Abstract

Performing imaging with scattered light is challenging due to the complex and random modulation imposed upon the light by the scatterer. Persistent correlations, such as the optical memory effect (ME), enable high-fidelity, diffraction-limited imaging through scattering media without any prior knowledge of or access to the scattering media. However, conventional ME techniques have been limited to gray-scale imaging. We overcome this restriction by using spectral coding and compressed sensing to realize snapshot color imaging through scattering media. We demonstrate our method and obtain high-fidelity multispectral images using both emulated data (spanning the visible and infrared) and experimental data (in the visible).

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Single-shot multispectral imaging with a monochromatic camera

Sujit Kumar Sahoo, Dongliang Tang, and Cuong Dang
Optica 4(10) 1209-1213 (2017)

Single-shot large field of view imaging with scattering media by spatial demultiplexing

Dongliang Tang, Sujit Kumar Sahoo, Vinh Tran, and Cuong Dang
Appl. Opt. 57(26) 7533-7538 (2018)

Speckle rotation decorrelation based single-shot video through scattering media

Yaoyao Shi, Youwen Liu, Wei Sheng, Jiming Wang, and Tong Wu
Opt. Express 27(10) 14567-14576 (2019)

References

  • View by:
  • |
  • |
  • |

  1. M. D. Duncan, R. Mahon, L. L. Tankersley, and J. Reintjes, “Time-gated imaging through scattering media using stimulated Raman amplification,” Opt. Lett. 16, 1868–1870 (1991).
    [Crossref]
  2. J. M. Beckers, “Adaptive optics for astronomy—principles, performance, and applications,” Annu. Rev. Astron. Astrophys. 31, 13–62 (1993).
    [Crossref]
  3. R. Horstmeyer, H. Ruan, and C. Yang, “Guidestar-assisted wavefront-shaping methods for focusing light into biological tissue,” Nat. Photonics 9, 563–571 (2015).
    [Crossref]
  4. S. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Image transmission through an opaque material,” Nat. Commun. 1, 81 (2010).
    [Crossref]
  5. V. Durán, F. Soldevila, E. Irles, P. Clemente, E. Tajahuerce, P. Andrés, and J. Lancis, “Compressive imaging in scattering media,” Opt. Express 23, 14424–14433 (2015).
    [Crossref]
  6. S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104, 100601 (2010).
    [Crossref]
  7. O. Katz, E. Small, and Y. Silberberg, “Looking around corners and through thin turbid layers in real time with scattered incoherent light,” Nat. Photonics 6, 549–553 (2012).
    [Crossref]
  8. R. French, S. Gigan, and O. L. Muskens, “Speckle-based hyperspectral imaging combining multiple scattering and compressive sensing in nanowire mats,” Opt. Lett. 42, 1820–1823 (2017).
    [Crossref]
  9. R. French, S. Gigan, and O. L. Muskens, “Snapshot fiber spectral imaging using speckle correlations and compressive sensing,” Opt. Express 26, 32302–32316 (2018).
    [Crossref]
  10. S. Li, M. Deng, J. Lee, A. Sinha, and G. Barbastathis, “Imaging through glass diffusers using densely connected convolutional networks,” Optica 5, 803–813 (2018).
    [Crossref]
  11. M. Lyu, H. Wang, G. Li, and G. Situ, “Exploit imaging through opaque wall via deep learning,” arXiv:1708.07881 (2017).
  12. G. Satat, M. Tancik, O. Gupta, B. Heshmat, and R. Raskar, “Object classification through scattering media with deep learning on time resolved measurement,” Opt. Express 25, 17466–17479 (2017).
    [Crossref]
  13. E. K. Hege, D. O’Connell, W. Johnson, S. Basty, and E. L. Dereniak, “Hyperspectral imaging for astronomy and space surveillance,” Proc. SPIE 5159, 380–392 (2004).
    [Crossref]
  14. J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491, 232–234 (2012).
    [Crossref]
  15. O. Katz, P. Heidmann, M. Fink, and S. Gigan, “Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations,” Nat. Photonics 8, 784–790 (2014).
    [Crossref]
  16. S. Feng, C. Kane, P. A. Lee, and A. D. Stone, “Correlations and fluctuations of coherent wave transmission through disordered media,” Phys. Rev. Lett. 61, 834–837 (1988).
    [Crossref]
  17. I. Freund, M. Rosenbluh, and S. Feng, “Memory effects in propagation of optical waves through disordered media,” Phys. Rev. Lett. 61, 2328–2331 (1988).
    [Crossref]
  18. F. van Beijnum, E. G. van Putten, A. Lagendijk, and A. P. Mosk, “Frequency bandwidth of light focused through turbid media,” Opt. Lett. 36, 373–375 (2011).
    [Crossref]
  19. H. Li, T. Wu, J. Liu, C. Gong, and X. Shao, “Simulation and experimental verification for imaging of gray-scale objects through scattering layers,” Appl. Opt. 55, 9731–9737 (2016).
    [Crossref]
  20. T. Wu, C. Guo, and X. Shao, “Non-invasive imaging through thin scattering layers with broadband illumination,” arXiv:1809.06854 (2018).
  21. X. Xu, X. Xie, A. Thendiyammal, H. Zhuang, J. Xie, Y. Liu, J. Zhou, and A. P. Mosk, “Imaging of objects through a thin scattering layer using a spectrally and spatially separated reference,” Opt. Express 26, 15073–15083 (2018).
    [Crossref]
  22. G. Shaw and H. Burke, “Spectral imaging for remote sensing,” Lincoln Lab. J. 14, 3–28 (2003).
  23. D. Lu and Q. Weng, “Urban classification using full spectral information of Landsat ETM + imagery in Marion County,” Photogramm. Eng. Remote Sens. 71, 1275–1284 (2005).
    [Crossref]
  24. D. Wu and D.-W. Sun, “Advanced applications of hyperspectral imaging technology for food quality and safety analysis and assessment: a review part I: fundamentals,” Innov. Food Sci. Emerg. Technol. 19, 1–14(2013).
    [Crossref]
  25. L. Zhu, J. Liu, L. Feng, C. Guo, T. Wu, and X. Shao, “Recovering the spectral and spatial information of an object behind a scattering media,” OSA Continuum 1, 553–563 (2018).
    [Crossref]
  26. H. Zhuang, H. He, X. Xie, and J. Zhou, “High speed color imaging through scattering media with a large field of view,” Sci. Rep. 6, 32696 (2016).
    [Crossref]
  27. S. K. Sahoo, D. Tang, and C. Dang, “Single-shot multispectral imaging with a monochromatic camera,” Optica 4, 1209–1213(2017).
    [Crossref]
  28. M. E. Gehm, R. John, D. J. Brady, R. M. Willett, and T. J. Schulz, “Single-shot compressive spectral imaging with a dual-disperser architecture,” Opt. Express 15, 14013–14027 (2007).
    [Crossref]
  29. P. Llull, X. Liao, X. Yuan, J. Yang, D. Kittle, L. Carin, G. Sapiro, and D. J. Brady, “Coded aperture compressive temporal imaging,” Opt. Express 21, 10526–10545 (2013).
    [Crossref]
  30. T.-H. Tsai and D. J. Brady, “Coded aperture snapshot spectral polarization imaging,” Appl. Opt. 52, 2153–2161 (2013).
    [Crossref]
  31. X. Li, A. Stevens, J. A. Greenberg, and M. E. Gehm, “Single-shot memory-effect video,” Sci. Rep. 8, 13402 (2018).
    [Crossref]
  32. J. R. Fienup, “Phase retrieval algorithms: a comparison,” Appl. Opt. 21, 2758–2769 (1982).
    [Crossref]
  33. T. Wu, O. Katz, X. Shao, and S. Gigan, “Single-shot diffraction-limited imaging through scattering layers via bispectrum analysis,” Opt. Lett. 41, 5003–5006 (2016).
    [Crossref]
  34. T. T. Cai and L. Wang, “Orthogonal matching pursuit for sparse signal recovery with noise,” IEEE Trans. Inf. Theory 57, 4680–4688 (2011).
    [Crossref]
  35. Y. Fang, L. Chen, J. Wu, and B. Huang, “GPU implementation of orthogonal matching pursuit for compressive sensing,” in 17th International Conference on Parallel and Distributed Systems (ICPADS) (2011), pp. 1044–1047.
  36. D. S. Kittle, D. L. Marks, and D. J. Brady, “Design and fabrication of an ultraviolet-visible coded aperture snapshot spectral imager,” Opt. Eng. 51, 071403 (2012).
    [Crossref]
  37. M. Zhou, H. Chen, J. Paisley, L. Ren, L. Li, Z. Xing, D. Dunson, G. Sapiro, and L. Carin, “Nonparametric Bayesian dictionary learning for analysis of noisy and incomplete images,” IEEE Trans. Image Process. 21, 130–144 (2012).
    [Crossref]
  38. S. Thomas and G. John, “The C.I.E. colorimetric standards and their use,” Trans. Opt. Soc. 33, 73–134 (1931).
    [Crossref]
  39. J. Schneider and C. Aegerter, “Guide star based deconvolution for imaging behind turbid media,” J. Eur. Opt. Soc. Rapid Publ. 14, 21 (2018).
    [Crossref]
  40. H. Rueda, H. Arguello, and G. R. Arce, “DMD-based implementation of patterned optical filter arrays for compressive spectral imaging,” J. Opt. Soc. Am. A 32, 80–89 (2015).
    [Crossref]
  41. X. Lin, G. Wetzstein, Y. Liu, and Q. Dai, “Dual-coded compressive hyperspectral imaging,” Opt. Lett. 39, 2044–2047 (2014).
    [Crossref]
  42. N. Diaz, H. Rueda, and H. Arguello, “High-dynamic range compressive spectral imaging by grayscale coded aperture adaptive filtering,” Ingeniería e InvestiIgación 35, 53–60 (2015).
    [Crossref]
  43. Y. August, C. Vachman, Y. Rivenson, and A. Stern, “Compressive hyperspectral imaging by random separable projections in both the spatial and the spectral domains,” Appl. Opt. 52, D46–D54(2013).
    [Crossref]
  44. X. Yuan, T.-H. Tsai, R. Zhu, P. Llull, D. Brady, and L. Carin, “Compressive hyperspectral imaging with side information,” IEEE J. Sel. Top. Signal Process. 9, 964–976 (2015).
    [Crossref]
  45. C. V. Correa, H. Arguello, and G. R. Arce, “Spatiotemporal blue noise coded aperture design for multi-shot compressive spectral imaging,” J. Opt. Soc. Am. A 33, 2312–2322 (2016).
    [Crossref]
  46. X. Yuan, Y. Sun, and S. Pang, “Compressive video sensing with side information,” Appl. Opt. 56, 2697–2704 (2017).
    [Crossref]

2018 (6)

2017 (4)

2016 (4)

2015 (5)

X. Yuan, T.-H. Tsai, R. Zhu, P. Llull, D. Brady, and L. Carin, “Compressive hyperspectral imaging with side information,” IEEE J. Sel. Top. Signal Process. 9, 964–976 (2015).
[Crossref]

H. Rueda, H. Arguello, and G. R. Arce, “DMD-based implementation of patterned optical filter arrays for compressive spectral imaging,” J. Opt. Soc. Am. A 32, 80–89 (2015).
[Crossref]

N. Diaz, H. Rueda, and H. Arguello, “High-dynamic range compressive spectral imaging by grayscale coded aperture adaptive filtering,” Ingeniería e InvestiIgación 35, 53–60 (2015).
[Crossref]

V. Durán, F. Soldevila, E. Irles, P. Clemente, E. Tajahuerce, P. Andrés, and J. Lancis, “Compressive imaging in scattering media,” Opt. Express 23, 14424–14433 (2015).
[Crossref]

R. Horstmeyer, H. Ruan, and C. Yang, “Guidestar-assisted wavefront-shaping methods for focusing light into biological tissue,” Nat. Photonics 9, 563–571 (2015).
[Crossref]

2014 (2)

O. Katz, P. Heidmann, M. Fink, and S. Gigan, “Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations,” Nat. Photonics 8, 784–790 (2014).
[Crossref]

X. Lin, G. Wetzstein, Y. Liu, and Q. Dai, “Dual-coded compressive hyperspectral imaging,” Opt. Lett. 39, 2044–2047 (2014).
[Crossref]

2013 (4)

2012 (4)

D. S. Kittle, D. L. Marks, and D. J. Brady, “Design and fabrication of an ultraviolet-visible coded aperture snapshot spectral imager,” Opt. Eng. 51, 071403 (2012).
[Crossref]

M. Zhou, H. Chen, J. Paisley, L. Ren, L. Li, Z. Xing, D. Dunson, G. Sapiro, and L. Carin, “Nonparametric Bayesian dictionary learning for analysis of noisy and incomplete images,” IEEE Trans. Image Process. 21, 130–144 (2012).
[Crossref]

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491, 232–234 (2012).
[Crossref]

O. Katz, E. Small, and Y. Silberberg, “Looking around corners and through thin turbid layers in real time with scattered incoherent light,” Nat. Photonics 6, 549–553 (2012).
[Crossref]

2011 (2)

F. van Beijnum, E. G. van Putten, A. Lagendijk, and A. P. Mosk, “Frequency bandwidth of light focused through turbid media,” Opt. Lett. 36, 373–375 (2011).
[Crossref]

T. T. Cai and L. Wang, “Orthogonal matching pursuit for sparse signal recovery with noise,” IEEE Trans. Inf. Theory 57, 4680–4688 (2011).
[Crossref]

2010 (2)

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104, 100601 (2010).
[Crossref]

S. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Image transmission through an opaque material,” Nat. Commun. 1, 81 (2010).
[Crossref]

2007 (1)

2005 (1)

D. Lu and Q. Weng, “Urban classification using full spectral information of Landsat ETM + imagery in Marion County,” Photogramm. Eng. Remote Sens. 71, 1275–1284 (2005).
[Crossref]

2004 (1)

E. K. Hege, D. O’Connell, W. Johnson, S. Basty, and E. L. Dereniak, “Hyperspectral imaging for astronomy and space surveillance,” Proc. SPIE 5159, 380–392 (2004).
[Crossref]

2003 (1)

G. Shaw and H. Burke, “Spectral imaging for remote sensing,” Lincoln Lab. J. 14, 3–28 (2003).

1993 (1)

J. M. Beckers, “Adaptive optics for astronomy—principles, performance, and applications,” Annu. Rev. Astron. Astrophys. 31, 13–62 (1993).
[Crossref]

1991 (1)

1988 (2)

S. Feng, C. Kane, P. A. Lee, and A. D. Stone, “Correlations and fluctuations of coherent wave transmission through disordered media,” Phys. Rev. Lett. 61, 834–837 (1988).
[Crossref]

I. Freund, M. Rosenbluh, and S. Feng, “Memory effects in propagation of optical waves through disordered media,” Phys. Rev. Lett. 61, 2328–2331 (1988).
[Crossref]

1982 (1)

1931 (1)

S. Thomas and G. John, “The C.I.E. colorimetric standards and their use,” Trans. Opt. Soc. 33, 73–134 (1931).
[Crossref]

Aegerter, C.

J. Schneider and C. Aegerter, “Guide star based deconvolution for imaging behind turbid media,” J. Eur. Opt. Soc. Rapid Publ. 14, 21 (2018).
[Crossref]

Andrés, P.

Arce, G. R.

Arguello, H.

August, Y.

Barbastathis, G.

Basty, S.

E. K. Hege, D. O’Connell, W. Johnson, S. Basty, and E. L. Dereniak, “Hyperspectral imaging for astronomy and space surveillance,” Proc. SPIE 5159, 380–392 (2004).
[Crossref]

Beckers, J. M.

J. M. Beckers, “Adaptive optics for astronomy—principles, performance, and applications,” Annu. Rev. Astron. Astrophys. 31, 13–62 (1993).
[Crossref]

Bertolotti, J.

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491, 232–234 (2012).
[Crossref]

Blum, C.

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491, 232–234 (2012).
[Crossref]

Boccara, A. C.

S. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Image transmission through an opaque material,” Nat. Commun. 1, 81 (2010).
[Crossref]

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104, 100601 (2010).
[Crossref]

Brady, D.

X. Yuan, T.-H. Tsai, R. Zhu, P. Llull, D. Brady, and L. Carin, “Compressive hyperspectral imaging with side information,” IEEE J. Sel. Top. Signal Process. 9, 964–976 (2015).
[Crossref]

Brady, D. J.

Burke, H.

G. Shaw and H. Burke, “Spectral imaging for remote sensing,” Lincoln Lab. J. 14, 3–28 (2003).

Cai, T. T.

T. T. Cai and L. Wang, “Orthogonal matching pursuit for sparse signal recovery with noise,” IEEE Trans. Inf. Theory 57, 4680–4688 (2011).
[Crossref]

Carin, L.

X. Yuan, T.-H. Tsai, R. Zhu, P. Llull, D. Brady, and L. Carin, “Compressive hyperspectral imaging with side information,” IEEE J. Sel. Top. Signal Process. 9, 964–976 (2015).
[Crossref]

P. Llull, X. Liao, X. Yuan, J. Yang, D. Kittle, L. Carin, G. Sapiro, and D. J. Brady, “Coded aperture compressive temporal imaging,” Opt. Express 21, 10526–10545 (2013).
[Crossref]

M. Zhou, H. Chen, J. Paisley, L. Ren, L. Li, Z. Xing, D. Dunson, G. Sapiro, and L. Carin, “Nonparametric Bayesian dictionary learning for analysis of noisy and incomplete images,” IEEE Trans. Image Process. 21, 130–144 (2012).
[Crossref]

Carminati, R.

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104, 100601 (2010).
[Crossref]

Chen, H.

M. Zhou, H. Chen, J. Paisley, L. Ren, L. Li, Z. Xing, D. Dunson, G. Sapiro, and L. Carin, “Nonparametric Bayesian dictionary learning for analysis of noisy and incomplete images,” IEEE Trans. Image Process. 21, 130–144 (2012).
[Crossref]

Chen, L.

Y. Fang, L. Chen, J. Wu, and B. Huang, “GPU implementation of orthogonal matching pursuit for compressive sensing,” in 17th International Conference on Parallel and Distributed Systems (ICPADS) (2011), pp. 1044–1047.

Clemente, P.

Correa, C. V.

Dai, Q.

Dang, C.

Deng, M.

Dereniak, E. L.

E. K. Hege, D. O’Connell, W. Johnson, S. Basty, and E. L. Dereniak, “Hyperspectral imaging for astronomy and space surveillance,” Proc. SPIE 5159, 380–392 (2004).
[Crossref]

Diaz, N.

N. Diaz, H. Rueda, and H. Arguello, “High-dynamic range compressive spectral imaging by grayscale coded aperture adaptive filtering,” Ingeniería e InvestiIgación 35, 53–60 (2015).
[Crossref]

Duncan, M. D.

Dunson, D.

M. Zhou, H. Chen, J. Paisley, L. Ren, L. Li, Z. Xing, D. Dunson, G. Sapiro, and L. Carin, “Nonparametric Bayesian dictionary learning for analysis of noisy and incomplete images,” IEEE Trans. Image Process. 21, 130–144 (2012).
[Crossref]

Durán, V.

Fang, Y.

Y. Fang, L. Chen, J. Wu, and B. Huang, “GPU implementation of orthogonal matching pursuit for compressive sensing,” in 17th International Conference on Parallel and Distributed Systems (ICPADS) (2011), pp. 1044–1047.

Feng, L.

Feng, S.

I. Freund, M. Rosenbluh, and S. Feng, “Memory effects in propagation of optical waves through disordered media,” Phys. Rev. Lett. 61, 2328–2331 (1988).
[Crossref]

S. Feng, C. Kane, P. A. Lee, and A. D. Stone, “Correlations and fluctuations of coherent wave transmission through disordered media,” Phys. Rev. Lett. 61, 834–837 (1988).
[Crossref]

Fienup, J. R.

Fink, M.

O. Katz, P. Heidmann, M. Fink, and S. Gigan, “Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations,” Nat. Photonics 8, 784–790 (2014).
[Crossref]

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104, 100601 (2010).
[Crossref]

S. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Image transmission through an opaque material,” Nat. Commun. 1, 81 (2010).
[Crossref]

French, R.

Freund, I.

I. Freund, M. Rosenbluh, and S. Feng, “Memory effects in propagation of optical waves through disordered media,” Phys. Rev. Lett. 61, 2328–2331 (1988).
[Crossref]

Gehm, M. E.

Gigan, S.

R. French, S. Gigan, and O. L. Muskens, “Snapshot fiber spectral imaging using speckle correlations and compressive sensing,” Opt. Express 26, 32302–32316 (2018).
[Crossref]

R. French, S. Gigan, and O. L. Muskens, “Speckle-based hyperspectral imaging combining multiple scattering and compressive sensing in nanowire mats,” Opt. Lett. 42, 1820–1823 (2017).
[Crossref]

T. Wu, O. Katz, X. Shao, and S. Gigan, “Single-shot diffraction-limited imaging through scattering layers via bispectrum analysis,” Opt. Lett. 41, 5003–5006 (2016).
[Crossref]

O. Katz, P. Heidmann, M. Fink, and S. Gigan, “Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations,” Nat. Photonics 8, 784–790 (2014).
[Crossref]

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104, 100601 (2010).
[Crossref]

S. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Image transmission through an opaque material,” Nat. Commun. 1, 81 (2010).
[Crossref]

Gong, C.

Greenberg, J. A.

X. Li, A. Stevens, J. A. Greenberg, and M. E. Gehm, “Single-shot memory-effect video,” Sci. Rep. 8, 13402 (2018).
[Crossref]

Guo, C.

L. Zhu, J. Liu, L. Feng, C. Guo, T. Wu, and X. Shao, “Recovering the spectral and spatial information of an object behind a scattering media,” OSA Continuum 1, 553–563 (2018).
[Crossref]

T. Wu, C. Guo, and X. Shao, “Non-invasive imaging through thin scattering layers with broadband illumination,” arXiv:1809.06854 (2018).

Gupta, O.

He, H.

H. Zhuang, H. He, X. Xie, and J. Zhou, “High speed color imaging through scattering media with a large field of view,” Sci. Rep. 6, 32696 (2016).
[Crossref]

Hege, E. K.

E. K. Hege, D. O’Connell, W. Johnson, S. Basty, and E. L. Dereniak, “Hyperspectral imaging for astronomy and space surveillance,” Proc. SPIE 5159, 380–392 (2004).
[Crossref]

Heidmann, P.

O. Katz, P. Heidmann, M. Fink, and S. Gigan, “Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations,” Nat. Photonics 8, 784–790 (2014).
[Crossref]

Heshmat, B.

Horstmeyer, R.

R. Horstmeyer, H. Ruan, and C. Yang, “Guidestar-assisted wavefront-shaping methods for focusing light into biological tissue,” Nat. Photonics 9, 563–571 (2015).
[Crossref]

Huang, B.

Y. Fang, L. Chen, J. Wu, and B. Huang, “GPU implementation of orthogonal matching pursuit for compressive sensing,” in 17th International Conference on Parallel and Distributed Systems (ICPADS) (2011), pp. 1044–1047.

Irles, E.

John, G.

S. Thomas and G. John, “The C.I.E. colorimetric standards and their use,” Trans. Opt. Soc. 33, 73–134 (1931).
[Crossref]

John, R.

Johnson, W.

E. K. Hege, D. O’Connell, W. Johnson, S. Basty, and E. L. Dereniak, “Hyperspectral imaging for astronomy and space surveillance,” Proc. SPIE 5159, 380–392 (2004).
[Crossref]

Kane, C.

S. Feng, C. Kane, P. A. Lee, and A. D. Stone, “Correlations and fluctuations of coherent wave transmission through disordered media,” Phys. Rev. Lett. 61, 834–837 (1988).
[Crossref]

Katz, O.

T. Wu, O. Katz, X. Shao, and S. Gigan, “Single-shot diffraction-limited imaging through scattering layers via bispectrum analysis,” Opt. Lett. 41, 5003–5006 (2016).
[Crossref]

O. Katz, P. Heidmann, M. Fink, and S. Gigan, “Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations,” Nat. Photonics 8, 784–790 (2014).
[Crossref]

O. Katz, E. Small, and Y. Silberberg, “Looking around corners and through thin turbid layers in real time with scattered incoherent light,” Nat. Photonics 6, 549–553 (2012).
[Crossref]

Kittle, D.

Kittle, D. S.

D. S. Kittle, D. L. Marks, and D. J. Brady, “Design and fabrication of an ultraviolet-visible coded aperture snapshot spectral imager,” Opt. Eng. 51, 071403 (2012).
[Crossref]

Lagendijk, A.

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491, 232–234 (2012).
[Crossref]

F. van Beijnum, E. G. van Putten, A. Lagendijk, and A. P. Mosk, “Frequency bandwidth of light focused through turbid media,” Opt. Lett. 36, 373–375 (2011).
[Crossref]

Lancis, J.

Lee, J.

Lee, P. A.

S. Feng, C. Kane, P. A. Lee, and A. D. Stone, “Correlations and fluctuations of coherent wave transmission through disordered media,” Phys. Rev. Lett. 61, 834–837 (1988).
[Crossref]

Lerosey, G.

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104, 100601 (2010).
[Crossref]

S. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Image transmission through an opaque material,” Nat. Commun. 1, 81 (2010).
[Crossref]

Li, G.

M. Lyu, H. Wang, G. Li, and G. Situ, “Exploit imaging through opaque wall via deep learning,” arXiv:1708.07881 (2017).

Li, H.

Li, L.

M. Zhou, H. Chen, J. Paisley, L. Ren, L. Li, Z. Xing, D. Dunson, G. Sapiro, and L. Carin, “Nonparametric Bayesian dictionary learning for analysis of noisy and incomplete images,” IEEE Trans. Image Process. 21, 130–144 (2012).
[Crossref]

Li, S.

Li, X.

X. Li, A. Stevens, J. A. Greenberg, and M. E. Gehm, “Single-shot memory-effect video,” Sci. Rep. 8, 13402 (2018).
[Crossref]

Liao, X.

Lin, X.

Liu, J.

Liu, Y.

Llull, P.

X. Yuan, T.-H. Tsai, R. Zhu, P. Llull, D. Brady, and L. Carin, “Compressive hyperspectral imaging with side information,” IEEE J. Sel. Top. Signal Process. 9, 964–976 (2015).
[Crossref]

P. Llull, X. Liao, X. Yuan, J. Yang, D. Kittle, L. Carin, G. Sapiro, and D. J. Brady, “Coded aperture compressive temporal imaging,” Opt. Express 21, 10526–10545 (2013).
[Crossref]

Lu, D.

D. Lu and Q. Weng, “Urban classification using full spectral information of Landsat ETM + imagery in Marion County,” Photogramm. Eng. Remote Sens. 71, 1275–1284 (2005).
[Crossref]

Lyu, M.

M. Lyu, H. Wang, G. Li, and G. Situ, “Exploit imaging through opaque wall via deep learning,” arXiv:1708.07881 (2017).

Mahon, R.

Marks, D. L.

D. S. Kittle, D. L. Marks, and D. J. Brady, “Design and fabrication of an ultraviolet-visible coded aperture snapshot spectral imager,” Opt. Eng. 51, 071403 (2012).
[Crossref]

Mosk, A. P.

Muskens, O. L.

O’Connell, D.

E. K. Hege, D. O’Connell, W. Johnson, S. Basty, and E. L. Dereniak, “Hyperspectral imaging for astronomy and space surveillance,” Proc. SPIE 5159, 380–392 (2004).
[Crossref]

Paisley, J.

M. Zhou, H. Chen, J. Paisley, L. Ren, L. Li, Z. Xing, D. Dunson, G. Sapiro, and L. Carin, “Nonparametric Bayesian dictionary learning for analysis of noisy and incomplete images,” IEEE Trans. Image Process. 21, 130–144 (2012).
[Crossref]

Pang, S.

Popoff, S.

S. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Image transmission through an opaque material,” Nat. Commun. 1, 81 (2010).
[Crossref]

Popoff, S. M.

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104, 100601 (2010).
[Crossref]

Raskar, R.

Reintjes, J.

Ren, L.

M. Zhou, H. Chen, J. Paisley, L. Ren, L. Li, Z. Xing, D. Dunson, G. Sapiro, and L. Carin, “Nonparametric Bayesian dictionary learning for analysis of noisy and incomplete images,” IEEE Trans. Image Process. 21, 130–144 (2012).
[Crossref]

Rivenson, Y.

Rosenbluh, M.

I. Freund, M. Rosenbluh, and S. Feng, “Memory effects in propagation of optical waves through disordered media,” Phys. Rev. Lett. 61, 2328–2331 (1988).
[Crossref]

Ruan, H.

R. Horstmeyer, H. Ruan, and C. Yang, “Guidestar-assisted wavefront-shaping methods for focusing light into biological tissue,” Nat. Photonics 9, 563–571 (2015).
[Crossref]

Rueda, H.

H. Rueda, H. Arguello, and G. R. Arce, “DMD-based implementation of patterned optical filter arrays for compressive spectral imaging,” J. Opt. Soc. Am. A 32, 80–89 (2015).
[Crossref]

N. Diaz, H. Rueda, and H. Arguello, “High-dynamic range compressive spectral imaging by grayscale coded aperture adaptive filtering,” Ingeniería e InvestiIgación 35, 53–60 (2015).
[Crossref]

Sahoo, S. K.

Sapiro, G.

P. Llull, X. Liao, X. Yuan, J. Yang, D. Kittle, L. Carin, G. Sapiro, and D. J. Brady, “Coded aperture compressive temporal imaging,” Opt. Express 21, 10526–10545 (2013).
[Crossref]

M. Zhou, H. Chen, J. Paisley, L. Ren, L. Li, Z. Xing, D. Dunson, G. Sapiro, and L. Carin, “Nonparametric Bayesian dictionary learning for analysis of noisy and incomplete images,” IEEE Trans. Image Process. 21, 130–144 (2012).
[Crossref]

Satat, G.

Schneider, J.

J. Schneider and C. Aegerter, “Guide star based deconvolution for imaging behind turbid media,” J. Eur. Opt. Soc. Rapid Publ. 14, 21 (2018).
[Crossref]

Schulz, T. J.

Shao, X.

Shaw, G.

G. Shaw and H. Burke, “Spectral imaging for remote sensing,” Lincoln Lab. J. 14, 3–28 (2003).

Silberberg, Y.

O. Katz, E. Small, and Y. Silberberg, “Looking around corners and through thin turbid layers in real time with scattered incoherent light,” Nat. Photonics 6, 549–553 (2012).
[Crossref]

Sinha, A.

Situ, G.

M. Lyu, H. Wang, G. Li, and G. Situ, “Exploit imaging through opaque wall via deep learning,” arXiv:1708.07881 (2017).

Small, E.

O. Katz, E. Small, and Y. Silberberg, “Looking around corners and through thin turbid layers in real time with scattered incoherent light,” Nat. Photonics 6, 549–553 (2012).
[Crossref]

Soldevila, F.

Stern, A.

Stevens, A.

X. Li, A. Stevens, J. A. Greenberg, and M. E. Gehm, “Single-shot memory-effect video,” Sci. Rep. 8, 13402 (2018).
[Crossref]

Stone, A. D.

S. Feng, C. Kane, P. A. Lee, and A. D. Stone, “Correlations and fluctuations of coherent wave transmission through disordered media,” Phys. Rev. Lett. 61, 834–837 (1988).
[Crossref]

Sun, D.-W.

D. Wu and D.-W. Sun, “Advanced applications of hyperspectral imaging technology for food quality and safety analysis and assessment: a review part I: fundamentals,” Innov. Food Sci. Emerg. Technol. 19, 1–14(2013).
[Crossref]

Sun, Y.

Tajahuerce, E.

Tancik, M.

Tang, D.

Tankersley, L. L.

Thendiyammal, A.

Thomas, S.

S. Thomas and G. John, “The C.I.E. colorimetric standards and their use,” Trans. Opt. Soc. 33, 73–134 (1931).
[Crossref]

Tsai, T.-H.

X. Yuan, T.-H. Tsai, R. Zhu, P. Llull, D. Brady, and L. Carin, “Compressive hyperspectral imaging with side information,” IEEE J. Sel. Top. Signal Process. 9, 964–976 (2015).
[Crossref]

T.-H. Tsai and D. J. Brady, “Coded aperture snapshot spectral polarization imaging,” Appl. Opt. 52, 2153–2161 (2013).
[Crossref]

Vachman, C.

van Beijnum, F.

van Putten, E. G.

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491, 232–234 (2012).
[Crossref]

F. van Beijnum, E. G. van Putten, A. Lagendijk, and A. P. Mosk, “Frequency bandwidth of light focused through turbid media,” Opt. Lett. 36, 373–375 (2011).
[Crossref]

Vos, W. L.

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491, 232–234 (2012).
[Crossref]

Wang, H.

M. Lyu, H. Wang, G. Li, and G. Situ, “Exploit imaging through opaque wall via deep learning,” arXiv:1708.07881 (2017).

Wang, L.

T. T. Cai and L. Wang, “Orthogonal matching pursuit for sparse signal recovery with noise,” IEEE Trans. Inf. Theory 57, 4680–4688 (2011).
[Crossref]

Weng, Q.

D. Lu and Q. Weng, “Urban classification using full spectral information of Landsat ETM + imagery in Marion County,” Photogramm. Eng. Remote Sens. 71, 1275–1284 (2005).
[Crossref]

Wetzstein, G.

Willett, R. M.

Wu, D.

D. Wu and D.-W. Sun, “Advanced applications of hyperspectral imaging technology for food quality and safety analysis and assessment: a review part I: fundamentals,” Innov. Food Sci. Emerg. Technol. 19, 1–14(2013).
[Crossref]

Wu, J.

Y. Fang, L. Chen, J. Wu, and B. Huang, “GPU implementation of orthogonal matching pursuit for compressive sensing,” in 17th International Conference on Parallel and Distributed Systems (ICPADS) (2011), pp. 1044–1047.

Wu, T.

Xie, J.

Xie, X.

Xing, Z.

M. Zhou, H. Chen, J. Paisley, L. Ren, L. Li, Z. Xing, D. Dunson, G. Sapiro, and L. Carin, “Nonparametric Bayesian dictionary learning for analysis of noisy and incomplete images,” IEEE Trans. Image Process. 21, 130–144 (2012).
[Crossref]

Xu, X.

Yang, C.

R. Horstmeyer, H. Ruan, and C. Yang, “Guidestar-assisted wavefront-shaping methods for focusing light into biological tissue,” Nat. Photonics 9, 563–571 (2015).
[Crossref]

Yang, J.

Yuan, X.

Zhou, J.

Zhou, M.

M. Zhou, H. Chen, J. Paisley, L. Ren, L. Li, Z. Xing, D. Dunson, G. Sapiro, and L. Carin, “Nonparametric Bayesian dictionary learning for analysis of noisy and incomplete images,” IEEE Trans. Image Process. 21, 130–144 (2012).
[Crossref]

Zhu, L.

Zhu, R.

X. Yuan, T.-H. Tsai, R. Zhu, P. Llull, D. Brady, and L. Carin, “Compressive hyperspectral imaging with side information,” IEEE J. Sel. Top. Signal Process. 9, 964–976 (2015).
[Crossref]

Zhuang, H.

Annu. Rev. Astron. Astrophys. (1)

J. M. Beckers, “Adaptive optics for astronomy—principles, performance, and applications,” Annu. Rev. Astron. Astrophys. 31, 13–62 (1993).
[Crossref]

Appl. Opt. (5)

IEEE J. Sel. Top. Signal Process. (1)

X. Yuan, T.-H. Tsai, R. Zhu, P. Llull, D. Brady, and L. Carin, “Compressive hyperspectral imaging with side information,” IEEE J. Sel. Top. Signal Process. 9, 964–976 (2015).
[Crossref]

IEEE Trans. Image Process. (1)

M. Zhou, H. Chen, J. Paisley, L. Ren, L. Li, Z. Xing, D. Dunson, G. Sapiro, and L. Carin, “Nonparametric Bayesian dictionary learning for analysis of noisy and incomplete images,” IEEE Trans. Image Process. 21, 130–144 (2012).
[Crossref]

IEEE Trans. Inf. Theory (1)

T. T. Cai and L. Wang, “Orthogonal matching pursuit for sparse signal recovery with noise,” IEEE Trans. Inf. Theory 57, 4680–4688 (2011).
[Crossref]

Ingeniería e InvestiIgación (1)

N. Diaz, H. Rueda, and H. Arguello, “High-dynamic range compressive spectral imaging by grayscale coded aperture adaptive filtering,” Ingeniería e InvestiIgación 35, 53–60 (2015).
[Crossref]

Innov. Food Sci. Emerg. Technol. (1)

D. Wu and D.-W. Sun, “Advanced applications of hyperspectral imaging technology for food quality and safety analysis and assessment: a review part I: fundamentals,” Innov. Food Sci. Emerg. Technol. 19, 1–14(2013).
[Crossref]

J. Eur. Opt. Soc. Rapid Publ. (1)

J. Schneider and C. Aegerter, “Guide star based deconvolution for imaging behind turbid media,” J. Eur. Opt. Soc. Rapid Publ. 14, 21 (2018).
[Crossref]

J. Opt. Soc. Am. A (2)

Lincoln Lab. J. (1)

G. Shaw and H. Burke, “Spectral imaging for remote sensing,” Lincoln Lab. J. 14, 3–28 (2003).

Nat. Commun. (1)

S. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Image transmission through an opaque material,” Nat. Commun. 1, 81 (2010).
[Crossref]

Nat. Photonics (3)

R. Horstmeyer, H. Ruan, and C. Yang, “Guidestar-assisted wavefront-shaping methods for focusing light into biological tissue,” Nat. Photonics 9, 563–571 (2015).
[Crossref]

O. Katz, E. Small, and Y. Silberberg, “Looking around corners and through thin turbid layers in real time with scattered incoherent light,” Nat. Photonics 6, 549–553 (2012).
[Crossref]

O. Katz, P. Heidmann, M. Fink, and S. Gigan, “Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations,” Nat. Photonics 8, 784–790 (2014).
[Crossref]

Nature (1)

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491, 232–234 (2012).
[Crossref]

Opt. Eng. (1)

D. S. Kittle, D. L. Marks, and D. J. Brady, “Design and fabrication of an ultraviolet-visible coded aperture snapshot spectral imager,” Opt. Eng. 51, 071403 (2012).
[Crossref]

Opt. Express (6)

Opt. Lett. (5)

Optica (2)

OSA Continuum (1)

Photogramm. Eng. Remote Sens. (1)

D. Lu and Q. Weng, “Urban classification using full spectral information of Landsat ETM + imagery in Marion County,” Photogramm. Eng. Remote Sens. 71, 1275–1284 (2005).
[Crossref]

Phys. Rev. Lett. (3)

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104, 100601 (2010).
[Crossref]

S. Feng, C. Kane, P. A. Lee, and A. D. Stone, “Correlations and fluctuations of coherent wave transmission through disordered media,” Phys. Rev. Lett. 61, 834–837 (1988).
[Crossref]

I. Freund, M. Rosenbluh, and S. Feng, “Memory effects in propagation of optical waves through disordered media,” Phys. Rev. Lett. 61, 2328–2331 (1988).
[Crossref]

Proc. SPIE (1)

E. K. Hege, D. O’Connell, W. Johnson, S. Basty, and E. L. Dereniak, “Hyperspectral imaging for astronomy and space surveillance,” Proc. SPIE 5159, 380–392 (2004).
[Crossref]

Sci. Rep. (2)

H. Zhuang, H. He, X. Xie, and J. Zhou, “High speed color imaging through scattering media with a large field of view,” Sci. Rep. 6, 32696 (2016).
[Crossref]

X. Li, A. Stevens, J. A. Greenberg, and M. E. Gehm, “Single-shot memory-effect video,” Sci. Rep. 8, 13402 (2018).
[Crossref]

Trans. Opt. Soc. (1)

S. Thomas and G. John, “The C.I.E. colorimetric standards and their use,” Trans. Opt. Soc. 33, 73–134 (1931).
[Crossref]

Other (3)

Y. Fang, L. Chen, J. Wu, and B. Huang, “GPU implementation of orthogonal matching pursuit for compressive sensing,” in 17th International Conference on Parallel and Distributed Systems (ICPADS) (2011), pp. 1044–1047.

T. Wu, C. Guo, and X. Shao, “Non-invasive imaging through thin scattering layers with broadband illumination,” arXiv:1809.06854 (2018).

M. Lyu, H. Wang, G. Li, and G. Situ, “Exploit imaging through opaque wall via deep learning,” arXiv:1708.07881 (2017).

Supplementary Material (1)

NameDescription
» Supplement 1       Supplemental Document

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Schematic of single-shot multispectral imaging through scatterer. The setup consists of a color object, scatterer, and coded detector. In the object section, a lamp acts as a spatially incoherent light source to illuminate the color object. The scatterer consists of a ground glass diffuser and an aperture that acts like a field stop for the coded detector. A coded detector, consisting of a coded aperture, prism, and monochrome camera (coupled via appropriate relay optics), records the multiplexed, coded speckle signal. The coded detector represents the key modification of traditional ME imaging schemes required by our approach.
Fig. 2.
Fig. 2. Data acquisition and reconstruction pipeline. In the memory effect regime, the wavelength-dependent speckle I λ is the convolution of the object spectral component and the PSF corresponding to the wavelength. During data acquisition, I λ ( x , y ) is coded by a random binary mask T λ ( x , y ) , and the multiplexed speckle is the summation of the coded speckles across spectral channels at the camera plane. We recover independent speckle frames I ^ λ ( x , y ) using a dictionary-based OMP algorithm. We calculate the autocorrelation of each channel individually and reconstruct the spectral information of object O ^ λ ( x , y ) with a phase retrieval algorithm. The color “LENS” object is reconstructed using emulated data.
Fig. 3.
Fig. 3. Emulation results of snapshot color ME with 5 spectral channels. (a), (c) Color object and normalized radiance plot of each spectral component for ground truth (top) and recovered image (bottom) corresponding to the number object and cell from the stem of a cotton plant, respectively. (c), (d) Comparison of the original spectrum and the recovered spectrum averaged across all bright pixels for the number object and cell from the stem of a cotton plant, respectively.
Fig. 4.
Fig. 4. Reconstruction results of a color “H” object. The first, second, and third rows correspond to the ground truth object, recovered speckle autocorrelations, and estimated object, respectively. The last row shows a comparison between the normalized intensity along a slice through the object (indicated by the horizontal dashed white line) for each spectral channel. From left to right, the results correspond to the 650 nm, 550 nm, and 450 nm spectral bands. The fourth column shows full-color composite representations of the ground truth and recovered objects.
Fig. 5.
Fig. 5. Reconstruction results of a contiguous spectrum object. (a) The ground truth object and recovered color object consisting of an “X” and “+”. (b) Ground truth and recovered spectra of the “X” (black, blue) and “+” (yellow, red), respectively. The gray lines indicate the spectral bin edges (each 10 nm wide and centered at 520, 530, 540, 550, 560, and 570 nm). (c) Recovered autocorrelations and the corresponding phase retrieval results in 10 nm bands at the specified wavelengths.

Tables (1)

Tables Icon

Table 1. Quantitative Performance of Experimental Results

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

I = O * S = λ O λ * S λ = λ I λ ,
T λ ( x , y ) = T ( x + d ( λ λ 0 ) , y ) .
I ( x , y ) = λ T λ ( x , y ) · I λ ( x , y ) ,