–2377 (2009).
[Crossref]
C. Rockstuhl, F. Lederer, C. Etrich, T. Zentgraf, J. J. Kuhl, and H. Giessen, “On the reinterpretation of resonances in split-ring-resonators at normal incidence,” Opt. Express 14, 8827–8836 (2006).
[Crossref]
H.-E. Lee, H.-Y. Ahn, J. Mun, Y. Y. Lee, M. Kim, N. H. Cho, K. Chang, W. S. Kim, J. Rho, and K. T. Nam, “Amino-acid- and peptide-directed synthesis of chiral plasmonic gold nanoparticles,” Nature 556, 360–365 (2018).
[Crossref]
A. G. Mark, J. G. Gibbs, T.-C. Lee, and P. Fischer, “Hybrid nanocolloids with programmed three-dimensional shape and material composition,” Nat. Mater. 12, 802–807 (2013).
[Crossref]
H.-E. Lee, H.-Y. Ahn, J. Mun, Y. Y. Lee, M. Kim, N. H. Cho, K. Chang, W. S. Kim, J. Rho, and K. T. Nam, “Amino-acid- and peptide-directed synthesis of chiral plasmonic gold nanoparticles,” Nature 556, 360–365 (2018).
[Crossref]
P. Woźniak, I. De Leon, K. Höflich, C. Haverkamp, S. Christiansen, G. Leuchs, and P. Banzer, “Chiroptical response of a single plasmonic nanohelix,” Optics Express 26, 1513–1515 (2018).
[Crossref]
K. Höflich, M. Becker, G. Leuchs, and S. Christiansen, “Plasmonic dimer antennas for surface enhanced Raman scattering,” Nanotechnology 23, 185303 (2012).
[Crossref]
K. Höflich, R. B. Yang, A. Berger, G. Leuchs, and S. Christiansen, “The direct writing of plasmonic gold nanostructures via electron beam induced deposition,” Adv. Mater. 23, 2657–2661 (2011).
[Crossref]
J. D. Fowlkes, R. Winkler, B. B. Lewis, M. G. Stanford, H. Plank, and P. D. Rack, “Simulation-guided 3D nanomanufacturing via focused electron beam induced deposition,” ACS Nano 10, 6163–6172 (2016).
[Crossref]
J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, M. Wegener, and G. V. Freymann, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325, 1513–1515 (2009).
[Crossref]
X. Duan, S. Yue, and N. Liu, “Understanding complex chiral plasmonics,” Nanoscale 7, 17237–17243 (2015).
[Crossref]
L. Kang, S. Lan, Y. Cui, S. P. Rodrigues, Y. Liu, D. H. Werner, and W. Cai, “An active metamaterial platform for chiral responsive optoelectronics,” Adv. Mater. 27, 4377–4383 (2015).
[Crossref]
S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
C. Haverkamp, K. Höflich, S. Jäckle, A. Manzoni, and S. Christiansen, “Plasmonic gold helices for the visible range fabricated by oxygen plasma purification of electron beam induced deposits,” Nanotechnology 28, 55303 (2017).
[Crossref]
S. A. Tretyakov, F. Mariotte, S. Member, C. R. Simovski, T. G. Kharina, and J.-P. Heliot, “Analytical antenna model for chiral scatterers: comparison with numerical and experimental data,” IEEE Trans. Antennas Propag. 44, 1006–1014 (1996).
[Crossref]
A. G. Mark, J. G. Gibbs, T.-C. Lee, and P. Fischer, “Hybrid nanocolloids with programmed three-dimensional shape and material composition,” Nat. Mater. 12, 802–807 (2013).
[Crossref]
J. G. Gibbs, A. G. Mark, S. Eslami, and P. Fischer, “Plasmonic nanohelix metamaterials with tailorable giant circular dichroism,” Appl. Phys. Lett. 103, 103–106 (2013).
[Crossref]
J. M. Caridad, D. Mccloskey, F. Rossella, V. Bellani, J. F. Donegan, and V. Krstic, “Effective wavelength scaling of and damping in plasmonic helical antennae,” ACS Photon. 2, 675 (2015).
[Crossref]
I. Utke, P. Hoffmann, and J. Melngailis, “Gas-assisted focused electron beam and ion beam processing and fabrication,” J. Vac. Sci. Technol. B 26, 1197–1276 (2008).
[Crossref]
S. A. Tretyakov, F. Mariotte, S. Member, C. R. Simovski, T. G. Kharina, and J.-P. Heliot, “Analytical antenna model for chiral scatterers: comparison with numerical and experimental data,” IEEE Trans. Antennas Propag. 44, 1006–1014 (1996).
[Crossref]
C. Menzel, C. Helgert, C. Rockstuhl, E. B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett. 104, 253902 (2010).
[Crossref]
X. Yin, M. Schäferling, B. Metzger, and H. Giessen, “Interpreting chiral nanophotonic spectra: the plasmonic Born–Kuhn model,” Nano Lett. 13, 6238–6243 (2013).
[Crossref]
O. D. Miller, A. G. Polimeridis, M. T. Homer Reid, C. W. Hsu, B. G. DeLacy, J. D. Joannopoulos, M. Soljačić, and S. G. Johnson, “Fundamental limits to optical response in absorptive systems,” Opt. Express 24, 3329–3364 (2016).
[Crossref]
H.-E. Lee, H.-Y. Ahn, J. Mun, Y. Y. Lee, M. Kim, N. H. Cho, K. Chang, W. S. Kim, J. Rho, and K. T. Nam, “Amino-acid- and peptide-directed synthesis of chiral plasmonic gold nanoparticles,” Nature 556, 360–365 (2018).
[Crossref]
H.-E. Lee, H.-Y. Ahn, J. Mun, Y. Y. Lee, M. Kim, N. H. Cho, K. Chang, W. S. Kim, J. Rho, and K. T. Nam, “Amino-acid- and peptide-directed synthesis of chiral plasmonic gold nanoparticles,” Nature 556, 360–365 (2018).
[Crossref]
L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett. 98, 266802 (2007).
[Crossref]
L. Novotny and B. Hecht, Principles of Nano-Optics, 2nd ed. (Cambridge University, 2012).
S. P. Rodrigues, S. Lan, L. Kang, Y. Cui, P. W. Panuski, S. Wang, A. M. Urbas, and W. Cai, “Intensity-dependent modulation of optically active signals in a chiral metamaterial,” Nat. Commun. 8, 14602 (2017).
[Crossref]
C. Menzel, C. Helgert, C. Rockstuhl, E. B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett. 104, 253902 (2010).
[Crossref]
R. Vogelgesang, R. T. Weitz, C. Rockstuhl, C. Etrich, T. Pertsch, F. Lederer, K. Kern, and J. Dorfmüller, “Fabry-Pérot resonances in one-dimensional plasmonic,” Nano Lett. 9, 2372–2377 (2009).
[Crossref]
J. D. Fowlkes, R. Winkler, B. B. Lewis, M. G. Stanford, H. Plank, and P. D. Rack, “Simulation-guided 3D nanomanufacturing via focused electron beam induced deposition,” ACS Nano 10, 6163–6172 (2016).
[Crossref]
O. D. Miller, A. G. Polimeridis, M. T. Homer Reid, C. W. Hsu, B. G. DeLacy, J. D. Joannopoulos, M. Soljačić, and S. G. Johnson, “Fundamental limits to optical response in absorptive systems,” Opt. Express 24, 3329–3364 (2016).
[Crossref]
Y. Qu, L. Huang, L. Wang, and Z. Zhang, “Giant circular dichroism induced by tunable resonance in twisted Z-shaped nanostructure,” Opt. Express 25, 5480–5487 (2017).
[Crossref]
Z. Wang, F. Cheng, T. Winsor, Y. Wang, X. Wen, Y. Qu, T. Fu, and Z. Zhang, “Direct and indirect coupling mechanisms in a chiral plasmonic system,” J. Phys. D 49, 405104 (2016).
[Crossref]
J. D. Fowlkes, R. Winkler, B. B. Lewis, M. G. Stanford, H. Plank, and P. D. Rack, “Simulation-guided 3D nanomanufacturing via focused electron beam induced deposition,” ACS Nano 10, 6163–6172 (2016).
[Crossref]
E. Krauss, G. Razinskas, D. Köck, S. Grossmann, and B. Hecht, “Reversible mapping and sorting the spin of photons on the nanoscale: a spin-optical nanodevice,” Nano Lett. 19, 3364–3369 (2019).
[Crossref]
H.-E. Lee, H.-Y. Ahn, J. Mun, Y. Y. Lee, M. Kim, N. H. Cho, K. Chang, W. S. Kim, J. Rho, and K. T. Nam, “Amino-acid- and peptide-directed synthesis of chiral plasmonic gold nanoparticles,” Nature 556, 360–365 (2018).
[Crossref]
J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, M. Wegener, and G. V. Freymann, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325, 1513–1515 (2009).
[Crossref]
I. Fernandez-Corbaton, M. Fruhnert, and C. Rockstuhl, “Objects of maximum electromagnetic chirality,” Phys. Rev. X 6, 031013 (2016).
[Crossref]
C. Menzel, C. Helgert, C. Rockstuhl, E. B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett. 104, 253902 (2010).
[Crossref]
R. Vogelgesang, R. T. Weitz, C. Rockstuhl, C. Etrich, T. Pertsch, F. Lederer, K. Kern, and J. Dorfmüller, “Fabry-Pérot resonances in one-dimensional plasmonic,” Nano Lett. 9, 2372–2377 (2009).
[Crossref]
C. Rockstuhl, F. Lederer, C. Etrich, T. Zentgraf, J. J. Kuhl, and H. Giessen, “On the reinterpretation of resonances in split-ring-resonators at normal incidence,” Opt. Express 14, 8827–8836 (2006).
[Crossref]
Y. Cui, L. Kang, S. Lan, S. Rodrigues, and W. Cai, “Giant chiral optical response from a twisted-arc metamaterial,” Nano Lett. 14, 1021–1025 (2014).
[Crossref]
S. P. Rodrigues, S. Lan, L. Kang, Y. Cui, P. W. Panuski, S. Wang, A. M. Urbas, and W. Cai, “Intensity-dependent modulation of optically active signals in a chiral metamaterial,” Nat. Commun. 8, 14602 (2017).
[Crossref]
L. Kang, S. Lan, Y. Cui, S. P. Rodrigues, Y. Liu, D. H. Werner, and W. Cai, “An active metamaterial platform for chiral responsive optoelectronics,” Adv. Mater. 27, 4377–4383 (2015).
[Crossref]
J. M. Caridad, D. Mccloskey, F. Rossella, V. Bellani, J. F. Donegan, and V. Krstic, “Effective wavelength scaling of and damping in plasmonic helical antennae,” ACS Photon. 2, 675 (2015).
[Crossref]
D. Kosters, A. de Hoogh, H. Zeijlemaker, H. Acar, N. Rotenberg, and L. Kuipers, “Core-shell plasmonic nanohelices,” ACS Photon. 4, 1858–1863 (2017).
[Crossref]
J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, M. Wegener, and G. V. Freymann, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325, 1513–1515 (2009).
[Crossref]
M. Schäferling, X. Yin, N. Engheta, and H. Giessen, “Helical plasmonic nanostructures as prototypical chiral near-field sources,” ACS Photon. 1, 530–537 (2014).
[Crossref]
X. Yin, M. Schäferling, B. Metzger, and H. Giessen, “Interpreting chiral nanophotonic spectra: the plasmonic Born–Kuhn model,” Nano Lett. 13, 6238–6243 (2013).
[Crossref]
B. Frank, X. Yin, M. Schäferling, J. Zhao, S. M. Hein, P. V. Braun, and H. Giessen, “Large-area 3D chiral plasmonic structures,” ACS Nano 7, 6321–6329 (2013).
[Crossref]
J. T. Collins, C. Kuppe, D. C. Hooper, C. Sibilia, M. Centini, and V. K. Valev, “Chirality and chiroptical effects in metal nanostructures: fundamentals and current trends,” Adv. Opt. Mater. 5, 1700182 (2017).
[Crossref]
S. A. Tretyakov, F. Mariotte, S. Member, C. R. Simovski, T. G. Kharina, and J.-P. Heliot, “Analytical antenna model for chiral scatterers: comparison with numerical and experimental data,” IEEE Trans. Antennas Propag. 44, 1006–1014 (1996).
[Crossref]
O. D. Miller, A. G. Polimeridis, M. T. Homer Reid, C. W. Hsu, B. G. DeLacy, J. D. Joannopoulos, M. Soljačić, and S. G. Johnson, “Fundamental limits to optical response in absorptive systems,” Opt. Express 24, 3329–3364 (2016).
[Crossref]
J. D. Fowlkes, R. Winkler, B. B. Lewis, M. G. Stanford, H. Plank, and P. D. Rack, “Simulation-guided 3D nanomanufacturing via focused electron beam induced deposition,” ACS Nano 10, 6163–6172 (2016).
[Crossref]
Y. Tang and A. E. Cohen, “Optical chirality and its interaction with matter,” Phys. Rev. Lett. 104, 163901 (2010).
[Crossref]
M. Esposito, V. Tasco, and M. Cuscuna, “Nanoscale 3D chiral plasmonic helices with circular dichroism at visible frequencies,” ACS Photon. 17, 105–114 (2014).
[Crossref]
J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, M. Wegener, and G. V. Freymann, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325, 1513–1515 (2009).
[Crossref]
S. A. Tretyakov, F. Mariotte, S. Member, C. R. Simovski, T. G. Kharina, and J.-P. Heliot, “Analytical antenna model for chiral scatterers: comparison with numerical and experimental data,” IEEE Trans. Antennas Propag. 44, 1006–1014 (1996).
[Crossref]
C. Menzel, C. Helgert, C. Rockstuhl, E. B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett. 104, 253902 (2010).
[Crossref]
S. P. Rodrigues, S. Lan, L. Kang, Y. Cui, P. W. Panuski, S. Wang, A. M. Urbas, and W. Cai, “Intensity-dependent modulation of optically active signals in a chiral metamaterial,” Nat. Commun. 8, 14602 (2017).
[Crossref]
I. Utke, P. Hoffmann, and J. Melngailis, “Gas-assisted focused electron beam and ion beam processing and fabrication,” J. Vac. Sci. Technol. B 26, 1197–1276 (2008).
[Crossref]
J. T. Collins, C. Kuppe, D. C. Hooper, C. Sibilia, M. Centini, and V. K. Valev, “Chirality and chiroptical effects in metal nanostructures: fundamentals and current trends,” Adv. Opt. Mater. 5, 1700182 (2017).
[Crossref]
R. Vogelgesang, R. T. Weitz, C. Rockstuhl, C. Etrich, T. Pertsch, F. Lederer, K. Kern, and J. Dorfmüller, “Fabry-Pérot resonances in one-dimensional plasmonic,” Nano Lett. 9, 2372–2377 (2009).
[Crossref]
U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters, Vol. 25 of Springer Series in Material Science (Springer, 2005).
J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, M. Wegener, and G. V. Freymann, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325, 1513–1515 (2009).
[Crossref]
S. P. Rodrigues, S. Lan, L. Kang, Y. Cui, P. W. Panuski, S. Wang, A. M. Urbas, and W. Cai, “Intensity-dependent modulation of optically active signals in a chiral metamaterial,” Nat. Commun. 8, 14602 (2017).
[Crossref]
Z. Wang, F. Cheng, T. Winsor, Y. Wang, X. Wen, Y. Qu, T. Fu, and Z. Zhang, “Direct and indirect coupling mechanisms in a chiral plasmonic system,” J. Phys. D 49, 405104 (2016).
[Crossref]
Z. Wang, F. Cheng, T. Winsor, Y. Wang, X. Wen, Y. Qu, T. Fu, and Z. Zhang, “Direct and indirect coupling mechanisms in a chiral plasmonic system,” J. Phys. D 49, 405104 (2016).
[Crossref]
J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, M. Wegener, and G. V. Freymann, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325, 1513–1515 (2009).
[Crossref]
R. Vogelgesang, R. T. Weitz, C. Rockstuhl, C. Etrich, T. Pertsch, F. Lederer, K. Kern, and J. Dorfmüller, “Fabry-Pérot resonances in one-dimensional plasmonic,” Nano Lett. 9, 2372–2377 (2009).
[Crossref]
Z. Wang, F. Cheng, T. Winsor, Y. Wang, X. Wen, Y. Qu, T. Fu, and Z. Zhang, “Direct and indirect coupling mechanisms in a chiral plasmonic system,” J. Phys. D 49, 405104 (2016).
[Crossref]
L. Kang, S. Lan, Y. Cui, S. P. Rodrigues, Y. Liu, D. H. Werner, and W. Cai, “An active metamaterial platform for chiral responsive optoelectronics,” Adv. Mater. 27, 4377–4383 (2015).
[Crossref]
J. D. Fowlkes, R. Winkler, B. B. Lewis, M. G. Stanford, H. Plank, and P. D. Rack, “Simulation-guided 3D nanomanufacturing via focused electron beam induced deposition,” ACS Nano 10, 6163–6172 (2016).
[Crossref]
Z. Wang, F. Cheng, T. Winsor, Y. Wang, X. Wen, Y. Qu, T. Fu, and Z. Zhang, “Direct and indirect coupling mechanisms in a chiral plasmonic system,” J. Phys. D 49, 405104 (2016).
[Crossref]
P. Woźniak, I. De Leon, K. Höflich, C. Haverkamp, S. Christiansen, G. Leuchs, and P. Banzer, “Chiroptical response of a single plasmonic nanohelix,” Optics Express 26, 1513–1515 (2018).
[Crossref]
K. Höflich, R. B. Yang, A. Berger, G. Leuchs, and S. Christiansen, “The direct writing of plasmonic gold nanostructures via electron beam induced deposition,” Adv. Mater. 23, 2657–2661 (2011).
[Crossref]
M. Schäferling, X. Yin, N. Engheta, and H. Giessen, “Helical plasmonic nanostructures as prototypical chiral near-field sources,” ACS Photon. 1, 530–537 (2014).
[Crossref]
X. Yin, M. Schäferling, B. Metzger, and H. Giessen, “Interpreting chiral nanophotonic spectra: the plasmonic Born–Kuhn model,” Nano Lett. 13, 6238–6243 (2013).
[Crossref]
B. Frank, X. Yin, M. Schäferling, J. Zhao, S. M. Hein, P. V. Braun, and H. Giessen, “Large-area 3D chiral plasmonic structures,” ACS Nano 7, 6321–6329 (2013).
[Crossref]
X. Duan, S. Yue, and N. Liu, “Understanding complex chiral plasmonics,” Nanoscale 7, 17237–17243 (2015).
[Crossref]
D. Kosters, A. de Hoogh, H. Zeijlemaker, H. Acar, N. Rotenberg, and L. Kuipers, “Core-shell plasmonic nanohelices,” ACS Photon. 4, 1858–1863 (2017).
[Crossref]
Y. Qu, L. Huang, L. Wang, and Z. Zhang, “Giant circular dichroism induced by tunable resonance in twisted Z-shaped nanostructure,” Opt. Express 25, 5480–5487 (2017).
[Crossref]
Z. Wang, F. Cheng, T. Winsor, Y. Wang, X. Wen, Y. Qu, T. Fu, and Z. Zhang, “Direct and indirect coupling mechanisms in a chiral plasmonic system,” J. Phys. D 49, 405104 (2016).
[Crossref]
Z. Y. Zhang and Y. P. Zhao, “The visible extinction peaks of Ag nanohelixes: a periodic effective dipole model,” Appl. Phys. Lett. 98, 083102 (2011).
[Crossref]
B. Frank, X. Yin, M. Schäferling, J. Zhao, S. M. Hein, P. V. Braun, and H. Giessen, “Large-area 3D chiral plasmonic structures,” ACS Nano 7, 6321–6329 (2013).
[Crossref]
Z. Y. Zhang and Y. P. Zhao, “The visible extinction peaks of Ag nanohelixes: a periodic effective dipole model,” Appl. Phys. Lett. 98, 083102 (2011).
[Crossref]
B. Frank, X. Yin, M. Schäferling, J. Zhao, S. M. Hein, P. V. Braun, and H. Giessen, “Large-area 3D chiral plasmonic structures,” ACS Nano 7, 6321–6329 (2013).
[Crossref]
J. D. Fowlkes, R. Winkler, B. B. Lewis, M. G. Stanford, H. Plank, and P. D. Rack, “Simulation-guided 3D nanomanufacturing via focused electron beam induced deposition,” ACS Nano 10, 6163–6172 (2016).
[Crossref]
M. Esposito, V. Tasco, and M. Cuscuna, “Nanoscale 3D chiral plasmonic helices with circular dichroism at visible frequencies,” ACS Photon. 17, 105–114 (2014).
[Crossref]
D. Kosters, A. de Hoogh, H. Zeijlemaker, H. Acar, N. Rotenberg, and L. Kuipers, “Core-shell plasmonic nanohelices,” ACS Photon. 4, 1858–1863 (2017).
[Crossref]
M. Schäferling, X. Yin, N. Engheta, and H. Giessen, “Helical plasmonic nanostructures as prototypical chiral near-field sources,” ACS Photon. 1, 530–537 (2014).
[Crossref]
J. M. Caridad, D. Mccloskey, F. Rossella, V. Bellani, J. F. Donegan, and V. Krstic, “Effective wavelength scaling of and damping in plasmonic helical antennae,” ACS Photon. 2, 675 (2015).
[Crossref]
L. Kang, S. Lan, Y. Cui, S. P. Rodrigues, Y. Liu, D. H. Werner, and W. Cai, “An active metamaterial platform for chiral responsive optoelectronics,” Adv. Mater. 27, 4377–4383 (2015).
[Crossref]
K. Höflich, R. B. Yang, A. Berger, G. Leuchs, and S. Christiansen, “The direct writing of plasmonic gold nanostructures via electron beam induced deposition,” Adv. Mater. 23, 2657–2661 (2011).
[Crossref]
J. T. Collins, C. Kuppe, D. C. Hooper, C. Sibilia, M. Centini, and V. K. Valev, “Chirality and chiroptical effects in metal nanostructures: fundamentals and current trends,” Adv. Opt. Mater. 5, 1700182 (2017).
[Crossref]
Z. Y. Zhang and Y. P. Zhao, “The visible extinction peaks of Ag nanohelixes: a periodic effective dipole model,” Appl. Phys. Lett. 98, 083102 (2011).
[Crossref]
J. G. Gibbs, A. G. Mark, S. Eslami, and P. Fischer, “Plasmonic nanohelix metamaterials with tailorable giant circular dichroism,” Appl. Phys. Lett. 103, 103–106 (2013).
[Crossref]
S. A. Tretyakov, F. Mariotte, S. Member, C. R. Simovski, T. G. Kharina, and J.-P. Heliot, “Analytical antenna model for chiral scatterers: comparison with numerical and experimental data,” IEEE Trans. Antennas Propag. 44, 1006–1014 (1996).
[Crossref]
Z. Fan and A. O. Govorov, “Helical metal nanoparticle assemblies with defects: plasmonic chirality and circular dichroism,” J. Phys. Chem. C 115, 13254–13261 (2011).
[Crossref]
Z. Wang, F. Cheng, T. Winsor, Y. Wang, X. Wen, Y. Qu, T. Fu, and Z. Zhang, “Direct and indirect coupling mechanisms in a chiral plasmonic system,” J. Phys. D 49, 405104 (2016).
[Crossref]
I. Utke, P. Hoffmann, and J. Melngailis, “Gas-assisted focused electron beam and ion beam processing and fabrication,” J. Vac. Sci. Technol. B 26, 1197–1276 (2008).
[Crossref]
E. Krauss, G. Razinskas, D. Köck, S. Grossmann, and B. Hecht, “Reversible mapping and sorting the spin of photons on the nanoscale: a spin-optical nanodevice,” Nano Lett. 19, 3364–3369 (2019).
[Crossref]
R. Vogelgesang, R. T. Weitz, C. Rockstuhl, C. Etrich, T. Pertsch, F. Lederer, K. Kern, and J. Dorfmüller, “Fabry-Pérot resonances in one-dimensional plasmonic,” Nano Lett. 9, 2372–2377 (2009).
[Crossref]
Z. Fan and A. O. Govorov, “Plasmonic circular dichroism of chiral metal nanoparticle assemblies,” Nano Lett. 10, 2580–2587 (2010).
[Crossref]
X. Yin, M. Schäferling, B. Metzger, and H. Giessen, “Interpreting chiral nanophotonic spectra: the plasmonic Born–Kuhn model,” Nano Lett. 13, 6238–6243 (2013).
[Crossref]
Y. Cui, L. Kang, S. Lan, S. Rodrigues, and W. Cai, “Giant chiral optical response from a twisted-arc metamaterial,” Nano Lett. 14, 1021–1025 (2014).
[Crossref]
X. Duan, S. Yue, and N. Liu, “Understanding complex chiral plasmonics,” Nanoscale 7, 17237–17243 (2015).
[Crossref]
K. Höflich, M. Becker, G. Leuchs, and S. Christiansen, “Plasmonic dimer antennas for surface enhanced Raman scattering,” Nanotechnology 23, 185303 (2012).
[Crossref]
C. Haverkamp, K. Höflich, S. Jäckle, A. Manzoni, and S. Christiansen, “Plasmonic gold helices for the visible range fabricated by oxygen plasma purification of electron beam induced deposits,” Nanotechnology 28, 55303 (2017).
[Crossref]
S. P. Rodrigues, S. Lan, L. Kang, Y. Cui, P. W. Panuski, S. Wang, A. M. Urbas, and W. Cai, “Intensity-dependent modulation of optically active signals in a chiral metamaterial,” Nat. Commun. 8, 14602 (2017).
[Crossref]
A. G. Mark, J. G. Gibbs, T.-C. Lee, and P. Fischer, “Hybrid nanocolloids with programmed three-dimensional shape and material composition,” Nat. Mater. 12, 802–807 (2013).
[Crossref]
H.-E. Lee, H.-Y. Ahn, J. Mun, Y. Y. Lee, M. Kim, N. H. Cho, K. Chang, W. S. Kim, J. Rho, and K. T. Nam, “Amino-acid- and peptide-directed synthesis of chiral plasmonic gold nanoparticles,” Nature 556, 360–365 (2018).
[Crossref]
Y. Qu, L. Huang, L. Wang, and Z. Zhang, “Giant circular dichroism induced by tunable resonance in twisted Z-shaped nanostructure,” Opt. Express 25, 5480–5487 (2017).
[Crossref]
O. D. Miller, A. G. Polimeridis, M. T. Homer Reid, C. W. Hsu, B. G. DeLacy, J. D. Joannopoulos, M. Soljačić, and S. G. Johnson, “Fundamental limits to optical response in absorptive systems,” Opt. Express 24, 3329–3364 (2016).
[Crossref]
C. Rockstuhl, F. Lederer, C. Etrich, T. Zentgraf, J. J. Kuhl, and H. Giessen, “On the reinterpretation of resonances in split-ring-resonators at normal incidence,” Opt. Express 14, 8827–8836 (2006).
[Crossref]
P. Woźniak, I. De Leon, K. Höflich, C. Haverkamp, S. Christiansen, G. Leuchs, and P. Banzer, “Chiroptical response of a single plasmonic nanohelix,” Optics Express 26, 1513–1515 (2018).
[Crossref]
P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]
Y. Tang and A. E. Cohen, “Optical chirality and its interaction with matter,” Phys. Rev. Lett. 104, 163901 (2010).
[Crossref]
T. Feichtner, S. Christiansen, and B. Hecht, “Mode matching for optical antennas,” Phys. Rev. Lett. 119, 217401 (2017).
[Crossref]
L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett. 98, 266802 (2007).
[Crossref]
C. Menzel, C. Helgert, C. Rockstuhl, E. B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett. 104, 253902 (2010).
[Crossref]
I. Fernandez-Corbaton, M. Fruhnert, and C. Rockstuhl, “Objects of maximum electromagnetic chirality,” Phys. Rev. X 6, 031013 (2016).
[Crossref]
J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, M. Wegener, and G. V. Freymann, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325, 1513–1515 (2009).
[Crossref]
W. Kuhn, “The physical significance of optical rotatory power,” Trans. Faraday Soc. 26, 293 (1930).
[Crossref]
E. Hecht, Optics, 4th ed. (Addison Wesley, 1998).
L. Novotny and B. Hecht, Principles of Nano-Optics, 2nd ed. (Cambridge University, 2012).
Zhang et al. employ an inverted definition of LCP and RCP light.
C. A. Balanis, Antenna Theory. Analysis and Design (Harper & Row, 1982).
The plasmonic helix works similar to a helical antenna in axial or end-fire mode.
U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters, Vol. 25 of Springer Series in Material Science (Springer, 2005).
S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
According to Hecht [35] RCP light is defined by an electric field vector rotating clockwise at a fixed point in space when looking towards the light source. This is equivalent to a right-handed helix formed by the electric field vector at a fixed time.
L. D. Barron, Molecular Light Scattering and Optical Activity, 2nd ed. (Cambridge University, 2009).
“Python scripts for the analytical calculations and the design tool are available under,” https://sourceforge.net/projects/plasmonic-helix-1dmodel/ .
C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).