Abstract

It is well known that the eye’s optics and media introduce monochromatic and chromatic aberration unique to each individual. Once monochromatic aberrations are removed with adaptive optics (AO), longitudinal chromatic aberrations (LCA) define the fidelity for multi-wavelength, high-resolution vision testing and retinal imaging. AO vision simulation systems and AO scanning laser ophthalmoscopes (AOSLOs) typically use the average population LCA to compensate for focus offsets between different wavelengths precluding fine, individualized control. The eye’s LCA has been characterized extensively using either subjective (visual perception) or objective (imaging) methods. Classically, these have faced inconsistencies due to extraneous factors related to depth of focus, monochromatic aberration, and wavelength-dependent light interactions with retinal tissue. Here, we introduce a filter-based Badal LCA compensator that offers the flexibility to tune LCA for each individual eye and demonstrate its feasibility for vision testing and imaging using multiple wavelengths simultaneously. Incorporating the LCA compensator in an AOSLO allowed the first objective measurements of LCA based on confocal, multi-wavelength foveal cone images and its comparison to measures obtained subjectively. The objective LCA thus obtained was consistent with subjective estimates in the same individuals and hence resolves the prior discrepancies between them. Overall, the described approach will benefit applications in retinal imaging and vision testing where the focus of multiple wavelengths needs to be controlled independently and simultaneously.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Longitudinal chromatic aberration of the human eye in the visible and near infrared from wavefront sensing, double-pass and psychophysics

Maria Vinas, Carlos Dorronsoro, Daniel Cortes, Daniel Pascual, and Susana Marcos
Biomed. Opt. Express 6(3) 948-962 (2015)

Measurement and correction of transverse chromatic offsets for multi-wavelength retinal microscopy in the living eye

Wolf M. Harmening, Pavan Tiruveedhula, Austin Roorda, and Lawrence C. Sincich
Biomed. Opt. Express 3(9) 2066-2077 (2012)

Eye tracking-based estimation and compensation of chromatic offsets for multi-wavelength retinal microstimulation with foveal cone precision

Niklas Domdei, Michael Linden, Jenny L. Reiniger, Frank G. Holz, and Wolf M. Harmening
Biomed. Opt. Express 10(8) 4126-4141 (2019)

References

  • View by:
  • |
  • |
  • |

  1. J. Liang, D. R. Williams, and D. Miller, “Supernormal vision and high-resolution retinal imaging through adaptive optics,” J. Opt. Soc. Am. A 14, 2882–2892 (1997).
    [Crossref]
  2. A. Roorda, F. Romero-Borja, W. Donnelly Iii, H. Queener, T. Hebert, and M. Campbell, “Adaptive optics scanning laser ophthalmoscopy,” Opt. Express 10, 405–412 (2002).
    [Crossref]
  3. A. Dubra and Y. Sulai, “Reflective afocal broadband adaptive optics scanning ophthalmoscope,” Biomed. Opt. Express 2, 1757–1768 (2011).
    [Crossref]
  4. D. W. Arathorn, Q. Yang, C. R. Vogel, Y. Zhang, P. Tiruveedhula, and A. Roorda, “Retinally stabilized cone-targeted stimulus delivery,” Opt. Express 15, 13731–13744 (2007).
    [Crossref]
  5. G. Y. Yoon and D. R. Williams, “Visual performance after correcting the monochromatic and chromatic aberrations of the eye,” J. Opt. Soc. Am. 19, 266–275 (2002).
    [Crossref]
  6. L. Sawides, E. Gambra, D. Pascual, C. Dorronsoro, and S. Marcos, “Visual performance with real-life tasks under adaptive-optics ocular aberration correction,” J. Vis. 10(5):19 (2010).
    [Crossref]
  7. C. Canovas, P. M. Prieto, S. Manzanera, A. Mira, and P. Artal, “Hybrid adaptive-optics visual simulator,” Opt. Lett. 35, 196–198 (2010).
    [Crossref]
  8. B. P. Schmidt, R. Sabesan, W. S. Tuten, J. Neitz, and A. Roorda, “Sensations from a single M-cone depend on the activity of surrounding S-cones,” Sci. Rep. 8, 8561 (2018).
    [Crossref]
  9. B. P. Schmidt, A. E. Boehm, K. G. Foote, and A. Roorda, “The spectral identity of foveal cones is preserved in hue perception,” J. Vis. 18(11):19 (2018).
    [Crossref]
  10. W. S. Tuten, W. M. Harmening, R. Sabesan, A. Roorda, and L. C. Sincich, “Spatiochromatic interactions between individual cone photoreceptors in the human retina,” J. Neurosci. 37, 9498–9509 (2017).
    [Crossref]
  11. R. Sabesan, B. P. Schmidt, W. S. Tuten, and A. Roorda, “The elementary representation of spatial and color vision in the human retina,” Sci. Adv. 2, e1600797 (2016).
    [Crossref]
  12. W. M. Harmening, W. S. Tuten, A. Roorda, and L. C. Sincich, “Mapping the perceptual grain of the human retina,” J. Neurosci. 34, 5667–5677 (2014).
    [Crossref]
  13. S. Ravikumar, L. N. Thibos, and A. Bradley, “Calculation of retinal image quality for polychromatic light,” J. Opt. Soc. Am. A 25, 2395–2407 (2008).
    [Crossref]
  14. L. N. Thibos, A. Bradley, and X. X. Zhang, “Effect of ocular chromatic aberration on monocular visual performance,” Optom. Vis. Sci. 68, 599–607 (1991).
    [Crossref]
  15. R. J. Zawadzki, B. Cense, Y. Zhang, S. S. Choi, D. T. Miller, and J. S. Werner, “Ultrahigh-resolution optical coherence tomography with monochromatic and chromatic aberration correction,” Opt. Express 16, 8126–8143 (2008).
    [Crossref]
  16. P. A. Howarth, X. X. Zhang, A. Bradley, D. L. Still, and L. N. Thibos, “Does the chromatic aberration of the eye vary with age?” J. Opt. Soc. Am. A 5, 2087–2092 (1988).
    [Crossref]
  17. M. Millodot and I. A. Newton, “A possible change of refractive index with age and its relevance to chromatic aberration,” Albrecht Von Graefes Arch Klin Exp Ophthalmol 201, 159–167 (1976).
    [Crossref]
  18. M. Nakajima, T. Hiraoka, T. Yamamoto, S. Takagi, Y. Hirohara, T. Oshika, and T. Mihashi, “Differences of longitudinal chromatic aberration (LCA) between eyes with intraocular lenses from different manufacturers,” PLoS One 11, e0156227 (2016).
    [Crossref]
  19. A. Bradley, X. X. Zhang, and L. N. Thibos, “Achromatizing the human eye,” Optom. Vis. Sci. 68, 608–616 (1991).
    [Crossref]
  20. E. J. Fernandez, A. Unterhuber, B. Povazay, B. Hermann, P. Artal, and W. Drexler, “Chromatic aberration correction of the human eye for retinal imaging in the near infrared,” Opt. Express 14, 6213–6225 (2006).
    [Crossref]
  21. S. Marcos, E. Moreno, and R. Navarro, “The depth-of-field of the human eye from objective and subjective measurements,” Vision Res. 39, 2039–2049 (1999).
    [Crossref]
  22. E. A. Rossi and A. Roorda, “The relationship between visual resolution and cone spacing in the human fovea,” Nat. Neurosci. 13, 156–157 (2010).
    [Crossref]
  23. F. J. Rucker and P. B. Kruger, “Cone contributions to signals for accommodation and the relationship to refractive error,” Vision Res. 46, 3079–3089 (2006).
    [Crossref]
  24. P. B. Kruger, F. J. Rucker, C. Hu, H. Rutman, N. W. Schmidt, and V. Roditis, “Accommodation with and without short-wavelength-sensitive cones and chromatic aberration,” Vision Res. 45, 1265–1274 (2005).
    [Crossref]
  25. K. Grieve, P. Tiruveedhula, Y. Zhang, and A. Roorda, “Multi-wavelength imaging with the adaptive optics scanning laser ophthalmoscope,” Opt. Express 14, 12230–12242 (2006).
    [Crossref]
  26. X. X. Zhang, A. Bradley, and L. N. Thibos, “Achromatizing the human eye: the problem of chromatic parallax,” J. Opt. Soc. Am. A 8, 686–691 (1991).
    [Crossref]
  27. Z. Liu, O. P. Kocaoglu, and D. T. Miller, “In-the-plane design of an off-axis ophthalmic adaptive optics system using toroidal mirrors,” Biomed. Opt. Express 4, 3007–3029 (2013).
    [Crossref]
  28. A. Gomez-Vieyra, A. Dubra, D. Malacara-Hernandez, and D. R. Williams, “First-order design of off-axis reflective ophthalmic adaptive optics systems using afocal telescopes,” Opt. Express 17, 18906–18919 (2009).
    [Crossref]
  29. K. T. Mullen, “The contrast sensitivity of human colour vision to red-green and blue-yellow chromatic gratings,” J. Physiol. 359, 381–400 (1985).
    [Crossref]
  30. N. Suchkov, E. J. Fernandez, J. L. Martinez, and P. Artal, “Adaptive optics visual simulator with dynamic control of chromatic aberrations,” Invest. Ophthalmol. Visual Sci. 59, 4639 (2018).
    [Crossref]
  31. P. A. Howarth and A. Bradley, “The longitudinal chromatic aberration of the human eye, and its correction,” Vision Res. 26, 361–366(1986).
    [Crossref]
  32. G. Wald and D. R. Griffin, “The change in refractive power of the human eye in dim and bright light,” J. Opt. Soc. Am. 37, 321–336(1947).
    [Crossref]
  33. R. E. Bedford and G. Wyszecki, “Axial chromatic aberration of the human eye,” J. Opt. Soc. Am. 47, 564–565 (1957).
    [Crossref]
  34. M. C. Rynders, R. Navarro, and M. A. Losada, “Objective measurement of the off-axis longitudinal chromatic aberration in the human eye,” Vision Res. 38, 513–522 (1998).
    [Crossref]
  35. W. N. Charman and J. A. M. Jennings, “Objective measurements of the longitudinal chromatic aberration of the human eye,” Vision Res. 16, 999–1005 (1976).
    [Crossref]
  36. S. Marcos, S. A. Burns, E. Moreno-Barriusop, and R. Navarro, “A new approach to the study of ocular chromatic aberrations,” Vision Res. 39, 4309–4323 (1999).
    [Crossref]
  37. M. Vinas, C. Dorronsoro, D. Cortes, D. Pascual, and S. Marcos, “Longitudinal chromatic aberration of the human eye in the visible and near infrared from wavefront sensing, double-pass and psychophysics,” Biomed. Opt. Express 6, 948–962 (2015).
    [Crossref]
  38. S. Poonja, S. Patel, L. Henry, and A. Roorda, “Dynamic visual stimulus presentation in an adaptive optics scanning laser ophthalmoscope,” J. Refract. Surg. 21, S575–580 (2005).
  39. D. A. Atchison and G. Smith, “Chromatic dispersions of the ocular media of human eyes,” J. Opt. Soc. Am. A 22, 29–37 (2005).
    [Crossref]
  40. L. A. Lesmes, Z. L. Lu, J. Baek, and T. D. Albright, “Bayesian adaptive estimation of the contrast sensitivity function: the quick CSF method,” J. Vis. 10(3):17, 1–21 (2010).
    [Crossref]
  41. N. Sekiguchi, D. R. Williams, and D. H. Brainard, “Aberration-free measurements of the visibility of isoluminant gratings,” J. Opt. Soc. Am. A 10, 2105–2117 (1993).
    [Crossref]
  42. N. Sekiguchi, D. R. Williams, and D. H. Brainard, “Efficiency in detection of isoluminant and isochromatic interference fringes,” J. Opt. Soc. Am. A 10, 2118–2133 (1993).
    [Crossref]
  43. R. J. Zawadzki, P. Zhang, A. Zam, E. B. Miller, M. Goswami, X. Wang, R. S. Jonnal, S. H. Lee, D. Y. Kim, J. G. Flannery, J. S. Werner, M. E. Burns, and E. N. Pugh, “Adaptive-optics SLO imaging combined with widefield OCT and SLO enables precise 3D localization of fluorescent cells in the mouse retina,” Biomed. Opt. Express 6, 2191–2210 (2015).
    [Crossref]
  44. J. A. Feeks and J. J. Hunter, “Adaptive optics two-photon excited fluorescence lifetime imaging ophthalmoscopy of exogenous fluorophores in mice,” Biomed. Opt. Express 8, 2483–2495 (2017).
    [Crossref]
  45. D. C. Gray, W. Merigan, J. I. Wolfing, B. P. Gee, J. Porter, A. Dubra, T. H. Twietmeyer, K. Ahamd, R. Tumbar, F. Reinholz, and D. R. Williams, “In vivo fluorescence imaging of primate retinal ganglion cells and retinal pigment epithelial cells,” Opt. Express 14, 7144–7158 (2006).
    [Crossref]
  46. J. I. Morgan, A. Dubra, R. Wolfe, W. H. Merigan, and D. R. Williams, “In vivo autofluorescence imaging of the human and macaque retinal pigment epithelial cell mosaic,” Invest. Ophthalmol. Visual Sci. 50, 1350–1359 (2009).
    [Crossref]
  47. E. A. Rossi, P. Rangel-Fonseca, K. Parkins, W. Fischer, L. R. Latchney, M. A. Folwell, D. R. Williams, A. Dubra, and M. M. Chung, “In vivo imaging of retinal pigment epithelium cells in age related macular degeneration,” Biomed. Opt. Express 4, 2527–2539 (2013).
    [Crossref]
  48. J. F. Zapata-Diaz, I. Marin-Franch, H. Radhakrishnan, and N. Lopez-Gil, “Impact of higher-order aberrations on depth-of-field,” J. Vis. 18(12):5 (2018).
    [Crossref]
  49. F. C. Delori and K. P. Pflibsen, “Spectral reflectance of the human ocular fundus,” Appl. Opt. 28, 1061–1077 (1989).
    [Crossref]
  50. D. M. Snodderly, J. D. Auran, and F. C. Delori, “The macular pigment. II. Spatial distribution in primate retinas,” Invest. Ophthalmol. Visual Sci. 25, 674–685 (1984).

2018 (4)

B. P. Schmidt, R. Sabesan, W. S. Tuten, J. Neitz, and A. Roorda, “Sensations from a single M-cone depend on the activity of surrounding S-cones,” Sci. Rep. 8, 8561 (2018).
[Crossref]

B. P. Schmidt, A. E. Boehm, K. G. Foote, and A. Roorda, “The spectral identity of foveal cones is preserved in hue perception,” J. Vis. 18(11):19 (2018).
[Crossref]

N. Suchkov, E. J. Fernandez, J. L. Martinez, and P. Artal, “Adaptive optics visual simulator with dynamic control of chromatic aberrations,” Invest. Ophthalmol. Visual Sci. 59, 4639 (2018).
[Crossref]

J. F. Zapata-Diaz, I. Marin-Franch, H. Radhakrishnan, and N. Lopez-Gil, “Impact of higher-order aberrations on depth-of-field,” J. Vis. 18(12):5 (2018).
[Crossref]

2017 (2)

W. S. Tuten, W. M. Harmening, R. Sabesan, A. Roorda, and L. C. Sincich, “Spatiochromatic interactions between individual cone photoreceptors in the human retina,” J. Neurosci. 37, 9498–9509 (2017).
[Crossref]

J. A. Feeks and J. J. Hunter, “Adaptive optics two-photon excited fluorescence lifetime imaging ophthalmoscopy of exogenous fluorophores in mice,” Biomed. Opt. Express 8, 2483–2495 (2017).
[Crossref]

2016 (2)

R. Sabesan, B. P. Schmidt, W. S. Tuten, and A. Roorda, “The elementary representation of spatial and color vision in the human retina,” Sci. Adv. 2, e1600797 (2016).
[Crossref]

M. Nakajima, T. Hiraoka, T. Yamamoto, S. Takagi, Y. Hirohara, T. Oshika, and T. Mihashi, “Differences of longitudinal chromatic aberration (LCA) between eyes with intraocular lenses from different manufacturers,” PLoS One 11, e0156227 (2016).
[Crossref]

2015 (2)

2014 (1)

W. M. Harmening, W. S. Tuten, A. Roorda, and L. C. Sincich, “Mapping the perceptual grain of the human retina,” J. Neurosci. 34, 5667–5677 (2014).
[Crossref]

2013 (2)

2011 (1)

2010 (4)

C. Canovas, P. M. Prieto, S. Manzanera, A. Mira, and P. Artal, “Hybrid adaptive-optics visual simulator,” Opt. Lett. 35, 196–198 (2010).
[Crossref]

L. Sawides, E. Gambra, D. Pascual, C. Dorronsoro, and S. Marcos, “Visual performance with real-life tasks under adaptive-optics ocular aberration correction,” J. Vis. 10(5):19 (2010).
[Crossref]

E. A. Rossi and A. Roorda, “The relationship between visual resolution and cone spacing in the human fovea,” Nat. Neurosci. 13, 156–157 (2010).
[Crossref]

L. A. Lesmes, Z. L. Lu, J. Baek, and T. D. Albright, “Bayesian adaptive estimation of the contrast sensitivity function: the quick CSF method,” J. Vis. 10(3):17, 1–21 (2010).
[Crossref]

2009 (2)

J. I. Morgan, A. Dubra, R. Wolfe, W. H. Merigan, and D. R. Williams, “In vivo autofluorescence imaging of the human and macaque retinal pigment epithelial cell mosaic,” Invest. Ophthalmol. Visual Sci. 50, 1350–1359 (2009).
[Crossref]

A. Gomez-Vieyra, A. Dubra, D. Malacara-Hernandez, and D. R. Williams, “First-order design of off-axis reflective ophthalmic adaptive optics systems using afocal telescopes,” Opt. Express 17, 18906–18919 (2009).
[Crossref]

2008 (2)

2007 (1)

2006 (4)

2005 (3)

P. B. Kruger, F. J. Rucker, C. Hu, H. Rutman, N. W. Schmidt, and V. Roditis, “Accommodation with and without short-wavelength-sensitive cones and chromatic aberration,” Vision Res. 45, 1265–1274 (2005).
[Crossref]

S. Poonja, S. Patel, L. Henry, and A. Roorda, “Dynamic visual stimulus presentation in an adaptive optics scanning laser ophthalmoscope,” J. Refract. Surg. 21, S575–580 (2005).

D. A. Atchison and G. Smith, “Chromatic dispersions of the ocular media of human eyes,” J. Opt. Soc. Am. A 22, 29–37 (2005).
[Crossref]

2002 (2)

A. Roorda, F. Romero-Borja, W. Donnelly Iii, H. Queener, T. Hebert, and M. Campbell, “Adaptive optics scanning laser ophthalmoscopy,” Opt. Express 10, 405–412 (2002).
[Crossref]

G. Y. Yoon and D. R. Williams, “Visual performance after correcting the monochromatic and chromatic aberrations of the eye,” J. Opt. Soc. Am. 19, 266–275 (2002).
[Crossref]

1999 (2)

S. Marcos, E. Moreno, and R. Navarro, “The depth-of-field of the human eye from objective and subjective measurements,” Vision Res. 39, 2039–2049 (1999).
[Crossref]

S. Marcos, S. A. Burns, E. Moreno-Barriusop, and R. Navarro, “A new approach to the study of ocular chromatic aberrations,” Vision Res. 39, 4309–4323 (1999).
[Crossref]

1998 (1)

M. C. Rynders, R. Navarro, and M. A. Losada, “Objective measurement of the off-axis longitudinal chromatic aberration in the human eye,” Vision Res. 38, 513–522 (1998).
[Crossref]

1997 (1)

J. Liang, D. R. Williams, and D. Miller, “Supernormal vision and high-resolution retinal imaging through adaptive optics,” J. Opt. Soc. Am. A 14, 2882–2892 (1997).
[Crossref]

1993 (2)

1991 (3)

X. X. Zhang, A. Bradley, and L. N. Thibos, “Achromatizing the human eye: the problem of chromatic parallax,” J. Opt. Soc. Am. A 8, 686–691 (1991).
[Crossref]

A. Bradley, X. X. Zhang, and L. N. Thibos, “Achromatizing the human eye,” Optom. Vis. Sci. 68, 608–616 (1991).
[Crossref]

L. N. Thibos, A. Bradley, and X. X. Zhang, “Effect of ocular chromatic aberration on monocular visual performance,” Optom. Vis. Sci. 68, 599–607 (1991).
[Crossref]

1989 (1)

1988 (1)

1986 (1)

P. A. Howarth and A. Bradley, “The longitudinal chromatic aberration of the human eye, and its correction,” Vision Res. 26, 361–366(1986).
[Crossref]

1985 (1)

K. T. Mullen, “The contrast sensitivity of human colour vision to red-green and blue-yellow chromatic gratings,” J. Physiol. 359, 381–400 (1985).
[Crossref]

1984 (1)

D. M. Snodderly, J. D. Auran, and F. C. Delori, “The macular pigment. II. Spatial distribution in primate retinas,” Invest. Ophthalmol. Visual Sci. 25, 674–685 (1984).

1976 (2)

W. N. Charman and J. A. M. Jennings, “Objective measurements of the longitudinal chromatic aberration of the human eye,” Vision Res. 16, 999–1005 (1976).
[Crossref]

M. Millodot and I. A. Newton, “A possible change of refractive index with age and its relevance to chromatic aberration,” Albrecht Von Graefes Arch Klin Exp Ophthalmol 201, 159–167 (1976).
[Crossref]

1957 (1)

1947 (1)

Ahamd, K.

Albright, T. D.

L. A. Lesmes, Z. L. Lu, J. Baek, and T. D. Albright, “Bayesian adaptive estimation of the contrast sensitivity function: the quick CSF method,” J. Vis. 10(3):17, 1–21 (2010).
[Crossref]

Arathorn, D. W.

Artal, P.

Atchison, D. A.

Auran, J. D.

D. M. Snodderly, J. D. Auran, and F. C. Delori, “The macular pigment. II. Spatial distribution in primate retinas,” Invest. Ophthalmol. Visual Sci. 25, 674–685 (1984).

Baek, J.

L. A. Lesmes, Z. L. Lu, J. Baek, and T. D. Albright, “Bayesian adaptive estimation of the contrast sensitivity function: the quick CSF method,” J. Vis. 10(3):17, 1–21 (2010).
[Crossref]

Bedford, R. E.

Boehm, A. E.

B. P. Schmidt, A. E. Boehm, K. G. Foote, and A. Roorda, “The spectral identity of foveal cones is preserved in hue perception,” J. Vis. 18(11):19 (2018).
[Crossref]

Bradley, A.

S. Ravikumar, L. N. Thibos, and A. Bradley, “Calculation of retinal image quality for polychromatic light,” J. Opt. Soc. Am. A 25, 2395–2407 (2008).
[Crossref]

L. N. Thibos, A. Bradley, and X. X. Zhang, “Effect of ocular chromatic aberration on monocular visual performance,” Optom. Vis. Sci. 68, 599–607 (1991).
[Crossref]

A. Bradley, X. X. Zhang, and L. N. Thibos, “Achromatizing the human eye,” Optom. Vis. Sci. 68, 608–616 (1991).
[Crossref]

X. X. Zhang, A. Bradley, and L. N. Thibos, “Achromatizing the human eye: the problem of chromatic parallax,” J. Opt. Soc. Am. A 8, 686–691 (1991).
[Crossref]

P. A. Howarth, X. X. Zhang, A. Bradley, D. L. Still, and L. N. Thibos, “Does the chromatic aberration of the eye vary with age?” J. Opt. Soc. Am. A 5, 2087–2092 (1988).
[Crossref]

P. A. Howarth and A. Bradley, “The longitudinal chromatic aberration of the human eye, and its correction,” Vision Res. 26, 361–366(1986).
[Crossref]

Brainard, D. H.

Burns, M. E.

Burns, S. A.

S. Marcos, S. A. Burns, E. Moreno-Barriusop, and R. Navarro, “A new approach to the study of ocular chromatic aberrations,” Vision Res. 39, 4309–4323 (1999).
[Crossref]

Campbell, M.

Canovas, C.

Cense, B.

Charman, W. N.

W. N. Charman and J. A. M. Jennings, “Objective measurements of the longitudinal chromatic aberration of the human eye,” Vision Res. 16, 999–1005 (1976).
[Crossref]

Choi, S. S.

Chung, M. M.

Cortes, D.

Delori, F. C.

F. C. Delori and K. P. Pflibsen, “Spectral reflectance of the human ocular fundus,” Appl. Opt. 28, 1061–1077 (1989).
[Crossref]

D. M. Snodderly, J. D. Auran, and F. C. Delori, “The macular pigment. II. Spatial distribution in primate retinas,” Invest. Ophthalmol. Visual Sci. 25, 674–685 (1984).

Donnelly Iii, W.

Dorronsoro, C.

M. Vinas, C. Dorronsoro, D. Cortes, D. Pascual, and S. Marcos, “Longitudinal chromatic aberration of the human eye in the visible and near infrared from wavefront sensing, double-pass and psychophysics,” Biomed. Opt. Express 6, 948–962 (2015).
[Crossref]

L. Sawides, E. Gambra, D. Pascual, C. Dorronsoro, and S. Marcos, “Visual performance with real-life tasks under adaptive-optics ocular aberration correction,” J. Vis. 10(5):19 (2010).
[Crossref]

Drexler, W.

Dubra, A.

Feeks, J. A.

Fernandez, E. J.

N. Suchkov, E. J. Fernandez, J. L. Martinez, and P. Artal, “Adaptive optics visual simulator with dynamic control of chromatic aberrations,” Invest. Ophthalmol. Visual Sci. 59, 4639 (2018).
[Crossref]

E. J. Fernandez, A. Unterhuber, B. Povazay, B. Hermann, P. Artal, and W. Drexler, “Chromatic aberration correction of the human eye for retinal imaging in the near infrared,” Opt. Express 14, 6213–6225 (2006).
[Crossref]

Fischer, W.

Flannery, J. G.

Folwell, M. A.

Foote, K. G.

B. P. Schmidt, A. E. Boehm, K. G. Foote, and A. Roorda, “The spectral identity of foveal cones is preserved in hue perception,” J. Vis. 18(11):19 (2018).
[Crossref]

Gambra, E.

L. Sawides, E. Gambra, D. Pascual, C. Dorronsoro, and S. Marcos, “Visual performance with real-life tasks under adaptive-optics ocular aberration correction,” J. Vis. 10(5):19 (2010).
[Crossref]

Gee, B. P.

Gomez-Vieyra, A.

Goswami, M.

Gray, D. C.

Grieve, K.

Griffin, D. R.

Harmening, W. M.

W. S. Tuten, W. M. Harmening, R. Sabesan, A. Roorda, and L. C. Sincich, “Spatiochromatic interactions between individual cone photoreceptors in the human retina,” J. Neurosci. 37, 9498–9509 (2017).
[Crossref]

W. M. Harmening, W. S. Tuten, A. Roorda, and L. C. Sincich, “Mapping the perceptual grain of the human retina,” J. Neurosci. 34, 5667–5677 (2014).
[Crossref]

Hebert, T.

Henry, L.

S. Poonja, S. Patel, L. Henry, and A. Roorda, “Dynamic visual stimulus presentation in an adaptive optics scanning laser ophthalmoscope,” J. Refract. Surg. 21, S575–580 (2005).

Hermann, B.

Hiraoka, T.

M. Nakajima, T. Hiraoka, T. Yamamoto, S. Takagi, Y. Hirohara, T. Oshika, and T. Mihashi, “Differences of longitudinal chromatic aberration (LCA) between eyes with intraocular lenses from different manufacturers,” PLoS One 11, e0156227 (2016).
[Crossref]

Hirohara, Y.

M. Nakajima, T. Hiraoka, T. Yamamoto, S. Takagi, Y. Hirohara, T. Oshika, and T. Mihashi, “Differences of longitudinal chromatic aberration (LCA) between eyes with intraocular lenses from different manufacturers,” PLoS One 11, e0156227 (2016).
[Crossref]

Howarth, P. A.

P. A. Howarth, X. X. Zhang, A. Bradley, D. L. Still, and L. N. Thibos, “Does the chromatic aberration of the eye vary with age?” J. Opt. Soc. Am. A 5, 2087–2092 (1988).
[Crossref]

P. A. Howarth and A. Bradley, “The longitudinal chromatic aberration of the human eye, and its correction,” Vision Res. 26, 361–366(1986).
[Crossref]

Hu, C.

P. B. Kruger, F. J. Rucker, C. Hu, H. Rutman, N. W. Schmidt, and V. Roditis, “Accommodation with and without short-wavelength-sensitive cones and chromatic aberration,” Vision Res. 45, 1265–1274 (2005).
[Crossref]

Hunter, J. J.

Jennings, J. A. M.

W. N. Charman and J. A. M. Jennings, “Objective measurements of the longitudinal chromatic aberration of the human eye,” Vision Res. 16, 999–1005 (1976).
[Crossref]

Jonnal, R. S.

Kim, D. Y.

Kocaoglu, O. P.

Kruger, P. B.

F. J. Rucker and P. B. Kruger, “Cone contributions to signals for accommodation and the relationship to refractive error,” Vision Res. 46, 3079–3089 (2006).
[Crossref]

P. B. Kruger, F. J. Rucker, C. Hu, H. Rutman, N. W. Schmidt, and V. Roditis, “Accommodation with and without short-wavelength-sensitive cones and chromatic aberration,” Vision Res. 45, 1265–1274 (2005).
[Crossref]

Latchney, L. R.

Lee, S. H.

Lesmes, L. A.

L. A. Lesmes, Z. L. Lu, J. Baek, and T. D. Albright, “Bayesian adaptive estimation of the contrast sensitivity function: the quick CSF method,” J. Vis. 10(3):17, 1–21 (2010).
[Crossref]

Liang, J.

J. Liang, D. R. Williams, and D. Miller, “Supernormal vision and high-resolution retinal imaging through adaptive optics,” J. Opt. Soc. Am. A 14, 2882–2892 (1997).
[Crossref]

Liu, Z.

Lopez-Gil, N.

J. F. Zapata-Diaz, I. Marin-Franch, H. Radhakrishnan, and N. Lopez-Gil, “Impact of higher-order aberrations on depth-of-field,” J. Vis. 18(12):5 (2018).
[Crossref]

Losada, M. A.

M. C. Rynders, R. Navarro, and M. A. Losada, “Objective measurement of the off-axis longitudinal chromatic aberration in the human eye,” Vision Res. 38, 513–522 (1998).
[Crossref]

Lu, Z. L.

L. A. Lesmes, Z. L. Lu, J. Baek, and T. D. Albright, “Bayesian adaptive estimation of the contrast sensitivity function: the quick CSF method,” J. Vis. 10(3):17, 1–21 (2010).
[Crossref]

Malacara-Hernandez, D.

Manzanera, S.

Marcos, S.

M. Vinas, C. Dorronsoro, D. Cortes, D. Pascual, and S. Marcos, “Longitudinal chromatic aberration of the human eye in the visible and near infrared from wavefront sensing, double-pass and psychophysics,” Biomed. Opt. Express 6, 948–962 (2015).
[Crossref]

L. Sawides, E. Gambra, D. Pascual, C. Dorronsoro, and S. Marcos, “Visual performance with real-life tasks under adaptive-optics ocular aberration correction,” J. Vis. 10(5):19 (2010).
[Crossref]

S. Marcos, E. Moreno, and R. Navarro, “The depth-of-field of the human eye from objective and subjective measurements,” Vision Res. 39, 2039–2049 (1999).
[Crossref]

S. Marcos, S. A. Burns, E. Moreno-Barriusop, and R. Navarro, “A new approach to the study of ocular chromatic aberrations,” Vision Res. 39, 4309–4323 (1999).
[Crossref]

Marin-Franch, I.

J. F. Zapata-Diaz, I. Marin-Franch, H. Radhakrishnan, and N. Lopez-Gil, “Impact of higher-order aberrations on depth-of-field,” J. Vis. 18(12):5 (2018).
[Crossref]

Martinez, J. L.

N. Suchkov, E. J. Fernandez, J. L. Martinez, and P. Artal, “Adaptive optics visual simulator with dynamic control of chromatic aberrations,” Invest. Ophthalmol. Visual Sci. 59, 4639 (2018).
[Crossref]

Merigan, W.

Merigan, W. H.

J. I. Morgan, A. Dubra, R. Wolfe, W. H. Merigan, and D. R. Williams, “In vivo autofluorescence imaging of the human and macaque retinal pigment epithelial cell mosaic,” Invest. Ophthalmol. Visual Sci. 50, 1350–1359 (2009).
[Crossref]

Mihashi, T.

M. Nakajima, T. Hiraoka, T. Yamamoto, S. Takagi, Y. Hirohara, T. Oshika, and T. Mihashi, “Differences of longitudinal chromatic aberration (LCA) between eyes with intraocular lenses from different manufacturers,” PLoS One 11, e0156227 (2016).
[Crossref]

Miller, D.

J. Liang, D. R. Williams, and D. Miller, “Supernormal vision and high-resolution retinal imaging through adaptive optics,” J. Opt. Soc. Am. A 14, 2882–2892 (1997).
[Crossref]

Miller, D. T.

Miller, E. B.

Millodot, M.

M. Millodot and I. A. Newton, “A possible change of refractive index with age and its relevance to chromatic aberration,” Albrecht Von Graefes Arch Klin Exp Ophthalmol 201, 159–167 (1976).
[Crossref]

Mira, A.

Moreno, E.

S. Marcos, E. Moreno, and R. Navarro, “The depth-of-field of the human eye from objective and subjective measurements,” Vision Res. 39, 2039–2049 (1999).
[Crossref]

Moreno-Barriusop, E.

S. Marcos, S. A. Burns, E. Moreno-Barriusop, and R. Navarro, “A new approach to the study of ocular chromatic aberrations,” Vision Res. 39, 4309–4323 (1999).
[Crossref]

Morgan, J. I.

J. I. Morgan, A. Dubra, R. Wolfe, W. H. Merigan, and D. R. Williams, “In vivo autofluorescence imaging of the human and macaque retinal pigment epithelial cell mosaic,” Invest. Ophthalmol. Visual Sci. 50, 1350–1359 (2009).
[Crossref]

Mullen, K. T.

K. T. Mullen, “The contrast sensitivity of human colour vision to red-green and blue-yellow chromatic gratings,” J. Physiol. 359, 381–400 (1985).
[Crossref]

Nakajima, M.

M. Nakajima, T. Hiraoka, T. Yamamoto, S. Takagi, Y. Hirohara, T. Oshika, and T. Mihashi, “Differences of longitudinal chromatic aberration (LCA) between eyes with intraocular lenses from different manufacturers,” PLoS One 11, e0156227 (2016).
[Crossref]

Navarro, R.

S. Marcos, E. Moreno, and R. Navarro, “The depth-of-field of the human eye from objective and subjective measurements,” Vision Res. 39, 2039–2049 (1999).
[Crossref]

S. Marcos, S. A. Burns, E. Moreno-Barriusop, and R. Navarro, “A new approach to the study of ocular chromatic aberrations,” Vision Res. 39, 4309–4323 (1999).
[Crossref]

M. C. Rynders, R. Navarro, and M. A. Losada, “Objective measurement of the off-axis longitudinal chromatic aberration in the human eye,” Vision Res. 38, 513–522 (1998).
[Crossref]

Neitz, J.

B. P. Schmidt, R. Sabesan, W. S. Tuten, J. Neitz, and A. Roorda, “Sensations from a single M-cone depend on the activity of surrounding S-cones,” Sci. Rep. 8, 8561 (2018).
[Crossref]

Newton, I. A.

M. Millodot and I. A. Newton, “A possible change of refractive index with age and its relevance to chromatic aberration,” Albrecht Von Graefes Arch Klin Exp Ophthalmol 201, 159–167 (1976).
[Crossref]

Oshika, T.

M. Nakajima, T. Hiraoka, T. Yamamoto, S. Takagi, Y. Hirohara, T. Oshika, and T. Mihashi, “Differences of longitudinal chromatic aberration (LCA) between eyes with intraocular lenses from different manufacturers,” PLoS One 11, e0156227 (2016).
[Crossref]

Parkins, K.

Pascual, D.

M. Vinas, C. Dorronsoro, D. Cortes, D. Pascual, and S. Marcos, “Longitudinal chromatic aberration of the human eye in the visible and near infrared from wavefront sensing, double-pass and psychophysics,” Biomed. Opt. Express 6, 948–962 (2015).
[Crossref]

L. Sawides, E. Gambra, D. Pascual, C. Dorronsoro, and S. Marcos, “Visual performance with real-life tasks under adaptive-optics ocular aberration correction,” J. Vis. 10(5):19 (2010).
[Crossref]

Patel, S.

S. Poonja, S. Patel, L. Henry, and A. Roorda, “Dynamic visual stimulus presentation in an adaptive optics scanning laser ophthalmoscope,” J. Refract. Surg. 21, S575–580 (2005).

Pflibsen, K. P.

Poonja, S.

S. Poonja, S. Patel, L. Henry, and A. Roorda, “Dynamic visual stimulus presentation in an adaptive optics scanning laser ophthalmoscope,” J. Refract. Surg. 21, S575–580 (2005).

Porter, J.

Povazay, B.

Prieto, P. M.

Pugh, E. N.

Queener, H.

Radhakrishnan, H.

J. F. Zapata-Diaz, I. Marin-Franch, H. Radhakrishnan, and N. Lopez-Gil, “Impact of higher-order aberrations on depth-of-field,” J. Vis. 18(12):5 (2018).
[Crossref]

Rangel-Fonseca, P.

Ravikumar, S.

Reinholz, F.

Roditis, V.

P. B. Kruger, F. J. Rucker, C. Hu, H. Rutman, N. W. Schmidt, and V. Roditis, “Accommodation with and without short-wavelength-sensitive cones and chromatic aberration,” Vision Res. 45, 1265–1274 (2005).
[Crossref]

Romero-Borja, F.

Roorda, A.

B. P. Schmidt, A. E. Boehm, K. G. Foote, and A. Roorda, “The spectral identity of foveal cones is preserved in hue perception,” J. Vis. 18(11):19 (2018).
[Crossref]

B. P. Schmidt, R. Sabesan, W. S. Tuten, J. Neitz, and A. Roorda, “Sensations from a single M-cone depend on the activity of surrounding S-cones,” Sci. Rep. 8, 8561 (2018).
[Crossref]

W. S. Tuten, W. M. Harmening, R. Sabesan, A. Roorda, and L. C. Sincich, “Spatiochromatic interactions between individual cone photoreceptors in the human retina,” J. Neurosci. 37, 9498–9509 (2017).
[Crossref]

R. Sabesan, B. P. Schmidt, W. S. Tuten, and A. Roorda, “The elementary representation of spatial and color vision in the human retina,” Sci. Adv. 2, e1600797 (2016).
[Crossref]

W. M. Harmening, W. S. Tuten, A. Roorda, and L. C. Sincich, “Mapping the perceptual grain of the human retina,” J. Neurosci. 34, 5667–5677 (2014).
[Crossref]

E. A. Rossi and A. Roorda, “The relationship between visual resolution and cone spacing in the human fovea,” Nat. Neurosci. 13, 156–157 (2010).
[Crossref]

D. W. Arathorn, Q. Yang, C. R. Vogel, Y. Zhang, P. Tiruveedhula, and A. Roorda, “Retinally stabilized cone-targeted stimulus delivery,” Opt. Express 15, 13731–13744 (2007).
[Crossref]

K. Grieve, P. Tiruveedhula, Y. Zhang, and A. Roorda, “Multi-wavelength imaging with the adaptive optics scanning laser ophthalmoscope,” Opt. Express 14, 12230–12242 (2006).
[Crossref]

S. Poonja, S. Patel, L. Henry, and A. Roorda, “Dynamic visual stimulus presentation in an adaptive optics scanning laser ophthalmoscope,” J. Refract. Surg. 21, S575–580 (2005).

A. Roorda, F. Romero-Borja, W. Donnelly Iii, H. Queener, T. Hebert, and M. Campbell, “Adaptive optics scanning laser ophthalmoscopy,” Opt. Express 10, 405–412 (2002).
[Crossref]

Rossi, E. A.

Rucker, F. J.

F. J. Rucker and P. B. Kruger, “Cone contributions to signals for accommodation and the relationship to refractive error,” Vision Res. 46, 3079–3089 (2006).
[Crossref]

P. B. Kruger, F. J. Rucker, C. Hu, H. Rutman, N. W. Schmidt, and V. Roditis, “Accommodation with and without short-wavelength-sensitive cones and chromatic aberration,” Vision Res. 45, 1265–1274 (2005).
[Crossref]

Rutman, H.

P. B. Kruger, F. J. Rucker, C. Hu, H. Rutman, N. W. Schmidt, and V. Roditis, “Accommodation with and without short-wavelength-sensitive cones and chromatic aberration,” Vision Res. 45, 1265–1274 (2005).
[Crossref]

Rynders, M. C.

M. C. Rynders, R. Navarro, and M. A. Losada, “Objective measurement of the off-axis longitudinal chromatic aberration in the human eye,” Vision Res. 38, 513–522 (1998).
[Crossref]

Sabesan, R.

B. P. Schmidt, R. Sabesan, W. S. Tuten, J. Neitz, and A. Roorda, “Sensations from a single M-cone depend on the activity of surrounding S-cones,” Sci. Rep. 8, 8561 (2018).
[Crossref]

W. S. Tuten, W. M. Harmening, R. Sabesan, A. Roorda, and L. C. Sincich, “Spatiochromatic interactions between individual cone photoreceptors in the human retina,” J. Neurosci. 37, 9498–9509 (2017).
[Crossref]

R. Sabesan, B. P. Schmidt, W. S. Tuten, and A. Roorda, “The elementary representation of spatial and color vision in the human retina,” Sci. Adv. 2, e1600797 (2016).
[Crossref]

Sawides, L.

L. Sawides, E. Gambra, D. Pascual, C. Dorronsoro, and S. Marcos, “Visual performance with real-life tasks under adaptive-optics ocular aberration correction,” J. Vis. 10(5):19 (2010).
[Crossref]

Schmidt, B. P.

B. P. Schmidt, R. Sabesan, W. S. Tuten, J. Neitz, and A. Roorda, “Sensations from a single M-cone depend on the activity of surrounding S-cones,” Sci. Rep. 8, 8561 (2018).
[Crossref]

B. P. Schmidt, A. E. Boehm, K. G. Foote, and A. Roorda, “The spectral identity of foveal cones is preserved in hue perception,” J. Vis. 18(11):19 (2018).
[Crossref]

R. Sabesan, B. P. Schmidt, W. S. Tuten, and A. Roorda, “The elementary representation of spatial and color vision in the human retina,” Sci. Adv. 2, e1600797 (2016).
[Crossref]

Schmidt, N. W.

P. B. Kruger, F. J. Rucker, C. Hu, H. Rutman, N. W. Schmidt, and V. Roditis, “Accommodation with and without short-wavelength-sensitive cones and chromatic aberration,” Vision Res. 45, 1265–1274 (2005).
[Crossref]

Sekiguchi, N.

Sincich, L. C.

W. S. Tuten, W. M. Harmening, R. Sabesan, A. Roorda, and L. C. Sincich, “Spatiochromatic interactions between individual cone photoreceptors in the human retina,” J. Neurosci. 37, 9498–9509 (2017).
[Crossref]

W. M. Harmening, W. S. Tuten, A. Roorda, and L. C. Sincich, “Mapping the perceptual grain of the human retina,” J. Neurosci. 34, 5667–5677 (2014).
[Crossref]

Smith, G.

Snodderly, D. M.

D. M. Snodderly, J. D. Auran, and F. C. Delori, “The macular pigment. II. Spatial distribution in primate retinas,” Invest. Ophthalmol. Visual Sci. 25, 674–685 (1984).

Still, D. L.

Suchkov, N.

N. Suchkov, E. J. Fernandez, J. L. Martinez, and P. Artal, “Adaptive optics visual simulator with dynamic control of chromatic aberrations,” Invest. Ophthalmol. Visual Sci. 59, 4639 (2018).
[Crossref]

Sulai, Y.

Takagi, S.

M. Nakajima, T. Hiraoka, T. Yamamoto, S. Takagi, Y. Hirohara, T. Oshika, and T. Mihashi, “Differences of longitudinal chromatic aberration (LCA) between eyes with intraocular lenses from different manufacturers,” PLoS One 11, e0156227 (2016).
[Crossref]

Thibos, L. N.

Tiruveedhula, P.

Tumbar, R.

Tuten, W. S.

B. P. Schmidt, R. Sabesan, W. S. Tuten, J. Neitz, and A. Roorda, “Sensations from a single M-cone depend on the activity of surrounding S-cones,” Sci. Rep. 8, 8561 (2018).
[Crossref]

W. S. Tuten, W. M. Harmening, R. Sabesan, A. Roorda, and L. C. Sincich, “Spatiochromatic interactions between individual cone photoreceptors in the human retina,” J. Neurosci. 37, 9498–9509 (2017).
[Crossref]

R. Sabesan, B. P. Schmidt, W. S. Tuten, and A. Roorda, “The elementary representation of spatial and color vision in the human retina,” Sci. Adv. 2, e1600797 (2016).
[Crossref]

W. M. Harmening, W. S. Tuten, A. Roorda, and L. C. Sincich, “Mapping the perceptual grain of the human retina,” J. Neurosci. 34, 5667–5677 (2014).
[Crossref]

Twietmeyer, T. H.

Unterhuber, A.

Vinas, M.

Vogel, C. R.

Wald, G.

Wang, X.

Werner, J. S.

Williams, D. R.

E. A. Rossi, P. Rangel-Fonseca, K. Parkins, W. Fischer, L. R. Latchney, M. A. Folwell, D. R. Williams, A. Dubra, and M. M. Chung, “In vivo imaging of retinal pigment epithelium cells in age related macular degeneration,” Biomed. Opt. Express 4, 2527–2539 (2013).
[Crossref]

A. Gomez-Vieyra, A. Dubra, D. Malacara-Hernandez, and D. R. Williams, “First-order design of off-axis reflective ophthalmic adaptive optics systems using afocal telescopes,” Opt. Express 17, 18906–18919 (2009).
[Crossref]

J. I. Morgan, A. Dubra, R. Wolfe, W. H. Merigan, and D. R. Williams, “In vivo autofluorescence imaging of the human and macaque retinal pigment epithelial cell mosaic,” Invest. Ophthalmol. Visual Sci. 50, 1350–1359 (2009).
[Crossref]

D. C. Gray, W. Merigan, J. I. Wolfing, B. P. Gee, J. Porter, A. Dubra, T. H. Twietmeyer, K. Ahamd, R. Tumbar, F. Reinholz, and D. R. Williams, “In vivo fluorescence imaging of primate retinal ganglion cells and retinal pigment epithelial cells,” Opt. Express 14, 7144–7158 (2006).
[Crossref]

G. Y. Yoon and D. R. Williams, “Visual performance after correcting the monochromatic and chromatic aberrations of the eye,” J. Opt. Soc. Am. 19, 266–275 (2002).
[Crossref]

J. Liang, D. R. Williams, and D. Miller, “Supernormal vision and high-resolution retinal imaging through adaptive optics,” J. Opt. Soc. Am. A 14, 2882–2892 (1997).
[Crossref]

N. Sekiguchi, D. R. Williams, and D. H. Brainard, “Aberration-free measurements of the visibility of isoluminant gratings,” J. Opt. Soc. Am. A 10, 2105–2117 (1993).
[Crossref]

N. Sekiguchi, D. R. Williams, and D. H. Brainard, “Efficiency in detection of isoluminant and isochromatic interference fringes,” J. Opt. Soc. Am. A 10, 2118–2133 (1993).
[Crossref]

Wolfe, R.

J. I. Morgan, A. Dubra, R. Wolfe, W. H. Merigan, and D. R. Williams, “In vivo autofluorescence imaging of the human and macaque retinal pigment epithelial cell mosaic,” Invest. Ophthalmol. Visual Sci. 50, 1350–1359 (2009).
[Crossref]

Wolfing, J. I.

Wyszecki, G.

Yamamoto, T.

M. Nakajima, T. Hiraoka, T. Yamamoto, S. Takagi, Y. Hirohara, T. Oshika, and T. Mihashi, “Differences of longitudinal chromatic aberration (LCA) between eyes with intraocular lenses from different manufacturers,” PLoS One 11, e0156227 (2016).
[Crossref]

Yang, Q.

Yoon, G. Y.

G. Y. Yoon and D. R. Williams, “Visual performance after correcting the monochromatic and chromatic aberrations of the eye,” J. Opt. Soc. Am. 19, 266–275 (2002).
[Crossref]

Zam, A.

Zapata-Diaz, J. F.

J. F. Zapata-Diaz, I. Marin-Franch, H. Radhakrishnan, and N. Lopez-Gil, “Impact of higher-order aberrations on depth-of-field,” J. Vis. 18(12):5 (2018).
[Crossref]

Zawadzki, R. J.

Zhang, P.

Zhang, X. X.

X. X. Zhang, A. Bradley, and L. N. Thibos, “Achromatizing the human eye: the problem of chromatic parallax,” J. Opt. Soc. Am. A 8, 686–691 (1991).
[Crossref]

L. N. Thibos, A. Bradley, and X. X. Zhang, “Effect of ocular chromatic aberration on monocular visual performance,” Optom. Vis. Sci. 68, 599–607 (1991).
[Crossref]

A. Bradley, X. X. Zhang, and L. N. Thibos, “Achromatizing the human eye,” Optom. Vis. Sci. 68, 608–616 (1991).
[Crossref]

P. A. Howarth, X. X. Zhang, A. Bradley, D. L. Still, and L. N. Thibos, “Does the chromatic aberration of the eye vary with age?” J. Opt. Soc. Am. A 5, 2087–2092 (1988).
[Crossref]

Zhang, Y.

Albrecht Von Graefes Arch Klin Exp Ophthalmol (1)

M. Millodot and I. A. Newton, “A possible change of refractive index with age and its relevance to chromatic aberration,” Albrecht Von Graefes Arch Klin Exp Ophthalmol 201, 159–167 (1976).
[Crossref]

Appl. Opt. (1)

Biomed. Opt. Express (6)

Invest. Ophthalmol. Visual Sci. (3)

N. Suchkov, E. J. Fernandez, J. L. Martinez, and P. Artal, “Adaptive optics visual simulator with dynamic control of chromatic aberrations,” Invest. Ophthalmol. Visual Sci. 59, 4639 (2018).
[Crossref]

J. I. Morgan, A. Dubra, R. Wolfe, W. H. Merigan, and D. R. Williams, “In vivo autofluorescence imaging of the human and macaque retinal pigment epithelial cell mosaic,” Invest. Ophthalmol. Visual Sci. 50, 1350–1359 (2009).
[Crossref]

D. M. Snodderly, J. D. Auran, and F. C. Delori, “The macular pigment. II. Spatial distribution in primate retinas,” Invest. Ophthalmol. Visual Sci. 25, 674–685 (1984).

J. Neurosci. (2)

W. S. Tuten, W. M. Harmening, R. Sabesan, A. Roorda, and L. C. Sincich, “Spatiochromatic interactions between individual cone photoreceptors in the human retina,” J. Neurosci. 37, 9498–9509 (2017).
[Crossref]

W. M. Harmening, W. S. Tuten, A. Roorda, and L. C. Sincich, “Mapping the perceptual grain of the human retina,” J. Neurosci. 34, 5667–5677 (2014).
[Crossref]

J. Opt. Soc. Am. (3)

J. Opt. Soc. Am. A (7)

J. Physiol. (1)

K. T. Mullen, “The contrast sensitivity of human colour vision to red-green and blue-yellow chromatic gratings,” J. Physiol. 359, 381–400 (1985).
[Crossref]

J. Refract. Surg. (1)

S. Poonja, S. Patel, L. Henry, and A. Roorda, “Dynamic visual stimulus presentation in an adaptive optics scanning laser ophthalmoscope,” J. Refract. Surg. 21, S575–580 (2005).

J. Vis. (4)

L. A. Lesmes, Z. L. Lu, J. Baek, and T. D. Albright, “Bayesian adaptive estimation of the contrast sensitivity function: the quick CSF method,” J. Vis. 10(3):17, 1–21 (2010).
[Crossref]

J. F. Zapata-Diaz, I. Marin-Franch, H. Radhakrishnan, and N. Lopez-Gil, “Impact of higher-order aberrations on depth-of-field,” J. Vis. 18(12):5 (2018).
[Crossref]

B. P. Schmidt, A. E. Boehm, K. G. Foote, and A. Roorda, “The spectral identity of foveal cones is preserved in hue perception,” J. Vis. 18(11):19 (2018).
[Crossref]

L. Sawides, E. Gambra, D. Pascual, C. Dorronsoro, and S. Marcos, “Visual performance with real-life tasks under adaptive-optics ocular aberration correction,” J. Vis. 10(5):19 (2010).
[Crossref]

Nat. Neurosci. (1)

E. A. Rossi and A. Roorda, “The relationship between visual resolution and cone spacing in the human fovea,” Nat. Neurosci. 13, 156–157 (2010).
[Crossref]

Opt. Express (7)

K. Grieve, P. Tiruveedhula, Y. Zhang, and A. Roorda, “Multi-wavelength imaging with the adaptive optics scanning laser ophthalmoscope,” Opt. Express 14, 12230–12242 (2006).
[Crossref]

E. J. Fernandez, A. Unterhuber, B. Povazay, B. Hermann, P. Artal, and W. Drexler, “Chromatic aberration correction of the human eye for retinal imaging in the near infrared,” Opt. Express 14, 6213–6225 (2006).
[Crossref]

A. Gomez-Vieyra, A. Dubra, D. Malacara-Hernandez, and D. R. Williams, “First-order design of off-axis reflective ophthalmic adaptive optics systems using afocal telescopes,” Opt. Express 17, 18906–18919 (2009).
[Crossref]

A. Roorda, F. Romero-Borja, W. Donnelly Iii, H. Queener, T. Hebert, and M. Campbell, “Adaptive optics scanning laser ophthalmoscopy,” Opt. Express 10, 405–412 (2002).
[Crossref]

D. W. Arathorn, Q. Yang, C. R. Vogel, Y. Zhang, P. Tiruveedhula, and A. Roorda, “Retinally stabilized cone-targeted stimulus delivery,” Opt. Express 15, 13731–13744 (2007).
[Crossref]

R. J. Zawadzki, B. Cense, Y. Zhang, S. S. Choi, D. T. Miller, and J. S. Werner, “Ultrahigh-resolution optical coherence tomography with monochromatic and chromatic aberration correction,” Opt. Express 16, 8126–8143 (2008).
[Crossref]

D. C. Gray, W. Merigan, J. I. Wolfing, B. P. Gee, J. Porter, A. Dubra, T. H. Twietmeyer, K. Ahamd, R. Tumbar, F. Reinholz, and D. R. Williams, “In vivo fluorescence imaging of primate retinal ganglion cells and retinal pigment epithelial cells,” Opt. Express 14, 7144–7158 (2006).
[Crossref]

Opt. Lett. (1)

Optom. Vis. Sci. (2)

L. N. Thibos, A. Bradley, and X. X. Zhang, “Effect of ocular chromatic aberration on monocular visual performance,” Optom. Vis. Sci. 68, 599–607 (1991).
[Crossref]

A. Bradley, X. X. Zhang, and L. N. Thibos, “Achromatizing the human eye,” Optom. Vis. Sci. 68, 608–616 (1991).
[Crossref]

PLoS One (1)

M. Nakajima, T. Hiraoka, T. Yamamoto, S. Takagi, Y. Hirohara, T. Oshika, and T. Mihashi, “Differences of longitudinal chromatic aberration (LCA) between eyes with intraocular lenses from different manufacturers,” PLoS One 11, e0156227 (2016).
[Crossref]

Sci. Adv. (1)

R. Sabesan, B. P. Schmidt, W. S. Tuten, and A. Roorda, “The elementary representation of spatial and color vision in the human retina,” Sci. Adv. 2, e1600797 (2016).
[Crossref]

Sci. Rep. (1)

B. P. Schmidt, R. Sabesan, W. S. Tuten, J. Neitz, and A. Roorda, “Sensations from a single M-cone depend on the activity of surrounding S-cones,” Sci. Rep. 8, 8561 (2018).
[Crossref]

Vision Res. (7)

S. Marcos, E. Moreno, and R. Navarro, “The depth-of-field of the human eye from objective and subjective measurements,” Vision Res. 39, 2039–2049 (1999).
[Crossref]

F. J. Rucker and P. B. Kruger, “Cone contributions to signals for accommodation and the relationship to refractive error,” Vision Res. 46, 3079–3089 (2006).
[Crossref]

P. B. Kruger, F. J. Rucker, C. Hu, H. Rutman, N. W. Schmidt, and V. Roditis, “Accommodation with and without short-wavelength-sensitive cones and chromatic aberration,” Vision Res. 45, 1265–1274 (2005).
[Crossref]

P. A. Howarth and A. Bradley, “The longitudinal chromatic aberration of the human eye, and its correction,” Vision Res. 26, 361–366(1986).
[Crossref]

M. C. Rynders, R. Navarro, and M. A. Losada, “Objective measurement of the off-axis longitudinal chromatic aberration in the human eye,” Vision Res. 38, 513–522 (1998).
[Crossref]

W. N. Charman and J. A. M. Jennings, “Objective measurements of the longitudinal chromatic aberration of the human eye,” Vision Res. 16, 999–1005 (1976).
[Crossref]

S. Marcos, S. A. Burns, E. Moreno-Barriusop, and R. Navarro, “A new approach to the study of ocular chromatic aberrations,” Vision Res. 39, 4309–4323 (1999).
[Crossref]

Supplementary Material (1)

NameDescription
» Supplement 1       Supplementary Material

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. (a) Typical Badal optometer consists of two focusing elements (L1 and L2) and flat mirrors (M1–M4) that are together used to form an afocal telescope. M2 and M3 are placed on a translation stage. Moving the stage ( Δ d ) can alter the physical distance between L1 and L2 (M2’, M3’ and the dashed line) introducing extra vergence ( Δ V ) at the exit pupil P 2 (dashed line), which leads to a focal plane change in the eye ( Δ V ). Note that Δ V here shows the defocus change in diopters and not physical distance. (b) When two wavelengths (say, a red and a green) are used together in a Badal system, the eye’s LCA forces the two wavelengths to be defocused relative to each other. (c) Two long-pass filters (LP1 and LP2) inserted between the mirror pairs M1, M2 and M3, M4 separate the longer and shorter wavelengths so that they can have tunable relative defocus at P 2 as a function of Δ d . L, lens; M, mirror; LP, long-pass filter; LCA, longitudinal chromatic aberration; P , pupil plane; Δ V , vergence change; Δ d , distance change in (a) the afocal telescope and (c) in the transmitted beam.
Fig. 2.
Fig. 2. Optical layout of the multi-wavelength adaptive optics vision simulation (AOSIM) system. The wavefront beacon was introduced into the eye by a pellicle beamsplitter (BS). The backscattered light was relayed to the deformable mirror (DM) and the wavefront sensor camera (WFS) by several afocal telescopes. The custom visual display consisted of a digital micrometer device (DMD) and two LEDs centered at 532 nm and at 661 nm combined together via a long-pass filter (LP). Example isochromatic grating stimuli are shown. The stimuli light was coupled into the wavefront sensing/correction path through a cold mirror. The artificial pupil (AP) ensured the vision testing was performed through a controllable 6 mm pupil. L, lens; M, mirror; LP, long-pass filter; BS, beamsplitter; DM, deformable mirror; WFS, wavefront sensor; SLD, superluminescent diode; DMD, digital micrometer device; P , pupil plane; R , retinal plane; AP, artificial pupil.
Fig. 3.
Fig. 3. Layout of the multi-wavelength AOSLO with the filter-based Badal LCA compensator. The dashed line at the eye’s pupil, mirror M1, and eyeball show the traditional scenario without the LCA compensator. The eye’s pupil in traditional operation was replaced by the entrance pupil of the LCA compensator. S, spherical mirror; L, lens; M, mirror; HS, horizontal scanner; VS, vertical scanner; LP, long-pass filter; BS, beamsplitter; SLD, superluminescent diode; AOM, acousto-optic modulator; WF, wavefront sensing channel; IR, infrared channel; R/G, red/green channel; B, blue channel; WFS, wavefront sensor; DM, deformable mirror; PH, pinhole; PMT, photomultiplier tube; P , pupil plane; R , retinal plane.
Fig. 4.
Fig. 4. Averaged contrast sensitivity functions (CSFs) for 661 and 532 nm channels for three subjects, S1, S2, and S3, after the LCA compensation. Red and green curves represent the 661 nm and 532 nm channels, respectively. Both channels achieved an excellent and similar contrast sensitivity performance, indicating the optimal correction of LCA.
Fig. 5.
Fig. 5. Representative multi-wavelength cone images at fovea taken through (a) the transmitted channel and (b) the reflected channel. The FOV of the 840 nm image on the top left is 0.8°. The rest of the zoom-in images all have a 0.3° FOV. The scale bar in the zoom-in images is 5 arc-min. The imaging wavelengths are denoted at the top of each panel.
Fig. 6.
Fig. 6. Objective (left) and subjective (right) chromatic difference of focus relative to the 543 nm wavelength as the reference for four subjects (S1–S4). The objective LCAs were measured from 520 to 640 nm, while the subjective LCAs were from 470 to 640 nm.
Fig. 7.
Fig. 7. Objective versus subjective chromatic difference measurements for individual subjects (a) S1–S4 and (b) average. The subjective and objective estimates of the total LCA for the wavelength range 520–640 nm have no significant differences.
Fig. 8.
Fig. 8. (a) Comparison of previous subjective LCA estimations and our subjective (black solid line) and objective (red solid line) measurements. All the LCA estimations, including our objective one, agree well with each other. (b) Comparison of previous objective LCA studies with our objective measurements.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

u = f 2 + 2 Δ d .
v = f 2 2 2 Δ d + f 2 .
Δ V = 1 v f 2 = 2 Δ d f 2 2 .