Abstract

So far, illumination optics design for extended sources (like LEDs) has been mainly treated as perturbations of ideal point sources without any extent. Such approaches work well provided that this ideal case is approximately met. However, the demand for very compact luminaires equipped with modern high-brightness LEDs results in configurations where the actual size of the sources cannot be ignored. Here, we develop a “wavefront tailoring” method producing prescribed illumination patterns while fully encompassing the extended source size. We combine this technique with a wavefront-coupling design scheme, obtaining a powerful tool for creating optics for large Lambertian emitters and prescribed intensity emissions. As an example, we design a highly compact and efficient freeform lens delivering a constant illuminance pattern. Importantly, the presented design strategy can work with various methods for calculating the optical surfaces, such as direct methods or optimization routines.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Compact freeform illumination system design for pattern generation with extended light sources

Christoph Bösel and Herbert Gross
Appl. Opt. 58(10) 2713-2724 (2019)

Compact illumination optic with three freeform surfaces for improved beam control

Simone Sorgato, Rubén Mohedano, Julio Chaves, Maikel Hernández, José Blen, Dejan Grabovičkić, Pablo Benítez, Juan Carlos Miñano, Hugo Thienpont, and Fabian Duerr
Opt. Express 25(24) 29627-29641 (2017)

Overlapping-based optical freeform surface construction for extended lighting source

Kun Wang, Yanjun Han, Hongtao Li, and Yi Luo
Opt. Express 21(17) 19750-19761 (2013)

References

  • View by:
  • |
  • |
  • |

  1. H. Ries and J. Muschaweck, “Tailored freeform optical surfaces,” J. Opt. Soc. Am. A 19, 590–595 (2002).
    [Crossref]
  2. F. R. Fournier, W. J. Cassarly, and J. P. Rolland, “Fast freeform reflector generation using source-target maps,” Opt. Express 18, 5295–5304 (2010).
    [Crossref]
  3. Y. Ding, X. Liu, Z. R. Zheng, and P. F. Gu, “Freeform LED lens for uniform illumination,” Opt. Express 16, 12958–12966 (2008).
    [Crossref]
  4. Y. Luo, Z. Feng, Y. Han, and H. Li, “Design of compact and smooth free-form optical system with uniform illuminance for LED source,” Opt. Express 18, 9055–9063 (2010).
    [Crossref]
  5. Z. Li, S. Yu, L. Lin, Y. Tang, X. Ding, W. Yuan, and B. Yu, “Energy feedback freeform lenses for uniform illumination of extended light source LEDs,” Appl. Opt. 55, 10375–10381 (2016).
    [Crossref]
  6. K. Wang, Y. Han, H. Li, and Y. Luo, “Overlapping-based optical freeform surface construction for extended lighting source,” Opt. Express 21, 19750–19761 (2013).
    [Crossref]
  7. H. Ries and R. Winston, “Tailored edge-ray reflectors for illumination,” J. Opt. Soc. Am. A 11, 1260–1264 (1994).
    [Crossref]
  8. A. Rabl and J. Gordon, “Reflector design for illumination with extended sources: the basic solutions,” Appl. Opt. 33, 6012–6021 (1994).
    [Crossref]
  9. R. Wester, G. Müller, A. Völl, M. Berens, J. Stollenwerk, and P. Loosen, “Designing optical free-form surfaces for extended sources,” Opt. Express 22, A552–A560 (2014).
    [Crossref]
  10. D. Rausch, M. Rommel, A. M. Herkommer, and T. Talpur, “Illumination design for extended sources based on phase space mapping,” Opt. Eng. 56, 065103 (2017).
    [Crossref]
  11. R. Wu, C. Huang, X. Zhu, H. Cheng, and R. Liang, “Direct three-dimensional design of compact and ultra-efficient freeform lenses for extended light sources,” Optica 3, 840–843 (2016).
    [Crossref]
  12. S. Sorgato, R. Mohedano, J. Chaves, M. Hernández, J. Blen, D. Grabovičkić, P. Benítez, J. Miñano, H. Thienpont, and F. Duerr, “Compact illumination optic with three freeform surfaces for improved beam control,” Opt. Express 25, 29627–29641 (2017).
    [Crossref]
  13. O. Dross, R. Mohedano, P. Benítez, J. C. Miñano, J. Chaves, J. Blen, M. Hernández, and F. Muñoz, “Review of SMS design methods and real world applications,” Proc. SPIE 5529, 35–47 (2004).
    [Crossref]
  14. J. Chaves, Introduction to Nonimaging Optics, 2nd ed. (CRC Press, 2016).
  15. P. Benítez, J. C. Miñano, J. Blen, R. Mohedano, J. Chaves, O. Dross, M. Hernández, and W. Falicoff, “Simultaneous multiple surface optical design method in three dimensions,” Opt. Eng. 43, 1489–1502 (2004).
    [Crossref]
  16. M. Herzberger, Modern Geometrical Optics (Interscience, 1958).
  17. A. D. Polyanin, V. F. Zaitsev, and A. Moussiaux, Handbook of First Order Partial Differential Equations (Taylor & Francis, 2002).
  18. F. R. Fournier, W. J. Cassarly, and J. P. Rolland, “Optimization of single reflectors for extended sources,” Proc. SPIE 7103, 71030I (2008).
    [Crossref]
  19. “Light and lighting—Lighting of work places—Part 1: Indoor work places,” (CEN, 2011).

2017 (2)

2016 (2)

2014 (1)

2013 (1)

2010 (2)

2008 (2)

Y. Ding, X. Liu, Z. R. Zheng, and P. F. Gu, “Freeform LED lens for uniform illumination,” Opt. Express 16, 12958–12966 (2008).
[Crossref]

F. R. Fournier, W. J. Cassarly, and J. P. Rolland, “Optimization of single reflectors for extended sources,” Proc. SPIE 7103, 71030I (2008).
[Crossref]

2004 (2)

O. Dross, R. Mohedano, P. Benítez, J. C. Miñano, J. Chaves, J. Blen, M. Hernández, and F. Muñoz, “Review of SMS design methods and real world applications,” Proc. SPIE 5529, 35–47 (2004).
[Crossref]

P. Benítez, J. C. Miñano, J. Blen, R. Mohedano, J. Chaves, O. Dross, M. Hernández, and W. Falicoff, “Simultaneous multiple surface optical design method in three dimensions,” Opt. Eng. 43, 1489–1502 (2004).
[Crossref]

2002 (1)

1994 (2)

Benítez, P.

S. Sorgato, R. Mohedano, J. Chaves, M. Hernández, J. Blen, D. Grabovičkić, P. Benítez, J. Miñano, H. Thienpont, and F. Duerr, “Compact illumination optic with three freeform surfaces for improved beam control,” Opt. Express 25, 29627–29641 (2017).
[Crossref]

O. Dross, R. Mohedano, P. Benítez, J. C. Miñano, J. Chaves, J. Blen, M. Hernández, and F. Muñoz, “Review of SMS design methods and real world applications,” Proc. SPIE 5529, 35–47 (2004).
[Crossref]

P. Benítez, J. C. Miñano, J. Blen, R. Mohedano, J. Chaves, O. Dross, M. Hernández, and W. Falicoff, “Simultaneous multiple surface optical design method in three dimensions,” Opt. Eng. 43, 1489–1502 (2004).
[Crossref]

Berens, M.

Blen, J.

S. Sorgato, R. Mohedano, J. Chaves, M. Hernández, J. Blen, D. Grabovičkić, P. Benítez, J. Miñano, H. Thienpont, and F. Duerr, “Compact illumination optic with three freeform surfaces for improved beam control,” Opt. Express 25, 29627–29641 (2017).
[Crossref]

O. Dross, R. Mohedano, P. Benítez, J. C. Miñano, J. Chaves, J. Blen, M. Hernández, and F. Muñoz, “Review of SMS design methods and real world applications,” Proc. SPIE 5529, 35–47 (2004).
[Crossref]

P. Benítez, J. C. Miñano, J. Blen, R. Mohedano, J. Chaves, O. Dross, M. Hernández, and W. Falicoff, “Simultaneous multiple surface optical design method in three dimensions,” Opt. Eng. 43, 1489–1502 (2004).
[Crossref]

Cassarly, W. J.

F. R. Fournier, W. J. Cassarly, and J. P. Rolland, “Fast freeform reflector generation using source-target maps,” Opt. Express 18, 5295–5304 (2010).
[Crossref]

F. R. Fournier, W. J. Cassarly, and J. P. Rolland, “Optimization of single reflectors for extended sources,” Proc. SPIE 7103, 71030I (2008).
[Crossref]

Chaves, J.

S. Sorgato, R. Mohedano, J. Chaves, M. Hernández, J. Blen, D. Grabovičkić, P. Benítez, J. Miñano, H. Thienpont, and F. Duerr, “Compact illumination optic with three freeform surfaces for improved beam control,” Opt. Express 25, 29627–29641 (2017).
[Crossref]

P. Benítez, J. C. Miñano, J. Blen, R. Mohedano, J. Chaves, O. Dross, M. Hernández, and W. Falicoff, “Simultaneous multiple surface optical design method in three dimensions,” Opt. Eng. 43, 1489–1502 (2004).
[Crossref]

O. Dross, R. Mohedano, P. Benítez, J. C. Miñano, J. Chaves, J. Blen, M. Hernández, and F. Muñoz, “Review of SMS design methods and real world applications,” Proc. SPIE 5529, 35–47 (2004).
[Crossref]

J. Chaves, Introduction to Nonimaging Optics, 2nd ed. (CRC Press, 2016).

Cheng, H.

Ding, X.

Ding, Y.

Dross, O.

O. Dross, R. Mohedano, P. Benítez, J. C. Miñano, J. Chaves, J. Blen, M. Hernández, and F. Muñoz, “Review of SMS design methods and real world applications,” Proc. SPIE 5529, 35–47 (2004).
[Crossref]

P. Benítez, J. C. Miñano, J. Blen, R. Mohedano, J. Chaves, O. Dross, M. Hernández, and W. Falicoff, “Simultaneous multiple surface optical design method in three dimensions,” Opt. Eng. 43, 1489–1502 (2004).
[Crossref]

Duerr, F.

Falicoff, W.

P. Benítez, J. C. Miñano, J. Blen, R. Mohedano, J. Chaves, O. Dross, M. Hernández, and W. Falicoff, “Simultaneous multiple surface optical design method in three dimensions,” Opt. Eng. 43, 1489–1502 (2004).
[Crossref]

Feng, Z.

Fournier, F. R.

F. R. Fournier, W. J. Cassarly, and J. P. Rolland, “Fast freeform reflector generation using source-target maps,” Opt. Express 18, 5295–5304 (2010).
[Crossref]

F. R. Fournier, W. J. Cassarly, and J. P. Rolland, “Optimization of single reflectors for extended sources,” Proc. SPIE 7103, 71030I (2008).
[Crossref]

Gordon, J.

Grabovickic, D.

Gu, P. F.

Han, Y.

Herkommer, A. M.

D. Rausch, M. Rommel, A. M. Herkommer, and T. Talpur, “Illumination design for extended sources based on phase space mapping,” Opt. Eng. 56, 065103 (2017).
[Crossref]

Hernández, M.

S. Sorgato, R. Mohedano, J. Chaves, M. Hernández, J. Blen, D. Grabovičkić, P. Benítez, J. Miñano, H. Thienpont, and F. Duerr, “Compact illumination optic with three freeform surfaces for improved beam control,” Opt. Express 25, 29627–29641 (2017).
[Crossref]

P. Benítez, J. C. Miñano, J. Blen, R. Mohedano, J. Chaves, O. Dross, M. Hernández, and W. Falicoff, “Simultaneous multiple surface optical design method in three dimensions,” Opt. Eng. 43, 1489–1502 (2004).
[Crossref]

O. Dross, R. Mohedano, P. Benítez, J. C. Miñano, J. Chaves, J. Blen, M. Hernández, and F. Muñoz, “Review of SMS design methods and real world applications,” Proc. SPIE 5529, 35–47 (2004).
[Crossref]

Herzberger, M.

M. Herzberger, Modern Geometrical Optics (Interscience, 1958).

Huang, C.

Li, H.

Li, Z.

Liang, R.

Lin, L.

Liu, X.

Loosen, P.

Luo, Y.

Miñano, J.

Miñano, J. C.

O. Dross, R. Mohedano, P. Benítez, J. C. Miñano, J. Chaves, J. Blen, M. Hernández, and F. Muñoz, “Review of SMS design methods and real world applications,” Proc. SPIE 5529, 35–47 (2004).
[Crossref]

P. Benítez, J. C. Miñano, J. Blen, R. Mohedano, J. Chaves, O. Dross, M. Hernández, and W. Falicoff, “Simultaneous multiple surface optical design method in three dimensions,” Opt. Eng. 43, 1489–1502 (2004).
[Crossref]

Mohedano, R.

S. Sorgato, R. Mohedano, J. Chaves, M. Hernández, J. Blen, D. Grabovičkić, P. Benítez, J. Miñano, H. Thienpont, and F. Duerr, “Compact illumination optic with three freeform surfaces for improved beam control,” Opt. Express 25, 29627–29641 (2017).
[Crossref]

O. Dross, R. Mohedano, P. Benítez, J. C. Miñano, J. Chaves, J. Blen, M. Hernández, and F. Muñoz, “Review of SMS design methods and real world applications,” Proc. SPIE 5529, 35–47 (2004).
[Crossref]

P. Benítez, J. C. Miñano, J. Blen, R. Mohedano, J. Chaves, O. Dross, M. Hernández, and W. Falicoff, “Simultaneous multiple surface optical design method in three dimensions,” Opt. Eng. 43, 1489–1502 (2004).
[Crossref]

Moussiaux, A.

A. D. Polyanin, V. F. Zaitsev, and A. Moussiaux, Handbook of First Order Partial Differential Equations (Taylor & Francis, 2002).

Müller, G.

Muñoz, F.

O. Dross, R. Mohedano, P. Benítez, J. C. Miñano, J. Chaves, J. Blen, M. Hernández, and F. Muñoz, “Review of SMS design methods and real world applications,” Proc. SPIE 5529, 35–47 (2004).
[Crossref]

Muschaweck, J.

Polyanin, A. D.

A. D. Polyanin, V. F. Zaitsev, and A. Moussiaux, Handbook of First Order Partial Differential Equations (Taylor & Francis, 2002).

Rabl, A.

Rausch, D.

D. Rausch, M. Rommel, A. M. Herkommer, and T. Talpur, “Illumination design for extended sources based on phase space mapping,” Opt. Eng. 56, 065103 (2017).
[Crossref]

Ries, H.

Rolland, J. P.

F. R. Fournier, W. J. Cassarly, and J. P. Rolland, “Fast freeform reflector generation using source-target maps,” Opt. Express 18, 5295–5304 (2010).
[Crossref]

F. R. Fournier, W. J. Cassarly, and J. P. Rolland, “Optimization of single reflectors for extended sources,” Proc. SPIE 7103, 71030I (2008).
[Crossref]

Rommel, M.

D. Rausch, M. Rommel, A. M. Herkommer, and T. Talpur, “Illumination design for extended sources based on phase space mapping,” Opt. Eng. 56, 065103 (2017).
[Crossref]

Sorgato, S.

Stollenwerk, J.

Talpur, T.

D. Rausch, M. Rommel, A. M. Herkommer, and T. Talpur, “Illumination design for extended sources based on phase space mapping,” Opt. Eng. 56, 065103 (2017).
[Crossref]

Tang, Y.

Thienpont, H.

Völl, A.

Wang, K.

Wester, R.

Winston, R.

Wu, R.

Yu, B.

Yu, S.

Yuan, W.

Zaitsev, V. F.

A. D. Polyanin, V. F. Zaitsev, and A. Moussiaux, Handbook of First Order Partial Differential Equations (Taylor & Francis, 2002).

Zheng, Z. R.

Zhu, X.

Appl. Opt. (2)

J. Opt. Soc. Am. A (2)

Opt. Eng. (2)

D. Rausch, M. Rommel, A. M. Herkommer, and T. Talpur, “Illumination design for extended sources based on phase space mapping,” Opt. Eng. 56, 065103 (2017).
[Crossref]

P. Benítez, J. C. Miñano, J. Blen, R. Mohedano, J. Chaves, O. Dross, M. Hernández, and W. Falicoff, “Simultaneous multiple surface optical design method in three dimensions,” Opt. Eng. 43, 1489–1502 (2004).
[Crossref]

Opt. Express (6)

Optica (1)

Proc. SPIE (2)

O. Dross, R. Mohedano, P. Benítez, J. C. Miñano, J. Chaves, J. Blen, M. Hernández, and F. Muñoz, “Review of SMS design methods and real world applications,” Proc. SPIE 5529, 35–47 (2004).
[Crossref]

F. R. Fournier, W. J. Cassarly, and J. P. Rolland, “Optimization of single reflectors for extended sources,” Proc. SPIE 7103, 71030I (2008).
[Crossref]

Other (4)

“Light and lighting—Lighting of work places—Part 1: Indoor work places,” (CEN, 2011).

M. Herzberger, Modern Geometrical Optics (Interscience, 1958).

A. D. Polyanin, V. F. Zaitsev, and A. Moussiaux, Handbook of First Order Partial Differential Equations (Taylor & Francis, 2002).

J. Chaves, Introduction to Nonimaging Optics, 2nd ed. (CRC Press, 2016).

Supplementary Material (1)

NameDescription
» Supplement 1       Supplemental document

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Rays from the four corners Ek of emitter E, with k=1, 2, 3, 4, pass through pinhole P on the exit surface of an optic O and define a projected image I of the source, with quadrilateral shape. Coordinate axes x and y span a reference plane over which the optical momentum functions of ray sets can be defined.
Fig. 2.
Fig. 2. Steps in the calculation of the lit area into direction (pI,qI).
Fig. 3.
Fig. 3. (a) Target far-field illuminance pattern. (b) Coordinate systems, position of the reference exit aperture and of the target pattern.
Fig. 4.
Fig. 4. (a) y=0 section of pmin(x,y) and pmax(x,y). (b) Points Aand B of the reference exit aperture illuminate points A and B on the target plane. Directions lit by additional edge points are also shown.
Fig. 5.
Fig. 5. (a) Lateral and 3D views of SMS lens and source; units in millimeters. (b) Illuminance pattern formed by the lens on the detector plane; comparison between the y=0 sections of the target and real illuminance profiles. Arbitrary units (a. u.) are used for the illuminance.

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

p(x,y)=(p(x,y),q(x,y),+n2p2(x,y)q2(x,y)),
p1(x,y)=(pmax(x,y),qmax(x,y),1pmax2(x,y)qmax2(x,y)),p2(x,y)=(pmin(x,y),qmax(x,y),1pmin2(x,y)qmax2(x,y)),p3(x,y)=(pmax(x,y),qmin(x,y),1pmax2(x,y)qmin2(x,y)),p4(x,y)=(pmin(x,y),qmin(x,y),1pmin2(x,y)qmin2(x,y)).
pmin(x,y)<pI<pmax(x,y),qmin(x,y)<qI<qmax(x,y).
pk=p·ek<ak,
I(p,q)=LA(p,q)1p2q2,
ξ2D=S(pu·rvpv·ru)dudv,
px·rypy·rx=0qxpy=0.
qx=py=f(x,y),
q(x,y)=x0xf(t,y)dt+g(y)=x0xp(t,y)ydt+g(y),
pminy=qminx,pminy=qmaxx,pmaxy=qminx,pmaxy=qmaxx,
pminy=qminx,pminy=pmaxy,qminx=qmaxx.
qmin(x,y)=x0x(pmin(t,y)y)dt+g1(y),pmax(x,y)=pmin(x,y)+g2(x),qmax(x,y)=qmin(x,y)+g3(y),
A(p,q)=I0(1p2q2)4,
pmin(x,y)=m=0n=0amnxmyn=m=0n=1amnxmyn+m=0bmxm,
pmin(x,y)=m=0amx2m+1y2m+2+m=0bmxm,qmin(x,y)=m=0amx2m+2y2m+1+m=0bmym,
pmax(x,y)=pmin(x,y)+g2(x)=pmin(x,y)+m=0dmxm,qmax(x,y)=qmin(x,y)+g3(y)=qmin(x,y)+m=0dmym.

Metrics