Abstract

Presbyopia, the age-related loss of the crystalline lens’s ability to dynamically focus, occurs primarily because of stiffening of lens material, making the ciliary muscle forces insufficient to reshape the lens. Despite its prevalence, there is no satisfactory solution to presbyopia. Here we present a novel accommodating intraocular lens (AIOL) able to reshape upon equatorial forces in compliance with the eye’s accommodating mechanism. The concept and design parameters are demonstrated through finite element model simulations and measurements in a manufactured AIOL prototype, using custom quantitative 3D OCT (geometrical changes) and laser ray tracing (power changes), with forces radially applied using a custom eight-arm mechanical stretcher. There was an excellent agreement between simulations and measurements (1% for the focal length and 11.4% for geometrical parameters, on average) for radial load up to 0.6 N. The developed design is expected to achieve 2.5D of effective power change with a polymer material with 0.10–0.25 MPa Young’s modulus and n=1.431.46.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Cubic optical elements for an accommodative intraocular lens

Aleksey N. Simonov, Gleb Vdovin, and Michiel C. Rombach
Opt. Express 14(17) 7757-7775 (2006)

OCT-based full crystalline lens shape change during accommodation in vivo

Eduardo Martinez-Enriquez, Pablo Pérez-Merino, Miriam Velasco-Ocana, and Susana Marcos
Biomed. Opt. Express 8(2) 918-933 (2017)

Bio-inspired accommodating fluidic intraocular lens

Wen Qiao, Daniel Johnson, Frank S. Tsai, Sung Hwan Cho, and Yu-Hwa Lo
Opt. Lett. 34(20) 3214-3216 (2009)

References

  • View by:
  • |
  • |
  • |

  1. N. W. Charman, “The eye in focus: accommodation and presbyopia,” Clin. Exp. Optom. 91, 207–225 (2008).
    [Crossref]
  2. J. Burd, S. Judge, and M. Flavell, “Mechanics of accommodation of the human eye,” Vision Res. 39, 1591–1595 (1999).
    [Crossref]
  3. H. Weeber, G. Eckert, W. Pechhold, and G. L. van der Heijde, “Stiffness gradient in the crystalline lens,” Clin. Exper. Ophthalmol. 245, 1357–1366 (2007).
    [Crossref]
  4. S. Wilde, H. J. Burd, and S. J. Judge, “Shear modulus for the human lens determined from a spinning lens test,” Exp. Eye Res. 97, 36–48 (2012).
    [Crossref]
  5. F. Fisher, “The elastic constants of the human lens,” J. Physiol. 212, 147–180 (1971).
    [Crossref]
  6. F. Manns, J. M. Parel, D. Denham, C. Billote, N. Ziebarth, D. Borja, V. Fernandez, M. Aly, E. Arrieta, A. Ho, and B. Holden, “Optomechanical response of human and monkey lenses in a stretcher,” Invest. Ophthalmol. Visual Sci. 48, 3260–3268 (2007).
    [Crossref]
  7. J. Tabernero, L. Hervella, P. Prieto, and P. Artal, “The accommodative ciliary muscle function is preserved in older humans,” Sci. Rep. 6, 25551 (2016).
    [Crossref]
  8. O. Stachs, H. Martin, A. Kirchhoff, J. Stave, T. Terwee, and R. Guthoff, “Monitoring accommodative ciliary muscle function using three-dimensional ultrasound,” Graefes. Arch. Clin. Exp. Ophthalmol. 240, 906–912 (2002).
    [Crossref]
  9. T. Pardue and J. G. Sivak, “Age-related changes in human ciliary muscle,” Optom. Vis. Sci. 77, 204–210 (2000).
    [Crossref]
  10. L. Alio, A. B. Plaza-Puche, R. Fernandez-Buenaga, J. Pikkel, and M. Maldonado, “Multifocal intraocular lenses: an overview,” Surv. Ophthalmol. 62, 611–634 (2017).
    [Crossref]
  11. A. Koopmans, T. Terwee, J. Barkhof, H. J. Haitjema, and A. C. Kooijman, “Polymer refilling of presbyopic human lenses in vitro restores the ability to undergo accommodative changes,” Invest. Ophthalmol. Vis. Sci. 44, 250–257 (2003).
    [Crossref]
  12. Y. Nishi, K. Mireskandari, P. Khaw, and O. Findl, “Lens refilling to restore accommodation,” J. Cataract Refract. Surg. 35, 374–382 (2009).
    [Crossref]
  13. S. Marcos, S. Ortiz, P. Perez-Merino, J. Birkenfeld, S. Duran, and I. Jimenez-Alfaro, “Three-dimensional evaluation of accomodating intraocular lens shift and alignment in vivo,” Ophthalmology 121, 45–55 (2014).
    [Crossref]
  14. C. Koeppl, O. Findl, R. Menapace, K. Kriechbaum, M. Wirtisch, W. Buehl, S. Sacu, and W. Drexler, “Pilocarpine-induced shift of an accommodating intraocular lens: AT-45 Crystalens,” J. Cataract Refract. Surg. 31, 1290–1297 (2005).
    [Crossref]
  15. P. Perez-Merino, J. Birkenfeld, C. Dorronsoro, S. Ortiz, S. Duran, I. Jimenez-Alfaro, and S. Marcos, “Aberrometry in patients implanted with accommodative intraocular lenses,” Am. J. Ophthal. 157, 1077–1089.e1 (2014).
    [Crossref]
  16. L. Sheppard, A. Bashir, J. S. Wolffsohn, and L. N. Davies, “Accommodating intraocular lenses: a review of design concepts, usage and assessment methods,” Clin. Exp. Optom. 93, 441–452 (2010).
    [Crossref]
  17. A. Glasser, “Restoration of accommodation: surgical options for correction of presbyopia,” Clin. Exp. Optom. 91, 279–295 (2008).
    [Crossref]
  18. D. McLeod, “Optical principles, biomechanics, and initial clinical performance of a dual-optic accommodating intraocular lens (an American Ophthalmological Society thesis),” Trans. Am. Ophthalmol. Soc. 104, 437–452 (2006).
  19. A. Agarwal, D. A. Kumar, S. Jacob, C. Baid, A. Agarwal, and S. Srinivasan, “Fibrin glue-assisted sutureless posterior chamber intraocular lens implantation in eyes with deficient posterior capsules,” J. Cataract Refract. Surg. 34, 1433–1438 (2008).
    [Crossref]
  20. Q. Peng, Y. Yang, and X. Zhang, “Accommodative Intraocular lens,” U.S. patent20030204256A1 (30October2003).
  21. M. Beer, “Accommodative intraocular lens and method of improving accommodation,” U.S. patent9220590B2 (29December2015).
  22. E. Proano, L. Mulroy, E. Jones, D. T. Azar, R. W. Redmond, and I. E. Kochevar, “Photochemical keratodesmos for bonding corneal incisions,” Invest. Ophthalmol. Vis. Sci. 45, 2177–2181 (2004).
    [Crossref]
  23. E. Verter, T. E. Gisel, P. G. Yang, A. J. Johnson, R. W. Redmond, and I. E. Kochevar, “Light-initiated bonding of amniotic membrane to cornea,” Invest. Ophthalmol. Vis Sci. 52, 9470–9477 (2011).
    [Crossref]
  24. S. Marcos, N. Alejandre-Alba, J. Lamela, C. Dorronsoro, and I. E. Kochevar, “Toward new engagement paradigms for intraocular lenses: light-initiated bonding of capsular bag to lens materials,” Invest. Ophthalmol Vis. Sci. 56, 4249–4256 (2015).
    [Crossref]
  25. N. Alejandre-Alba, R. Gutierrez-Contreras, C. Dorronsoro, and S. Marcos, “Intraocular photobonding to enable accommodating intraocular lens function,” Transl. Vis. Sci. Technol. 7, 27 (2018).
    [Crossref]
  26. C. Dorronsoro, N. Alejandre-Alba, N. Bekesi, and S. Marcos, “Intraocular lens with accommodation capacity,” patent EP13382367.4 (7June2017).
  27. K. Ehrmann, A. Ho, and J. M. Parel, “Ex vivo accommodation simulator II: concept and preliminary results,” Proc. SPIE 5314, 48–59 (2004).
    [Crossref]
  28. S. Ortiz, D. Siedlecki, L. Remon, and S. Marcos, “Optical coherence tomography for quantitative surface topography,” Appl. Opt. 48, 6708–6715 (2009).
    [Crossref]
  29. S. Ortiz, D. Siedlecki, I. Grulkowski, L. Remon, D. Pascual, M. Wojtkowski, and S. Marcos, “Optical distortion correction in optical coherence tomography for quantitative ocular anterior segment by three-dimensional imaging,” Opt. Express 18, 2782–2796 (2010).
    [Crossref]
  30. E. Martinez-Enriquez, P. Perez-Merino, S. Duran, I. Jimenez-Alfaro, and S. Marcos, “Estimation of intraocular lens position from full crystalline lens geometry: towards a new generation of intraocular lens power calculation formulas,” Sci. Rep. 8, 9829 (2018).
    [Crossref]
  31. E. Martinez-Enriquez, P. Perez-Merino, M. Velasco-Ocana, and S. Marcos, “OCT-based full crystalline lens shape change during accommodation in vivo,” Biomed. Opt. Express 8, 918–933 (2017).
    [Crossref]
  32. A. Hermans, M. Dubbelman, G. L. van der Heijde, and R. M. Heethaar, “Estimating the external force acting on the human lens during accommodation by finite element modeling,” Vision Res. 46, 3642–3650 (2006).
    [Crossref]
  33. J. Burd, S. J. Judge, and J. A. Cross, “Numerical modeling of the accommodating lens,” Vision Res. 42, 2235–2251 (2002).
    [Crossref]
  34. A. Glasser and M. Wendt, “Age-related loss of accommodation in Rhesus monkeys is associated with an age-related increase in lens stiffness,” Invest. Ophthalmol. Vis. Sci. 54, 4274 (2013).
  35. A. De Castro, S. Ortiz, E. Gambra, D. Siedlecki, and S. Marcos, “Three-dimensional reconstruction of the crystalline lens gradient index distribution from OCT imaging,” Opt. Express 18, 21905–21917 (2010).
    [Crossref]
  36. S. Uhlhorn, D. Borja, F. Manns, and J. M. Parel, “Refractive index measurement of the isolated crystalline lens using optical coherence tomography,” Vision Res. 48, 2732–2738 (2008).
    [Crossref]
  37. N. Charman and D. Atchison, “Age-dependence of the average and equivalent refractive indices of the crystalline lens,” Biomed. Opt. Express 5, 31–39 (2014).
    [Crossref]
  38. M. Dubbelman, G. L. Van der Heijde, H. A. Weeber, and G. F. Vrensen, “Changes in the internal structure of the human crystalline lens with age and accommodation,” Vision Res. 43, 2363–2375 (2003).
    [Crossref]
  39. A. Weeber, G. Eckert, W. Pechhold, and G. L. van der Heijde, “Stiffness gradient in the crystalline lens,” Clin. Exp. Optom. 245, 1357–1366 (2007).
    [Crossref]
  40. S. Besner, G. Scarcelli, R. Pineda, and S. H. Yun, “In vivo Brillouin analysis of the aging crystalline lens,” Invest. Ophthalmol. Vis. Sci. 57, 5093–5100 (2016).
    [Crossref]
  41. S. Bailey, M. Twa, J. Gump, M. Venkiteshwar, M. Bullimore, and R. Sooryakumar, “Light scattering study of the normal human eye lens: elastic properties and age dependence,” IEEE Trans. Biomed. Eng. 57, 2910–2917 (2010).
    [Crossref]
  42. K. Wang, D. Venetsanos, and B. Pierscionek, “Gradient moduli lens models: how material properties and application of forces can affect deformation and distributions of stress,” Sci. Rep. 6, 31171 (2016).
    [Crossref]
  43. J. C. He, S. Barnes, and S. Marcos, “Monochromatic aberrations in the accommodated human eye,” Vision Res. 40, 41–48 (2000).
    [Crossref]
  44. J. Kohl, L. Werner, J. Ford, S. Cole, S. Vasavada, G. Gardiner, R. Noristani, and N. Mamalis, “Long-term uveal and capsular biocompatibility of a new accommodating intraocular lens,” J. Cataract Refract. Surg. 40, 2113–2119 (2014).
    [Crossref]
  45. E. Martinez-Enriquez, M. Sun, M. Velasco-Ocana, J. Birkenfeld, P. Perez-Merino, and S. Marcos, “Optical coherence tomography based estimates of crystalline lens volume, equatorial diameter, and plane position,” Invest. Ophthalmol. Vis. Sci. 57, OCT600 (2016).
    [Crossref]

2018 (2)

N. Alejandre-Alba, R. Gutierrez-Contreras, C. Dorronsoro, and S. Marcos, “Intraocular photobonding to enable accommodating intraocular lens function,” Transl. Vis. Sci. Technol. 7, 27 (2018).
[Crossref]

E. Martinez-Enriquez, P. Perez-Merino, S. Duran, I. Jimenez-Alfaro, and S. Marcos, “Estimation of intraocular lens position from full crystalline lens geometry: towards a new generation of intraocular lens power calculation formulas,” Sci. Rep. 8, 9829 (2018).
[Crossref]

2017 (2)

L. Alio, A. B. Plaza-Puche, R. Fernandez-Buenaga, J. Pikkel, and M. Maldonado, “Multifocal intraocular lenses: an overview,” Surv. Ophthalmol. 62, 611–634 (2017).
[Crossref]

E. Martinez-Enriquez, P. Perez-Merino, M. Velasco-Ocana, and S. Marcos, “OCT-based full crystalline lens shape change during accommodation in vivo,” Biomed. Opt. Express 8, 918–933 (2017).
[Crossref]

2016 (4)

E. Martinez-Enriquez, M. Sun, M. Velasco-Ocana, J. Birkenfeld, P. Perez-Merino, and S. Marcos, “Optical coherence tomography based estimates of crystalline lens volume, equatorial diameter, and plane position,” Invest. Ophthalmol. Vis. Sci. 57, OCT600 (2016).
[Crossref]

J. Tabernero, L. Hervella, P. Prieto, and P. Artal, “The accommodative ciliary muscle function is preserved in older humans,” Sci. Rep. 6, 25551 (2016).
[Crossref]

S. Besner, G. Scarcelli, R. Pineda, and S. H. Yun, “In vivo Brillouin analysis of the aging crystalline lens,” Invest. Ophthalmol. Vis. Sci. 57, 5093–5100 (2016).
[Crossref]

K. Wang, D. Venetsanos, and B. Pierscionek, “Gradient moduli lens models: how material properties and application of forces can affect deformation and distributions of stress,” Sci. Rep. 6, 31171 (2016).
[Crossref]

2015 (1)

S. Marcos, N. Alejandre-Alba, J. Lamela, C. Dorronsoro, and I. E. Kochevar, “Toward new engagement paradigms for intraocular lenses: light-initiated bonding of capsular bag to lens materials,” Invest. Ophthalmol Vis. Sci. 56, 4249–4256 (2015).
[Crossref]

2014 (4)

S. Marcos, S. Ortiz, P. Perez-Merino, J. Birkenfeld, S. Duran, and I. Jimenez-Alfaro, “Three-dimensional evaluation of accomodating intraocular lens shift and alignment in vivo,” Ophthalmology 121, 45–55 (2014).
[Crossref]

P. Perez-Merino, J. Birkenfeld, C. Dorronsoro, S. Ortiz, S. Duran, I. Jimenez-Alfaro, and S. Marcos, “Aberrometry in patients implanted with accommodative intraocular lenses,” Am. J. Ophthal. 157, 1077–1089.e1 (2014).
[Crossref]

J. Kohl, L. Werner, J. Ford, S. Cole, S. Vasavada, G. Gardiner, R. Noristani, and N. Mamalis, “Long-term uveal and capsular biocompatibility of a new accommodating intraocular lens,” J. Cataract Refract. Surg. 40, 2113–2119 (2014).
[Crossref]

N. Charman and D. Atchison, “Age-dependence of the average and equivalent refractive indices of the crystalline lens,” Biomed. Opt. Express 5, 31–39 (2014).
[Crossref]

2013 (1)

A. Glasser and M. Wendt, “Age-related loss of accommodation in Rhesus monkeys is associated with an age-related increase in lens stiffness,” Invest. Ophthalmol. Vis. Sci. 54, 4274 (2013).

2012 (1)

S. Wilde, H. J. Burd, and S. J. Judge, “Shear modulus for the human lens determined from a spinning lens test,” Exp. Eye Res. 97, 36–48 (2012).
[Crossref]

2011 (1)

E. Verter, T. E. Gisel, P. G. Yang, A. J. Johnson, R. W. Redmond, and I. E. Kochevar, “Light-initiated bonding of amniotic membrane to cornea,” Invest. Ophthalmol. Vis Sci. 52, 9470–9477 (2011).
[Crossref]

2010 (4)

S. Bailey, M. Twa, J. Gump, M. Venkiteshwar, M. Bullimore, and R. Sooryakumar, “Light scattering study of the normal human eye lens: elastic properties and age dependence,” IEEE Trans. Biomed. Eng. 57, 2910–2917 (2010).
[Crossref]

L. Sheppard, A. Bashir, J. S. Wolffsohn, and L. N. Davies, “Accommodating intraocular lenses: a review of design concepts, usage and assessment methods,” Clin. Exp. Optom. 93, 441–452 (2010).
[Crossref]

S. Ortiz, D. Siedlecki, I. Grulkowski, L. Remon, D. Pascual, M. Wojtkowski, and S. Marcos, “Optical distortion correction in optical coherence tomography for quantitative ocular anterior segment by three-dimensional imaging,” Opt. Express 18, 2782–2796 (2010).
[Crossref]

A. De Castro, S. Ortiz, E. Gambra, D. Siedlecki, and S. Marcos, “Three-dimensional reconstruction of the crystalline lens gradient index distribution from OCT imaging,” Opt. Express 18, 21905–21917 (2010).
[Crossref]

2009 (2)

S. Ortiz, D. Siedlecki, L. Remon, and S. Marcos, “Optical coherence tomography for quantitative surface topography,” Appl. Opt. 48, 6708–6715 (2009).
[Crossref]

Y. Nishi, K. Mireskandari, P. Khaw, and O. Findl, “Lens refilling to restore accommodation,” J. Cataract Refract. Surg. 35, 374–382 (2009).
[Crossref]

2008 (4)

A. Agarwal, D. A. Kumar, S. Jacob, C. Baid, A. Agarwal, and S. Srinivasan, “Fibrin glue-assisted sutureless posterior chamber intraocular lens implantation in eyes with deficient posterior capsules,” J. Cataract Refract. Surg. 34, 1433–1438 (2008).
[Crossref]

S. Uhlhorn, D. Borja, F. Manns, and J. M. Parel, “Refractive index measurement of the isolated crystalline lens using optical coherence tomography,” Vision Res. 48, 2732–2738 (2008).
[Crossref]

A. Glasser, “Restoration of accommodation: surgical options for correction of presbyopia,” Clin. Exp. Optom. 91, 279–295 (2008).
[Crossref]

N. W. Charman, “The eye in focus: accommodation and presbyopia,” Clin. Exp. Optom. 91, 207–225 (2008).
[Crossref]

2007 (3)

H. Weeber, G. Eckert, W. Pechhold, and G. L. van der Heijde, “Stiffness gradient in the crystalline lens,” Clin. Exper. Ophthalmol. 245, 1357–1366 (2007).
[Crossref]

F. Manns, J. M. Parel, D. Denham, C. Billote, N. Ziebarth, D. Borja, V. Fernandez, M. Aly, E. Arrieta, A. Ho, and B. Holden, “Optomechanical response of human and monkey lenses in a stretcher,” Invest. Ophthalmol. Visual Sci. 48, 3260–3268 (2007).
[Crossref]

A. Weeber, G. Eckert, W. Pechhold, and G. L. van der Heijde, “Stiffness gradient in the crystalline lens,” Clin. Exp. Optom. 245, 1357–1366 (2007).
[Crossref]

2006 (2)

D. McLeod, “Optical principles, biomechanics, and initial clinical performance of a dual-optic accommodating intraocular lens (an American Ophthalmological Society thesis),” Trans. Am. Ophthalmol. Soc. 104, 437–452 (2006).

A. Hermans, M. Dubbelman, G. L. van der Heijde, and R. M. Heethaar, “Estimating the external force acting on the human lens during accommodation by finite element modeling,” Vision Res. 46, 3642–3650 (2006).
[Crossref]

2005 (1)

C. Koeppl, O. Findl, R. Menapace, K. Kriechbaum, M. Wirtisch, W. Buehl, S. Sacu, and W. Drexler, “Pilocarpine-induced shift of an accommodating intraocular lens: AT-45 Crystalens,” J. Cataract Refract. Surg. 31, 1290–1297 (2005).
[Crossref]

2004 (2)

K. Ehrmann, A. Ho, and J. M. Parel, “Ex vivo accommodation simulator II: concept and preliminary results,” Proc. SPIE 5314, 48–59 (2004).
[Crossref]

E. Proano, L. Mulroy, E. Jones, D. T. Azar, R. W. Redmond, and I. E. Kochevar, “Photochemical keratodesmos for bonding corneal incisions,” Invest. Ophthalmol. Vis. Sci. 45, 2177–2181 (2004).
[Crossref]

2003 (2)

M. Dubbelman, G. L. Van der Heijde, H. A. Weeber, and G. F. Vrensen, “Changes in the internal structure of the human crystalline lens with age and accommodation,” Vision Res. 43, 2363–2375 (2003).
[Crossref]

A. Koopmans, T. Terwee, J. Barkhof, H. J. Haitjema, and A. C. Kooijman, “Polymer refilling of presbyopic human lenses in vitro restores the ability to undergo accommodative changes,” Invest. Ophthalmol. Vis. Sci. 44, 250–257 (2003).
[Crossref]

2002 (2)

O. Stachs, H. Martin, A. Kirchhoff, J. Stave, T. Terwee, and R. Guthoff, “Monitoring accommodative ciliary muscle function using three-dimensional ultrasound,” Graefes. Arch. Clin. Exp. Ophthalmol. 240, 906–912 (2002).
[Crossref]

J. Burd, S. J. Judge, and J. A. Cross, “Numerical modeling of the accommodating lens,” Vision Res. 42, 2235–2251 (2002).
[Crossref]

2000 (2)

J. C. He, S. Barnes, and S. Marcos, “Monochromatic aberrations in the accommodated human eye,” Vision Res. 40, 41–48 (2000).
[Crossref]

T. Pardue and J. G. Sivak, “Age-related changes in human ciliary muscle,” Optom. Vis. Sci. 77, 204–210 (2000).
[Crossref]

1999 (1)

J. Burd, S. Judge, and M. Flavell, “Mechanics of accommodation of the human eye,” Vision Res. 39, 1591–1595 (1999).
[Crossref]

1971 (1)

F. Fisher, “The elastic constants of the human lens,” J. Physiol. 212, 147–180 (1971).
[Crossref]

Agarwal, A.

A. Agarwal, D. A. Kumar, S. Jacob, C. Baid, A. Agarwal, and S. Srinivasan, “Fibrin glue-assisted sutureless posterior chamber intraocular lens implantation in eyes with deficient posterior capsules,” J. Cataract Refract. Surg. 34, 1433–1438 (2008).
[Crossref]

A. Agarwal, D. A. Kumar, S. Jacob, C. Baid, A. Agarwal, and S. Srinivasan, “Fibrin glue-assisted sutureless posterior chamber intraocular lens implantation in eyes with deficient posterior capsules,” J. Cataract Refract. Surg. 34, 1433–1438 (2008).
[Crossref]

Alejandre-Alba, N.

N. Alejandre-Alba, R. Gutierrez-Contreras, C. Dorronsoro, and S. Marcos, “Intraocular photobonding to enable accommodating intraocular lens function,” Transl. Vis. Sci. Technol. 7, 27 (2018).
[Crossref]

S. Marcos, N. Alejandre-Alba, J. Lamela, C. Dorronsoro, and I. E. Kochevar, “Toward new engagement paradigms for intraocular lenses: light-initiated bonding of capsular bag to lens materials,” Invest. Ophthalmol Vis. Sci. 56, 4249–4256 (2015).
[Crossref]

C. Dorronsoro, N. Alejandre-Alba, N. Bekesi, and S. Marcos, “Intraocular lens with accommodation capacity,” patent EP13382367.4 (7June2017).

Alio, L.

L. Alio, A. B. Plaza-Puche, R. Fernandez-Buenaga, J. Pikkel, and M. Maldonado, “Multifocal intraocular lenses: an overview,” Surv. Ophthalmol. 62, 611–634 (2017).
[Crossref]

Aly, M.

F. Manns, J. M. Parel, D. Denham, C. Billote, N. Ziebarth, D. Borja, V. Fernandez, M. Aly, E. Arrieta, A. Ho, and B. Holden, “Optomechanical response of human and monkey lenses in a stretcher,” Invest. Ophthalmol. Visual Sci. 48, 3260–3268 (2007).
[Crossref]

Arrieta, E.

F. Manns, J. M. Parel, D. Denham, C. Billote, N. Ziebarth, D. Borja, V. Fernandez, M. Aly, E. Arrieta, A. Ho, and B. Holden, “Optomechanical response of human and monkey lenses in a stretcher,” Invest. Ophthalmol. Visual Sci. 48, 3260–3268 (2007).
[Crossref]

Artal, P.

J. Tabernero, L. Hervella, P. Prieto, and P. Artal, “The accommodative ciliary muscle function is preserved in older humans,” Sci. Rep. 6, 25551 (2016).
[Crossref]

Atchison, D.

Azar, D. T.

E. Proano, L. Mulroy, E. Jones, D. T. Azar, R. W. Redmond, and I. E. Kochevar, “Photochemical keratodesmos for bonding corneal incisions,” Invest. Ophthalmol. Vis. Sci. 45, 2177–2181 (2004).
[Crossref]

Baid, C.

A. Agarwal, D. A. Kumar, S. Jacob, C. Baid, A. Agarwal, and S. Srinivasan, “Fibrin glue-assisted sutureless posterior chamber intraocular lens implantation in eyes with deficient posterior capsules,” J. Cataract Refract. Surg. 34, 1433–1438 (2008).
[Crossref]

Bailey, S.

S. Bailey, M. Twa, J. Gump, M. Venkiteshwar, M. Bullimore, and R. Sooryakumar, “Light scattering study of the normal human eye lens: elastic properties and age dependence,” IEEE Trans. Biomed. Eng. 57, 2910–2917 (2010).
[Crossref]

Barkhof, J.

A. Koopmans, T. Terwee, J. Barkhof, H. J. Haitjema, and A. C. Kooijman, “Polymer refilling of presbyopic human lenses in vitro restores the ability to undergo accommodative changes,” Invest. Ophthalmol. Vis. Sci. 44, 250–257 (2003).
[Crossref]

Barnes, S.

J. C. He, S. Barnes, and S. Marcos, “Monochromatic aberrations in the accommodated human eye,” Vision Res. 40, 41–48 (2000).
[Crossref]

Bashir, A.

L. Sheppard, A. Bashir, J. S. Wolffsohn, and L. N. Davies, “Accommodating intraocular lenses: a review of design concepts, usage and assessment methods,” Clin. Exp. Optom. 93, 441–452 (2010).
[Crossref]

Beer, M.

M. Beer, “Accommodative intraocular lens and method of improving accommodation,” U.S. patent9220590B2 (29December2015).

Bekesi, N.

C. Dorronsoro, N. Alejandre-Alba, N. Bekesi, and S. Marcos, “Intraocular lens with accommodation capacity,” patent EP13382367.4 (7June2017).

Besner, S.

S. Besner, G. Scarcelli, R. Pineda, and S. H. Yun, “In vivo Brillouin analysis of the aging crystalline lens,” Invest. Ophthalmol. Vis. Sci. 57, 5093–5100 (2016).
[Crossref]

Billote, C.

F. Manns, J. M. Parel, D. Denham, C. Billote, N. Ziebarth, D. Borja, V. Fernandez, M. Aly, E. Arrieta, A. Ho, and B. Holden, “Optomechanical response of human and monkey lenses in a stretcher,” Invest. Ophthalmol. Visual Sci. 48, 3260–3268 (2007).
[Crossref]

Birkenfeld, J.

E. Martinez-Enriquez, M. Sun, M. Velasco-Ocana, J. Birkenfeld, P. Perez-Merino, and S. Marcos, “Optical coherence tomography based estimates of crystalline lens volume, equatorial diameter, and plane position,” Invest. Ophthalmol. Vis. Sci. 57, OCT600 (2016).
[Crossref]

S. Marcos, S. Ortiz, P. Perez-Merino, J. Birkenfeld, S. Duran, and I. Jimenez-Alfaro, “Three-dimensional evaluation of accomodating intraocular lens shift and alignment in vivo,” Ophthalmology 121, 45–55 (2014).
[Crossref]

P. Perez-Merino, J. Birkenfeld, C. Dorronsoro, S. Ortiz, S. Duran, I. Jimenez-Alfaro, and S. Marcos, “Aberrometry in patients implanted with accommodative intraocular lenses,” Am. J. Ophthal. 157, 1077–1089.e1 (2014).
[Crossref]

Borja, D.

S. Uhlhorn, D. Borja, F. Manns, and J. M. Parel, “Refractive index measurement of the isolated crystalline lens using optical coherence tomography,” Vision Res. 48, 2732–2738 (2008).
[Crossref]

F. Manns, J. M. Parel, D. Denham, C. Billote, N. Ziebarth, D. Borja, V. Fernandez, M. Aly, E. Arrieta, A. Ho, and B. Holden, “Optomechanical response of human and monkey lenses in a stretcher,” Invest. Ophthalmol. Visual Sci. 48, 3260–3268 (2007).
[Crossref]

Buehl, W.

C. Koeppl, O. Findl, R. Menapace, K. Kriechbaum, M. Wirtisch, W. Buehl, S. Sacu, and W. Drexler, “Pilocarpine-induced shift of an accommodating intraocular lens: AT-45 Crystalens,” J. Cataract Refract. Surg. 31, 1290–1297 (2005).
[Crossref]

Bullimore, M.

S. Bailey, M. Twa, J. Gump, M. Venkiteshwar, M. Bullimore, and R. Sooryakumar, “Light scattering study of the normal human eye lens: elastic properties and age dependence,” IEEE Trans. Biomed. Eng. 57, 2910–2917 (2010).
[Crossref]

Burd, H. J.

S. Wilde, H. J. Burd, and S. J. Judge, “Shear modulus for the human lens determined from a spinning lens test,” Exp. Eye Res. 97, 36–48 (2012).
[Crossref]

Burd, J.

J. Burd, S. J. Judge, and J. A. Cross, “Numerical modeling of the accommodating lens,” Vision Res. 42, 2235–2251 (2002).
[Crossref]

J. Burd, S. Judge, and M. Flavell, “Mechanics of accommodation of the human eye,” Vision Res. 39, 1591–1595 (1999).
[Crossref]

Charman, N.

Charman, N. W.

N. W. Charman, “The eye in focus: accommodation and presbyopia,” Clin. Exp. Optom. 91, 207–225 (2008).
[Crossref]

Cole, S.

J. Kohl, L. Werner, J. Ford, S. Cole, S. Vasavada, G. Gardiner, R. Noristani, and N. Mamalis, “Long-term uveal and capsular biocompatibility of a new accommodating intraocular lens,” J. Cataract Refract. Surg. 40, 2113–2119 (2014).
[Crossref]

Cross, J. A.

J. Burd, S. J. Judge, and J. A. Cross, “Numerical modeling of the accommodating lens,” Vision Res. 42, 2235–2251 (2002).
[Crossref]

Davies, L. N.

L. Sheppard, A. Bashir, J. S. Wolffsohn, and L. N. Davies, “Accommodating intraocular lenses: a review of design concepts, usage and assessment methods,” Clin. Exp. Optom. 93, 441–452 (2010).
[Crossref]

De Castro, A.

Denham, D.

F. Manns, J. M. Parel, D. Denham, C. Billote, N. Ziebarth, D. Borja, V. Fernandez, M. Aly, E. Arrieta, A. Ho, and B. Holden, “Optomechanical response of human and monkey lenses in a stretcher,” Invest. Ophthalmol. Visual Sci. 48, 3260–3268 (2007).
[Crossref]

Dorronsoro, C.

N. Alejandre-Alba, R. Gutierrez-Contreras, C. Dorronsoro, and S. Marcos, “Intraocular photobonding to enable accommodating intraocular lens function,” Transl. Vis. Sci. Technol. 7, 27 (2018).
[Crossref]

S. Marcos, N. Alejandre-Alba, J. Lamela, C. Dorronsoro, and I. E. Kochevar, “Toward new engagement paradigms for intraocular lenses: light-initiated bonding of capsular bag to lens materials,” Invest. Ophthalmol Vis. Sci. 56, 4249–4256 (2015).
[Crossref]

P. Perez-Merino, J. Birkenfeld, C. Dorronsoro, S. Ortiz, S. Duran, I. Jimenez-Alfaro, and S. Marcos, “Aberrometry in patients implanted with accommodative intraocular lenses,” Am. J. Ophthal. 157, 1077–1089.e1 (2014).
[Crossref]

C. Dorronsoro, N. Alejandre-Alba, N. Bekesi, and S. Marcos, “Intraocular lens with accommodation capacity,” patent EP13382367.4 (7June2017).

Drexler, W.

C. Koeppl, O. Findl, R. Menapace, K. Kriechbaum, M. Wirtisch, W. Buehl, S. Sacu, and W. Drexler, “Pilocarpine-induced shift of an accommodating intraocular lens: AT-45 Crystalens,” J. Cataract Refract. Surg. 31, 1290–1297 (2005).
[Crossref]

Dubbelman, M.

A. Hermans, M. Dubbelman, G. L. van der Heijde, and R. M. Heethaar, “Estimating the external force acting on the human lens during accommodation by finite element modeling,” Vision Res. 46, 3642–3650 (2006).
[Crossref]

M. Dubbelman, G. L. Van der Heijde, H. A. Weeber, and G. F. Vrensen, “Changes in the internal structure of the human crystalline lens with age and accommodation,” Vision Res. 43, 2363–2375 (2003).
[Crossref]

Duran, S.

E. Martinez-Enriquez, P. Perez-Merino, S. Duran, I. Jimenez-Alfaro, and S. Marcos, “Estimation of intraocular lens position from full crystalline lens geometry: towards a new generation of intraocular lens power calculation formulas,” Sci. Rep. 8, 9829 (2018).
[Crossref]

P. Perez-Merino, J. Birkenfeld, C. Dorronsoro, S. Ortiz, S. Duran, I. Jimenez-Alfaro, and S. Marcos, “Aberrometry in patients implanted with accommodative intraocular lenses,” Am. J. Ophthal. 157, 1077–1089.e1 (2014).
[Crossref]

S. Marcos, S. Ortiz, P. Perez-Merino, J. Birkenfeld, S. Duran, and I. Jimenez-Alfaro, “Three-dimensional evaluation of accomodating intraocular lens shift and alignment in vivo,” Ophthalmology 121, 45–55 (2014).
[Crossref]

Eckert, G.

H. Weeber, G. Eckert, W. Pechhold, and G. L. van der Heijde, “Stiffness gradient in the crystalline lens,” Clin. Exper. Ophthalmol. 245, 1357–1366 (2007).
[Crossref]

A. Weeber, G. Eckert, W. Pechhold, and G. L. van der Heijde, “Stiffness gradient in the crystalline lens,” Clin. Exp. Optom. 245, 1357–1366 (2007).
[Crossref]

Ehrmann, K.

K. Ehrmann, A. Ho, and J. M. Parel, “Ex vivo accommodation simulator II: concept and preliminary results,” Proc. SPIE 5314, 48–59 (2004).
[Crossref]

Fernandez, V.

F. Manns, J. M. Parel, D. Denham, C. Billote, N. Ziebarth, D. Borja, V. Fernandez, M. Aly, E. Arrieta, A. Ho, and B. Holden, “Optomechanical response of human and monkey lenses in a stretcher,” Invest. Ophthalmol. Visual Sci. 48, 3260–3268 (2007).
[Crossref]

Fernandez-Buenaga, R.

L. Alio, A. B. Plaza-Puche, R. Fernandez-Buenaga, J. Pikkel, and M. Maldonado, “Multifocal intraocular lenses: an overview,” Surv. Ophthalmol. 62, 611–634 (2017).
[Crossref]

Findl, O.

Y. Nishi, K. Mireskandari, P. Khaw, and O. Findl, “Lens refilling to restore accommodation,” J. Cataract Refract. Surg. 35, 374–382 (2009).
[Crossref]

C. Koeppl, O. Findl, R. Menapace, K. Kriechbaum, M. Wirtisch, W. Buehl, S. Sacu, and W. Drexler, “Pilocarpine-induced shift of an accommodating intraocular lens: AT-45 Crystalens,” J. Cataract Refract. Surg. 31, 1290–1297 (2005).
[Crossref]

Fisher, F.

F. Fisher, “The elastic constants of the human lens,” J. Physiol. 212, 147–180 (1971).
[Crossref]

Flavell, M.

J. Burd, S. Judge, and M. Flavell, “Mechanics of accommodation of the human eye,” Vision Res. 39, 1591–1595 (1999).
[Crossref]

Ford, J.

J. Kohl, L. Werner, J. Ford, S. Cole, S. Vasavada, G. Gardiner, R. Noristani, and N. Mamalis, “Long-term uveal and capsular biocompatibility of a new accommodating intraocular lens,” J. Cataract Refract. Surg. 40, 2113–2119 (2014).
[Crossref]

Gambra, E.

Gardiner, G.

J. Kohl, L. Werner, J. Ford, S. Cole, S. Vasavada, G. Gardiner, R. Noristani, and N. Mamalis, “Long-term uveal and capsular biocompatibility of a new accommodating intraocular lens,” J. Cataract Refract. Surg. 40, 2113–2119 (2014).
[Crossref]

Gisel, T. E.

E. Verter, T. E. Gisel, P. G. Yang, A. J. Johnson, R. W. Redmond, and I. E. Kochevar, “Light-initiated bonding of amniotic membrane to cornea,” Invest. Ophthalmol. Vis Sci. 52, 9470–9477 (2011).
[Crossref]

Glasser, A.

A. Glasser and M. Wendt, “Age-related loss of accommodation in Rhesus monkeys is associated with an age-related increase in lens stiffness,” Invest. Ophthalmol. Vis. Sci. 54, 4274 (2013).

A. Glasser, “Restoration of accommodation: surgical options for correction of presbyopia,” Clin. Exp. Optom. 91, 279–295 (2008).
[Crossref]

Grulkowski, I.

Gump, J.

S. Bailey, M. Twa, J. Gump, M. Venkiteshwar, M. Bullimore, and R. Sooryakumar, “Light scattering study of the normal human eye lens: elastic properties and age dependence,” IEEE Trans. Biomed. Eng. 57, 2910–2917 (2010).
[Crossref]

Guthoff, R.

O. Stachs, H. Martin, A. Kirchhoff, J. Stave, T. Terwee, and R. Guthoff, “Monitoring accommodative ciliary muscle function using three-dimensional ultrasound,” Graefes. Arch. Clin. Exp. Ophthalmol. 240, 906–912 (2002).
[Crossref]

Gutierrez-Contreras, R.

N. Alejandre-Alba, R. Gutierrez-Contreras, C. Dorronsoro, and S. Marcos, “Intraocular photobonding to enable accommodating intraocular lens function,” Transl. Vis. Sci. Technol. 7, 27 (2018).
[Crossref]

Haitjema, H. J.

A. Koopmans, T. Terwee, J. Barkhof, H. J. Haitjema, and A. C. Kooijman, “Polymer refilling of presbyopic human lenses in vitro restores the ability to undergo accommodative changes,” Invest. Ophthalmol. Vis. Sci. 44, 250–257 (2003).
[Crossref]

He, J. C.

J. C. He, S. Barnes, and S. Marcos, “Monochromatic aberrations in the accommodated human eye,” Vision Res. 40, 41–48 (2000).
[Crossref]

Heethaar, R. M.

A. Hermans, M. Dubbelman, G. L. van der Heijde, and R. M. Heethaar, “Estimating the external force acting on the human lens during accommodation by finite element modeling,” Vision Res. 46, 3642–3650 (2006).
[Crossref]

Hermans, A.

A. Hermans, M. Dubbelman, G. L. van der Heijde, and R. M. Heethaar, “Estimating the external force acting on the human lens during accommodation by finite element modeling,” Vision Res. 46, 3642–3650 (2006).
[Crossref]

Hervella, L.

J. Tabernero, L. Hervella, P. Prieto, and P. Artal, “The accommodative ciliary muscle function is preserved in older humans,” Sci. Rep. 6, 25551 (2016).
[Crossref]

Ho, A.

F. Manns, J. M. Parel, D. Denham, C. Billote, N. Ziebarth, D. Borja, V. Fernandez, M. Aly, E. Arrieta, A. Ho, and B. Holden, “Optomechanical response of human and monkey lenses in a stretcher,” Invest. Ophthalmol. Visual Sci. 48, 3260–3268 (2007).
[Crossref]

K. Ehrmann, A. Ho, and J. M. Parel, “Ex vivo accommodation simulator II: concept and preliminary results,” Proc. SPIE 5314, 48–59 (2004).
[Crossref]

Holden, B.

F. Manns, J. M. Parel, D. Denham, C. Billote, N. Ziebarth, D. Borja, V. Fernandez, M. Aly, E. Arrieta, A. Ho, and B. Holden, “Optomechanical response of human and monkey lenses in a stretcher,” Invest. Ophthalmol. Visual Sci. 48, 3260–3268 (2007).
[Crossref]

Jacob, S.

A. Agarwal, D. A. Kumar, S. Jacob, C. Baid, A. Agarwal, and S. Srinivasan, “Fibrin glue-assisted sutureless posterior chamber intraocular lens implantation in eyes with deficient posterior capsules,” J. Cataract Refract. Surg. 34, 1433–1438 (2008).
[Crossref]

Jimenez-Alfaro, I.

E. Martinez-Enriquez, P. Perez-Merino, S. Duran, I. Jimenez-Alfaro, and S. Marcos, “Estimation of intraocular lens position from full crystalline lens geometry: towards a new generation of intraocular lens power calculation formulas,” Sci. Rep. 8, 9829 (2018).
[Crossref]

S. Marcos, S. Ortiz, P. Perez-Merino, J. Birkenfeld, S. Duran, and I. Jimenez-Alfaro, “Three-dimensional evaluation of accomodating intraocular lens shift and alignment in vivo,” Ophthalmology 121, 45–55 (2014).
[Crossref]

P. Perez-Merino, J. Birkenfeld, C. Dorronsoro, S. Ortiz, S. Duran, I. Jimenez-Alfaro, and S. Marcos, “Aberrometry in patients implanted with accommodative intraocular lenses,” Am. J. Ophthal. 157, 1077–1089.e1 (2014).
[Crossref]

Johnson, A. J.

E. Verter, T. E. Gisel, P. G. Yang, A. J. Johnson, R. W. Redmond, and I. E. Kochevar, “Light-initiated bonding of amniotic membrane to cornea,” Invest. Ophthalmol. Vis Sci. 52, 9470–9477 (2011).
[Crossref]

Jones, E.

E. Proano, L. Mulroy, E. Jones, D. T. Azar, R. W. Redmond, and I. E. Kochevar, “Photochemical keratodesmos for bonding corneal incisions,” Invest. Ophthalmol. Vis. Sci. 45, 2177–2181 (2004).
[Crossref]

Judge, S.

J. Burd, S. Judge, and M. Flavell, “Mechanics of accommodation of the human eye,” Vision Res. 39, 1591–1595 (1999).
[Crossref]

Judge, S. J.

S. Wilde, H. J. Burd, and S. J. Judge, “Shear modulus for the human lens determined from a spinning lens test,” Exp. Eye Res. 97, 36–48 (2012).
[Crossref]

J. Burd, S. J. Judge, and J. A. Cross, “Numerical modeling of the accommodating lens,” Vision Res. 42, 2235–2251 (2002).
[Crossref]

Khaw, P.

Y. Nishi, K. Mireskandari, P. Khaw, and O. Findl, “Lens refilling to restore accommodation,” J. Cataract Refract. Surg. 35, 374–382 (2009).
[Crossref]

Kirchhoff, A.

O. Stachs, H. Martin, A. Kirchhoff, J. Stave, T. Terwee, and R. Guthoff, “Monitoring accommodative ciliary muscle function using three-dimensional ultrasound,” Graefes. Arch. Clin. Exp. Ophthalmol. 240, 906–912 (2002).
[Crossref]

Kochevar, I. E.

S. Marcos, N. Alejandre-Alba, J. Lamela, C. Dorronsoro, and I. E. Kochevar, “Toward new engagement paradigms for intraocular lenses: light-initiated bonding of capsular bag to lens materials,” Invest. Ophthalmol Vis. Sci. 56, 4249–4256 (2015).
[Crossref]

E. Verter, T. E. Gisel, P. G. Yang, A. J. Johnson, R. W. Redmond, and I. E. Kochevar, “Light-initiated bonding of amniotic membrane to cornea,” Invest. Ophthalmol. Vis Sci. 52, 9470–9477 (2011).
[Crossref]

E. Proano, L. Mulroy, E. Jones, D. T. Azar, R. W. Redmond, and I. E. Kochevar, “Photochemical keratodesmos for bonding corneal incisions,” Invest. Ophthalmol. Vis. Sci. 45, 2177–2181 (2004).
[Crossref]

Koeppl, C.

C. Koeppl, O. Findl, R. Menapace, K. Kriechbaum, M. Wirtisch, W. Buehl, S. Sacu, and W. Drexler, “Pilocarpine-induced shift of an accommodating intraocular lens: AT-45 Crystalens,” J. Cataract Refract. Surg. 31, 1290–1297 (2005).
[Crossref]

Kohl, J.

J. Kohl, L. Werner, J. Ford, S. Cole, S. Vasavada, G. Gardiner, R. Noristani, and N. Mamalis, “Long-term uveal and capsular biocompatibility of a new accommodating intraocular lens,” J. Cataract Refract. Surg. 40, 2113–2119 (2014).
[Crossref]

Kooijman, A. C.

A. Koopmans, T. Terwee, J. Barkhof, H. J. Haitjema, and A. C. Kooijman, “Polymer refilling of presbyopic human lenses in vitro restores the ability to undergo accommodative changes,” Invest. Ophthalmol. Vis. Sci. 44, 250–257 (2003).
[Crossref]

Koopmans, A.

A. Koopmans, T. Terwee, J. Barkhof, H. J. Haitjema, and A. C. Kooijman, “Polymer refilling of presbyopic human lenses in vitro restores the ability to undergo accommodative changes,” Invest. Ophthalmol. Vis. Sci. 44, 250–257 (2003).
[Crossref]

Kriechbaum, K.

C. Koeppl, O. Findl, R. Menapace, K. Kriechbaum, M. Wirtisch, W. Buehl, S. Sacu, and W. Drexler, “Pilocarpine-induced shift of an accommodating intraocular lens: AT-45 Crystalens,” J. Cataract Refract. Surg. 31, 1290–1297 (2005).
[Crossref]

Kumar, D. A.

A. Agarwal, D. A. Kumar, S. Jacob, C. Baid, A. Agarwal, and S. Srinivasan, “Fibrin glue-assisted sutureless posterior chamber intraocular lens implantation in eyes with deficient posterior capsules,” J. Cataract Refract. Surg. 34, 1433–1438 (2008).
[Crossref]

Lamela, J.

S. Marcos, N. Alejandre-Alba, J. Lamela, C. Dorronsoro, and I. E. Kochevar, “Toward new engagement paradigms for intraocular lenses: light-initiated bonding of capsular bag to lens materials,” Invest. Ophthalmol Vis. Sci. 56, 4249–4256 (2015).
[Crossref]

Maldonado, M.

L. Alio, A. B. Plaza-Puche, R. Fernandez-Buenaga, J. Pikkel, and M. Maldonado, “Multifocal intraocular lenses: an overview,” Surv. Ophthalmol. 62, 611–634 (2017).
[Crossref]

Mamalis, N.

J. Kohl, L. Werner, J. Ford, S. Cole, S. Vasavada, G. Gardiner, R. Noristani, and N. Mamalis, “Long-term uveal and capsular biocompatibility of a new accommodating intraocular lens,” J. Cataract Refract. Surg. 40, 2113–2119 (2014).
[Crossref]

Manns, F.

S. Uhlhorn, D. Borja, F. Manns, and J. M. Parel, “Refractive index measurement of the isolated crystalline lens using optical coherence tomography,” Vision Res. 48, 2732–2738 (2008).
[Crossref]

F. Manns, J. M. Parel, D. Denham, C. Billote, N. Ziebarth, D. Borja, V. Fernandez, M. Aly, E. Arrieta, A. Ho, and B. Holden, “Optomechanical response of human and monkey lenses in a stretcher,” Invest. Ophthalmol. Visual Sci. 48, 3260–3268 (2007).
[Crossref]

Marcos, S.

N. Alejandre-Alba, R. Gutierrez-Contreras, C. Dorronsoro, and S. Marcos, “Intraocular photobonding to enable accommodating intraocular lens function,” Transl. Vis. Sci. Technol. 7, 27 (2018).
[Crossref]

E. Martinez-Enriquez, P. Perez-Merino, S. Duran, I. Jimenez-Alfaro, and S. Marcos, “Estimation of intraocular lens position from full crystalline lens geometry: towards a new generation of intraocular lens power calculation formulas,” Sci. Rep. 8, 9829 (2018).
[Crossref]

E. Martinez-Enriquez, P. Perez-Merino, M. Velasco-Ocana, and S. Marcos, “OCT-based full crystalline lens shape change during accommodation in vivo,” Biomed. Opt. Express 8, 918–933 (2017).
[Crossref]

E. Martinez-Enriquez, M. Sun, M. Velasco-Ocana, J. Birkenfeld, P. Perez-Merino, and S. Marcos, “Optical coherence tomography based estimates of crystalline lens volume, equatorial diameter, and plane position,” Invest. Ophthalmol. Vis. Sci. 57, OCT600 (2016).
[Crossref]

S. Marcos, N. Alejandre-Alba, J. Lamela, C. Dorronsoro, and I. E. Kochevar, “Toward new engagement paradigms for intraocular lenses: light-initiated bonding of capsular bag to lens materials,” Invest. Ophthalmol Vis. Sci. 56, 4249–4256 (2015).
[Crossref]

S. Marcos, S. Ortiz, P. Perez-Merino, J. Birkenfeld, S. Duran, and I. Jimenez-Alfaro, “Three-dimensional evaluation of accomodating intraocular lens shift and alignment in vivo,” Ophthalmology 121, 45–55 (2014).
[Crossref]

P. Perez-Merino, J. Birkenfeld, C. Dorronsoro, S. Ortiz, S. Duran, I. Jimenez-Alfaro, and S. Marcos, “Aberrometry in patients implanted with accommodative intraocular lenses,” Am. J. Ophthal. 157, 1077–1089.e1 (2014).
[Crossref]

A. De Castro, S. Ortiz, E. Gambra, D. Siedlecki, and S. Marcos, “Three-dimensional reconstruction of the crystalline lens gradient index distribution from OCT imaging,” Opt. Express 18, 21905–21917 (2010).
[Crossref]

S. Ortiz, D. Siedlecki, I. Grulkowski, L. Remon, D. Pascual, M. Wojtkowski, and S. Marcos, “Optical distortion correction in optical coherence tomography for quantitative ocular anterior segment by three-dimensional imaging,” Opt. Express 18, 2782–2796 (2010).
[Crossref]

S. Ortiz, D. Siedlecki, L. Remon, and S. Marcos, “Optical coherence tomography for quantitative surface topography,” Appl. Opt. 48, 6708–6715 (2009).
[Crossref]

J. C. He, S. Barnes, and S. Marcos, “Monochromatic aberrations in the accommodated human eye,” Vision Res. 40, 41–48 (2000).
[Crossref]

C. Dorronsoro, N. Alejandre-Alba, N. Bekesi, and S. Marcos, “Intraocular lens with accommodation capacity,” patent EP13382367.4 (7June2017).

Martin, H.

O. Stachs, H. Martin, A. Kirchhoff, J. Stave, T. Terwee, and R. Guthoff, “Monitoring accommodative ciliary muscle function using three-dimensional ultrasound,” Graefes. Arch. Clin. Exp. Ophthalmol. 240, 906–912 (2002).
[Crossref]

Martinez-Enriquez, E.

E. Martinez-Enriquez, P. Perez-Merino, S. Duran, I. Jimenez-Alfaro, and S. Marcos, “Estimation of intraocular lens position from full crystalline lens geometry: towards a new generation of intraocular lens power calculation formulas,” Sci. Rep. 8, 9829 (2018).
[Crossref]

E. Martinez-Enriquez, P. Perez-Merino, M. Velasco-Ocana, and S. Marcos, “OCT-based full crystalline lens shape change during accommodation in vivo,” Biomed. Opt. Express 8, 918–933 (2017).
[Crossref]

E. Martinez-Enriquez, M. Sun, M. Velasco-Ocana, J. Birkenfeld, P. Perez-Merino, and S. Marcos, “Optical coherence tomography based estimates of crystalline lens volume, equatorial diameter, and plane position,” Invest. Ophthalmol. Vis. Sci. 57, OCT600 (2016).
[Crossref]

McLeod, D.

D. McLeod, “Optical principles, biomechanics, and initial clinical performance of a dual-optic accommodating intraocular lens (an American Ophthalmological Society thesis),” Trans. Am. Ophthalmol. Soc. 104, 437–452 (2006).

Menapace, R.

C. Koeppl, O. Findl, R. Menapace, K. Kriechbaum, M. Wirtisch, W. Buehl, S. Sacu, and W. Drexler, “Pilocarpine-induced shift of an accommodating intraocular lens: AT-45 Crystalens,” J. Cataract Refract. Surg. 31, 1290–1297 (2005).
[Crossref]

Mireskandari, K.

Y. Nishi, K. Mireskandari, P. Khaw, and O. Findl, “Lens refilling to restore accommodation,” J. Cataract Refract. Surg. 35, 374–382 (2009).
[Crossref]

Mulroy, L.

E. Proano, L. Mulroy, E. Jones, D. T. Azar, R. W. Redmond, and I. E. Kochevar, “Photochemical keratodesmos for bonding corneal incisions,” Invest. Ophthalmol. Vis. Sci. 45, 2177–2181 (2004).
[Crossref]

Nishi, Y.

Y. Nishi, K. Mireskandari, P. Khaw, and O. Findl, “Lens refilling to restore accommodation,” J. Cataract Refract. Surg. 35, 374–382 (2009).
[Crossref]

Noristani, R.

J. Kohl, L. Werner, J. Ford, S. Cole, S. Vasavada, G. Gardiner, R. Noristani, and N. Mamalis, “Long-term uveal and capsular biocompatibility of a new accommodating intraocular lens,” J. Cataract Refract. Surg. 40, 2113–2119 (2014).
[Crossref]

Ortiz, S.

Pardue, T.

T. Pardue and J. G. Sivak, “Age-related changes in human ciliary muscle,” Optom. Vis. Sci. 77, 204–210 (2000).
[Crossref]

Parel, J. M.

S. Uhlhorn, D. Borja, F. Manns, and J. M. Parel, “Refractive index measurement of the isolated crystalline lens using optical coherence tomography,” Vision Res. 48, 2732–2738 (2008).
[Crossref]

F. Manns, J. M. Parel, D. Denham, C. Billote, N. Ziebarth, D. Borja, V. Fernandez, M. Aly, E. Arrieta, A. Ho, and B. Holden, “Optomechanical response of human and monkey lenses in a stretcher,” Invest. Ophthalmol. Visual Sci. 48, 3260–3268 (2007).
[Crossref]

K. Ehrmann, A. Ho, and J. M. Parel, “Ex vivo accommodation simulator II: concept and preliminary results,” Proc. SPIE 5314, 48–59 (2004).
[Crossref]

Pascual, D.

Pechhold, W.

A. Weeber, G. Eckert, W. Pechhold, and G. L. van der Heijde, “Stiffness gradient in the crystalline lens,” Clin. Exp. Optom. 245, 1357–1366 (2007).
[Crossref]

H. Weeber, G. Eckert, W. Pechhold, and G. L. van der Heijde, “Stiffness gradient in the crystalline lens,” Clin. Exper. Ophthalmol. 245, 1357–1366 (2007).
[Crossref]

Peng, Q.

Q. Peng, Y. Yang, and X. Zhang, “Accommodative Intraocular lens,” U.S. patent20030204256A1 (30October2003).

Perez-Merino, P.

E. Martinez-Enriquez, P. Perez-Merino, S. Duran, I. Jimenez-Alfaro, and S. Marcos, “Estimation of intraocular lens position from full crystalline lens geometry: towards a new generation of intraocular lens power calculation formulas,” Sci. Rep. 8, 9829 (2018).
[Crossref]

E. Martinez-Enriquez, P. Perez-Merino, M. Velasco-Ocana, and S. Marcos, “OCT-based full crystalline lens shape change during accommodation in vivo,” Biomed. Opt. Express 8, 918–933 (2017).
[Crossref]

E. Martinez-Enriquez, M. Sun, M. Velasco-Ocana, J. Birkenfeld, P. Perez-Merino, and S. Marcos, “Optical coherence tomography based estimates of crystalline lens volume, equatorial diameter, and plane position,” Invest. Ophthalmol. Vis. Sci. 57, OCT600 (2016).
[Crossref]

S. Marcos, S. Ortiz, P. Perez-Merino, J. Birkenfeld, S. Duran, and I. Jimenez-Alfaro, “Three-dimensional evaluation of accomodating intraocular lens shift and alignment in vivo,” Ophthalmology 121, 45–55 (2014).
[Crossref]

P. Perez-Merino, J. Birkenfeld, C. Dorronsoro, S. Ortiz, S. Duran, I. Jimenez-Alfaro, and S. Marcos, “Aberrometry in patients implanted with accommodative intraocular lenses,” Am. J. Ophthal. 157, 1077–1089.e1 (2014).
[Crossref]

Pierscionek, B.

K. Wang, D. Venetsanos, and B. Pierscionek, “Gradient moduli lens models: how material properties and application of forces can affect deformation and distributions of stress,” Sci. Rep. 6, 31171 (2016).
[Crossref]

Pikkel, J.

L. Alio, A. B. Plaza-Puche, R. Fernandez-Buenaga, J. Pikkel, and M. Maldonado, “Multifocal intraocular lenses: an overview,” Surv. Ophthalmol. 62, 611–634 (2017).
[Crossref]

Pineda, R.

S. Besner, G. Scarcelli, R. Pineda, and S. H. Yun, “In vivo Brillouin analysis of the aging crystalline lens,” Invest. Ophthalmol. Vis. Sci. 57, 5093–5100 (2016).
[Crossref]

Plaza-Puche, A. B.

L. Alio, A. B. Plaza-Puche, R. Fernandez-Buenaga, J. Pikkel, and M. Maldonado, “Multifocal intraocular lenses: an overview,” Surv. Ophthalmol. 62, 611–634 (2017).
[Crossref]

Prieto, P.

J. Tabernero, L. Hervella, P. Prieto, and P. Artal, “The accommodative ciliary muscle function is preserved in older humans,” Sci. Rep. 6, 25551 (2016).
[Crossref]

Proano, E.

E. Proano, L. Mulroy, E. Jones, D. T. Azar, R. W. Redmond, and I. E. Kochevar, “Photochemical keratodesmos for bonding corneal incisions,” Invest. Ophthalmol. Vis. Sci. 45, 2177–2181 (2004).
[Crossref]

Redmond, R. W.

E. Verter, T. E. Gisel, P. G. Yang, A. J. Johnson, R. W. Redmond, and I. E. Kochevar, “Light-initiated bonding of amniotic membrane to cornea,” Invest. Ophthalmol. Vis Sci. 52, 9470–9477 (2011).
[Crossref]

E. Proano, L. Mulroy, E. Jones, D. T. Azar, R. W. Redmond, and I. E. Kochevar, “Photochemical keratodesmos for bonding corneal incisions,” Invest. Ophthalmol. Vis. Sci. 45, 2177–2181 (2004).
[Crossref]

Remon, L.

Sacu, S.

C. Koeppl, O. Findl, R. Menapace, K. Kriechbaum, M. Wirtisch, W. Buehl, S. Sacu, and W. Drexler, “Pilocarpine-induced shift of an accommodating intraocular lens: AT-45 Crystalens,” J. Cataract Refract. Surg. 31, 1290–1297 (2005).
[Crossref]

Scarcelli, G.

S. Besner, G. Scarcelli, R. Pineda, and S. H. Yun, “In vivo Brillouin analysis of the aging crystalline lens,” Invest. Ophthalmol. Vis. Sci. 57, 5093–5100 (2016).
[Crossref]

Sheppard, L.

L. Sheppard, A. Bashir, J. S. Wolffsohn, and L. N. Davies, “Accommodating intraocular lenses: a review of design concepts, usage and assessment methods,” Clin. Exp. Optom. 93, 441–452 (2010).
[Crossref]

Siedlecki, D.

Sivak, J. G.

T. Pardue and J. G. Sivak, “Age-related changes in human ciliary muscle,” Optom. Vis. Sci. 77, 204–210 (2000).
[Crossref]

Sooryakumar, R.

S. Bailey, M. Twa, J. Gump, M. Venkiteshwar, M. Bullimore, and R. Sooryakumar, “Light scattering study of the normal human eye lens: elastic properties and age dependence,” IEEE Trans. Biomed. Eng. 57, 2910–2917 (2010).
[Crossref]

Srinivasan, S.

A. Agarwal, D. A. Kumar, S. Jacob, C. Baid, A. Agarwal, and S. Srinivasan, “Fibrin glue-assisted sutureless posterior chamber intraocular lens implantation in eyes with deficient posterior capsules,” J. Cataract Refract. Surg. 34, 1433–1438 (2008).
[Crossref]

Stachs, O.

O. Stachs, H. Martin, A. Kirchhoff, J. Stave, T. Terwee, and R. Guthoff, “Monitoring accommodative ciliary muscle function using three-dimensional ultrasound,” Graefes. Arch. Clin. Exp. Ophthalmol. 240, 906–912 (2002).
[Crossref]

Stave, J.

O. Stachs, H. Martin, A. Kirchhoff, J. Stave, T. Terwee, and R. Guthoff, “Monitoring accommodative ciliary muscle function using three-dimensional ultrasound,” Graefes. Arch. Clin. Exp. Ophthalmol. 240, 906–912 (2002).
[Crossref]

Sun, M.

E. Martinez-Enriquez, M. Sun, M. Velasco-Ocana, J. Birkenfeld, P. Perez-Merino, and S. Marcos, “Optical coherence tomography based estimates of crystalline lens volume, equatorial diameter, and plane position,” Invest. Ophthalmol. Vis. Sci. 57, OCT600 (2016).
[Crossref]

Tabernero, J.

J. Tabernero, L. Hervella, P. Prieto, and P. Artal, “The accommodative ciliary muscle function is preserved in older humans,” Sci. Rep. 6, 25551 (2016).
[Crossref]

Terwee, T.

A. Koopmans, T. Terwee, J. Barkhof, H. J. Haitjema, and A. C. Kooijman, “Polymer refilling of presbyopic human lenses in vitro restores the ability to undergo accommodative changes,” Invest. Ophthalmol. Vis. Sci. 44, 250–257 (2003).
[Crossref]

O. Stachs, H. Martin, A. Kirchhoff, J. Stave, T. Terwee, and R. Guthoff, “Monitoring accommodative ciliary muscle function using three-dimensional ultrasound,” Graefes. Arch. Clin. Exp. Ophthalmol. 240, 906–912 (2002).
[Crossref]

Twa, M.

S. Bailey, M. Twa, J. Gump, M. Venkiteshwar, M. Bullimore, and R. Sooryakumar, “Light scattering study of the normal human eye lens: elastic properties and age dependence,” IEEE Trans. Biomed. Eng. 57, 2910–2917 (2010).
[Crossref]

Uhlhorn, S.

S. Uhlhorn, D. Borja, F. Manns, and J. M. Parel, “Refractive index measurement of the isolated crystalline lens using optical coherence tomography,” Vision Res. 48, 2732–2738 (2008).
[Crossref]

van der Heijde, G. L.

A. Weeber, G. Eckert, W. Pechhold, and G. L. van der Heijde, “Stiffness gradient in the crystalline lens,” Clin. Exp. Optom. 245, 1357–1366 (2007).
[Crossref]

H. Weeber, G. Eckert, W. Pechhold, and G. L. van der Heijde, “Stiffness gradient in the crystalline lens,” Clin. Exper. Ophthalmol. 245, 1357–1366 (2007).
[Crossref]

A. Hermans, M. Dubbelman, G. L. van der Heijde, and R. M. Heethaar, “Estimating the external force acting on the human lens during accommodation by finite element modeling,” Vision Res. 46, 3642–3650 (2006).
[Crossref]

M. Dubbelman, G. L. Van der Heijde, H. A. Weeber, and G. F. Vrensen, “Changes in the internal structure of the human crystalline lens with age and accommodation,” Vision Res. 43, 2363–2375 (2003).
[Crossref]

Vasavada, S.

J. Kohl, L. Werner, J. Ford, S. Cole, S. Vasavada, G. Gardiner, R. Noristani, and N. Mamalis, “Long-term uveal and capsular biocompatibility of a new accommodating intraocular lens,” J. Cataract Refract. Surg. 40, 2113–2119 (2014).
[Crossref]

Velasco-Ocana, M.

E. Martinez-Enriquez, P. Perez-Merino, M. Velasco-Ocana, and S. Marcos, “OCT-based full crystalline lens shape change during accommodation in vivo,” Biomed. Opt. Express 8, 918–933 (2017).
[Crossref]

E. Martinez-Enriquez, M. Sun, M. Velasco-Ocana, J. Birkenfeld, P. Perez-Merino, and S. Marcos, “Optical coherence tomography based estimates of crystalline lens volume, equatorial diameter, and plane position,” Invest. Ophthalmol. Vis. Sci. 57, OCT600 (2016).
[Crossref]

Venetsanos, D.

K. Wang, D. Venetsanos, and B. Pierscionek, “Gradient moduli lens models: how material properties and application of forces can affect deformation and distributions of stress,” Sci. Rep. 6, 31171 (2016).
[Crossref]

Venkiteshwar, M.

S. Bailey, M. Twa, J. Gump, M. Venkiteshwar, M. Bullimore, and R. Sooryakumar, “Light scattering study of the normal human eye lens: elastic properties and age dependence,” IEEE Trans. Biomed. Eng. 57, 2910–2917 (2010).
[Crossref]

Verter, E.

E. Verter, T. E. Gisel, P. G. Yang, A. J. Johnson, R. W. Redmond, and I. E. Kochevar, “Light-initiated bonding of amniotic membrane to cornea,” Invest. Ophthalmol. Vis Sci. 52, 9470–9477 (2011).
[Crossref]

Vrensen, G. F.

M. Dubbelman, G. L. Van der Heijde, H. A. Weeber, and G. F. Vrensen, “Changes in the internal structure of the human crystalline lens with age and accommodation,” Vision Res. 43, 2363–2375 (2003).
[Crossref]

Wang, K.

K. Wang, D. Venetsanos, and B. Pierscionek, “Gradient moduli lens models: how material properties and application of forces can affect deformation and distributions of stress,” Sci. Rep. 6, 31171 (2016).
[Crossref]

Weeber, A.

A. Weeber, G. Eckert, W. Pechhold, and G. L. van der Heijde, “Stiffness gradient in the crystalline lens,” Clin. Exp. Optom. 245, 1357–1366 (2007).
[Crossref]

Weeber, H.

H. Weeber, G. Eckert, W. Pechhold, and G. L. van der Heijde, “Stiffness gradient in the crystalline lens,” Clin. Exper. Ophthalmol. 245, 1357–1366 (2007).
[Crossref]

Weeber, H. A.

M. Dubbelman, G. L. Van der Heijde, H. A. Weeber, and G. F. Vrensen, “Changes in the internal structure of the human crystalline lens with age and accommodation,” Vision Res. 43, 2363–2375 (2003).
[Crossref]

Wendt, M.

A. Glasser and M. Wendt, “Age-related loss of accommodation in Rhesus monkeys is associated with an age-related increase in lens stiffness,” Invest. Ophthalmol. Vis. Sci. 54, 4274 (2013).

Werner, L.

J. Kohl, L. Werner, J. Ford, S. Cole, S. Vasavada, G. Gardiner, R. Noristani, and N. Mamalis, “Long-term uveal and capsular biocompatibility of a new accommodating intraocular lens,” J. Cataract Refract. Surg. 40, 2113–2119 (2014).
[Crossref]

Wilde, S.

S. Wilde, H. J. Burd, and S. J. Judge, “Shear modulus for the human lens determined from a spinning lens test,” Exp. Eye Res. 97, 36–48 (2012).
[Crossref]

Wirtisch, M.

C. Koeppl, O. Findl, R. Menapace, K. Kriechbaum, M. Wirtisch, W. Buehl, S. Sacu, and W. Drexler, “Pilocarpine-induced shift of an accommodating intraocular lens: AT-45 Crystalens,” J. Cataract Refract. Surg. 31, 1290–1297 (2005).
[Crossref]

Wojtkowski, M.

Wolffsohn, J. S.

L. Sheppard, A. Bashir, J. S. Wolffsohn, and L. N. Davies, “Accommodating intraocular lenses: a review of design concepts, usage and assessment methods,” Clin. Exp. Optom. 93, 441–452 (2010).
[Crossref]

Yang, P. G.

E. Verter, T. E. Gisel, P. G. Yang, A. J. Johnson, R. W. Redmond, and I. E. Kochevar, “Light-initiated bonding of amniotic membrane to cornea,” Invest. Ophthalmol. Vis Sci. 52, 9470–9477 (2011).
[Crossref]

Yang, Y.

Q. Peng, Y. Yang, and X. Zhang, “Accommodative Intraocular lens,” U.S. patent20030204256A1 (30October2003).

Yun, S. H.

S. Besner, G. Scarcelli, R. Pineda, and S. H. Yun, “In vivo Brillouin analysis of the aging crystalline lens,” Invest. Ophthalmol. Vis. Sci. 57, 5093–5100 (2016).
[Crossref]

Zhang, X.

Q. Peng, Y. Yang, and X. Zhang, “Accommodative Intraocular lens,” U.S. patent20030204256A1 (30October2003).

Ziebarth, N.

F. Manns, J. M. Parel, D. Denham, C. Billote, N. Ziebarth, D. Borja, V. Fernandez, M. Aly, E. Arrieta, A. Ho, and B. Holden, “Optomechanical response of human and monkey lenses in a stretcher,” Invest. Ophthalmol. Visual Sci. 48, 3260–3268 (2007).
[Crossref]

Am. J. Ophthal. (1)

P. Perez-Merino, J. Birkenfeld, C. Dorronsoro, S. Ortiz, S. Duran, I. Jimenez-Alfaro, and S. Marcos, “Aberrometry in patients implanted with accommodative intraocular lenses,” Am. J. Ophthal. 157, 1077–1089.e1 (2014).
[Crossref]

Appl. Opt. (1)

Biomed. Opt. Express (2)

Clin. Exp. Optom. (4)

A. Weeber, G. Eckert, W. Pechhold, and G. L. van der Heijde, “Stiffness gradient in the crystalline lens,” Clin. Exp. Optom. 245, 1357–1366 (2007).
[Crossref]

L. Sheppard, A. Bashir, J. S. Wolffsohn, and L. N. Davies, “Accommodating intraocular lenses: a review of design concepts, usage and assessment methods,” Clin. Exp. Optom. 93, 441–452 (2010).
[Crossref]

A. Glasser, “Restoration of accommodation: surgical options for correction of presbyopia,” Clin. Exp. Optom. 91, 279–295 (2008).
[Crossref]

N. W. Charman, “The eye in focus: accommodation and presbyopia,” Clin. Exp. Optom. 91, 207–225 (2008).
[Crossref]

Clin. Exper. Ophthalmol. (1)

H. Weeber, G. Eckert, W. Pechhold, and G. L. van der Heijde, “Stiffness gradient in the crystalline lens,” Clin. Exper. Ophthalmol. 245, 1357–1366 (2007).
[Crossref]

Exp. Eye Res. (1)

S. Wilde, H. J. Burd, and S. J. Judge, “Shear modulus for the human lens determined from a spinning lens test,” Exp. Eye Res. 97, 36–48 (2012).
[Crossref]

Graefes. Arch. Clin. Exp. Ophthalmol. (1)

O. Stachs, H. Martin, A. Kirchhoff, J. Stave, T. Terwee, and R. Guthoff, “Monitoring accommodative ciliary muscle function using three-dimensional ultrasound,” Graefes. Arch. Clin. Exp. Ophthalmol. 240, 906–912 (2002).
[Crossref]

IEEE Trans. Biomed. Eng. (1)

S. Bailey, M. Twa, J. Gump, M. Venkiteshwar, M. Bullimore, and R. Sooryakumar, “Light scattering study of the normal human eye lens: elastic properties and age dependence,” IEEE Trans. Biomed. Eng. 57, 2910–2917 (2010).
[Crossref]

Invest. Ophthalmol Vis. Sci. (1)

S. Marcos, N. Alejandre-Alba, J. Lamela, C. Dorronsoro, and I. E. Kochevar, “Toward new engagement paradigms for intraocular lenses: light-initiated bonding of capsular bag to lens materials,” Invest. Ophthalmol Vis. Sci. 56, 4249–4256 (2015).
[Crossref]

Invest. Ophthalmol. Vis Sci. (1)

E. Verter, T. E. Gisel, P. G. Yang, A. J. Johnson, R. W. Redmond, and I. E. Kochevar, “Light-initiated bonding of amniotic membrane to cornea,” Invest. Ophthalmol. Vis Sci. 52, 9470–9477 (2011).
[Crossref]

Invest. Ophthalmol. Vis. Sci. (5)

E. Proano, L. Mulroy, E. Jones, D. T. Azar, R. W. Redmond, and I. E. Kochevar, “Photochemical keratodesmos for bonding corneal incisions,” Invest. Ophthalmol. Vis. Sci. 45, 2177–2181 (2004).
[Crossref]

S. Besner, G. Scarcelli, R. Pineda, and S. H. Yun, “In vivo Brillouin analysis of the aging crystalline lens,” Invest. Ophthalmol. Vis. Sci. 57, 5093–5100 (2016).
[Crossref]

A. Glasser and M. Wendt, “Age-related loss of accommodation in Rhesus monkeys is associated with an age-related increase in lens stiffness,” Invest. Ophthalmol. Vis. Sci. 54, 4274 (2013).

A. Koopmans, T. Terwee, J. Barkhof, H. J. Haitjema, and A. C. Kooijman, “Polymer refilling of presbyopic human lenses in vitro restores the ability to undergo accommodative changes,” Invest. Ophthalmol. Vis. Sci. 44, 250–257 (2003).
[Crossref]

E. Martinez-Enriquez, M. Sun, M. Velasco-Ocana, J. Birkenfeld, P. Perez-Merino, and S. Marcos, “Optical coherence tomography based estimates of crystalline lens volume, equatorial diameter, and plane position,” Invest. Ophthalmol. Vis. Sci. 57, OCT600 (2016).
[Crossref]

Invest. Ophthalmol. Visual Sci. (1)

F. Manns, J. M. Parel, D. Denham, C. Billote, N. Ziebarth, D. Borja, V. Fernandez, M. Aly, E. Arrieta, A. Ho, and B. Holden, “Optomechanical response of human and monkey lenses in a stretcher,” Invest. Ophthalmol. Visual Sci. 48, 3260–3268 (2007).
[Crossref]

J. Cataract Refract. Surg. (4)

Y. Nishi, K. Mireskandari, P. Khaw, and O. Findl, “Lens refilling to restore accommodation,” J. Cataract Refract. Surg. 35, 374–382 (2009).
[Crossref]

A. Agarwal, D. A. Kumar, S. Jacob, C. Baid, A. Agarwal, and S. Srinivasan, “Fibrin glue-assisted sutureless posterior chamber intraocular lens implantation in eyes with deficient posterior capsules,” J. Cataract Refract. Surg. 34, 1433–1438 (2008).
[Crossref]

C. Koeppl, O. Findl, R. Menapace, K. Kriechbaum, M. Wirtisch, W. Buehl, S. Sacu, and W. Drexler, “Pilocarpine-induced shift of an accommodating intraocular lens: AT-45 Crystalens,” J. Cataract Refract. Surg. 31, 1290–1297 (2005).
[Crossref]

J. Kohl, L. Werner, J. Ford, S. Cole, S. Vasavada, G. Gardiner, R. Noristani, and N. Mamalis, “Long-term uveal and capsular biocompatibility of a new accommodating intraocular lens,” J. Cataract Refract. Surg. 40, 2113–2119 (2014).
[Crossref]

J. Physiol. (1)

F. Fisher, “The elastic constants of the human lens,” J. Physiol. 212, 147–180 (1971).
[Crossref]

Ophthalmology (1)

S. Marcos, S. Ortiz, P. Perez-Merino, J. Birkenfeld, S. Duran, and I. Jimenez-Alfaro, “Three-dimensional evaluation of accomodating intraocular lens shift and alignment in vivo,” Ophthalmology 121, 45–55 (2014).
[Crossref]

Opt. Express (2)

Optom. Vis. Sci. (1)

T. Pardue and J. G. Sivak, “Age-related changes in human ciliary muscle,” Optom. Vis. Sci. 77, 204–210 (2000).
[Crossref]

Proc. SPIE (1)

K. Ehrmann, A. Ho, and J. M. Parel, “Ex vivo accommodation simulator II: concept and preliminary results,” Proc. SPIE 5314, 48–59 (2004).
[Crossref]

Sci. Rep. (3)

E. Martinez-Enriquez, P. Perez-Merino, S. Duran, I. Jimenez-Alfaro, and S. Marcos, “Estimation of intraocular lens position from full crystalline lens geometry: towards a new generation of intraocular lens power calculation formulas,” Sci. Rep. 8, 9829 (2018).
[Crossref]

J. Tabernero, L. Hervella, P. Prieto, and P. Artal, “The accommodative ciliary muscle function is preserved in older humans,” Sci. Rep. 6, 25551 (2016).
[Crossref]

K. Wang, D. Venetsanos, and B. Pierscionek, “Gradient moduli lens models: how material properties and application of forces can affect deformation and distributions of stress,” Sci. Rep. 6, 31171 (2016).
[Crossref]

Surv. Ophthalmol. (1)

L. Alio, A. B. Plaza-Puche, R. Fernandez-Buenaga, J. Pikkel, and M. Maldonado, “Multifocal intraocular lenses: an overview,” Surv. Ophthalmol. 62, 611–634 (2017).
[Crossref]

Trans. Am. Ophthalmol. Soc. (1)

D. McLeod, “Optical principles, biomechanics, and initial clinical performance of a dual-optic accommodating intraocular lens (an American Ophthalmological Society thesis),” Trans. Am. Ophthalmol. Soc. 104, 437–452 (2006).

Transl. Vis. Sci. Technol. (1)

N. Alejandre-Alba, R. Gutierrez-Contreras, C. Dorronsoro, and S. Marcos, “Intraocular photobonding to enable accommodating intraocular lens function,” Transl. Vis. Sci. Technol. 7, 27 (2018).
[Crossref]

Vision Res. (6)

S. Uhlhorn, D. Borja, F. Manns, and J. M. Parel, “Refractive index measurement of the isolated crystalline lens using optical coherence tomography,” Vision Res. 48, 2732–2738 (2008).
[Crossref]

A. Hermans, M. Dubbelman, G. L. van der Heijde, and R. M. Heethaar, “Estimating the external force acting on the human lens during accommodation by finite element modeling,” Vision Res. 46, 3642–3650 (2006).
[Crossref]

J. Burd, S. J. Judge, and J. A. Cross, “Numerical modeling of the accommodating lens,” Vision Res. 42, 2235–2251 (2002).
[Crossref]

M. Dubbelman, G. L. Van der Heijde, H. A. Weeber, and G. F. Vrensen, “Changes in the internal structure of the human crystalline lens with age and accommodation,” Vision Res. 43, 2363–2375 (2003).
[Crossref]

J. Burd, S. Judge, and M. Flavell, “Mechanics of accommodation of the human eye,” Vision Res. 39, 1591–1595 (1999).
[Crossref]

J. C. He, S. Barnes, and S. Marcos, “Monochromatic aberrations in the accommodated human eye,” Vision Res. 40, 41–48 (2000).
[Crossref]

Other (3)

Q. Peng, Y. Yang, and X. Zhang, “Accommodative Intraocular lens,” U.S. patent20030204256A1 (30October2003).

M. Beer, “Accommodative intraocular lens and method of improving accommodation,” U.S. patent9220590B2 (29December2015).

C. Dorronsoro, N. Alejandre-Alba, N. Bekesi, and S. Marcos, “Intraocular lens with accommodation capacity,” patent EP13382367.4 (7June2017).

Supplementary Material (1)

NameDescription
» Visualization 1       OCT reconstruction of AIOL prototype accommodating and disaccommodating.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. (a) Meshed finite element model of the AIOL. (b) Displacement of AIOL after loading [in millimeters (mm)]. Displayed with axial symmetry. (c) ZEMAX simulation of system.
Fig. 2.
Fig. 2. (a) Stretcher mounted in the optical bench coupled to a laser ray tracing (LRT) system for optical power measurements and a spectral OCT (sOCT) system for geometrical 3D measurements. (b) Stretcher system and water chamber. (c) AIOL prototype mounted on stretcher.
Fig. 3.
Fig. 3. Schematic diagram of the laser ray tracing system (LRT).
Fig. 4.
Fig. 4. Schematic diagram of the sOCT system.
Fig. 5.
Fig. 5. Focal length change of AIOL (mm) with respect to stretching force (N) in system (in immersion). Symbols represent individual experimental measurements, the solid line a linear fit to experimental data, and the dashed line predictions from optical/mechanical simulations.
Fig. 6.
Fig. 6. (a) Central B-scan of AIOL mounted on mechanical stretcher. (b) 3D reconstruction of the AIOL. Top view. (c) Snapshot of the 3D reconstruction of the AIOL, unstretched state. XY dimensions are 6 mm by 6 mm.
Fig. 7.
Fig. 7. AIOL geometrical parameters as a function of the applied force obtained from OCT system. (a) AIOL thickness. (b) Anterior surface radius of curvature. (c) Posterior surface radius of curvature.
Fig. 8.
Fig. 8. Change in power after AIOL stretching for various mechanical and optical parameters.