Abstract

Chiral plasmonic nanostructures will be of increasing importance for future applications in the field of nano optics and metamaterials. Their sensitivity to incident circularly polarized light in combination with the ability of extreme electromagnetic field localization renders them ideal candidates for chiral sensing and for all-optical information processing. Here, the resonant modes of single plasmonic helices are investigated. We find that a single plasmonic helix can be efficiently excited with circularly polarized light of both equal and opposite handedness relative to that of the helix. An analytic model provides resonance conditions matching the results of full-field modeling. The underlying geometric considerations explain the mechanism of excitation and deliver quantitative design rules for plasmonic helices being resonant in a desired wavelength range. Based on the developed analytical design tool, single silver helices were fabricated and optically characterized. They show the expected strong chiroptical response to both handednesses in the targeted visible range. With a value of 0.45, the experimentally realized dissymmetry factor is the largest obtained for single plasmonic helices in the visible range up to now.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Chiroptical response of a single plasmonic nanohelix

Paweł Woźniak, Israel De Leon, Katja Höflich, Caspar Haverkamp, Silke Christiansen, Gerd Leuchs, and Peter Banzer
Opt. Express 26(15) 19275-19293 (2018)

Chiroptical transmission through a plasmonic helical traveling-wave nanoantenna, towards on-tip chiroptical probes

Mengjia Wang, Roland Salut, Miguel Angel Suarez, Nicolas Martin, and Thierry Grosjean
Opt. Lett. 44(19) 4861-4864 (2019)

Dual circular polarization gaps in helix photonic metamaterials

Tzu-Hung Kao, Lung-Yu Chang Chien, and Yu-Chueh Hung
Opt. Express 23(19) 24416-24425 (2015)

References

  • View by:
  • |
  • |
  • |

  1. According to Hecht [35] RCP light is defined by an electric field vector rotating clockwise at a fixed point in space when looking towards the light source. This is equivalent to a right-handed helix formed by the electric field vector at a fixed time.
  2. L. D. Barron, Molecular Light Scattering and Optical Activity, 2nd ed. (Cambridge University, 2009).
  3. Y. Tang and A. E. Cohen, “Optical chirality and its interaction with matter,” Phys. Rev. Lett. 104, 163901 (2010).
    [Crossref]
  4. M. Schäferling, X. Yin, N. Engheta, and H. Giessen, “Helical plasmonic nanostructures as prototypical chiral near-field sources,” ACS Photon. 1, 530–537 (2014).
    [Crossref]
  5. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters, Vol. 25 of Springer Series in Material Science (Springer, 2005).
  6. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  7. J. T. Collins, C. Kuppe, D. C. Hooper, C. Sibilia, M. Centini, and V. K. Valev, “Chirality and chiroptical effects in metal nanostructures: fundamentals and current trends,” Adv. Opt. Mater. 5, 1700182 (2017).
    [Crossref]
  8. I. Fernandez-Corbaton, M. Fruhnert, and C. Rockstuhl, “Objects of maximum electromagnetic chirality,” Phys. Rev. X 6, 031013 (2016).
    [Crossref]
  9. C. A. Balanis, Antenna Theory. Analysis and Design (Harper & Row, 1982).
  10. The plasmonic helix works similar to a helical antenna in axial or end-fire mode.
  11. S. A. Tretyakov, F. Mariotte, S. Member, C. R. Simovski, T. G. Kharina, and J.-P. Heliot, “Analytical antenna model for chiral scatterers: comparison with numerical and experimental data,” IEEE Trans. Antennas Propag. 44, 1006–1014 (1996).
    [Crossref]
  12. J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, M. Wegener, and G. V. Freymann, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325, 1513–1515 (2009).
    [Crossref]
  13. Z. Y. Zhang and Y. P. Zhao, “The visible extinction peaks of Ag nanohelixes: a periodic effective dipole model,” Appl. Phys. Lett. 98, 083102 (2011).
    [Crossref]
  14. J. M. Caridad, D. Mccloskey, F. Rossella, V. Bellani, J. F. Donegan, and V. Krstic, “Effective wavelength scaling of and damping in plasmonic helical antennae,” ACS Photon. 2, 675 (2015).
    [Crossref]
  15. P. Woźniak, I. De Leon, K. Höflich, C. Haverkamp, S. Christiansen, G. Leuchs, and P. Banzer, “Chiroptical response of a single plasmonic nanohelix,” Optics Express 26, 1513–1515 (2018).
    [Crossref]
  16. Zhang et al. employ an inverted definition of LCP and RCP light.
  17. C. Menzel, C. Helgert, C. Rockstuhl, E. B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett. 104, 253902 (2010).
    [Crossref]
  18. X. Yin, M. Schäferling, B. Metzger, and H. Giessen, “Interpreting chiral nanophotonic spectra: the plasmonic Born–Kuhn model,” Nano Lett. 13, 6238–6243 (2013).
    [Crossref]
  19. Y. Cui, L. Kang, S. Lan, S. Rodrigues, and W. Cai, “Giant chiral optical response from a twisted-arc metamaterial,” Nano Lett. 14, 1021–1025 (2014).
    [Crossref]
  20. A. G. Mark, J. G. Gibbs, T.-C. Lee, and P. Fischer, “Hybrid nanocolloids with programmed three-dimensional shape and material composition,” Nat. Mater. 12, 802–807 (2013).
    [Crossref]
  21. B. Frank, X. Yin, M. Schäferling, J. Zhao, S. M. Hein, P. V. Braun, and H. Giessen, “Large-area 3D chiral plasmonic structures,” ACS Nano 7, 6321–6329 (2013).
    [Crossref]
  22. L. Kang, S. Lan, Y. Cui, S. P. Rodrigues, Y. Liu, D. H. Werner, and W. Cai, “An active metamaterial platform for chiral responsive optoelectronics,” Adv. Mater. 27, 4377–4383 (2015).
    [Crossref]
  23. Y. Qu, L. Huang, L. Wang, and Z. Zhang, “Giant circular dichroism induced by tunable resonance in twisted Z-shaped nanostructure,” Opt. Express 25, 5480–5487 (2017).
    [Crossref]
  24. H.-E. Lee, H.-Y. Ahn, J. Mun, Y. Y. Lee, M. Kim, N. H. Cho, K. Chang, W. S. Kim, J. Rho, and K. T. Nam, “Amino-acid- and peptide-directed synthesis of chiral plasmonic gold nanoparticles,” Nature 556, 360–365 (2018).
    [Crossref]
  25. W. Kuhn, “The physical significance of optical rotatory power,” Trans. Faraday Soc. 26, 293 (1930).
    [Crossref]
  26. J. G. Gibbs, A. G. Mark, S. Eslami, and P. Fischer, “Plasmonic nanohelix metamaterials with tailorable giant circular dichroism,” Appl. Phys. Lett. 103, 103–106 (2013).
    [Crossref]
  27. M. Esposito, V. Tasco, and M. Cuscuna, “Nanoscale 3D chiral plasmonic helices with circular dichroism at visible frequencies,” ACS Photon. 17, 105–114 (2014).
    [Crossref]
  28. D. Kosters, A. de Hoogh, H. Zeijlemaker, H. Acar, N. Rotenberg, and L. Kuipers, “Core-shell plasmonic nanohelices,” ACS Photon. 4, 1858–1863 (2017).
    [Crossref]
  29. X. Duan, S. Yue, and N. Liu, “Understanding complex chiral plasmonics,” Nanoscale 7, 17237–17243 (2015).
    [Crossref]
  30. Z. Fan and A. O. Govorov, “Plasmonic circular dichroism of chiral metal nanoparticle assemblies,” Nano Lett. 10, 2580–2587 (2010).
    [Crossref]
  31. Z. Fan and A. O. Govorov, “Helical metal nanoparticle assemblies with defects: plasmonic chirality and circular dichroism,” J. Phys. Chem. C 115, 13254–13261 (2011).
    [Crossref]
  32. Z. Wang, F. Cheng, T. Winsor, Y. Wang, X. Wen, Y. Qu, T. Fu, and Z. Zhang, “Direct and indirect coupling mechanisms in a chiral plasmonic system,” J. Phys. D 49, 405104 (2016).
    [Crossref]
  33. R. Vogelgesang, R. T. Weitz, C. Rockstuhl, C. Etrich, T. Pertsch, F. Lederer, K. Kern, and J. Dorfmüller, “Fabry-Pérot resonances in one-dimensional plasmonic,” Nano Lett. 9, 2372–2377 (2009).
    [Crossref]
  34. L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett. 98, 266802 (2007).
    [Crossref]
  35. E. Hecht, Optics, 4th ed. (Addison Wesley, 1998).
  36. T. Feichtner, S. Christiansen, and B. Hecht, “Mode matching for optical antennas,” Phys. Rev. Lett. 119, 217401 (2017).
    [Crossref]
  37. O. D. Miller, A. G. Polimeridis, M. T. Homer Reid, C. W. Hsu, B. G. DeLacy, J. D. Joannopoulos, M. Soljačić, and S. G. Johnson, “Fundamental limits to optical response in absorptive systems,” Opt. Express 24, 3329–3364 (2016).
    [Crossref]
  38. L. Novotny and B. Hecht, Principles of Nano-Optics, 2nd ed. (Cambridge University, 2012).
  39. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
    [Crossref]
  40. C. Rockstuhl, F. Lederer, C. Etrich, T. Zentgraf, J. J. Kuhl, and H. Giessen, “On the reinterpretation of resonances in split-ring-resonators at normal incidence,” Opt. Express 14, 8827–8836 (2006).
    [Crossref]
  41. I. Utke, P. Hoffmann, and J. Melngailis, “Gas-assisted focused electron beam and ion beam processing and fabrication,” J. Vac. Sci. Technol. B 26, 1197–1276 (2008).
    [Crossref]
  42. K. Höflich, R. B. Yang, A. Berger, G. Leuchs, and S. Christiansen, “The direct writing of plasmonic gold nanostructures via electron beam induced deposition,” Adv. Mater. 23, 2657–2661 (2011).
    [Crossref]
  43. C. Haverkamp, K. Höflich, S. Jäckle, A. Manzoni, and S. Christiansen, “Plasmonic gold helices for the visible range fabricated by oxygen plasma purification of electron beam induced deposits,” Nanotechnology 28, 55303 (2017).
    [Crossref]
  44. J. D. Fowlkes, R. Winkler, B. B. Lewis, M. G. Stanford, H. Plank, and P. D. Rack, “Simulation-guided 3D nanomanufacturing via focused electron beam induced deposition,” ACS Nano 10, 6163–6172 (2016).
    [Crossref]
  45. K. Höflich, M. Becker, G. Leuchs, and S. Christiansen, “Plasmonic dimer antennas for surface enhanced Raman scattering,” Nanotechnology 23, 185303 (2012).
    [Crossref]
  46. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).
  47. E. Krauss, G. Razinskas, D. Köck, S. Grossmann, and B. Hecht, “Reversible mapping and sorting the spin of photons on the nanoscale: a spin-optical nanodevice,” Nano Lett. 19, 3364–3369 (2019).
    [Crossref]
  48. S. P. Rodrigues, S. Lan, L. Kang, Y. Cui, P. W. Panuski, S. Wang, A. M. Urbas, and W. Cai, “Intensity-dependent modulation of optically active signals in a chiral metamaterial,” Nat. Commun. 8, 14602 (2017).
    [Crossref]
  49. “Python scripts for the analytical calculations and the design tool are available under,” https://sourceforge.net/projects/plasmonic-helix-1dmodel/ .

2019 (1)

E. Krauss, G. Razinskas, D. Köck, S. Grossmann, and B. Hecht, “Reversible mapping and sorting the spin of photons on the nanoscale: a spin-optical nanodevice,” Nano Lett. 19, 3364–3369 (2019).
[Crossref]

2018 (2)

P. Woźniak, I. De Leon, K. Höflich, C. Haverkamp, S. Christiansen, G. Leuchs, and P. Banzer, “Chiroptical response of a single plasmonic nanohelix,” Optics Express 26, 1513–1515 (2018).
[Crossref]

H.-E. Lee, H.-Y. Ahn, J. Mun, Y. Y. Lee, M. Kim, N. H. Cho, K. Chang, W. S. Kim, J. Rho, and K. T. Nam, “Amino-acid- and peptide-directed synthesis of chiral plasmonic gold nanoparticles,” Nature 556, 360–365 (2018).
[Crossref]

2017 (6)

J. T. Collins, C. Kuppe, D. C. Hooper, C. Sibilia, M. Centini, and V. K. Valev, “Chirality and chiroptical effects in metal nanostructures: fundamentals and current trends,” Adv. Opt. Mater. 5, 1700182 (2017).
[Crossref]

S. P. Rodrigues, S. Lan, L. Kang, Y. Cui, P. W. Panuski, S. Wang, A. M. Urbas, and W. Cai, “Intensity-dependent modulation of optically active signals in a chiral metamaterial,” Nat. Commun. 8, 14602 (2017).
[Crossref]

C. Haverkamp, K. Höflich, S. Jäckle, A. Manzoni, and S. Christiansen, “Plasmonic gold helices for the visible range fabricated by oxygen plasma purification of electron beam induced deposits,” Nanotechnology 28, 55303 (2017).
[Crossref]

Y. Qu, L. Huang, L. Wang, and Z. Zhang, “Giant circular dichroism induced by tunable resonance in twisted Z-shaped nanostructure,” Opt. Express 25, 5480–5487 (2017).
[Crossref]

D. Kosters, A. de Hoogh, H. Zeijlemaker, H. Acar, N. Rotenberg, and L. Kuipers, “Core-shell plasmonic nanohelices,” ACS Photon. 4, 1858–1863 (2017).
[Crossref]

T. Feichtner, S. Christiansen, and B. Hecht, “Mode matching for optical antennas,” Phys. Rev. Lett. 119, 217401 (2017).
[Crossref]

2016 (4)

Z. Wang, F. Cheng, T. Winsor, Y. Wang, X. Wen, Y. Qu, T. Fu, and Z. Zhang, “Direct and indirect coupling mechanisms in a chiral plasmonic system,” J. Phys. D 49, 405104 (2016).
[Crossref]

O. D. Miller, A. G. Polimeridis, M. T. Homer Reid, C. W. Hsu, B. G. DeLacy, J. D. Joannopoulos, M. Soljačić, and S. G. Johnson, “Fundamental limits to optical response in absorptive systems,” Opt. Express 24, 3329–3364 (2016).
[Crossref]

J. D. Fowlkes, R. Winkler, B. B. Lewis, M. G. Stanford, H. Plank, and P. D. Rack, “Simulation-guided 3D nanomanufacturing via focused electron beam induced deposition,” ACS Nano 10, 6163–6172 (2016).
[Crossref]

I. Fernandez-Corbaton, M. Fruhnert, and C. Rockstuhl, “Objects of maximum electromagnetic chirality,” Phys. Rev. X 6, 031013 (2016).
[Crossref]

2015 (3)

L. Kang, S. Lan, Y. Cui, S. P. Rodrigues, Y. Liu, D. H. Werner, and W. Cai, “An active metamaterial platform for chiral responsive optoelectronics,” Adv. Mater. 27, 4377–4383 (2015).
[Crossref]

J. M. Caridad, D. Mccloskey, F. Rossella, V. Bellani, J. F. Donegan, and V. Krstic, “Effective wavelength scaling of and damping in plasmonic helical antennae,” ACS Photon. 2, 675 (2015).
[Crossref]

X. Duan, S. Yue, and N. Liu, “Understanding complex chiral plasmonics,” Nanoscale 7, 17237–17243 (2015).
[Crossref]

2014 (3)

M. Esposito, V. Tasco, and M. Cuscuna, “Nanoscale 3D chiral plasmonic helices with circular dichroism at visible frequencies,” ACS Photon. 17, 105–114 (2014).
[Crossref]

Y. Cui, L. Kang, S. Lan, S. Rodrigues, and W. Cai, “Giant chiral optical response from a twisted-arc metamaterial,” Nano Lett. 14, 1021–1025 (2014).
[Crossref]

M. Schäferling, X. Yin, N. Engheta, and H. Giessen, “Helical plasmonic nanostructures as prototypical chiral near-field sources,” ACS Photon. 1, 530–537 (2014).
[Crossref]

2013 (4)

A. G. Mark, J. G. Gibbs, T.-C. Lee, and P. Fischer, “Hybrid nanocolloids with programmed three-dimensional shape and material composition,” Nat. Mater. 12, 802–807 (2013).
[Crossref]

B. Frank, X. Yin, M. Schäferling, J. Zhao, S. M. Hein, P. V. Braun, and H. Giessen, “Large-area 3D chiral plasmonic structures,” ACS Nano 7, 6321–6329 (2013).
[Crossref]

X. Yin, M. Schäferling, B. Metzger, and H. Giessen, “Interpreting chiral nanophotonic spectra: the plasmonic Born–Kuhn model,” Nano Lett. 13, 6238–6243 (2013).
[Crossref]

J. G. Gibbs, A. G. Mark, S. Eslami, and P. Fischer, “Plasmonic nanohelix metamaterials with tailorable giant circular dichroism,” Appl. Phys. Lett. 103, 103–106 (2013).
[Crossref]

2012 (1)

K. Höflich, M. Becker, G. Leuchs, and S. Christiansen, “Plasmonic dimer antennas for surface enhanced Raman scattering,” Nanotechnology 23, 185303 (2012).
[Crossref]

2011 (3)

K. Höflich, R. B. Yang, A. Berger, G. Leuchs, and S. Christiansen, “The direct writing of plasmonic gold nanostructures via electron beam induced deposition,” Adv. Mater. 23, 2657–2661 (2011).
[Crossref]

Z. Fan and A. O. Govorov, “Helical metal nanoparticle assemblies with defects: plasmonic chirality and circular dichroism,” J. Phys. Chem. C 115, 13254–13261 (2011).
[Crossref]

Z. Y. Zhang and Y. P. Zhao, “The visible extinction peaks of Ag nanohelixes: a periodic effective dipole model,” Appl. Phys. Lett. 98, 083102 (2011).
[Crossref]

2010 (3)

C. Menzel, C. Helgert, C. Rockstuhl, E. B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett. 104, 253902 (2010).
[Crossref]

Y. Tang and A. E. Cohen, “Optical chirality and its interaction with matter,” Phys. Rev. Lett. 104, 163901 (2010).
[Crossref]

Z. Fan and A. O. Govorov, “Plasmonic circular dichroism of chiral metal nanoparticle assemblies,” Nano Lett. 10, 2580–2587 (2010).
[Crossref]

2009 (2)

R. Vogelgesang, R. T. Weitz, C. Rockstuhl, C. Etrich, T. Pertsch, F. Lederer, K. Kern, and J. Dorfmüller, “Fabry-Pérot resonances in one-dimensional plasmonic,” Nano Lett. 9, 2372–2377 (2009).
[Crossref]

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, M. Wegener, and G. V. Freymann, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325, 1513–1515 (2009).
[Crossref]

2008 (1)

I. Utke, P. Hoffmann, and J. Melngailis, “Gas-assisted focused electron beam and ion beam processing and fabrication,” J. Vac. Sci. Technol. B 26, 1197–1276 (2008).
[Crossref]

2007 (1)

L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett. 98, 266802 (2007).
[Crossref]

2006 (1)

1996 (1)

S. A. Tretyakov, F. Mariotte, S. Member, C. R. Simovski, T. G. Kharina, and J.-P. Heliot, “Analytical antenna model for chiral scatterers: comparison with numerical and experimental data,” IEEE Trans. Antennas Propag. 44, 1006–1014 (1996).
[Crossref]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

1930 (1)

W. Kuhn, “The physical significance of optical rotatory power,” Trans. Faraday Soc. 26, 293 (1930).
[Crossref]

Acar, H.

D. Kosters, A. de Hoogh, H. Zeijlemaker, H. Acar, N. Rotenberg, and L. Kuipers, “Core-shell plasmonic nanohelices,” ACS Photon. 4, 1858–1863 (2017).
[Crossref]

Ahn, H.-Y.

H.-E. Lee, H.-Y. Ahn, J. Mun, Y. Y. Lee, M. Kim, N. H. Cho, K. Chang, W. S. Kim, J. Rho, and K. T. Nam, “Amino-acid- and peptide-directed synthesis of chiral plasmonic gold nanoparticles,” Nature 556, 360–365 (2018).
[Crossref]

Bade, K.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, M. Wegener, and G. V. Freymann, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325, 1513–1515 (2009).
[Crossref]

Balanis, C. A.

C. A. Balanis, Antenna Theory. Analysis and Design (Harper & Row, 1982).

Banzer, P.

P. Woźniak, I. De Leon, K. Höflich, C. Haverkamp, S. Christiansen, G. Leuchs, and P. Banzer, “Chiroptical response of a single plasmonic nanohelix,” Optics Express 26, 1513–1515 (2018).
[Crossref]

Barron, L. D.

L. D. Barron, Molecular Light Scattering and Optical Activity, 2nd ed. (Cambridge University, 2009).

Becker, M.

K. Höflich, M. Becker, G. Leuchs, and S. Christiansen, “Plasmonic dimer antennas for surface enhanced Raman scattering,” Nanotechnology 23, 185303 (2012).
[Crossref]

Bellani, V.

J. M. Caridad, D. Mccloskey, F. Rossella, V. Bellani, J. F. Donegan, and V. Krstic, “Effective wavelength scaling of and damping in plasmonic helical antennae,” ACS Photon. 2, 675 (2015).
[Crossref]

Berger, A.

K. Höflich, R. B. Yang, A. Berger, G. Leuchs, and S. Christiansen, “The direct writing of plasmonic gold nanostructures via electron beam induced deposition,” Adv. Mater. 23, 2657–2661 (2011).
[Crossref]

Bohren, C. F.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).

Braun, P. V.

B. Frank, X. Yin, M. Schäferling, J. Zhao, S. M. Hein, P. V. Braun, and H. Giessen, “Large-area 3D chiral plasmonic structures,” ACS Nano 7, 6321–6329 (2013).
[Crossref]

Cai, W.

S. P. Rodrigues, S. Lan, L. Kang, Y. Cui, P. W. Panuski, S. Wang, A. M. Urbas, and W. Cai, “Intensity-dependent modulation of optically active signals in a chiral metamaterial,” Nat. Commun. 8, 14602 (2017).
[Crossref]

L. Kang, S. Lan, Y. Cui, S. P. Rodrigues, Y. Liu, D. H. Werner, and W. Cai, “An active metamaterial platform for chiral responsive optoelectronics,” Adv. Mater. 27, 4377–4383 (2015).
[Crossref]

Y. Cui, L. Kang, S. Lan, S. Rodrigues, and W. Cai, “Giant chiral optical response from a twisted-arc metamaterial,” Nano Lett. 14, 1021–1025 (2014).
[Crossref]

Caridad, J. M.

J. M. Caridad, D. Mccloskey, F. Rossella, V. Bellani, J. F. Donegan, and V. Krstic, “Effective wavelength scaling of and damping in plasmonic helical antennae,” ACS Photon. 2, 675 (2015).
[Crossref]

Centini, M.

J. T. Collins, C. Kuppe, D. C. Hooper, C. Sibilia, M. Centini, and V. K. Valev, “Chirality and chiroptical effects in metal nanostructures: fundamentals and current trends,” Adv. Opt. Mater. 5, 1700182 (2017).
[Crossref]

Chang, K.

H.-E. Lee, H.-Y. Ahn, J. Mun, Y. Y. Lee, M. Kim, N. H. Cho, K. Chang, W. S. Kim, J. Rho, and K. T. Nam, “Amino-acid- and peptide-directed synthesis of chiral plasmonic gold nanoparticles,” Nature 556, 360–365 (2018).
[Crossref]

Cheng, F.

Z. Wang, F. Cheng, T. Winsor, Y. Wang, X. Wen, Y. Qu, T. Fu, and Z. Zhang, “Direct and indirect coupling mechanisms in a chiral plasmonic system,” J. Phys. D 49, 405104 (2016).
[Crossref]

Cho, N. H.

H.-E. Lee, H.-Y. Ahn, J. Mun, Y. Y. Lee, M. Kim, N. H. Cho, K. Chang, W. S. Kim, J. Rho, and K. T. Nam, “Amino-acid- and peptide-directed synthesis of chiral plasmonic gold nanoparticles,” Nature 556, 360–365 (2018).
[Crossref]

Christiansen, S.

P. Woźniak, I. De Leon, K. Höflich, C. Haverkamp, S. Christiansen, G. Leuchs, and P. Banzer, “Chiroptical response of a single plasmonic nanohelix,” Optics Express 26, 1513–1515 (2018).
[Crossref]

T. Feichtner, S. Christiansen, and B. Hecht, “Mode matching for optical antennas,” Phys. Rev. Lett. 119, 217401 (2017).
[Crossref]

C. Haverkamp, K. Höflich, S. Jäckle, A. Manzoni, and S. Christiansen, “Plasmonic gold helices for the visible range fabricated by oxygen plasma purification of electron beam induced deposits,” Nanotechnology 28, 55303 (2017).
[Crossref]

K. Höflich, M. Becker, G. Leuchs, and S. Christiansen, “Plasmonic dimer antennas for surface enhanced Raman scattering,” Nanotechnology 23, 185303 (2012).
[Crossref]

K. Höflich, R. B. Yang, A. Berger, G. Leuchs, and S. Christiansen, “The direct writing of plasmonic gold nanostructures via electron beam induced deposition,” Adv. Mater. 23, 2657–2661 (2011).
[Crossref]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

Cohen, A. E.

Y. Tang and A. E. Cohen, “Optical chirality and its interaction with matter,” Phys. Rev. Lett. 104, 163901 (2010).
[Crossref]

Collins, J. T.

J. T. Collins, C. Kuppe, D. C. Hooper, C. Sibilia, M. Centini, and V. K. Valev, “Chirality and chiroptical effects in metal nanostructures: fundamentals and current trends,” Adv. Opt. Mater. 5, 1700182 (2017).
[Crossref]

Cui, Y.

S. P. Rodrigues, S. Lan, L. Kang, Y. Cui, P. W. Panuski, S. Wang, A. M. Urbas, and W. Cai, “Intensity-dependent modulation of optically active signals in a chiral metamaterial,” Nat. Commun. 8, 14602 (2017).
[Crossref]

L. Kang, S. Lan, Y. Cui, S. P. Rodrigues, Y. Liu, D. H. Werner, and W. Cai, “An active metamaterial platform for chiral responsive optoelectronics,” Adv. Mater. 27, 4377–4383 (2015).
[Crossref]

Y. Cui, L. Kang, S. Lan, S. Rodrigues, and W. Cai, “Giant chiral optical response from a twisted-arc metamaterial,” Nano Lett. 14, 1021–1025 (2014).
[Crossref]

Cuscuna, M.

M. Esposito, V. Tasco, and M. Cuscuna, “Nanoscale 3D chiral plasmonic helices with circular dichroism at visible frequencies,” ACS Photon. 17, 105–114 (2014).
[Crossref]

de Hoogh, A.

D. Kosters, A. de Hoogh, H. Zeijlemaker, H. Acar, N. Rotenberg, and L. Kuipers, “Core-shell plasmonic nanohelices,” ACS Photon. 4, 1858–1863 (2017).
[Crossref]

De Leon, I.

P. Woźniak, I. De Leon, K. Höflich, C. Haverkamp, S. Christiansen, G. Leuchs, and P. Banzer, “Chiroptical response of a single plasmonic nanohelix,” Optics Express 26, 1513–1515 (2018).
[Crossref]

Decker, M.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, M. Wegener, and G. V. Freymann, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325, 1513–1515 (2009).
[Crossref]

DeLacy, B. G.

Donegan, J. F.

J. M. Caridad, D. Mccloskey, F. Rossella, V. Bellani, J. F. Donegan, and V. Krstic, “Effective wavelength scaling of and damping in plasmonic helical antennae,” ACS Photon. 2, 675 (2015).
[Crossref]

Dorfmüller, J.

R. Vogelgesang, R. T. Weitz, C. Rockstuhl, C. Etrich, T. Pertsch, F. Lederer, K. Kern, and J. Dorfmüller, “Fabry-Pérot resonances in one-dimensional plasmonic,” Nano Lett. 9, 2372–2377 (2009).
[Crossref]

Duan, X.

X. Duan, S. Yue, and N. Liu, “Understanding complex chiral plasmonics,” Nanoscale 7, 17237–17243 (2015).
[Crossref]

Engheta, N.

M. Schäferling, X. Yin, N. Engheta, and H. Giessen, “Helical plasmonic nanostructures as prototypical chiral near-field sources,” ACS Photon. 1, 530–537 (2014).
[Crossref]

Eslami, S.

J. G. Gibbs, A. G. Mark, S. Eslami, and P. Fischer, “Plasmonic nanohelix metamaterials with tailorable giant circular dichroism,” Appl. Phys. Lett. 103, 103–106 (2013).
[Crossref]

Esposito, M.

M. Esposito, V. Tasco, and M. Cuscuna, “Nanoscale 3D chiral plasmonic helices with circular dichroism at visible frequencies,” ACS Photon. 17, 105–114 (2014).
[Crossref]

Etrich, C.

R. Vogelgesang, R. T. Weitz, C. Rockstuhl, C. Etrich, T. Pertsch, F. Lederer, K. Kern, and J. Dorfmüller, “Fabry-Pérot resonances in one-dimensional plasmonic,” Nano Lett. 9, 2372–2377 (2009).
[Crossref]

C. Rockstuhl, F. Lederer, C. Etrich, T. Zentgraf, J. J. Kuhl, and H. Giessen, “On the reinterpretation of resonances in split-ring-resonators at normal incidence,” Opt. Express 14, 8827–8836 (2006).
[Crossref]

Fan, Z.

Z. Fan and A. O. Govorov, “Helical metal nanoparticle assemblies with defects: plasmonic chirality and circular dichroism,” J. Phys. Chem. C 115, 13254–13261 (2011).
[Crossref]

Z. Fan and A. O. Govorov, “Plasmonic circular dichroism of chiral metal nanoparticle assemblies,” Nano Lett. 10, 2580–2587 (2010).
[Crossref]

Feichtner, T.

T. Feichtner, S. Christiansen, and B. Hecht, “Mode matching for optical antennas,” Phys. Rev. Lett. 119, 217401 (2017).
[Crossref]

Fernandez-Corbaton, I.

I. Fernandez-Corbaton, M. Fruhnert, and C. Rockstuhl, “Objects of maximum electromagnetic chirality,” Phys. Rev. X 6, 031013 (2016).
[Crossref]

Fischer, P.

J. G. Gibbs, A. G. Mark, S. Eslami, and P. Fischer, “Plasmonic nanohelix metamaterials with tailorable giant circular dichroism,” Appl. Phys. Lett. 103, 103–106 (2013).
[Crossref]

A. G. Mark, J. G. Gibbs, T.-C. Lee, and P. Fischer, “Hybrid nanocolloids with programmed three-dimensional shape and material composition,” Nat. Mater. 12, 802–807 (2013).
[Crossref]

Fowlkes, J. D.

J. D. Fowlkes, R. Winkler, B. B. Lewis, M. G. Stanford, H. Plank, and P. D. Rack, “Simulation-guided 3D nanomanufacturing via focused electron beam induced deposition,” ACS Nano 10, 6163–6172 (2016).
[Crossref]

Frank, B.

B. Frank, X. Yin, M. Schäferling, J. Zhao, S. M. Hein, P. V. Braun, and H. Giessen, “Large-area 3D chiral plasmonic structures,” ACS Nano 7, 6321–6329 (2013).
[Crossref]

Freymann, G. V.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, M. Wegener, and G. V. Freymann, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325, 1513–1515 (2009).
[Crossref]

Fruhnert, M.

I. Fernandez-Corbaton, M. Fruhnert, and C. Rockstuhl, “Objects of maximum electromagnetic chirality,” Phys. Rev. X 6, 031013 (2016).
[Crossref]

Fu, T.

Z. Wang, F. Cheng, T. Winsor, Y. Wang, X. Wen, Y. Qu, T. Fu, and Z. Zhang, “Direct and indirect coupling mechanisms in a chiral plasmonic system,” J. Phys. D 49, 405104 (2016).
[Crossref]

Gansel, J. K.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, M. Wegener, and G. V. Freymann, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325, 1513–1515 (2009).
[Crossref]

Gibbs, J. G.

A. G. Mark, J. G. Gibbs, T.-C. Lee, and P. Fischer, “Hybrid nanocolloids with programmed three-dimensional shape and material composition,” Nat. Mater. 12, 802–807 (2013).
[Crossref]

J. G. Gibbs, A. G. Mark, S. Eslami, and P. Fischer, “Plasmonic nanohelix metamaterials with tailorable giant circular dichroism,” Appl. Phys. Lett. 103, 103–106 (2013).
[Crossref]

Giessen, H.

M. Schäferling, X. Yin, N. Engheta, and H. Giessen, “Helical plasmonic nanostructures as prototypical chiral near-field sources,” ACS Photon. 1, 530–537 (2014).
[Crossref]

X. Yin, M. Schäferling, B. Metzger, and H. Giessen, “Interpreting chiral nanophotonic spectra: the plasmonic Born–Kuhn model,” Nano Lett. 13, 6238–6243 (2013).
[Crossref]

B. Frank, X. Yin, M. Schäferling, J. Zhao, S. M. Hein, P. V. Braun, and H. Giessen, “Large-area 3D chiral plasmonic structures,” ACS Nano 7, 6321–6329 (2013).
[Crossref]

C. Rockstuhl, F. Lederer, C. Etrich, T. Zentgraf, J. J. Kuhl, and H. Giessen, “On the reinterpretation of resonances in split-ring-resonators at normal incidence,” Opt. Express 14, 8827–8836 (2006).
[Crossref]

Govorov, A. O.

Z. Fan and A. O. Govorov, “Helical metal nanoparticle assemblies with defects: plasmonic chirality and circular dichroism,” J. Phys. Chem. C 115, 13254–13261 (2011).
[Crossref]

Z. Fan and A. O. Govorov, “Plasmonic circular dichroism of chiral metal nanoparticle assemblies,” Nano Lett. 10, 2580–2587 (2010).
[Crossref]

Grossmann, S.

E. Krauss, G. Razinskas, D. Köck, S. Grossmann, and B. Hecht, “Reversible mapping and sorting the spin of photons on the nanoscale: a spin-optical nanodevice,” Nano Lett. 19, 3364–3369 (2019).
[Crossref]

Haverkamp, C.

P. Woźniak, I. De Leon, K. Höflich, C. Haverkamp, S. Christiansen, G. Leuchs, and P. Banzer, “Chiroptical response of a single plasmonic nanohelix,” Optics Express 26, 1513–1515 (2018).
[Crossref]

C. Haverkamp, K. Höflich, S. Jäckle, A. Manzoni, and S. Christiansen, “Plasmonic gold helices for the visible range fabricated by oxygen plasma purification of electron beam induced deposits,” Nanotechnology 28, 55303 (2017).
[Crossref]

Hecht, B.

E. Krauss, G. Razinskas, D. Köck, S. Grossmann, and B. Hecht, “Reversible mapping and sorting the spin of photons on the nanoscale: a spin-optical nanodevice,” Nano Lett. 19, 3364–3369 (2019).
[Crossref]

T. Feichtner, S. Christiansen, and B. Hecht, “Mode matching for optical antennas,” Phys. Rev. Lett. 119, 217401 (2017).
[Crossref]

L. Novotny and B. Hecht, Principles of Nano-Optics, 2nd ed. (Cambridge University, 2012).

Hecht, E.

E. Hecht, Optics, 4th ed. (Addison Wesley, 1998).

Hein, S. M.

B. Frank, X. Yin, M. Schäferling, J. Zhao, S. M. Hein, P. V. Braun, and H. Giessen, “Large-area 3D chiral plasmonic structures,” ACS Nano 7, 6321–6329 (2013).
[Crossref]

Helgert, C.

C. Menzel, C. Helgert, C. Rockstuhl, E. B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett. 104, 253902 (2010).
[Crossref]

Heliot, J.-P.

S. A. Tretyakov, F. Mariotte, S. Member, C. R. Simovski, T. G. Kharina, and J.-P. Heliot, “Analytical antenna model for chiral scatterers: comparison with numerical and experimental data,” IEEE Trans. Antennas Propag. 44, 1006–1014 (1996).
[Crossref]

Hoffmann, P.

I. Utke, P. Hoffmann, and J. Melngailis, “Gas-assisted focused electron beam and ion beam processing and fabrication,” J. Vac. Sci. Technol. B 26, 1197–1276 (2008).
[Crossref]

Höflich, K.

P. Woźniak, I. De Leon, K. Höflich, C. Haverkamp, S. Christiansen, G. Leuchs, and P. Banzer, “Chiroptical response of a single plasmonic nanohelix,” Optics Express 26, 1513–1515 (2018).
[Crossref]

C. Haverkamp, K. Höflich, S. Jäckle, A. Manzoni, and S. Christiansen, “Plasmonic gold helices for the visible range fabricated by oxygen plasma purification of electron beam induced deposits,” Nanotechnology 28, 55303 (2017).
[Crossref]

K. Höflich, M. Becker, G. Leuchs, and S. Christiansen, “Plasmonic dimer antennas for surface enhanced Raman scattering,” Nanotechnology 23, 185303 (2012).
[Crossref]

K. Höflich, R. B. Yang, A. Berger, G. Leuchs, and S. Christiansen, “The direct writing of plasmonic gold nanostructures via electron beam induced deposition,” Adv. Mater. 23, 2657–2661 (2011).
[Crossref]

Homer Reid, M. T.

Hooper, D. C.

J. T. Collins, C. Kuppe, D. C. Hooper, C. Sibilia, M. Centini, and V. K. Valev, “Chirality and chiroptical effects in metal nanostructures: fundamentals and current trends,” Adv. Opt. Mater. 5, 1700182 (2017).
[Crossref]

Hsu, C. W.

Huang, L.

Huffman, D. R.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).

Jäckle, S.

C. Haverkamp, K. Höflich, S. Jäckle, A. Manzoni, and S. Christiansen, “Plasmonic gold helices for the visible range fabricated by oxygen plasma purification of electron beam induced deposits,” Nanotechnology 28, 55303 (2017).
[Crossref]

Joannopoulos, J. D.

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

Johnson, S. G.

Kang, L.

S. P. Rodrigues, S. Lan, L. Kang, Y. Cui, P. W. Panuski, S. Wang, A. M. Urbas, and W. Cai, “Intensity-dependent modulation of optically active signals in a chiral metamaterial,” Nat. Commun. 8, 14602 (2017).
[Crossref]

L. Kang, S. Lan, Y. Cui, S. P. Rodrigues, Y. Liu, D. H. Werner, and W. Cai, “An active metamaterial platform for chiral responsive optoelectronics,” Adv. Mater. 27, 4377–4383 (2015).
[Crossref]

Y. Cui, L. Kang, S. Lan, S. Rodrigues, and W. Cai, “Giant chiral optical response from a twisted-arc metamaterial,” Nano Lett. 14, 1021–1025 (2014).
[Crossref]

Kern, K.

R. Vogelgesang, R. T. Weitz, C. Rockstuhl, C. Etrich, T. Pertsch, F. Lederer, K. Kern, and J. Dorfmüller, “Fabry-Pérot resonances in one-dimensional plasmonic,” Nano Lett. 9, 2372–2377 (2009).
[Crossref]

Kharina, T. G.

S. A. Tretyakov, F. Mariotte, S. Member, C. R. Simovski, T. G. Kharina, and J.-P. Heliot, “Analytical antenna model for chiral scatterers: comparison with numerical and experimental data,” IEEE Trans. Antennas Propag. 44, 1006–1014 (1996).
[Crossref]

Kim, M.

H.-E. Lee, H.-Y. Ahn, J. Mun, Y. Y. Lee, M. Kim, N. H. Cho, K. Chang, W. S. Kim, J. Rho, and K. T. Nam, “Amino-acid- and peptide-directed synthesis of chiral plasmonic gold nanoparticles,” Nature 556, 360–365 (2018).
[Crossref]

Kim, W. S.

H.-E. Lee, H.-Y. Ahn, J. Mun, Y. Y. Lee, M. Kim, N. H. Cho, K. Chang, W. S. Kim, J. Rho, and K. T. Nam, “Amino-acid- and peptide-directed synthesis of chiral plasmonic gold nanoparticles,” Nature 556, 360–365 (2018).
[Crossref]

Kley, E. B.

C. Menzel, C. Helgert, C. Rockstuhl, E. B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett. 104, 253902 (2010).
[Crossref]

Köck, D.

E. Krauss, G. Razinskas, D. Köck, S. Grossmann, and B. Hecht, “Reversible mapping and sorting the spin of photons on the nanoscale: a spin-optical nanodevice,” Nano Lett. 19, 3364–3369 (2019).
[Crossref]

Kosters, D.

D. Kosters, A. de Hoogh, H. Zeijlemaker, H. Acar, N. Rotenberg, and L. Kuipers, “Core-shell plasmonic nanohelices,” ACS Photon. 4, 1858–1863 (2017).
[Crossref]

Krauss, E.

E. Krauss, G. Razinskas, D. Köck, S. Grossmann, and B. Hecht, “Reversible mapping and sorting the spin of photons on the nanoscale: a spin-optical nanodevice,” Nano Lett. 19, 3364–3369 (2019).
[Crossref]

Kreibig, U.

U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters, Vol. 25 of Springer Series in Material Science (Springer, 2005).

Krstic, V.

J. M. Caridad, D. Mccloskey, F. Rossella, V. Bellani, J. F. Donegan, and V. Krstic, “Effective wavelength scaling of and damping in plasmonic helical antennae,” ACS Photon. 2, 675 (2015).
[Crossref]

Kuhl, J. J.

Kuhn, W.

W. Kuhn, “The physical significance of optical rotatory power,” Trans. Faraday Soc. 26, 293 (1930).
[Crossref]

Kuipers, L.

D. Kosters, A. de Hoogh, H. Zeijlemaker, H. Acar, N. Rotenberg, and L. Kuipers, “Core-shell plasmonic nanohelices,” ACS Photon. 4, 1858–1863 (2017).
[Crossref]

Kuppe, C.

J. T. Collins, C. Kuppe, D. C. Hooper, C. Sibilia, M. Centini, and V. K. Valev, “Chirality and chiroptical effects in metal nanostructures: fundamentals and current trends,” Adv. Opt. Mater. 5, 1700182 (2017).
[Crossref]

Lan, S.

S. P. Rodrigues, S. Lan, L. Kang, Y. Cui, P. W. Panuski, S. Wang, A. M. Urbas, and W. Cai, “Intensity-dependent modulation of optically active signals in a chiral metamaterial,” Nat. Commun. 8, 14602 (2017).
[Crossref]

L. Kang, S. Lan, Y. Cui, S. P. Rodrigues, Y. Liu, D. H. Werner, and W. Cai, “An active metamaterial platform for chiral responsive optoelectronics,” Adv. Mater. 27, 4377–4383 (2015).
[Crossref]

Y. Cui, L. Kang, S. Lan, S. Rodrigues, and W. Cai, “Giant chiral optical response from a twisted-arc metamaterial,” Nano Lett. 14, 1021–1025 (2014).
[Crossref]

Lederer, F.

C. Menzel, C. Helgert, C. Rockstuhl, E. B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett. 104, 253902 (2010).
[Crossref]

R. Vogelgesang, R. T. Weitz, C. Rockstuhl, C. Etrich, T. Pertsch, F. Lederer, K. Kern, and J. Dorfmüller, “Fabry-Pérot resonances in one-dimensional plasmonic,” Nano Lett. 9, 2372–2377 (2009).
[Crossref]

C. Rockstuhl, F. Lederer, C. Etrich, T. Zentgraf, J. J. Kuhl, and H. Giessen, “On the reinterpretation of resonances in split-ring-resonators at normal incidence,” Opt. Express 14, 8827–8836 (2006).
[Crossref]

Lee, H.-E.

H.-E. Lee, H.-Y. Ahn, J. Mun, Y. Y. Lee, M. Kim, N. H. Cho, K. Chang, W. S. Kim, J. Rho, and K. T. Nam, “Amino-acid- and peptide-directed synthesis of chiral plasmonic gold nanoparticles,” Nature 556, 360–365 (2018).
[Crossref]

Lee, T.-C.

A. G. Mark, J. G. Gibbs, T.-C. Lee, and P. Fischer, “Hybrid nanocolloids with programmed three-dimensional shape and material composition,” Nat. Mater. 12, 802–807 (2013).
[Crossref]

Lee, Y. Y.

H.-E. Lee, H.-Y. Ahn, J. Mun, Y. Y. Lee, M. Kim, N. H. Cho, K. Chang, W. S. Kim, J. Rho, and K. T. Nam, “Amino-acid- and peptide-directed synthesis of chiral plasmonic gold nanoparticles,” Nature 556, 360–365 (2018).
[Crossref]

Leuchs, G.

P. Woźniak, I. De Leon, K. Höflich, C. Haverkamp, S. Christiansen, G. Leuchs, and P. Banzer, “Chiroptical response of a single plasmonic nanohelix,” Optics Express 26, 1513–1515 (2018).
[Crossref]

K. Höflich, M. Becker, G. Leuchs, and S. Christiansen, “Plasmonic dimer antennas for surface enhanced Raman scattering,” Nanotechnology 23, 185303 (2012).
[Crossref]

K. Höflich, R. B. Yang, A. Berger, G. Leuchs, and S. Christiansen, “The direct writing of plasmonic gold nanostructures via electron beam induced deposition,” Adv. Mater. 23, 2657–2661 (2011).
[Crossref]

Lewis, B. B.

J. D. Fowlkes, R. Winkler, B. B. Lewis, M. G. Stanford, H. Plank, and P. D. Rack, “Simulation-guided 3D nanomanufacturing via focused electron beam induced deposition,” ACS Nano 10, 6163–6172 (2016).
[Crossref]

Linden, S.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, M. Wegener, and G. V. Freymann, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325, 1513–1515 (2009).
[Crossref]

Liu, N.

X. Duan, S. Yue, and N. Liu, “Understanding complex chiral plasmonics,” Nanoscale 7, 17237–17243 (2015).
[Crossref]

Liu, Y.

L. Kang, S. Lan, Y. Cui, S. P. Rodrigues, Y. Liu, D. H. Werner, and W. Cai, “An active metamaterial platform for chiral responsive optoelectronics,” Adv. Mater. 27, 4377–4383 (2015).
[Crossref]

Maier, S. A.

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

Manzoni, A.

C. Haverkamp, K. Höflich, S. Jäckle, A. Manzoni, and S. Christiansen, “Plasmonic gold helices for the visible range fabricated by oxygen plasma purification of electron beam induced deposits,” Nanotechnology 28, 55303 (2017).
[Crossref]

Mariotte, F.

S. A. Tretyakov, F. Mariotte, S. Member, C. R. Simovski, T. G. Kharina, and J.-P. Heliot, “Analytical antenna model for chiral scatterers: comparison with numerical and experimental data,” IEEE Trans. Antennas Propag. 44, 1006–1014 (1996).
[Crossref]

Mark, A. G.

A. G. Mark, J. G. Gibbs, T.-C. Lee, and P. Fischer, “Hybrid nanocolloids with programmed three-dimensional shape and material composition,” Nat. Mater. 12, 802–807 (2013).
[Crossref]

J. G. Gibbs, A. G. Mark, S. Eslami, and P. Fischer, “Plasmonic nanohelix metamaterials with tailorable giant circular dichroism,” Appl. Phys. Lett. 103, 103–106 (2013).
[Crossref]

Mccloskey, D.

J. M. Caridad, D. Mccloskey, F. Rossella, V. Bellani, J. F. Donegan, and V. Krstic, “Effective wavelength scaling of and damping in plasmonic helical antennae,” ACS Photon. 2, 675 (2015).
[Crossref]

Melngailis, J.

I. Utke, P. Hoffmann, and J. Melngailis, “Gas-assisted focused electron beam and ion beam processing and fabrication,” J. Vac. Sci. Technol. B 26, 1197–1276 (2008).
[Crossref]

Member, S.

S. A. Tretyakov, F. Mariotte, S. Member, C. R. Simovski, T. G. Kharina, and J.-P. Heliot, “Analytical antenna model for chiral scatterers: comparison with numerical and experimental data,” IEEE Trans. Antennas Propag. 44, 1006–1014 (1996).
[Crossref]

Menzel, C.

C. Menzel, C. Helgert, C. Rockstuhl, E. B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett. 104, 253902 (2010).
[Crossref]

Metzger, B.

X. Yin, M. Schäferling, B. Metzger, and H. Giessen, “Interpreting chiral nanophotonic spectra: the plasmonic Born–Kuhn model,” Nano Lett. 13, 6238–6243 (2013).
[Crossref]

Miller, O. D.

Mun, J.

H.-E. Lee, H.-Y. Ahn, J. Mun, Y. Y. Lee, M. Kim, N. H. Cho, K. Chang, W. S. Kim, J. Rho, and K. T. Nam, “Amino-acid- and peptide-directed synthesis of chiral plasmonic gold nanoparticles,” Nature 556, 360–365 (2018).
[Crossref]

Nam, K. T.

H.-E. Lee, H.-Y. Ahn, J. Mun, Y. Y. Lee, M. Kim, N. H. Cho, K. Chang, W. S. Kim, J. Rho, and K. T. Nam, “Amino-acid- and peptide-directed synthesis of chiral plasmonic gold nanoparticles,” Nature 556, 360–365 (2018).
[Crossref]

Novotny, L.

L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett. 98, 266802 (2007).
[Crossref]

L. Novotny and B. Hecht, Principles of Nano-Optics, 2nd ed. (Cambridge University, 2012).

Panuski, P. W.

S. P. Rodrigues, S. Lan, L. Kang, Y. Cui, P. W. Panuski, S. Wang, A. M. Urbas, and W. Cai, “Intensity-dependent modulation of optically active signals in a chiral metamaterial,” Nat. Commun. 8, 14602 (2017).
[Crossref]

Pertsch, T.

C. Menzel, C. Helgert, C. Rockstuhl, E. B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett. 104, 253902 (2010).
[Crossref]

R. Vogelgesang, R. T. Weitz, C. Rockstuhl, C. Etrich, T. Pertsch, F. Lederer, K. Kern, and J. Dorfmüller, “Fabry-Pérot resonances in one-dimensional plasmonic,” Nano Lett. 9, 2372–2377 (2009).
[Crossref]

Plank, H.

J. D. Fowlkes, R. Winkler, B. B. Lewis, M. G. Stanford, H. Plank, and P. D. Rack, “Simulation-guided 3D nanomanufacturing via focused electron beam induced deposition,” ACS Nano 10, 6163–6172 (2016).
[Crossref]

Polimeridis, A. G.

Qu, Y.

Y. Qu, L. Huang, L. Wang, and Z. Zhang, “Giant circular dichroism induced by tunable resonance in twisted Z-shaped nanostructure,” Opt. Express 25, 5480–5487 (2017).
[Crossref]

Z. Wang, F. Cheng, T. Winsor, Y. Wang, X. Wen, Y. Qu, T. Fu, and Z. Zhang, “Direct and indirect coupling mechanisms in a chiral plasmonic system,” J. Phys. D 49, 405104 (2016).
[Crossref]

Rack, P. D.

J. D. Fowlkes, R. Winkler, B. B. Lewis, M. G. Stanford, H. Plank, and P. D. Rack, “Simulation-guided 3D nanomanufacturing via focused electron beam induced deposition,” ACS Nano 10, 6163–6172 (2016).
[Crossref]

Razinskas, G.

E. Krauss, G. Razinskas, D. Köck, S. Grossmann, and B. Hecht, “Reversible mapping and sorting the spin of photons on the nanoscale: a spin-optical nanodevice,” Nano Lett. 19, 3364–3369 (2019).
[Crossref]

Rho, J.

H.-E. Lee, H.-Y. Ahn, J. Mun, Y. Y. Lee, M. Kim, N. H. Cho, K. Chang, W. S. Kim, J. Rho, and K. T. Nam, “Amino-acid- and peptide-directed synthesis of chiral plasmonic gold nanoparticles,” Nature 556, 360–365 (2018).
[Crossref]

Rill, M. S.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, M. Wegener, and G. V. Freymann, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325, 1513–1515 (2009).
[Crossref]

Rockstuhl, C.

I. Fernandez-Corbaton, M. Fruhnert, and C. Rockstuhl, “Objects of maximum electromagnetic chirality,” Phys. Rev. X 6, 031013 (2016).
[Crossref]

C. Menzel, C. Helgert, C. Rockstuhl, E. B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett. 104, 253902 (2010).
[Crossref]

R. Vogelgesang, R. T. Weitz, C. Rockstuhl, C. Etrich, T. Pertsch, F. Lederer, K. Kern, and J. Dorfmüller, “Fabry-Pérot resonances in one-dimensional plasmonic,” Nano Lett. 9, 2372–2377 (2009).
[Crossref]

C. Rockstuhl, F. Lederer, C. Etrich, T. Zentgraf, J. J. Kuhl, and H. Giessen, “On the reinterpretation of resonances in split-ring-resonators at normal incidence,” Opt. Express 14, 8827–8836 (2006).
[Crossref]

Rodrigues, S.

Y. Cui, L. Kang, S. Lan, S. Rodrigues, and W. Cai, “Giant chiral optical response from a twisted-arc metamaterial,” Nano Lett. 14, 1021–1025 (2014).
[Crossref]

Rodrigues, S. P.

S. P. Rodrigues, S. Lan, L. Kang, Y. Cui, P. W. Panuski, S. Wang, A. M. Urbas, and W. Cai, “Intensity-dependent modulation of optically active signals in a chiral metamaterial,” Nat. Commun. 8, 14602 (2017).
[Crossref]

L. Kang, S. Lan, Y. Cui, S. P. Rodrigues, Y. Liu, D. H. Werner, and W. Cai, “An active metamaterial platform for chiral responsive optoelectronics,” Adv. Mater. 27, 4377–4383 (2015).
[Crossref]

Rossella, F.

J. M. Caridad, D. Mccloskey, F. Rossella, V. Bellani, J. F. Donegan, and V. Krstic, “Effective wavelength scaling of and damping in plasmonic helical antennae,” ACS Photon. 2, 675 (2015).
[Crossref]

Rotenberg, N.

D. Kosters, A. de Hoogh, H. Zeijlemaker, H. Acar, N. Rotenberg, and L. Kuipers, “Core-shell plasmonic nanohelices,” ACS Photon. 4, 1858–1863 (2017).
[Crossref]

Saile, V.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, M. Wegener, and G. V. Freymann, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325, 1513–1515 (2009).
[Crossref]

Schäferling, M.

M. Schäferling, X. Yin, N. Engheta, and H. Giessen, “Helical plasmonic nanostructures as prototypical chiral near-field sources,” ACS Photon. 1, 530–537 (2014).
[Crossref]

X. Yin, M. Schäferling, B. Metzger, and H. Giessen, “Interpreting chiral nanophotonic spectra: the plasmonic Born–Kuhn model,” Nano Lett. 13, 6238–6243 (2013).
[Crossref]

B. Frank, X. Yin, M. Schäferling, J. Zhao, S. M. Hein, P. V. Braun, and H. Giessen, “Large-area 3D chiral plasmonic structures,” ACS Nano 7, 6321–6329 (2013).
[Crossref]

Sibilia, C.

J. T. Collins, C. Kuppe, D. C. Hooper, C. Sibilia, M. Centini, and V. K. Valev, “Chirality and chiroptical effects in metal nanostructures: fundamentals and current trends,” Adv. Opt. Mater. 5, 1700182 (2017).
[Crossref]

Simovski, C. R.

S. A. Tretyakov, F. Mariotte, S. Member, C. R. Simovski, T. G. Kharina, and J.-P. Heliot, “Analytical antenna model for chiral scatterers: comparison with numerical and experimental data,” IEEE Trans. Antennas Propag. 44, 1006–1014 (1996).
[Crossref]

Soljacic, M.

Stanford, M. G.

J. D. Fowlkes, R. Winkler, B. B. Lewis, M. G. Stanford, H. Plank, and P. D. Rack, “Simulation-guided 3D nanomanufacturing via focused electron beam induced deposition,” ACS Nano 10, 6163–6172 (2016).
[Crossref]

Tang, Y.

Y. Tang and A. E. Cohen, “Optical chirality and its interaction with matter,” Phys. Rev. Lett. 104, 163901 (2010).
[Crossref]

Tasco, V.

M. Esposito, V. Tasco, and M. Cuscuna, “Nanoscale 3D chiral plasmonic helices with circular dichroism at visible frequencies,” ACS Photon. 17, 105–114 (2014).
[Crossref]

Thiel, M.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, M. Wegener, and G. V. Freymann, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325, 1513–1515 (2009).
[Crossref]

Tretyakov, S. A.

S. A. Tretyakov, F. Mariotte, S. Member, C. R. Simovski, T. G. Kharina, and J.-P. Heliot, “Analytical antenna model for chiral scatterers: comparison with numerical and experimental data,” IEEE Trans. Antennas Propag. 44, 1006–1014 (1996).
[Crossref]

Tünnermann, A.

C. Menzel, C. Helgert, C. Rockstuhl, E. B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett. 104, 253902 (2010).
[Crossref]

Urbas, A. M.

S. P. Rodrigues, S. Lan, L. Kang, Y. Cui, P. W. Panuski, S. Wang, A. M. Urbas, and W. Cai, “Intensity-dependent modulation of optically active signals in a chiral metamaterial,” Nat. Commun. 8, 14602 (2017).
[Crossref]

Utke, I.

I. Utke, P. Hoffmann, and J. Melngailis, “Gas-assisted focused electron beam and ion beam processing and fabrication,” J. Vac. Sci. Technol. B 26, 1197–1276 (2008).
[Crossref]

Valev, V. K.

J. T. Collins, C. Kuppe, D. C. Hooper, C. Sibilia, M. Centini, and V. K. Valev, “Chirality and chiroptical effects in metal nanostructures: fundamentals and current trends,” Adv. Opt. Mater. 5, 1700182 (2017).
[Crossref]

Vogelgesang, R.

R. Vogelgesang, R. T. Weitz, C. Rockstuhl, C. Etrich, T. Pertsch, F. Lederer, K. Kern, and J. Dorfmüller, “Fabry-Pérot resonances in one-dimensional plasmonic,” Nano Lett. 9, 2372–2377 (2009).
[Crossref]

Vollmer, M.

U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters, Vol. 25 of Springer Series in Material Science (Springer, 2005).

von Freymann, G.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, M. Wegener, and G. V. Freymann, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325, 1513–1515 (2009).
[Crossref]

Wang, L.

Wang, S.

S. P. Rodrigues, S. Lan, L. Kang, Y. Cui, P. W. Panuski, S. Wang, A. M. Urbas, and W. Cai, “Intensity-dependent modulation of optically active signals in a chiral metamaterial,” Nat. Commun. 8, 14602 (2017).
[Crossref]

Wang, Y.

Z. Wang, F. Cheng, T. Winsor, Y. Wang, X. Wen, Y. Qu, T. Fu, and Z. Zhang, “Direct and indirect coupling mechanisms in a chiral plasmonic system,” J. Phys. D 49, 405104 (2016).
[Crossref]

Wang, Z.

Z. Wang, F. Cheng, T. Winsor, Y. Wang, X. Wen, Y. Qu, T. Fu, and Z. Zhang, “Direct and indirect coupling mechanisms in a chiral plasmonic system,” J. Phys. D 49, 405104 (2016).
[Crossref]

Wegener, M.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, M. Wegener, and G. V. Freymann, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325, 1513–1515 (2009).
[Crossref]

Weitz, R. T.

R. Vogelgesang, R. T. Weitz, C. Rockstuhl, C. Etrich, T. Pertsch, F. Lederer, K. Kern, and J. Dorfmüller, “Fabry-Pérot resonances in one-dimensional plasmonic,” Nano Lett. 9, 2372–2377 (2009).
[Crossref]

Wen, X.

Z. Wang, F. Cheng, T. Winsor, Y. Wang, X. Wen, Y. Qu, T. Fu, and Z. Zhang, “Direct and indirect coupling mechanisms in a chiral plasmonic system,” J. Phys. D 49, 405104 (2016).
[Crossref]

Werner, D. H.

L. Kang, S. Lan, Y. Cui, S. P. Rodrigues, Y. Liu, D. H. Werner, and W. Cai, “An active metamaterial platform for chiral responsive optoelectronics,” Adv. Mater. 27, 4377–4383 (2015).
[Crossref]

Winkler, R.

J. D. Fowlkes, R. Winkler, B. B. Lewis, M. G. Stanford, H. Plank, and P. D. Rack, “Simulation-guided 3D nanomanufacturing via focused electron beam induced deposition,” ACS Nano 10, 6163–6172 (2016).
[Crossref]

Winsor, T.

Z. Wang, F. Cheng, T. Winsor, Y. Wang, X. Wen, Y. Qu, T. Fu, and Z. Zhang, “Direct and indirect coupling mechanisms in a chiral plasmonic system,” J. Phys. D 49, 405104 (2016).
[Crossref]

Wozniak, P.

P. Woźniak, I. De Leon, K. Höflich, C. Haverkamp, S. Christiansen, G. Leuchs, and P. Banzer, “Chiroptical response of a single plasmonic nanohelix,” Optics Express 26, 1513–1515 (2018).
[Crossref]

Yang, R. B.

K. Höflich, R. B. Yang, A. Berger, G. Leuchs, and S. Christiansen, “The direct writing of plasmonic gold nanostructures via electron beam induced deposition,” Adv. Mater. 23, 2657–2661 (2011).
[Crossref]

Yin, X.

M. Schäferling, X. Yin, N. Engheta, and H. Giessen, “Helical plasmonic nanostructures as prototypical chiral near-field sources,” ACS Photon. 1, 530–537 (2014).
[Crossref]

X. Yin, M. Schäferling, B. Metzger, and H. Giessen, “Interpreting chiral nanophotonic spectra: the plasmonic Born–Kuhn model,” Nano Lett. 13, 6238–6243 (2013).
[Crossref]

B. Frank, X. Yin, M. Schäferling, J. Zhao, S. M. Hein, P. V. Braun, and H. Giessen, “Large-area 3D chiral plasmonic structures,” ACS Nano 7, 6321–6329 (2013).
[Crossref]

Yue, S.

X. Duan, S. Yue, and N. Liu, “Understanding complex chiral plasmonics,” Nanoscale 7, 17237–17243 (2015).
[Crossref]

Zeijlemaker, H.

D. Kosters, A. de Hoogh, H. Zeijlemaker, H. Acar, N. Rotenberg, and L. Kuipers, “Core-shell plasmonic nanohelices,” ACS Photon. 4, 1858–1863 (2017).
[Crossref]

Zentgraf, T.

Zhang, Z.

Y. Qu, L. Huang, L. Wang, and Z. Zhang, “Giant circular dichroism induced by tunable resonance in twisted Z-shaped nanostructure,” Opt. Express 25, 5480–5487 (2017).
[Crossref]

Z. Wang, F. Cheng, T. Winsor, Y. Wang, X. Wen, Y. Qu, T. Fu, and Z. Zhang, “Direct and indirect coupling mechanisms in a chiral plasmonic system,” J. Phys. D 49, 405104 (2016).
[Crossref]

Zhang, Z. Y.

Z. Y. Zhang and Y. P. Zhao, “The visible extinction peaks of Ag nanohelixes: a periodic effective dipole model,” Appl. Phys. Lett. 98, 083102 (2011).
[Crossref]

Zhao, J.

B. Frank, X. Yin, M. Schäferling, J. Zhao, S. M. Hein, P. V. Braun, and H. Giessen, “Large-area 3D chiral plasmonic structures,” ACS Nano 7, 6321–6329 (2013).
[Crossref]

Zhao, Y. P.

Z. Y. Zhang and Y. P. Zhao, “The visible extinction peaks of Ag nanohelixes: a periodic effective dipole model,” Appl. Phys. Lett. 98, 083102 (2011).
[Crossref]

ACS Nano (2)

B. Frank, X. Yin, M. Schäferling, J. Zhao, S. M. Hein, P. V. Braun, and H. Giessen, “Large-area 3D chiral plasmonic structures,” ACS Nano 7, 6321–6329 (2013).
[Crossref]

J. D. Fowlkes, R. Winkler, B. B. Lewis, M. G. Stanford, H. Plank, and P. D. Rack, “Simulation-guided 3D nanomanufacturing via focused electron beam induced deposition,” ACS Nano 10, 6163–6172 (2016).
[Crossref]

ACS Photon. (4)

M. Esposito, V. Tasco, and M. Cuscuna, “Nanoscale 3D chiral plasmonic helices with circular dichroism at visible frequencies,” ACS Photon. 17, 105–114 (2014).
[Crossref]

D. Kosters, A. de Hoogh, H. Zeijlemaker, H. Acar, N. Rotenberg, and L. Kuipers, “Core-shell plasmonic nanohelices,” ACS Photon. 4, 1858–1863 (2017).
[Crossref]

M. Schäferling, X. Yin, N. Engheta, and H. Giessen, “Helical plasmonic nanostructures as prototypical chiral near-field sources,” ACS Photon. 1, 530–537 (2014).
[Crossref]

J. M. Caridad, D. Mccloskey, F. Rossella, V. Bellani, J. F. Donegan, and V. Krstic, “Effective wavelength scaling of and damping in plasmonic helical antennae,” ACS Photon. 2, 675 (2015).
[Crossref]

Adv. Mater. (2)

L. Kang, S. Lan, Y. Cui, S. P. Rodrigues, Y. Liu, D. H. Werner, and W. Cai, “An active metamaterial platform for chiral responsive optoelectronics,” Adv. Mater. 27, 4377–4383 (2015).
[Crossref]

K. Höflich, R. B. Yang, A. Berger, G. Leuchs, and S. Christiansen, “The direct writing of plasmonic gold nanostructures via electron beam induced deposition,” Adv. Mater. 23, 2657–2661 (2011).
[Crossref]

Adv. Opt. Mater. (1)

J. T. Collins, C. Kuppe, D. C. Hooper, C. Sibilia, M. Centini, and V. K. Valev, “Chirality and chiroptical effects in metal nanostructures: fundamentals and current trends,” Adv. Opt. Mater. 5, 1700182 (2017).
[Crossref]

Appl. Phys. Lett. (2)

Z. Y. Zhang and Y. P. Zhao, “The visible extinction peaks of Ag nanohelixes: a periodic effective dipole model,” Appl. Phys. Lett. 98, 083102 (2011).
[Crossref]

J. G. Gibbs, A. G. Mark, S. Eslami, and P. Fischer, “Plasmonic nanohelix metamaterials with tailorable giant circular dichroism,” Appl. Phys. Lett. 103, 103–106 (2013).
[Crossref]

IEEE Trans. Antennas Propag. (1)

S. A. Tretyakov, F. Mariotte, S. Member, C. R. Simovski, T. G. Kharina, and J.-P. Heliot, “Analytical antenna model for chiral scatterers: comparison with numerical and experimental data,” IEEE Trans. Antennas Propag. 44, 1006–1014 (1996).
[Crossref]

J. Phys. Chem. C (1)

Z. Fan and A. O. Govorov, “Helical metal nanoparticle assemblies with defects: plasmonic chirality and circular dichroism,” J. Phys. Chem. C 115, 13254–13261 (2011).
[Crossref]

J. Phys. D (1)

Z. Wang, F. Cheng, T. Winsor, Y. Wang, X. Wen, Y. Qu, T. Fu, and Z. Zhang, “Direct and indirect coupling mechanisms in a chiral plasmonic system,” J. Phys. D 49, 405104 (2016).
[Crossref]

J. Vac. Sci. Technol. B (1)

I. Utke, P. Hoffmann, and J. Melngailis, “Gas-assisted focused electron beam and ion beam processing and fabrication,” J. Vac. Sci. Technol. B 26, 1197–1276 (2008).
[Crossref]

Nano Lett. (5)

E. Krauss, G. Razinskas, D. Köck, S. Grossmann, and B. Hecht, “Reversible mapping and sorting the spin of photons on the nanoscale: a spin-optical nanodevice,” Nano Lett. 19, 3364–3369 (2019).
[Crossref]

R. Vogelgesang, R. T. Weitz, C. Rockstuhl, C. Etrich, T. Pertsch, F. Lederer, K. Kern, and J. Dorfmüller, “Fabry-Pérot resonances in one-dimensional plasmonic,” Nano Lett. 9, 2372–2377 (2009).
[Crossref]

Z. Fan and A. O. Govorov, “Plasmonic circular dichroism of chiral metal nanoparticle assemblies,” Nano Lett. 10, 2580–2587 (2010).
[Crossref]

X. Yin, M. Schäferling, B. Metzger, and H. Giessen, “Interpreting chiral nanophotonic spectra: the plasmonic Born–Kuhn model,” Nano Lett. 13, 6238–6243 (2013).
[Crossref]

Y. Cui, L. Kang, S. Lan, S. Rodrigues, and W. Cai, “Giant chiral optical response from a twisted-arc metamaterial,” Nano Lett. 14, 1021–1025 (2014).
[Crossref]

Nanoscale (1)

X. Duan, S. Yue, and N. Liu, “Understanding complex chiral plasmonics,” Nanoscale 7, 17237–17243 (2015).
[Crossref]

Nanotechnology (2)

K. Höflich, M. Becker, G. Leuchs, and S. Christiansen, “Plasmonic dimer antennas for surface enhanced Raman scattering,” Nanotechnology 23, 185303 (2012).
[Crossref]

C. Haverkamp, K. Höflich, S. Jäckle, A. Manzoni, and S. Christiansen, “Plasmonic gold helices for the visible range fabricated by oxygen plasma purification of electron beam induced deposits,” Nanotechnology 28, 55303 (2017).
[Crossref]

Nat. Commun. (1)

S. P. Rodrigues, S. Lan, L. Kang, Y. Cui, P. W. Panuski, S. Wang, A. M. Urbas, and W. Cai, “Intensity-dependent modulation of optically active signals in a chiral metamaterial,” Nat. Commun. 8, 14602 (2017).
[Crossref]

Nat. Mater. (1)

A. G. Mark, J. G. Gibbs, T.-C. Lee, and P. Fischer, “Hybrid nanocolloids with programmed three-dimensional shape and material composition,” Nat. Mater. 12, 802–807 (2013).
[Crossref]

Nature (1)

H.-E. Lee, H.-Y. Ahn, J. Mun, Y. Y. Lee, M. Kim, N. H. Cho, K. Chang, W. S. Kim, J. Rho, and K. T. Nam, “Amino-acid- and peptide-directed synthesis of chiral plasmonic gold nanoparticles,” Nature 556, 360–365 (2018).
[Crossref]

Opt. Express (3)

Optics Express (1)

P. Woźniak, I. De Leon, K. Höflich, C. Haverkamp, S. Christiansen, G. Leuchs, and P. Banzer, “Chiroptical response of a single plasmonic nanohelix,” Optics Express 26, 1513–1515 (2018).
[Crossref]

Phys. Rev. B (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

Phys. Rev. Lett. (4)

Y. Tang and A. E. Cohen, “Optical chirality and its interaction with matter,” Phys. Rev. Lett. 104, 163901 (2010).
[Crossref]

T. Feichtner, S. Christiansen, and B. Hecht, “Mode matching for optical antennas,” Phys. Rev. Lett. 119, 217401 (2017).
[Crossref]

L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett. 98, 266802 (2007).
[Crossref]

C. Menzel, C. Helgert, C. Rockstuhl, E. B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett. 104, 253902 (2010).
[Crossref]

Phys. Rev. X (1)

I. Fernandez-Corbaton, M. Fruhnert, and C. Rockstuhl, “Objects of maximum electromagnetic chirality,” Phys. Rev. X 6, 031013 (2016).
[Crossref]

Science (1)

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, M. Wegener, and G. V. Freymann, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325, 1513–1515 (2009).
[Crossref]

Trans. Faraday Soc. (1)

W. Kuhn, “The physical significance of optical rotatory power,” Trans. Faraday Soc. 26, 293 (1930).
[Crossref]

Other (11)

E. Hecht, Optics, 4th ed. (Addison Wesley, 1998).

L. Novotny and B. Hecht, Principles of Nano-Optics, 2nd ed. (Cambridge University, 2012).

Zhang et al. employ an inverted definition of LCP and RCP light.

C. A. Balanis, Antenna Theory. Analysis and Design (Harper & Row, 1982).

The plasmonic helix works similar to a helical antenna in axial or end-fire mode.

U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters, Vol. 25 of Springer Series in Material Science (Springer, 2005).

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

According to Hecht [35] RCP light is defined by an electric field vector rotating clockwise at a fixed point in space when looking towards the light source. This is equivalent to a right-handed helix formed by the electric field vector at a fixed time.

L. D. Barron, Molecular Light Scattering and Optical Activity, 2nd ed. (Cambridge University, 2009).

“Python scripts for the analytical calculations and the design tool are available under,” https://sourceforge.net/projects/plasmonic-helix-1dmodel/ .

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).

Supplementary Material (1)

NameDescription
» Supplement 1       Supplemental document

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Geometry of a helical plasmonic antenna. A single plasmonic helix of m turns is illuminated by circularly polarized light propagating along the helix axis.
Fig. 2.
Fig. 2. Resonant behavior of a helical plasmonic antenna. (a) For negligible near-field coupling between neighboring turns, the eigenmodes of the antenna coincide with those of a straight plasmonic wire of length L being the wire length of the helix. The charge displacement associated with the corresponding plasmonic Fabry–Perot resonances is indicated by the + and − signs. (b) The overlap of the incident light vectors with the mode patterns on the helical geometry determines the excitation efficiency of the respective eigenmode. (c) Finally, the ratios between three different scales determine the actual excitation efficiency.
Fig. 3.
Fig. 3. Excitation efficiencies calculated from the 1D mode-matching model for a single-turn helix. (a) Efficient excitation of the fundamental mode occurs for matching handedness of antenna and incident light. (b) For opposite handedness, the n=3 mode can be excited. The insets show numerically calculated plots of surface charge distributions at the surface of the helix and the corresponding incident field vectors. The n=2 mode is excited for either handedness and marks the toggle point between left-handed and right-handed excitation.
Fig. 4.
Fig. 4. Comparison of 1D mode matching to full-field modeling. (a) Analytically determined resonance positions and strengths for a right-handed four-turn helix are displayed as dots. The dot height is proportional to the area of the excited modes. The curves display the corresponding extinction efficiencies from full-field modeling. For both dots and curves, black (gray) corresponds to the incidence of left-(right-)circularly polarized light. (b) The plotted surface charge distributions from modeling show the expected mode order.
Fig. 5.
Fig. 5. Single plasmonic helices in experiment. (a) Scanning electron micrographs show prototypical helical plasmonic nanoantennas. The investigated silver helices have three to five turns for a radius of 60 nm and a wire radius of 32 nm. (b) Circularly polarized light is focused onto the sample by a Cassegrain objective. A second Cassegrain focuses the transmitted light onto a pinhole, which cuts away the out-of-focus signal contribution to allow for spectroscopic investigation of single nanostructures. (c) Extinction maps of a helix with four turns for two different wavelengths under incidence of both circular polarization states. While at 1000 nm the right-handed helix responds to right-circularly polarized (RCP) light, the helix is sensitive to left-circularly polarized light (LCP) at 600 nm. (d) Comparison of measured dissymmetry factors to full-field modeling.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

λeff=2nL=2mn4π2rh2+h2,n=1,2,.
λeff(λ)=2π/γ(λ)4rwire/n.
Pext,n=12ReVjwire,n*(r)·Einc(r)dV.
Pext,n±=±14mhE0j0,n×{sinc[mh(kkhkFP]sinc[mh(kkh+kFP]},
gCext=2(CextLCPCextRCP)CextLCP+CextRCP,
g1T=2(TRCPTLCP)2TLCPTRCP,

Metrics