Abstract

Mid-infrared (mid-IR, λ312μm) photonic integrated circuits on low-loss passive waveguide platforms are of significant interest for a wide range of mid-IR applications. Quantum cascade lasers (QCLs) are currently the only room-temperature electrically pumped semiconductor light sources that can operate in a continuous-wave at room temperature over the entire mid-IR spectral range. Given very high thermal dissipation in QCL active regions, achieving long-term reliability and continuous-wave operation of heterogeneously integrated devices on silicon platforms is challenging. Here we experimentally demonstrate homogeneous integration of mid-IR QCLs with low-loss In0.53Ga0.47As passive waveguides epitaxially grown on InP substrates. The homogeneous integration approach uses materials, growth, and processing steps nearly identical to those used for conventional high-performance mid-IR QCLs, which offers superior reliability and performance of photonic integrated circuits. Over 0.57 W of peak-pulsed optical power was coupled to the passive waveguide from a homogeneously integrated λ4.6μm QCL, which represents an order of magnitude improvement in optical power compared to the best results obtained with heterogeneously integrated QCLs.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
InP-based photonic integrated circuit platform on SiC wafer

Mitsuru Takenaka and Shinichi Takagi
Opt. Express 25(24) 29993-30000 (2017)

Interband cascade laser on silicon

Alexander Spott, Eric J. Stanton, Alfredo Torres, Michael L. Davenport, Chadwick L. Canedy, Igor Vurgaftman, Mijin Kim, Chul Soo Kim, Charles D. Merritt, William W. Bewley, Jerry R. Meyer, and John E. Bowers
Optica 5(8) 996-1005 (2018)

2.3 µm range InP-based type-II quantum well Fabry-Perot lasers heterogeneously integrated on a silicon photonic integrated circuit

Ruijun Wang, Stephan Sprengel, Gerhard Boehm, Muhammad Muneeb, Roel Baets, Markus-Christian Amann, and Gunther Roelkens
Opt. Express 24(18) 21081-21089 (2016)

References

  • View by:
  • |
  • |
  • |

  1. A. Spott, J. Peters, M. L. Davenport, E. J. Stanton, C. D. Merritt, W. W. Bewley, I. Vurgaftman, C. S. Kim, J. R. Meyer, J. Kirch, L. J. Mawst, D. Botez, and J. E. Bowers, “Quantum cascade laser on silicon,” Optica 3, 545–551 (2016).
    [Crossref]
  2. S. Jung, J. Kirch, J. H. Kim, L. J. Mawst, D. Botez, and M. A. Belkin, “Quantum cascade lasers transfer-printed on silicon-on-sapphire,” Appl. Phys. Lett. 111, 211102 (2017).
    [Crossref]
  3. R. Wang, S. Sprengel, G. Boehm, M. Muneeb, R. Baets, M.-C. Amann, and G. Roelkens, “2.3  μm range InP-based type-II quantum well Fabry-Perot lasers heterogeneously integrated on a silicon photonic integrated circuit,” Opt. Express 24, 21081–21089 (2016).
    [Crossref]
  4. M. Lamponi, S. Keyvaninia, C. Jany, F. Poingt, F. Lelarge, G. D. Valicourt, G. Roelkens, D. V. Thourhout, S. Messaoudene, J. M. Fedeli, and G. H. Duan, “Low-threshold heterogeneously integrated InP/SOI lasers with a double adiabatic taper coupler,” IEEE Photon. Technol. Lett. 24, 76–78 (2012).
    [Crossref]
  5. A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Express 14, 9203–9210 (2006).
    [Crossref]
  6. J. T. Bovington, M. J. R. Heck, and J. E. Bowers, “Heterogeneous lasers and coupling to Si3N4 near 1060  nm,” Opt. Lett. 39, 6017–6020 (2014).
    [Crossref]
  7. A. Spott, M. Davenport, J. Peters, J. Bovington, M. J. R. Heck, E. J. Stanton, I. Vurgaftman, J. Meyer, and J. Bowers, “Heterogeneously integrated 2.0  μm CW hybrid silicon lasers at room temperature,” Opt. Lett. 40, 1480–1483 (2015).
    [Crossref]
  8. M. Razeghi, Q. Y. Lu, N. Bandyopadhyay, W. Zhou, D. Heydari, Y. Bai, and S. Slivken, “Quantum cascade lasers: from tool to product,” Opt. Express 23, 8462–8475 (2015).
    [Crossref]
  9. G. Belenky, L. Shterengas, G. Kipshidze, and T. Hosoda, “Type-I diode lasers for spectral region above 3  μm,” IEEE J. Sel. Top. Quantum Electron. 17, 1426–1434 (2011).
    [Crossref]
  10. Y.-C. Chang, V. Paeder, L. Hvozdara, J.-M. Hartmann, and H. P. Herzig, “Low-loss germanium strip waveguides on silicon for the mid-infrared,” Opt. Lett. 37, 2883–2885 (2012).
    [Crossref]
  11. A. Malik, M. Muneeb, S. Pathak, Y. Shimura, J. V. Campenhout, R. Loo, and G. Roelkens, “Germanium-on-silicon mid-infrared arrayed waveguide grating multiplexers,” IEEE Photon. Technol. Lett. 25, 1805–1808 (2013).
    [Crossref]
  12. C. Gilles, G. Maisons, B. Simozrag, and M. Carras, “Monolithic coupling of QCLs in evenescent waveguides on InP,” Proc. SPIE 9370, 93702W (2015).
    [Crossref]
  13. C. Gilles, L. J. Orbe, G. Carpintero, J. Abautret, G. Maisons, and M. Carras, “Monolithic integration of a quantum cascade laser array and an echelle grating multiplexer for widely tunable mid-infrared sources,” Proc. SPIE 9767, 97671R (2016).
    [Crossref]
  14. Y. Suematsu, M. Yamada, and K. Hayashi, “Integrated twin-guide AlGaAs laser with multiheterostructure,” IEEE J. Quantum Electron. 11, 457–460 (1975).
    [Crossref]
  15. K. Kawano, M. Kohtoku, M. Wada, H. Okamoto, Y. Itaya, and M. Naganuma, “Design of a spotsize-converter-integrated laser diode (SS-LD) with a lateral taper, thin-film core and ridge in the 1.3  μm-wavelength region based on the 3-D BPM,” IEEE J. Sel. Top. Quantum Electron. 2, 348–354 (1996).
    [Crossref]
  16. P. W. Juodawlkis, J. J. Plant, W. Loh, L. J. Missaggia, F. J. O’Donnell, D. C. Oakley, A. Napoleone, J. Klamkin, J. T. Gopinath, D. J. Ripin, S. Gee, P. J. Delfyett, and J. P. Donnelly, “High-power, low-noise 1.5-μm slab-coupled optical waveguide (SCOW) emitters: physics, devices, and applications,” IEEE J. Sel. Top. Quantum Electron. 17, 1698–1714 (2011).
    [Crossref]
  17. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1998).
  18. J. Xiaojun, P. Pinsukanjana, J. Pepper, H. Gang, P. Partyka, L. Minh, Z. Haijun, C. Boehme, B. Barnes, J. Marquis, P. L. S. Thamban, R. Glosser, K. Jenn-Ming, K. Vargason, and K. Yung-Chung, “Ultra low background InGaAs epi-layer on InP for PIN applications by production MBE,” in 16th International Conference on Indium Phosphide and Related Materials (IPRM) (2004), pp. 48–51.
  19. P. Speier, U. Koerner, A. Nowitzki, F. Grotjahn, F. J. Tegude, and K. Wünstel, “MOVPE studies for a monolithically integrated DH laser/HBT laser driver,” J. Cryst. Growth 93, 885–891 (1988).
    [Crossref]
  20. J. B. D. Soole, H. Schumacher, H. P. LeBlanc, R. Bhat, and M. A. Koza, “High-speed performance of OMCVD grown InAlAs/InGaAs MSM photodetectors at 1.5  mu m and 1.3  mu m wavelengths,” IEEE Photon. Technol. Lett. 1, 250–252 (1989).
    [Crossref]
  21. V. D. Mattera, F. Capasso, J. Allam, A. L. Hutchinson, J. Dick, J. M. Brown, and A. Westphal, “High‐speed InP/Ga0.47In0.53As superlattice avalanche photodiodes with very low background doping grown by continuous trichloride vapor‐phase epitaxy,” J. Appl. Phys. 60, 2609–2612 (1986).
    [Crossref]
  22. D. Cui, S. M. Hubbard, D. Pavlidis, A. Eisenbach, and C. Chelli, “Impact of doping and MOCVD conditions on minority carrier lifetime of zinc- and carbon-doped InGaAs and its applications to zinc- and carbon-doped InP/InGaAs heterostructure bipolar transistors,” Semicond. Sci. Technol. 17, 503–509 (2002).
    [Crossref]
  23. C. J. Pinzone, N. D. Gerrard, R. D. Dupuis, N. T. Ha, and H. S. Luftman, “Heavily‐doped n‐type InP and InGaAs grown by metalorganic chemical vapor deposition using tetraethyltin,” J. Appl. Phys. 67, 6823–6829 (1990).
    [Crossref]
  24. S. Chang-Xin, D. Grutzmacher, M. Stollenwerk, Q. Wang, and K. Heime, “High-performance undoped InP/n-In0.53Ga0.47As MSM photodetectors grown by LP-MOVPE,” IEEE Trans. Electron Devices 39, 1028–1031 (1992).
    [Crossref]
  25. H. Heinecke, B. Baur, R. Höger, and A. Miklis, “Growth of high purity InP by metalorganic MBE (CBE),” J. Cryst. Growth 105, 143–148 (1990).
    [Crossref]
  26. D. B. K.-H. Goetz, H. Jürgensen, J. Selders, A. V. Solomonov, G. F. Glinskii, and M. Razeghi, “Optical and crystallographic properties and impurity incorporation of GaxIn1-xAs (0.44< × <0.49) grown by liquid phase epitaxy, vapor phase epitaxy, and metal organic chemical vapor deposition,” J. Appl. Phys. 54, 4543–4552 (1983).
    [Crossref]
  27. M. Razeghi, P. Maurel, M. Defour, F. Omnes, G. Neu, and A. Kozacki, “Very high purity InP epilayer grown by metalorganic chemical vapor deposition,” Appl. Phys. Lett. 52, 117–119 (1988).
    [Crossref]
  28. D. G. Revin, J. W. Cockburn, S. Menzel, Q. Yang, C. Manz, and J. Wagner, “Waveguide optical losses in InGaAs/AlAsSb quantum cascade laser,” J. Appl. Phys. 103, 043106 (2008).
    [Crossref]
  29. G. Z. Mashanovich, M. M. Milošević, M. Nedeljkovic, N. Owens, B. Xiong, E. J. Teo, and Y. Hu, “Low loss silicon waveguides for the mid-infrared,” Opt. Express 19, 7112–7119 (2011).
    [Crossref]
  30. R. Shankar, I. Bulu, and M. Lončar, “Integrated high-quality factor silicon-on-sapphire ring resonators for the mid-infrared,” Appl. Phys. Lett. 102, 051108 (2013).
    [Crossref]
  31. Y. Bai, N. Bandyopadhyay, S. Tsao, S. Slivken, and M. Razeghi, “Room temperature quantum cascade lasers with 27% wall plug efficiency,” Appl. Phys. Lett. 98, 181102 (2011).
    [Crossref]
  32. A. Lyakh, R. Maulini, A. Tsekoun, R. Go, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, and C. K. N. Patel, “3  W continuous-wave room temperature single-facet emission from quantum cascade lasers based on nonresonant extraction design approach,” Appl. Phys. Lett. 95, 141113 (2009).
    [Crossref]
  33. D. Botez, J. D. Kirch, C. Boyle, K. M. Oresick, C. Sigler, H. Kim, B. B. Knipfer, J. H. Ryu, D. Lindberg, T. Earles, L. J. Mawst, and Y. V. Flores, “High-efficiency, high-power mid-infrared quantum cascade lasers [Invited],” Opt. Mater. Express 8, 1378–1398 (2018).
    [Crossref]
  34. A. Bernard, M. Ravaro, I. Roland, J.-M. Gérard, M. Krakowski, O. Parillaud, B. Gérard, I. Favero, and G. Leo, “Mid-infrared optical characterization of InGaAsP,” J. Opt. Soc. Am. B 35, C25–C28 (2018).
    [Crossref]
  35. V. Vusirikala, S. S. Saini, R. E. Bartolo, S. Agarwala, R. D. Whaley, F. G. Johnson, D. R. Stone, and M. Dagenais, “1.55-μm InGaAsP-InP laser arrays with integrated-mode expanders fabricated using a single epitaxial growth,” IEEE J. Sel. Top. Quantum Electron. 3, 1332–1343 (1997).
    [Crossref]
  36. F. Wu, V. I. Tolstikhin, A. S. Densmore, and S. Grabtchak, “Two-step lateral taper spot-size converter for efficient fiber coupling to InP-based photonic integrated circuits,” Proc. SPIE 5577, 213 (2004).
    [Crossref]
  37. X. Fengnian, V. M. Menon, and S. R. Forrest, “Photonic integration using asymmetric twin-waveguide (ATG) technology: part I-concepts and theory,” IEEE J. Sel. Top. Quantum Electron. 11, 17–29 (2005).
    [Crossref]
  38. X. Sun, H.-C. Liu, and A. Yariv, “Adiabaticity criterion and the shortest adiabatic mode transformer in a coupled-waveguide system,” Opt. Lett. 34, 280–282 (2009).
    [Crossref]

2018 (2)

2017 (1)

S. Jung, J. Kirch, J. H. Kim, L. J. Mawst, D. Botez, and M. A. Belkin, “Quantum cascade lasers transfer-printed on silicon-on-sapphire,” Appl. Phys. Lett. 111, 211102 (2017).
[Crossref]

2016 (3)

2015 (3)

2014 (1)

2013 (2)

R. Shankar, I. Bulu, and M. Lončar, “Integrated high-quality factor silicon-on-sapphire ring resonators for the mid-infrared,” Appl. Phys. Lett. 102, 051108 (2013).
[Crossref]

A. Malik, M. Muneeb, S. Pathak, Y. Shimura, J. V. Campenhout, R. Loo, and G. Roelkens, “Germanium-on-silicon mid-infrared arrayed waveguide grating multiplexers,” IEEE Photon. Technol. Lett. 25, 1805–1808 (2013).
[Crossref]

2012 (2)

M. Lamponi, S. Keyvaninia, C. Jany, F. Poingt, F. Lelarge, G. D. Valicourt, G. Roelkens, D. V. Thourhout, S. Messaoudene, J. M. Fedeli, and G. H. Duan, “Low-threshold heterogeneously integrated InP/SOI lasers with a double adiabatic taper coupler,” IEEE Photon. Technol. Lett. 24, 76–78 (2012).
[Crossref]

Y.-C. Chang, V. Paeder, L. Hvozdara, J.-M. Hartmann, and H. P. Herzig, “Low-loss germanium strip waveguides on silicon for the mid-infrared,” Opt. Lett. 37, 2883–2885 (2012).
[Crossref]

2011 (4)

G. Z. Mashanovich, M. M. Milošević, M. Nedeljkovic, N. Owens, B. Xiong, E. J. Teo, and Y. Hu, “Low loss silicon waveguides for the mid-infrared,” Opt. Express 19, 7112–7119 (2011).
[Crossref]

Y. Bai, N. Bandyopadhyay, S. Tsao, S. Slivken, and M. Razeghi, “Room temperature quantum cascade lasers with 27% wall plug efficiency,” Appl. Phys. Lett. 98, 181102 (2011).
[Crossref]

G. Belenky, L. Shterengas, G. Kipshidze, and T. Hosoda, “Type-I diode lasers for spectral region above 3  μm,” IEEE J. Sel. Top. Quantum Electron. 17, 1426–1434 (2011).
[Crossref]

P. W. Juodawlkis, J. J. Plant, W. Loh, L. J. Missaggia, F. J. O’Donnell, D. C. Oakley, A. Napoleone, J. Klamkin, J. T. Gopinath, D. J. Ripin, S. Gee, P. J. Delfyett, and J. P. Donnelly, “High-power, low-noise 1.5-μm slab-coupled optical waveguide (SCOW) emitters: physics, devices, and applications,” IEEE J. Sel. Top. Quantum Electron. 17, 1698–1714 (2011).
[Crossref]

2009 (2)

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, and C. K. N. Patel, “3  W continuous-wave room temperature single-facet emission from quantum cascade lasers based on nonresonant extraction design approach,” Appl. Phys. Lett. 95, 141113 (2009).
[Crossref]

X. Sun, H.-C. Liu, and A. Yariv, “Adiabaticity criterion and the shortest adiabatic mode transformer in a coupled-waveguide system,” Opt. Lett. 34, 280–282 (2009).
[Crossref]

2008 (1)

D. G. Revin, J. W. Cockburn, S. Menzel, Q. Yang, C. Manz, and J. Wagner, “Waveguide optical losses in InGaAs/AlAsSb quantum cascade laser,” J. Appl. Phys. 103, 043106 (2008).
[Crossref]

2006 (1)

2005 (1)

X. Fengnian, V. M. Menon, and S. R. Forrest, “Photonic integration using asymmetric twin-waveguide (ATG) technology: part I-concepts and theory,” IEEE J. Sel. Top. Quantum Electron. 11, 17–29 (2005).
[Crossref]

2004 (1)

F. Wu, V. I. Tolstikhin, A. S. Densmore, and S. Grabtchak, “Two-step lateral taper spot-size converter for efficient fiber coupling to InP-based photonic integrated circuits,” Proc. SPIE 5577, 213 (2004).
[Crossref]

2002 (1)

D. Cui, S. M. Hubbard, D. Pavlidis, A. Eisenbach, and C. Chelli, “Impact of doping and MOCVD conditions on minority carrier lifetime of zinc- and carbon-doped InGaAs and its applications to zinc- and carbon-doped InP/InGaAs heterostructure bipolar transistors,” Semicond. Sci. Technol. 17, 503–509 (2002).
[Crossref]

1997 (1)

V. Vusirikala, S. S. Saini, R. E. Bartolo, S. Agarwala, R. D. Whaley, F. G. Johnson, D. R. Stone, and M. Dagenais, “1.55-μm InGaAsP-InP laser arrays with integrated-mode expanders fabricated using a single epitaxial growth,” IEEE J. Sel. Top. Quantum Electron. 3, 1332–1343 (1997).
[Crossref]

1996 (1)

K. Kawano, M. Kohtoku, M. Wada, H. Okamoto, Y. Itaya, and M. Naganuma, “Design of a spotsize-converter-integrated laser diode (SS-LD) with a lateral taper, thin-film core and ridge in the 1.3  μm-wavelength region based on the 3-D BPM,” IEEE J. Sel. Top. Quantum Electron. 2, 348–354 (1996).
[Crossref]

1992 (1)

S. Chang-Xin, D. Grutzmacher, M. Stollenwerk, Q. Wang, and K. Heime, “High-performance undoped InP/n-In0.53Ga0.47As MSM photodetectors grown by LP-MOVPE,” IEEE Trans. Electron Devices 39, 1028–1031 (1992).
[Crossref]

1990 (2)

H. Heinecke, B. Baur, R. Höger, and A. Miklis, “Growth of high purity InP by metalorganic MBE (CBE),” J. Cryst. Growth 105, 143–148 (1990).
[Crossref]

C. J. Pinzone, N. D. Gerrard, R. D. Dupuis, N. T. Ha, and H. S. Luftman, “Heavily‐doped n‐type InP and InGaAs grown by metalorganic chemical vapor deposition using tetraethyltin,” J. Appl. Phys. 67, 6823–6829 (1990).
[Crossref]

1989 (1)

J. B. D. Soole, H. Schumacher, H. P. LeBlanc, R. Bhat, and M. A. Koza, “High-speed performance of OMCVD grown InAlAs/InGaAs MSM photodetectors at 1.5  mu m and 1.3  mu m wavelengths,” IEEE Photon. Technol. Lett. 1, 250–252 (1989).
[Crossref]

1988 (2)

P. Speier, U. Koerner, A. Nowitzki, F. Grotjahn, F. J. Tegude, and K. Wünstel, “MOVPE studies for a monolithically integrated DH laser/HBT laser driver,” J. Cryst. Growth 93, 885–891 (1988).
[Crossref]

M. Razeghi, P. Maurel, M. Defour, F. Omnes, G. Neu, and A. Kozacki, “Very high purity InP epilayer grown by metalorganic chemical vapor deposition,” Appl. Phys. Lett. 52, 117–119 (1988).
[Crossref]

1986 (1)

V. D. Mattera, F. Capasso, J. Allam, A. L. Hutchinson, J. Dick, J. M. Brown, and A. Westphal, “High‐speed InP/Ga0.47In0.53As superlattice avalanche photodiodes with very low background doping grown by continuous trichloride vapor‐phase epitaxy,” J. Appl. Phys. 60, 2609–2612 (1986).
[Crossref]

1983 (1)

D. B. K.-H. Goetz, H. Jürgensen, J. Selders, A. V. Solomonov, G. F. Glinskii, and M. Razeghi, “Optical and crystallographic properties and impurity incorporation of GaxIn1-xAs (0.44< × <0.49) grown by liquid phase epitaxy, vapor phase epitaxy, and metal organic chemical vapor deposition,” J. Appl. Phys. 54, 4543–4552 (1983).
[Crossref]

1975 (1)

Y. Suematsu, M. Yamada, and K. Hayashi, “Integrated twin-guide AlGaAs laser with multiheterostructure,” IEEE J. Quantum Electron. 11, 457–460 (1975).
[Crossref]

Abautret, J.

C. Gilles, L. J. Orbe, G. Carpintero, J. Abautret, G. Maisons, and M. Carras, “Monolithic integration of a quantum cascade laser array and an echelle grating multiplexer for widely tunable mid-infrared sources,” Proc. SPIE 9767, 97671R (2016).
[Crossref]

Agarwala, S.

V. Vusirikala, S. S. Saini, R. E. Bartolo, S. Agarwala, R. D. Whaley, F. G. Johnson, D. R. Stone, and M. Dagenais, “1.55-μm InGaAsP-InP laser arrays with integrated-mode expanders fabricated using a single epitaxial growth,” IEEE J. Sel. Top. Quantum Electron. 3, 1332–1343 (1997).
[Crossref]

Allam, J.

V. D. Mattera, F. Capasso, J. Allam, A. L. Hutchinson, J. Dick, J. M. Brown, and A. Westphal, “High‐speed InP/Ga0.47In0.53As superlattice avalanche photodiodes with very low background doping grown by continuous trichloride vapor‐phase epitaxy,” J. Appl. Phys. 60, 2609–2612 (1986).
[Crossref]

Amann, M.-C.

Baets, R.

Bai, Y.

M. Razeghi, Q. Y. Lu, N. Bandyopadhyay, W. Zhou, D. Heydari, Y. Bai, and S. Slivken, “Quantum cascade lasers: from tool to product,” Opt. Express 23, 8462–8475 (2015).
[Crossref]

Y. Bai, N. Bandyopadhyay, S. Tsao, S. Slivken, and M. Razeghi, “Room temperature quantum cascade lasers with 27% wall plug efficiency,” Appl. Phys. Lett. 98, 181102 (2011).
[Crossref]

Bandyopadhyay, N.

M. Razeghi, Q. Y. Lu, N. Bandyopadhyay, W. Zhou, D. Heydari, Y. Bai, and S. Slivken, “Quantum cascade lasers: from tool to product,” Opt. Express 23, 8462–8475 (2015).
[Crossref]

Y. Bai, N. Bandyopadhyay, S. Tsao, S. Slivken, and M. Razeghi, “Room temperature quantum cascade lasers with 27% wall plug efficiency,” Appl. Phys. Lett. 98, 181102 (2011).
[Crossref]

Barnes, B.

J. Xiaojun, P. Pinsukanjana, J. Pepper, H. Gang, P. Partyka, L. Minh, Z. Haijun, C. Boehme, B. Barnes, J. Marquis, P. L. S. Thamban, R. Glosser, K. Jenn-Ming, K. Vargason, and K. Yung-Chung, “Ultra low background InGaAs epi-layer on InP for PIN applications by production MBE,” in 16th International Conference on Indium Phosphide and Related Materials (IPRM) (2004), pp. 48–51.

Bartolo, R. E.

V. Vusirikala, S. S. Saini, R. E. Bartolo, S. Agarwala, R. D. Whaley, F. G. Johnson, D. R. Stone, and M. Dagenais, “1.55-μm InGaAsP-InP laser arrays with integrated-mode expanders fabricated using a single epitaxial growth,” IEEE J. Sel. Top. Quantum Electron. 3, 1332–1343 (1997).
[Crossref]

Baur, B.

H. Heinecke, B. Baur, R. Höger, and A. Miklis, “Growth of high purity InP by metalorganic MBE (CBE),” J. Cryst. Growth 105, 143–148 (1990).
[Crossref]

Belenky, G.

G. Belenky, L. Shterengas, G. Kipshidze, and T. Hosoda, “Type-I diode lasers for spectral region above 3  μm,” IEEE J. Sel. Top. Quantum Electron. 17, 1426–1434 (2011).
[Crossref]

Belkin, M. A.

S. Jung, J. Kirch, J. H. Kim, L. J. Mawst, D. Botez, and M. A. Belkin, “Quantum cascade lasers transfer-printed on silicon-on-sapphire,” Appl. Phys. Lett. 111, 211102 (2017).
[Crossref]

Bernard, A.

Bewley, W. W.

Bhat, R.

J. B. D. Soole, H. Schumacher, H. P. LeBlanc, R. Bhat, and M. A. Koza, “High-speed performance of OMCVD grown InAlAs/InGaAs MSM photodetectors at 1.5  mu m and 1.3  mu m wavelengths,” IEEE Photon. Technol. Lett. 1, 250–252 (1989).
[Crossref]

Boehm, G.

Boehme, C.

J. Xiaojun, P. Pinsukanjana, J. Pepper, H. Gang, P. Partyka, L. Minh, Z. Haijun, C. Boehme, B. Barnes, J. Marquis, P. L. S. Thamban, R. Glosser, K. Jenn-Ming, K. Vargason, and K. Yung-Chung, “Ultra low background InGaAs epi-layer on InP for PIN applications by production MBE,” in 16th International Conference on Indium Phosphide and Related Materials (IPRM) (2004), pp. 48–51.

Botez, D.

Bovington, J.

Bovington, J. T.

Bowers, J.

Bowers, J. E.

Boyle, C.

Brown, J. M.

V. D. Mattera, F. Capasso, J. Allam, A. L. Hutchinson, J. Dick, J. M. Brown, and A. Westphal, “High‐speed InP/Ga0.47In0.53As superlattice avalanche photodiodes with very low background doping grown by continuous trichloride vapor‐phase epitaxy,” J. Appl. Phys. 60, 2609–2612 (1986).
[Crossref]

Bulu, I.

R. Shankar, I. Bulu, and M. Lončar, “Integrated high-quality factor silicon-on-sapphire ring resonators for the mid-infrared,” Appl. Phys. Lett. 102, 051108 (2013).
[Crossref]

Campenhout, J. V.

A. Malik, M. Muneeb, S. Pathak, Y. Shimura, J. V. Campenhout, R. Loo, and G. Roelkens, “Germanium-on-silicon mid-infrared arrayed waveguide grating multiplexers,” IEEE Photon. Technol. Lett. 25, 1805–1808 (2013).
[Crossref]

Capasso, F.

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, and C. K. N. Patel, “3  W continuous-wave room temperature single-facet emission from quantum cascade lasers based on nonresonant extraction design approach,” Appl. Phys. Lett. 95, 141113 (2009).
[Crossref]

V. D. Mattera, F. Capasso, J. Allam, A. L. Hutchinson, J. Dick, J. M. Brown, and A. Westphal, “High‐speed InP/Ga0.47In0.53As superlattice avalanche photodiodes with very low background doping grown by continuous trichloride vapor‐phase epitaxy,” J. Appl. Phys. 60, 2609–2612 (1986).
[Crossref]

Carpintero, G.

C. Gilles, L. J. Orbe, G. Carpintero, J. Abautret, G. Maisons, and M. Carras, “Monolithic integration of a quantum cascade laser array and an echelle grating multiplexer for widely tunable mid-infrared sources,” Proc. SPIE 9767, 97671R (2016).
[Crossref]

Carras, M.

C. Gilles, L. J. Orbe, G. Carpintero, J. Abautret, G. Maisons, and M. Carras, “Monolithic integration of a quantum cascade laser array and an echelle grating multiplexer for widely tunable mid-infrared sources,” Proc. SPIE 9767, 97671R (2016).
[Crossref]

C. Gilles, G. Maisons, B. Simozrag, and M. Carras, “Monolithic coupling of QCLs in evenescent waveguides on InP,” Proc. SPIE 9370, 93702W (2015).
[Crossref]

Chang, Y.-C.

Chang-Xin, S.

S. Chang-Xin, D. Grutzmacher, M. Stollenwerk, Q. Wang, and K. Heime, “High-performance undoped InP/n-In0.53Ga0.47As MSM photodetectors grown by LP-MOVPE,” IEEE Trans. Electron Devices 39, 1028–1031 (1992).
[Crossref]

Chelli, C.

D. Cui, S. M. Hubbard, D. Pavlidis, A. Eisenbach, and C. Chelli, “Impact of doping and MOCVD conditions on minority carrier lifetime of zinc- and carbon-doped InGaAs and its applications to zinc- and carbon-doped InP/InGaAs heterostructure bipolar transistors,” Semicond. Sci. Technol. 17, 503–509 (2002).
[Crossref]

Cockburn, J. W.

D. G. Revin, J. W. Cockburn, S. Menzel, Q. Yang, C. Manz, and J. Wagner, “Waveguide optical losses in InGaAs/AlAsSb quantum cascade laser,” J. Appl. Phys. 103, 043106 (2008).
[Crossref]

Cohen, O.

Cui, D.

D. Cui, S. M. Hubbard, D. Pavlidis, A. Eisenbach, and C. Chelli, “Impact of doping and MOCVD conditions on minority carrier lifetime of zinc- and carbon-doped InGaAs and its applications to zinc- and carbon-doped InP/InGaAs heterostructure bipolar transistors,” Semicond. Sci. Technol. 17, 503–509 (2002).
[Crossref]

Dagenais, M.

V. Vusirikala, S. S. Saini, R. E. Bartolo, S. Agarwala, R. D. Whaley, F. G. Johnson, D. R. Stone, and M. Dagenais, “1.55-μm InGaAsP-InP laser arrays with integrated-mode expanders fabricated using a single epitaxial growth,” IEEE J. Sel. Top. Quantum Electron. 3, 1332–1343 (1997).
[Crossref]

Davenport, M.

Davenport, M. L.

Defour, M.

M. Razeghi, P. Maurel, M. Defour, F. Omnes, G. Neu, and A. Kozacki, “Very high purity InP epilayer grown by metalorganic chemical vapor deposition,” Appl. Phys. Lett. 52, 117–119 (1988).
[Crossref]

Delfyett, P. J.

P. W. Juodawlkis, J. J. Plant, W. Loh, L. J. Missaggia, F. J. O’Donnell, D. C. Oakley, A. Napoleone, J. Klamkin, J. T. Gopinath, D. J. Ripin, S. Gee, P. J. Delfyett, and J. P. Donnelly, “High-power, low-noise 1.5-μm slab-coupled optical waveguide (SCOW) emitters: physics, devices, and applications,” IEEE J. Sel. Top. Quantum Electron. 17, 1698–1714 (2011).
[Crossref]

Densmore, A. S.

F. Wu, V. I. Tolstikhin, A. S. Densmore, and S. Grabtchak, “Two-step lateral taper spot-size converter for efficient fiber coupling to InP-based photonic integrated circuits,” Proc. SPIE 5577, 213 (2004).
[Crossref]

Dick, J.

V. D. Mattera, F. Capasso, J. Allam, A. L. Hutchinson, J. Dick, J. M. Brown, and A. Westphal, “High‐speed InP/Ga0.47In0.53As superlattice avalanche photodiodes with very low background doping grown by continuous trichloride vapor‐phase epitaxy,” J. Appl. Phys. 60, 2609–2612 (1986).
[Crossref]

Diehl, L.

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, and C. K. N. Patel, “3  W continuous-wave room temperature single-facet emission from quantum cascade lasers based on nonresonant extraction design approach,” Appl. Phys. Lett. 95, 141113 (2009).
[Crossref]

Donnelly, J. P.

P. W. Juodawlkis, J. J. Plant, W. Loh, L. J. Missaggia, F. J. O’Donnell, D. C. Oakley, A. Napoleone, J. Klamkin, J. T. Gopinath, D. J. Ripin, S. Gee, P. J. Delfyett, and J. P. Donnelly, “High-power, low-noise 1.5-μm slab-coupled optical waveguide (SCOW) emitters: physics, devices, and applications,” IEEE J. Sel. Top. Quantum Electron. 17, 1698–1714 (2011).
[Crossref]

Duan, G. H.

M. Lamponi, S. Keyvaninia, C. Jany, F. Poingt, F. Lelarge, G. D. Valicourt, G. Roelkens, D. V. Thourhout, S. Messaoudene, J. M. Fedeli, and G. H. Duan, “Low-threshold heterogeneously integrated InP/SOI lasers with a double adiabatic taper coupler,” IEEE Photon. Technol. Lett. 24, 76–78 (2012).
[Crossref]

Dupuis, R. D.

C. J. Pinzone, N. D. Gerrard, R. D. Dupuis, N. T. Ha, and H. S. Luftman, “Heavily‐doped n‐type InP and InGaAs grown by metalorganic chemical vapor deposition using tetraethyltin,” J. Appl. Phys. 67, 6823–6829 (1990).
[Crossref]

Earles, T.

Eisenbach, A.

D. Cui, S. M. Hubbard, D. Pavlidis, A. Eisenbach, and C. Chelli, “Impact of doping and MOCVD conditions on minority carrier lifetime of zinc- and carbon-doped InGaAs and its applications to zinc- and carbon-doped InP/InGaAs heterostructure bipolar transistors,” Semicond. Sci. Technol. 17, 503–509 (2002).
[Crossref]

Fang, A. W.

Favero, I.

Fedeli, J. M.

M. Lamponi, S. Keyvaninia, C. Jany, F. Poingt, F. Lelarge, G. D. Valicourt, G. Roelkens, D. V. Thourhout, S. Messaoudene, J. M. Fedeli, and G. H. Duan, “Low-threshold heterogeneously integrated InP/SOI lasers with a double adiabatic taper coupler,” IEEE Photon. Technol. Lett. 24, 76–78 (2012).
[Crossref]

Fengnian, X.

X. Fengnian, V. M. Menon, and S. R. Forrest, “Photonic integration using asymmetric twin-waveguide (ATG) technology: part I-concepts and theory,” IEEE J. Sel. Top. Quantum Electron. 11, 17–29 (2005).
[Crossref]

Flores, Y. V.

Forrest, S. R.

X. Fengnian, V. M. Menon, and S. R. Forrest, “Photonic integration using asymmetric twin-waveguide (ATG) technology: part I-concepts and theory,” IEEE J. Sel. Top. Quantum Electron. 11, 17–29 (2005).
[Crossref]

Gang, H.

J. Xiaojun, P. Pinsukanjana, J. Pepper, H. Gang, P. Partyka, L. Minh, Z. Haijun, C. Boehme, B. Barnes, J. Marquis, P. L. S. Thamban, R. Glosser, K. Jenn-Ming, K. Vargason, and K. Yung-Chung, “Ultra low background InGaAs epi-layer on InP for PIN applications by production MBE,” in 16th International Conference on Indium Phosphide and Related Materials (IPRM) (2004), pp. 48–51.

Gee, S.

P. W. Juodawlkis, J. J. Plant, W. Loh, L. J. Missaggia, F. J. O’Donnell, D. C. Oakley, A. Napoleone, J. Klamkin, J. T. Gopinath, D. J. Ripin, S. Gee, P. J. Delfyett, and J. P. Donnelly, “High-power, low-noise 1.5-μm slab-coupled optical waveguide (SCOW) emitters: physics, devices, and applications,” IEEE J. Sel. Top. Quantum Electron. 17, 1698–1714 (2011).
[Crossref]

Gérard, B.

Gérard, J.-M.

Gerrard, N. D.

C. J. Pinzone, N. D. Gerrard, R. D. Dupuis, N. T. Ha, and H. S. Luftman, “Heavily‐doped n‐type InP and InGaAs grown by metalorganic chemical vapor deposition using tetraethyltin,” J. Appl. Phys. 67, 6823–6829 (1990).
[Crossref]

Gilles, C.

C. Gilles, L. J. Orbe, G. Carpintero, J. Abautret, G. Maisons, and M. Carras, “Monolithic integration of a quantum cascade laser array and an echelle grating multiplexer for widely tunable mid-infrared sources,” Proc. SPIE 9767, 97671R (2016).
[Crossref]

C. Gilles, G. Maisons, B. Simozrag, and M. Carras, “Monolithic coupling of QCLs in evenescent waveguides on InP,” Proc. SPIE 9370, 93702W (2015).
[Crossref]

Glinskii, G. F.

D. B. K.-H. Goetz, H. Jürgensen, J. Selders, A. V. Solomonov, G. F. Glinskii, and M. Razeghi, “Optical and crystallographic properties and impurity incorporation of GaxIn1-xAs (0.44< × <0.49) grown by liquid phase epitaxy, vapor phase epitaxy, and metal organic chemical vapor deposition,” J. Appl. Phys. 54, 4543–4552 (1983).
[Crossref]

Glosser, R.

J. Xiaojun, P. Pinsukanjana, J. Pepper, H. Gang, P. Partyka, L. Minh, Z. Haijun, C. Boehme, B. Barnes, J. Marquis, P. L. S. Thamban, R. Glosser, K. Jenn-Ming, K. Vargason, and K. Yung-Chung, “Ultra low background InGaAs epi-layer on InP for PIN applications by production MBE,” in 16th International Conference on Indium Phosphide and Related Materials (IPRM) (2004), pp. 48–51.

Go, R.

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, and C. K. N. Patel, “3  W continuous-wave room temperature single-facet emission from quantum cascade lasers based on nonresonant extraction design approach,” Appl. Phys. Lett. 95, 141113 (2009).
[Crossref]

Goetz, D. B. K.-H.

D. B. K.-H. Goetz, H. Jürgensen, J. Selders, A. V. Solomonov, G. F. Glinskii, and M. Razeghi, “Optical and crystallographic properties and impurity incorporation of GaxIn1-xAs (0.44< × <0.49) grown by liquid phase epitaxy, vapor phase epitaxy, and metal organic chemical vapor deposition,” J. Appl. Phys. 54, 4543–4552 (1983).
[Crossref]

Gopinath, J. T.

P. W. Juodawlkis, J. J. Plant, W. Loh, L. J. Missaggia, F. J. O’Donnell, D. C. Oakley, A. Napoleone, J. Klamkin, J. T. Gopinath, D. J. Ripin, S. Gee, P. J. Delfyett, and J. P. Donnelly, “High-power, low-noise 1.5-μm slab-coupled optical waveguide (SCOW) emitters: physics, devices, and applications,” IEEE J. Sel. Top. Quantum Electron. 17, 1698–1714 (2011).
[Crossref]

Grabtchak, S.

F. Wu, V. I. Tolstikhin, A. S. Densmore, and S. Grabtchak, “Two-step lateral taper spot-size converter for efficient fiber coupling to InP-based photonic integrated circuits,” Proc. SPIE 5577, 213 (2004).
[Crossref]

Grotjahn, F.

P. Speier, U. Koerner, A. Nowitzki, F. Grotjahn, F. J. Tegude, and K. Wünstel, “MOVPE studies for a monolithically integrated DH laser/HBT laser driver,” J. Cryst. Growth 93, 885–891 (1988).
[Crossref]

Grutzmacher, D.

S. Chang-Xin, D. Grutzmacher, M. Stollenwerk, Q. Wang, and K. Heime, “High-performance undoped InP/n-In0.53Ga0.47As MSM photodetectors grown by LP-MOVPE,” IEEE Trans. Electron Devices 39, 1028–1031 (1992).
[Crossref]

Ha, N. T.

C. J. Pinzone, N. D. Gerrard, R. D. Dupuis, N. T. Ha, and H. S. Luftman, “Heavily‐doped n‐type InP and InGaAs grown by metalorganic chemical vapor deposition using tetraethyltin,” J. Appl. Phys. 67, 6823–6829 (1990).
[Crossref]

Haijun, Z.

J. Xiaojun, P. Pinsukanjana, J. Pepper, H. Gang, P. Partyka, L. Minh, Z. Haijun, C. Boehme, B. Barnes, J. Marquis, P. L. S. Thamban, R. Glosser, K. Jenn-Ming, K. Vargason, and K. Yung-Chung, “Ultra low background InGaAs epi-layer on InP for PIN applications by production MBE,” in 16th International Conference on Indium Phosphide and Related Materials (IPRM) (2004), pp. 48–51.

Hartmann, J.-M.

Hayashi, K.

Y. Suematsu, M. Yamada, and K. Hayashi, “Integrated twin-guide AlGaAs laser with multiheterostructure,” IEEE J. Quantum Electron. 11, 457–460 (1975).
[Crossref]

Heck, M. J. R.

Heime, K.

S. Chang-Xin, D. Grutzmacher, M. Stollenwerk, Q. Wang, and K. Heime, “High-performance undoped InP/n-In0.53Ga0.47As MSM photodetectors grown by LP-MOVPE,” IEEE Trans. Electron Devices 39, 1028–1031 (1992).
[Crossref]

Heinecke, H.

H. Heinecke, B. Baur, R. Höger, and A. Miklis, “Growth of high purity InP by metalorganic MBE (CBE),” J. Cryst. Growth 105, 143–148 (1990).
[Crossref]

Herzig, H. P.

Heydari, D.

Höger, R.

H. Heinecke, B. Baur, R. Höger, and A. Miklis, “Growth of high purity InP by metalorganic MBE (CBE),” J. Cryst. Growth 105, 143–148 (1990).
[Crossref]

Hosoda, T.

G. Belenky, L. Shterengas, G. Kipshidze, and T. Hosoda, “Type-I diode lasers for spectral region above 3  μm,” IEEE J. Sel. Top. Quantum Electron. 17, 1426–1434 (2011).
[Crossref]

Hu, Y.

Hubbard, S. M.

D. Cui, S. M. Hubbard, D. Pavlidis, A. Eisenbach, and C. Chelli, “Impact of doping and MOCVD conditions on minority carrier lifetime of zinc- and carbon-doped InGaAs and its applications to zinc- and carbon-doped InP/InGaAs heterostructure bipolar transistors,” Semicond. Sci. Technol. 17, 503–509 (2002).
[Crossref]

Hutchinson, A. L.

V. D. Mattera, F. Capasso, J. Allam, A. L. Hutchinson, J. Dick, J. M. Brown, and A. Westphal, “High‐speed InP/Ga0.47In0.53As superlattice avalanche photodiodes with very low background doping grown by continuous trichloride vapor‐phase epitaxy,” J. Appl. Phys. 60, 2609–2612 (1986).
[Crossref]

Hvozdara, L.

Itaya, Y.

K. Kawano, M. Kohtoku, M. Wada, H. Okamoto, Y. Itaya, and M. Naganuma, “Design of a spotsize-converter-integrated laser diode (SS-LD) with a lateral taper, thin-film core and ridge in the 1.3  μm-wavelength region based on the 3-D BPM,” IEEE J. Sel. Top. Quantum Electron. 2, 348–354 (1996).
[Crossref]

Jany, C.

M. Lamponi, S. Keyvaninia, C. Jany, F. Poingt, F. Lelarge, G. D. Valicourt, G. Roelkens, D. V. Thourhout, S. Messaoudene, J. M. Fedeli, and G. H. Duan, “Low-threshold heterogeneously integrated InP/SOI lasers with a double adiabatic taper coupler,” IEEE Photon. Technol. Lett. 24, 76–78 (2012).
[Crossref]

Jenn-Ming, K.

J. Xiaojun, P. Pinsukanjana, J. Pepper, H. Gang, P. Partyka, L. Minh, Z. Haijun, C. Boehme, B. Barnes, J. Marquis, P. L. S. Thamban, R. Glosser, K. Jenn-Ming, K. Vargason, and K. Yung-Chung, “Ultra low background InGaAs epi-layer on InP for PIN applications by production MBE,” in 16th International Conference on Indium Phosphide and Related Materials (IPRM) (2004), pp. 48–51.

Johnson, F. G.

V. Vusirikala, S. S. Saini, R. E. Bartolo, S. Agarwala, R. D. Whaley, F. G. Johnson, D. R. Stone, and M. Dagenais, “1.55-μm InGaAsP-InP laser arrays with integrated-mode expanders fabricated using a single epitaxial growth,” IEEE J. Sel. Top. Quantum Electron. 3, 1332–1343 (1997).
[Crossref]

Jones, R.

Jung, S.

S. Jung, J. Kirch, J. H. Kim, L. J. Mawst, D. Botez, and M. A. Belkin, “Quantum cascade lasers transfer-printed on silicon-on-sapphire,” Appl. Phys. Lett. 111, 211102 (2017).
[Crossref]

Juodawlkis, P. W.

P. W. Juodawlkis, J. J. Plant, W. Loh, L. J. Missaggia, F. J. O’Donnell, D. C. Oakley, A. Napoleone, J. Klamkin, J. T. Gopinath, D. J. Ripin, S. Gee, P. J. Delfyett, and J. P. Donnelly, “High-power, low-noise 1.5-μm slab-coupled optical waveguide (SCOW) emitters: physics, devices, and applications,” IEEE J. Sel. Top. Quantum Electron. 17, 1698–1714 (2011).
[Crossref]

Jürgensen, H.

D. B. K.-H. Goetz, H. Jürgensen, J. Selders, A. V. Solomonov, G. F. Glinskii, and M. Razeghi, “Optical and crystallographic properties and impurity incorporation of GaxIn1-xAs (0.44< × <0.49) grown by liquid phase epitaxy, vapor phase epitaxy, and metal organic chemical vapor deposition,” J. Appl. Phys. 54, 4543–4552 (1983).
[Crossref]

Kawano, K.

K. Kawano, M. Kohtoku, M. Wada, H. Okamoto, Y. Itaya, and M. Naganuma, “Design of a spotsize-converter-integrated laser diode (SS-LD) with a lateral taper, thin-film core and ridge in the 1.3  μm-wavelength region based on the 3-D BPM,” IEEE J. Sel. Top. Quantum Electron. 2, 348–354 (1996).
[Crossref]

Keyvaninia, S.

M. Lamponi, S. Keyvaninia, C. Jany, F. Poingt, F. Lelarge, G. D. Valicourt, G. Roelkens, D. V. Thourhout, S. Messaoudene, J. M. Fedeli, and G. H. Duan, “Low-threshold heterogeneously integrated InP/SOI lasers with a double adiabatic taper coupler,” IEEE Photon. Technol. Lett. 24, 76–78 (2012).
[Crossref]

Kim, C. S.

Kim, H.

Kim, J. H.

S. Jung, J. Kirch, J. H. Kim, L. J. Mawst, D. Botez, and M. A. Belkin, “Quantum cascade lasers transfer-printed on silicon-on-sapphire,” Appl. Phys. Lett. 111, 211102 (2017).
[Crossref]

Kipshidze, G.

G. Belenky, L. Shterengas, G. Kipshidze, and T. Hosoda, “Type-I diode lasers for spectral region above 3  μm,” IEEE J. Sel. Top. Quantum Electron. 17, 1426–1434 (2011).
[Crossref]

Kirch, J.

S. Jung, J. Kirch, J. H. Kim, L. J. Mawst, D. Botez, and M. A. Belkin, “Quantum cascade lasers transfer-printed on silicon-on-sapphire,” Appl. Phys. Lett. 111, 211102 (2017).
[Crossref]

A. Spott, J. Peters, M. L. Davenport, E. J. Stanton, C. D. Merritt, W. W. Bewley, I. Vurgaftman, C. S. Kim, J. R. Meyer, J. Kirch, L. J. Mawst, D. Botez, and J. E. Bowers, “Quantum cascade laser on silicon,” Optica 3, 545–551 (2016).
[Crossref]

Kirch, J. D.

Klamkin, J.

P. W. Juodawlkis, J. J. Plant, W. Loh, L. J. Missaggia, F. J. O’Donnell, D. C. Oakley, A. Napoleone, J. Klamkin, J. T. Gopinath, D. J. Ripin, S. Gee, P. J. Delfyett, and J. P. Donnelly, “High-power, low-noise 1.5-μm slab-coupled optical waveguide (SCOW) emitters: physics, devices, and applications,” IEEE J. Sel. Top. Quantum Electron. 17, 1698–1714 (2011).
[Crossref]

Knipfer, B. B.

Koerner, U.

P. Speier, U. Koerner, A. Nowitzki, F. Grotjahn, F. J. Tegude, and K. Wünstel, “MOVPE studies for a monolithically integrated DH laser/HBT laser driver,” J. Cryst. Growth 93, 885–891 (1988).
[Crossref]

Kohtoku, M.

K. Kawano, M. Kohtoku, M. Wada, H. Okamoto, Y. Itaya, and M. Naganuma, “Design of a spotsize-converter-integrated laser diode (SS-LD) with a lateral taper, thin-film core and ridge in the 1.3  μm-wavelength region based on the 3-D BPM,” IEEE J. Sel. Top. Quantum Electron. 2, 348–354 (1996).
[Crossref]

Koza, M. A.

J. B. D. Soole, H. Schumacher, H. P. LeBlanc, R. Bhat, and M. A. Koza, “High-speed performance of OMCVD grown InAlAs/InGaAs MSM photodetectors at 1.5  mu m and 1.3  mu m wavelengths,” IEEE Photon. Technol. Lett. 1, 250–252 (1989).
[Crossref]

Kozacki, A.

M. Razeghi, P. Maurel, M. Defour, F. Omnes, G. Neu, and A. Kozacki, “Very high purity InP epilayer grown by metalorganic chemical vapor deposition,” Appl. Phys. Lett. 52, 117–119 (1988).
[Crossref]

Krakowski, M.

Lamponi, M.

M. Lamponi, S. Keyvaninia, C. Jany, F. Poingt, F. Lelarge, G. D. Valicourt, G. Roelkens, D. V. Thourhout, S. Messaoudene, J. M. Fedeli, and G. H. Duan, “Low-threshold heterogeneously integrated InP/SOI lasers with a double adiabatic taper coupler,” IEEE Photon. Technol. Lett. 24, 76–78 (2012).
[Crossref]

LeBlanc, H. P.

J. B. D. Soole, H. Schumacher, H. P. LeBlanc, R. Bhat, and M. A. Koza, “High-speed performance of OMCVD grown InAlAs/InGaAs MSM photodetectors at 1.5  mu m and 1.3  mu m wavelengths,” IEEE Photon. Technol. Lett. 1, 250–252 (1989).
[Crossref]

Lelarge, F.

M. Lamponi, S. Keyvaninia, C. Jany, F. Poingt, F. Lelarge, G. D. Valicourt, G. Roelkens, D. V. Thourhout, S. Messaoudene, J. M. Fedeli, and G. H. Duan, “Low-threshold heterogeneously integrated InP/SOI lasers with a double adiabatic taper coupler,” IEEE Photon. Technol. Lett. 24, 76–78 (2012).
[Crossref]

Leo, G.

Lindberg, D.

Liu, H.-C.

Loh, W.

P. W. Juodawlkis, J. J. Plant, W. Loh, L. J. Missaggia, F. J. O’Donnell, D. C. Oakley, A. Napoleone, J. Klamkin, J. T. Gopinath, D. J. Ripin, S. Gee, P. J. Delfyett, and J. P. Donnelly, “High-power, low-noise 1.5-μm slab-coupled optical waveguide (SCOW) emitters: physics, devices, and applications,” IEEE J. Sel. Top. Quantum Electron. 17, 1698–1714 (2011).
[Crossref]

Loncar, M.

R. Shankar, I. Bulu, and M. Lončar, “Integrated high-quality factor silicon-on-sapphire ring resonators for the mid-infrared,” Appl. Phys. Lett. 102, 051108 (2013).
[Crossref]

Loo, R.

A. Malik, M. Muneeb, S. Pathak, Y. Shimura, J. V. Campenhout, R. Loo, and G. Roelkens, “Germanium-on-silicon mid-infrared arrayed waveguide grating multiplexers,” IEEE Photon. Technol. Lett. 25, 1805–1808 (2013).
[Crossref]

Lu, Q. Y.

Luftman, H. S.

C. J. Pinzone, N. D. Gerrard, R. D. Dupuis, N. T. Ha, and H. S. Luftman, “Heavily‐doped n‐type InP and InGaAs grown by metalorganic chemical vapor deposition using tetraethyltin,” J. Appl. Phys. 67, 6823–6829 (1990).
[Crossref]

Lyakh, A.

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, and C. K. N. Patel, “3  W continuous-wave room temperature single-facet emission from quantum cascade lasers based on nonresonant extraction design approach,” Appl. Phys. Lett. 95, 141113 (2009).
[Crossref]

Maisons, G.

C. Gilles, L. J. Orbe, G. Carpintero, J. Abautret, G. Maisons, and M. Carras, “Monolithic integration of a quantum cascade laser array and an echelle grating multiplexer for widely tunable mid-infrared sources,” Proc. SPIE 9767, 97671R (2016).
[Crossref]

C. Gilles, G. Maisons, B. Simozrag, and M. Carras, “Monolithic coupling of QCLs in evenescent waveguides on InP,” Proc. SPIE 9370, 93702W (2015).
[Crossref]

Malik, A.

A. Malik, M. Muneeb, S. Pathak, Y. Shimura, J. V. Campenhout, R. Loo, and G. Roelkens, “Germanium-on-silicon mid-infrared arrayed waveguide grating multiplexers,” IEEE Photon. Technol. Lett. 25, 1805–1808 (2013).
[Crossref]

Manz, C.

D. G. Revin, J. W. Cockburn, S. Menzel, Q. Yang, C. Manz, and J. Wagner, “Waveguide optical losses in InGaAs/AlAsSb quantum cascade laser,” J. Appl. Phys. 103, 043106 (2008).
[Crossref]

Marquis, J.

J. Xiaojun, P. Pinsukanjana, J. Pepper, H. Gang, P. Partyka, L. Minh, Z. Haijun, C. Boehme, B. Barnes, J. Marquis, P. L. S. Thamban, R. Glosser, K. Jenn-Ming, K. Vargason, and K. Yung-Chung, “Ultra low background InGaAs epi-layer on InP for PIN applications by production MBE,” in 16th International Conference on Indium Phosphide and Related Materials (IPRM) (2004), pp. 48–51.

Mashanovich, G. Z.

Mattera, V. D.

V. D. Mattera, F. Capasso, J. Allam, A. L. Hutchinson, J. Dick, J. M. Brown, and A. Westphal, “High‐speed InP/Ga0.47In0.53As superlattice avalanche photodiodes with very low background doping grown by continuous trichloride vapor‐phase epitaxy,” J. Appl. Phys. 60, 2609–2612 (1986).
[Crossref]

Maulini, R.

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, and C. K. N. Patel, “3  W continuous-wave room temperature single-facet emission from quantum cascade lasers based on nonresonant extraction design approach,” Appl. Phys. Lett. 95, 141113 (2009).
[Crossref]

Maurel, P.

M. Razeghi, P. Maurel, M. Defour, F. Omnes, G. Neu, and A. Kozacki, “Very high purity InP epilayer grown by metalorganic chemical vapor deposition,” Appl. Phys. Lett. 52, 117–119 (1988).
[Crossref]

Mawst, L. J.

Menon, V. M.

X. Fengnian, V. M. Menon, and S. R. Forrest, “Photonic integration using asymmetric twin-waveguide (ATG) technology: part I-concepts and theory,” IEEE J. Sel. Top. Quantum Electron. 11, 17–29 (2005).
[Crossref]

Menzel, S.

D. G. Revin, J. W. Cockburn, S. Menzel, Q. Yang, C. Manz, and J. Wagner, “Waveguide optical losses in InGaAs/AlAsSb quantum cascade laser,” J. Appl. Phys. 103, 043106 (2008).
[Crossref]

Merritt, C. D.

Messaoudene, S.

M. Lamponi, S. Keyvaninia, C. Jany, F. Poingt, F. Lelarge, G. D. Valicourt, G. Roelkens, D. V. Thourhout, S. Messaoudene, J. M. Fedeli, and G. H. Duan, “Low-threshold heterogeneously integrated InP/SOI lasers with a double adiabatic taper coupler,” IEEE Photon. Technol. Lett. 24, 76–78 (2012).
[Crossref]

Meyer, J.

Meyer, J. R.

Miklis, A.

H. Heinecke, B. Baur, R. Höger, and A. Miklis, “Growth of high purity InP by metalorganic MBE (CBE),” J. Cryst. Growth 105, 143–148 (1990).
[Crossref]

Miloševic, M. M.

Minh, L.

J. Xiaojun, P. Pinsukanjana, J. Pepper, H. Gang, P. Partyka, L. Minh, Z. Haijun, C. Boehme, B. Barnes, J. Marquis, P. L. S. Thamban, R. Glosser, K. Jenn-Ming, K. Vargason, and K. Yung-Chung, “Ultra low background InGaAs epi-layer on InP for PIN applications by production MBE,” in 16th International Conference on Indium Phosphide and Related Materials (IPRM) (2004), pp. 48–51.

Missaggia, L. J.

P. W. Juodawlkis, J. J. Plant, W. Loh, L. J. Missaggia, F. J. O’Donnell, D. C. Oakley, A. Napoleone, J. Klamkin, J. T. Gopinath, D. J. Ripin, S. Gee, P. J. Delfyett, and J. P. Donnelly, “High-power, low-noise 1.5-μm slab-coupled optical waveguide (SCOW) emitters: physics, devices, and applications,” IEEE J. Sel. Top. Quantum Electron. 17, 1698–1714 (2011).
[Crossref]

Muneeb, M.

R. Wang, S. Sprengel, G. Boehm, M. Muneeb, R. Baets, M.-C. Amann, and G. Roelkens, “2.3  μm range InP-based type-II quantum well Fabry-Perot lasers heterogeneously integrated on a silicon photonic integrated circuit,” Opt. Express 24, 21081–21089 (2016).
[Crossref]

A. Malik, M. Muneeb, S. Pathak, Y. Shimura, J. V. Campenhout, R. Loo, and G. Roelkens, “Germanium-on-silicon mid-infrared arrayed waveguide grating multiplexers,” IEEE Photon. Technol. Lett. 25, 1805–1808 (2013).
[Crossref]

Naganuma, M.

K. Kawano, M. Kohtoku, M. Wada, H. Okamoto, Y. Itaya, and M. Naganuma, “Design of a spotsize-converter-integrated laser diode (SS-LD) with a lateral taper, thin-film core and ridge in the 1.3  μm-wavelength region based on the 3-D BPM,” IEEE J. Sel. Top. Quantum Electron. 2, 348–354 (1996).
[Crossref]

Napoleone, A.

P. W. Juodawlkis, J. J. Plant, W. Loh, L. J. Missaggia, F. J. O’Donnell, D. C. Oakley, A. Napoleone, J. Klamkin, J. T. Gopinath, D. J. Ripin, S. Gee, P. J. Delfyett, and J. P. Donnelly, “High-power, low-noise 1.5-μm slab-coupled optical waveguide (SCOW) emitters: physics, devices, and applications,” IEEE J. Sel. Top. Quantum Electron. 17, 1698–1714 (2011).
[Crossref]

Nedeljkovic, M.

Neu, G.

M. Razeghi, P. Maurel, M. Defour, F. Omnes, G. Neu, and A. Kozacki, “Very high purity InP epilayer grown by metalorganic chemical vapor deposition,” Appl. Phys. Lett. 52, 117–119 (1988).
[Crossref]

Nowitzki, A.

P. Speier, U. Koerner, A. Nowitzki, F. Grotjahn, F. J. Tegude, and K. Wünstel, “MOVPE studies for a monolithically integrated DH laser/HBT laser driver,” J. Cryst. Growth 93, 885–891 (1988).
[Crossref]

O’Donnell, F. J.

P. W. Juodawlkis, J. J. Plant, W. Loh, L. J. Missaggia, F. J. O’Donnell, D. C. Oakley, A. Napoleone, J. Klamkin, J. T. Gopinath, D. J. Ripin, S. Gee, P. J. Delfyett, and J. P. Donnelly, “High-power, low-noise 1.5-μm slab-coupled optical waveguide (SCOW) emitters: physics, devices, and applications,” IEEE J. Sel. Top. Quantum Electron. 17, 1698–1714 (2011).
[Crossref]

Oakley, D. C.

P. W. Juodawlkis, J. J. Plant, W. Loh, L. J. Missaggia, F. J. O’Donnell, D. C. Oakley, A. Napoleone, J. Klamkin, J. T. Gopinath, D. J. Ripin, S. Gee, P. J. Delfyett, and J. P. Donnelly, “High-power, low-noise 1.5-μm slab-coupled optical waveguide (SCOW) emitters: physics, devices, and applications,” IEEE J. Sel. Top. Quantum Electron. 17, 1698–1714 (2011).
[Crossref]

Okamoto, H.

K. Kawano, M. Kohtoku, M. Wada, H. Okamoto, Y. Itaya, and M. Naganuma, “Design of a spotsize-converter-integrated laser diode (SS-LD) with a lateral taper, thin-film core and ridge in the 1.3  μm-wavelength region based on the 3-D BPM,” IEEE J. Sel. Top. Quantum Electron. 2, 348–354 (1996).
[Crossref]

Omnes, F.

M. Razeghi, P. Maurel, M. Defour, F. Omnes, G. Neu, and A. Kozacki, “Very high purity InP epilayer grown by metalorganic chemical vapor deposition,” Appl. Phys. Lett. 52, 117–119 (1988).
[Crossref]

Orbe, L. J.

C. Gilles, L. J. Orbe, G. Carpintero, J. Abautret, G. Maisons, and M. Carras, “Monolithic integration of a quantum cascade laser array and an echelle grating multiplexer for widely tunable mid-infrared sources,” Proc. SPIE 9767, 97671R (2016).
[Crossref]

Oresick, K. M.

Owens, N.

Paeder, V.

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1998).

Paniccia, M. J.

Parillaud, O.

Park, H.

Partyka, P.

J. Xiaojun, P. Pinsukanjana, J. Pepper, H. Gang, P. Partyka, L. Minh, Z. Haijun, C. Boehme, B. Barnes, J. Marquis, P. L. S. Thamban, R. Glosser, K. Jenn-Ming, K. Vargason, and K. Yung-Chung, “Ultra low background InGaAs epi-layer on InP for PIN applications by production MBE,” in 16th International Conference on Indium Phosphide and Related Materials (IPRM) (2004), pp. 48–51.

Patel, C. K. N.

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, and C. K. N. Patel, “3  W continuous-wave room temperature single-facet emission from quantum cascade lasers based on nonresonant extraction design approach,” Appl. Phys. Lett. 95, 141113 (2009).
[Crossref]

Pathak, S.

A. Malik, M. Muneeb, S. Pathak, Y. Shimura, J. V. Campenhout, R. Loo, and G. Roelkens, “Germanium-on-silicon mid-infrared arrayed waveguide grating multiplexers,” IEEE Photon. Technol. Lett. 25, 1805–1808 (2013).
[Crossref]

Pavlidis, D.

D. Cui, S. M. Hubbard, D. Pavlidis, A. Eisenbach, and C. Chelli, “Impact of doping and MOCVD conditions on minority carrier lifetime of zinc- and carbon-doped InGaAs and its applications to zinc- and carbon-doped InP/InGaAs heterostructure bipolar transistors,” Semicond. Sci. Technol. 17, 503–509 (2002).
[Crossref]

Pepper, J.

J. Xiaojun, P. Pinsukanjana, J. Pepper, H. Gang, P. Partyka, L. Minh, Z. Haijun, C. Boehme, B. Barnes, J. Marquis, P. L. S. Thamban, R. Glosser, K. Jenn-Ming, K. Vargason, and K. Yung-Chung, “Ultra low background InGaAs epi-layer on InP for PIN applications by production MBE,” in 16th International Conference on Indium Phosphide and Related Materials (IPRM) (2004), pp. 48–51.

Peters, J.

Pflügl, C.

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, and C. K. N. Patel, “3  W continuous-wave room temperature single-facet emission from quantum cascade lasers based on nonresonant extraction design approach,” Appl. Phys. Lett. 95, 141113 (2009).
[Crossref]

Pinsukanjana, P.

J. Xiaojun, P. Pinsukanjana, J. Pepper, H. Gang, P. Partyka, L. Minh, Z. Haijun, C. Boehme, B. Barnes, J. Marquis, P. L. S. Thamban, R. Glosser, K. Jenn-Ming, K. Vargason, and K. Yung-Chung, “Ultra low background InGaAs epi-layer on InP for PIN applications by production MBE,” in 16th International Conference on Indium Phosphide and Related Materials (IPRM) (2004), pp. 48–51.

Pinzone, C. J.

C. J. Pinzone, N. D. Gerrard, R. D. Dupuis, N. T. Ha, and H. S. Luftman, “Heavily‐doped n‐type InP and InGaAs grown by metalorganic chemical vapor deposition using tetraethyltin,” J. Appl. Phys. 67, 6823–6829 (1990).
[Crossref]

Plant, J. J.

P. W. Juodawlkis, J. J. Plant, W. Loh, L. J. Missaggia, F. J. O’Donnell, D. C. Oakley, A. Napoleone, J. Klamkin, J. T. Gopinath, D. J. Ripin, S. Gee, P. J. Delfyett, and J. P. Donnelly, “High-power, low-noise 1.5-μm slab-coupled optical waveguide (SCOW) emitters: physics, devices, and applications,” IEEE J. Sel. Top. Quantum Electron. 17, 1698–1714 (2011).
[Crossref]

Poingt, F.

M. Lamponi, S. Keyvaninia, C. Jany, F. Poingt, F. Lelarge, G. D. Valicourt, G. Roelkens, D. V. Thourhout, S. Messaoudene, J. M. Fedeli, and G. H. Duan, “Low-threshold heterogeneously integrated InP/SOI lasers with a double adiabatic taper coupler,” IEEE Photon. Technol. Lett. 24, 76–78 (2012).
[Crossref]

Ravaro, M.

Razeghi, M.

M. Razeghi, Q. Y. Lu, N. Bandyopadhyay, W. Zhou, D. Heydari, Y. Bai, and S. Slivken, “Quantum cascade lasers: from tool to product,” Opt. Express 23, 8462–8475 (2015).
[Crossref]

Y. Bai, N. Bandyopadhyay, S. Tsao, S. Slivken, and M. Razeghi, “Room temperature quantum cascade lasers with 27% wall plug efficiency,” Appl. Phys. Lett. 98, 181102 (2011).
[Crossref]

M. Razeghi, P. Maurel, M. Defour, F. Omnes, G. Neu, and A. Kozacki, “Very high purity InP epilayer grown by metalorganic chemical vapor deposition,” Appl. Phys. Lett. 52, 117–119 (1988).
[Crossref]

D. B. K.-H. Goetz, H. Jürgensen, J. Selders, A. V. Solomonov, G. F. Glinskii, and M. Razeghi, “Optical and crystallographic properties and impurity incorporation of GaxIn1-xAs (0.44< × <0.49) grown by liquid phase epitaxy, vapor phase epitaxy, and metal organic chemical vapor deposition,” J. Appl. Phys. 54, 4543–4552 (1983).
[Crossref]

Revin, D. G.

D. G. Revin, J. W. Cockburn, S. Menzel, Q. Yang, C. Manz, and J. Wagner, “Waveguide optical losses in InGaAs/AlAsSb quantum cascade laser,” J. Appl. Phys. 103, 043106 (2008).
[Crossref]

Ripin, D. J.

P. W. Juodawlkis, J. J. Plant, W. Loh, L. J. Missaggia, F. J. O’Donnell, D. C. Oakley, A. Napoleone, J. Klamkin, J. T. Gopinath, D. J. Ripin, S. Gee, P. J. Delfyett, and J. P. Donnelly, “High-power, low-noise 1.5-μm slab-coupled optical waveguide (SCOW) emitters: physics, devices, and applications,” IEEE J. Sel. Top. Quantum Electron. 17, 1698–1714 (2011).
[Crossref]

Roelkens, G.

R. Wang, S. Sprengel, G. Boehm, M. Muneeb, R. Baets, M.-C. Amann, and G. Roelkens, “2.3  μm range InP-based type-II quantum well Fabry-Perot lasers heterogeneously integrated on a silicon photonic integrated circuit,” Opt. Express 24, 21081–21089 (2016).
[Crossref]

A. Malik, M. Muneeb, S. Pathak, Y. Shimura, J. V. Campenhout, R. Loo, and G. Roelkens, “Germanium-on-silicon mid-infrared arrayed waveguide grating multiplexers,” IEEE Photon. Technol. Lett. 25, 1805–1808 (2013).
[Crossref]

M. Lamponi, S. Keyvaninia, C. Jany, F. Poingt, F. Lelarge, G. D. Valicourt, G. Roelkens, D. V. Thourhout, S. Messaoudene, J. M. Fedeli, and G. H. Duan, “Low-threshold heterogeneously integrated InP/SOI lasers with a double adiabatic taper coupler,” IEEE Photon. Technol. Lett. 24, 76–78 (2012).
[Crossref]

Roland, I.

Ryu, J. H.

Saini, S. S.

V. Vusirikala, S. S. Saini, R. E. Bartolo, S. Agarwala, R. D. Whaley, F. G. Johnson, D. R. Stone, and M. Dagenais, “1.55-μm InGaAsP-InP laser arrays with integrated-mode expanders fabricated using a single epitaxial growth,” IEEE J. Sel. Top. Quantum Electron. 3, 1332–1343 (1997).
[Crossref]

Schumacher, H.

J. B. D. Soole, H. Schumacher, H. P. LeBlanc, R. Bhat, and M. A. Koza, “High-speed performance of OMCVD grown InAlAs/InGaAs MSM photodetectors at 1.5  mu m and 1.3  mu m wavelengths,” IEEE Photon. Technol. Lett. 1, 250–252 (1989).
[Crossref]

Selders, J.

D. B. K.-H. Goetz, H. Jürgensen, J. Selders, A. V. Solomonov, G. F. Glinskii, and M. Razeghi, “Optical and crystallographic properties and impurity incorporation of GaxIn1-xAs (0.44< × <0.49) grown by liquid phase epitaxy, vapor phase epitaxy, and metal organic chemical vapor deposition,” J. Appl. Phys. 54, 4543–4552 (1983).
[Crossref]

Shankar, R.

R. Shankar, I. Bulu, and M. Lončar, “Integrated high-quality factor silicon-on-sapphire ring resonators for the mid-infrared,” Appl. Phys. Lett. 102, 051108 (2013).
[Crossref]

Shimura, Y.

A. Malik, M. Muneeb, S. Pathak, Y. Shimura, J. V. Campenhout, R. Loo, and G. Roelkens, “Germanium-on-silicon mid-infrared arrayed waveguide grating multiplexers,” IEEE Photon. Technol. Lett. 25, 1805–1808 (2013).
[Crossref]

Shterengas, L.

G. Belenky, L. Shterengas, G. Kipshidze, and T. Hosoda, “Type-I diode lasers for spectral region above 3  μm,” IEEE J. Sel. Top. Quantum Electron. 17, 1426–1434 (2011).
[Crossref]

Sigler, C.

Simozrag, B.

C. Gilles, G. Maisons, B. Simozrag, and M. Carras, “Monolithic coupling of QCLs in evenescent waveguides on InP,” Proc. SPIE 9370, 93702W (2015).
[Crossref]

Slivken, S.

M. Razeghi, Q. Y. Lu, N. Bandyopadhyay, W. Zhou, D. Heydari, Y. Bai, and S. Slivken, “Quantum cascade lasers: from tool to product,” Opt. Express 23, 8462–8475 (2015).
[Crossref]

Y. Bai, N. Bandyopadhyay, S. Tsao, S. Slivken, and M. Razeghi, “Room temperature quantum cascade lasers with 27% wall plug efficiency,” Appl. Phys. Lett. 98, 181102 (2011).
[Crossref]

Solomonov, A. V.

D. B. K.-H. Goetz, H. Jürgensen, J. Selders, A. V. Solomonov, G. F. Glinskii, and M. Razeghi, “Optical and crystallographic properties and impurity incorporation of GaxIn1-xAs (0.44< × <0.49) grown by liquid phase epitaxy, vapor phase epitaxy, and metal organic chemical vapor deposition,” J. Appl. Phys. 54, 4543–4552 (1983).
[Crossref]

Soole, J. B. D.

J. B. D. Soole, H. Schumacher, H. P. LeBlanc, R. Bhat, and M. A. Koza, “High-speed performance of OMCVD grown InAlAs/InGaAs MSM photodetectors at 1.5  mu m and 1.3  mu m wavelengths,” IEEE Photon. Technol. Lett. 1, 250–252 (1989).
[Crossref]

Speier, P.

P. Speier, U. Koerner, A. Nowitzki, F. Grotjahn, F. J. Tegude, and K. Wünstel, “MOVPE studies for a monolithically integrated DH laser/HBT laser driver,” J. Cryst. Growth 93, 885–891 (1988).
[Crossref]

Spott, A.

Sprengel, S.

Stanton, E. J.

Stollenwerk, M.

S. Chang-Xin, D. Grutzmacher, M. Stollenwerk, Q. Wang, and K. Heime, “High-performance undoped InP/n-In0.53Ga0.47As MSM photodetectors grown by LP-MOVPE,” IEEE Trans. Electron Devices 39, 1028–1031 (1992).
[Crossref]

Stone, D. R.

V. Vusirikala, S. S. Saini, R. E. Bartolo, S. Agarwala, R. D. Whaley, F. G. Johnson, D. R. Stone, and M. Dagenais, “1.55-μm InGaAsP-InP laser arrays with integrated-mode expanders fabricated using a single epitaxial growth,” IEEE J. Sel. Top. Quantum Electron. 3, 1332–1343 (1997).
[Crossref]

Suematsu, Y.

Y. Suematsu, M. Yamada, and K. Hayashi, “Integrated twin-guide AlGaAs laser with multiheterostructure,” IEEE J. Quantum Electron. 11, 457–460 (1975).
[Crossref]

Sun, X.

Tegude, F. J.

P. Speier, U. Koerner, A. Nowitzki, F. Grotjahn, F. J. Tegude, and K. Wünstel, “MOVPE studies for a monolithically integrated DH laser/HBT laser driver,” J. Cryst. Growth 93, 885–891 (1988).
[Crossref]

Teo, E. J.

Thamban, P. L. S.

J. Xiaojun, P. Pinsukanjana, J. Pepper, H. Gang, P. Partyka, L. Minh, Z. Haijun, C. Boehme, B. Barnes, J. Marquis, P. L. S. Thamban, R. Glosser, K. Jenn-Ming, K. Vargason, and K. Yung-Chung, “Ultra low background InGaAs epi-layer on InP for PIN applications by production MBE,” in 16th International Conference on Indium Phosphide and Related Materials (IPRM) (2004), pp. 48–51.

Thourhout, D. V.

M. Lamponi, S. Keyvaninia, C. Jany, F. Poingt, F. Lelarge, G. D. Valicourt, G. Roelkens, D. V. Thourhout, S. Messaoudene, J. M. Fedeli, and G. H. Duan, “Low-threshold heterogeneously integrated InP/SOI lasers with a double adiabatic taper coupler,” IEEE Photon. Technol. Lett. 24, 76–78 (2012).
[Crossref]

Tolstikhin, V. I.

F. Wu, V. I. Tolstikhin, A. S. Densmore, and S. Grabtchak, “Two-step lateral taper spot-size converter for efficient fiber coupling to InP-based photonic integrated circuits,” Proc. SPIE 5577, 213 (2004).
[Crossref]

Tsao, S.

Y. Bai, N. Bandyopadhyay, S. Tsao, S. Slivken, and M. Razeghi, “Room temperature quantum cascade lasers with 27% wall plug efficiency,” Appl. Phys. Lett. 98, 181102 (2011).
[Crossref]

Tsekoun, A.

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, and C. K. N. Patel, “3  W continuous-wave room temperature single-facet emission from quantum cascade lasers based on nonresonant extraction design approach,” Appl. Phys. Lett. 95, 141113 (2009).
[Crossref]

Valicourt, G. D.

M. Lamponi, S. Keyvaninia, C. Jany, F. Poingt, F. Lelarge, G. D. Valicourt, G. Roelkens, D. V. Thourhout, S. Messaoudene, J. M. Fedeli, and G. H. Duan, “Low-threshold heterogeneously integrated InP/SOI lasers with a double adiabatic taper coupler,” IEEE Photon. Technol. Lett. 24, 76–78 (2012).
[Crossref]

Vargason, K.

J. Xiaojun, P. Pinsukanjana, J. Pepper, H. Gang, P. Partyka, L. Minh, Z. Haijun, C. Boehme, B. Barnes, J. Marquis, P. L. S. Thamban, R. Glosser, K. Jenn-Ming, K. Vargason, and K. Yung-Chung, “Ultra low background InGaAs epi-layer on InP for PIN applications by production MBE,” in 16th International Conference on Indium Phosphide and Related Materials (IPRM) (2004), pp. 48–51.

Vurgaftman, I.

Vusirikala, V.

V. Vusirikala, S. S. Saini, R. E. Bartolo, S. Agarwala, R. D. Whaley, F. G. Johnson, D. R. Stone, and M. Dagenais, “1.55-μm InGaAsP-InP laser arrays with integrated-mode expanders fabricated using a single epitaxial growth,” IEEE J. Sel. Top. Quantum Electron. 3, 1332–1343 (1997).
[Crossref]

Wada, M.

K. Kawano, M. Kohtoku, M. Wada, H. Okamoto, Y. Itaya, and M. Naganuma, “Design of a spotsize-converter-integrated laser diode (SS-LD) with a lateral taper, thin-film core and ridge in the 1.3  μm-wavelength region based on the 3-D BPM,” IEEE J. Sel. Top. Quantum Electron. 2, 348–354 (1996).
[Crossref]

Wagner, J.

D. G. Revin, J. W. Cockburn, S. Menzel, Q. Yang, C. Manz, and J. Wagner, “Waveguide optical losses in InGaAs/AlAsSb quantum cascade laser,” J. Appl. Phys. 103, 043106 (2008).
[Crossref]

Wang, Q.

S. Chang-Xin, D. Grutzmacher, M. Stollenwerk, Q. Wang, and K. Heime, “High-performance undoped InP/n-In0.53Ga0.47As MSM photodetectors grown by LP-MOVPE,” IEEE Trans. Electron Devices 39, 1028–1031 (1992).
[Crossref]

Wang, Q. J.

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, and C. K. N. Patel, “3  W continuous-wave room temperature single-facet emission from quantum cascade lasers based on nonresonant extraction design approach,” Appl. Phys. Lett. 95, 141113 (2009).
[Crossref]

Wang, R.

Westphal, A.

V. D. Mattera, F. Capasso, J. Allam, A. L. Hutchinson, J. Dick, J. M. Brown, and A. Westphal, “High‐speed InP/Ga0.47In0.53As superlattice avalanche photodiodes with very low background doping grown by continuous trichloride vapor‐phase epitaxy,” J. Appl. Phys. 60, 2609–2612 (1986).
[Crossref]

Whaley, R. D.

V. Vusirikala, S. S. Saini, R. E. Bartolo, S. Agarwala, R. D. Whaley, F. G. Johnson, D. R. Stone, and M. Dagenais, “1.55-μm InGaAsP-InP laser arrays with integrated-mode expanders fabricated using a single epitaxial growth,” IEEE J. Sel. Top. Quantum Electron. 3, 1332–1343 (1997).
[Crossref]

Wu, F.

F. Wu, V. I. Tolstikhin, A. S. Densmore, and S. Grabtchak, “Two-step lateral taper spot-size converter for efficient fiber coupling to InP-based photonic integrated circuits,” Proc. SPIE 5577, 213 (2004).
[Crossref]

Wünstel, K.

P. Speier, U. Koerner, A. Nowitzki, F. Grotjahn, F. J. Tegude, and K. Wünstel, “MOVPE studies for a monolithically integrated DH laser/HBT laser driver,” J. Cryst. Growth 93, 885–891 (1988).
[Crossref]

Xiaojun, J.

J. Xiaojun, P. Pinsukanjana, J. Pepper, H. Gang, P. Partyka, L. Minh, Z. Haijun, C. Boehme, B. Barnes, J. Marquis, P. L. S. Thamban, R. Glosser, K. Jenn-Ming, K. Vargason, and K. Yung-Chung, “Ultra low background InGaAs epi-layer on InP for PIN applications by production MBE,” in 16th International Conference on Indium Phosphide and Related Materials (IPRM) (2004), pp. 48–51.

Xiong, B.

Yamada, M.

Y. Suematsu, M. Yamada, and K. Hayashi, “Integrated twin-guide AlGaAs laser with multiheterostructure,” IEEE J. Quantum Electron. 11, 457–460 (1975).
[Crossref]

Yang, Q.

D. G. Revin, J. W. Cockburn, S. Menzel, Q. Yang, C. Manz, and J. Wagner, “Waveguide optical losses in InGaAs/AlAsSb quantum cascade laser,” J. Appl. Phys. 103, 043106 (2008).
[Crossref]

Yariv, A.

Yung-Chung, K.

J. Xiaojun, P. Pinsukanjana, J. Pepper, H. Gang, P. Partyka, L. Minh, Z. Haijun, C. Boehme, B. Barnes, J. Marquis, P. L. S. Thamban, R. Glosser, K. Jenn-Ming, K. Vargason, and K. Yung-Chung, “Ultra low background InGaAs epi-layer on InP for PIN applications by production MBE,” in 16th International Conference on Indium Phosphide and Related Materials (IPRM) (2004), pp. 48–51.

Zhou, W.

Appl. Phys. Lett. (5)

S. Jung, J. Kirch, J. H. Kim, L. J. Mawst, D. Botez, and M. A. Belkin, “Quantum cascade lasers transfer-printed on silicon-on-sapphire,” Appl. Phys. Lett. 111, 211102 (2017).
[Crossref]

M. Razeghi, P. Maurel, M. Defour, F. Omnes, G. Neu, and A. Kozacki, “Very high purity InP epilayer grown by metalorganic chemical vapor deposition,” Appl. Phys. Lett. 52, 117–119 (1988).
[Crossref]

R. Shankar, I. Bulu, and M. Lončar, “Integrated high-quality factor silicon-on-sapphire ring resonators for the mid-infrared,” Appl. Phys. Lett. 102, 051108 (2013).
[Crossref]

Y. Bai, N. Bandyopadhyay, S. Tsao, S. Slivken, and M. Razeghi, “Room temperature quantum cascade lasers with 27% wall plug efficiency,” Appl. Phys. Lett. 98, 181102 (2011).
[Crossref]

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, and C. K. N. Patel, “3  W continuous-wave room temperature single-facet emission from quantum cascade lasers based on nonresonant extraction design approach,” Appl. Phys. Lett. 95, 141113 (2009).
[Crossref]

IEEE J. Quantum Electron. (1)

Y. Suematsu, M. Yamada, and K. Hayashi, “Integrated twin-guide AlGaAs laser with multiheterostructure,” IEEE J. Quantum Electron. 11, 457–460 (1975).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (5)

K. Kawano, M. Kohtoku, M. Wada, H. Okamoto, Y. Itaya, and M. Naganuma, “Design of a spotsize-converter-integrated laser diode (SS-LD) with a lateral taper, thin-film core and ridge in the 1.3  μm-wavelength region based on the 3-D BPM,” IEEE J. Sel. Top. Quantum Electron. 2, 348–354 (1996).
[Crossref]

P. W. Juodawlkis, J. J. Plant, W. Loh, L. J. Missaggia, F. J. O’Donnell, D. C. Oakley, A. Napoleone, J. Klamkin, J. T. Gopinath, D. J. Ripin, S. Gee, P. J. Delfyett, and J. P. Donnelly, “High-power, low-noise 1.5-μm slab-coupled optical waveguide (SCOW) emitters: physics, devices, and applications,” IEEE J. Sel. Top. Quantum Electron. 17, 1698–1714 (2011).
[Crossref]

G. Belenky, L. Shterengas, G. Kipshidze, and T. Hosoda, “Type-I diode lasers for spectral region above 3  μm,” IEEE J. Sel. Top. Quantum Electron. 17, 1426–1434 (2011).
[Crossref]

V. Vusirikala, S. S. Saini, R. E. Bartolo, S. Agarwala, R. D. Whaley, F. G. Johnson, D. R. Stone, and M. Dagenais, “1.55-μm InGaAsP-InP laser arrays with integrated-mode expanders fabricated using a single epitaxial growth,” IEEE J. Sel. Top. Quantum Electron. 3, 1332–1343 (1997).
[Crossref]

X. Fengnian, V. M. Menon, and S. R. Forrest, “Photonic integration using asymmetric twin-waveguide (ATG) technology: part I-concepts and theory,” IEEE J. Sel. Top. Quantum Electron. 11, 17–29 (2005).
[Crossref]

IEEE Photon. Technol. Lett. (3)

J. B. D. Soole, H. Schumacher, H. P. LeBlanc, R. Bhat, and M. A. Koza, “High-speed performance of OMCVD grown InAlAs/InGaAs MSM photodetectors at 1.5  mu m and 1.3  mu m wavelengths,” IEEE Photon. Technol. Lett. 1, 250–252 (1989).
[Crossref]

A. Malik, M. Muneeb, S. Pathak, Y. Shimura, J. V. Campenhout, R. Loo, and G. Roelkens, “Germanium-on-silicon mid-infrared arrayed waveguide grating multiplexers,” IEEE Photon. Technol. Lett. 25, 1805–1808 (2013).
[Crossref]

M. Lamponi, S. Keyvaninia, C. Jany, F. Poingt, F. Lelarge, G. D. Valicourt, G. Roelkens, D. V. Thourhout, S. Messaoudene, J. M. Fedeli, and G. H. Duan, “Low-threshold heterogeneously integrated InP/SOI lasers with a double adiabatic taper coupler,” IEEE Photon. Technol. Lett. 24, 76–78 (2012).
[Crossref]

IEEE Trans. Electron Devices (1)

S. Chang-Xin, D. Grutzmacher, M. Stollenwerk, Q. Wang, and K. Heime, “High-performance undoped InP/n-In0.53Ga0.47As MSM photodetectors grown by LP-MOVPE,” IEEE Trans. Electron Devices 39, 1028–1031 (1992).
[Crossref]

J. Appl. Phys. (4)

D. G. Revin, J. W. Cockburn, S. Menzel, Q. Yang, C. Manz, and J. Wagner, “Waveguide optical losses in InGaAs/AlAsSb quantum cascade laser,” J. Appl. Phys. 103, 043106 (2008).
[Crossref]

V. D. Mattera, F. Capasso, J. Allam, A. L. Hutchinson, J. Dick, J. M. Brown, and A. Westphal, “High‐speed InP/Ga0.47In0.53As superlattice avalanche photodiodes with very low background doping grown by continuous trichloride vapor‐phase epitaxy,” J. Appl. Phys. 60, 2609–2612 (1986).
[Crossref]

C. J. Pinzone, N. D. Gerrard, R. D. Dupuis, N. T. Ha, and H. S. Luftman, “Heavily‐doped n‐type InP and InGaAs grown by metalorganic chemical vapor deposition using tetraethyltin,” J. Appl. Phys. 67, 6823–6829 (1990).
[Crossref]

D. B. K.-H. Goetz, H. Jürgensen, J. Selders, A. V. Solomonov, G. F. Glinskii, and M. Razeghi, “Optical and crystallographic properties and impurity incorporation of GaxIn1-xAs (0.44< × <0.49) grown by liquid phase epitaxy, vapor phase epitaxy, and metal organic chemical vapor deposition,” J. Appl. Phys. 54, 4543–4552 (1983).
[Crossref]

J. Cryst. Growth (2)

P. Speier, U. Koerner, A. Nowitzki, F. Grotjahn, F. J. Tegude, and K. Wünstel, “MOVPE studies for a monolithically integrated DH laser/HBT laser driver,” J. Cryst. Growth 93, 885–891 (1988).
[Crossref]

H. Heinecke, B. Baur, R. Höger, and A. Miklis, “Growth of high purity InP by metalorganic MBE (CBE),” J. Cryst. Growth 105, 143–148 (1990).
[Crossref]

J. Opt. Soc. Am. B (1)

Opt. Express (4)

Opt. Lett. (4)

Opt. Mater. Express (1)

Optica (1)

Proc. SPIE (3)

C. Gilles, G. Maisons, B. Simozrag, and M. Carras, “Monolithic coupling of QCLs in evenescent waveguides on InP,” Proc. SPIE 9370, 93702W (2015).
[Crossref]

C. Gilles, L. J. Orbe, G. Carpintero, J. Abautret, G. Maisons, and M. Carras, “Monolithic integration of a quantum cascade laser array and an echelle grating multiplexer for widely tunable mid-infrared sources,” Proc. SPIE 9767, 97671R (2016).
[Crossref]

F. Wu, V. I. Tolstikhin, A. S. Densmore, and S. Grabtchak, “Two-step lateral taper spot-size converter for efficient fiber coupling to InP-based photonic integrated circuits,” Proc. SPIE 5577, 213 (2004).
[Crossref]

Semicond. Sci. Technol. (1)

D. Cui, S. M. Hubbard, D. Pavlidis, A. Eisenbach, and C. Chelli, “Impact of doping and MOCVD conditions on minority carrier lifetime of zinc- and carbon-doped InGaAs and its applications to zinc- and carbon-doped InP/InGaAs heterostructure bipolar transistors,” Semicond. Sci. Technol. 17, 503–509 (2002).
[Crossref]

Other (2)

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1998).

J. Xiaojun, P. Pinsukanjana, J. Pepper, H. Gang, P. Partyka, L. Minh, Z. Haijun, C. Boehme, B. Barnes, J. Marquis, P. L. S. Thamban, R. Glosser, K. Jenn-Ming, K. Vargason, and K. Yung-Chung, “Ultra low background InGaAs epi-layer on InP for PIN applications by production MBE,” in 16th International Conference on Indium Phosphide and Related Materials (IPRM) (2004), pp. 48–51.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. (a) Calculated optical loss of In0.53Ga0.47As (left panel) and InP (right panel), assuming the doping levels of 1×1014cm3 (black), 1×1015cm3 (blue), and 5×1015cm3 (red). (b) Resistivity of InP (red circle) and In0.53Ga0.47As (black square) materials for different values of electron concentration. The data is obtained using linear interpolation of the mobility values given in Refs. [26,27]. The in-series resistance values of a 1-μm-thick layer of InP and In0.53Ga0.47As materials integrated below the QCL active region are also given in panel (b) as a function of doping density. A QCL ridge waveguide dimensions of 6 μm in width and 4 mm in length are assumed in the resistance calculations.
Fig. 2.
Fig. 2. Schematic of the waveguide-coupled QCL device: (a) top view; a red arrow indicates the interface between the first and second step tapers, (b) cross-sectional view, and (c) cross-sectional view of the beam-propagation simulation result. (d) Top-bottom-side bias configuration. (e) Top-bottom bias configuration.
Fig. 3.
Fig. 3. (a) TM00 mode confinement factors of the QCL active region (square) and the passive waveguide core (circle) estimated at different passive waveguide core thicknesses. The simulated fundamental mode for the passive waveguide core thicknesses of 0.75, 1, and 1.2 μm are shown in (b), (c), and (d), respectively.
Fig. 4.
Fig. 4. Effective refractive indices of the QCL ridge waveguide modes (solid lines) and the passive In0.53Ga0.47As ridge waveguide modes (dashed lines) at different ridge widths. The layer structure for the QCL waveguide and the passive In0.53Ga0.47As waveguide are given in the “Growth and Fabrication” section. The orange dashed line indicates an index matching point between the fundamental modes of the 2.5-μm-wide QCL ridge and the 5-μm-wide In0.53Ga0.47As passive waveguide ridge, where both ridges provide nearly the same effective index value of 3.13.
Fig. 5.
Fig. 5. Scanning electron microscope images of the (a) fully-processed waveguide-coupled devices, (b) the cleaved QCL gain section facet, (c) the taper section, and (d) the cleaved passive In0.53Ga0.47As waveguide facet.
Fig. 6.
Fig. 6. Characteristics of the reference and waveguide-coupled devices measured in pulsed mode at room temperature. (a) Emission spectra of the reference (bottom) and waveguide-coupled (top) devices. The waveguide-coupled device had the waveguide length of 6.5 mm. (b) Light-current characteristics of the reference (black) and waveguide-coupled devices with the waveguide lengths of 6.5 mm (red), 9 mm (green), and 11 mm (blue). (c) Voltage-current characteristics of the reference device with the top-bottom bias configuration (open circles) and the top-side-bottom bias configuration (closed circles).
Fig. 7.
Fig. 7. Peak power output from the waveguide facet of the QCL PIC with the 10.5-μm-wide, 3.75-mm-long QCL gain section, the 1-mm-long taper section, and the 6.5-mm-long passive waveguide section. The QCL facet had high-reflectivity coating.
Fig. 8.
Fig. 8. (a) Schematic of the sample with passive InGaAs ridge waveguides. (b) Scanning electron microscope image of a cleaved facet of an input coupler of one of the waveguides. (c) Normalized transmitted light intensity from the waveguides with different lengths. The transmitted power was measured through eight different waveguides (one used for normalization) ranging from 0.7 to 2.8 cm. The propagation loss was estimated to be 2.2±0.3dB/cm from the linear fit of the data.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Whf(x)=Whfe+(WhfiWhfe)(1xL)α,