Abstract

Photonic nanocavities with high quality (Q) factors are essential components for integrated optical circuits. The use of crystalline silicon carbide (SiC) for such nanocavities enables the realization of devices with superior properties. We fabricate ultrahigh-Q SiC photonic crystal nanocavities by etching air holes into a 4H-SiC slab that is prepared without using hydrogen ion implantation, which usually causes higher absorption losses. In addition, compared to usual designs, a relatively thin slab is utilized to avoid losses through cross-polarized mode coupling induced by the tapered air holes. We obtain a heterostructure nanocavity with a high experimental Q factor of 6.3×105, which is 16 times larger than the highest Q among the previously reported values for nanocavities based on crystalline SiC. We also show that our nanocavity exhibits a high normalized second-harmonic conversion efficiency of 1900%/W.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Ultrahigh-Q photonic crystal nanocavities fabricated by CMOS process technologies

Kohei Ashida, Makoto Okano, Minoru Ohtsuka, Miyoshi Seki, Nobuyuki Yokoyama, Keiji Koshino, Masahiko Mori, Takashi Asano, Susumu Noda, and Yasushi Takahashi
Opt. Express 25(15) 18165-18174 (2017)

Optimization of photonic crystal nanocavities based on deep learning

Takashi Asano and Susumu Noda
Opt. Express 26(25) 32704-32717 (2018)

Photonic crystal nanocavity with a Q factor exceeding eleven million

Takashi Asano, Yoshiaki Ochi, Yasushi Takahashi, Katsuhiro Kishimoto, and Susumu Noda
Opt. Express 25(3) 1769-1777 (2017)

References

  • View by:
  • |
  • |
  • |

  1. S. Noda, A. Chutinan, and M. Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure,” Nature 407, 608–610 (2000).
    [Crossref]
  2. T. Asano and S. Noda, “Photonic crystal devices in silicon photonics,” Proc. IEEE 106, 2183–2195 (2018).
    [Crossref]
  3. Y. A. Vlasov, “Silicon CMOS-integrated nano-photonics for computer and data communications beyond 100G,” IEEE Commun. Mag. 50(2), s67–s72 (2012).
    [Crossref]
  4. Y. Shen, N. C. Harris, S. Skirlo, M. Prabhu, T. Baehr-Jones, M. Hochberg, X. Sun, S. Zhao, H. Larochelle, D. Englund, and M. Soljačić, “Deep learning with coherent nanophotonic circuits,” Nat. Photonics 11, 441–446 (2017).
    [Crossref]
  5. T. Uesugi, B.-S. Song, T. Asano, and S. Noda, “Investigation of optical nonlinearities in an ultra-high-Q Si nanocavity in a two-dimensional photonic crystal slab,” Opt. Express 14, 377–386 (2006).
    [Crossref]
  6. B.-S. Song, S. Yamada, T. Asano, and S. Noda, “Demonstration of two-dimensional photonic crystals based on silicon carbide,” Opt. Express 19, 11084–11089 (2011).
    [Crossref]
  7. S. Yamada, B.-S. Song, S. Jeon, J. Upham, Y. Tanaka, T. Asano, and S. Noda, “Second-harmonic generation in a silicon-carbide-based photonic crystal nanocavity,” Opt. Lett. 39, 1768–1771 (2014).
    [Crossref]
  8. J. Cardenas, M. Yu, Y. Okawachi, C. B. Poitras, R. K. W. Lau, A. Dutt, A. L. Gaeta, and M. Lipson, “Optical nonlinearities in high-confinement silicon carbide waveguides,” Opt. Lett. 40, 4138–4141 (2015).
    [Crossref]
  9. B.-S. Song, S. Jeon, H. Kim, D. D. Kang, T. Asano, and S. Noda, “High-Q-factor nanobeam photonic crystal cavities in bulk silicon carbide,” Appl. Phys. Lett. 113, 026849 (2018).
    [Crossref]
  10. D. O. Bracher and E. L. Hu, “Fabrication of high-Q nanobeam photonic crystals in epitaxially grown 4H-SiC,” Nano Lett. 15, 6202–6207 (2015).
    [Crossref]
  11. A. P. Magyar, D. Bracher, J. C. Lee, I. Aharonovich, and E. L. Hu, “High quality SiC microdisk resonators fabricated from monolithic epilayer wafers,” Appl. Phys. Lett. 104, 051109 (2014).
    [Crossref]
  12. J. Y. Lee, X. Lu, and Q. Lin, “High-Q silicon carbide photonic-crystal cavities,” Appl. Phys. Lett. 106, 041106 (2015).
    [Crossref]
  13. X. Lu, J. Y. Lee, S. Rogers, and Q. Lin, “Optical Kerr nonlinearity in a high-Q silicon carbide microresonator,” Opt. Express 22, 30826–30832 (2014).
    [Crossref]
  14. G. Calusine, A. Politi, and D. D. Awschalom, “Silicon carbide photonic crystal cavities with integrated color centers,” Appl. Phys. Lett. 105, 011123 (2014).
    [Crossref]
  15. X. Lu, J. Y. Lee, P. X. L. Feng, and Q. Lin, “High Q silicon carbide microdisk resonator,” Appl. Phys. Lett. 104, 181103 (2014).
    [Crossref]
  16. T. Fan, H. Moradinejad, X. Wu, A. A. Eftekhar, and A. Adibi, “High-Q integrated photonic microresonators on 3C-SiC-on-insulator (SiCOI) platform,” Opt. Express 26, 25814–25826 (2018).
    [Crossref]
  17. M. J. Burek, Y. Chu, M. S. Z. Liddy, P. Patel, J. Rochman, S. Meesala, W. Hong, Q. Quan, M. D. Lukin, and M. Lončar, “High-Q optical nanocavities in bulk single-crystal diamond,” Nat. Commun. 5, 5718 (2014).
    [Crossref]
  18. K. Rivoire, Z. Lin, F. Hatami, W. T. Masselink, and J. Vučković, “Second harmonic generation in gallium phosphide photonic crystal nanocavities with ultralow continuous wave pump power,” Opt. Express 17, 22609–22615 (2009).
    [Crossref]
  19. X. Liu, A. W. Bruch, Z. Gong, J. Lu, J. B. Surya, L. Zhang, J. Wang, J. Yan, and H. X. Tang, “Ultra-high-Q UV microring resonators based on single-crystalline AlN platform,” Optica 5, 1279–1282 (2018).
    [Crossref]
  20. M. H. P. Pfeiffer, J. Liu, A. S. Raja, T. Morais, B. Ghadiani, and T. J. Kippenberg, “Ultra-smooth silicon nitride waveguides based on the Damascene reflow process: fabrication and loss origins,” Optica 5, 884–892 (2018).
    [Crossref]
  21. H. Sato, M. Abe, I. Shoji, J. Suda, and T. Kondo, “Accurate measurements of second-order nonlinear optical coefficients of 6H and 4H silicon carbide,” J. Opt. Soc. Am. B 26, 1892–1896 (2009).
    [Crossref]
  22. F. Fuchs, V. A. Soltamov, S. Väth, P. G. Baranov, E. N. Mokhov, G. V. Astakhov, and V. Dyakonov, “Silicon carbide light-emitting diode as a prospective room temperature source for single photons,” Sci. Rep. 3, 1637 (2013).
    [Crossref]
  23. A. Lohrmann, B. C. Johnson, J. C. McCallum, and S. Castelletto, “A review on single photon sources in silicon carbide,” Rep. Prog. Phys. 80, 034502 (2017).
    [Crossref]
  24. W. F. Koehl, B. B. Buckley, F. J. Heremans, G. Calusine, and D. D. Awschalom, “Room temperature coherent control of defect spin qubits in silicon carbide,” Nature 479, 84–87 (2011).
    [Crossref]
  25. F.-F. Yan, J.-F. Wang, Q. Li, Z.-D. Cheng, J.-M. Cui, W.-Z. Liu, J.-S. Xu, C.-F. Li, and G.-C. Guo, “Coherent control of defect spins in silicon carbide above 550 K,” Phys. Rev. Appl. 10, 044042 (2018).
    [Crossref]
  26. V. Grivickas, J. Linnros, P. Grivickas, and A. Galeckas, “Band edge absorption, carrier recombination and transport measurements in 4H-SiC epilayers,” Mater. Sci. Eng. B 61–62, 197–201 (1999).
    [Crossref]
  27. Z. Hu, X. Liao, H. Diao, G. Kong, X. Zeng, and Y. Xu, “Amorphous silicon carbide films prepared by H2 diluted silane–methane plasma,” J. Cryst. Growth 264, 7–12 (2004).
    [Crossref]
  28. Y. Yamaguchi, S.-W. Jeon, B.-S. Song, Y. Tanaka, T. Asano, and S. Noda, “Analysis of Q-factors of structural imperfections in triangular cross-section nanobeam photonic crystal cavities,” J. Opt. Soc. Am. B 32, 1792–1796 (2015).
    [Crossref]
  29. S. Jeon, H. Kim, B.-S. Song, Y. Yamaguchi, T. Asano, and S. Noda, “Measurement of optical loss in nanophotonic waveguides using integrated cavities,” Opt. Lett. 41, 5486–5489 (2016).
    [Crossref]
  30. B.-S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4, 207–210 (2005).
    [Crossref]
  31. Y. Tanaka, T. Asano, Y. Akahane, B. S. Song, and S. Noda, “Theoretical investigation of a two-dimensional photonic crystal slab with truncated cone air holes,” Appl. Phys. Lett. 82, 1661–1663 (2003).
    [Crossref]
  32. F. J. Heremans, C. G. Yale, and D. D. Awschalom, “Control of spin defects in wide-bandgap semiconductors for quantum technologies,” Proc. IEEE 104, 2009–2023 (2016).
    [Crossref]
  33. H. Kim, S.-W. Jeon, and B.-S. Song, “Investigation of second-harmonic generation efficiency in a waveguide-side-coupled photonic nanocavity,” J. Opt. Soc. Am. B 33, 2010–2014 (2016).
    [Crossref]
  34. A. Rodriguez, M. Soljačić, J. D. Joannopoulos, and S. G. Johnson, “χ(2) and χ(3) harmonic generation at a critical power in inhomogeneous doubly resonant cavities,” Opt. Express 15, 7303–7318 (2007).
    [Crossref]

2018 (6)

T. Asano and S. Noda, “Photonic crystal devices in silicon photonics,” Proc. IEEE 106, 2183–2195 (2018).
[Crossref]

B.-S. Song, S. Jeon, H. Kim, D. D. Kang, T. Asano, and S. Noda, “High-Q-factor nanobeam photonic crystal cavities in bulk silicon carbide,” Appl. Phys. Lett. 113, 026849 (2018).
[Crossref]

F.-F. Yan, J.-F. Wang, Q. Li, Z.-D. Cheng, J.-M. Cui, W.-Z. Liu, J.-S. Xu, C.-F. Li, and G.-C. Guo, “Coherent control of defect spins in silicon carbide above 550 K,” Phys. Rev. Appl. 10, 044042 (2018).
[Crossref]

M. H. P. Pfeiffer, J. Liu, A. S. Raja, T. Morais, B. Ghadiani, and T. J. Kippenberg, “Ultra-smooth silicon nitride waveguides based on the Damascene reflow process: fabrication and loss origins,” Optica 5, 884–892 (2018).
[Crossref]

T. Fan, H. Moradinejad, X. Wu, A. A. Eftekhar, and A. Adibi, “High-Q integrated photonic microresonators on 3C-SiC-on-insulator (SiCOI) platform,” Opt. Express 26, 25814–25826 (2018).
[Crossref]

X. Liu, A. W. Bruch, Z. Gong, J. Lu, J. B. Surya, L. Zhang, J. Wang, J. Yan, and H. X. Tang, “Ultra-high-Q UV microring resonators based on single-crystalline AlN platform,” Optica 5, 1279–1282 (2018).
[Crossref]

2017 (2)

A. Lohrmann, B. C. Johnson, J. C. McCallum, and S. Castelletto, “A review on single photon sources in silicon carbide,” Rep. Prog. Phys. 80, 034502 (2017).
[Crossref]

Y. Shen, N. C. Harris, S. Skirlo, M. Prabhu, T. Baehr-Jones, M. Hochberg, X. Sun, S. Zhao, H. Larochelle, D. Englund, and M. Soljačić, “Deep learning with coherent nanophotonic circuits,” Nat. Photonics 11, 441–446 (2017).
[Crossref]

2016 (3)

2015 (4)

2014 (6)

A. P. Magyar, D. Bracher, J. C. Lee, I. Aharonovich, and E. L. Hu, “High quality SiC microdisk resonators fabricated from monolithic epilayer wafers,” Appl. Phys. Lett. 104, 051109 (2014).
[Crossref]

G. Calusine, A. Politi, and D. D. Awschalom, “Silicon carbide photonic crystal cavities with integrated color centers,” Appl. Phys. Lett. 105, 011123 (2014).
[Crossref]

X. Lu, J. Y. Lee, P. X. L. Feng, and Q. Lin, “High Q silicon carbide microdisk resonator,” Appl. Phys. Lett. 104, 181103 (2014).
[Crossref]

M. J. Burek, Y. Chu, M. S. Z. Liddy, P. Patel, J. Rochman, S. Meesala, W. Hong, Q. Quan, M. D. Lukin, and M. Lončar, “High-Q optical nanocavities in bulk single-crystal diamond,” Nat. Commun. 5, 5718 (2014).
[Crossref]

S. Yamada, B.-S. Song, S. Jeon, J. Upham, Y. Tanaka, T. Asano, and S. Noda, “Second-harmonic generation in a silicon-carbide-based photonic crystal nanocavity,” Opt. Lett. 39, 1768–1771 (2014).
[Crossref]

X. Lu, J. Y. Lee, S. Rogers, and Q. Lin, “Optical Kerr nonlinearity in a high-Q silicon carbide microresonator,” Opt. Express 22, 30826–30832 (2014).
[Crossref]

2013 (1)

F. Fuchs, V. A. Soltamov, S. Väth, P. G. Baranov, E. N. Mokhov, G. V. Astakhov, and V. Dyakonov, “Silicon carbide light-emitting diode as a prospective room temperature source for single photons,” Sci. Rep. 3, 1637 (2013).
[Crossref]

2012 (1)

Y. A. Vlasov, “Silicon CMOS-integrated nano-photonics for computer and data communications beyond 100G,” IEEE Commun. Mag. 50(2), s67–s72 (2012).
[Crossref]

2011 (2)

W. F. Koehl, B. B. Buckley, F. J. Heremans, G. Calusine, and D. D. Awschalom, “Room temperature coherent control of defect spin qubits in silicon carbide,” Nature 479, 84–87 (2011).
[Crossref]

B.-S. Song, S. Yamada, T. Asano, and S. Noda, “Demonstration of two-dimensional photonic crystals based on silicon carbide,” Opt. Express 19, 11084–11089 (2011).
[Crossref]

2009 (2)

2007 (1)

2006 (1)

2005 (1)

B.-S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4, 207–210 (2005).
[Crossref]

2004 (1)

Z. Hu, X. Liao, H. Diao, G. Kong, X. Zeng, and Y. Xu, “Amorphous silicon carbide films prepared by H2 diluted silane–methane plasma,” J. Cryst. Growth 264, 7–12 (2004).
[Crossref]

2003 (1)

Y. Tanaka, T. Asano, Y. Akahane, B. S. Song, and S. Noda, “Theoretical investigation of a two-dimensional photonic crystal slab with truncated cone air holes,” Appl. Phys. Lett. 82, 1661–1663 (2003).
[Crossref]

2000 (1)

S. Noda, A. Chutinan, and M. Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure,” Nature 407, 608–610 (2000).
[Crossref]

1999 (1)

V. Grivickas, J. Linnros, P. Grivickas, and A. Galeckas, “Band edge absorption, carrier recombination and transport measurements in 4H-SiC epilayers,” Mater. Sci. Eng. B 61–62, 197–201 (1999).
[Crossref]

Abe, M.

Adibi, A.

Aharonovich, I.

A. P. Magyar, D. Bracher, J. C. Lee, I. Aharonovich, and E. L. Hu, “High quality SiC microdisk resonators fabricated from monolithic epilayer wafers,” Appl. Phys. Lett. 104, 051109 (2014).
[Crossref]

Akahane, Y.

B.-S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4, 207–210 (2005).
[Crossref]

Y. Tanaka, T. Asano, Y. Akahane, B. S. Song, and S. Noda, “Theoretical investigation of a two-dimensional photonic crystal slab with truncated cone air holes,” Appl. Phys. Lett. 82, 1661–1663 (2003).
[Crossref]

Asano, T.

B.-S. Song, S. Jeon, H. Kim, D. D. Kang, T. Asano, and S. Noda, “High-Q-factor nanobeam photonic crystal cavities in bulk silicon carbide,” Appl. Phys. Lett. 113, 026849 (2018).
[Crossref]

T. Asano and S. Noda, “Photonic crystal devices in silicon photonics,” Proc. IEEE 106, 2183–2195 (2018).
[Crossref]

S. Jeon, H. Kim, B.-S. Song, Y. Yamaguchi, T. Asano, and S. Noda, “Measurement of optical loss in nanophotonic waveguides using integrated cavities,” Opt. Lett. 41, 5486–5489 (2016).
[Crossref]

Y. Yamaguchi, S.-W. Jeon, B.-S. Song, Y. Tanaka, T. Asano, and S. Noda, “Analysis of Q-factors of structural imperfections in triangular cross-section nanobeam photonic crystal cavities,” J. Opt. Soc. Am. B 32, 1792–1796 (2015).
[Crossref]

S. Yamada, B.-S. Song, S. Jeon, J. Upham, Y. Tanaka, T. Asano, and S. Noda, “Second-harmonic generation in a silicon-carbide-based photonic crystal nanocavity,” Opt. Lett. 39, 1768–1771 (2014).
[Crossref]

B.-S. Song, S. Yamada, T. Asano, and S. Noda, “Demonstration of two-dimensional photonic crystals based on silicon carbide,” Opt. Express 19, 11084–11089 (2011).
[Crossref]

T. Uesugi, B.-S. Song, T. Asano, and S. Noda, “Investigation of optical nonlinearities in an ultra-high-Q Si nanocavity in a two-dimensional photonic crystal slab,” Opt. Express 14, 377–386 (2006).
[Crossref]

B.-S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4, 207–210 (2005).
[Crossref]

Y. Tanaka, T. Asano, Y. Akahane, B. S. Song, and S. Noda, “Theoretical investigation of a two-dimensional photonic crystal slab with truncated cone air holes,” Appl. Phys. Lett. 82, 1661–1663 (2003).
[Crossref]

Astakhov, G. V.

F. Fuchs, V. A. Soltamov, S. Väth, P. G. Baranov, E. N. Mokhov, G. V. Astakhov, and V. Dyakonov, “Silicon carbide light-emitting diode as a prospective room temperature source for single photons,” Sci. Rep. 3, 1637 (2013).
[Crossref]

Awschalom, D. D.

F. J. Heremans, C. G. Yale, and D. D. Awschalom, “Control of spin defects in wide-bandgap semiconductors for quantum technologies,” Proc. IEEE 104, 2009–2023 (2016).
[Crossref]

G. Calusine, A. Politi, and D. D. Awschalom, “Silicon carbide photonic crystal cavities with integrated color centers,” Appl. Phys. Lett. 105, 011123 (2014).
[Crossref]

W. F. Koehl, B. B. Buckley, F. J. Heremans, G. Calusine, and D. D. Awschalom, “Room temperature coherent control of defect spin qubits in silicon carbide,” Nature 479, 84–87 (2011).
[Crossref]

Baehr-Jones, T.

Y. Shen, N. C. Harris, S. Skirlo, M. Prabhu, T. Baehr-Jones, M. Hochberg, X. Sun, S. Zhao, H. Larochelle, D. Englund, and M. Soljačić, “Deep learning with coherent nanophotonic circuits,” Nat. Photonics 11, 441–446 (2017).
[Crossref]

Baranov, P. G.

F. Fuchs, V. A. Soltamov, S. Väth, P. G. Baranov, E. N. Mokhov, G. V. Astakhov, and V. Dyakonov, “Silicon carbide light-emitting diode as a prospective room temperature source for single photons,” Sci. Rep. 3, 1637 (2013).
[Crossref]

Bracher, D.

A. P. Magyar, D. Bracher, J. C. Lee, I. Aharonovich, and E. L. Hu, “High quality SiC microdisk resonators fabricated from monolithic epilayer wafers,” Appl. Phys. Lett. 104, 051109 (2014).
[Crossref]

Bracher, D. O.

D. O. Bracher and E. L. Hu, “Fabrication of high-Q nanobeam photonic crystals in epitaxially grown 4H-SiC,” Nano Lett. 15, 6202–6207 (2015).
[Crossref]

Bruch, A. W.

Buckley, B. B.

W. F. Koehl, B. B. Buckley, F. J. Heremans, G. Calusine, and D. D. Awschalom, “Room temperature coherent control of defect spin qubits in silicon carbide,” Nature 479, 84–87 (2011).
[Crossref]

Burek, M. J.

M. J. Burek, Y. Chu, M. S. Z. Liddy, P. Patel, J. Rochman, S. Meesala, W. Hong, Q. Quan, M. D. Lukin, and M. Lončar, “High-Q optical nanocavities in bulk single-crystal diamond,” Nat. Commun. 5, 5718 (2014).
[Crossref]

Calusine, G.

G. Calusine, A. Politi, and D. D. Awschalom, “Silicon carbide photonic crystal cavities with integrated color centers,” Appl. Phys. Lett. 105, 011123 (2014).
[Crossref]

W. F. Koehl, B. B. Buckley, F. J. Heremans, G. Calusine, and D. D. Awschalom, “Room temperature coherent control of defect spin qubits in silicon carbide,” Nature 479, 84–87 (2011).
[Crossref]

Cardenas, J.

Castelletto, S.

A. Lohrmann, B. C. Johnson, J. C. McCallum, and S. Castelletto, “A review on single photon sources in silicon carbide,” Rep. Prog. Phys. 80, 034502 (2017).
[Crossref]

Cheng, Z.-D.

F.-F. Yan, J.-F. Wang, Q. Li, Z.-D. Cheng, J.-M. Cui, W.-Z. Liu, J.-S. Xu, C.-F. Li, and G.-C. Guo, “Coherent control of defect spins in silicon carbide above 550 K,” Phys. Rev. Appl. 10, 044042 (2018).
[Crossref]

Chu, Y.

M. J. Burek, Y. Chu, M. S. Z. Liddy, P. Patel, J. Rochman, S. Meesala, W. Hong, Q. Quan, M. D. Lukin, and M. Lončar, “High-Q optical nanocavities in bulk single-crystal diamond,” Nat. Commun. 5, 5718 (2014).
[Crossref]

Chutinan, A.

S. Noda, A. Chutinan, and M. Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure,” Nature 407, 608–610 (2000).
[Crossref]

Cui, J.-M.

F.-F. Yan, J.-F. Wang, Q. Li, Z.-D. Cheng, J.-M. Cui, W.-Z. Liu, J.-S. Xu, C.-F. Li, and G.-C. Guo, “Coherent control of defect spins in silicon carbide above 550 K,” Phys. Rev. Appl. 10, 044042 (2018).
[Crossref]

Diao, H.

Z. Hu, X. Liao, H. Diao, G. Kong, X. Zeng, and Y. Xu, “Amorphous silicon carbide films prepared by H2 diluted silane–methane plasma,” J. Cryst. Growth 264, 7–12 (2004).
[Crossref]

Dutt, A.

Dyakonov, V.

F. Fuchs, V. A. Soltamov, S. Väth, P. G. Baranov, E. N. Mokhov, G. V. Astakhov, and V. Dyakonov, “Silicon carbide light-emitting diode as a prospective room temperature source for single photons,” Sci. Rep. 3, 1637 (2013).
[Crossref]

Eftekhar, A. A.

Englund, D.

Y. Shen, N. C. Harris, S. Skirlo, M. Prabhu, T. Baehr-Jones, M. Hochberg, X. Sun, S. Zhao, H. Larochelle, D. Englund, and M. Soljačić, “Deep learning with coherent nanophotonic circuits,” Nat. Photonics 11, 441–446 (2017).
[Crossref]

Fan, T.

Feng, P. X. L.

X. Lu, J. Y. Lee, P. X. L. Feng, and Q. Lin, “High Q silicon carbide microdisk resonator,” Appl. Phys. Lett. 104, 181103 (2014).
[Crossref]

Fuchs, F.

F. Fuchs, V. A. Soltamov, S. Väth, P. G. Baranov, E. N. Mokhov, G. V. Astakhov, and V. Dyakonov, “Silicon carbide light-emitting diode as a prospective room temperature source for single photons,” Sci. Rep. 3, 1637 (2013).
[Crossref]

Gaeta, A. L.

Galeckas, A.

V. Grivickas, J. Linnros, P. Grivickas, and A. Galeckas, “Band edge absorption, carrier recombination and transport measurements in 4H-SiC epilayers,” Mater. Sci. Eng. B 61–62, 197–201 (1999).
[Crossref]

Ghadiani, B.

Gong, Z.

Grivickas, P.

V. Grivickas, J. Linnros, P. Grivickas, and A. Galeckas, “Band edge absorption, carrier recombination and transport measurements in 4H-SiC epilayers,” Mater. Sci. Eng. B 61–62, 197–201 (1999).
[Crossref]

Grivickas, V.

V. Grivickas, J. Linnros, P. Grivickas, and A. Galeckas, “Band edge absorption, carrier recombination and transport measurements in 4H-SiC epilayers,” Mater. Sci. Eng. B 61–62, 197–201 (1999).
[Crossref]

Guo, G.-C.

F.-F. Yan, J.-F. Wang, Q. Li, Z.-D. Cheng, J.-M. Cui, W.-Z. Liu, J.-S. Xu, C.-F. Li, and G.-C. Guo, “Coherent control of defect spins in silicon carbide above 550 K,” Phys. Rev. Appl. 10, 044042 (2018).
[Crossref]

Harris, N. C.

Y. Shen, N. C. Harris, S. Skirlo, M. Prabhu, T. Baehr-Jones, M. Hochberg, X. Sun, S. Zhao, H. Larochelle, D. Englund, and M. Soljačić, “Deep learning with coherent nanophotonic circuits,” Nat. Photonics 11, 441–446 (2017).
[Crossref]

Hatami, F.

Heremans, F. J.

F. J. Heremans, C. G. Yale, and D. D. Awschalom, “Control of spin defects in wide-bandgap semiconductors for quantum technologies,” Proc. IEEE 104, 2009–2023 (2016).
[Crossref]

W. F. Koehl, B. B. Buckley, F. J. Heremans, G. Calusine, and D. D. Awschalom, “Room temperature coherent control of defect spin qubits in silicon carbide,” Nature 479, 84–87 (2011).
[Crossref]

Hochberg, M.

Y. Shen, N. C. Harris, S. Skirlo, M. Prabhu, T. Baehr-Jones, M. Hochberg, X. Sun, S. Zhao, H. Larochelle, D. Englund, and M. Soljačić, “Deep learning with coherent nanophotonic circuits,” Nat. Photonics 11, 441–446 (2017).
[Crossref]

Hong, W.

M. J. Burek, Y. Chu, M. S. Z. Liddy, P. Patel, J. Rochman, S. Meesala, W. Hong, Q. Quan, M. D. Lukin, and M. Lončar, “High-Q optical nanocavities in bulk single-crystal diamond,” Nat. Commun. 5, 5718 (2014).
[Crossref]

Hu, E. L.

D. O. Bracher and E. L. Hu, “Fabrication of high-Q nanobeam photonic crystals in epitaxially grown 4H-SiC,” Nano Lett. 15, 6202–6207 (2015).
[Crossref]

A. P. Magyar, D. Bracher, J. C. Lee, I. Aharonovich, and E. L. Hu, “High quality SiC microdisk resonators fabricated from monolithic epilayer wafers,” Appl. Phys. Lett. 104, 051109 (2014).
[Crossref]

Hu, Z.

Z. Hu, X. Liao, H. Diao, G. Kong, X. Zeng, and Y. Xu, “Amorphous silicon carbide films prepared by H2 diluted silane–methane plasma,” J. Cryst. Growth 264, 7–12 (2004).
[Crossref]

Imada, M.

S. Noda, A. Chutinan, and M. Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure,” Nature 407, 608–610 (2000).
[Crossref]

Jeon, S.

Jeon, S.-W.

Joannopoulos, J. D.

Johnson, B. C.

A. Lohrmann, B. C. Johnson, J. C. McCallum, and S. Castelletto, “A review on single photon sources in silicon carbide,” Rep. Prog. Phys. 80, 034502 (2017).
[Crossref]

Johnson, S. G.

Kang, D. D.

B.-S. Song, S. Jeon, H. Kim, D. D. Kang, T. Asano, and S. Noda, “High-Q-factor nanobeam photonic crystal cavities in bulk silicon carbide,” Appl. Phys. Lett. 113, 026849 (2018).
[Crossref]

Kim, H.

Kippenberg, T. J.

Koehl, W. F.

W. F. Koehl, B. B. Buckley, F. J. Heremans, G. Calusine, and D. D. Awschalom, “Room temperature coherent control of defect spin qubits in silicon carbide,” Nature 479, 84–87 (2011).
[Crossref]

Kondo, T.

Kong, G.

Z. Hu, X. Liao, H. Diao, G. Kong, X. Zeng, and Y. Xu, “Amorphous silicon carbide films prepared by H2 diluted silane–methane plasma,” J. Cryst. Growth 264, 7–12 (2004).
[Crossref]

Larochelle, H.

Y. Shen, N. C. Harris, S. Skirlo, M. Prabhu, T. Baehr-Jones, M. Hochberg, X. Sun, S. Zhao, H. Larochelle, D. Englund, and M. Soljačić, “Deep learning with coherent nanophotonic circuits,” Nat. Photonics 11, 441–446 (2017).
[Crossref]

Lau, R. K. W.

Lee, J. C.

A. P. Magyar, D. Bracher, J. C. Lee, I. Aharonovich, and E. L. Hu, “High quality SiC microdisk resonators fabricated from monolithic epilayer wafers,” Appl. Phys. Lett. 104, 051109 (2014).
[Crossref]

Lee, J. Y.

J. Y. Lee, X. Lu, and Q. Lin, “High-Q silicon carbide photonic-crystal cavities,” Appl. Phys. Lett. 106, 041106 (2015).
[Crossref]

X. Lu, J. Y. Lee, P. X. L. Feng, and Q. Lin, “High Q silicon carbide microdisk resonator,” Appl. Phys. Lett. 104, 181103 (2014).
[Crossref]

X. Lu, J. Y. Lee, S. Rogers, and Q. Lin, “Optical Kerr nonlinearity in a high-Q silicon carbide microresonator,” Opt. Express 22, 30826–30832 (2014).
[Crossref]

Li, C.-F.

F.-F. Yan, J.-F. Wang, Q. Li, Z.-D. Cheng, J.-M. Cui, W.-Z. Liu, J.-S. Xu, C.-F. Li, and G.-C. Guo, “Coherent control of defect spins in silicon carbide above 550 K,” Phys. Rev. Appl. 10, 044042 (2018).
[Crossref]

Li, Q.

F.-F. Yan, J.-F. Wang, Q. Li, Z.-D. Cheng, J.-M. Cui, W.-Z. Liu, J.-S. Xu, C.-F. Li, and G.-C. Guo, “Coherent control of defect spins in silicon carbide above 550 K,” Phys. Rev. Appl. 10, 044042 (2018).
[Crossref]

Liao, X.

Z. Hu, X. Liao, H. Diao, G. Kong, X. Zeng, and Y. Xu, “Amorphous silicon carbide films prepared by H2 diluted silane–methane plasma,” J. Cryst. Growth 264, 7–12 (2004).
[Crossref]

Liddy, M. S. Z.

M. J. Burek, Y. Chu, M. S. Z. Liddy, P. Patel, J. Rochman, S. Meesala, W. Hong, Q. Quan, M. D. Lukin, and M. Lončar, “High-Q optical nanocavities in bulk single-crystal diamond,” Nat. Commun. 5, 5718 (2014).
[Crossref]

Lin, Q.

J. Y. Lee, X. Lu, and Q. Lin, “High-Q silicon carbide photonic-crystal cavities,” Appl. Phys. Lett. 106, 041106 (2015).
[Crossref]

X. Lu, J. Y. Lee, P. X. L. Feng, and Q. Lin, “High Q silicon carbide microdisk resonator,” Appl. Phys. Lett. 104, 181103 (2014).
[Crossref]

X. Lu, J. Y. Lee, S. Rogers, and Q. Lin, “Optical Kerr nonlinearity in a high-Q silicon carbide microresonator,” Opt. Express 22, 30826–30832 (2014).
[Crossref]

Lin, Z.

Linnros, J.

V. Grivickas, J. Linnros, P. Grivickas, and A. Galeckas, “Band edge absorption, carrier recombination and transport measurements in 4H-SiC epilayers,” Mater. Sci. Eng. B 61–62, 197–201 (1999).
[Crossref]

Lipson, M.

Liu, J.

Liu, W.-Z.

F.-F. Yan, J.-F. Wang, Q. Li, Z.-D. Cheng, J.-M. Cui, W.-Z. Liu, J.-S. Xu, C.-F. Li, and G.-C. Guo, “Coherent control of defect spins in silicon carbide above 550 K,” Phys. Rev. Appl. 10, 044042 (2018).
[Crossref]

Liu, X.

Lohrmann, A.

A. Lohrmann, B. C. Johnson, J. C. McCallum, and S. Castelletto, “A review on single photon sources in silicon carbide,” Rep. Prog. Phys. 80, 034502 (2017).
[Crossref]

Loncar, M.

M. J. Burek, Y. Chu, M. S. Z. Liddy, P. Patel, J. Rochman, S. Meesala, W. Hong, Q. Quan, M. D. Lukin, and M. Lončar, “High-Q optical nanocavities in bulk single-crystal diamond,” Nat. Commun. 5, 5718 (2014).
[Crossref]

Lu, J.

Lu, X.

J. Y. Lee, X. Lu, and Q. Lin, “High-Q silicon carbide photonic-crystal cavities,” Appl. Phys. Lett. 106, 041106 (2015).
[Crossref]

X. Lu, J. Y. Lee, S. Rogers, and Q. Lin, “Optical Kerr nonlinearity in a high-Q silicon carbide microresonator,” Opt. Express 22, 30826–30832 (2014).
[Crossref]

X. Lu, J. Y. Lee, P. X. L. Feng, and Q. Lin, “High Q silicon carbide microdisk resonator,” Appl. Phys. Lett. 104, 181103 (2014).
[Crossref]

Lukin, M. D.

M. J. Burek, Y. Chu, M. S. Z. Liddy, P. Patel, J. Rochman, S. Meesala, W. Hong, Q. Quan, M. D. Lukin, and M. Lončar, “High-Q optical nanocavities in bulk single-crystal diamond,” Nat. Commun. 5, 5718 (2014).
[Crossref]

Magyar, A. P.

A. P. Magyar, D. Bracher, J. C. Lee, I. Aharonovich, and E. L. Hu, “High quality SiC microdisk resonators fabricated from monolithic epilayer wafers,” Appl. Phys. Lett. 104, 051109 (2014).
[Crossref]

Masselink, W. T.

McCallum, J. C.

A. Lohrmann, B. C. Johnson, J. C. McCallum, and S. Castelletto, “A review on single photon sources in silicon carbide,” Rep. Prog. Phys. 80, 034502 (2017).
[Crossref]

Meesala, S.

M. J. Burek, Y. Chu, M. S. Z. Liddy, P. Patel, J. Rochman, S. Meesala, W. Hong, Q. Quan, M. D. Lukin, and M. Lončar, “High-Q optical nanocavities in bulk single-crystal diamond,” Nat. Commun. 5, 5718 (2014).
[Crossref]

Mokhov, E. N.

F. Fuchs, V. A. Soltamov, S. Väth, P. G. Baranov, E. N. Mokhov, G. V. Astakhov, and V. Dyakonov, “Silicon carbide light-emitting diode as a prospective room temperature source for single photons,” Sci. Rep. 3, 1637 (2013).
[Crossref]

Moradinejad, H.

Morais, T.

Noda, S.

B.-S. Song, S. Jeon, H. Kim, D. D. Kang, T. Asano, and S. Noda, “High-Q-factor nanobeam photonic crystal cavities in bulk silicon carbide,” Appl. Phys. Lett. 113, 026849 (2018).
[Crossref]

T. Asano and S. Noda, “Photonic crystal devices in silicon photonics,” Proc. IEEE 106, 2183–2195 (2018).
[Crossref]

S. Jeon, H. Kim, B.-S. Song, Y. Yamaguchi, T. Asano, and S. Noda, “Measurement of optical loss in nanophotonic waveguides using integrated cavities,” Opt. Lett. 41, 5486–5489 (2016).
[Crossref]

Y. Yamaguchi, S.-W. Jeon, B.-S. Song, Y. Tanaka, T. Asano, and S. Noda, “Analysis of Q-factors of structural imperfections in triangular cross-section nanobeam photonic crystal cavities,” J. Opt. Soc. Am. B 32, 1792–1796 (2015).
[Crossref]

S. Yamada, B.-S. Song, S. Jeon, J. Upham, Y. Tanaka, T. Asano, and S. Noda, “Second-harmonic generation in a silicon-carbide-based photonic crystal nanocavity,” Opt. Lett. 39, 1768–1771 (2014).
[Crossref]

B.-S. Song, S. Yamada, T. Asano, and S. Noda, “Demonstration of two-dimensional photonic crystals based on silicon carbide,” Opt. Express 19, 11084–11089 (2011).
[Crossref]

T. Uesugi, B.-S. Song, T. Asano, and S. Noda, “Investigation of optical nonlinearities in an ultra-high-Q Si nanocavity in a two-dimensional photonic crystal slab,” Opt. Express 14, 377–386 (2006).
[Crossref]

B.-S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4, 207–210 (2005).
[Crossref]

Y. Tanaka, T. Asano, Y. Akahane, B. S. Song, and S. Noda, “Theoretical investigation of a two-dimensional photonic crystal slab with truncated cone air holes,” Appl. Phys. Lett. 82, 1661–1663 (2003).
[Crossref]

S. Noda, A. Chutinan, and M. Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure,” Nature 407, 608–610 (2000).
[Crossref]

Okawachi, Y.

Patel, P.

M. J. Burek, Y. Chu, M. S. Z. Liddy, P. Patel, J. Rochman, S. Meesala, W. Hong, Q. Quan, M. D. Lukin, and M. Lončar, “High-Q optical nanocavities in bulk single-crystal diamond,” Nat. Commun. 5, 5718 (2014).
[Crossref]

Pfeiffer, M. H. P.

Poitras, C. B.

Politi, A.

G. Calusine, A. Politi, and D. D. Awschalom, “Silicon carbide photonic crystal cavities with integrated color centers,” Appl. Phys. Lett. 105, 011123 (2014).
[Crossref]

Prabhu, M.

Y. Shen, N. C. Harris, S. Skirlo, M. Prabhu, T. Baehr-Jones, M. Hochberg, X. Sun, S. Zhao, H. Larochelle, D. Englund, and M. Soljačić, “Deep learning with coherent nanophotonic circuits,” Nat. Photonics 11, 441–446 (2017).
[Crossref]

Quan, Q.

M. J. Burek, Y. Chu, M. S. Z. Liddy, P. Patel, J. Rochman, S. Meesala, W. Hong, Q. Quan, M. D. Lukin, and M. Lončar, “High-Q optical nanocavities in bulk single-crystal diamond,” Nat. Commun. 5, 5718 (2014).
[Crossref]

Raja, A. S.

Rivoire, K.

Rochman, J.

M. J. Burek, Y. Chu, M. S. Z. Liddy, P. Patel, J. Rochman, S. Meesala, W. Hong, Q. Quan, M. D. Lukin, and M. Lončar, “High-Q optical nanocavities in bulk single-crystal diamond,” Nat. Commun. 5, 5718 (2014).
[Crossref]

Rodriguez, A.

Rogers, S.

Sato, H.

Shen, Y.

Y. Shen, N. C. Harris, S. Skirlo, M. Prabhu, T. Baehr-Jones, M. Hochberg, X. Sun, S. Zhao, H. Larochelle, D. Englund, and M. Soljačić, “Deep learning with coherent nanophotonic circuits,” Nat. Photonics 11, 441–446 (2017).
[Crossref]

Shoji, I.

Skirlo, S.

Y. Shen, N. C. Harris, S. Skirlo, M. Prabhu, T. Baehr-Jones, M. Hochberg, X. Sun, S. Zhao, H. Larochelle, D. Englund, and M. Soljačić, “Deep learning with coherent nanophotonic circuits,” Nat. Photonics 11, 441–446 (2017).
[Crossref]

Soljacic, M.

Y. Shen, N. C. Harris, S. Skirlo, M. Prabhu, T. Baehr-Jones, M. Hochberg, X. Sun, S. Zhao, H. Larochelle, D. Englund, and M. Soljačić, “Deep learning with coherent nanophotonic circuits,” Nat. Photonics 11, 441–446 (2017).
[Crossref]

A. Rodriguez, M. Soljačić, J. D. Joannopoulos, and S. G. Johnson, “χ(2) and χ(3) harmonic generation at a critical power in inhomogeneous doubly resonant cavities,” Opt. Express 15, 7303–7318 (2007).
[Crossref]

Soltamov, V. A.

F. Fuchs, V. A. Soltamov, S. Väth, P. G. Baranov, E. N. Mokhov, G. V. Astakhov, and V. Dyakonov, “Silicon carbide light-emitting diode as a prospective room temperature source for single photons,” Sci. Rep. 3, 1637 (2013).
[Crossref]

Song, B. S.

Y. Tanaka, T. Asano, Y. Akahane, B. S. Song, and S. Noda, “Theoretical investigation of a two-dimensional photonic crystal slab with truncated cone air holes,” Appl. Phys. Lett. 82, 1661–1663 (2003).
[Crossref]

Song, B.-S.

B.-S. Song, S. Jeon, H. Kim, D. D. Kang, T. Asano, and S. Noda, “High-Q-factor nanobeam photonic crystal cavities in bulk silicon carbide,” Appl. Phys. Lett. 113, 026849 (2018).
[Crossref]

H. Kim, S.-W. Jeon, and B.-S. Song, “Investigation of second-harmonic generation efficiency in a waveguide-side-coupled photonic nanocavity,” J. Opt. Soc. Am. B 33, 2010–2014 (2016).
[Crossref]

S. Jeon, H. Kim, B.-S. Song, Y. Yamaguchi, T. Asano, and S. Noda, “Measurement of optical loss in nanophotonic waveguides using integrated cavities,” Opt. Lett. 41, 5486–5489 (2016).
[Crossref]

Y. Yamaguchi, S.-W. Jeon, B.-S. Song, Y. Tanaka, T. Asano, and S. Noda, “Analysis of Q-factors of structural imperfections in triangular cross-section nanobeam photonic crystal cavities,” J. Opt. Soc. Am. B 32, 1792–1796 (2015).
[Crossref]

S. Yamada, B.-S. Song, S. Jeon, J. Upham, Y. Tanaka, T. Asano, and S. Noda, “Second-harmonic generation in a silicon-carbide-based photonic crystal nanocavity,” Opt. Lett. 39, 1768–1771 (2014).
[Crossref]

B.-S. Song, S. Yamada, T. Asano, and S. Noda, “Demonstration of two-dimensional photonic crystals based on silicon carbide,” Opt. Express 19, 11084–11089 (2011).
[Crossref]

T. Uesugi, B.-S. Song, T. Asano, and S. Noda, “Investigation of optical nonlinearities in an ultra-high-Q Si nanocavity in a two-dimensional photonic crystal slab,” Opt. Express 14, 377–386 (2006).
[Crossref]

B.-S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4, 207–210 (2005).
[Crossref]

Suda, J.

Sun, X.

Y. Shen, N. C. Harris, S. Skirlo, M. Prabhu, T. Baehr-Jones, M. Hochberg, X. Sun, S. Zhao, H. Larochelle, D. Englund, and M. Soljačić, “Deep learning with coherent nanophotonic circuits,” Nat. Photonics 11, 441–446 (2017).
[Crossref]

Surya, J. B.

Tanaka, Y.

Tang, H. X.

Uesugi, T.

Upham, J.

Väth, S.

F. Fuchs, V. A. Soltamov, S. Väth, P. G. Baranov, E. N. Mokhov, G. V. Astakhov, and V. Dyakonov, “Silicon carbide light-emitting diode as a prospective room temperature source for single photons,” Sci. Rep. 3, 1637 (2013).
[Crossref]

Vlasov, Y. A.

Y. A. Vlasov, “Silicon CMOS-integrated nano-photonics for computer and data communications beyond 100G,” IEEE Commun. Mag. 50(2), s67–s72 (2012).
[Crossref]

Vuckovic, J.

Wang, J.

Wang, J.-F.

F.-F. Yan, J.-F. Wang, Q. Li, Z.-D. Cheng, J.-M. Cui, W.-Z. Liu, J.-S. Xu, C.-F. Li, and G.-C. Guo, “Coherent control of defect spins in silicon carbide above 550 K,” Phys. Rev. Appl. 10, 044042 (2018).
[Crossref]

Wu, X.

Xu, J.-S.

F.-F. Yan, J.-F. Wang, Q. Li, Z.-D. Cheng, J.-M. Cui, W.-Z. Liu, J.-S. Xu, C.-F. Li, and G.-C. Guo, “Coherent control of defect spins in silicon carbide above 550 K,” Phys. Rev. Appl. 10, 044042 (2018).
[Crossref]

Xu, Y.

Z. Hu, X. Liao, H. Diao, G. Kong, X. Zeng, and Y. Xu, “Amorphous silicon carbide films prepared by H2 diluted silane–methane plasma,” J. Cryst. Growth 264, 7–12 (2004).
[Crossref]

Yale, C. G.

F. J. Heremans, C. G. Yale, and D. D. Awschalom, “Control of spin defects in wide-bandgap semiconductors for quantum technologies,” Proc. IEEE 104, 2009–2023 (2016).
[Crossref]

Yamada, S.

Yamaguchi, Y.

Yan, F.-F.

F.-F. Yan, J.-F. Wang, Q. Li, Z.-D. Cheng, J.-M. Cui, W.-Z. Liu, J.-S. Xu, C.-F. Li, and G.-C. Guo, “Coherent control of defect spins in silicon carbide above 550 K,” Phys. Rev. Appl. 10, 044042 (2018).
[Crossref]

Yan, J.

Yu, M.

Zeng, X.

Z. Hu, X. Liao, H. Diao, G. Kong, X. Zeng, and Y. Xu, “Amorphous silicon carbide films prepared by H2 diluted silane–methane plasma,” J. Cryst. Growth 264, 7–12 (2004).
[Crossref]

Zhang, L.

Zhao, S.

Y. Shen, N. C. Harris, S. Skirlo, M. Prabhu, T. Baehr-Jones, M. Hochberg, X. Sun, S. Zhao, H. Larochelle, D. Englund, and M. Soljačić, “Deep learning with coherent nanophotonic circuits,” Nat. Photonics 11, 441–446 (2017).
[Crossref]

Appl. Phys. Lett. (6)

B.-S. Song, S. Jeon, H. Kim, D. D. Kang, T. Asano, and S. Noda, “High-Q-factor nanobeam photonic crystal cavities in bulk silicon carbide,” Appl. Phys. Lett. 113, 026849 (2018).
[Crossref]

A. P. Magyar, D. Bracher, J. C. Lee, I. Aharonovich, and E. L. Hu, “High quality SiC microdisk resonators fabricated from monolithic epilayer wafers,” Appl. Phys. Lett. 104, 051109 (2014).
[Crossref]

J. Y. Lee, X. Lu, and Q. Lin, “High-Q silicon carbide photonic-crystal cavities,” Appl. Phys. Lett. 106, 041106 (2015).
[Crossref]

G. Calusine, A. Politi, and D. D. Awschalom, “Silicon carbide photonic crystal cavities with integrated color centers,” Appl. Phys. Lett. 105, 011123 (2014).
[Crossref]

X. Lu, J. Y. Lee, P. X. L. Feng, and Q. Lin, “High Q silicon carbide microdisk resonator,” Appl. Phys. Lett. 104, 181103 (2014).
[Crossref]

Y. Tanaka, T. Asano, Y. Akahane, B. S. Song, and S. Noda, “Theoretical investigation of a two-dimensional photonic crystal slab with truncated cone air holes,” Appl. Phys. Lett. 82, 1661–1663 (2003).
[Crossref]

IEEE Commun. Mag. (1)

Y. A. Vlasov, “Silicon CMOS-integrated nano-photonics for computer and data communications beyond 100G,” IEEE Commun. Mag. 50(2), s67–s72 (2012).
[Crossref]

J. Cryst. Growth (1)

Z. Hu, X. Liao, H. Diao, G. Kong, X. Zeng, and Y. Xu, “Amorphous silicon carbide films prepared by H2 diluted silane–methane plasma,” J. Cryst. Growth 264, 7–12 (2004).
[Crossref]

J. Opt. Soc. Am. B (3)

Mater. Sci. Eng. B (1)

V. Grivickas, J. Linnros, P. Grivickas, and A. Galeckas, “Band edge absorption, carrier recombination and transport measurements in 4H-SiC epilayers,” Mater. Sci. Eng. B 61–62, 197–201 (1999).
[Crossref]

Nano Lett. (1)

D. O. Bracher and E. L. Hu, “Fabrication of high-Q nanobeam photonic crystals in epitaxially grown 4H-SiC,” Nano Lett. 15, 6202–6207 (2015).
[Crossref]

Nat. Commun. (1)

M. J. Burek, Y. Chu, M. S. Z. Liddy, P. Patel, J. Rochman, S. Meesala, W. Hong, Q. Quan, M. D. Lukin, and M. Lončar, “High-Q optical nanocavities in bulk single-crystal diamond,” Nat. Commun. 5, 5718 (2014).
[Crossref]

Nat. Mater. (1)

B.-S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4, 207–210 (2005).
[Crossref]

Nat. Photonics (1)

Y. Shen, N. C. Harris, S. Skirlo, M. Prabhu, T. Baehr-Jones, M. Hochberg, X. Sun, S. Zhao, H. Larochelle, D. Englund, and M. Soljačić, “Deep learning with coherent nanophotonic circuits,” Nat. Photonics 11, 441–446 (2017).
[Crossref]

Nature (2)

S. Noda, A. Chutinan, and M. Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure,” Nature 407, 608–610 (2000).
[Crossref]

W. F. Koehl, B. B. Buckley, F. J. Heremans, G. Calusine, and D. D. Awschalom, “Room temperature coherent control of defect spin qubits in silicon carbide,” Nature 479, 84–87 (2011).
[Crossref]

Opt. Express (6)

Opt. Lett. (3)

Optica (2)

Phys. Rev. Appl. (1)

F.-F. Yan, J.-F. Wang, Q. Li, Z.-D. Cheng, J.-M. Cui, W.-Z. Liu, J.-S. Xu, C.-F. Li, and G.-C. Guo, “Coherent control of defect spins in silicon carbide above 550 K,” Phys. Rev. Appl. 10, 044042 (2018).
[Crossref]

Proc. IEEE (2)

F. J. Heremans, C. G. Yale, and D. D. Awschalom, “Control of spin defects in wide-bandgap semiconductors for quantum technologies,” Proc. IEEE 104, 2009–2023 (2016).
[Crossref]

T. Asano and S. Noda, “Photonic crystal devices in silicon photonics,” Proc. IEEE 106, 2183–2195 (2018).
[Crossref]

Rep. Prog. Phys. (1)

A. Lohrmann, B. C. Johnson, J. C. McCallum, and S. Castelletto, “A review on single photon sources in silicon carbide,” Rep. Prog. Phys. 80, 034502 (2017).
[Crossref]

Sci. Rep. (1)

F. Fuchs, V. A. Soltamov, S. Väth, P. G. Baranov, E. N. Mokhov, G. V. Astakhov, and V. Dyakonov, “Silicon carbide light-emitting diode as a prospective room temperature source for single photons,” Sci. Rep. 3, 1637 (2013).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1. Fabrication process and structure of the cavity. (a) Schematic of the fabrication process. (b) Cavity structure. The colors indicate the distribution of the y component of the electric field for the cavity with r=0.25a0, t=0.58a0, Δa=0.005a0, and d=6 rows. (c) SEM image of a fabricated structure. (d) Magnification of the SEM image in (c). (e) Cross-sectional view of an air hole.
Fig. 2.
Fig. 2. Measurement and calculation results for the fundamental modes of the fabricated nanocavities. (a) Relationship between the measured Qexp and the SiC slab thickness (filled and open circles). The dependence on the other structural parameters is visualized with the three styles of data points. Solid lines are the theoretical Qtheo for the cases with and without structural imperfections (θ denotes the air-hole taper angle, and σ the standard deviation of fluctuations of air-hole radii and positions) for the cavity with r=0.25a0, Δa=0.005a0, and d=. Qtheo for θ=0° and σ=0 is identical to Qideal. (b), (c) resonance spectra of two cavities with different slab thicknesses. (d) Distribution of the z component of the electric field in a nanocavity with tapered air holes (θ=6°). (e) Geometry of truncated cones showing the change of volume due to the tapering.
Fig. 3.
Fig. 3. Second-harmonic generation (SHG) characteristics of a cavity with a Q factor of 6×105. (a) Infrared camera image of the fundamental mode for resonant excitation via the input waveguide. (b) Si-CCD camera image of the SHG emission under the excitation condition shown in (a). The inset is the calculated near-field pattern of the SHG emission. (c) The filled circles show the dependence of the SHG power on the fundamental power. The redline is the fitting curve for the SHG data with a normalized conversion efficiency of 1900%/W.

Tables (1)

Tables Icon

Table 1. Experimental Q Factors of Various SiC Microcavities and Nanocavitiesa