Abstract

Rare-earth-doped fiber lasers at 3–5 μm can provide a variety of applications in defense, security, medicine, and so on. Limited by the maximum phonon energy of silicate glass host at room temperature, these lasers are normally based on soft-glass materials, e.g., fluoride or chalcogenide glass. However, due to the limited transparency of these fibers, until now these systems have only achieved coverage up to 3.92 μm. Here, we report a CW fiber laser operating well beyond 4 μm with significant power based on CO2-filled silica hollow-core fibers. By pumping via a homemade 2 μm laser diode, 82mWoptical power at 4.3 μm was achieved at room temperature with a maximum laser efficiency 19.3%. Our demonstration represents the longest-wavelength CW fiber laser to date, paving the way towards compact and high-power mid-infrared fiber lasers beyond the 4 μm wavelength.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
High-power tunable mid-infrared fiber gas laser source by acetylene-filled hollow-core fibers

Zhiyue Zhou, Ni Tang, Zhixian Li, Wei Huang, Zefeng Wang, Wuming Wu, and Weihong Hua
Opt. Express 26(15) 19144-19153 (2018)

Room-temperature fiber laser at 3.92  μm

Frédéric Maes, Vincent Fortin, Samuel Poulain, Marcel Poulain, Jean-Yves Carrée, Martin Bernier, and Réal Vallée
Optica 5(7) 761-764 (2018)

Efficient mid-infrared cascade Raman source in methane-filled hollow-core fibers operating at 2.8  μm

Zhixian Li, Wei Huang, Yulong Cui, and Zefeng Wang
Opt. Lett. 43(19) 4671-4674 (2018)

References

  • View by:
  • |
  • |
  • |

  1. S. D. Jackson, Nat. Photonics 6, 423 (2012).
    [Crossref]
  2. P. Zhou, X. Wang, Y. Ma, H. Lü, and Z. Liu, Laser Phys. 22, 1744(2012).
    [Crossref]
  3. T. Y. Chang and O. R. Wood, IEEE J. Quantum Electron. 8, 598 (2003).
    [Crossref]
  4. H. C. Miller, D. T. Radzykewycz, and G. Hager, IEEE J. Quantum Electron. 30, 2395 (2002).
    [Crossref]
  5. A. V. V. Nampoothiri, A. Ratanavis, N. Campbell, and W. Rudolph, Opt. Express 18, 1946 (2010).
    [Crossref]
  6. V. V. Fedorov, S. B. Mirov, and A. Gallian, IEEE J. Quantum Electron. 42, 907 (2006).
    [Crossref]
  7. I. Vurgaftman and J. R. Meyer, J. Appl. Phys. 99, 123108 (2006).
    [Crossref]
  8. X. Jiang, N. Y. Joly, M. A. Finger, F. Babic, G. K. L. Wong, J. C. Travers, and P. St. J. Russell, Nat. Photonics 9, 133 (2015).
    [Crossref]
  9. V. Fortin, M. Bernier, S. T. Bah, and R. Vallée, Opt. Lett. 40, 2882 (2015).
    [Crossref]
  10. R. I. Woodward, M. R. Majewski, G. Bharathan, D. D. Hudson, A. Fuerbach, and S. D. Jackson, Opt. Lett. 43, 1471 (2018).
    [Crossref]
  11. F. Maes, V. Fortin, M. Bernier, and R. Vallée, Opt. Lett. 42, 2054 (2017).
    [Crossref]
  12. O. H. Sapir, S. D. Jackson, and D. Ottaway, Opt. Lett. 41, 1676 (2016).
    [Crossref]
  13. F. Maes, V. Fortin, S. Poulain, M. Poulain, J.-Y. Carree, M. Bernier, and R. Vallee, Optica 5, 761 (2018).
    [Crossref]
  14. R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, Science 285, 1537 (1999).
    [Crossref]
  15. F. Couny, F. Benabid, and P. S. Light, Opt. Lett. 31, 3574 (2006).
    [Crossref]
  16. A. D. Pryamikov, A. S. Biriukov, A. F. Kosolapov, V. G. Plotnichenko, S. L. Semjonov, and E. M. Dianov, Opt. Express 19, 1441 (2012).
    [Crossref]
  17. F. Yu and J. C. Knight, IEEE J. Sel. Top. Quantum Electron. 22, 146 (2015).
    [Crossref]
  18. F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, Science 298, 399 (2002).
    [Crossref]
  19. Z. Wang, F. Yu, W. J. Wadsworth, and J. C. Knight, Laser Phys. Lett. 11, 105807 (2014).
    [Crossref]
  20. Y. Chen, Z. Wang, B. Gu, and Q. Lu, Opt. Lett. 41, 5118 (2016).
    [Crossref]
  21. Z. Li, W. Huang, Y. Cui, and Z. Wang, Opt. Lett. 43, 4671 (2018).
    [Crossref]
  22. M. S. Astapovich, A. V. Gladyshev, M. M. Khudyakov, A. F. Kosolapov, and I. A. Bufetov, IEEE Photon. Technol. Lett. 31, 78 (2019).
    [Crossref]
  23. A. V. V. Nampoothiri, A. M. Jones, C. Fourcade-Dutin, C. Mao, N. Dadashzadeh, B. Baumgart, Y. Y. Wang, M. Alharbi, T. Bradley, N. Campbell, F. Benabid, B. R. Washburn, K. L. Corwin, and W. Rudolph, Opt. Mater. Express 2, 948 (2012).
    [Crossref]
  24. Z. Wang, W. Belardi, F. Yu, W. J. Wadsworth, and J. C. Knight, Opt. Express 22, 21872 (2014).
    [Crossref]
  25. M. R. A. Hassan, F. Yu, W. J. Wadsworth, and J. C. Knight, Optica 3, 218 (2016).
    [Crossref]
  26. M. Xu, F. Yu, and J. Knight, Opt. Lett. 42, 4055 (2017).
    [Crossref]
  27. Z. Zhou, N. Tang, Z. Li, W. Huang, Z. Wang, W. Wu, and W. Hua, Opt. Express 26, 19144 (2018).
    [Crossref]
  28. F. B. A. Aghbolagh, V. Nampoothiri, B. Debord, F. Gerome, L. Vincetti, F. Benabid, and W. Rudolph, Opt. Lett. 44, 383 (2019).
    [Crossref]
  29. S. Selleri, L. Vincetti, A. Cucinotta, and M. Zoboli, Opt. Quantum Electron. 33, 359 (2001).
    [Crossref]
  30. S. Xie, R. Pennetta, and P. St. J. Russell, Optica 3, 277 (2016).
    [Crossref]

2019 (2)

M. S. Astapovich, A. V. Gladyshev, M. M. Khudyakov, A. F. Kosolapov, and I. A. Bufetov, IEEE Photon. Technol. Lett. 31, 78 (2019).
[Crossref]

F. B. A. Aghbolagh, V. Nampoothiri, B. Debord, F. Gerome, L. Vincetti, F. Benabid, and W. Rudolph, Opt. Lett. 44, 383 (2019).
[Crossref]

2018 (4)

2017 (2)

2016 (4)

2015 (3)

V. Fortin, M. Bernier, S. T. Bah, and R. Vallée, Opt. Lett. 40, 2882 (2015).
[Crossref]

F. Yu and J. C. Knight, IEEE J. Sel. Top. Quantum Electron. 22, 146 (2015).
[Crossref]

X. Jiang, N. Y. Joly, M. A. Finger, F. Babic, G. K. L. Wong, J. C. Travers, and P. St. J. Russell, Nat. Photonics 9, 133 (2015).
[Crossref]

2014 (2)

Z. Wang, F. Yu, W. J. Wadsworth, and J. C. Knight, Laser Phys. Lett. 11, 105807 (2014).
[Crossref]

Z. Wang, W. Belardi, F. Yu, W. J. Wadsworth, and J. C. Knight, Opt. Express 22, 21872 (2014).
[Crossref]

2012 (4)

2010 (1)

2006 (3)

V. V. Fedorov, S. B. Mirov, and A. Gallian, IEEE J. Quantum Electron. 42, 907 (2006).
[Crossref]

I. Vurgaftman and J. R. Meyer, J. Appl. Phys. 99, 123108 (2006).
[Crossref]

F. Couny, F. Benabid, and P. S. Light, Opt. Lett. 31, 3574 (2006).
[Crossref]

2003 (1)

T. Y. Chang and O. R. Wood, IEEE J. Quantum Electron. 8, 598 (2003).
[Crossref]

2002 (2)

H. C. Miller, D. T. Radzykewycz, and G. Hager, IEEE J. Quantum Electron. 30, 2395 (2002).
[Crossref]

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, Science 298, 399 (2002).
[Crossref]

2001 (1)

S. Selleri, L. Vincetti, A. Cucinotta, and M. Zoboli, Opt. Quantum Electron. 33, 359 (2001).
[Crossref]

1999 (1)

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, Science 285, 1537 (1999).
[Crossref]

Aghbolagh, F. B. A.

Alharbi, M.

Allan, D. C.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, Science 285, 1537 (1999).
[Crossref]

Antonopoulos, G.

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, Science 298, 399 (2002).
[Crossref]

Astapovich, M. S.

M. S. Astapovich, A. V. Gladyshev, M. M. Khudyakov, A. F. Kosolapov, and I. A. Bufetov, IEEE Photon. Technol. Lett. 31, 78 (2019).
[Crossref]

Babic, F.

X. Jiang, N. Y. Joly, M. A. Finger, F. Babic, G. K. L. Wong, J. C. Travers, and P. St. J. Russell, Nat. Photonics 9, 133 (2015).
[Crossref]

Bah, S. T.

Baumgart, B.

Belardi, W.

Benabid, F.

Bernier, M.

Bharathan, G.

Biriukov, A. S.

Birks, T. A.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, Science 285, 1537 (1999).
[Crossref]

Bradley, T.

Bufetov, I. A.

M. S. Astapovich, A. V. Gladyshev, M. M. Khudyakov, A. F. Kosolapov, and I. A. Bufetov, IEEE Photon. Technol. Lett. 31, 78 (2019).
[Crossref]

Campbell, N.

Carree, J.-Y.

Chang, T. Y.

T. Y. Chang and O. R. Wood, IEEE J. Quantum Electron. 8, 598 (2003).
[Crossref]

Chen, Y.

Corwin, K. L.

Couny, F.

Cregan, R. F.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, Science 285, 1537 (1999).
[Crossref]

Cucinotta, A.

S. Selleri, L. Vincetti, A. Cucinotta, and M. Zoboli, Opt. Quantum Electron. 33, 359 (2001).
[Crossref]

Cui, Y.

Dadashzadeh, N.

Debord, B.

Dianov, E. M.

Fedorov, V. V.

V. V. Fedorov, S. B. Mirov, and A. Gallian, IEEE J. Quantum Electron. 42, 907 (2006).
[Crossref]

Finger, M. A.

X. Jiang, N. Y. Joly, M. A. Finger, F. Babic, G. K. L. Wong, J. C. Travers, and P. St. J. Russell, Nat. Photonics 9, 133 (2015).
[Crossref]

Fortin, V.

Fourcade-Dutin, C.

Fuerbach, A.

Gallian, A.

V. V. Fedorov, S. B. Mirov, and A. Gallian, IEEE J. Quantum Electron. 42, 907 (2006).
[Crossref]

Gerome, F.

Gladyshev, A. V.

M. S. Astapovich, A. V. Gladyshev, M. M. Khudyakov, A. F. Kosolapov, and I. A. Bufetov, IEEE Photon. Technol. Lett. 31, 78 (2019).
[Crossref]

Gu, B.

Hager, G.

H. C. Miller, D. T. Radzykewycz, and G. Hager, IEEE J. Quantum Electron. 30, 2395 (2002).
[Crossref]

Hassan, M. R. A.

Hua, W.

Huang, W.

Hudson, D. D.

Jackson, S. D.

Jiang, X.

X. Jiang, N. Y. Joly, M. A. Finger, F. Babic, G. K. L. Wong, J. C. Travers, and P. St. J. Russell, Nat. Photonics 9, 133 (2015).
[Crossref]

Joly, N. Y.

X. Jiang, N. Y. Joly, M. A. Finger, F. Babic, G. K. L. Wong, J. C. Travers, and P. St. J. Russell, Nat. Photonics 9, 133 (2015).
[Crossref]

Jones, A. M.

Khudyakov, M. M.

M. S. Astapovich, A. V. Gladyshev, M. M. Khudyakov, A. F. Kosolapov, and I. A. Bufetov, IEEE Photon. Technol. Lett. 31, 78 (2019).
[Crossref]

Knight, J.

Knight, J. C.

M. R. A. Hassan, F. Yu, W. J. Wadsworth, and J. C. Knight, Optica 3, 218 (2016).
[Crossref]

F. Yu and J. C. Knight, IEEE J. Sel. Top. Quantum Electron. 22, 146 (2015).
[Crossref]

Z. Wang, F. Yu, W. J. Wadsworth, and J. C. Knight, Laser Phys. Lett. 11, 105807 (2014).
[Crossref]

Z. Wang, W. Belardi, F. Yu, W. J. Wadsworth, and J. C. Knight, Opt. Express 22, 21872 (2014).
[Crossref]

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, Science 298, 399 (2002).
[Crossref]

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, Science 285, 1537 (1999).
[Crossref]

Kosolapov, A. F.

M. S. Astapovich, A. V. Gladyshev, M. M. Khudyakov, A. F. Kosolapov, and I. A. Bufetov, IEEE Photon. Technol. Lett. 31, 78 (2019).
[Crossref]

A. D. Pryamikov, A. S. Biriukov, A. F. Kosolapov, V. G. Plotnichenko, S. L. Semjonov, and E. M. Dianov, Opt. Express 19, 1441 (2012).
[Crossref]

Li, Z.

Light, P. S.

Liu, Z.

P. Zhou, X. Wang, Y. Ma, H. Lü, and Z. Liu, Laser Phys. 22, 1744(2012).
[Crossref]

Lu, Q.

Lü, H.

P. Zhou, X. Wang, Y. Ma, H. Lü, and Z. Liu, Laser Phys. 22, 1744(2012).
[Crossref]

Ma, Y.

P. Zhou, X. Wang, Y. Ma, H. Lü, and Z. Liu, Laser Phys. 22, 1744(2012).
[Crossref]

Maes, F.

Majewski, M. R.

Mangan, B. J.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, Science 285, 1537 (1999).
[Crossref]

Mao, C.

Meyer, J. R.

I. Vurgaftman and J. R. Meyer, J. Appl. Phys. 99, 123108 (2006).
[Crossref]

Miller, H. C.

H. C. Miller, D. T. Radzykewycz, and G. Hager, IEEE J. Quantum Electron. 30, 2395 (2002).
[Crossref]

Mirov, S. B.

V. V. Fedorov, S. B. Mirov, and A. Gallian, IEEE J. Quantum Electron. 42, 907 (2006).
[Crossref]

Nampoothiri, A. V. V.

Nampoothiri, V.

Ottaway, D.

Pennetta, R.

Plotnichenko, V. G.

Poulain, M.

Poulain, S.

Pryamikov, A. D.

Radzykewycz, D. T.

H. C. Miller, D. T. Radzykewycz, and G. Hager, IEEE J. Quantum Electron. 30, 2395 (2002).
[Crossref]

Ratanavis, A.

Roberts, P. J.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, Science 285, 1537 (1999).
[Crossref]

Rudolph, W.

Russell, P. St. J.

S. Xie, R. Pennetta, and P. St. J. Russell, Optica 3, 277 (2016).
[Crossref]

X. Jiang, N. Y. Joly, M. A. Finger, F. Babic, G. K. L. Wong, J. C. Travers, and P. St. J. Russell, Nat. Photonics 9, 133 (2015).
[Crossref]

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, Science 298, 399 (2002).
[Crossref]

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, Science 285, 1537 (1999).
[Crossref]

Sapir, O. H.

Selleri, S.

S. Selleri, L. Vincetti, A. Cucinotta, and M. Zoboli, Opt. Quantum Electron. 33, 359 (2001).
[Crossref]

Semjonov, S. L.

Tang, N.

Travers, J. C.

X. Jiang, N. Y. Joly, M. A. Finger, F. Babic, G. K. L. Wong, J. C. Travers, and P. St. J. Russell, Nat. Photonics 9, 133 (2015).
[Crossref]

Vallee, R.

Vallée, R.

Vincetti, L.

Vurgaftman, I.

I. Vurgaftman and J. R. Meyer, J. Appl. Phys. 99, 123108 (2006).
[Crossref]

Wadsworth, W. J.

Wang, X.

P. Zhou, X. Wang, Y. Ma, H. Lü, and Z. Liu, Laser Phys. 22, 1744(2012).
[Crossref]

Wang, Y. Y.

Wang, Z.

Washburn, B. R.

Wong, G. K. L.

X. Jiang, N. Y. Joly, M. A. Finger, F. Babic, G. K. L. Wong, J. C. Travers, and P. St. J. Russell, Nat. Photonics 9, 133 (2015).
[Crossref]

Wood, O. R.

T. Y. Chang and O. R. Wood, IEEE J. Quantum Electron. 8, 598 (2003).
[Crossref]

Woodward, R. I.

Wu, W.

Xie, S.

Xu, M.

Yu, F.

Zhou, P.

P. Zhou, X. Wang, Y. Ma, H. Lü, and Z. Liu, Laser Phys. 22, 1744(2012).
[Crossref]

Zhou, Z.

Zoboli, M.

S. Selleri, L. Vincetti, A. Cucinotta, and M. Zoboli, Opt. Quantum Electron. 33, 359 (2001).
[Crossref]

IEEE J. Quantum Electron. (3)

V. V. Fedorov, S. B. Mirov, and A. Gallian, IEEE J. Quantum Electron. 42, 907 (2006).
[Crossref]

T. Y. Chang and O. R. Wood, IEEE J. Quantum Electron. 8, 598 (2003).
[Crossref]

H. C. Miller, D. T. Radzykewycz, and G. Hager, IEEE J. Quantum Electron. 30, 2395 (2002).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

F. Yu and J. C. Knight, IEEE J. Sel. Top. Quantum Electron. 22, 146 (2015).
[Crossref]

IEEE Photon. Technol. Lett. (1)

M. S. Astapovich, A. V. Gladyshev, M. M. Khudyakov, A. F. Kosolapov, and I. A. Bufetov, IEEE Photon. Technol. Lett. 31, 78 (2019).
[Crossref]

J. Appl. Phys. (1)

I. Vurgaftman and J. R. Meyer, J. Appl. Phys. 99, 123108 (2006).
[Crossref]

Laser Phys. (1)

P. Zhou, X. Wang, Y. Ma, H. Lü, and Z. Liu, Laser Phys. 22, 1744(2012).
[Crossref]

Laser Phys. Lett. (1)

Z. Wang, F. Yu, W. J. Wadsworth, and J. C. Knight, Laser Phys. Lett. 11, 105807 (2014).
[Crossref]

Nat. Photonics (2)

S. D. Jackson, Nat. Photonics 6, 423 (2012).
[Crossref]

X. Jiang, N. Y. Joly, M. A. Finger, F. Babic, G. K. L. Wong, J. C. Travers, and P. St. J. Russell, Nat. Photonics 9, 133 (2015).
[Crossref]

Opt. Express (4)

Opt. Lett. (9)

Opt. Mater. Express (1)

Opt. Quantum Electron. (1)

S. Selleri, L. Vincetti, A. Cucinotta, and M. Zoboli, Opt. Quantum Electron. 33, 359 (2001).
[Crossref]

Optica (3)

Science (2)

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, Science 285, 1537 (1999).
[Crossref]

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, Science 298, 399 (2002).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Summary of the state-of-art CW mid-IR fiber laser in terms of output power and lasing wavelength, as well as the comparison with our work.
Fig. 2.
Fig. 2. (a) Diagram of CO2 molecular energy level transition of 4.3 μm emissions when pumped at 2 μm band; (b) the measured optical spectrum of the 2 μm source at maximum output power. (c) Experimental setup: M1 and M2, metal mirrors; L1 and L2, lens; W1 and W2, input and output window, coated with high transmission rate.
Fig. 3.
Fig. 3. Measured and simulated loss spectrum of the used HCF. The blue line represents the measured loss spectrum using cutback method and a spectrometer. Red stars mark the values measured using a power meter. The black line shows the simulated loss spectrum. Inset: scanning electron micrograph of the HCF cross-section.
Fig. 4.
Fig. 4. Measured CO2 absorption linewidth around 2000.6 nm.
Fig. 5.
Fig. 5. Measured output optical spectrum of the CO2 laser when the pump line is R(30). The fiber length is 5 m and the CO2 gas pressure is 5 mbar.
Fig. 6.
Fig. 6. (a) Measured output 4 μm laser power as a function of incident pump power at various CO2 pressure-pumped R(30) lines with 5 m long hollow-core fiber. (b) Measured output 4 μm power as a function of absorbed power at 5 mbar CO2 gas pressure. (c) Maximum output power versus CO2 gas pressure through 5 m long hollow-core fiber.

Metrics