Abstract

Terahertz-range photonic crystal waveguides composed of intrinsic silicon are showing promise as an efficient and versatile waveguiding platform for diverse applications. Compact terahertz systems that are founded upon this platform will benefit from near-field links in order to serve as general-purpose connectors and allow devices to be modular. To this end, we present near-field contactless signal power transfer between terahertz-range photonic crystal waveguides in the out-of-plane dimension. This is achieved by means of coupled-line techniques. It is found that the use of photonic crystal waveguides, in lieu of more conventional photonic waveguides, leads to an enhancement of the coupling effect. For the purpose of experimentation, a custom-machined sample holder is devised in order to secure the relative positioning of the photonic crystal waveguides and ensure repeatable alignment. It is found that the coupling efficiency of the near-field link in isolation is close to unity, and the bandwidth of the entire structure is 21GHz, centered at 325 GHz. This proves sufficient to support multi-gigabit per second terahertz-range communications with a simple on-off-keying modulation scheme. As such, this demonstration validates the applicability of this vertical-coupling technique to practical applications of terahertz technology. Furthermore, the machined sample holder may lead to a much-needed packaging strategy for future silicon microphotonic systems.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Calculated out-of-plane transmission loss for photonic-crystal slab waveguides

Wan Kuang, Cheolwoo Kim, Andrew Stapleton, Woo Jun Kim, and John D. O’Brien
Opt. Lett. 28(19) 1781-1783 (2003)

All-dielectric integration of dielectric resonator antenna and photonic crystal waveguide

Withawat Withayachumnankul, Ryoumei Yamada, Christophe Fumeaux, Masayuki Fujita, and Tadao Nagatsuma
Opt. Express 25(13) 14706-14714 (2017)

Extremely low-loss terahertz waveguide based on silicon photonic-crystal slab

Kazuisao Tsuruda, Masayuki Fujita, and Tadao Nagatsuma
Opt. Express 23(25) 31977-31990 (2015)

References

  • View by:
  • |
  • |
  • |

  1. K. Tsuruda, M. Fujita, and T. Nagatsuma, “Extremely low-loss terahertz waveguide based on silicon photonic-crystal slab,” Opt. Express 23, 31977–31990 (2015).
    [Crossref]
  2. J. Dai, J. Zhang, W. Zhang, and D. Grischkowsky, “Terahertz time-domain spectroscopy characterization of the far-infrared absorption and index of refraction of high-resistivity, float-zone silicon,” J. Opt. Soc. Am. B 21, 1379–1386 (2004).
    [Crossref]
  3. P. Drude, “Zur Elektronentheorie der Metalle,” Ann. Phys. (Leipzig) 306, 566–613 (1900).
    [Crossref]
  4. W. J. Otter, S. M. Hanham, N. M. Ridler, G. Marino, N. Klein, and S. Lucyszyn, “100  GHz ultra-high Q-factor photonic crystal resonators,” Sens. Actuators A 217, 151–159 (2014).
    [Crossref]
  5. S. Hanham, C. Watts, W. Otter, S. Lucyszyn, and N. Klein, “Dielectric measurements of nanoliter liquids with a photonic crystal resonator at terahertz frequencies,” Appl. Phys. Lett. 107, 032903 (2015).
    [Crossref]
  6. C. M. Yee and M. S. Sherwin, “High-Q terahertz microcavities in silicon photonic crystal slabs,” Appl. Phys. Lett. 94, 154104 (2009).
    [Crossref]
  7. M. Sugeta, M. Fujita, and T. Nagatsuma, “Design and characterization of 1 THz-band photonic-crystal waveguides,” in 79th JSAP Autumn Meeting (2018).
  8. T. Baba, “Slow light in photonic crystals,” Nat. Photonics 2, 465 (2008).
    [Crossref]
  9. S. J. McNab, N. Moll, and Y. A. Vlasov, “Ultra-low loss photonic integrated circuit with membrane-type photonic crystal waveguides,” Opt. Express 11, 2927–2939 (2003).
    [Crossref]
  10. M. Yata, M. Fujita, and T. Nagatsuma, “Photonic-crystal diplexers for terahertz-wave applications,” Opt. Express 24, 7835–7849 (2016).
    [Crossref]
  11. K. Okamoto, K. Tsuruda, S. Diebold, S. Hisatake, M. Fujita, and T. Nagatsuma, “Terahertz sensor using photonic crystal cavity and resonant tunneling diodes,” J. Infrared Millimeter Terahertz Waves 38, 1085–1097 (2017).
    [Crossref]
  12. X. Yu, R. Yamada, J.-Y. Kim, M. Fujita, and T. Nagatsuma, “Integrated circuits using photonic-crystal slab waveguides and resonant tunneling diodes for terahertz communication,” in Progress in Electromagnetics Research Symposium (PIERS-Toyama) (2018), pp. 599–605.
  13. X. Yu, Y. Hosoda, T. Miyamodo, K. Obata, J. Y. Kim, and T. Nagatsuma, “Terahertz fibre transmission link using resonant tunnelling diodes integrated with photonic-crystal waveguides,” Electron. Lett. 55, 398–400 (2018).
    [Crossref]
  14. M. Fujita and T. Nagatsuma, “Photonic crystal technology for terahertz system integration,” Proc. SPIE 9856, 98560P (2016).
    [Crossref]
  15. W. Withayachumnankul, R. Yamada, C. Fumeaux, M. Fujita, and T. Nagatsuma, “All-dielectric integration of dielectric resonator antenna and photonic crystal waveguide,” Opt. Express 25, 14706–14714 (2017).
    [Crossref]
  16. W. Withayachumnankul, R. Yamada, M. Fujita, and T. Nagatsuma, “All-dielectric rod antenna array for terahertz communications,” APL Photonics 3, 051707 (2018).
    [Crossref]
  17. D. Headland, W. Withayachumnankul, R. Yamada, M. Fujita, and T. Nagatsuma, “Terahertz multi-beam antenna using photonic crystal waveguide and Luneburg lens,” APL Photonics 3, 126105 (2018).
    [Crossref]
  18. D. M. Pozar, Microwave Engineering (Wiley, 2009).
  19. B. E. Saleh and M. C. Teich, Fundamentals of Photonics, 2nd ed. (Wiley, 2007).
  20. T. F. Krauss, “Slow light in photonic crystal waveguides,” J. Phys. D 40, 2666–2670 (2007).
    [Crossref]
  21. W. R. Davis, J. Wilson, S. Mick, J. Xu, H. Hua, C. Mineo, A. M. Sule, M. Steer, and P. D. Franzon, “Demystifying 3D ICs: the pros and cons of going vertical,” IEEE Des. Test. Comput. 22, 498–510 (2005).
  22. A. Fazzi, R. Canegallo, L. Ciccarelli, L. Magagni, F. Natali, E. Jung, P. Rolandi, and R. Guerrieri, “3-D capacitive interconnections with mono-and bi-directional capabilities,” IEEE J. Solid-State Circuits 43, 275–284 (2008).
    [Crossref]
  23. M. Raburn, B. Liu, P. Abraham, and J. E. Bowers, “Double-bonded InP-InGaAsP vertical coupler 1:8 beam splitter,” IEEE Photon. Tech. Lett. 12, 1639–1641 (2000).
    [Crossref]
  24. M. Raburn, B. Liu, K. Rauscher, Y. Okuno, N. Dagli, and J. E. Bowers, “3-D photonic circuit technology,” IEEE J. Sel. Top. Quantum Electron. 8, 935–942 (2002).
    [Crossref]
  25. R. Sun, M. Beals, A. Pomerene, J. Cheng, C.-Y. Hong, L. Kimerling, and J. Michel, “Impedance matching vertical optical waveguide couplers for dense high index contrast circuits,” Opt. Express 16, 11682–11690 (2008).
    [Crossref]
  26. S. Zhu and G.-Q. Lo, “Vertically stacked multilayer photonics on bulk silicon toward three-dimensional integration,” J. Lightwave Technol. 34, 386–392 (2016).
    [Crossref]
  27. X. Shen, T. J. Cui, D. Martin-Cano, and F. J. Garcia-Vidal, “Conformal surface plasmons propagating on ultrathin and flexible films,” Proc. Natl. Acad. Sci. USA 110, 40–45 (2013).
    [Crossref]
  28. L. Shen, X. Chen, and T.-J. Yang, “Terahertz surface plasmon polaritons on periodically corrugated metal surfaces,” Opt. Express 16, 3326–3333 (2008).
    [Crossref]
  29. V. Radisic, K. M. Leong, X. Mei, S. Sarkozy, W. Yoshida, and W. R. Deal, “Power amplification at 0.65  THz using InP HEMTs,” IEEE Trans. Microw. Theory Tech. 60, 724–729 (2012).
    [Crossref]
  30. K. S. Reichel, R. Mendis, and D. M. Mittleman, “A broadband terahertz waveguide T-junction variable power splitter,” Sci. Rep. 6, 28925 (2016).
    [Crossref]
  31. P. Hillger, R. Jain, J. Grzyb, W. Förster, B. Heinemann, G. MacGrogan, P. Mounaix, T. Zimmer, and U. R. Pfeiffer, “A 128-pixel system-on-a-chip for real-time super-resolution terahertz near-field imaging,” IEEE J. Solid-State Circuits 53, 3599–3612 (2018).
    [Crossref]
  32. K. S. Reichel, N. Lozada-Smith, I. D. Joshipura, J. Ma, R. Shrestha, R. Mendis, M. D. Dickey, and D. M. Mittleman, “Electrically reconfigurable terahertz signal processing devices using liquid metal components,” Nat. Commun. 9, 4202 (2018).
    [Crossref]
  33. W. Zhu, A. Agrawal, and A. Nahata, “Planar plasmonic terahertz guided-wave devices,” Opt. Express 16, 6216–6226 (2008).
    [Crossref]
  34. J.-T. Lu, C.-H. Lai, T.-F. Tseng, H. Chen, Y.-F. Tsai, Y.-J. Hwang, H.-C. Chang, and C.-K. Sun, “Terahertz pipe-waveguide-based directional couplers,” Opt. Express 19, 26883–26890 (2011).
    [Crossref]
  35. H.-W. Chen, C.-M. Chiu, C.-H. Lai, J.-L. Kuo, P.-J. Chiang, Y.-J. Hwang, H.-C. Chang, and C.-K. Sun, “Subwavelength dielectric-fiber-based THz coupler,” J. Lightwave Technol. 27, 1489–1495 (2009).
    [Crossref]
  36. C. M. Soukoulis, Photonic Band Gap Materials (Springer, 2012), vol. 315.
  37. S. Boscolo, M. Midrio, and C. G. Someda, “Coupling and decoupling of electromagnetic waves in parallel 2D photonic crystal waveguides,” IEEE J. Quantum Electron. 38, 47–53 (2002).
    [Crossref]
  38. K. Ishizaki, M. Koumura, K. Suzuki, K. Gondaira, and S. Noda, “Realization of three-dimensional guiding of photons in photonic crystals,” Nat. Photonics 7, 133 (2013).
    [Crossref]
  39. D. Headland, Y. Monnai, D. Abbott, C. Fumeaux, and W. Withayachumnankul, “Tutorial: terahertz beamforming, from concepts to realizations,” APL Photonics 3, 051101 (2018).
    [Crossref]
  40. X. Yu, M. Sugeta, Y. Yamagami, M. Fujita, and T. Nagatsuma, “Simultaneous low-loss and low-dispersion in a photonic-crystal waveguide for terahertz communications,” Appl. Phys. Express 12, 012005 (2019).
    [Crossref]
  41. D. Headland, X. Yu, M. Fujita, and T. Nagatsuma, “Near-field vertical coupling between terahertz photonic crystal waveguides,” in URSI Asia-Pacific Radio Science Conference (AP-RASC) (2019).

2019 (1)

X. Yu, M. Sugeta, Y. Yamagami, M. Fujita, and T. Nagatsuma, “Simultaneous low-loss and low-dispersion in a photonic-crystal waveguide for terahertz communications,” Appl. Phys. Express 12, 012005 (2019).
[Crossref]

2018 (6)

D. Headland, Y. Monnai, D. Abbott, C. Fumeaux, and W. Withayachumnankul, “Tutorial: terahertz beamforming, from concepts to realizations,” APL Photonics 3, 051101 (2018).
[Crossref]

P. Hillger, R. Jain, J. Grzyb, W. Förster, B. Heinemann, G. MacGrogan, P. Mounaix, T. Zimmer, and U. R. Pfeiffer, “A 128-pixel system-on-a-chip for real-time super-resolution terahertz near-field imaging,” IEEE J. Solid-State Circuits 53, 3599–3612 (2018).
[Crossref]

K. S. Reichel, N. Lozada-Smith, I. D. Joshipura, J. Ma, R. Shrestha, R. Mendis, M. D. Dickey, and D. M. Mittleman, “Electrically reconfigurable terahertz signal processing devices using liquid metal components,” Nat. Commun. 9, 4202 (2018).
[Crossref]

X. Yu, Y. Hosoda, T. Miyamodo, K. Obata, J. Y. Kim, and T. Nagatsuma, “Terahertz fibre transmission link using resonant tunnelling diodes integrated with photonic-crystal waveguides,” Electron. Lett. 55, 398–400 (2018).
[Crossref]

W. Withayachumnankul, R. Yamada, M. Fujita, and T. Nagatsuma, “All-dielectric rod antenna array for terahertz communications,” APL Photonics 3, 051707 (2018).
[Crossref]

D. Headland, W. Withayachumnankul, R. Yamada, M. Fujita, and T. Nagatsuma, “Terahertz multi-beam antenna using photonic crystal waveguide and Luneburg lens,” APL Photonics 3, 126105 (2018).
[Crossref]

2017 (2)

K. Okamoto, K. Tsuruda, S. Diebold, S. Hisatake, M. Fujita, and T. Nagatsuma, “Terahertz sensor using photonic crystal cavity and resonant tunneling diodes,” J. Infrared Millimeter Terahertz Waves 38, 1085–1097 (2017).
[Crossref]

W. Withayachumnankul, R. Yamada, C. Fumeaux, M. Fujita, and T. Nagatsuma, “All-dielectric integration of dielectric resonator antenna and photonic crystal waveguide,” Opt. Express 25, 14706–14714 (2017).
[Crossref]

2016 (4)

M. Fujita and T. Nagatsuma, “Photonic crystal technology for terahertz system integration,” Proc. SPIE 9856, 98560P (2016).
[Crossref]

M. Yata, M. Fujita, and T. Nagatsuma, “Photonic-crystal diplexers for terahertz-wave applications,” Opt. Express 24, 7835–7849 (2016).
[Crossref]

S. Zhu and G.-Q. Lo, “Vertically stacked multilayer photonics on bulk silicon toward three-dimensional integration,” J. Lightwave Technol. 34, 386–392 (2016).
[Crossref]

K. S. Reichel, R. Mendis, and D. M. Mittleman, “A broadband terahertz waveguide T-junction variable power splitter,” Sci. Rep. 6, 28925 (2016).
[Crossref]

2015 (2)

K. Tsuruda, M. Fujita, and T. Nagatsuma, “Extremely low-loss terahertz waveguide based on silicon photonic-crystal slab,” Opt. Express 23, 31977–31990 (2015).
[Crossref]

S. Hanham, C. Watts, W. Otter, S. Lucyszyn, and N. Klein, “Dielectric measurements of nanoliter liquids with a photonic crystal resonator at terahertz frequencies,” Appl. Phys. Lett. 107, 032903 (2015).
[Crossref]

2014 (1)

W. J. Otter, S. M. Hanham, N. M. Ridler, G. Marino, N. Klein, and S. Lucyszyn, “100  GHz ultra-high Q-factor photonic crystal resonators,” Sens. Actuators A 217, 151–159 (2014).
[Crossref]

2013 (2)

X. Shen, T. J. Cui, D. Martin-Cano, and F. J. Garcia-Vidal, “Conformal surface plasmons propagating on ultrathin and flexible films,” Proc. Natl. Acad. Sci. USA 110, 40–45 (2013).
[Crossref]

K. Ishizaki, M. Koumura, K. Suzuki, K. Gondaira, and S. Noda, “Realization of three-dimensional guiding of photons in photonic crystals,” Nat. Photonics 7, 133 (2013).
[Crossref]

2012 (1)

V. Radisic, K. M. Leong, X. Mei, S. Sarkozy, W. Yoshida, and W. R. Deal, “Power amplification at 0.65  THz using InP HEMTs,” IEEE Trans. Microw. Theory Tech. 60, 724–729 (2012).
[Crossref]

2011 (1)

2009 (2)

2008 (5)

2007 (1)

T. F. Krauss, “Slow light in photonic crystal waveguides,” J. Phys. D 40, 2666–2670 (2007).
[Crossref]

2005 (1)

W. R. Davis, J. Wilson, S. Mick, J. Xu, H. Hua, C. Mineo, A. M. Sule, M. Steer, and P. D. Franzon, “Demystifying 3D ICs: the pros and cons of going vertical,” IEEE Des. Test. Comput. 22, 498–510 (2005).

2004 (1)

2003 (1)

2002 (2)

M. Raburn, B. Liu, K. Rauscher, Y. Okuno, N. Dagli, and J. E. Bowers, “3-D photonic circuit technology,” IEEE J. Sel. Top. Quantum Electron. 8, 935–942 (2002).
[Crossref]

S. Boscolo, M. Midrio, and C. G. Someda, “Coupling and decoupling of electromagnetic waves in parallel 2D photonic crystal waveguides,” IEEE J. Quantum Electron. 38, 47–53 (2002).
[Crossref]

2000 (1)

M. Raburn, B. Liu, P. Abraham, and J. E. Bowers, “Double-bonded InP-InGaAsP vertical coupler 1:8 beam splitter,” IEEE Photon. Tech. Lett. 12, 1639–1641 (2000).
[Crossref]

1900 (1)

P. Drude, “Zur Elektronentheorie der Metalle,” Ann. Phys. (Leipzig) 306, 566–613 (1900).
[Crossref]

Abbott, D.

D. Headland, Y. Monnai, D. Abbott, C. Fumeaux, and W. Withayachumnankul, “Tutorial: terahertz beamforming, from concepts to realizations,” APL Photonics 3, 051101 (2018).
[Crossref]

Abraham, P.

M. Raburn, B. Liu, P. Abraham, and J. E. Bowers, “Double-bonded InP-InGaAsP vertical coupler 1:8 beam splitter,” IEEE Photon. Tech. Lett. 12, 1639–1641 (2000).
[Crossref]

Agrawal, A.

Baba, T.

T. Baba, “Slow light in photonic crystals,” Nat. Photonics 2, 465 (2008).
[Crossref]

Beals, M.

Boscolo, S.

S. Boscolo, M. Midrio, and C. G. Someda, “Coupling and decoupling of electromagnetic waves in parallel 2D photonic crystal waveguides,” IEEE J. Quantum Electron. 38, 47–53 (2002).
[Crossref]

Bowers, J. E.

M. Raburn, B. Liu, K. Rauscher, Y. Okuno, N. Dagli, and J. E. Bowers, “3-D photonic circuit technology,” IEEE J. Sel. Top. Quantum Electron. 8, 935–942 (2002).
[Crossref]

M. Raburn, B. Liu, P. Abraham, and J. E. Bowers, “Double-bonded InP-InGaAsP vertical coupler 1:8 beam splitter,” IEEE Photon. Tech. Lett. 12, 1639–1641 (2000).
[Crossref]

Canegallo, R.

A. Fazzi, R. Canegallo, L. Ciccarelli, L. Magagni, F. Natali, E. Jung, P. Rolandi, and R. Guerrieri, “3-D capacitive interconnections with mono-and bi-directional capabilities,” IEEE J. Solid-State Circuits 43, 275–284 (2008).
[Crossref]

Chang, H.-C.

Chen, H.

Chen, H.-W.

Chen, X.

Cheng, J.

Chiang, P.-J.

Chiu, C.-M.

Ciccarelli, L.

A. Fazzi, R. Canegallo, L. Ciccarelli, L. Magagni, F. Natali, E. Jung, P. Rolandi, and R. Guerrieri, “3-D capacitive interconnections with mono-and bi-directional capabilities,” IEEE J. Solid-State Circuits 43, 275–284 (2008).
[Crossref]

Cui, T. J.

X. Shen, T. J. Cui, D. Martin-Cano, and F. J. Garcia-Vidal, “Conformal surface plasmons propagating on ultrathin and flexible films,” Proc. Natl. Acad. Sci. USA 110, 40–45 (2013).
[Crossref]

Dagli, N.

M. Raburn, B. Liu, K. Rauscher, Y. Okuno, N. Dagli, and J. E. Bowers, “3-D photonic circuit technology,” IEEE J. Sel. Top. Quantum Electron. 8, 935–942 (2002).
[Crossref]

Dai, J.

Davis, W. R.

W. R. Davis, J. Wilson, S. Mick, J. Xu, H. Hua, C. Mineo, A. M. Sule, M. Steer, and P. D. Franzon, “Demystifying 3D ICs: the pros and cons of going vertical,” IEEE Des. Test. Comput. 22, 498–510 (2005).

Deal, W. R.

V. Radisic, K. M. Leong, X. Mei, S. Sarkozy, W. Yoshida, and W. R. Deal, “Power amplification at 0.65  THz using InP HEMTs,” IEEE Trans. Microw. Theory Tech. 60, 724–729 (2012).
[Crossref]

Dickey, M. D.

K. S. Reichel, N. Lozada-Smith, I. D. Joshipura, J. Ma, R. Shrestha, R. Mendis, M. D. Dickey, and D. M. Mittleman, “Electrically reconfigurable terahertz signal processing devices using liquid metal components,” Nat. Commun. 9, 4202 (2018).
[Crossref]

Diebold, S.

K. Okamoto, K. Tsuruda, S. Diebold, S. Hisatake, M. Fujita, and T. Nagatsuma, “Terahertz sensor using photonic crystal cavity and resonant tunneling diodes,” J. Infrared Millimeter Terahertz Waves 38, 1085–1097 (2017).
[Crossref]

Drude, P.

P. Drude, “Zur Elektronentheorie der Metalle,” Ann. Phys. (Leipzig) 306, 566–613 (1900).
[Crossref]

Fazzi, A.

A. Fazzi, R. Canegallo, L. Ciccarelli, L. Magagni, F. Natali, E. Jung, P. Rolandi, and R. Guerrieri, “3-D capacitive interconnections with mono-and bi-directional capabilities,” IEEE J. Solid-State Circuits 43, 275–284 (2008).
[Crossref]

Förster, W.

P. Hillger, R. Jain, J. Grzyb, W. Förster, B. Heinemann, G. MacGrogan, P. Mounaix, T. Zimmer, and U. R. Pfeiffer, “A 128-pixel system-on-a-chip for real-time super-resolution terahertz near-field imaging,” IEEE J. Solid-State Circuits 53, 3599–3612 (2018).
[Crossref]

Franzon, P. D.

W. R. Davis, J. Wilson, S. Mick, J. Xu, H. Hua, C. Mineo, A. M. Sule, M. Steer, and P. D. Franzon, “Demystifying 3D ICs: the pros and cons of going vertical,” IEEE Des. Test. Comput. 22, 498–510 (2005).

Fujita, M.

X. Yu, M. Sugeta, Y. Yamagami, M. Fujita, and T. Nagatsuma, “Simultaneous low-loss and low-dispersion in a photonic-crystal waveguide for terahertz communications,” Appl. Phys. Express 12, 012005 (2019).
[Crossref]

W. Withayachumnankul, R. Yamada, M. Fujita, and T. Nagatsuma, “All-dielectric rod antenna array for terahertz communications,” APL Photonics 3, 051707 (2018).
[Crossref]

D. Headland, W. Withayachumnankul, R. Yamada, M. Fujita, and T. Nagatsuma, “Terahertz multi-beam antenna using photonic crystal waveguide and Luneburg lens,” APL Photonics 3, 126105 (2018).
[Crossref]

K. Okamoto, K. Tsuruda, S. Diebold, S. Hisatake, M. Fujita, and T. Nagatsuma, “Terahertz sensor using photonic crystal cavity and resonant tunneling diodes,” J. Infrared Millimeter Terahertz Waves 38, 1085–1097 (2017).
[Crossref]

W. Withayachumnankul, R. Yamada, C. Fumeaux, M. Fujita, and T. Nagatsuma, “All-dielectric integration of dielectric resonator antenna and photonic crystal waveguide,” Opt. Express 25, 14706–14714 (2017).
[Crossref]

M. Yata, M. Fujita, and T. Nagatsuma, “Photonic-crystal diplexers for terahertz-wave applications,” Opt. Express 24, 7835–7849 (2016).
[Crossref]

M. Fujita and T. Nagatsuma, “Photonic crystal technology for terahertz system integration,” Proc. SPIE 9856, 98560P (2016).
[Crossref]

K. Tsuruda, M. Fujita, and T. Nagatsuma, “Extremely low-loss terahertz waveguide based on silicon photonic-crystal slab,” Opt. Express 23, 31977–31990 (2015).
[Crossref]

X. Yu, R. Yamada, J.-Y. Kim, M. Fujita, and T. Nagatsuma, “Integrated circuits using photonic-crystal slab waveguides and resonant tunneling diodes for terahertz communication,” in Progress in Electromagnetics Research Symposium (PIERS-Toyama) (2018), pp. 599–605.

M. Sugeta, M. Fujita, and T. Nagatsuma, “Design and characterization of 1 THz-band photonic-crystal waveguides,” in 79th JSAP Autumn Meeting (2018).

D. Headland, X. Yu, M. Fujita, and T. Nagatsuma, “Near-field vertical coupling between terahertz photonic crystal waveguides,” in URSI Asia-Pacific Radio Science Conference (AP-RASC) (2019).

Fumeaux, C.

D. Headland, Y. Monnai, D. Abbott, C. Fumeaux, and W. Withayachumnankul, “Tutorial: terahertz beamforming, from concepts to realizations,” APL Photonics 3, 051101 (2018).
[Crossref]

W. Withayachumnankul, R. Yamada, C. Fumeaux, M. Fujita, and T. Nagatsuma, “All-dielectric integration of dielectric resonator antenna and photonic crystal waveguide,” Opt. Express 25, 14706–14714 (2017).
[Crossref]

Garcia-Vidal, F. J.

X. Shen, T. J. Cui, D. Martin-Cano, and F. J. Garcia-Vidal, “Conformal surface plasmons propagating on ultrathin and flexible films,” Proc. Natl. Acad. Sci. USA 110, 40–45 (2013).
[Crossref]

Gondaira, K.

K. Ishizaki, M. Koumura, K. Suzuki, K. Gondaira, and S. Noda, “Realization of three-dimensional guiding of photons in photonic crystals,” Nat. Photonics 7, 133 (2013).
[Crossref]

Grischkowsky, D.

Grzyb, J.

P. Hillger, R. Jain, J. Grzyb, W. Förster, B. Heinemann, G. MacGrogan, P. Mounaix, T. Zimmer, and U. R. Pfeiffer, “A 128-pixel system-on-a-chip for real-time super-resolution terahertz near-field imaging,” IEEE J. Solid-State Circuits 53, 3599–3612 (2018).
[Crossref]

Guerrieri, R.

A. Fazzi, R. Canegallo, L. Ciccarelli, L. Magagni, F. Natali, E. Jung, P. Rolandi, and R. Guerrieri, “3-D capacitive interconnections with mono-and bi-directional capabilities,” IEEE J. Solid-State Circuits 43, 275–284 (2008).
[Crossref]

Hanham, S.

S. Hanham, C. Watts, W. Otter, S. Lucyszyn, and N. Klein, “Dielectric measurements of nanoliter liquids with a photonic crystal resonator at terahertz frequencies,” Appl. Phys. Lett. 107, 032903 (2015).
[Crossref]

Hanham, S. M.

W. J. Otter, S. M. Hanham, N. M. Ridler, G. Marino, N. Klein, and S. Lucyszyn, “100  GHz ultra-high Q-factor photonic crystal resonators,” Sens. Actuators A 217, 151–159 (2014).
[Crossref]

Headland, D.

D. Headland, W. Withayachumnankul, R. Yamada, M. Fujita, and T. Nagatsuma, “Terahertz multi-beam antenna using photonic crystal waveguide and Luneburg lens,” APL Photonics 3, 126105 (2018).
[Crossref]

D. Headland, Y. Monnai, D. Abbott, C. Fumeaux, and W. Withayachumnankul, “Tutorial: terahertz beamforming, from concepts to realizations,” APL Photonics 3, 051101 (2018).
[Crossref]

D. Headland, X. Yu, M. Fujita, and T. Nagatsuma, “Near-field vertical coupling between terahertz photonic crystal waveguides,” in URSI Asia-Pacific Radio Science Conference (AP-RASC) (2019).

Heinemann, B.

P. Hillger, R. Jain, J. Grzyb, W. Förster, B. Heinemann, G. MacGrogan, P. Mounaix, T. Zimmer, and U. R. Pfeiffer, “A 128-pixel system-on-a-chip for real-time super-resolution terahertz near-field imaging,” IEEE J. Solid-State Circuits 53, 3599–3612 (2018).
[Crossref]

Hillger, P.

P. Hillger, R. Jain, J. Grzyb, W. Förster, B. Heinemann, G. MacGrogan, P. Mounaix, T. Zimmer, and U. R. Pfeiffer, “A 128-pixel system-on-a-chip for real-time super-resolution terahertz near-field imaging,” IEEE J. Solid-State Circuits 53, 3599–3612 (2018).
[Crossref]

Hisatake, S.

K. Okamoto, K. Tsuruda, S. Diebold, S. Hisatake, M. Fujita, and T. Nagatsuma, “Terahertz sensor using photonic crystal cavity and resonant tunneling diodes,” J. Infrared Millimeter Terahertz Waves 38, 1085–1097 (2017).
[Crossref]

Hong, C.-Y.

Hosoda, Y.

X. Yu, Y. Hosoda, T. Miyamodo, K. Obata, J. Y. Kim, and T. Nagatsuma, “Terahertz fibre transmission link using resonant tunnelling diodes integrated with photonic-crystal waveguides,” Electron. Lett. 55, 398–400 (2018).
[Crossref]

Hua, H.

W. R. Davis, J. Wilson, S. Mick, J. Xu, H. Hua, C. Mineo, A. M. Sule, M. Steer, and P. D. Franzon, “Demystifying 3D ICs: the pros and cons of going vertical,” IEEE Des. Test. Comput. 22, 498–510 (2005).

Hwang, Y.-J.

Ishizaki, K.

K. Ishizaki, M. Koumura, K. Suzuki, K. Gondaira, and S. Noda, “Realization of three-dimensional guiding of photons in photonic crystals,” Nat. Photonics 7, 133 (2013).
[Crossref]

Jain, R.

P. Hillger, R. Jain, J. Grzyb, W. Förster, B. Heinemann, G. MacGrogan, P. Mounaix, T. Zimmer, and U. R. Pfeiffer, “A 128-pixel system-on-a-chip for real-time super-resolution terahertz near-field imaging,” IEEE J. Solid-State Circuits 53, 3599–3612 (2018).
[Crossref]

Joshipura, I. D.

K. S. Reichel, N. Lozada-Smith, I. D. Joshipura, J. Ma, R. Shrestha, R. Mendis, M. D. Dickey, and D. M. Mittleman, “Electrically reconfigurable terahertz signal processing devices using liquid metal components,” Nat. Commun. 9, 4202 (2018).
[Crossref]

Jung, E.

A. Fazzi, R. Canegallo, L. Ciccarelli, L. Magagni, F. Natali, E. Jung, P. Rolandi, and R. Guerrieri, “3-D capacitive interconnections with mono-and bi-directional capabilities,” IEEE J. Solid-State Circuits 43, 275–284 (2008).
[Crossref]

Kim, J. Y.

X. Yu, Y. Hosoda, T. Miyamodo, K. Obata, J. Y. Kim, and T. Nagatsuma, “Terahertz fibre transmission link using resonant tunnelling diodes integrated with photonic-crystal waveguides,” Electron. Lett. 55, 398–400 (2018).
[Crossref]

Kim, J.-Y.

X. Yu, R. Yamada, J.-Y. Kim, M. Fujita, and T. Nagatsuma, “Integrated circuits using photonic-crystal slab waveguides and resonant tunneling diodes for terahertz communication,” in Progress in Electromagnetics Research Symposium (PIERS-Toyama) (2018), pp. 599–605.

Kimerling, L.

Klein, N.

S. Hanham, C. Watts, W. Otter, S. Lucyszyn, and N. Klein, “Dielectric measurements of nanoliter liquids with a photonic crystal resonator at terahertz frequencies,” Appl. Phys. Lett. 107, 032903 (2015).
[Crossref]

W. J. Otter, S. M. Hanham, N. M. Ridler, G. Marino, N. Klein, and S. Lucyszyn, “100  GHz ultra-high Q-factor photonic crystal resonators,” Sens. Actuators A 217, 151–159 (2014).
[Crossref]

Koumura, M.

K. Ishizaki, M. Koumura, K. Suzuki, K. Gondaira, and S. Noda, “Realization of three-dimensional guiding of photons in photonic crystals,” Nat. Photonics 7, 133 (2013).
[Crossref]

Krauss, T. F.

T. F. Krauss, “Slow light in photonic crystal waveguides,” J. Phys. D 40, 2666–2670 (2007).
[Crossref]

Kuo, J.-L.

Lai, C.-H.

Leong, K. M.

V. Radisic, K. M. Leong, X. Mei, S. Sarkozy, W. Yoshida, and W. R. Deal, “Power amplification at 0.65  THz using InP HEMTs,” IEEE Trans. Microw. Theory Tech. 60, 724–729 (2012).
[Crossref]

Liu, B.

M. Raburn, B. Liu, K. Rauscher, Y. Okuno, N. Dagli, and J. E. Bowers, “3-D photonic circuit technology,” IEEE J. Sel. Top. Quantum Electron. 8, 935–942 (2002).
[Crossref]

M. Raburn, B. Liu, P. Abraham, and J. E. Bowers, “Double-bonded InP-InGaAsP vertical coupler 1:8 beam splitter,” IEEE Photon. Tech. Lett. 12, 1639–1641 (2000).
[Crossref]

Lo, G.-Q.

Lozada-Smith, N.

K. S. Reichel, N. Lozada-Smith, I. D. Joshipura, J. Ma, R. Shrestha, R. Mendis, M. D. Dickey, and D. M. Mittleman, “Electrically reconfigurable terahertz signal processing devices using liquid metal components,” Nat. Commun. 9, 4202 (2018).
[Crossref]

Lu, J.-T.

Lucyszyn, S.

S. Hanham, C. Watts, W. Otter, S. Lucyszyn, and N. Klein, “Dielectric measurements of nanoliter liquids with a photonic crystal resonator at terahertz frequencies,” Appl. Phys. Lett. 107, 032903 (2015).
[Crossref]

W. J. Otter, S. M. Hanham, N. M. Ridler, G. Marino, N. Klein, and S. Lucyszyn, “100  GHz ultra-high Q-factor photonic crystal resonators,” Sens. Actuators A 217, 151–159 (2014).
[Crossref]

Ma, J.

K. S. Reichel, N. Lozada-Smith, I. D. Joshipura, J. Ma, R. Shrestha, R. Mendis, M. D. Dickey, and D. M. Mittleman, “Electrically reconfigurable terahertz signal processing devices using liquid metal components,” Nat. Commun. 9, 4202 (2018).
[Crossref]

MacGrogan, G.

P. Hillger, R. Jain, J. Grzyb, W. Förster, B. Heinemann, G. MacGrogan, P. Mounaix, T. Zimmer, and U. R. Pfeiffer, “A 128-pixel system-on-a-chip for real-time super-resolution terahertz near-field imaging,” IEEE J. Solid-State Circuits 53, 3599–3612 (2018).
[Crossref]

Magagni, L.

A. Fazzi, R. Canegallo, L. Ciccarelli, L. Magagni, F. Natali, E. Jung, P. Rolandi, and R. Guerrieri, “3-D capacitive interconnections with mono-and bi-directional capabilities,” IEEE J. Solid-State Circuits 43, 275–284 (2008).
[Crossref]

Marino, G.

W. J. Otter, S. M. Hanham, N. M. Ridler, G. Marino, N. Klein, and S. Lucyszyn, “100  GHz ultra-high Q-factor photonic crystal resonators,” Sens. Actuators A 217, 151–159 (2014).
[Crossref]

Martin-Cano, D.

X. Shen, T. J. Cui, D. Martin-Cano, and F. J. Garcia-Vidal, “Conformal surface plasmons propagating on ultrathin and flexible films,” Proc. Natl. Acad. Sci. USA 110, 40–45 (2013).
[Crossref]

McNab, S. J.

Mei, X.

V. Radisic, K. M. Leong, X. Mei, S. Sarkozy, W. Yoshida, and W. R. Deal, “Power amplification at 0.65  THz using InP HEMTs,” IEEE Trans. Microw. Theory Tech. 60, 724–729 (2012).
[Crossref]

Mendis, R.

K. S. Reichel, N. Lozada-Smith, I. D. Joshipura, J. Ma, R. Shrestha, R. Mendis, M. D. Dickey, and D. M. Mittleman, “Electrically reconfigurable terahertz signal processing devices using liquid metal components,” Nat. Commun. 9, 4202 (2018).
[Crossref]

K. S. Reichel, R. Mendis, and D. M. Mittleman, “A broadband terahertz waveguide T-junction variable power splitter,” Sci. Rep. 6, 28925 (2016).
[Crossref]

Michel, J.

Mick, S.

W. R. Davis, J. Wilson, S. Mick, J. Xu, H. Hua, C. Mineo, A. M. Sule, M. Steer, and P. D. Franzon, “Demystifying 3D ICs: the pros and cons of going vertical,” IEEE Des. Test. Comput. 22, 498–510 (2005).

Midrio, M.

S. Boscolo, M. Midrio, and C. G. Someda, “Coupling and decoupling of electromagnetic waves in parallel 2D photonic crystal waveguides,” IEEE J. Quantum Electron. 38, 47–53 (2002).
[Crossref]

Mineo, C.

W. R. Davis, J. Wilson, S. Mick, J. Xu, H. Hua, C. Mineo, A. M. Sule, M. Steer, and P. D. Franzon, “Demystifying 3D ICs: the pros and cons of going vertical,” IEEE Des. Test. Comput. 22, 498–510 (2005).

Mittleman, D. M.

K. S. Reichel, N. Lozada-Smith, I. D. Joshipura, J. Ma, R. Shrestha, R. Mendis, M. D. Dickey, and D. M. Mittleman, “Electrically reconfigurable terahertz signal processing devices using liquid metal components,” Nat. Commun. 9, 4202 (2018).
[Crossref]

K. S. Reichel, R. Mendis, and D. M. Mittleman, “A broadband terahertz waveguide T-junction variable power splitter,” Sci. Rep. 6, 28925 (2016).
[Crossref]

Miyamodo, T.

X. Yu, Y. Hosoda, T. Miyamodo, K. Obata, J. Y. Kim, and T. Nagatsuma, “Terahertz fibre transmission link using resonant tunnelling diodes integrated with photonic-crystal waveguides,” Electron. Lett. 55, 398–400 (2018).
[Crossref]

Moll, N.

Monnai, Y.

D. Headland, Y. Monnai, D. Abbott, C. Fumeaux, and W. Withayachumnankul, “Tutorial: terahertz beamforming, from concepts to realizations,” APL Photonics 3, 051101 (2018).
[Crossref]

Mounaix, P.

P. Hillger, R. Jain, J. Grzyb, W. Förster, B. Heinemann, G. MacGrogan, P. Mounaix, T. Zimmer, and U. R. Pfeiffer, “A 128-pixel system-on-a-chip for real-time super-resolution terahertz near-field imaging,” IEEE J. Solid-State Circuits 53, 3599–3612 (2018).
[Crossref]

Nagatsuma, T.

X. Yu, M. Sugeta, Y. Yamagami, M. Fujita, and T. Nagatsuma, “Simultaneous low-loss and low-dispersion in a photonic-crystal waveguide for terahertz communications,” Appl. Phys. Express 12, 012005 (2019).
[Crossref]

X. Yu, Y. Hosoda, T. Miyamodo, K. Obata, J. Y. Kim, and T. Nagatsuma, “Terahertz fibre transmission link using resonant tunnelling diodes integrated with photonic-crystal waveguides,” Electron. Lett. 55, 398–400 (2018).
[Crossref]

W. Withayachumnankul, R. Yamada, M. Fujita, and T. Nagatsuma, “All-dielectric rod antenna array for terahertz communications,” APL Photonics 3, 051707 (2018).
[Crossref]

D. Headland, W. Withayachumnankul, R. Yamada, M. Fujita, and T. Nagatsuma, “Terahertz multi-beam antenna using photonic crystal waveguide and Luneburg lens,” APL Photonics 3, 126105 (2018).
[Crossref]

K. Okamoto, K. Tsuruda, S. Diebold, S. Hisatake, M. Fujita, and T. Nagatsuma, “Terahertz sensor using photonic crystal cavity and resonant tunneling diodes,” J. Infrared Millimeter Terahertz Waves 38, 1085–1097 (2017).
[Crossref]

W. Withayachumnankul, R. Yamada, C. Fumeaux, M. Fujita, and T. Nagatsuma, “All-dielectric integration of dielectric resonator antenna and photonic crystal waveguide,” Opt. Express 25, 14706–14714 (2017).
[Crossref]

M. Yata, M. Fujita, and T. Nagatsuma, “Photonic-crystal diplexers for terahertz-wave applications,” Opt. Express 24, 7835–7849 (2016).
[Crossref]

M. Fujita and T. Nagatsuma, “Photonic crystal technology for terahertz system integration,” Proc. SPIE 9856, 98560P (2016).
[Crossref]

K. Tsuruda, M. Fujita, and T. Nagatsuma, “Extremely low-loss terahertz waveguide based on silicon photonic-crystal slab,” Opt. Express 23, 31977–31990 (2015).
[Crossref]

X. Yu, R. Yamada, J.-Y. Kim, M. Fujita, and T. Nagatsuma, “Integrated circuits using photonic-crystal slab waveguides and resonant tunneling diodes for terahertz communication,” in Progress in Electromagnetics Research Symposium (PIERS-Toyama) (2018), pp. 599–605.

M. Sugeta, M. Fujita, and T. Nagatsuma, “Design and characterization of 1 THz-band photonic-crystal waveguides,” in 79th JSAP Autumn Meeting (2018).

D. Headland, X. Yu, M. Fujita, and T. Nagatsuma, “Near-field vertical coupling between terahertz photonic crystal waveguides,” in URSI Asia-Pacific Radio Science Conference (AP-RASC) (2019).

Nahata, A.

Natali, F.

A. Fazzi, R. Canegallo, L. Ciccarelli, L. Magagni, F. Natali, E. Jung, P. Rolandi, and R. Guerrieri, “3-D capacitive interconnections with mono-and bi-directional capabilities,” IEEE J. Solid-State Circuits 43, 275–284 (2008).
[Crossref]

Noda, S.

K. Ishizaki, M. Koumura, K. Suzuki, K. Gondaira, and S. Noda, “Realization of three-dimensional guiding of photons in photonic crystals,” Nat. Photonics 7, 133 (2013).
[Crossref]

Obata, K.

X. Yu, Y. Hosoda, T. Miyamodo, K. Obata, J. Y. Kim, and T. Nagatsuma, “Terahertz fibre transmission link using resonant tunnelling diodes integrated with photonic-crystal waveguides,” Electron. Lett. 55, 398–400 (2018).
[Crossref]

Okamoto, K.

K. Okamoto, K. Tsuruda, S. Diebold, S. Hisatake, M. Fujita, and T. Nagatsuma, “Terahertz sensor using photonic crystal cavity and resonant tunneling diodes,” J. Infrared Millimeter Terahertz Waves 38, 1085–1097 (2017).
[Crossref]

Okuno, Y.

M. Raburn, B. Liu, K. Rauscher, Y. Okuno, N. Dagli, and J. E. Bowers, “3-D photonic circuit technology,” IEEE J. Sel. Top. Quantum Electron. 8, 935–942 (2002).
[Crossref]

Otter, W.

S. Hanham, C. Watts, W. Otter, S. Lucyszyn, and N. Klein, “Dielectric measurements of nanoliter liquids with a photonic crystal resonator at terahertz frequencies,” Appl. Phys. Lett. 107, 032903 (2015).
[Crossref]

Otter, W. J.

W. J. Otter, S. M. Hanham, N. M. Ridler, G. Marino, N. Klein, and S. Lucyszyn, “100  GHz ultra-high Q-factor photonic crystal resonators,” Sens. Actuators A 217, 151–159 (2014).
[Crossref]

Pfeiffer, U. R.

P. Hillger, R. Jain, J. Grzyb, W. Förster, B. Heinemann, G. MacGrogan, P. Mounaix, T. Zimmer, and U. R. Pfeiffer, “A 128-pixel system-on-a-chip for real-time super-resolution terahertz near-field imaging,” IEEE J. Solid-State Circuits 53, 3599–3612 (2018).
[Crossref]

Pomerene, A.

Pozar, D. M.

D. M. Pozar, Microwave Engineering (Wiley, 2009).

Raburn, M.

M. Raburn, B. Liu, K. Rauscher, Y. Okuno, N. Dagli, and J. E. Bowers, “3-D photonic circuit technology,” IEEE J. Sel. Top. Quantum Electron. 8, 935–942 (2002).
[Crossref]

M. Raburn, B. Liu, P. Abraham, and J. E. Bowers, “Double-bonded InP-InGaAsP vertical coupler 1:8 beam splitter,” IEEE Photon. Tech. Lett. 12, 1639–1641 (2000).
[Crossref]

Radisic, V.

V. Radisic, K. M. Leong, X. Mei, S. Sarkozy, W. Yoshida, and W. R. Deal, “Power amplification at 0.65  THz using InP HEMTs,” IEEE Trans. Microw. Theory Tech. 60, 724–729 (2012).
[Crossref]

Rauscher, K.

M. Raburn, B. Liu, K. Rauscher, Y. Okuno, N. Dagli, and J. E. Bowers, “3-D photonic circuit technology,” IEEE J. Sel. Top. Quantum Electron. 8, 935–942 (2002).
[Crossref]

Reichel, K. S.

K. S. Reichel, N. Lozada-Smith, I. D. Joshipura, J. Ma, R. Shrestha, R. Mendis, M. D. Dickey, and D. M. Mittleman, “Electrically reconfigurable terahertz signal processing devices using liquid metal components,” Nat. Commun. 9, 4202 (2018).
[Crossref]

K. S. Reichel, R. Mendis, and D. M. Mittleman, “A broadband terahertz waveguide T-junction variable power splitter,” Sci. Rep. 6, 28925 (2016).
[Crossref]

Ridler, N. M.

W. J. Otter, S. M. Hanham, N. M. Ridler, G. Marino, N. Klein, and S. Lucyszyn, “100  GHz ultra-high Q-factor photonic crystal resonators,” Sens. Actuators A 217, 151–159 (2014).
[Crossref]

Rolandi, P.

A. Fazzi, R. Canegallo, L. Ciccarelli, L. Magagni, F. Natali, E. Jung, P. Rolandi, and R. Guerrieri, “3-D capacitive interconnections with mono-and bi-directional capabilities,” IEEE J. Solid-State Circuits 43, 275–284 (2008).
[Crossref]

Saleh, B. E.

B. E. Saleh and M. C. Teich, Fundamentals of Photonics, 2nd ed. (Wiley, 2007).

Sarkozy, S.

V. Radisic, K. M. Leong, X. Mei, S. Sarkozy, W. Yoshida, and W. R. Deal, “Power amplification at 0.65  THz using InP HEMTs,” IEEE Trans. Microw. Theory Tech. 60, 724–729 (2012).
[Crossref]

Shen, L.

Shen, X.

X. Shen, T. J. Cui, D. Martin-Cano, and F. J. Garcia-Vidal, “Conformal surface plasmons propagating on ultrathin and flexible films,” Proc. Natl. Acad. Sci. USA 110, 40–45 (2013).
[Crossref]

Sherwin, M. S.

C. M. Yee and M. S. Sherwin, “High-Q terahertz microcavities in silicon photonic crystal slabs,” Appl. Phys. Lett. 94, 154104 (2009).
[Crossref]

Shrestha, R.

K. S. Reichel, N. Lozada-Smith, I. D. Joshipura, J. Ma, R. Shrestha, R. Mendis, M. D. Dickey, and D. M. Mittleman, “Electrically reconfigurable terahertz signal processing devices using liquid metal components,” Nat. Commun. 9, 4202 (2018).
[Crossref]

Someda, C. G.

S. Boscolo, M. Midrio, and C. G. Someda, “Coupling and decoupling of electromagnetic waves in parallel 2D photonic crystal waveguides,” IEEE J. Quantum Electron. 38, 47–53 (2002).
[Crossref]

Soukoulis, C. M.

C. M. Soukoulis, Photonic Band Gap Materials (Springer, 2012), vol. 315.

Steer, M.

W. R. Davis, J. Wilson, S. Mick, J. Xu, H. Hua, C. Mineo, A. M. Sule, M. Steer, and P. D. Franzon, “Demystifying 3D ICs: the pros and cons of going vertical,” IEEE Des. Test. Comput. 22, 498–510 (2005).

Sugeta, M.

X. Yu, M. Sugeta, Y. Yamagami, M. Fujita, and T. Nagatsuma, “Simultaneous low-loss and low-dispersion in a photonic-crystal waveguide for terahertz communications,” Appl. Phys. Express 12, 012005 (2019).
[Crossref]

M. Sugeta, M. Fujita, and T. Nagatsuma, “Design and characterization of 1 THz-band photonic-crystal waveguides,” in 79th JSAP Autumn Meeting (2018).

Sule, A. M.

W. R. Davis, J. Wilson, S. Mick, J. Xu, H. Hua, C. Mineo, A. M. Sule, M. Steer, and P. D. Franzon, “Demystifying 3D ICs: the pros and cons of going vertical,” IEEE Des. Test. Comput. 22, 498–510 (2005).

Sun, C.-K.

Sun, R.

Suzuki, K.

K. Ishizaki, M. Koumura, K. Suzuki, K. Gondaira, and S. Noda, “Realization of three-dimensional guiding of photons in photonic crystals,” Nat. Photonics 7, 133 (2013).
[Crossref]

Teich, M. C.

B. E. Saleh and M. C. Teich, Fundamentals of Photonics, 2nd ed. (Wiley, 2007).

Tsai, Y.-F.

Tseng, T.-F.

Tsuruda, K.

K. Okamoto, K. Tsuruda, S. Diebold, S. Hisatake, M. Fujita, and T. Nagatsuma, “Terahertz sensor using photonic crystal cavity and resonant tunneling diodes,” J. Infrared Millimeter Terahertz Waves 38, 1085–1097 (2017).
[Crossref]

K. Tsuruda, M. Fujita, and T. Nagatsuma, “Extremely low-loss terahertz waveguide based on silicon photonic-crystal slab,” Opt. Express 23, 31977–31990 (2015).
[Crossref]

Vlasov, Y. A.

Watts, C.

S. Hanham, C. Watts, W. Otter, S. Lucyszyn, and N. Klein, “Dielectric measurements of nanoliter liquids with a photonic crystal resonator at terahertz frequencies,” Appl. Phys. Lett. 107, 032903 (2015).
[Crossref]

Wilson, J.

W. R. Davis, J. Wilson, S. Mick, J. Xu, H. Hua, C. Mineo, A. M. Sule, M. Steer, and P. D. Franzon, “Demystifying 3D ICs: the pros and cons of going vertical,” IEEE Des. Test. Comput. 22, 498–510 (2005).

Withayachumnankul, W.

D. Headland, W. Withayachumnankul, R. Yamada, M. Fujita, and T. Nagatsuma, “Terahertz multi-beam antenna using photonic crystal waveguide and Luneburg lens,” APL Photonics 3, 126105 (2018).
[Crossref]

W. Withayachumnankul, R. Yamada, M. Fujita, and T. Nagatsuma, “All-dielectric rod antenna array for terahertz communications,” APL Photonics 3, 051707 (2018).
[Crossref]

D. Headland, Y. Monnai, D. Abbott, C. Fumeaux, and W. Withayachumnankul, “Tutorial: terahertz beamforming, from concepts to realizations,” APL Photonics 3, 051101 (2018).
[Crossref]

W. Withayachumnankul, R. Yamada, C. Fumeaux, M. Fujita, and T. Nagatsuma, “All-dielectric integration of dielectric resonator antenna and photonic crystal waveguide,” Opt. Express 25, 14706–14714 (2017).
[Crossref]

Xu, J.

W. R. Davis, J. Wilson, S. Mick, J. Xu, H. Hua, C. Mineo, A. M. Sule, M. Steer, and P. D. Franzon, “Demystifying 3D ICs: the pros and cons of going vertical,” IEEE Des. Test. Comput. 22, 498–510 (2005).

Yamada, R.

D. Headland, W. Withayachumnankul, R. Yamada, M. Fujita, and T. Nagatsuma, “Terahertz multi-beam antenna using photonic crystal waveguide and Luneburg lens,” APL Photonics 3, 126105 (2018).
[Crossref]

W. Withayachumnankul, R. Yamada, M. Fujita, and T. Nagatsuma, “All-dielectric rod antenna array for terahertz communications,” APL Photonics 3, 051707 (2018).
[Crossref]

W. Withayachumnankul, R. Yamada, C. Fumeaux, M. Fujita, and T. Nagatsuma, “All-dielectric integration of dielectric resonator antenna and photonic crystal waveguide,” Opt. Express 25, 14706–14714 (2017).
[Crossref]

X. Yu, R. Yamada, J.-Y. Kim, M. Fujita, and T. Nagatsuma, “Integrated circuits using photonic-crystal slab waveguides and resonant tunneling diodes for terahertz communication,” in Progress in Electromagnetics Research Symposium (PIERS-Toyama) (2018), pp. 599–605.

Yamagami, Y.

X. Yu, M. Sugeta, Y. Yamagami, M. Fujita, and T. Nagatsuma, “Simultaneous low-loss and low-dispersion in a photonic-crystal waveguide for terahertz communications,” Appl. Phys. Express 12, 012005 (2019).
[Crossref]

Yang, T.-J.

Yata, M.

Yee, C. M.

C. M. Yee and M. S. Sherwin, “High-Q terahertz microcavities in silicon photonic crystal slabs,” Appl. Phys. Lett. 94, 154104 (2009).
[Crossref]

Yoshida, W.

V. Radisic, K. M. Leong, X. Mei, S. Sarkozy, W. Yoshida, and W. R. Deal, “Power amplification at 0.65  THz using InP HEMTs,” IEEE Trans. Microw. Theory Tech. 60, 724–729 (2012).
[Crossref]

Yu, X.

X. Yu, M. Sugeta, Y. Yamagami, M. Fujita, and T. Nagatsuma, “Simultaneous low-loss and low-dispersion in a photonic-crystal waveguide for terahertz communications,” Appl. Phys. Express 12, 012005 (2019).
[Crossref]

X. Yu, Y. Hosoda, T. Miyamodo, K. Obata, J. Y. Kim, and T. Nagatsuma, “Terahertz fibre transmission link using resonant tunnelling diodes integrated with photonic-crystal waveguides,” Electron. Lett. 55, 398–400 (2018).
[Crossref]

X. Yu, R. Yamada, J.-Y. Kim, M. Fujita, and T. Nagatsuma, “Integrated circuits using photonic-crystal slab waveguides and resonant tunneling diodes for terahertz communication,” in Progress in Electromagnetics Research Symposium (PIERS-Toyama) (2018), pp. 599–605.

D. Headland, X. Yu, M. Fujita, and T. Nagatsuma, “Near-field vertical coupling between terahertz photonic crystal waveguides,” in URSI Asia-Pacific Radio Science Conference (AP-RASC) (2019).

Zhang, J.

Zhang, W.

Zhu, S.

Zhu, W.

Zimmer, T.

P. Hillger, R. Jain, J. Grzyb, W. Förster, B. Heinemann, G. MacGrogan, P. Mounaix, T. Zimmer, and U. R. Pfeiffer, “A 128-pixel system-on-a-chip for real-time super-resolution terahertz near-field imaging,” IEEE J. Solid-State Circuits 53, 3599–3612 (2018).
[Crossref]

Ann. Phys. (Leipzig) (1)

P. Drude, “Zur Elektronentheorie der Metalle,” Ann. Phys. (Leipzig) 306, 566–613 (1900).
[Crossref]

APL Photonics (3)

W. Withayachumnankul, R. Yamada, M. Fujita, and T. Nagatsuma, “All-dielectric rod antenna array for terahertz communications,” APL Photonics 3, 051707 (2018).
[Crossref]

D. Headland, W. Withayachumnankul, R. Yamada, M. Fujita, and T. Nagatsuma, “Terahertz multi-beam antenna using photonic crystal waveguide and Luneburg lens,” APL Photonics 3, 126105 (2018).
[Crossref]

D. Headland, Y. Monnai, D. Abbott, C. Fumeaux, and W. Withayachumnankul, “Tutorial: terahertz beamforming, from concepts to realizations,” APL Photonics 3, 051101 (2018).
[Crossref]

Appl. Phys. Express (1)

X. Yu, M. Sugeta, Y. Yamagami, M. Fujita, and T. Nagatsuma, “Simultaneous low-loss and low-dispersion in a photonic-crystal waveguide for terahertz communications,” Appl. Phys. Express 12, 012005 (2019).
[Crossref]

Appl. Phys. Lett. (2)

S. Hanham, C. Watts, W. Otter, S. Lucyszyn, and N. Klein, “Dielectric measurements of nanoliter liquids with a photonic crystal resonator at terahertz frequencies,” Appl. Phys. Lett. 107, 032903 (2015).
[Crossref]

C. M. Yee and M. S. Sherwin, “High-Q terahertz microcavities in silicon photonic crystal slabs,” Appl. Phys. Lett. 94, 154104 (2009).
[Crossref]

Electron. Lett. (1)

X. Yu, Y. Hosoda, T. Miyamodo, K. Obata, J. Y. Kim, and T. Nagatsuma, “Terahertz fibre transmission link using resonant tunnelling diodes integrated with photonic-crystal waveguides,” Electron. Lett. 55, 398–400 (2018).
[Crossref]

IEEE Des. Test. Comput. (1)

W. R. Davis, J. Wilson, S. Mick, J. Xu, H. Hua, C. Mineo, A. M. Sule, M. Steer, and P. D. Franzon, “Demystifying 3D ICs: the pros and cons of going vertical,” IEEE Des. Test. Comput. 22, 498–510 (2005).

IEEE J. Quantum Electron. (1)

S. Boscolo, M. Midrio, and C. G. Someda, “Coupling and decoupling of electromagnetic waves in parallel 2D photonic crystal waveguides,” IEEE J. Quantum Electron. 38, 47–53 (2002).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

M. Raburn, B. Liu, K. Rauscher, Y. Okuno, N. Dagli, and J. E. Bowers, “3-D photonic circuit technology,” IEEE J. Sel. Top. Quantum Electron. 8, 935–942 (2002).
[Crossref]

IEEE J. Solid-State Circuits (2)

A. Fazzi, R. Canegallo, L. Ciccarelli, L. Magagni, F. Natali, E. Jung, P. Rolandi, and R. Guerrieri, “3-D capacitive interconnections with mono-and bi-directional capabilities,” IEEE J. Solid-State Circuits 43, 275–284 (2008).
[Crossref]

P. Hillger, R. Jain, J. Grzyb, W. Förster, B. Heinemann, G. MacGrogan, P. Mounaix, T. Zimmer, and U. R. Pfeiffer, “A 128-pixel system-on-a-chip for real-time super-resolution terahertz near-field imaging,” IEEE J. Solid-State Circuits 53, 3599–3612 (2018).
[Crossref]

IEEE Photon. Tech. Lett. (1)

M. Raburn, B. Liu, P. Abraham, and J. E. Bowers, “Double-bonded InP-InGaAsP vertical coupler 1:8 beam splitter,” IEEE Photon. Tech. Lett. 12, 1639–1641 (2000).
[Crossref]

IEEE Trans. Microw. Theory Tech. (1)

V. Radisic, K. M. Leong, X. Mei, S. Sarkozy, W. Yoshida, and W. R. Deal, “Power amplification at 0.65  THz using InP HEMTs,” IEEE Trans. Microw. Theory Tech. 60, 724–729 (2012).
[Crossref]

J. Infrared Millimeter Terahertz Waves (1)

K. Okamoto, K. Tsuruda, S. Diebold, S. Hisatake, M. Fujita, and T. Nagatsuma, “Terahertz sensor using photonic crystal cavity and resonant tunneling diodes,” J. Infrared Millimeter Terahertz Waves 38, 1085–1097 (2017).
[Crossref]

J. Lightwave Technol. (2)

J. Opt. Soc. Am. B (1)

J. Phys. D (1)

T. F. Krauss, “Slow light in photonic crystal waveguides,” J. Phys. D 40, 2666–2670 (2007).
[Crossref]

Nat. Commun. (1)

K. S. Reichel, N. Lozada-Smith, I. D. Joshipura, J. Ma, R. Shrestha, R. Mendis, M. D. Dickey, and D. M. Mittleman, “Electrically reconfigurable terahertz signal processing devices using liquid metal components,” Nat. Commun. 9, 4202 (2018).
[Crossref]

Nat. Photonics (2)

T. Baba, “Slow light in photonic crystals,” Nat. Photonics 2, 465 (2008).
[Crossref]

K. Ishizaki, M. Koumura, K. Suzuki, K. Gondaira, and S. Noda, “Realization of three-dimensional guiding of photons in photonic crystals,” Nat. Photonics 7, 133 (2013).
[Crossref]

Opt. Express (8)

Proc. Natl. Acad. Sci. USA (1)

X. Shen, T. J. Cui, D. Martin-Cano, and F. J. Garcia-Vidal, “Conformal surface plasmons propagating on ultrathin and flexible films,” Proc. Natl. Acad. Sci. USA 110, 40–45 (2013).
[Crossref]

Proc. SPIE (1)

M. Fujita and T. Nagatsuma, “Photonic crystal technology for terahertz system integration,” Proc. SPIE 9856, 98560P (2016).
[Crossref]

Sci. Rep. (1)

K. S. Reichel, R. Mendis, and D. M. Mittleman, “A broadband terahertz waveguide T-junction variable power splitter,” Sci. Rep. 6, 28925 (2016).
[Crossref]

Sens. Actuators A (1)

W. J. Otter, S. M. Hanham, N. M. Ridler, G. Marino, N. Klein, and S. Lucyszyn, “100  GHz ultra-high Q-factor photonic crystal resonators,” Sens. Actuators A 217, 151–159 (2014).
[Crossref]

Other (6)

M. Sugeta, M. Fujita, and T. Nagatsuma, “Design and characterization of 1 THz-band photonic-crystal waveguides,” in 79th JSAP Autumn Meeting (2018).

X. Yu, R. Yamada, J.-Y. Kim, M. Fujita, and T. Nagatsuma, “Integrated circuits using photonic-crystal slab waveguides and resonant tunneling diodes for terahertz communication,” in Progress in Electromagnetics Research Symposium (PIERS-Toyama) (2018), pp. 599–605.

D. M. Pozar, Microwave Engineering (Wiley, 2009).

B. E. Saleh and M. C. Teich, Fundamentals of Photonics, 2nd ed. (Wiley, 2007).

C. M. Soukoulis, Photonic Band Gap Materials (Springer, 2012), vol. 315.

D. Headland, X. Yu, M. Fujita, and T. Nagatsuma, “Near-field vertical coupling between terahertz photonic crystal waveguides,” in URSI Asia-Pacific Radio Science Conference (AP-RASC) (2019).

Supplementary Material (2)

NameDescription
» Supplement 1       This document presents the results of several numerical simulations that support the arguments presented in the main text.
» Visualization 1       A terahertz communications experiment involving the vertical coupling junction that is the main subject of this article, to complement the information that is given in Fig. 7 of the main text. A 4K video data signal is transmitted across the junction

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. Coupled-line analysis of terahertz photonic crystal waveguides, showing (a), (b) depiction of even and odd modes of the coupled lines, in terms of the orientation of the electric field vector in each line (yz-plane cross section); (c) illustration in the of the mechanism whereby terahertz power is transferred from the top line to the bottom line (xz-plane cross section bisecting the waveguide line); and (d) results of coupled-line analysis, showing approximate theoretical coupling length as a function of frequency, for a range of coupling lengths.
Fig. 2.
Fig. 2. Field distributions of coupled modes for the chosen vertical separation value d=100μm, showing (a) illustration of the locations at which cross sections are taken, which is necessary due to the nonuniformity of the waveguide and (b)–(d) field distributions at 325 GHz, where each plot is normalized to its own maximum.
Fig. 3.
Fig. 3. Impact of the photonic crystal medium, showing (a) comparison of coupling length between photonic crystal waveguides and a pair of hypothetical air-clad dielectric waveguides, with no photonic crystal cladding, of the same width. A vertical separation of d=100μm is employed. An illustration of the latter case is inset to the plot. (b) Calculated group index of both classes of waveguide for a single line in isolation.
Fig. 4.
Fig. 4. Diagram of a single line of straight photonic crystal waveguide, showing the periodic structure of cylindrical through-holes that forms the photonic crystal medium. A waveguide track is formed by the omission of a row of holes. Tapered spikes are included at both ends for matching purposes.
Fig. 5.
Fig. 5. Simulated coupling between photonic crystal waveguides, showing (a) diagram of the simulated scenario, (b) coupling efficiency and reflection, both normalized by the transmission through a single straight length of photonic crystal waveguide, and (c), (d) xz-plane cross-sectional field magnitude plots showing the transfer of terahertz waves across the air gap, where Loverlap=4mm, at 325 GHz and 350 GHz, respectively.
Fig. 6.
Fig. 6. Exploded-view diagram of the sample holder, including samples positioned above their respective shelves.
Fig. 7.
Fig. 7. Experimental characterization of out-of-plane coupling inside the custom sample holder, showing (a) a photograph of the unassembled sample holder, (b) assembled sample holder, bearing two photonic crystal waveguide samples, (c) acquired un-normalized spectra from out-of-plane coupling and reference measurements, and (d) normalized transmission, as compared to simulated results where Loverlap=4mm.
Fig. 8.
Fig. 8. Communications experiment, showing (a) a photograph of the experimental setup, (b) measured bit error rate as a function of data rate, for a range of carrier frequencies from 325 to 330 GHz, (c),(d) eye diagrams from the case where carrier frequency is 329 GHz for data rates of 5 Gbit/s and 8 Gbit/s, respectively, and (e) a comparison of maximum error-free lower-sideband width with the measured transmission magnitude from Fig. 7, for each carrier frequency tested.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

L=π|βevenβodd|.